WO2015074288A1 - Led背光驱动电路以及液晶显示器 - Google Patents

Led背光驱动电路以及液晶显示器 Download PDF

Info

Publication number
WO2015074288A1
WO2015074288A1 PCT/CN2013/088165 CN2013088165W WO2015074288A1 WO 2015074288 A1 WO2015074288 A1 WO 2015074288A1 CN 2013088165 W CN2013088165 W CN 2013088165W WO 2015074288 A1 WO2015074288 A1 WO 2015074288A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
signal
module
feedback voltage
voltage
Prior art date
Application number
PCT/CN2013/088165
Other languages
English (en)
French (fr)
Inventor
张先明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/233,150 priority Critical patent/US9232575B2/en
Publication of WO2015074288A1 publication Critical patent/WO2015074288A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details

Definitions

  • the present invention relates to an LED backlight driving circuit, and more particularly to an LED backlight driving circuit capable of accurately adjusting a current in an LED unit, and a liquid crystal display including the LED backlight driving circuit.
  • the backlight of a conventional liquid crystal display device uses a cold cathode fluorescent lamp (CC Book FL).
  • CCFL backlight due to the shortcomings of CCFL backlight, such as poor color reproduction ability, low luminous efficiency, high discharge voltage, poor discharge characteristics at low temperature, and long stable gradation time, a backlight technology using LED backlight has been developed.
  • the LED backlight is disposed opposite to the liquid crystal display panel, so that the LED backlight provides a display light source to the liquid crystal display panel, wherein the LED backlight comprises at least one LED string, and each LED string comprises a plurality of LEDs connected in series.
  • the LED backlight driving circuit includes a driving module 1 for supplying a driving voltage to the LED unit 2, wherein the driving module 1 receives a control voltage from the voltage control module 3, and controls the generated driving voltage.
  • a feedback voltage module 4 is also connected in series between the LED unit 2 and the ground, and the feedback voltage module 4 generates a feedback voltage input to the driving module 1.
  • the driving module monitors the value of the feedback voltage, thereby monitoring the LED unit 2
  • the magnitude of the current the driving module 1 can adjust the value of the driving voltage according to the value of the feedback voltage, thereby changing the value of the driving current.
  • the driving current is based on the control voltage of the voltage control module 3.
  • the feedback voltage module 4 is set by the feedback voltage;
  • the circuit of the voltage control module 3 is as shown in FIG. 2, the control voltage Vd is obtained by dividing the voltage dividing resistors Rc 1 and Rc2 from the voltage Vcc, and the voltage dividing resistor Rc l and The error of Rc2 affects the magnitude of the control voltage Vd, which in turn affects the accuracy of the drive current.
  • the circuit of the feedback voltage module 4 is shown in FIG.
  • the drain of the first field effect transistor Q1 is connected to the negative terminal of the LED unit 2
  • the gate G is controlled by the driving module 1
  • the source is connected to the ground through a feedback resistor Rs
  • the feedback voltage Vs obtained by dividing the feedback resistor Rs is input to the driving module 1
  • the driving module monitors the value of the feedback voltage Vs, thereby
  • the magnitude of the current in the LED unit 2 is monitored to adjust To the appropriate drive current value.
  • the two parameter control voltages Vd and the feedback voltage Vs for setting the driving current are obtained by means of resistor voltage division, and the error of the resistor affects the error of the control voltage Vd and the feedback voltage Vs, thereby affecting the circuit.
  • the accuracy of the drive current is controlled by the driving module 1
  • the source is connected to the ground through a feedback resistor Rs
  • the feedback voltage Vs obtained by dividing the feedback resistor Rs is input to the driving module 1
  • the driving module monitors the value of the feedback voltage Vs, thereby
  • An LED backlight driving circuit includes: a driving module, receiving a control voltage generated by a voltage control module and a feedback voltage generated by a feedback voltage module, generating a driving signal and providing the same a detection unit, configured to detect a value of the driving signal and generate an adjustment signal to provide an adjustment module; and an adjustment module to control the feedback voltage according to an adjustment signal generated by the detection module to adjust the driving signal.
  • the detection module is configured with a reference driving signal.
  • the detecting module detects that the value of the driving signal is smaller than the reference driving signal, the first adjusting signal is generated, and the adjusting module is configured according to the first adjusting signal.
  • Increasing the feedback voltage to increase the driving signal when the detecting module detects that the value of the driving signal is greater than the reference driving signal, generating a second adjustment signal, and the adjusting module is configured according to the second adjustment signal.
  • the feedback voltage is reduced to reduce the drive signal.
  • the detecting module includes a precision resistor, and the precision resistor is connected in series between the LED unit and the ground. The driving signal of the precision resistor is detected to obtain a value of a driving signal of the entire circuit.
  • the detecting module further includes a first amplifier and a first comparator; wherein a negative end of the first amplifier is connected to a low potential end of the precision resistor through a second resistor, and a negative terminal and a ground terminal thereof a first resistor is connected to the first resistor; a positive terminal of the first amplifier is connected to the high potential end of the precision resistor through a third resistor, and a fourth resistor is further connected between the positive terminal and the output terminal; An output of the amplifier is coupled to a negative terminal of the first comparator, a positive terminal of the first comparator is coupled to the reference drive signal, and an output of the first comparator outputs the adjustment signal.
  • the first resistor, the second resistor, the third resistor, and the fourth resistor have the same resistance value.
  • the adjustment module includes an operation circuit, the operation circuit has two input ends and one output end, wherein one input terminal receives the adjustment signal, and the other input terminal receives a feedback voltage generated by the feedback voltage module, and the output terminal is connected.
  • V S A * Vz + VsO, where Vs is the output signal voltage value, which is also generated by the feedback voltage module.
  • Vz is the voltage value of one of the input terminals, that is, the voltage value of the adjustment signal
  • VsO is the voltage value of the other input terminal, and is also the feedback voltage value generated at a moment of the feedback voltage module
  • A is a constant.
  • the adjustment module includes a second amplifier and a third amplifier, and the negative end of the second amplifier receives the adjustment signal and the feedback voltage through a fifth resistor and a sixth resistor, and the positive terminal is connected to the ground, and the output is The terminal is connected to the negative terminal of the third amplifier through an eighth resistor, and a seventh resistor is further connected between the negative terminal and the output terminal of the second amplifier; the positive terminal of the third amplifier is connected to the ground, and the output terminal Connected to the feedback voltage node of the feedback voltage module; a ninth resistor is further connected between the negative terminal and the output terminal of the second amplifier.
  • the sixth resistor and the seventh resistor have the same resistance value, and the eighth resistor and the ninth resistor have the same resistance; and the resistance of the fifth resistor is smaller than the resistance of the seventh resistor.
  • the driving module includes a boosting circuit and a driving IC, and the boosting circuit is configured to convert the input voltage signal into a required driving signal and provide the same to the LED unit; the driving IC receives the control voltage and the The voltage is fed back and the boost circuit is controlled to enable the boost circuit to convert the input voltage signal into a desired drive signal for supply to the LED unit.
  • Another aspect of the present invention provides a liquid crystal display including an LED backlight, wherein the LED backlight employs an LED backlight driving circuit as described above.
  • the LED backlight driving circuit provided by the present invention adjusts the current in the LED unit through the feedback voltage generated by the driving module receiving the feedback voltage module, and also precisely adjusts the current of the LED unit by using the detecting module and the adjusting module. Specifically, a reference driving signal is set in the detecting module, and when the detecting module detects that the value of the current in the LED unit is smaller than the reference driving signal, the first adjusting signal is generated, and the adjusting module increases the feedback according to the first adjusting signal.
  • FIG. 1 is a connection diagram of a conventional LED backlight driving circuit.
  • 2 is a circuit diagram of a voltage control module in the drive circuit shown in FIG. 1.
  • 3 is a circuit diagram of a feedback voltage module in the driving circuit shown in FIG. 1.
  • FIG. 4 is a connection module diagram of an LED backlight driving circuit in an embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a detecting module in the driving circuit shown in FIG. 4.
  • Fig. 6 is a circuit diagram of an adjustment module in the drive circuit shown in Fig. 4.
  • Fig. 7 is a circuit diagram of the drive circuit shown in Fig. 4. DETAILED DESCRIPTION OF THE INVENTION As described above, it is an object of the present invention to provide an LED backlight driving circuit capable of improving the accuracy of current in an LED unit.
  • the LED backlight driving circuit comprises: a driving module, configured to receive a control voltage generated by the voltage control module and a feedback voltage generated by the feedback voltage module, generate a driving signal and provide the driving signal to the LED unit; and the detecting module is configured to detect the driving The value of the signal is generated and supplied to the adjustment module.
  • the adjustment module controls the feedback voltage according to the adjustment signal generated by the detection module to adjust the driving signal.
  • the LED backlight driving circuit includes: a driving module 1 for receiving a control voltage generated by the voltage control module 3 and a feedback voltage generated by the feedback voltage module 4, generating a driving signal lied and providing the LED unit 2; and detecting module 5, Detecting the value of the driving signal lied and generating an adjustment signal to the adjustment module 6; the adjustment module 6 controls the feedback voltage according to the adjustment signal generated by the detection module 5 to adjust the driving signal Iledo, A reference driving signal is set in the detecting module 5, and the reference driving signal represents a rated driving signal of the driving circuit. When the detecting module 5 detects that the value of the driving signal lid is smaller than the reference driving signal, the first adjusting signal is generated.
  • the adjustment module 6 increases the feedback voltage according to the first adjustment signal, For the purpose of increasing the driving signal lied, until the driving signal lied is equal to the reference driving signal; when the detecting module 5 detects that the value of the driving signal lied is greater than the reference driving signal, the value of the second adjusting signal is generated, and the adjusting module 6 The feedback voltage is reduced according to the second adjustment signal to achieve the purpose of reducing the drive signal lide until the drive signal lied is equal to the reference drive signal.
  • FIG. 7 is a circuit diagram of an LED backlight driving circuit according to the embodiment. As shown in FIG. 7, the backlight driving circuit includes a driving module 1, an LED unit 2, a voltage control module 3, a feedback voltage module 4, a detecting module 5, and an adjustment. Module 6.
  • the driving module 1 includes a boosting circuit 11 and a driving IC 12, wherein the boosting circuit 11 includes an inductor L, a rectifier diode D, and a second field effect transistor Q2 capacitor C.
  • the boosting circuit 11 includes an inductor L, a rectifier diode D, and a second field effect transistor Q2 capacitor C.
  • One end of the inductor L receives the input voltage signal Vin, the other end of the inductor L is connected to the positive terminal of the rectifier diode D and is connected to the drain of the second field effect transistor Q2, and the second field effect transistor Q2
  • the gate is connected to the driving IC 12, and the signal of the driving IC 12 controls the second field effect transistor Q2 to be turned on or off.
  • the source of the second field effect transistor Q2 is electrically connected to the ground, and the negative terminal of the rectifier diode D passes through the capacitor C and The ground connection is electrically connected, and the negative terminal of the rectifier diode D forms an output end of the booster circuit 11 and is connected to the LED unit 2.
  • the driving IC 12 is connected to the feedback voltage module 4 through the first pin for monitoring the change of the feedback voltage Vs generated by the feedback voltage module 4, and receiving the control voltage Vd generated by the voltage control module 3 through the second pin, and passing the The three pins control the second field effect transistor Q2 to be turned on or off, thereby controlling the boosting circuit 11 to enable the boosting circuit 11 to convert the input voltage Vin into a required driving signal lied to be supplied to the LED unit 2 and achieve constant
  • the LED unit 2 is driven by a stream.
  • the voltage control module 3 is configured to provide a control voltage Vd to the driving module 1, including a first voltage dividing resistor Rcl and a second voltage dividing resistor Rc2, wherein one end of the second voltage dividing resistor Rc2 is connected to the voltage Vcc; the second voltage dividing resistor The other end of the Rc2 is electrically connected to the ground through the first voltage dividing resistor Rc1, and the control voltage Vd is drawn between the first voltage dividing resistor Rcl and the second voltage dividing resistor Rc2, and is input to the driving IC 12.
  • the feedback voltage module 4 is configured to provide a feedback voltage Vs to the driving module 1, including a first field effect transistor Q1 and a feedback resistor Rs, wherein a drain of the first field effect transistor Q1 is connected to a negative terminal of the LED unit 2;
  • the gate G of the field effect transistor Q1 is connected to the driving IC 12;
  • the source of the first field effect transistor Q1 is electrically connected to the ground through a feedback resistor Rs.
  • a feedback voltage Vs is drawn between the feedback resistor Rs and the connection point of the first field effect transistor Q1, and is input to the driving IC 12, and the current flowing through the feedback resistor Rs is obtained by monitoring the voltage Vs on the feedback resistor Rs, thereby obtaining a driving circuit.
  • the size of the drive signal lied is configured to provide a feedback voltage Vs to the driving module 1, including a first field effect transistor Q1 and a feedback resistor Rs, wherein a drain of the first field effect transistor Q1 is connected to a negative terminal of the LED unit 2;
  • the LED backlight driving circuit provided by the present invention further includes a detecting module 5 and an adjusting module 6,
  • the detection module 5 detects the size of the driving signal l ied of the driving circuit, and then adjusts the driving signal l ied by the adjusting module 6 to improve the precision of the driving signal l ied .
  • FIG. 5 and FIG. 6 are specific circuit diagrams of the detecting module 5 and the adjusting module 6 in this embodiment, respectively. Referring to FIG. 5, the detecting module 5 is configured to detect the value of the driving signal l ied and generate an adjustment signal Vz to provide to the adjusting module 6.
  • the circuit of the detecting module 5 includes a precision resistor R0, a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, and a first amplifier 51.
  • a first comparator 52 wherein the precision resistor R0 is connected in series between the LED unit 2 and the ground; the negative terminal of the first amplifier 51 is connected to the low potential end of the precision resistor R0 through the second resistor R2, and the negative terminal thereof A first resistor R1 is further connected to the ground; the positive terminal of the first amplifier 51 is connected to the high potential end of the precision resistor R0 through a third resistor R3, and a fourth resistor R4 is connected between the positive terminal and the output terminal.
  • the output of the first amplifier 51 inputs the first output signal VL to the negative terminal of the first comparator 52; the positive terminal of the first comparator 52 is connected to the reference voltage Vref; the output of the first comparator 52 is adjusted The signal is input to the adjustment module 6.
  • the precision resistance is a resistance within 0.5% of the resistance.
  • the detection circuit shown in FIG. 5 detects the magnitude relationship between the driving signal l ied and the reference driving signal by detecting the potential difference across the precision resistor R0 and comparing it with the reference voltage Vref. In order to facilitate the understanding of the circuit of the detection module by those skilled in the art, some parameters are selected below to describe the circuit of the detection module in detail.
  • the resistance of the precision resistor R0 is selected to be 1 ⁇ , and the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 are selected to have the same resistance value resistance, and the reference voltage Vref is determined by: LED unit rating The product of the drive signal (current) and the resistance of the precision resistor R0.
  • VL is smaller than Vref
  • Vz the adjustment signal Vz outputted by the first comparator 52 is greater than 0; when the value of the driving signal l ied is greater than the reference driving signal, VL is greater than Vref, the first comparison The adjustment signal Vz output by the unit 52 is less than zero.
  • the adjustment module 6 includes an operation circuit having two input terminals and one output terminal, wherein one input terminal receives the adjustment signal Vz, and the other input terminal receives the feedback voltage Vs generated by the feedback voltage module 4,
  • the output is connected to the feedback voltage node of the feedback voltage module 4; the output signal and the two inputs
  • V S A*Vz+VsO, where Vs is the output signal voltage value, and is also the feedback voltage value Vs generated by the feedback voltage module 4, and Vz is the voltage value of one of the input terminals, that is,
  • the voltage value of the adjustment signal, VsO is the voltage value of the other input terminal, and is also the feedback voltage value generated at a time on the feedback voltage module 4, and A is a constant.
  • the driving signal lid is equal to the ratio of the feedback voltage Vs to the feedback resistor Rs.
  • the adjustment module 6 includes a second amplifier 61, a third amplifier 62, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, and a ninth resistor R9, wherein
  • the negative terminal of the second amplifier 61 receives the adjustment signal Vz provided by the detecting module 5 and the feedback voltage Vs provided by the feedback voltage module 4 through the fifth resistor R5 and the sixth resistor R6, respectively; the positive terminal of the second amplifier 61 is electrically connected to the ground.
  • the output terminal Vs1 of the second amplifier 61 is connected to the negative terminal of the third amplifier 62 through the eighth resistor R8; the seventh resistor R7 is further connected between the negative terminal and the output terminal of the second amplifier 61; The terminal is electrically connected to the ground, and the output terminal is connected to the feedback voltage module 4; a ninth resistor R9 is further connected between the negative terminal and the output terminal of the second amplifier 61.
  • some parameters are selected to describe the circuit of the adjustment module in detail, and the sixth resistor R6 and the seventh resistor R7 are selected as resistors having the same resistance value.
  • the detecting module 5 detects that the voltage value across the precision resistor R0 is less than the value of the reference voltage Vref, that is, the value of the driving signal lid is smaller than the reference driving signal, and the adjusting signal Vz generated by the detecting module 5 is a positive value.
  • the detecting module 5 detects that the voltage value across the precision resistor R0 is greater than the value of the reference voltage Vref, that is, the value of the driving signal lid is greater than the reference driving signal, and the adjusting signal Vz generated by the detecting module 5 is a negative value.
  • the LED unit 2 is an LED string formed by a plurality of LEDs connected in series.
  • the LED backlight driving circuit receives the feedback voltage generated by the feedback voltage module to adjust the current in the LED unit, and also uses the detecting module and the adjusting module to accurately perform currents of the LED unit. Adjustment. Specifically, a reference driving signal is set in the detecting module, and when the detecting module detects that the value of the current in the LED unit is smaller than the reference driving signal, the first adjusting signal is generated, and the adjusting module increases the feedback according to the first adjusting signal.
  • the terms “including”, “comprising” or “comprising” or “comprising” or “comprising” are intended to encompass a non-exclusive inclusion, such that a process, method, article, or device that includes a plurality of elements includes not only those elements but also Other elements, or elements that are inherent to such a process, method, item, or device.
  • An element defined by the phrase “comprising a " does not exclude the presence of additional elements in the process, method, item, or device that comprises the element.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种LED背光驱动电路及具备该LED背光驱动电路的液晶显示器,包括:驱动模块(1),用于接收电压控制模块(3)产生的控制电压和反馈电压模块(4)产生的反馈电压,产生一驱动信号(lled)并提供给LED单元(2);侦测模块(5),用于侦测驱动信号(lled)的值并产生一调整信号提供给调整模块(6);调整模块(6),根据侦测模块(5)产生的调整信号来控制所述反馈电压,以调整驱动信号(lled)。该驱动电路能够精确的调节LED单元(2)中的电流,保证电源的稳定性,同时还可以增加LED单元(2)的使用寿命。

Description

LED背光驱动电路以及液晶显示器 技术领域 本发明涉及一种 LED背光驱动电路, 特别是一种能够精确调节 LED单元中的 电流的 LED背光驱动电路, 以及具备该 LED背光驱动电路的液晶显示器。
背景技术 随着技术的不断进步, 液晶显示设备的背光技术不断得到发展。 传统的液 晶显示设备的背光源采用冷阴极荧光灯 (CC书FL)。 但是由于 CCFL背光源存在色 彩还原能力较差、 发光效率低、 放电电压高、 低温下放电特性差、 加热达到稳 定灰度时间长等缺点, 当前已经开发出使用 LED背光源的背光源技术; 在液晶 显示设备中, LED背光源与液晶显示面板相对设置, 以使 LED背光源提供显示光 源给液晶显示面板, 其中, LED背光源包括至少一个 LED串, 每个 LED串包括串 联的多个 LED。
附图 1是现有的一种用于液晶显示器的 LED背光源的驱动电路的电路图。 如 图 1所示, 该 LED背光源驱动电路包括驱动模块 1,用于向 LED单元 2提供一驱动电 压,其中,驱动模块 1接收来自电压控制模块 3的控制电压,控制所产生的驱动电 压的大小; 同时, LED单元 2与地之间还串联有一反馈电压模块 4,反馈电压模块 4 产生一反馈电压输入到驱动模块 1中,驱动模块通过监测反馈电压的值,从而监 测都 LED单元 2中的电流的大小,驱动模块 1可根据反馈电压的值来调整驱动电压 的值, 从而改变驱动电流的值。 在 LED背光驱动电路中, 为了获得稳定的光源, 对于驱动电流的精度要求是比较高的, 如前所述, 在如图 1所示的电路中, 驱动 电流是根据电压控制模块 3的控制电压和反馈电压模块 4的反馈电压来设置的; 电压控制模块 3的电路如图 2所示, 控制电压 Vd是由分压电阻 Rc 1和 Rc2从电压 Vcc 分压得到的, 分压电阻 Rc l和 Rc2的误差会影响控制电压 Vd的大小, 进而影响到 驱动电流的精度; 反馈电压模块 4的电路如图 3所示, 其中第一场效应晶体管 Q1 的漏极连接到 LED单元 2的负端, 栅极 G由驱动模块 1控制, 源极通过一反馈电阻 Rs与地连接, 从反馈电阻 Rs上分压得到的反馈电压 Vs输入到驱动模块 1中,驱动 模块通过监测反馈电压 Vs的值,从而监测到 LED单元 2中的电流的大小来调整得 到适当的驱动电流值。 在该电路中, 设置驱动电流的两个参数控制电压 Vd和反 馈电压 Vs都是通过电阻分压的方式获得, 电阻的误差会影响到控制电压 Vd和反 馈电压 Vs的误差, 进而影响了电路中驱动电流的精度。 发明内容 鉴于现有技术存在的不足, 本发明提供了一种能够提高 LED单元中的电流 精度的 LED背光驱动电路。 为了实现上述目的, 本发明采用了如下的技术方案: 一种 LED背光驱动电路, 包括: 驱动模块,接收电压控制模块产生的控制电压和反馈电压模块产生的反馈 电压, 产生一驱动信号并提供给 LED单元; 侦测模块, 用于侦测所述驱动信号的值并产生一调整信号提供给调整模块; 调整模块, 根据侦测模块产生的调整信号来控制所述反馈电压, 以调整所 述驱动信号。 其中, 所述侦测模块中设定有一基准驱动信号, 当侦测模块侦测到所述驱 动信号的值小于所述基准驱动信号时产生第一调整信号, 所述调整模块根据第 一调整信号增大所述反馈电压, 以增大所述驱动信号; 当侦测模块侦测到所述 驱动信号的值大于所述基准驱动信号时产生第二调整信号, 所述调整模块根据 第二调整信号减小所述反馈电压, 以减小所述驱动信号。 其中, 所述侦测模块包括一精密电阻, 所述精密电阻串联于所述 LED单元 与接地端之间, 通过侦测所述精密电阻的驱动信号, 得到整个电路的驱动信号 的值。 其中, 所述侦测模块还包括第一放大器和第一比较器; 其中, 所述第一放 大器的负端通过第二电阻连接到所述精密电阻的低电位端, 其负端与接地端之 间还连接有第一电阻; 所述第一放大器的正端通过第三电阻连接到所述精密电 阻的高电位端, 其正端与输出端之间还连接有第四电阻; 所述第一放大器的输 出端连接到所述第一比较器的负端, 所述第一比较器的正端连接所述基准驱动 信号, 第一比较器的输出端输出所述调整信号。 其中, 所述第一电阻、 第二电阻、 第三电阻和第四电阻具有相同的电阻值。 其中, 所述调整模块包括运算电路, 所述运算电路具有两个输入端和一个 输出端, 其中一个输入端接收所述调整信号, 另一个输入端接收反馈电压模块 产生的反馈电压, 输出端连接到所述反馈电压模块的反馈电压节点上; 输出端 信号和两个输入端信号的关系为: VS=A*Vz+VsO,式中, Vs为输出端信号电压值, 也是反馈电压模块产生的反馈电压值, Vz为其中一个输入端的电压值, 也就是 所述调整信号的电压值, VsO为另一个输入端的电压值, 也是反馈电压模块上一 时刻产生的反馈电压值, A为常数。 其中, 所述调整模块包括第二放大器和第三放大器,所述第二放大器的负端 分别通过第五电阻和第六电阻接收所述调整信号和所述反馈电压, 正端与地连 接, 输出端通过第八电阻连接到所述第三放大器的负端, 所述第二放大器的负 端与输出端之间还连接有第七电阻; 所述第三放大器的正端与地连接, 输出端 连接到所述反馈电压模块的反馈电压节点上; 所述第二放大器的负端与输出端 之间还连接有第九电阻。 其中, 所述第六电阻与第七电阻具有相同的电阻值, 所述第八电阻与第九 电阻具有相同的阻值; 所述第五电阻的阻值小于第七电阻的阻值。 其中, 所述驱动模块包括升压电路和驱动 IC , 所述升压电路用于将输入的 电压信号转换成所需要的驱动信号提供给 LED单元; 所述驱动 IC接收所述控制 电压和所述反馈电压, 并控制所述升压电路, 以使升压电路能够将输入的电压 信号转换成所需要的驱动信号提供给 LED单元。 本发明的另一方面是提供一种液晶显示器, 所述液晶显示器包括 LED背光 源, 其中, 所述 LED背光源采用如上所述的 LED背光驱动电路。 有益效果: 本发明提供的 LED背光驱动电路通过驱动模块接收反馈电压模块产生的反 馈电压对 LED单元中的电流进行调节的同时,还利用侦测模块和调整模块对 LED 单元的电流进行精密调整。 具体地, 在侦测模块中设定一基准驱动信号, 当侦 测模块侦测到 LED单元中的电流的值小于基准驱动信号时产生第一调整信号, 调整模块根据第一调整信号增大反馈电压, 从而增大 LED单元中的电流; 当侦 测模块侦测到 LED单元中的电流的值大于基准驱动信号时产生第二调整信号, 调整模块根据第二调整信号减小所述反馈电压, 从而减小 LED单元中的电流。 这样能够提高 LED单元中的电流的精度, 不仅可以使光源具有一定的稳定性, 附图说明 图 1为现有的一种 LED背光驱动电路的连接模块图。 图 2为如图 1所示的驱动电路中的电压控制模块的电路图。 图 3为如图 1所示的驱动电路中的反馈电压模块的电路图。 图 4为本发明实施例中的 LED背光驱动电路的连接模块图。 图 5为如图 4所示的驱动电路中的侦测模块的电路图。 图 6为如图 4所示的驱动电路中的调整模块的电路图。 图 7为如图 4所示的驱动电路的电路图。 具体实施方式 如前所述,本发明的目的是提供一种能够提高 LED单元中电流的精度的 LED 背光驱动电路。 该 LED背光驱动电路包括: 驱动模块,用于接收电压控制模块产 生的控制电压和反馈电压模块产生的反馈电压, 产生一驱动信号并提供给 LED 单元; 侦测模块, 用于侦测所述驱动信号的值并产生一调整信号提供给调整模 块; 调整模块, 根据侦测模块产生的调整信号来控制所述反馈电压, 以调整所 述驱动信号。 本发明能够将提高 LED单元中的电流精度, 不仅使得光源更加稳 定, 同时还可以增加 LED单元的使用寿命。 下面将对结合附图用实施例对本发明做进一步说明。 图 4为本实施例提供的 LED背光驱动电路的连接模块图。 该 LED背光驱动 电路包括:驱动模块 1, 用于接收电压控制模块 3产生的控制电压和反馈电压模 块 4产生的反馈电压, 产生一驱动信号 lied并提供给 LED单元 2; 侦测模块 5, 用于侦测所述驱动信号 lied的值并产生一调整信号提供给调整模块 6; 调整模 块 6, 根据侦测模块 5产生的调整信号来控制所述反馈电压, 以调整所述驱动信 号 Iledo 其中, 在侦测模块 5中设定有一基准驱动信号, 该基准驱动信号代表驱动 电路的额定驱动信号, 当侦测模块 5侦测到驱动信号 lied的值小于该基准驱动 信号时产生第一调整信号的值, 调整模块 6根据第一调整信号增大反馈电压, 以达到增大驱动信号 lied的目的, 直到驱动信号 lied与该基准驱动信号相等; 当侦测模块 5侦测到驱动信号 lied的值大于基准驱动信号时产生第二调整信号 的值, 调整模块 6根据第二调整信号减小反馈电压, 以达到减小驱动信号 lied 的目的, 直到驱动信号 lied与该基准驱动信号相等。 图 7为本实施例提供的 LED背光驱动电路的电路图, 如图 7所示, 该背光 驱动电路包括驱动模块 1、 LED单元 2、 电压控制模块 3、 反馈电压模块 4、 侦测 模块 5、 调整模块 6。 驱动模块 1包括升压电路 11和驱动 IC12 , 其中, 升压电路 11包括电感器 L、 整流二极管 D、 第二场效应晶体管 Q2电容器 C。 所述电感器 L的一端接收所 述输入的电压信号 Vin,电感器 L的另一端连接到整流二极管 D的正端并连接到 第二场效应晶体管 Q2的漏极, 第二场效应晶体管 Q2的栅极连接到驱动 IC12 , 由驱动 IC12的信号来控制第二场效应晶体管 Q2导通或截止, 第二场效应晶体 管 Q2的源极与地电性连接, 整流二极管 D的负端通过电容器 C与地电性连接, 所述整流二极管 D的负端形成所述升压电路 11的输出端连接到所述 LED单元 2。 驱动 IC12通过第一引脚接到反馈电压模块 4中, 用于监测反馈电压模块 4产生 的反馈电压 Vs的变化, 同时通过第二引脚接收电压控制模块 3产生的控制电压 Vd, 并通过第三引脚来控制第二场效应晶体管 Q2导通或截止, 进而控制升压电 路 11, 以使升压电路 11能够将输入电压 Vin转换成所需要的驱动信号 lied提 供给 LED单元 2并实现恒流驱动所述 LED单元 2。 电压控制模块 3用于给驱动模块 1提供一个控制电压 Vd, 包括第一分压电 阻 Rcl和第二分压电阻 Rc2, 其中, 第二分压电阻 Rc2的一端接电压 Vcc; 第二 分压电阻 Rc2的另一端通过第一分压电阻 Rc l与地电性连接, 在第一分压电阻 Rcl和第二分压电阻 Rc2之间引出控制电压 Vd, 输入到驱动 IC12中。 反馈电压模块 4用于给驱动模块 1提供一个反馈电压 Vs, 包括第一场效应 晶体管 Q1和反馈电阻 Rs, 其中, 第一场效应晶体管 Q1的漏极连接到 LED单元 2的负端; 第一场效应晶体管 Q1的栅极 G与驱动 IC12连接; 第一场效应晶体管 Q1的源极通过反馈电阻 Rs与地电性连接。 在反馈电阻 Rs与第一场效应晶体管 Q1的连接点之间引出反馈电压 Vs, 输入到驱动 IC12中, 通过监测反馈电阻 Rs 上的电压 Vs,得到流过反馈电阻 Rs的电流, 从而得到驱动电路的驱动信号 lied 的大小。 如前所述,本发明提供的 LED背光驱动电路还包括侦测模块 5和调整模块 6, 由侦测模块 5侦测驱动电路的驱动信号 l ied的大小, 再通过调整模块 6对驱动 信号 l ied进行调整, 以提高驱动信号 l ied的精度。 图 5和图 6分别是本实施 例中的侦测模块 5和调整模块 6的具体电路图。 参阅图 5, 所述侦测模块 5用于侦测驱动信号 l ied的值并产生一调整信号 Vz提供给调整模块 6。 为了侦测驱动信号 l ied的值, 本实施例提供的侦测模块 5的电路包括精密电阻 R0、 第一电阻 Rl、 第二电阻 R2、 第三电阻 R3、 第四电阻 R4、 第一放大器 51和第一比较器 52, 其中, 精密电阻 R0串联于所述 LED单元 2与接地端之间; 第一放大器 51的负端通过第二电阻 R2连接到精密电阻 R0的 低电位端, 其负端与接地端之间还连接有第一电阻 R1 ; 第一放大器 51的正端通 过第三电阻 R3连接到精密电阻 R0的高电位端, 其正端与输出端之间还连接有 第四电阻 R4; 所述第一放大器 51的输出端将第一输出信号 VL输入到第一比较 器 52的负端; 第一比较器 52的正端连接基准电压 Vref ; 第一比较器 52的输出 端将调整信号 Vz输入到调整模块 6中; 需要说明的是, 所述精密电阻是指电阻 值的误差为 0. 5%以内的电阻。 如图 5所示的侦测电路是通过侦査精密电阻 R0两端的电位差, 再与基准电 压 Vref进行比较, 从而得出驱动信号 l ied与基准驱动信号的大小关系。 为了 便于本领域的技术人员理解该侦测模块的电路, 下面选取一些参数对该侦测模 块的电路进行详细的说明。 选取精密电阻 R0的阻值为 1 Ω, 选取第一电阻 Rl、 第二电阻 R2、 第三电阻 R3和第四电阻 R4为具有相同的电阻值电阻, 基准电压 Vref 的确定方式为: LED单元额定驱动信号 (电流) 与精密电阻 R0的阻值的乘 积。 由此, 精密电阻 R0两端的电压分别为 VI I和 V12 , 且 V11>V12, 这样驱动 信号 I led= (V11-V12 ) /R0=V11_V12, 而第一输出信号 VL=V11_V12。 当驱动信 号 l ied的值小于基准驱动信号时, VL小于 Vref , 第一比较器 52输出的调整信 号 Vz大于 0 ; 当驱动信号 l ied的值大于基准驱动信号时, VL大于 Vref , 第一 比较器 52输出的调整信号 Vz小于 0。 基于上述的比较结果, 当 Vz大于 0时, 驱动信号 l ied的值小于基准驱动 信号, 此时需要增加驱动信号 l ied的值; 当 Vz小于 0时, 驱动信号 l ied的值 大于基准驱动信号, 此时需要减小驱动信号 l ied的值。 因此本实施例提供的调 整模块 6包括运算电路, 该运算电路具有两个输入端和一个输出端, 其中一个 输入端接收调整信号 Vz,另一个输入端接收反馈电压模块 4产生的反馈电压 Vs, 输出端连接到所述反馈电压模块 4的反馈电压节点上; 输出端信号和两个输入 端信号的关系为: VS=A*Vz+VsO,式中, Vs为输出端信号电压值, 也是反馈电压 模块 4产生的反馈电压值 Vs, Vz为其中一个输入端的电压值, 也就是所述调整 信号的电压值, VsO为另一个输入端的电压值, 也是反馈电压模块 4上一时刻产 生的反馈电压值, A为常数。 参阅前述的反馈电压模块中, 驱动信号 lied等于 反馈电压 Vs与反馈电阻 Rs的比值, 通过改变反馈电压 Vs的值, 可以达到调整 驱动信号 lied的目的。 具体的, 参阅图 6, 该调整模块 6包括第二放大器 61、 第三放大器 62、 第 五电阻 R5、 第六电阻 R6、 第七电阻 R7、 第八电阻 R8和第九电阻 R9, 其中, 第 二放大器 61的负端分别通过第五电阻 R5和第六电阻 R6接收侦测模块 5提供的 调整信号 Vz和反馈电压模块 4提供的反馈电压 Vs; 第二放大器 61的正端与地 电性连接; 第二放大器 61的输出端 Vsl通过第八电阻 R8连接到第三放大器 62 的负端; 第二放大器 61的负端与输出端之间还连接有第七电阻 R7; 第三放大器 62的正端与地电性连接, 输出端连接到反馈电压模块 4中; 第二放大器 61的负 端与输出端之间还连接有第九电阻 R9。 为了便于本领域的技术人员理解该调整 模块的电路, 下面选取一些参数对该调整模块的电路进行详细的说明, 选取第 六电阻 R6与第七电阻 R7为具有相同的电阻值的电阻, 选取第八电阻 R8与第九 电阻 R9为具有相同的阻值的电阻, 选取第五电阻 R5的阻值小于第七电阻 R7的 阻值;该电路中,输出端信号和两个输入端信号的关系为: Vs= (R7/R5) *Vz+VsO, 即常数 A为第七电阻 R7的阻值与第五电阻 R5的阻值的比值。 下面将对如图 7所示的 LED背光驱动电路的工作过程进行详细的说明。
1、 当侦测模块 5侦测到精密电阻 R0两端的电压值小于基准电压 Vref 的值 时, 即驱动信号 lied的值小于基准驱动信号, 侦测模块 5产生的调节信号 Vz 为一个正值, 由公式 Vs= (R7/R5) *Vz+VsO可以看出, 通过调整模块 6的调整, 反馈电压 Vs不断的增加, 驱动信号 lied的值也随着增加; 当驱动信号 lied的 值增加到与基准驱动信号相等时, Vz=0,此时 Vs=VsO,即反馈电压 Vs不再变化, 驱动电路中获得与基准驱动信号相符合的稳定的驱动信号 lied;
2、 当侦测模块 5侦测到精密电阻 R0两端的电压值大于基准电压 Vref 的值 时, 即驱动信号 lied的值大于基准驱动信号, 侦测模块 5产生的调节信号 Vz 为一个负值, 由公式 Vs= (R7/R5) *Vz+VsO可以看出, 通过调整模块 6的调整, 反馈电压 Vs不断的减小, 驱动信号 lied的值也随着减小; 当驱动信号 lied的 值减小到与基准驱动信号相等时, Vz=0,此时 Vs=VsO,即反馈电压 Vs不再变化, 驱动电路中获得与基准驱动信号相符合的稳定的驱动信号 Iled。 本实施例中, LED单元 2为多个 LED串联形成的 LED串。 综上所述, 本发明提供的 LED背光驱动电路通过驱动模块接收反馈电压模 块产生的反馈电压对 LED单元中的电流进行调节的同时, 还利用侦测模块和调 整模块对 LED单元的电流进行精密调整。 具体地, 在侦测模块中设定一基准驱 动信号, 当侦测模块侦测到 LED单元中的电流的值小于基准驱动信号时产生第 一调整信号, 调整模块根据第一调整信号增大反馈电压, 从而增大 LED单元中 的电流; 当侦测模块侦测到 LED单元中的电流的值大于基准驱动信号时产生第 二调整信号, 调整模块根据第二调整信号减小所述反馈电压, 从而减小 LED单 元中的电流。 这样能够提高 LED单元中的电流的精度, 不仅可以使光源具有一 定的稳定性, 同时还可以增加 LED单元的使用寿命。 需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括"、 "包 含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素 的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的 其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在 没有更多限制的情况下, 由语句 "包括一个…… " 限定的要素, 并不排除在包 括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本申请原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本申请的保护范围。

Claims

权 利 要 求 书
1、 一种 LED背光驱动电路, 其中, 包括: 驱动模块,接收电压控制模块产生的控制电压和反馈电压模块产生的反馈 电压, 产生一驱动信号并提供给 LED单元; 侦测模块, 用于侦测所述驱动信号的值并产生一调整信号提供给调整模块; 调整模块, 根据侦测模块产生的调整信号来控制所述反馈电压, 以调整所 述驱动信号。
2、 根据权利要求 1所述的 LED背光驱动电路, 其中, 所述侦测模块中设定 有一基准驱动信号, 当侦测模块侦测到所述驱动信号的值小于所述基准驱动信 号时产生第一调整信号, 所述调整模块根据第一调整信号增大所述反馈电压, 以增大所述驱动信号; 当侦测模块侦测到所述驱动信号的值大于所述基准驱动 信号时产生第二调整信号, 所述调整模块根据第二调整信号减小所述反馈电压, 以减小所述驱动信号。
3、 根据权利要求 2所述的 LED背光驱动电路, 其中, 所述侦测模块包括一 精密电阻, 所述精密电阻串联于所述 LED单元与接地端之间, 通过侦测所述精 密电阻的驱动信号, 得到整个电路的驱动信号的值。
4、 根据权利要求 3所述的 LED背光驱动电路, 其中, 所述侦测模块还包括 第一放大器和第一比较器; 其中, 所述第一放大器的负端通过第二电阻连接到 所述精密电阻的低电位端, 其负端与接地端之间还连接有第一电阻; 所述第一 放大器的正端通过第三电阻连接到所述精密电阻的高电位端, 其正端与输出端 之间还连接有第四电阻; 所述第一放大器的输出端连接到所述第一比较器的负 端, 所述第一比较器的正端连接所述基准驱动信号, 第一比较器的输出端输出 所述调整信号。
5、 根据权利要求 4所述的 LED背光驱动电路, 其中, 所述第一电阻、 第二 电阻、 第三电阻和第四电阻具有相同的电阻值。
6、 根据权利要求 2所述的 LED背光驱动电路, 其中, 所述调整模块包括运 算电路, 所述运算电路具有两个输入端和一个输出端, 其中一个输入端接收所 述调整信号, 另一个输入端接收反馈电压模块产生的反馈电压, 输出端连接到 所述反馈电压模块的反馈电压节点上; 输出端信号和两个输入端信号的关系为:
VS=A*Vz+VsO,式中, Vs为输出端信号电压值, 也是反馈电压模块产生的反馈电 压值, Vz为其中一个输入端的电压值, 也就是所述调整信号的电压值, VsO为 另一个输入端的电压值, 也是反馈电压模块上一时刻产生的反馈电压值, A为常 数。
7、 根据权利要求 4所述的 LED背光驱动电路, 其中, 所述调整模块包括运 算电路, 所述运算电路具有两个输入端和一个输出端, 其中一个输入端接收所 述调整信号, 另一个输入端接收反馈电压模块产生的反馈电压, 输出端连接到 所述反馈电压模块的反馈电压节点上; 输出端信号和两个输入端信号的关系为: VS=A*Vz+VsO,式中, Vs为输出端信号电压值, 也是反馈电压模块产生的反馈电 压值, Vz为其中一个输入端的电压值, 也就是所述调整信号的电压值, VsO为 另一个输入端的电压值, 也是反馈电压模块上一时刻产生的反馈电压值, A为常 数。
8、 根据权利要求 7所述的 LED背光驱动电路, 其中, 所述调整模块包括第 二放大器和第三放大器,所述第二放大器的负端分别通过第五电阻和第六电阻 接收所述调整信号和所述反馈电压, 正端与地连接, 输出端通过第八电阻连接 到所述第三放大器的负端, 所述第二放大器的负端与输出端之间还连接有第七 电阻; 所述第三放大器的正端与地连接, 输出端连接到所述反馈电压模块的反 馈电压节点上; 所述第二放大器的负端与输出端之间还连接有第九电阻。
9、 根据权利要求 8所述的 LED背光驱动电路, 其中, 所述第六电阻与第七 电阻具有相同的电阻值, 所述第八电阻与第九电阻具有相同的阻值; 所述第五 电阻的阻值小于第七电阻的阻值。
10、 根据权利要求 8所述的 LED背光驱动电路, 其中, 所述驱动模块包括 升压电路和驱动 IC , 所述升压电路用于将输入的电压信号转换成所需要的驱动 信号提供给 LED单元; 所述驱动 IC接收所述控制电压和所述反馈电压, 并控制 所述升压电路, 以使升压电路能够将输入的电压信号转换成所需要的驱动信号 提供给 LED单元。
11、 一种液晶显示器, 包括 LED背光源, 其中, 所述 LED背光源采用的驱 动电路驱动包括: 驱动模块,接收电压控制模块产生的控制电压和反馈电压模块产生的反馈 电压, 产生一驱动信号并提供给 LED单元; 侦测模块, 用于侦测所述驱动信号的值并产生一调整信号提供给调整模块; 调整模块, 根据侦测模块产生的调整信号来控制所述反馈电压, 以调整所 述驱动信号。
12、 根据权利要求 11所述的液晶显示器, 其中, 所述侦测模块中设定有一 基准驱动信号, 当侦测模块侦测到所述驱动信号的值小于所述基准驱动信号时 产生第一调整信号, 所述调整模块根据第一调整信号增大所述反馈电压, 以增 大所述驱动信号; 当侦测模块侦测到所述驱动信号的值大于所述基准驱动信号 时产生第二调整信号, 所述调整模块根据第二调整信号减小所述反馈电压, 以 减小所述驱动信号。
13、 根据权利要求 12所述的液晶显示器, 其中, 所述侦测模块包括一精密 电阻, 所述精密电阻串联于所述 LED单元与接地端之间, 通过侦测所述精密电 阻的驱动信号, 得到整个电路的驱动信号的值。
14、 根据权利要求 13所述的液晶显示器, 其中, 所述侦测模块还包括第一 放大器和第一比较器; 其中, 所述第一放大器的负端通过第二电阻连接到所述 精密电阻的低电位端, 其负端与接地端之间还连接有第一电阻; 所述第一放大 器的正端通过第三电阻连接到所述精密电阻的高电位端, 其正端与输出端之间 还连接有第四电阻; 所述第一放大器的输出端连接到所述第一比较器的负端, 所述第一比较器的正端连接所述基准驱动信号, 第一比较器的输出端输出所述 调整信号。
15、根据权利要求 14所述的液晶显示器, 其中, 所述第一电阻、第二电阻、 第三电阻和第四电阻具有相同的电阻值。
16、 根据权利要求 12所述的液晶显示器, 其中, 所述调整模块包括运算电 路, 所述运算电路具有两个输入端和一个输出端, 其中一个输入端接收所述调 整信号, 另一个输入端接收反馈电压模块产生的反馈电压, 输出端连接到所述 反馈电压模块的反馈电压节点上; 输出端信号和两个输入端信号的关系为: VS=A*Vz+VsO,式中, Vs为输出端信号电压值, 也是反馈电压模块产生的反馈电 压值, Vz为其中一个输入端的电压值, 也就是所述调整信号的电压值, VsO为 另一个输入端的电压值, 也是反馈电压模块上一时刻产生的反馈电压值, A为常 数。
17、 根据权利要求 14所述的液晶显示器, 其中, 所述调整模块包括运算电 路, 所述运算电路具有两个输入端和一个输出端, 其中一个输入端接收所述调 整信号, 另一个输入端接收反馈电压模块产生的反馈电压, 输出端连接到所述 反馈电压模块的反馈电压节点上; 输出端信号和两个输入端信号的关系为: VS=A*Vz+VsO,式中, Vs为输出端信号电压值, 也是反馈电压模块产生的反馈电 压值, Vz为其中一个输入端的电压值, 也就是所述调整信号的电压值, VsO为 另一个输入端的电压值, 也是反馈电压模块上一时刻产生的反馈电压值, A为常 数。
18、 根据权利要求 17所述的液晶显示器, 其中, 所述调整模块包括第二放 大器和第三放大器,所述第二放大器的负端分别通过第五电阻和第六电阻接收 所述调整信号和所述反馈电压, 正端与地连接, 输出端通过第八电阻连接到所 述第三放大器的负端, 所述第二放大器的负端与输出端之间还连接有第七电阻; 所述第三放大器的正端与地连接, 输出端连接到所述反馈电压模块的反馈电压 节点上; 所述第二放大器的负端与输出端之间还连接有第九电阻。
19、 根据权利要求 18所述的液晶显示器, 其中, 所述第六电阻与第七电阻 具有相同的电阻值, 所述第八电阻与第九电阻具有相同的阻值; 所述第五电阻 的阻值小于第七电阻的阻值。
20、 根据权利要求 18所述的液晶显示器, 其中, 所述驱动模块包括升压电 路和驱动 IC, 所述升压电路用于将输入的电压信号转换成所需要的驱动信号提 供给 LED单元; 所述驱动 IC接收所述控制电压和所述反馈电压, 并控制所述升 压电路, 以使升压电路能够将输入的电压信号转换成所需要的驱动信号提供给 LED单元。
PCT/CN2013/088165 2013-11-25 2013-11-29 Led背光驱动电路以及液晶显示器 WO2015074288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/233,150 US9232575B2 (en) 2013-11-25 2013-11-29 LCD backlight driving circuit and liquid crystal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310604035.1 2013-11-25
CN201310604035.1A CN103606354B (zh) 2013-11-25 2013-11-25 Led背光驱动电路以及液晶显示器

Publications (1)

Publication Number Publication Date
WO2015074288A1 true WO2015074288A1 (zh) 2015-05-28

Family

ID=50124573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088165 WO2015074288A1 (zh) 2013-11-25 2013-11-29 Led背光驱动电路以及液晶显示器

Country Status (3)

Country Link
US (1) US9232575B2 (zh)
CN (1) CN103606354B (zh)
WO (1) WO2015074288A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157237B (zh) * 2014-07-18 2016-05-11 京东方科技集团股份有限公司 一种显示驱动电路及其驱动方法、显示装置
US9497816B2 (en) * 2014-11-06 2016-11-15 Chipone Technology (Beijing) Co., Ltd. Method for minimizing LED flicker of an LED driver system
CN105262057B (zh) * 2015-11-27 2018-09-14 深圳市华星光电技术有限公司 Pmic的保护电路、显示面板及显示装置
CN105405425B (zh) * 2015-12-24 2018-09-18 昆山龙腾光电有限公司 一种驱动电流切换控制电路及显示装置
CN106098000B (zh) * 2016-08-03 2018-11-23 深圳市华星光电技术有限公司 伴压电路及液晶显示器
CN106898310B (zh) * 2017-03-21 2019-03-01 京东方科技集团股份有限公司 一种拓展led数量的电路、背光源、显示装置
CN107301849B (zh) * 2017-07-19 2018-08-14 深圳市华星光电半导体显示技术有限公司 显示驱动芯片及液晶显示装置
CN109377956B (zh) * 2018-12-03 2020-05-12 惠科股份有限公司 保护电路和供电电路
CN112312617B (zh) * 2020-09-24 2023-05-12 昂宝电子(上海)有限公司 Led背光控制系统和方法
CN112542141A (zh) * 2020-12-01 2021-03-23 Tcl华星光电技术有限公司 显示装置及其驱动方法
CN113178167A (zh) * 2021-04-16 2021-07-27 Tcl华星光电技术有限公司 显示面板及其驱动方法
CN113421521B (zh) * 2021-06-15 2023-05-05 Tcl华星光电技术有限公司 背光驱动电路、驱动方法及背光模组
CN114170977B (zh) * 2021-12-15 2022-07-05 北京芯格诺微电子有限公司 Led背光矩阵驱动电路及其驱动电压检测调节方法
CN114360447B (zh) * 2022-01-04 2023-11-28 Tcl华星光电技术有限公司 显示器的驱动方法及显示器
CN115188330B (zh) * 2022-09-13 2022-12-23 惠科股份有限公司 驱动电流调节电路、色偏校正方法、设备及存储介质
CN117134312B (zh) * 2023-10-26 2024-03-26 深圳清大电子科技有限公司 一种显示屏的供电电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080100234A1 (en) * 2006-11-01 2008-05-01 Chunghwa Picture Tubes, Ltd. Light source driving circuit and driving method thereof
CN102637412A (zh) * 2012-04-28 2012-08-15 深圳市华星光电技术有限公司 一种led背光驱动电路、液晶显示装置和一种驱动方法
KR20120114600A (ko) * 2011-04-07 2012-10-17 삼성디스플레이 주식회사 발광 다이오드 구동 장치
CN103037597A (zh) * 2013-01-06 2013-04-10 深圳创维-Rgb电子有限公司 多路led恒流控制电路及led光源控制系统
CN103281823A (zh) * 2013-05-08 2013-09-04 矽力杰半导体技术(杭州)有限公司 具有恒流和恒压输出的多路电源系统
CN103310753A (zh) * 2013-06-24 2013-09-18 深圳市华星光电技术有限公司 液晶显示设备及其led背光源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426312A (zh) * 2007-10-29 2009-05-06 中华映管股份有限公司 背光装置
US7550934B1 (en) * 2008-04-02 2009-06-23 Micrel, Inc. LED driver with fast open circuit protection, short circuit compensation, and rapid brightness control response
TWI400989B (zh) * 2008-05-30 2013-07-01 Green Solution Technology Inc 發光二極體驅動電路及其控制器
JP5097628B2 (ja) * 2008-07-03 2012-12-12 パナソニック株式会社 半導体光源駆動装置および半導体光源駆動方法
CN102196618B (zh) * 2010-03-16 2015-07-22 成都芯源系统有限公司 Led照明驱动电路和方法
CN103117046A (zh) * 2013-03-11 2013-05-22 深圳市华星光电技术有限公司 液晶显示器、led背光源及其驱动方法
CN103295537A (zh) * 2013-05-08 2013-09-11 深圳市华星光电技术有限公司 一种led背光驱动电路、背光模组和液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080100234A1 (en) * 2006-11-01 2008-05-01 Chunghwa Picture Tubes, Ltd. Light source driving circuit and driving method thereof
KR20120114600A (ko) * 2011-04-07 2012-10-17 삼성디스플레이 주식회사 발광 다이오드 구동 장치
CN102637412A (zh) * 2012-04-28 2012-08-15 深圳市华星光电技术有限公司 一种led背光驱动电路、液晶显示装置和一种驱动方法
CN103037597A (zh) * 2013-01-06 2013-04-10 深圳创维-Rgb电子有限公司 多路led恒流控制电路及led光源控制系统
CN103281823A (zh) * 2013-05-08 2013-09-04 矽力杰半导体技术(杭州)有限公司 具有恒流和恒压输出的多路电源系统
CN103310753A (zh) * 2013-06-24 2013-09-18 深圳市华星光电技术有限公司 液晶显示设备及其led背光源

Also Published As

Publication number Publication date
US9232575B2 (en) 2016-01-05
CN103606354A (zh) 2014-02-26
CN103606354B (zh) 2016-04-13
US20150145424A1 (en) 2015-05-28

Similar Documents

Publication Publication Date Title
WO2015074288A1 (zh) Led背光驱动电路以及液晶显示器
KR101945909B1 (ko) Led 백라이트 구동 회로 및 액정 디스플레이
CN103037597B (zh) 多路led恒流控制电路及led光源控制系统
JP5448592B2 (ja) 光源に電力を供給するための駆動回路
TWI236169B (en) Driving device for light emitted diode
CN107094329B (zh) Led驱动电路
US9672779B2 (en) Liquid crystal display device, backlight module, and drive circuit for backlight source thereof
TWI468080B (zh) LED drive device and method
WO2013159371A1 (zh) 一种led背光驱动电路、液晶显示装置和一种驱动方法
JP6240762B2 (ja) Ledバックライトシステム及び表示装置
CN103440848A (zh) 背光驱动电路
KR20160023079A (ko) 제어 전압 조정 회로, 피드백 신호 생성 회로 및 이를 포함하는 제어 회로
WO2015066940A1 (zh) 过压保护电路、led背光驱动电路以及液晶显示器
WO2015010346A1 (zh) Led背光驱动电路以及液晶显示器
CN102361525A (zh) 发光二极管电路及其方法
WO2015172402A1 (zh) 用于液晶显示设备的led背光源
WO2015089928A1 (zh) 背光调节电路及电子装置
WO2018094970A1 (zh) 一种led线性恒流驱动电路及led照明装置
US9332607B2 (en) LED backlight driving circuit and liquid crystal display device
US8901854B1 (en) Multi-segment LED driving circuit
TW201433201A (zh) 發光二極體驅動裝置之維持電流電路及其運作方法
CN107734777A (zh) Led驱动芯片、led驱动电路及led照明装置
WO2016029512A1 (zh) 用于液晶显示设备的led背光源及液晶显示设备
US20210168916A1 (en) Multi-segment linear led drive circuit, device and driving method
CN105813268A (zh) Led负载光源自动识别的光源系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14233150

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897806

Country of ref document: EP

Kind code of ref document: A1