WO2015074244A1 - 径向偏振薄片激光器 - Google Patents

径向偏振薄片激光器 Download PDF

Info

Publication number
WO2015074244A1
WO2015074244A1 PCT/CN2013/087680 CN2013087680W WO2015074244A1 WO 2015074244 A1 WO2015074244 A1 WO 2015074244A1 CN 2013087680 W CN2013087680 W CN 2013087680W WO 2015074244 A1 WO2015074244 A1 WO 2015074244A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
gain medium
brewster
cone
film
Prior art date
Application number
PCT/CN2013/087680
Other languages
English (en)
French (fr)
Inventor
肖磊
龚成万
赵建涛
杨锦彬
宁艳华
高云峰
Original Assignee
深圳市大族激光科技股份有限公司
深圳市大族数控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司, 深圳市大族数控科技有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to PCT/CN2013/087680 priority Critical patent/WO2015074244A1/zh
Priority to CN201380077673.0A priority patent/CN105393415B/zh
Priority to US15/034,130 priority patent/US9806484B2/en
Publication of WO2015074244A1 publication Critical patent/WO2015074244A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3066Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state involving the reflection of light at a particular angle of incidence, e.g. Brewster's angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0813Configuration of resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/14Semiconductor lasers with special structural design for lasing in a specific polarisation mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/20Lasers with a special output beam profile or cross-section, e.g. non-Gaussian
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators

Definitions

  • This invention relates to lasers, and more particularly to a sheet laser with a gain medium capable of producing a radially polarized laser. Background technique
  • Thin-film lasers are one of the all-solid-state lasers, and they have grown rapidly since Adolf. Giesen et al. first implemented thin-film lasers in 1994.
  • the thin-film laser uses a sheet-like material having a small thickness and a large lateral dimension as a gain medium of the laser, that is, a sheet gain medium.
  • the sheet laser requires heat dissipation from the sheet gain medium during operation.
  • a conventional sheet gain medium cooling device includes a high thermal conductivity copper heat sink attached to the sheet gain medium.
  • a cooling medium microchannel is provided on the copper heat sink.
  • the thin-film laser has the advantages of efficiently deriving thermal deposition in the gain medium and attenuating the thermal lens effect of the gain medium, so that high-power, high-efficiency, high-beam quality laser output can be realized. Since the thin-film laser has the above advantages, it has been widely used in various fields such as defense military, scientific research, and industrial production.
  • the heat applied to the sheet gain medium causes the temperature of the sheet gain medium to be Gaussian, that is, the energy density of the middle portion of the sheet gain medium is high, and the energy density of the portion diffused from the middle portion to the periphery gradually decreases.
  • the intermediate portion of the sheet gain medium expands outwardly, forming a "bowl-like" deformation similar to the reverse buckle, which is the thermal lens effect of the sheet laser.
  • the thermal lens effect of the sheet gain medium affects the laser Output power, output laser stability and laser beam quality.
  • the sheet gain medium expands and deforms beyond the material's ability to withstand, it may even cause the sheet gain medium to burst.
  • a radially polarized thin-film laser comprising a pump source arranged in a direction along a laser beam path, a collimating lens, a focusing lens, a laser gain medium, a Brewster axis cone and an output lens, wherein the Brewster axis cone The angle formed by the tapered surface and the bottom surface is a Brewster angle, the laser gain medium is bonded to the bottom surface, and a laser resonator sub-cavity is formed between the laser gain medium and the output lens, the pump source The emitted pump laser passes through the collimating lens and the focusing lens, focuses on the laser gain medium, generates photons oscillating in the laser resonator cavity, and finally outputs a radially polarized laser beam from the output lens .
  • the laser gain medium is a Yb:YAG wafer having a doping concentration of 5.0 at% to 15 at%, and the Yb:YAG wafer has a thickness of 0.2 to 0.5 mm.
  • the Brewster shaft cone includes a base and a cone connected to the base, the laser gain medium is bonded to the base, and the thickness of the base is the Yb:YAG The thickness of the wafer is twice.
  • the material of the Brewster axicon is a YAG crystal, and the Brewster angle is 61.2134. ⁇ 2,.
  • the material of the Brewster axicon is quartz, and the Bruce angle is 55.4. ⁇ 2,.
  • the radially polarized sheet laser shown further includes a concave mirror set,
  • the concave mirror group is disposed on a side of the laser gain medium away from the Brewster axis cone, and the pump laser light not absorbed by the laser gain medium is reflected by the concave mirror group, and then re-entered The laser gain medium.
  • the EJ face mirror group includes seven inner mirrors and eight outer mirrors, and the seven inner mirrors and the focus lens are arranged in the Brewster axis
  • the inner ring having an axis of symmetry is arranged, and the eight outer mirrors are arranged in an outer ring surrounding the inner ring.
  • a side of the laser gain medium away from the Brewster cone is provided with a first two-color optical film that is highly transparent to incident light and highly reflective to emitted light, the laser gain medium being close to the One side of the Brewster axis cone is provided with a second two-color optical film that is highly transparent to the exiting light and highly reflective to the incident light.
  • the bottom surface and the tapered surface of the Brewster shaft cone are respectively provided with an exiting light high permeability film.
  • the radially polarized thin-film laser further includes a lens holder, a pump head, and a first sealing cover, the first sealing cover and the pump head cooperate to form a pump for housing the lens holder.
  • the cavity mirror is fixed on the lens holder, and the first sealing cover is provided with a coolant circulation system.
  • the radially polarized thin-film laser further includes a heat sink, a second sealing cover, and an output barrel, the second sealing cover and the output barrel cooperate to form a laser gain medium and An output mirror cavity of the Brewster shaft cone, the heat dissipation device is disposed on one side of the second sealing cover, the output lens is disposed at one end of the output lens barrel, and the output lens barrel is disposed on the output lens barrel Coolant circulation system.
  • the heat sink and the second sealing cover are jointly provided with a finger A tapered hole toward the laser gain medium.
  • the pump source emits a pump laser having a wavelength of 940 nm. In one of the embodiments, the radially polarized laser beam has a wavelength of 1030 nm.
  • the mutual bonding of the laser gain medium of the above embodiment and the Brewster axicon can improve the thermal lens effect of the wafer and stably output the radially polarized laser light.
  • FIG. 1 is a schematic diagram of the principle of a radially polarized thin-film laser of an embodiment
  • FIG. 2 is a cross-sectional view of a radially polarized thin-film laser of an embodiment.
  • FIG. 3 is a perspective exploded view of the radially polarized thin film laser shown in FIG. 2.
  • FIG. 4 is a perspective exploded view of the laser gain medium and the Brewster axicon shown in FIG. 3.
  • Figure 5 is a schematic diagram of the propagation path of photons inside and outside the Brewster axis cone and laser gain medium.
  • Figure 6 shows the Gaussian mode distribution of the 940 nm pump photon energy.
  • Figure 7 shows the photon energy distribution of a 940nm pump light single-end pump with a length of 10mm Yb:YAG crystal rod pump.
  • Figure 8 is a graph of the absorption function of a 940 nm pump light with a Yb:YAG rod crystal of length 10 mm.
  • Figure 9 shows the pump photon energy distribution for a 940 nm pumped single end pump with a 0.5 mm thick Yb:YAG sheet.
  • Figure 10 is a graph of the absorption function of Yb:YAG flake crystals for 940 nm pump light.
  • Figure 11 is a partial perspective cross-sectional view of the EJ face mirror group and the pump head.
  • Figure 12 is a cross-sectional view of the EJ face mirror group and the pump head.
  • Figure 13 is a perspective exploded view of the concave mirror group and the pump head.
  • Figure 14 is a schematic diagram of the refraction and reflection of plane wave incident air and YAG medium.
  • Figure 15 shows the reflectance of light as it enters YAG from air as a function of incident angle.
  • Figure 16 shows the transmittance of light as it enters YAG from air as a function of incident angle.
  • Figure 17 is a schematic diagram of an optical resonant cavity of a radially polarized thin-film laser.
  • Figure 18 is a cross-sectional view of a cooling device for a laser gain medium.
  • Figure 19 is a perspective exploded view of the cooling device of the laser gain medium. detailed description
  • Polarization is one of the most basic features of light, common wired polarized light, elliptically polarized light, circularly polarized light, and radially polarized light. Since the polarization direction of the radially polarized light has a perfect axisymmetric distribution, it has many significantly different characteristics compared to linearly polarized light, circularly polarized light, and elliptically polarized light.
  • the radially polarized light has an electric field distribution symmetric along the optical axis and a hollow circular beam structure; the radially polarized light can produce a very small focal spot beyond the diffraction limit when the high-value lens is focused, than linear polarization, circular polarization
  • the elliptically polarized focused spot is much smaller, and the longitudinal electric field in the focal region becomes very strong; the radially polarized light has only a transverse magnetic field and an electric field along the longitudinal axis; the radially polarized light is the polarization eigenstate, cut in C When propagating into the crystal, crosstalk does not occur.
  • these characteristics of radially polarized light have been used in many applications. As in the process of guiding and capturing particles, accelerating particles, improving the resolution of the microscope, cutting metal, and increasing the density of storage, with the deepening understanding of the radially polarized light, it will be applied in more and more fields. .
  • the radial polarization slice laser 100 of the embodiment includes a pump source 10, a collimator lens 20, a focus lens 30, a laser gain medium 50, and a blue light, which are sequentially arranged in the direction of the laser beam path.
  • the laser beam output from the pump source 10 is conducted by the optical fiber 12 and passed through the collimating lens 20 and the focusing lens 30 to focus the laser focus on the laser gain medium 50.
  • the generated photons are formed between the laser gain medium 50 and the output lens 70.
  • the laser resonator cavity 80 oscillates and passes through the Brewster axis cone 60 a plurality of times, thereby filtering out photons having a polarization state of P-polarized light, and finally outputting the radially-polarized laser beam 90 from the output lens 70.
  • the main function of the pump source 10 is to generate a pump laser as a light source.
  • a laser diode (LD) laser having a wavelength of 940 nm is used as a pump source.
  • the collimating lens 20 is fixed in a collimating lens holder 22 with a cooling water joint 24.
  • the laser gain medium 50 has a doping concentration of 5.0 at%.
  • Yb:YAG (Yb 3+ :Y 3 Al 5 0i 2 ) A circular sheet having a thickness of 0.5 mm.
  • the laser gain medium 50 may have a thickness of 0.2 to 0.5 mm and a doping concentration of 5.0 at% to 15 at%.
  • the strong fluorescence peak is located at a weak absorption of the pump energy at a wavelength of 1030 nm, usually the laser output wavelength.
  • the Brewster shaft cone 60 is made of a YAG crystal that includes a base 62 and a cone 64 that is coupled to the base 62.
  • the base 62 is generally disk-shaped and is bonded to the laser gain medium 50.
  • the thickness of the base 62 is twice the thickness of the laser gain medium 50, which is 1 mm. In other embodiments, the thickness of the base 62 can also be 1-2 mm. It will be appreciated that if the Brewster shaft cone 60 is combined with the laser gain medium 50 in other ways, the base 62 can also be omitted.
  • the cone 64 is a cone.
  • the first two-color optical film of 1030 nm high reverse.
  • the purpose of the 940 nm laser is to allow the 940 nm pump light to be effectively pumped through the S1 facing the laser gain medium 50.
  • the refractive index of Yb:YAG laser crystal and YAG crystal is the same as that of photons with a wavelength of 1030 nm, which is 1.82.
  • the pump laser is totally reflected from the Brewster incident point to the S1 surface of the laser gain medium 50.
  • the point is transmitted along a straight line.
  • the light On the S4 surface, the light will be 32.4268 at the angle of incidence. It is incident on the S1 surface, so it is needed Plated on the SI surface with an angle of incidence of 32.4268.
  • the 1030 nm high reflective film 51 causes the 1030 nm photons excited by the pump optical pumping laser gain medium 50 to oscillate back and forth between the S1 surface of the laser gain medium 50 and the output lens 70.
  • the laser gain medium 50 is adjacent to one side of the Brewster's axicon 60.
  • the S2 is provided with a second two-color optical film 53 that is highly transparent to the exiting light and highly reflective to the incident light.
  • the second two-color optical film 53 is specifically a two-color optical film of 940 nm high reverse and 1030 nm high permeability.
  • the 940nm high reverse is to make the 940nm pump energy not absorbed by the laser gain medium 50 to be totally reflected on the S2 surface, let the pump light pass through the laser gain medium 50 again, and improve the absorption of the 940nm pump energy by the laser gain medium 50. rate.
  • the S1 surface and the S2 surface of the laser gain medium 50 are parallel, and a photon having a wavelength of 1030 nm is required to pass through the S2 surface to reach the S1 surface, so it is necessary to plate the S2 surface with an incident angle of 6 corp. 32.4268.
  • the 1030 nm high transparency optical film enables a 1030 nm photon of a laser cavity formed between the S1 surface of the laser gain medium 50 and the output lens 70 to obtain a Yb:YAG laser pumping region 52 between the S1 plane and the S2 plane.
  • the gain is amplified.
  • the goal is to allow photons that oscillate back and forth to pass through this face almost without loss.
  • the taper of the Brewster axicon 60 cone 64 is plated with a highly permeable membrane 63 having a wavelength of 1030 nm equal to the Brewster angle.
  • FIG. 5 is a schematic diagram of the propagation path of laser photons within and outside the Brewster axis cone 60 and the laser gain medium 50.
  • the 940 nm pump laser light from the pump source 10 passes through the collimator lens 20 and the focusing lens 30, the focal spot is focused on the S1 surface of the laser gain medium 50, and the 940 nm pump light energy that is not absorbed is performed on the S2 surface. It is emitted and passes through the laser gain medium 50 again to increase the absorption rate of the pump light.
  • the incident photons will pass through the laser gain
  • the mass 50 and the Brewster axis cone 60 are emitted in parallel from the cone surface S4 of the laser gain medium 50 at the Brewster angle, and the parallel emitted photons of 1030 nm wavelength are reflected by the laser plane output lens 70, returning along the original path, and returning photons.
  • the S2 surface, the S3 surface, and the S4 surface are sequentially propagated along the straight line, and the S4 surface is projected in parallel at the Brewster angle.
  • the photons of the 1030 nm wavelength that are emitted in parallel are reflected by the laser plane output lens 70, and return along the original path.
  • the photon is thus
  • the S1 plane of the laser gain medium 50 oscillates back and forth between the output lens 70, and each oscillation passes through the pump gain region 52, and the number of photons is amplified.
  • the photon gain of the wavelength of 1030 nm is greater than the loss in the cavity, the laser is output.
  • the following cylinders describe the pumping principle of the laser.
  • the laser gain medium 50 used in the present laser is a Yb:YAG sheet having a thickness of 0.5 mm and a doping concentration of 5.0 at%, and an LD laser having a wavelength of 940 nm is used as a pump source.
  • the photon energy distribution of the 940 nm pump light is shown in Fig. 6.
  • the photon distribution of the pump light is Gaussian.
  • the absorption coefficient ⁇ of the 940 nm pump light is 5.6 cm- 1 .
  • Figure 7 shows the photon energy distribution of a 940nm laser pump with a pump length of 10mm Yb:YAG crystal rod, and the corresponding absorption of the pump laser with the length of the Yb:YAG crystal rod.
  • the number is shown in Figure 8.
  • the photons at 940 nm along the axial direction of the Yb:YAG crystal rod are almost zero, indicating that a 10 mm long Yb:YAG crystal rod is pumped by a laser of 940 nm wavelength, the Yb: The YAG crystal rod can completely absorb the pump energy, and the laser output power of the laser using the laser crystal can be maximized.
  • Figure 9 shows the pump photon energy distribution of a 940 nm pumped single-end pump with a 0.5 mm thick Yb:YAG sheet.
  • the corresponding absorption of the pump laser with the thickness of the Yb:YAG sheet is shown in Figure 10. Shown.
  • is the absorption coefficient
  • / is Yb:YAG
  • the thickness of the Yb:YAG sheet affects the absorption rate of the pump light.
  • the absorption of the Yb:YAG sheet with a 940 nm laser pumping thickness of 0.5 mm and a doping concentration of 5.0 at% is 24.42%.
  • the absorption rate of the Yb:YAG sheet having a pump thickness of 1 mm and a doping concentration of 5.0 at% was 42.88%.
  • the pump photons that are not absorbed by the single-pumped sheet are reflected by the one-piece total mirror mounted on the other side, and the sheet-gain medium is again pumped once, for Yb having a thickness of 0.5 mm:
  • the effective pumping length is about twice the thickness of the flakes, that is, 1 mm, and the pump light absorption rate is 42.88%, and more than half (57.12%) of the pump energy is not absorbed.
  • the concave mirror group 40 includes seven internal mirrors 41 and eight external mirrors. 43.
  • the seven inner mirrors 41 and the focus lens 30 are arranged in an inner ring which is an axis of symmetry of the axis of the Brewster axis cone 60.
  • the eight outer mirrors 43 are arranged in an outer ring surrounding the inner ring.
  • the pumping laser source 10 focuses the focus on the laser gain medium 50 through the focusing lens 30, and the unabsorbed pump light is totally reflected by the S2 plane of the laser gain medium 50 into the air, which is 15 of the concave mirror group 40.
  • the concave mirror is reflected back to the laser gain medium 50 in turn.
  • the pump light is almost completely absorbed by the 5.0at% Yb:YAG sheet, which greatly increases the absorption rate of the pump light by the laser gain medium, thereby realizing the output of the high power radially polarized laser beam.
  • the concave mirror set 40 can also be omitted.
  • the radial polarization sheet laser 100 of the present embodiment further includes a lens holder 42, a pump head 44, and a first sealing cover 46.
  • the first sealing cover 46 is substantially disk-shaped, and the shape of the pumping head 44 is substantially a hollow cone in which the first sealing cover 46 is fitted.
  • the first seal cover 46 and the pump head 44 cooperate to form a pumping chamber 48 that houses the lens holder 42.
  • the lens holder 42 is generally a two-layered disk, and the concave mirror group 40 is fixed to the lens holder 42.
  • the seven inner mirrors 42 and the focus lens 30 are arranged on the inner circumference of the lens holder 42, and the eight outer mirrors 44 are arranged on the outer circumference of the lens holder 42.
  • a passage 462 for circulating cooling water is formed between the first seal cover 46 and the lens holder 42.
  • the first sealing cover 46 is further provided with an inlet pipe joint 464 and a water outlet pipe joint 466 connected to the passage 462, thereby forming a coolant circulation system.
  • the Brewster axicon 60 is made of a YAG crystal whose refractive index is calculated as 1.82 with respect to a photon having a wavelength of 1030 nm.
  • the formula for the transmittance and reflectivity of light from the air entering the YAG or Nd:YAG medium when it is refracted and reflected according to the Finni formula is as follows:
  • FIG. 17 is a schematic diagram of an optical cavity of a radially polarized thin-film laser, in which " ⁇ " represents a vertical component photon, that is, S-polarized light, and "" represents a parallel component photon, that is, P-polarized light.
  • the 940 nm pumping source focuses the spot on the laser gain medium 50 through the focusing lens 30, due to the laser gain
  • a Fabry-Perot optical cavity is formed between the mass 50 and the output lens 70, and the laser gain medium 50 is excited by the pump to emit photons of 1030 nm wavelength in all directions with the pump region (pumping light focal spot) 52 as a center. .
  • the polarization direction of a photon having a wavelength of 1030 nm entering the laser resonator cavity 80 can be regarded as a vector synthesis of a vertical component (S-polarized photon) and a parallel component (P-polarized photon) of a photon, carried
  • S-polarized photon vertical component
  • P-polarized photon parallel component
  • the reflectance of the vertical component is 28.75% and the transmittance is 71.25% according to the calculation of the formulas (1), (2), (3), (4).
  • the parallel component has a reflectivity of 0, a transmittance of 100%, and no reflection loss; some of the vertical component and all parallel components enter the Brewster axicon 60, since the refractive indices of the Yb:YAG laser crystal and the YAG crystal are numerically equal. , all are 1.82, so the photons mentioned above can be transmitted along the S3 and S2 planes to the S1 plane of the laser gain medium 50 in a straight line.
  • the S1 surface is plated with a reflective optical film having a wavelength of 1030 nm, a part of the vertical component and all the parallel component photons will be totally reflected on the bottom surface S1 and propagated in a straight line.
  • the cone surface S4 of the Brewster axis cone 60 is projected in parallel at the Brewster angle into the air. .
  • the photons enter the YAG crystal from the air at the Brewster angle and the photons are incident on the air from the YAG crystal at Brewster's angle.
  • This optical phenomenon can be regarded as the reversibility of the optical path, that is, the incident angle and the refraction angle are reciprocal, according to formula (1), (2) ), (3), (4), there are still 28.75% of the vertical component photons that are lost through the Brewster axis cone 60 and the air interface S4 into the Brewster axis cone 60, and the partial vertical component photons are lost. And all parallel component photons are refracted into the air at the Brewster angle through the interface S4. These photons travel in a straight line to the plane output mirror in the air.
  • the photon is output from the plane to the cone cone S4 ⁇ the sheet surface S1 ⁇ the axis Cone cone
  • the S4 ⁇ plane output mirror completes a photon oscillation. In this closed oscillation, there are two chances of photon reflection and refraction on the S4 plane (both related to the Brewster angle), and the vertical component will be reflected twice on the S4 plane. The loss is lost, and the photons of the parallel component pass through the refracting into the Brewster axis cone 60 or the air without loss. In other words, the photon oscillates back and forth once on the S1 surface of the laser gain medium 50 and the output lens 70 twice through the tapered surface S4 of the Brewster axis 60.
  • the tapered surface S4 causes some of the vertical component photons to be lost by reflection. And the remaining vertical component photons and all parallel component photons are transmitted without loss.
  • the photon loss of the vertical component is eventually exhausted, and the parallel component is transmitted through the Brewster axis cone 60 without loss, and the photon suppressing the vertical component is selected, and the S1 surface and the output lens 70 are selected.
  • the action of oscillating parallel component photons The oscillating parallel component photons oscillate once and for all twice through the pumping region 52, so that the number of photons is amplified.
  • the special geometric circular symmetry of the axicon The optical resonant cavity outputs a radially polarized laser beam 90.
  • the thermal lens effect of the laser gain medium 50 of the radial laser it is necessary to generate a large amount of heat in time when the 940 nm LD laser is pumped to the laser gain medium 50. Since the YAG crystal is a good conductor of heat, the thermal lens effect of the laser gain medium 50 can be effectively improved by bonding the Brewster axicon 60 to the Yb:YAG sheet.
  • a heat sink may be mounted on the pump side of the laser gain medium 50, The laser gain medium 50 generates a large amount of heat to be cooled by means of a heat sink water-cooling.
  • the radially polarized thin-film laser 100 of the present embodiment further includes a heat sink 72, a second sealing cover 74 and an output barrel 76.
  • the second sealing cover 74 is substantially annular and has a coolant circulation system 742 inside.
  • the heat sink 72 is fixed in the second seal by screws One side of the cover 74.
  • the material of the heat sink 72 is copper, and a plurality of heat conducting grooves 722 are formed on the surface for increasing the heat dissipating surface area and improving the cooling efficiency.
  • the output barrel 76 is substantially a hollow cylinder having a ring of fins 762 on its surface. One end of the output barrel 76 cooperates with the second sealing cover 74 to form an output mirror cavity 73.
  • Laser gain medium 50 and Brewster shaft cone 60 are secured to one end of output mirror cavity 73.
  • a conical hole 724 directed toward the laser gain medium 50 is commonly disposed on the heat sink 72 and the second sealing cover 74 to facilitate the focusing lens 30 to better focus the pump energy on the laser gain medium 50.
  • the output lens 70 is fixed to the other end of the output barrel 76 by a pressure ring 78.
  • the other end of the output barrel 76 is also provided with a coolant circulation system 764.

Abstract

一种径向偏振薄片激光器(100),包括沿激光光路方向上依次排列的泵浦源(10)、准直透镜(20)、聚焦透镜(30)、激光增益介质(50)、布鲁斯特轴锥体(60)及输出透镜(70),其中,所述布鲁斯特轴锥体(60)的锥面与底面的夹角为布鲁斯特角,所述激光增益介质(50)与所述底面相键合,所述激光增益介质(50)与所述输出透镜(70)形成激光谐振子腔(80),所述泵浦源(10)发出的泵浦激光经过所述准直透镜(20)和聚焦透镜(30)后,聚焦于所述激光增益介质(50),产生的光子在所述激光谐振子腔(80)内振荡,并最终从所述输出透镜(70)输出径向偏振激光束(90)。

Description

发明名称: 径向偏振薄片激光器
技术领域
本发明涉及激光器, 特别是涉及一种带有增益介质的能够产生径向偏振 激光的薄片激光器。 背景技术
薄片激光器是全固态激光器中的一种, 自 Adolf. Giesen等人 1994年首次 实现薄片激光器以来, 其得到了迅速发展。 薄片激光器采用厚度很小而横向 尺寸较大的薄片状材料作为激光器的增益介质, 即薄片增益介质。 薄片激光 器工作时需要对薄片增益介质进行散热。 传统的薄片增益介质的冷却装置包 括附着于薄片增益介质上的高热导率的紫铜热沉。 紫铜热沉上设置有冷却介 质微通道。 由于薄片增益介质的面积很大、 厚度很小, 因此增益介质上的热 量可以快速、 有效的通过紫铜热沉传递给冷却介质微通道, 再由冷却介质带 走。 薄片激光器具有可以高效导出增益介质内的热沉积、 减弱增益介质的热 透镜效应等优点, 因此可以实现高功率、 高效率、 高光束质量的激光输出。 由于薄片激光器具有上述优点, 因此已广泛应用于国防军事、 科学研究、 工 业生产等各个方面。
但是薄片激光器工作时, 加载到薄片增益介质上的热量使得薄片增益介 质的温度成高斯分布, 即薄片增益介质中间部分的能量密度较高, 从中间部 分向四周扩散的部分的能量密度逐渐降低。 从而导致薄片增益介质中间部分 向外膨胀较大, 形成类似倒扣的 "碗状" 变形, 此即薄片激光器的热透镜效 应。 当薄片激光器高功率运行时, 薄片增益介质的热透镜效应会影响激光器 的输出功率、 输出激光的稳定性及激光光束质量。 当薄片增益介质膨胀变形 超过材料的承受能力, 甚至会导致薄片增益介质炸裂。 发明内容
基于此, 有必要提供一种改善热透镜效应、 提高输出稳定性的径向偏振 薄片激光器。
一种径向偏振薄片激光器, 包括沿激光光路方向上依次排列的泵浦源、 准直透镜、 聚焦透镜、 激光增益介质、 布鲁斯特轴锥体及输出透镜, 其中, 所述布鲁斯特轴锥体的锥面与底面形成的夹角为布鲁斯特角, 所述激光增益 介质与所述底面相键合, 所述激光增益介质与所述输出透镜之间形成激光谐 振子腔, 所述泵浦源发出的泵浦激光经过所述准直透镜和聚焦透镜后, 聚焦 于所述激光增益介质, 产生的光子在所述激光谐振子腔内振荡, 并最终从所 述输出透镜输出径向偏振激光束。
在其中一个实施例中, 所述激光增益介质为掺杂浓度为 5.0at%~15at%的 Yb:YAG圆片, 所述 Yb:YAG圆片的厚度为 0.2~0.5mm。
在其中一个实施例中, 所述布鲁斯特轴锥体包括底座和与所述底座相连 的锥体, 所述激光增益介质与所述底座相键合, 所述底座的厚度为所述 Yb:YAG圆片的厚度的两倍。
在其中一个实施例中, 所述布鲁斯特轴锥体的材料为 YAG晶体, 所述布 鲁斯特角为 61.2134。 ± 2,。
在其中一个实施例中, 所述布鲁斯特轴锥体的材料为石英, 所述布鲁斯 特角为 55.4。 ± 2,。
在其中一个实施例中, 所示径向偏振薄片激光器还包括凹面反射镜组, 所述凹面反射镜组设置在所述激光增益介质远离所述布鲁斯特轴锥体的一 侧, 未被所述激光增益介质吸收的泵浦激光经所述凹面反射镜组反射后, 重 新进入所述激光增益介质。
在其中一个实施例中, 所述 EJ面反射镜组包括七片内反射镜和八片外反 射镜, 所述七片内反射镜与所述聚焦透镜排列成以所述布鲁斯特轴锥体的轴 线为对称轴的内圆环, 所述八片外反射镜排列成一个环绕所述内圆环的外圆 环。
在其中一个实施例中, 所述激光增益介质远离所述布鲁斯特轴锥体的一 面设有对入射光高透、 对出射光高反的第一双色光学膜, 所述激光增益介质 靠近所述布鲁斯特轴锥体的一面设有对出射光高透、 对入射光高反的第二双 色光学膜。
在其中一个实施例中, 所述布鲁斯特轴锥体的底面和锥面分别设有出射 光高透膜。
在其中一个实施例中, 所示径向偏振薄片激光器还包括透镜座、 泵浦头 及第一密封盖, 所述第一密封盖和所述泵浦头配合形成一个收容所述透镜座 的泵浦腔, 所述凹面反射镜组固定在所述透镜座上, 所述第一密封盖内设有 冷却液循环系统。
在其中一个实施例中, 所示径向偏振薄片激光器还包括散热装置、 第二 密封盖及输出镜筒, 所述第二密封盖和所述输出镜筒配合形成一个收容所述 激光增益介质和所述布鲁斯特轴锥体的输出镜腔, 所述散热装置设置于所述 第二密封盖的一侧, 所述输出透镜设置在所述输出镜筒的一端, 所述输出镜 筒上设有冷却液循环系统。
在其中一个实施例中, 所述散热装置和所述第二密封盖上共同开设有指 向所述激光增益介质的锥形孔。
在其中一个实施例中, 所述泵浦源发出的泵浦激光的波长为 940nm。 在其中一个实施例中, 所述径向偏振激光束的波长为 1030nm。
上述实施例的激光增益介质与布鲁斯特轴锥体的相互键合, 能够改善薄 片的热透镜效应, 并能稳定地输出径向偏振的激光。 附图说明
通过附图中所示的本发明的优选实施例的更具体说明, 本发明的上述及 其它目的、 特征和优势将变得更加清晰。 在全部附图中相同的附图标记指示 相同的部分, 且并未刻意按实际尺寸等比例缩放绘制附图, 重点在于示出本 发明的主旨。
图 1为一实施例的径向偏振薄片激光器的原理示意图;
图 2为一实施例的径向偏振薄片激光器的剖视图。
图 3为图 2所示径向偏振薄片激光器的立体分解示意图。
图 4为图 3所示激光增益介质和布鲁斯特轴锥体的立体分解示意图。 图 5为光子在布鲁斯特轴锥体与激光增益介质内外的传播路径示意图。 图 6为 940nm泵浦光光子能量高斯模式分布图。
图 7为 940nm泵浦光单次端泵长度为 10mmYb:YAG晶体棒泵浦光子能 量分布图。
图 8为长度为 10mm的 Yb:YAG棒状晶体对 940nm泵浦光的吸收函数图。 图 9为 940nm泵浦光单次端泵 0.5mm厚的 Yb:YAG薄片时泵浦光子能量 分布图。
图 10为 Yb:YAG薄片晶体对 940nm泵浦光的吸收函数图。 图 11为 EJ面反射镜组和泵浦头的局部立体剖视图。
图 12为 EJ面反射镜组和泵浦头的剖视图。
图 13为凹面反射镜组和泵浦头的立体分解示意图。
图 14为平面波入射空气与 YAG介质的折射与反射示意图。
图 15显示了光从空气进入 YAG时的反射率随入射角 的变化曲线。 图 16显示了光从空气进入 YAG时的透射率随入射角 的变化曲线。 图 17为径向偏振薄片激光器的光学谐振腔示意图。
图 18为激光增益介质的冷却装置的剖视图。
图 19为激光增益介质的冷却装置的立体分解示意图。 具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图 对本发明的具体实施方式做详细的说明。 在下面的描述中阐述了很多具体细 节以便于充分理解本发明。 但是本发明能够以很多不同于在此描述的其它方 式来实施, 本领域技术人员可以在不违背本发明内涵的情况下做类似改进, 因此本发明不受下面公开的具体实施的限制。
需要说明的是, 当元件被称为 "固定于" 另一个元件, 它可以直接在另 一个元件上或者也可以存在居中的元件。 当一个元件被认为是 "连接" 另一 个元件, 它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义, 本文所使用的所有的技术和科学术语与属于本发明的技 术领域的技术人员通常理解的含义相同。 本文中在本发明的说明书中所使用 的术语只是为了描述具体的实施例的目的, 不是旨在于限制本发明。 本文所 使用的术语 "及 /或" 包括一个或多个相关的所列项目的任意的和所有的组 合。
偏振是光的最基本的特征之一, 常见的有线偏振光、 椭圆偏振光、 圆偏 振光以及径向偏振光。 由于径向偏振光的偏振方向具有完美的轴对称分布几 何特性, 使得它与线偏振光、 圆偏振光和椭圆偏振光相比有着很多显著不同 的特性。 如径向偏振光具有沿光轴对称的电场分布以及中空的圆环形的光束 结构; 径向偏振光在高数值透镜聚焦时可以产生超越衍射极限的极小焦斑, 比线偏振、 圆偏振、 椭圆偏振的聚焦光斑小的多, 而且在焦点区域的纵向电 场变的非常强; 径向偏振光只有横向的磁场和沿轴纵向的电场; 径向偏振光 是偏振本征态, 在 C切向晶体中传播时, 不会发生串扰。 近年来, 径向偏振 光的这些特性得到了很多的应用。 如在引导和捕捉粒子、 粒子加速、 提高显 微镜的分辨率、 金属切割以及提高存储密度等方面, 随着人们对径向偏振光 的不断深入的认识, 它将在越来越多的领域得到应用。
请参阅图 1、 图 2及图 3 , —实施例的径向偏振薄片激光器 100包括沿激 光光路方向上依次排列的泵浦源 10、 准直透镜 20、 聚焦透镜 30、 激光增益 介质 50、 布鲁斯特轴锥体 60及输出透镜 70。 泵浦源 10输出的激光光束由光 纤 12传导并通过准直透镜 20、 聚焦透镜 30, 将激光焦点聚焦于激光增益介 质 50上,产生的光子在激光增益介质 50与输出透镜 70之间形成的激光谐振 子腔 80 内振荡, 并多次经过布鲁斯特轴锥体 60, 从而筛选出偏振状态为 P 偏振光的光子, 最终从输出透镜 70输出径向偏振激光束 90。
泵浦源 10的主要作用是作为光源产生泵浦激光。 本实施例中, 采用波长 为 940nm的激光二极管 ( LD )激光器作为泵浦源。
准直透镜 20固定在带有冷却水接头 24的准直透镜座 22内。
请参阅图 4, 在本实施例中, 激光增益介质 50 为掺杂浓度为 5.0at%的 Yb:YAG ( Yb3+:Y3Al50i2 ) 圆形薄片, 其厚度为 0.5mm。 在其他实施例中, 激 光增益介质 50的厚度也可以为 0.2~0.5mm, 掺杂浓度可以为 5.0at%~15at%。 Yb3+离子的主吸收峰有两个, 分别位于 938nm和 970nm。 在 938nm处, 具有 长达 18nm的吸收带宽, 可作为激光二极管泵浦的泵浦带。 强的荧光峰位于 1030nm波长的泵浦能量弱吸收处, 通常为激光输出波长。
在本实施例中, 布鲁斯特轴锥体 60的材料为 YAG晶体, 其包括底座 62 和与底座 62相连的锥体 64。 底座 62大致呈圆盘状, 其与激光增益介质 50 键合在一起。 为了方便键合晶体时的夹持, 底座 62 的厚度为激光增益介质 50的厚度的两倍,为 1mm。在其他实施例中,底座 62的厚度也可以为 l~2mm。 可以理解, 如果采用其他方式将布鲁斯特轴锥体 60与激光增益介质 50相结 合, 底座 62也可省略。 本实施例中, 锥体 64为圆锥体。 1030nm的光子在 YAG晶体的折射率为 1.82 , 锥体 64的锥面与底面形成的夹角为布鲁斯特角, 即 Θ Β=61.2134。 。 本实施例中, 布鲁斯特轴锥体 60 的材料也为石英, 此时 布鲁斯特角为 Θ Β=55.4° 。
在本实施例中,激光增益介质 50远离布鲁斯特轴锥体 60的一面 S1上通 过镀膜设有对入射光高透、对出射光高反的第一双色光学膜 51。具体为 940nm 高透、以入射角为 Θ 1=32.4268。 的 1030nm高反的第一双色光学膜。对 940nm 的激光高透的目的是让 940nm的泵浦光透过 S1面对激光增益介质 50进行有 效的泵浦。 Yb:YAG激光晶体与 YAG晶体的折射率对波长为 1030nm的光子 的折射率都是一样, 即为 1.82, 所以, 泵浦激光从布鲁斯特入射点到激光增 益介质 50的 S1面上发生全反射点是沿直线传播的。 泵浦区域(或泵浦激光 的聚焦焦斑) 52会向各自方向激发 1030nm波长的光子, 当光子以布鲁斯特 角 Θ Β=61·2134。 入射 S4面, 光会以入射角 Θ尸32.4268。 入射 S1面,故需要 在 SI面上镀上以入射角 Θ尸32.4268。 的 1030nm高反膜 51 ,让泵浦光泵浦激 光增益介质 50激发的 1030nm光子在激光增益介质 50的 S1面与输出透镜 70 之间来回振荡。
激光增益介质 50靠近布鲁斯特轴锥体 60的一面 S2通过镀膜设有对出射 光高透、 对入射光高反的第二双色光学膜 53。 第二双色光学膜 53 具体为 940nm高反、 1030nm高透的双色光学膜。 940nm高反是为了让 940nm泵浦 能量未被激光增益介质 50吸收的光在 S2面进行全反射, 让泵浦光再次经过 激光增益介质 50, 提高激光增益介质 50对 940nm的泵浦能量的吸收率。 激 光增益介质 50的 S1面和 S2面是平行, 需要 1030nm波长的光子透过 S2面 抵达 S1面, 所以需要在 S2面上镀上以入射角 6尸32.4268。 的 1030nm的高 透光学膜,从而使得激光增益介质 50的 S1面与输出透镜 70之间形成的激光 谐振腔的 1030nm的光子能够得到 S1面与 S2面之间的 Yb:YAG激光泵浦区 域 52的增益而放大。
布鲁斯特轴锥体 60的底座 62的底面 S3镀有以入射角为 Θ ;=32.4268° , 1030nm的高透膜 61。 目的是让来回振荡的光子几乎无损耗地经过这个面。
布鲁斯特轴锥体 60的锥体 64的锥面 S4镀有以入射角等于布鲁斯特角的 1030nm波长的高透膜 63。
如图 5所示的是激光光子在布鲁斯特轴锥体 60与激光增益介质 50内外 的传播路径示意图。 泵浦源 10发出的 940nm的泵浦激光通过准直透镜 20、 聚焦透镜 30后, 将焦斑聚焦于激光增益介质 50的 S1 面上, 没有吸收完的 940nm泵浦光能量在 S2面上进行发射出去, 再次经过激光增益介质 50, 以 提高泵浦光的吸收率。经过泵浦的激光增益介质 50会向各个方向激发 1030nm 波长的光子, 只有以角度为 6 ;=32.4268。 入射的光子会依次通过激光增益介 质 50和布鲁斯特轴锥体 60, 从激光增益介质 50的锥面 S4以布鲁斯特角平 行射出, 平行射出的 1030nm波长的光子经过激光平面输出透镜 70的反射, 沿原路返回, 返回的光子以布鲁斯特角从空气入射到布鲁斯特轴锥体 60。 因 Yb:YAG晶体与 YAG晶体的折射率是相同的, 所以, 光子会折射透过布鲁斯 特轴锥体 60,沿直线方向依次透射穿过 S3面、 S2面,以角度为 6 i=32.4268。 入射到激光增益介质 50的泵浦增益区域 52, 光子数量得到放大。 由于 S1面 上镀了以入射角为 Θ尸32.4268。 的 1030nm高反射膜, 光子在 S1面上再次反 射进入激光增益介质 50的泵浦增益区域 52, 光子进一步放大。 然后以角度 为 6 i=32.4268。 沿直线传播依次进过 S2面、 S3面、 S4面, 在 S4面以布鲁 斯特角平行射出, 平行射出的 1030nm波长的光子经过激光平面输出透镜 70 的反射, 沿原路返回, 光子就这样在激光增益介质 50的 S1面与输出透镜 70 之间来回振荡, 每次振荡都要经过泵浦增益区 52, 光子数量都会得到放大, 当 1030nm波长的光子增益大于腔内损耗时, 便输出激光。
以下筒要描述本激光器的泵浦原理。
本激光器使用的激光增益介质 50是厚度为 0.5mm、掺杂浓度为 5.0at%的 Yb:YAG薄片, 采用波长为 940nm的 LD激光器作为泵浦源。 940nm泵浦光 光子能量分布如图 6所示, 泵浦光的光子分布呈高斯模式分布。
使用 940nm的激光器对激光增益介质 50进行泵浦时, Yb:YAG激光晶体 作为增益介质会吸收泵浦能量, 吸收函数为; 7。 = l-exp(«*/), 为吸收系数, / 为 Yb:YAG薄片的厚度或 Yb:YAG晶体棒的长度。 对于掺杂浓度为 5.0at%的 Yb:YAG薄片, 940nm泵浦光的吸收系数 α为 5.6cm-1
图 7示出了 940nm激光器泵浦长度为 10mmYb:YAG晶体棒泵浦光子能 量分布图, 与其相对应的泵浦激光吸收量随 Yb:YAG晶体棒的长度的吸收函 数如图 8所示。 从图 7、 8可以看到, 沿 Yb:YAG晶体棒的轴向 10mm处的 940nm的光子几乎为零, 表明采用 940nm波长的激光器单次泵浦 10mm长的 Yb:YAG晶体棒, 该 Yb:YAG晶体棒可以将泵浦能量全部吸收, 可以达到采 用该激光晶体的激光器的激光输出功率最大化。
图 9示出了 940nm泵浦光单次端泵 0.5mm厚的 Yb:YAG薄片时泵浦光子 能量分布图, 与其相对应的泵浦激光吸收量随 Yb:YAG薄片厚度的吸收函数 如图 10所示。 图 9、 10可以看到, 采用 940nm激光器泵浦厚度为 0.5mm的 Yb:YAG薄片时,按照吸收函数为 ηα = l- exp(« * /) , α为吸收系数, /为 Yb:YAG 薄片的厚度, 单次泵浦薄片对泵浦能量吸收 77。 = l- exp(« */) =l-exp ( -0.56*0.5 ) =24.42%, 所以还有 75.58%的泵浦能量未被吸收。 从 940nm光子在单次泵浦 薄片时其光子分布可以明显看到大部分的泵浦光子未被吸收。 图 10 可以看 到, Yb:YAG薄片的厚度会影响泵浦光对其的吸收率, 940nm激光器泵浦厚 度为 0.5mm、掺杂浓度为 5.0at%的 Yb:YAG薄片的吸收率为 24.42%, 而泵浦 厚度为 lmm、 掺杂浓度为 5.0at%的 Yb:YAG薄片的吸收率为 42.88%。
按照传统的薄片激光器的泵浦方式, 即单次泵浦薄片未被吸收的泵浦光 子经过另外一侧安装的一片全反射镜反射回来再度泵浦薄片增益介质一次, 对于厚度 0.5mm的 Yb:YAG薄片来说, 通过有效泵浦的长度约为薄片厚度的 两倍, 即 1mm, 其泵浦光的吸收率为 42.88%, 有超过一半(57.12% ) 的泵 浦能量未被吸收。 要提高径向偏振激光器的激光功率输出, 就必须提高泵浦 激光器能量的吸收。
为了提高吸收率, 在本实施例中, 在激光增益介质 50的泵浦侧(即远离 布鲁斯特轴锥体 60的一侧 )还增设了 15片内镀 940nm高反膜的凹面反射镜 组 40。请参阅图 11 , 凹面反射镜组 40包括七片内反射镜 41和八片外反射镜 43。七片内反射镜 41与聚焦透镜 30排列成以布鲁斯特轴锥体 60的轴线为对 称轴的内圆环。 八片外反射镜 43排列成一个环绕所述内圆环的外圆环。 泵浦 激光源 10通过聚焦透镜 30, 将焦点聚焦于激光增益介质 50上, 未被吸收的 泵浦光被激光增益介质 50的 S2面全反射进入到空气中, 被凹面反射镜组 40 的 15片凹面反射镜依次反射回激光增益介质 50, 采用这种泵浦结构( 1片聚 焦透镜 +15片反射镜), 泵浦光将有 31次(=15*2+1 ) 泵浦 0.5mm厚的薄片, 其 泵 浦有 效长度近似 为 31 *0.5=15.5mm , 则 泵 浦 光 的 吸收 ηα = l- exp(« */) =l-exp ( -0.56*15.5 ) =99.98%,则说明泵浦光几乎完全被 5.0at% 的 Yb:YAG薄片吸收, 极大地提高了激光增益介质对泵浦光的吸收率, 从而 实现大功率径向偏振激光光束的输出。可以理解,凹面反射镜组 40也可省略。
为了防止高能量的泵浦对光学镜片带来损伤, 因此需要对凹面反射镜组 40进行散热处理。 请同时参阅图 12和图 13 , 本实施例的径向偏振薄片激光 器 100还包括透镜座 42、 泵浦头 44及第一密封盖 46。 第一密封盖 46大致呈 圆盘形, 泵浦头 44的形状大致为第一密封盖 46相配合的空心锥体。 第一密 封盖 46和泵浦头 44配合形成一个收容透镜座 42的泵浦腔 48。 透镜座 42大 致为一个两层的圆盘, 凹面反射镜组 40固定在透镜座 42上。 具体的, 七片 内反射镜 42与聚焦透镜 30排列在透镜座 42的内圈, 八片外反射镜 44排列 在透镜座 42的外圈。第一密封盖 46与透镜座 42之间形成供冷却水流通的通 道 462。 第一密封盖 46上还设有与该通道 462相连的进水管接头 464和出水 管接头 466 , 由此组成一个冷却液循环系统。
以下对径向偏振光的产生进行进一步说明。
众所周知, 光属于电磁波, 如图 14所表示, 光作为平面波, 入射空气与 为反射光, S(t)为透射光。 布鲁斯特轴锥体 60的材质为 YAG晶体, 相对于 1030nm波长的光子, 其折射率按 1.82计算。 根据菲尼尔公式得出的光从空 气进入 YAG或 Nd: YAG介质发生折射和反射时的透射率和反射率的公式如 下所示:
( 1 )
" tan2 sii¾ -^) (2) sin2( + )
Rzz+Τ, Ι (3 ) R丄 +T丄 =1 (4) 其中, 7;为平行分量的透射率, ±为垂直分量的透射率, 为平行分量 的反射率, 为垂直分量的反射率, 为光入射轴锥体表面的入射角, 为 光折射进入轴锥体的折射角。 根据上述公式, 当入射角 =61.2134。时, 平行分量的反射率 =0, 平行 分量的透射率 7;=1 , 反射光中只有垂直分量, 没有平行分量, =61.2134。即 为布鲁斯特角。 如图 15、 图 16, 分别示出了光从空气进入 Nd: YAG时的反 射率随入射角的变化曲线和透射率随入射角的变化曲线。 当光以布鲁斯特角 ^由空气入射布鲁斯特轴锥体 60时, 在布鲁斯特轴锥体 60的锥面上会发生 光子的反射与透射现象, 反射光全部由垂直分量 S光子组成, 而部分垂直分 量 S的光子和平行分量 P的光子则通过透射从空气进入布鲁斯特轴锥体 60。 如图 17所示的是径向偏振薄片激光器光学谐振腔示意图, 其中, " ·"表 示垂直分量光子即 S偏振光, " " 表示平行分量光子即 P偏振光。 940nm的 泵浦光源通过聚焦透镜 30将光斑聚焦于激光增益介质 50, 由于激光增益介 质 50与输出透镜 70之间构成了法布里 -珀罗光学谐振腔, 激光增益介质 50 受泵浦激发以泵浦区域 (泵浦光焦斑) 52为中心向各个方向发射 1030nm波 长的光子。只有沿着如图 5所示的激光谐振腔内光子在布鲁斯特轴锥体 60与 激光增益介质 50内外的传播路径的光子才能在激光谐振子腔 80内来回振荡。 其他传播方向的光子因不具备在腔体内来回振荡的条件而被抑制掉。
在上述径向偏振薄片激光器中, 进入激光谐振子腔 80的 1030nm波长的 光子的偏振方向可以看成是光子的垂直分量(S 偏振光子)和平行分量(P 偏振光子) 的矢量合成, 携有垂直分量的光子和平行分量的光子经过输出透 镜 70 的反射后, 沿着原光路返回, 以布鲁斯特角 ^=61.2134。由空气入射到 布鲁斯特轴锥体 60的锥面 S4时, 根据公式(1 )、 (2 )、 (3 )、 (4 ) 的计算, 垂直分量的反射率为 28.75%, 透射率为 71.25%, 平行分量的反射率为 0, 透 射率为 100%, 无反射损耗; 部分垂直分量和全部平行分量进入布鲁斯特轴锥 体 60, 由于 Yb: YAG激光晶体和 YAG晶体的折射率的数值上相等, 都为 1.82,故上面提及到的光子可以透过 S3、 S2面沿直线传播到激光增益介质 50 的 S1面。 因 S1面镀有 1030nm波长的反射光学膜, 部分垂直分量和全部平 行分量的光子将在底面 S1发生全反射沿直线传播由布鲁斯特轴锥体 60的锥 面 S4以布鲁斯特角平行射出进入空气。 光子以布鲁斯特角从空气进入 YAG 晶体和光子从 YAG晶体以布鲁斯特角入射到空气,这个光学现象可以看成是 光路可逆, 即入射角和折射角互易, 根据公式(1 )、 (2 )、 (3 )、 (4 ), 仍然有 28.75%的垂直分量光子经过布鲁斯特轴锥体 60与空气的分界面 S4反射进入 布鲁斯特轴锥体 60里而损耗掉,而部分垂直分量的光子和全部平行分量光子 则通过界面 S4以布鲁斯特角折射到空气中去,这些光子在空气中沿直线传播 到平面输出镜,光子从平面输出镜→轴锥体锥面 S4→薄片面 Sl→轴锥体锥面 S4→平面输出镜完成一次光子的振荡, 在这个一次封闭振荡中, 有两次机会 在 S4 面发生光子的反射与折射(均与布鲁斯特角有关), 垂直分量将在 S4 面发生两次反射而损耗掉, 而平行分量的光子则无损耗地透过折射进入布鲁 斯特轴锥体 60或空气中。 筒言之, 光子在激光增益介质 50的 S1面和输出透 镜 70来回振荡一次都会经过布鲁斯特轴锥体 60的锥面 S4两次, 锥面 S4会 使部分的垂直分量光子通过反射而损耗掉, 而剩余的垂直分量光子和全部平 行分量光子无损耗透射。 如此来回振荡多次, 最终会使垂直分量的光子损失 殆尽, 而平行分量则无损耗透射通过布鲁斯特轴锥体 60, 达到了抑制垂直分 量的光子, 选出在 S1面与输出透镜 70来回振荡的平行分量光子的作用。 起振的平行分量光子每来回振荡一次都会两次经过泵浦区域 52, 因而其光子 数量得到放大, 当光子数量的增益大于其在腔内的损耗时, 因轴锥体特殊的 几何圆对称性, 光学谐振腔便输出径向偏振激光光束 90。
为了改善径向本激光器的激光增益介质 50的热透镜效应,需要将 940nm 的 LD激光器泵浦激光增益介质 50时产生大量的热及时散掉。 由于 YAG晶 体是热的良好导体,因此通过将布鲁斯特轴锥体 60与 Yb: YAG薄片进行键合, 能够有效改善激光增益介质 50的热透镜效应。
更进一步, 在本实施例中, 为了更有效地保护激光增益介质 50、 布鲁斯 特轴锥体 60和改善激光增益介质 50的热透镜效应, 可以在激光增益介质 50 的泵浦侧安装散热装置,将激光增益介质 50产生大量的热量通过散热装置水 冷的方式进行冷却。
请同时参阅图 18和图 19, 本实施例的径向偏振薄片激光器 100还包括 散热装置 72、 第二密封盖 74及输出镜筒 76。 第二密封盖 74大致为圆环形, 其内部设有冷却液循环系统 742。 散热装置 72通过螺钉固定设置在第二密封 盖 74的一侧。 散热装置 72的材料为紫铜, 其表面开始有多条导热槽 722 , 用于增加散热表面积, 提高冷却效率。 输出镜筒 76大致为空心圆筒, 其表面 设有一圈圈的散热鳍片 762。 输出镜筒 76的一端与第二密封盖 74相配合形 成输出镜腔 73。激光增益介质 50和布鲁斯特轴锥体 60被固定在输出镜腔 73 的一端。 散热装置 72和第二密封盖 74上共同开设有一个指向激光增益介质 50的锥形孔 724, 以方便聚焦透镜 30更好地将泵浦能量聚焦于激光增益介质 50上。 输出透镜 70通过压环 78固定在输出镜筒 76的另一端。 输出镜筒 76 的另一端还设有冷却液循环系统 764。
可以理解, 本文提到的各种角度, 包括入射角 θ ;=32.4268。 、 布鲁斯特 角 Θ Β=61.2134。 , 都可以有 ± 2分的角度公差。 细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于 本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若 干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范 围应以所附权利要求为准。

Claims

权利要求书
1. 一种径向偏振薄片激光器, 其特征在于, 包括沿激光光路方向上依次排列 的泵浦源、 准直透镜、 聚焦透镜、 激光增益介质、 布鲁斯特轴锥体及输出透 镜, 其中, 所述布鲁斯特轴锥体的锥面与底面形成的夹角为布鲁斯特角, 所 述激光增益介质与所述底面相键合, 所述激光增益介质与所述输出透镜之间 形成激光谐振子腔, 所述泵浦源发出的泵浦激光经过所述准直透镜和聚焦透 镜后, 聚焦于所述激光增益介质, 产生的光子在所述激光谐振子腔内振荡, 并最终从所述输出透镜输出径向偏振激光束。
2. 如权利要求 1所述的径向偏振薄片激光器, 其特征在于, 所述激光增益介 质为掺杂浓度为 5.0at%~15at%的 Yb:YAG圆片, 所述 Yb:YAG圆片的厚度为 0.2~0.5mm。
3. 如权利要求 2所述的径向偏振薄片激光器, 其特征在于, 所述布鲁斯特轴 锥体包括底座和与所述底座相连的锥体, 所述激光增益介质与所述底座相键 合, 所述底座的厚度为所述 Yb:YAG圆片的厚度的两倍。
4. 如权利要求 3所述的径向偏振薄片激光器, 其特征在于, 所述布鲁斯特轴 锥体的材料为 YAG晶体, 所述布鲁斯特角为 61.2134。 ± 2,。
5. 如权利要求 3所述的径向偏振薄片激光器, 其特征在于, 所述布鲁斯特轴 锥体的材料为石英, 所述布鲁斯特角为 55.4。 ± 2,。
6. 如权利要求 1所述的径向偏振薄片激光器, 其特征在于, 还包括凹面反射 镜组, 所述凹面反射镜组设置在所述激光增益介质远离所述布鲁斯特轴锥体 的一侧,未被所述激光增益介质吸收的泵浦激光经所述凹面反射镜组反射后, 重新进入所述激光增益介质。
7. 如权利要求 2所述的径向偏振薄片激光器, 其特征在于, 还包括凹面反射 镜组, 所述凹面反射镜组设置在所述激光增益介质远离所述布鲁斯特轴锥体 的一侧,未被所述激光增益介质吸收的泵浦激光经所述凹面反射镜组反射后, 重新进入所述激光增益介质。
8. 如权利要求 6所述的径向偏振薄片激光器, 其特征在于, 所述凹面反射镜 组包括七片内反射镜和八片外反射镜, 所述七片内反射镜与所述聚焦透镜排 列成以所述布鲁斯特轴锥体的轴线为对称轴的内圆环, 所述八片外反射镜排 列成一个环绕所述内圆环的外圆环。
9. 如权利要求 2所述的径向偏振薄片激光器, 其特征在于, 所述激光增益介 质远离所述布鲁斯特轴锥体的一面设有对入射光高透、 对出射光高反的第一 双色光学膜, 所述激光增益介质靠近所述布鲁斯特轴锥体的一面设有对出射 光高透、 对入射光高反的第二双色光学膜。
10. 如权利要求 9 所述的径向偏振薄片激光器, 其特征在于, 所述布鲁斯特 轴锥体的底面和锥面分别设有出射光高透膜。
11. 如权利要求 6所述的径向偏振薄片激光器, 其特征在于, 还包括透镜座、 泵浦头及第一密封盖, 所述第一密封盖和所述泵浦头配合形成一个收容所述 透镜座的泵浦腔, 所述 W面反射镜组固定在所述透镜座上, 所述第一密封盖 内设有冷却液循环系统。
12. 如权利要求 2 所述的径向偏振薄片激光器, 其特征在于, 还包括散热装 置、 第二密封盖及输出镜筒, 所述第二密封盖和所述输出镜筒配合形成一个 收容所述激光增益介质和所述布鲁斯特轴锥体的输出镜腔, 所述散热装置设 置于所述第二密封盖的一侧, 所述输出透镜设置在所述输出镜筒的一端, 所 述输出镜筒上设有冷却液循环系统。
13. 如权利要求 12所述的径向偏振薄片激光器, 其特征在于, 所述散热装置 和所述第二密封盖上共同开设有指向所述激光增益介质的锥形孔。
14. 如权利要求 1 所述的径向偏振薄片激光器, 其特征在于, 所述泵浦源发 出的泵浦激光的波长为 940nm。
15. 如权利要求 1 所述的径向偏振薄片激光器, 其特征在于, 所述径向偏振 激光束的波长为 1030nm。
PCT/CN2013/087680 2013-11-22 2013-11-22 径向偏振薄片激光器 WO2015074244A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/087680 WO2015074244A1 (zh) 2013-11-22 2013-11-22 径向偏振薄片激光器
CN201380077673.0A CN105393415B (zh) 2013-11-22 2013-11-22 径向偏振薄片激光器
US15/034,130 US9806484B2 (en) 2013-11-22 2013-11-22 Radial polarization thin-disk laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087680 WO2015074244A1 (zh) 2013-11-22 2013-11-22 径向偏振薄片激光器

Publications (1)

Publication Number Publication Date
WO2015074244A1 true WO2015074244A1 (zh) 2015-05-28

Family

ID=53178818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087680 WO2015074244A1 (zh) 2013-11-22 2013-11-22 径向偏振薄片激光器

Country Status (3)

Country Link
US (1) US9806484B2 (zh)
CN (1) CN105393415B (zh)
WO (1) WO2015074244A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019674A1 (de) * 2016-07-25 2018-02-01 Trumpf Laser Gmbh Optische anordnung mit scheibenförmigem laseraktiven medium
CN114284849A (zh) * 2021-12-30 2022-04-05 云南大学 基于变焦空心光泵浦可调涡旋位相正交圆筒柱矢量激光器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341673B2 (ja) * 2019-02-27 2023-09-11 三菱重工業株式会社 レーザ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359622A (en) * 1993-03-30 1994-10-25 Trw Inc. Radial polarization laser resonator
US6115400A (en) * 1997-08-20 2000-09-05 Brown; David C. Total internal reflection thermally compensated rod laser
EP1744187A1 (en) * 2005-07-15 2007-01-17 Vrije Universiteit Brussel Folded radial brewster polariser
CN101552425A (zh) * 2009-05-13 2009-10-07 中国科学院上海光学精密机械研究所 输出径向偏振光束的激光器
US20100142049A1 (en) * 2008-12-08 2010-06-10 Disco Corporation Polarizing device and laser unit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950712A (en) * 1975-04-14 1976-04-13 United Technologies Corporation Unstable laser resonator having radial propagation
US4514850A (en) * 1983-05-16 1985-04-30 Rockwell International Corporation Common-pass decentered annular ring resonator
DE3523641C1 (de) 1985-07-02 1986-12-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Einrichtung zum Selektieren von rotationssymmetrischen Polarisationskomponenten einesLichtbuendels und Verwendung einer solchen Einrichtung
US5375130A (en) 1993-05-13 1994-12-20 Trw Inc. Azimuthal and radial polarization free-electron laser system
DE19835107A1 (de) * 1998-08-04 2000-02-17 Univ Stuttgart Strahlwerkzeuge Laserverstärkersystem
WO2000028631A1 (fr) 1998-11-10 2000-05-18 Tokyo Denshi Kabushiki Kaisha Appareil pour photoreaction
CN1161865C (zh) * 1999-08-02 2004-08-11 王俊恒 谐振腔含有陀螺形圆锥棱镜的激光器
WO2006072182A1 (en) * 2005-01-10 2006-07-13 Kresimir Franjic Laser amplifiers with high gain and small thermal aberrations
JP2007059591A (ja) * 2005-08-24 2007-03-08 Mitsubishi Heavy Ind Ltd 光励起ディスク型固体レーザ共振器、光励起ディスク型固体レーザシステム
US7627017B2 (en) * 2006-08-25 2009-12-01 Stc. Unm Laser amplifier and method of making the same
US8908737B2 (en) * 2011-04-04 2014-12-09 Coherent, Inc. Transition-metal-doped thin-disk laser
CN103326224B (zh) * 2013-06-19 2016-02-03 中国科学技术大学 一种径向偏振光束激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359622A (en) * 1993-03-30 1994-10-25 Trw Inc. Radial polarization laser resonator
US6115400A (en) * 1997-08-20 2000-09-05 Brown; David C. Total internal reflection thermally compensated rod laser
EP1744187A1 (en) * 2005-07-15 2007-01-17 Vrije Universiteit Brussel Folded radial brewster polariser
US20100142049A1 (en) * 2008-12-08 2010-06-10 Disco Corporation Polarizing device and laser unit
CN101552425A (zh) * 2009-05-13 2009-10-07 中国科学院上海光学精密机械研究所 输出径向偏振光束的激光器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019674A1 (de) * 2016-07-25 2018-02-01 Trumpf Laser Gmbh Optische anordnung mit scheibenförmigem laseraktiven medium
CN109478762A (zh) * 2016-07-25 2019-03-15 通快激光有限责任公司 具有盘形激光活性介质的光学组件
KR20190032410A (ko) * 2016-07-25 2019-03-27 트룸프 레이저 게엠베하 디스크 형상의 레이저 활성 매체를 갖는 광학 장치
JP2019523555A (ja) * 2016-07-25 2019-08-22 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser GmbH ディスク形のレーザ活性媒質を備えた光学システム
CN109478762B (zh) * 2016-07-25 2021-08-06 通快激光有限责任公司 具有盘形激光活性介质的光学组件
KR102342203B1 (ko) * 2016-07-25 2021-12-21 트룸프 레이저 게엠베하 디스크 형상의 레이저 활성 매체를 갖는 광학 장치
JP7009440B2 (ja) 2016-07-25 2022-01-25 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツング ディスク形のレーザ活性媒質を備えた光学システム
US11271357B2 (en) 2016-07-25 2022-03-08 Trumpf Laser Gmbh Optical arrangements with disk-shaped laser-active mediums
CN114284849A (zh) * 2021-12-30 2022-04-05 云南大学 基于变焦空心光泵浦可调涡旋位相正交圆筒柱矢量激光器
CN114284849B (zh) * 2021-12-30 2024-01-09 云南大学 基于变焦空心光泵浦可调涡旋位相正交圆筒柱矢量激光器

Also Published As

Publication number Publication date
US20160285225A1 (en) 2016-09-29
CN105393415B (zh) 2018-12-28
US9806484B2 (en) 2017-10-31
CN105393415A8 (zh) 2017-01-25
CN105393415A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5135207B2 (ja) チューブ固体レーザ
US5774488A (en) Solid-state laser with trapped pump light
JP3065937B2 (ja) 光学的にポンプされた固体レーザヘッド
US5867324A (en) Side-pumped laser with shaped laser beam
JP5330801B2 (ja) レーザ利得媒質、レーザ発振器及びレーザ増幅器
US9640935B2 (en) Radially polarized thin disk laser
JP7037731B2 (ja) フォノンバンド端発光に基づく全固体大出力スラブレーザ
WO2005091447A1 (ja) レーザー装置
JPH10509562A (ja) 強い熱集束をもつ結晶を用いたダイオードポンピングレーザ
JP2007110039A (ja) 固体レーザ励起モジュール
WO2015074244A1 (zh) 径向偏振薄片激光器
CN109378698A (zh) 一种高功率板条绿光激光器
Tsunekane et al. High-power operation of diode edge-pumped, glue-bonded, composite Yb: Y3Al5O12 microchip laser with ceramic, undoped YAG pump light-guide
CN114204397B (zh) 一种GHz量级超高重复频率高功率飞秒碟片激光器
CN113078534B (zh) 一种基于复合结构增益介质的腔内级联泵浦激光器
JP2004140260A (ja) 固体レーザ装置
Mende et al. Mode dynamics and thermal lens effects of thin-disk lasers
WO2012137259A1 (ja) 固体レーザ装置
JP3820250B2 (ja) レーザ発振器および光増幅器
CN108110596B (zh) 碱金属激光器
CN107516813B (zh) 一种角锥式多冲程泵浦碟片激光器
WO2013013382A1 (zh) 基于匀化棒的多次泵浦碟片固体激光器
JP2011014646A (ja) 受動qスイッチ固体レーザ発振装置及びレーザ着火装置
WO2005069454A1 (ja) 固体レーザ励起モジュール及びレーザ発振器
RU74011U1 (ru) Твердотельный лазер с накачкой лазерными диодами

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077673.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15034130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897696

Country of ref document: EP

Kind code of ref document: A1