WO2015072129A1 - アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラム - Google Patents

アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラム Download PDF

Info

Publication number
WO2015072129A1
WO2015072129A1 PCT/JP2014/005638 JP2014005638W WO2015072129A1 WO 2015072129 A1 WO2015072129 A1 WO 2015072129A1 JP 2014005638 W JP2014005638 W JP 2014005638W WO 2015072129 A1 WO2015072129 A1 WO 2015072129A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
communication
network device
management
lldp
Prior art date
Application number
PCT/JP2014/005638
Other languages
English (en)
French (fr)
Inventor
小椋 大輔
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP14861510.7A priority Critical patent/EP3070889B1/en
Priority to US15/036,484 priority patent/US20160270133A1/en
Priority to JP2015547633A priority patent/JP6179602B2/ja
Publication of WO2015072129A1 publication Critical patent/WO2015072129A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device

Definitions

  • the present invention relates to an access network device, a management device, a communication system, an information notification method, a management method, and a program, and in particular, an access network device, a management device, a communication system, and information that transmit information managed by the access network device.
  • the present invention relates to a notification method, a management method and a program.
  • FIG. 12 of Patent Document 1 describes a network monitoring system in which the monitoring system obtains information managed by each of a plurality of monitoring target devices using LLDP (Link Layer Discovery Protocol).
  • LLDP Link Layer Discovery Protocol
  • LLDP is a layer 2 level protocol defined in IEEE (Institut of Electric and Electronics Engineers) 802.1AB.
  • IEEE Institute of Electric and Electronics Engineers 802.1AB.
  • an LLDP frame indicating management information of a node is transmitted and received between nodes adjacent to each other (hereinafter referred to as “adjacent nodes”).
  • Each node notifies an adjacent node of management information managed by the own node by transmitting an LLDP frame.
  • Each node recognizes management information managed by the adjacent node using the LLDP frame from the adjacent node.
  • the monitoring system described in Patent Document 1 obtains management information managed by a monitoring target device using LLDP.
  • An object of the present invention is to provide an access network device, a management device, a communication system, an information notification method, a management method, and a program that can solve the above problems.
  • An access network device is an access network device that is incorporated into an access network, and the management device that manages the access network after the access network device is incorporated into the access network and the access network device. And a communication means for transmitting a layer 2 message including information managed by the access network device via the communication tunnel.
  • a management device is a management device that manages an access network, from an access network device incorporated in the access network, via a communication tunnel set between the management device and the access network device.
  • the communication system of the present invention includes an access network device incorporated in an access network, and a management device that manages the access network, the access network device after the access network device is incorporated in the access network, Control means for setting a communication tunnel between the management device and the access network device, and first communication means for transmitting a layer 2 message including information managed by the access network device via the communication tunnel
  • the management device has second communication means for receiving the layer 2 message from the access network device via the communication tunnel.
  • the information notification method of the present invention is an information notification method performed by an access network device incorporated in an access network, the management device managing the access network after the access network device is incorporated in the access network, and the access A communication tunnel is set up with the network device, and a layer 2 message including information managed by the access network device is transmitted through the communication tunnel.
  • the management method of the present invention is a management method performed by a management device that manages an access network, and is a communication set between the management device and the access network device from an access network device incorporated in the access network.
  • a layer 2 message including information managed by the access network device is received via the tunnel.
  • the program of the present invention is managed by a computer, a control procedure for setting a communication tunnel between a management device that manages the access network and the computer after the computer is incorporated into the access network.
  • the program of the present invention is a program that manages information managed by the access network device from an access network device incorporated in the access network via a communication tunnel established between the computer and the access network device.
  • a reception procedure for receiving a layer 2 message including is executed.
  • the management device can obtain management information managed by the access network device even if a node exists between the management device and the access network device.
  • FIG. 1 is a block diagram illustrating a communication system 100 according to a first embodiment of the present invention. It is the block diagram which showed radio base station eNB1. It is the figure which showed switch SW1. It is the figure which showed BRM3. It is a flowchart for demonstrating operation
  • movement of BRM3. 6 is a diagram illustrating an example of information stored in a storage unit 62.
  • FIG. 1 is a block diagram illustrating an example of a communication system 100. FIG. It is the figure which showed the wireless base station which consists of the communication tunnel control part 44 and the LLDP process part 45.
  • FIG. 3 is a diagram illustrating a switch including a communication tunnel control unit 53 and an LLDP processing unit 54.
  • FIG. 3 is a diagram showing a management device including a management unit 63.
  • FIG. It is the figure which showed the wireless base station eNB used in 2nd Embodiment. It is the figure which showed switch SW used in 2nd Embodiment.
  • FIG. 6 is a diagram illustrating an example of a storage unit 62 in which determination results using first to third threshold values are stored. It is the figure which showed the format example of the LLDP frame.
  • FIG. 1 is a block diagram showing a communication system 100 according to the first embodiment of the present invention.
  • the communication system 100 includes an access network 1, an EPC (Evolved Packet Core) network 2, and a management device 3.
  • the management device is also referred to as a BRM (Backhaul Resource Manager).
  • the access network 1 includes radio base stations eNB1 and eNB2, which are eNBs (evolved Node B), and networks 10A, 10B, and 10C.
  • eNB1 and eNB2 which are eNBs (evolved Node B)
  • networks 10A, 10B, and 10C are eNBs (evolved Node B)
  • the networks 10A, 10B, and 10C connect the radio base stations eNB1 and eNB2 and the EPC network 2, respectively.
  • Each of the networks 10A, 10B, and 10C includes a plurality of switches and a plurality of routers.
  • switches SW1 to SW4 in the network 10A, switches SW5 to SW6 in the network 10B, and switches SW7 to SW8 in the network 10C are shown.
  • Each of the switches SW1 to SW8 is, for example, an L2 (layer 2) switch or an L3 (layer 3) switch.
  • the network 10A is a network to which the radio base stations eNB1 and eNB2 are connected during normal times.
  • the networks 10B and 10C are networks used as detour routes when congestion or failure occurs in the network 10A.
  • the network 10B or 10C may be used as a bypass route after establishing a security tunnel in the network 10B or 10C.
  • the Internet is an example of a network that needs to consider security.
  • the network that needs to consider security is not limited to the Internet.
  • An example of a security tunnel is an IPsec (Internet Protocol Security) tunnel.
  • the security tunnel is not limited to an IPsec tunnel.
  • Each of the radio base stations eNB1 and eNB2 and the switches SW1 to SW8 is an example of an access network device and a second access network device.
  • FIG. 2 is a block diagram showing the radio base station eNB1.
  • the radio base station eNB1 includes a radio communication IF (interface) 41, a network IF 42, a communication processing unit 43, a communication tunnel control unit 44, and an LLDP processing unit 45.
  • the wireless communication IF 41 is wirelessly connected to a terminal (not shown) such as a mobile phone or a smartphone.
  • the network IF 42 is connected to an access network device (in the example shown in FIG. 1, the switch SW1) that communicates directly with the radio base station eNB1.
  • an access network device in the example shown in FIG. 1, the switch SW1 that communicates directly with the radio base station eNB1.
  • the communication processing unit 43 executes a function of a general radio base station (eNB). For example, the communication processing unit 43 controls communication between a terminal wirelessly connected to the wireless communication IF 41 and the EPC network 2.
  • eNB general radio base station
  • the communication tunnel control unit 44 is an example of a control unit.
  • the communication tunnel control unit 44 sets a communication tunnel (hereinafter referred to as “first communication tunnel”) between the BRM 3 and the radio base station eNB1 after the radio base station eNB1 is incorporated into the access network 1.
  • first communication tunnel a communication tunnel
  • the communication tunnel control unit 44 sets the first communication tunnel using, for example, a VLAN (Virtual Local Network) or a VRF (Virtual Routing and Forwarding).
  • VLAN Virtual Local Network
  • VRF Virtual Routing and Forwarding
  • the communication tunnel control unit 44 communicates with the BRM 3 and executes a setting process for setting the first communication tunnel. Since the communication tunnel setting method is a known technique, a detailed description thereof is omitted.
  • the LLDP processing unit 45 is an example of a communication unit and a first communication unit.
  • the LLDP processing unit 45 generates an LLDP frame including information managed by the radio base station eNB1 (hereinafter referred to as “first management information”).
  • first management information information managed by the radio base station eNB1
  • the LLDP processing unit 45 manages the first management information.
  • the LLDP frame including the first management information is referred to as a “first LLDP frame”.
  • the first management information is an example of management information.
  • the first management information includes identification information of the radio base station eNB1 and information indicating the communication state of the radio base station eNB1.
  • the information indicating the communication state of the radio base station eNB1 includes whether the radio base station eNB1 is in a normal state, a congestion state, or a failure state, the node 1 hop ahead of the radio base station eNB1 in the access network 1, and the radio base station eNB1 And the bandwidth usage on the line between the two.
  • the first LLDP frame is an example of a layer 2 message.
  • the LLDP processing unit 45 transmits the first LLDP frame via the first communication tunnel.
  • the LLDP processing unit 45 performs encapsulation corresponding to the first communication tunnel on the first LLDP frame to generate a notification packet (hereinafter referred to as “first notification packet”).
  • the LLDP processing unit 45 transmits the first notification packet via the first communication tunnel.
  • the radio base station eNB2 has the same function as the radio base station eNB1.
  • the description of the radio base station eNB2 is made by replacing “radio base station eNB1” with “radio base station eNB2” in the description of the radio base station eNB1 described above.
  • the network IF 42 in the radio base station eNB2 is connected to an access network apparatus (switches SW1 and SW5 in the example shown in FIG. 1) that directly communicates with the radio base station eNB2.
  • FIG. 3 is a diagram showing the switch SW1.
  • the switch SW1 includes a network IF 51, a communication processing unit 52, a communication tunnel control unit 53, and an LLDP processing unit 54.
  • the network IF 51 is connected to an access network device (in the example shown in FIG. 1, the radio base stations eNB1 and eNB2 and the switches SW2, SW4, SW5, and SW7) that communicate directly with the switch SW1.
  • an access network device in the example shown in FIG. 1, the radio base stations eNB1 and eNB2 and the switches SW2, SW4, SW5, and SW7 that communicate directly with the switch SW1.
  • the communication processing unit 52 has a switch function. For example, when the switch SW1 is an L2 switch, the communication processing unit 52 executes a function of a general L2 switch. Further, when the switch SW1 is an L3 switch, the communication processing unit 52 executes a function of a general L3 switch.
  • the communication tunnel control unit 53 is an example of a control unit.
  • the communication tunnel control unit 53 sets a communication tunnel (hereinafter referred to as “second communication tunnel”) between the BRM 3 and the switch SW1 after the switch SW1 is incorporated into the access network 1.
  • the communication tunnel control unit 53 sets the second communication tunnel using, for example, VLAN or VRF. Since the communication tunnel setting method is a known technique as described above, a detailed description thereof is omitted.
  • the LLDP processing unit 54 is an example of a communication unit and a first communication unit.
  • the LLDP processing unit 54 generates an LLDP frame including information managed by the switch SW1 (hereinafter referred to as “second management information”).
  • the LLDP processing unit 54 manages the second management information.
  • the LLDP frame including the second management information is referred to as a “second LLDP frame”.
  • the second management information is an example of management information.
  • the second management information includes identification information of the switch SW1 and information indicating the communication state of the switch SW1.
  • the information indicating the communication state of the switch SW1 includes whether the switch SW1 is in the normal state, the congestion state, or the failure state, and the bandwidth usage on the line between the node 1 hop ahead of the switch SW1 and the switch SW1 in the access network 1 And.
  • the second LLDP frame is an example of a layer 2 message.
  • the LLDP processing unit 54 transmits the second LLDP frame via the second communication tunnel.
  • the LLDP processing unit 54 performs encapsulation corresponding to the second communication tunnel on the second LLDP frame to generate a notification packet (hereinafter referred to as “second notification packet”).
  • the LLDP processing unit 54 transmits the second notification packet via the second communication tunnel.
  • each of the switches SW2 to SW8 is made by replacing “switch SW1” with “switch SW2”, “switch SW3”... “Switch SW8” in the above description of the switch SW1.
  • the network IF 51 in the switch SW2 is connected to an access network device (in the example shown in FIG. 1, the switches SW1 and SW3) that directly communicate with the switch SW2.
  • each network IF 51 in the switches SW3 to SW8 is connected to an access network device that directly communicates with the switches SW3 to SW8, respectively.
  • FIG. 4 is a diagram showing BRM3.
  • the BRM 3 includes a network IF 61, a storage unit 62, and a management unit 63.
  • the network IF 61 is connected to an access network device that directly communicates with the BRM 3.
  • the storage unit 62 stores the communication state of each device in the access network 1 (in the example shown in FIG. 1, the radio base stations eNB1 and eNB2 and the switches SW1 to SW8).
  • the management unit 63 is an example of a communication unit and a second communication unit.
  • the management unit 63 receives each notification packet from each of the radio base stations eNB1 and eNB2 and the switches SW1 to SW8 via each communication tunnel.
  • the management unit 63 decapsulates each notification packet to obtain each LLDP frame.
  • the management unit 63 stores the communication state indicated in the LLDP frame in the storage unit 62.
  • the management unit 63 controls the communication state of the access network 1 using the communication state of each device (wireless base stations eNB1 and eNB2 and switches SW1 to SW8) stored in the storage unit 62.
  • the operation of the radio base station eNB1 will be described. Since the operation of the radio base station eNB2 conforms to the operation of the radio base station eNB1, its description is omitted.
  • FIG. 5 is a flowchart for explaining the operation of the radio base station eNB1.
  • the communication tunnel control unit 44 sets the first communication tunnel between the BRM 3 and the radio base station eNB1 after the radio base station eNB1 is incorporated into the access network 1 (step S101).
  • the communication tunnel control unit 44 when the radio base station eNB1 is incorporated into the access network 1 and then the power supply voltage is input to the radio base station eNB1, the first communication tunnel between the BRM 3 and the radio base station eNB1. Set.
  • the communication tunnel control unit 44 notifies the LLDP processing unit 45 of the first communication tunnel information indicating the IP (Internet Protocol) addresses of the radio base stations eNB1 and BRM3 that are both ends of the first communication tunnel.
  • the LLDP processing unit 45 holds the first communication tunnel information.
  • the communication processing unit 43 executes a function of a general radio base station (eNB) and further specifies a communication state of the radio base station eNB1 ( Step S102).
  • eNB general radio base station
  • the communication processing unit 43 uses the amount of data exchanged between the communication processing unit 43 and the network IF 42, so that the node between the wireless base station eNB1 and the wireless base station eNB1 is one hop ahead.
  • the bandwidth usage on the line is specified as the communication state of the radio base station eNB1.
  • the data is a packet or a frame.
  • the communication processing unit 43 uses the amount of data exchanged between the communication processing unit 43 and the network IF 42 to determine whether the radio base station eNB1 is in a normal state, a congestion state, or a failure state. It is specified as the communication state of eNB1.
  • the communication processing unit 43 outputs the communication state of the radio base station eNB1 to the LLDP processing unit 45.
  • the LLDP processing unit 45 holds and manages the communication state of the radio base station eNB1 (step S103).
  • the LLDP processing unit 45 generates a first LLDP frame indicating the communication state of the radio base station eNB1 and the identification information of the radio base station eNB1 (step S104).
  • the LLDP processing unit 45 refers to the first communication tunnel information, performs encapsulation corresponding to the first communication tunnel on the first LLDP frame, and generates a first notification packet (step S105).
  • the encapsulation corresponding to the first communication tunnel is to add a header indicating the IP address of the radio base station eNB1 as the transmission source and the IP address of the BRM3 as the transmission destination to the first LLDP frame. means.
  • the LLDP processing unit 45 transmits a first notification packet from the network IF 42 (step S106).
  • the first notification packet Since the first notification packet is encapsulated corresponding to the first communication tunnel, the first notification packet is received by the BRM 3 through the first communication tunnel.
  • the LLDP processing unit 45 waits until a preset first time elapses after transmitting the first notification packet (step S107).
  • the LLDP processing unit 45 When the first time has elapsed since the transmission of the first notification packet, the LLDP processing unit 45 outputs an output instruction to the communication processing unit 43.
  • Step S102 When the communication processing unit 43 receives the output instruction, the communication processing unit 43 executes Step S102.
  • switch SW1 Next, the operation of switch SW1 will be described. Note that the operation of the switches SW2 to SW8 conforms to the operation of the switch SW1, and therefore the description thereof is omitted.
  • FIG. 6 is a flowchart for explaining the operation of the switch SW1.
  • the communication tunnel control unit 53 sets the second communication tunnel between the BRM 3 and the switch SW1 when the power supply voltage is input to the switch SW1 after the switch SW1 is incorporated in the access network 1 (step S201).
  • the communication tunnel control unit 53 notifies the LLDP processing unit 54 of the second communication tunnel information indicating the IP addresses of the radio base station eNB1 and the switch SW1 that are both ends of the second communication tunnel.
  • the LLDP processing unit 54 holds the second communication tunnel information.
  • the communication processing unit 52 executes a function of a general switch and further specifies the communication state of the switch SW1 (step S202).
  • the communication processing unit 52 uses the amount of data exchanged between the communication processing unit 52 and the network IF 51, and uses a line between the node that is one hop ahead of the switch SW1 and the switch SW1.
  • the bandwidth usage is specified as the communication state of the switch SW1.
  • the communication processing unit 52 uses the amount of data exchanged between the communication processing unit 52 and the network IF 51 to determine whether the switch SW1 is in a normal state, a congestion state, or a failure state. As specified.
  • the communication processing unit 52 outputs the communication state of the switch SW1 to the LLDP processing unit 54.
  • the LLDP processing unit 54 holds and manages the communication state of the switch SW1 (step S203).
  • the LLDP processing unit 54 generates a second LLDP frame indicating the communication state of the switch SW1 and the identification information of the switch SW1 (step S204).
  • the LLDP processing unit 54 refers to the second communication tunnel information, executes encapsulation corresponding to the second communication tunnel for the second LLDP frame, and generates a second notification packet (step S205).
  • the encapsulation corresponding to the second communication tunnel means that a header indicating the IP address of the switch SW1 as a transmission source and the IP address of the BRM3 as a transmission destination is added to the second LLDP frame. .
  • the LLDP processing unit 54 transmits a second notification packet from the network IF 51 (step S206).
  • the second notification packet Since the second notification packet is encapsulated corresponding to the second communication tunnel, the second notification packet is received by the BRM 3 through the second communication tunnel.
  • the LLDP processing unit 54 waits until a preset second time elapses after transmitting the second notification packet (step S207).
  • the second time may be the same as or different from the first time.
  • the LLDP processing unit 54 When the second time has elapsed since the transmission of the second notification packet, the LLDP processing unit 54 outputs an output instruction to the communication processing unit 52.
  • Step S202 When the communication processing unit 52 receives the output instruction, the communication processing unit 52 executes Step S202.
  • FIG. 7 is a flowchart for explaining the operation of BRM3.
  • notification packet When receiving the first notification packet or the second notification packet (hereinafter collectively referred to as “notification packet”) via the network IF 61 (step S301), the management unit 63 decapsulates the notification packet. An LLDP frame is detected (step S302).
  • the management unit 63 stores the communication state of the transmission source of the LLDP frame indicated in the LLDP frame and the identification information of the transmission source in the storage unit 62 in association with each other (step S303).
  • FIG. 8 is a diagram illustrating an example of information stored in the storage unit 62.
  • eNB1 to eNB2 and SW1 to SW8 are shown as identification information of each device.
  • the management unit 63 uses the information stored in the storage unit 62 to monitor the occurrence of congestion and failures in the access network 1.
  • the management unit 63 issues a routing information change instruction to each device (wireless base station or switch) in the access network 1 according to the congestion or failure status in the access network 1.
  • the management unit 63 operates as follows in order to avoid deterioration in service quality due to packet loss or delay in the access network 1.
  • the management unit 63 refers to the storage unit 62, and transmits to the radio base station eNB2 an instruction to update the routing information to switch the traffic of the radio base station eNB2 to the switch SW # 5 having sufficient bandwidth usage.
  • the communication processing unit 43 switches the traffic of the radio base station eNB2 to the switch SW # 5 in accordance with the routing information update instruction from the management unit 63.
  • the management unit 63 refers to the storage unit 62 and performs band control (for example, change of transmission / reception band or change of line band for low priority service) for the radio base station eNB1 connected only to the switch SW1. You may go.
  • band control for example, change of transmission / reception band or change of line band for low priority service
  • the communication tunnel control unit 44 sets the first communication tunnel between the BRM 3 and the radio base station eNB1 after the radio base station eNB1 is incorporated into the access network 1.
  • the LLDP processing unit 45 transmits the first LLDP frame via the first communication tunnel.
  • the first LLDP frame reaches the BRM3.
  • the communication tunnel control unit 53 sets the second communication tunnel between the BRM 3 and the switch SW1 after the switch SW1 is incorporated in the access network 1.
  • the LLDP processing unit 54 transmits the second LLDP frame via the second communication tunnel.
  • the management unit 63 of the BRM 3 receives the first LLDP frame and the second LLDP frame via each communication tunnel.
  • the BRM 3 can obtain information managed by the access network device from the LLDP frame. It becomes possible.
  • the access network device for example, the radio base station eNB1 or the switch SW1
  • a radio base station including the communication tunnel control unit 44 and the LLDP processing unit 45, a switch including the communication tunnel control unit 53 and the LLDP processing unit 54, and a BRM including the management unit 63.
  • FIG. 10A is a diagram showing a radio base station including a communication tunnel control unit 44 and an LLDP processing unit 45.
  • FIG. 10B is a diagram illustrating a switch including the communication tunnel control unit 53 and the LLDP processing unit 54.
  • FIG. 11 is a diagram showing a BRM including the management unit 63.
  • the first LLDP frame includes information indicating the communication state of the radio base station eNB1.
  • the second LLDP frame includes information indicating the communication state of the switch SW1.
  • the BRM 3 can obtain the communication state of the access network device.
  • the state management (bandwidth usage monitoring and fault monitoring) in the L2 network can be centrally managed by the BRM 3.
  • the storage unit 62 stores information indicating the communication state of each access network device. For this reason, the management unit 63 can refer to the information stored in the storage unit 62 and execute, for example, a traffic routing setting in consideration of the entire access network 1 and a bandwidth control instruction for each access network device. become.
  • the management unit 63 realizes effective use of the resources of the access network 1 by performing centralized monitoring at the L2 level using the LLDP function for the traffic status and failure status in the access network, and is stable for the end user. Service can be provided.
  • each access network device transmits information managed by the own device to the BRM 3 via a communication tunnel.
  • the access network device uses the LLDP frame to create a communication tunnel between the information managed by the own device and the information managed by another adjacent access network device. To BRM3.
  • each access network device (wireless base station or switch) exchanges LLDP frames with other adjacent access network devices and acquires the communication state of the other access network devices.
  • adjacent devices other adjacent access network devices are referred to as “adjacent devices”.
  • the LLDP frame exchanged between the access network device and the neighboring device includes the normal state, congestion state, or failure state of the LLDP frame source, and the line between the source one-hop destination node and the source.
  • the bandwidth usage at is shown as the communication state of the transmission source.
  • FIG. 12 is a diagram illustrating a radio base station eNB used in the second embodiment.
  • the same components as those shown in FIG. 12 are identical to those shown in FIG. 12
  • the radio base station eNB includes a radio communication IF (interface) 41, a network IF 42, a communication processing unit 43, a communication tunnel control unit 44, and an LLDP processing unit 45a.
  • the LLDP processing unit 45a is an example of a communication unit.
  • the LLDP processing unit 45a exchanges LLDP frames with adjacent devices.
  • the LLDP processing unit 45a manages the communication state of the radio base station eNB1 notified from the communication processing unit 43 and the communication state of the adjacent device notified from the adjacent device.
  • the LLDP processing unit 45a generates a third LLDP frame indicating the communication state and identification information of the radio base station eNB1 and the communication state and identification information of the neighboring device.
  • the LLDP processing unit 45a refers to the first communication tunnel information, executes encapsulation corresponding to the first communication tunnel on the third LLDP frame, and generates a third notification packet.
  • the LLDP processing unit 45a transmits a third notification packet from the network IF.
  • FIG. 13 is a diagram showing the switch SW used in the second embodiment.
  • the same components as those shown in FIG. 13 are identical to those shown in FIG. 13;
  • the switch SW includes a network IF 51, a communication processing unit 52, a communication tunnel control unit 53, and an LLDP processing unit 54a.
  • the LLDP processing unit 54a is an example of a communication unit.
  • the LLDP processing unit 54a exchanges LLDP frames with adjacent devices.
  • the LLDP processing unit 54a manages the communication state of the switch SW notified from the communication processing unit 52 and the communication state of the adjacent device notified from the adjacent device.
  • the LLDP processing unit 54a generates a fourth LLDP frame indicating the communication state and identification information of the switch SW and the communication state and identification information of the neighboring device.
  • the LLDP processing unit 54a refers to the second communication tunnel information, performs encapsulation corresponding to the second communication tunnel on the fourth LLDP frame, and generates a fourth notification packet.
  • the LLDP processing unit 54a transmits the fourth notification packet from the network IF 51.
  • notification packet when receiving the third notification packet or the fourth notification packet (hereinafter collectively referred to as “notification packet”) via the network IF 61, the management unit 63 decapsulates the notification packet and generates an LLDP frame. To detect.
  • the management unit 63 stores the communication state of the transmission source of the LLDP frame and the identification information of the transmission source, the communication state of the adjacent device, and the identification information of the adjacent storage, which are indicated in the LLDP frame, in the storage unit 62.
  • the LLDP processing unit 45a generates a third LLDP frame indicating the communication state of the radio base station eNB and the communication state of the adjacent device.
  • the LLDP processing unit 45a transmits the third LLDP frame via the first communication tunnel.
  • the LLDP processing unit 54a generates a fourth LLDP frame indicating the communication state of the switch SW and the communication state of the adjacent device.
  • the LLDP processing unit 54a transmits the fourth LLDP frame via the second communication tunnel.
  • the BRM 3 can obtain information managed by the access network device in which another node exists with the BRM 3 from the LLDP frame.
  • the BRM 3 can manage the communication state of the access network 1. become.
  • the access network device does not calculate bandwidth information (bandwidth usage), and BRM3 calculates bandwidth information.
  • bandwidth information bandwidth usage
  • standard MIB Management information information base
  • IfInOctets and IfOutOctets are transmitted from the access network apparatus to the BRM 3 via the communication tunnel in an LLDP frame.
  • the BRM 3 calculates bandwidth information (bandwidth usage) using the information of the standard MIB.
  • the standard MIB is defined in RFC (Request For Comment) 1213.
  • the access network device when the level required for the monitoring of the access network 1 is not high, the access network device does not notify the BRM 3 of the band information (band usage), and the BRM 3 monitors the band information. You don't have to.
  • the access network device manages the bandwidth usage of data sent and received in units of physical lines and logical lines (VLAN units and virtual IP addresses), and sends LLDP frames representing the bandwidth usage information via communication tunnels. May be transmitted to BRM3.
  • the BRM 3 can monitor the bandwidth usage in units of logical lines. Therefore, the bandwidth usage can be finely managed in VLAN units or service units, and the BRM 3 can perform fine control.
  • the management unit 63 may hold the first threshold for congestion determination, and may determine that the line is in a congestion state when the bandwidth usage of a certain line exceeds the first threshold.
  • the management unit 63 holds the second threshold value for determining congestion release, and determines that the congestion state has been released on the line when the bandwidth usage of the line determined to be in the congestion state is lower than the second threshold value. May be. Note that the second threshold value is smaller than the first threshold value.
  • the management unit 63 holds a third threshold value for determining a quasi-congestion state that is approaching congestion, and the bandwidth usage of a certain line exceeds the third threshold value and is equal to or less than the first threshold value, the line is You may determine with a semi-congestion state.
  • the third threshold value is smaller than the first threshold value and larger than the second threshold value.
  • FIG. 14 is a diagram showing an example of the storage unit 62 in which determination results using the first to third threshold values are stored.
  • 680 Mbps is used as the first threshold
  • 650 Mbps is used as the second threshold
  • 480 Mbps is used as the third threshold.
  • the first to third threshold values are not limited to 680 Mbps, 650 Mbps, and 480 Mbps, and can be changed as appropriate.
  • the line indicated by the slanting line rising to the right is determined to be “congested”.
  • the line indicated by the horizontal line is determined to be “quasi-congested”.
  • the priority path (Path) and the priority traffic are stored in the storage unit 62 for each of the access network devices (radio base stations eNB1 to eNB2, switches SW1 to SW8).
  • the priority path (Path) and the priority traffic are set according to an instruction from an administrator terminal of the access network 1, for example.
  • the priority path is a path to which data is preferentially transferred when the access network device to which the priority path is set has a plurality of paths.
  • the priority traffic indicates information such as a priority service, a VLAN, and a DSCP (Differentiated Services-Code Code Point) when an access network device in which the priority traffic is set transfers data.
  • a priority service e.g., a priority service, a VLAN, and a DSCP (Differentiated Services-Code Code Point) when an access network device in which the priority traffic is set transfers data.
  • DSCP Differentiated Services-Code Code Point
  • the management unit 63 instructs the access network device to perform a bandwidth control instruction or a priority control instruction for reducing traffic different from the priority traffic. Send.
  • the access network device receives the bandwidth control instruction or the priority control instruction, the access network device controls traffic according to the bandwidth control instruction or the priority control instruction.
  • FIG. 15 is a diagram showing a format example of an LLDP frame used in each embodiment and each modification.
  • LLDP Vendor Specific TLV (Type, Length, Value) is newly provided with bandwidth information for the state of the own device and the line between adjacent devices.
  • the management unit 63 can execute certain traffic control from information that can be acquired from the existing standard MIB. For this reason, it is also possible to apply each said embodiment to the existing access network.
  • the access network to be monitored by BRM3 is not limited to EUTRAN (Evolved Universal Terrestrial Radio Access Network) for LTE (Long Term Evolution).
  • the access network to be monitored by the BRM 3 may be a 3GPP (3rd Generation Partnership Project) UTRAN (Universal Terrestrial Radio Access Network).
  • the access network to be monitored by BRM 3 may be GSM (Global System for Mobile Communications) (registered trademark) GERAN (Enhanced Data Rate for GSM Radio Access Network).
  • the access network to be monitored by the BRM 3 may be the Internet. In this case, it is desirable that the radio base station eNB can be connected to a Multiple RAT (Radio Access Technology) access network.
  • RAT Radio Access Technology
  • the radio base station eNB may be realized by a computer.
  • the computer reads and executes a program recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory) readable by the computer, and executes each function of the radio base station eNB.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory) readable by the computer, and executes each function of the radio base station eNB.
  • the recording medium is not limited to the CD-ROM and can be changed as appropriate.
  • the switch SW may be realized by a computer.
  • the computer reads and executes a program recorded on a computer-readable recording medium to execute each function of the switch SW.
  • An access network device incorporated in an access network wherein after the access network device is incorporated in the access network, a communication tunnel is formed between the management device that manages the access network and the access network device.
  • An access network device comprising: a communication unit that transmits a layer 2 message including information managed by the access network device via the communication tunnel.
  • a management device for managing an access network A layer 2 message including information managed by the access network device is received from an access network device incorporated in the access network via a communication tunnel established between the management device and the access network device.
  • a management device having a communication unit.
  • the communication unit receives the layer 2 message from each of the plurality of access network devices via a communication tunnel set between the management device and the access network device.
  • the management apparatus as described in.
  • the management device according to supplementary note 5, further comprising a storage unit that stores information included in each layer 2 message.
  • the access network device is A controller configured to set a communication tunnel between the management device and the access network device after the access network device is incorporated into the access network; A first communication unit that transmits a layer 2 message including information managed by the access network device via the communication tunnel; The management device A communication system comprising a second communication unit that receives the layer 2 message from the access network device via the communication tunnel.
  • a second access network device different from the access network device is: A second control unit that sets a communication tunnel between the second access network device and the management device after the second access network device is incorporated into the communication system; A third communication unit that transmits a layer 2 message including second information managed by the second access network device via the communication tunnel; The communication system according to appendix 8, wherein the second communication unit of the management device receives a layer 2 message including the second information.
  • the management device (Supplementary Note 10) The management device The management apparatus according to appendix 9, further comprising a storage unit that stores the information included in the layer 2 message including the information and the second information included in the layer 2 message including the second information. .
  • An information notification method performed by an access network device incorporated in an access network A control step of setting a communication tunnel between a management device that manages the access network and the access network device after the access network device is incorporated into the access network; A transmission step of transmitting a layer 2 message including information managed by the access network device via the communication tunnel.
  • a management method performed by a management device that manages an access network A layer 2 message including information managed by the access network device is received from an access network device incorporated in the access network via a communication tunnel established between the management device and the access network device.
  • a management method having a receiving step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 管理装置が、管理装置とアクセスネットワーク装置との間にノードが存在しても、そのアクセスネットワーク装置が管理している管理情報を入手可能にする、アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラムを提供する。 アクセスネットワークに組み込まれるアクセスネットワーク装置は、アクセスネットワーク装置がアクセスネットワークに組み込まれた後に、アクセスネットワークを管理する管理装置とアクセスネットワーク装置との間に通信トンネルを設定する制御部と、アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、通信トンネルを介して送信する通信部と、を有する。

Description

アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラム
 本発明は、アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラムに関し、特には、アクセスネットワーク装置が管理している情報を送信するアクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラムに関する。
 特許文献1の図12には、監視システムがLLDP(Link Layer Discovery Protocol)を使用して複数の監視対象装置の各々が管理している情報を入手するネットワーク監視システムが記載されている。
 LLDPは、IEEE(Institute of Electrical and Electronics Engineers)802.1ABにて規定されたレイヤ2レベルのプロトコルである。LLDPでは、ノードが有する管理情報を示すLLDPフレームが、互いに隣接するノード(以下「隣接ノード」と称する)間で送受信される。
 各ノードは、LLDPフレームを送信することで、自ノードが管理する管理情報を、隣接ノードに通知する。また、各ノードは、隣接ノードからのLLDPフレームを使用して隣接ノードが管理する管理情報を認識する。
特開2012-134616号公報
 特許文献1に記載の監視システムは、監視対象装置が管理している管理情報を、LLDPを使用して入手する。
 このため、特許文献1に記載の監視システムと監視対象装置との間にノードが存在する場合、監視システムは、レイヤ2レベルの通信で監視対象装置から管理情報を入手できないという課題があった。
 本発明の目的は、上記課題を解決可能なアクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラムを提供することである。
 本発明のアクセスネットワーク装置は、アクセスネットワークに組み込まれるアクセスネットワーク装置であって、前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記アクセスネットワークを管理する管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定する制御手段と、前記アクセスネットワーク装置が管理する情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する通信手段と、を有する。
 本発明の管理装置は、アクセスネットワークを管理する管理装置であって、前記アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する通信手段を有する。
 本発明の通信システムは、アクセスネットワークに組み込まれるアクセスネットワーク装置と、前記アクセスネットワークを管理する管理装置と、を含み、前記アクセスネットワーク装置は、前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定する制御手段と、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する第1通信手段と、を有し、前記管理装置は、前記アクセスネットワーク装置から、前記通信トンネルを介して前記レイヤ2メッセージを受信する第2通信手段を有する。
 本発明の情報通知方法は、アクセスネットワークに組み込まれるアクセスネットワーク装置が行う情報通知方法であって、前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記アクセスネットワークを管理する管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定し、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信している。
 本発明の管理方法は、アクセスネットワークを管理する管理装置が行う管理方法であって、前記アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信している。
 本発明のプログラムは、コンピュータに、前記コンピュータがアクセスネットワークに組み込まれた後に、アクセスネットワークを管理する管理装置と前記コンピュータとの間に通信トンネルを設定する制御手順と、前記コンピュータが管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する送信手順と、を実行させる。
 本発明のプログラムは、コンピュータに、アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記コンピュータと前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する受信手順を実行させる。
 本発明によれば、管理装置は、管理装置とアクセスネットワーク装置との間にノードが存在しても、アクセスネットワーク装置が管理している管理情報を入手することが可能になる。
本発明の第1実施形態の通信システム100を示したブロック図である。 無線基地局eNB1を示したブロック図である。 スイッチSW1を示した図である。 BRM3を示した図である。 無線基地局eNB1の動作を説明するためのフローチャートである。 スイッチSW1の動作を説明するためのフローチャートである。 BRM3の動作を説明するためのフローチャートである。 記憶部62に記憶された情報の一例を示した図である。 通信システム100の一例を示したブロック図である。 通信トンネル制御部44とLLDP処理部45とからなる無線基地局を示した図である。 通信トンネル制御部53とLLDP処理部54とからなるスイッチを示した図である。 管理部63からなる管理装置示した図である。 第2実施形態で用いる無線基地局eNBを示した図である。 第2実施形態で用いるスイッチSWを示した図である。 第1~第3閾値を使用した判定結果が記憶された記憶部62の一例を示した図である。 LLDPフレームのフォーマット例を示した図である。
 以下、本発明の実施形態について図面を参照して説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態の通信システム100を示したブロック図である。
 通信システム100は、アクセスネットワーク1と、EPC(Evolved Packet Core)ネットワーク2と、管理装置3と、を含む。以下では、管理装置をBRM(Backhaul Resource Manager)とも称する。
 アクセスネットワーク1は、eNB(evolved Node B)である無線基地局eNB1およびeNB2と、ネットワーク10A、10Bおよび10Cと、を含む。
 ネットワーク10A、10Bおよび10Cは、それぞれ、無線基地局eNB1およびeNB2と、EPCネットワーク2と、を接続する。
 ネットワーク10A、10Bおよび10Cは、それぞれ、複数のスイッチや複数のルータを含む。図1では、ネットワーク10A内のスイッチSW1~SW4、ネットワーク10B内のスイッチSW5~SW6、および、ネットワーク10C内のスイッチSW7~SW8が示されている。スイッチSW1~SW8の各々は、例えば、L2(レイヤ2)スイッチまたはL3(レイヤ3)スイッチである。
 ネットワーク10Aは、無線基地局eNB1およびeNB2が通常時に接続するネットワークである。
 ネットワーク10Bおよび10Cは、ネットワーク10Aで輻輳または障害が発生した場合に、迂回ルートとして利用されるネットワークである。
 ネットワーク10Bまたは10Cが、セキュリティを考慮する必要のあるネットワークである場合、ネットワーク10Bまたは10Cにセキュリティトンネルを確立した上で、ネットワーク10Bまたは10Cが迂回ルートとして利用されてもよい。セキュリティを考慮する必要のあるネットワークの一例としてインターネットが挙げられる。しかしながら、セキュリティを考慮する必要のあるネットワークはインターネットに限らない。セキュリティトンネルの一例としてIPsec(Internet Protocol Security)トンネルが挙げられる。しかしながら、セキュリティトンネルはIPsecトンネルに限らない。
 無線基地局eNB1およびeNB2とスイッチSW1~SW8の各々は、アクセスネットワーク装置および第2のアクセスネットワーク装置の一例である。
 図2は、無線基地局eNB1を示したブロック図である。
 図2において、無線基地局eNB1は、無線通信IF(インタフェース)41と、ネットワークIF42と、通信処理部43と、通信トンネル制御部44と、LLDP処理部45と、を含む。
 無線通信IF41は、携帯電話機やスマートフォン等の端末(不図示)と無線接続する。
 ネットワークIF42は、無線基地局eNB1と直接通信するアクセスネットワーク装置(図1に示した例では、スイッチSW1)と接続している。
 通信処理部43は、一般的な無線基地局(eNB)が有する機能を実行する。例えば、通信処理部43は、無線通信IF41に無線接続している端末とEPCネットワーク2との間の通信を制御する。
 通信トンネル制御部44は、制御部の一例である。
 通信トンネル制御部44は、無線基地局eNB1がアクセスネットワーク1に組み込まれた後に、BRM3と無線基地局eNB1との間に通信トンネル(以下「第1通信トンネル」と称する)を設定する。
 通信トンネル制御部44は、例えば、VLAN(Virtual Local Area Network)やVRF(Virtual Routing and Forwarding)を用いて第1通信トンネルを設定する。
 通信トンネル制御部44は、第1通信トンネルを設定するための設定処理をBRM3と通信して実行する。なお、通信トンネルの設定手法は公知技術であるので、その詳細な説明は割愛する。
 LLDP処理部45は、通信部および第1通信部の一例である。
 LLDP処理部45は、無線基地局eNB1が管理している情報(以下「第1管理情報」と称する)を含むLLDPフレームを生成する。本実施形態では、LLDP処理部45が第1管理情報を管理する。以下では、第1管理情報を含むLLDPフレームを「第1LLDPフレーム」と称する。
 第1管理情報は、管理情報の一例である。第1管理情報は、無線基地局eNB1の識別情報と、無線基地局eNB1の通信状態を表す情報と、を含む。無線基地局eNB1の通信状態を表す情報は、無線基地局eNB1が通常状態か輻輳状態か障害状態であるかと、アクセスネットワーク1内で無線基地局eNB1の1ホップ先のノードと無線基地局eNB1との間の回線における帯域使用量と、を示す。
 第1LLDPフレームは、レイヤ2メッセージの一例である。
 LLDP処理部45は、第1LLDPフレームを、第1通信トンネルを介して送信する。
 例えば、LLDP処理部45は、第1LLDPフレームに対して、第1通信トンネルに対応するカプセル化を実行して通知用パケット(以下「第1通知用パケット」と称する)を生成する。
 LLDP処理部45は、第1通知用パケットを、第1通信トンネルを介して送信する。
 無線基地局eNB2は、無線基地局eNB1と同様の機能を有する。無線基地局eNB2についての説明は、上述した無線基地局eNB1の説明のうち「無線基地局eNB1」を「無線基地局eNB2」と読み替えることでなされる。
 なお、無線基地局eNB2内のネットワークIF42は、無線基地局eNB2と直接通信するアクセスネットワーク装置(図1に示した例では、スイッチSW1およびSW5)と接続している。
 図3は、スイッチSW1を示した図である。
 図3において、スイッチSW1は、ネットワークIF51と、通信処理部52と、通信トンネル制御部53と、LLDP処理部54と、を含む。
 ネットワークIF51は、スイッチSW1と直接通信するアクセスネットワーク装置(図1に示した例では、無線基地局eNB1およびeNB2と、スイッチSW2、SW4、SW5およびSW7)と接続している。
 通信処理部52は、スイッチの機能を有する。例えば、スイッチSW1がL2スイッチである場合、通信処理部52は一般的なL2スイッチが有する機能を実行する。また、スイッチSW1がL3スイッチである場合、通信処理部52は一般的なL3スイッチが有する機能を実行する。
 通信トンネル制御部53は、制御部の一例である。
 通信トンネル制御部53は、スイッチSW1がアクセスネットワーク1に組み込まれた後に、BRM3とスイッチSW1との間に通信トンネル(以下「第2通信トンネル」と称する)を設定する。通信トンネル制御部53は、例えば、VLANやVRFを用いて第2通信トンネルを設定する。通信トンネルの設定手法は、上述したように公知技術であるので、その詳細な説明は割愛する。
 LLDP処理部54は、通信部および第1通信部の一例である。
 LLDP処理部54は、スイッチSW1が管理している情報(以下「第2管理情報」と称する)を含むLLDPフレームを生成する。本実施形態では、LLDP処理部54が第2管理情報を管理する。以下では、第2管理情報を含むLLDPフレームを「第2LLDPフレーム」と称する。
 第2管理情報は、管理情報の一例である。第2管理情報は、スイッチSW1の識別情報と、スイッチSW1の通信状態を表す情報と、を含む。スイッチSW1の通信状態を表す情報は、スイッチSW1が通常状態か輻輳状態か障害状態であるかと、アクセスネットワーク1内でスイッチSW1の1ホップ先のノードとスイッチSW1との間の回線における帯域使用量と、を示す。
 第2LLDPフレームは、レイヤ2メッセージの一例である。
 LLDP処理部54は、第2LLDPフレームを、第2通信トンネルを介して送信する。
 例えば、LLDP処理部54は、第2LLDPフレームに対して、第2通信トンネルに対応するカプセル化を実行して通知用パケット(以下「第2通知用パケット」と称する)を生成する。LLDP処理部54は、第2通知用パケットを、第2通信トンネルを介して送信する。
 スイッチSW2~SW8の各々についての説明は、上述したスイッチSW1の説明のうち「スイッチSW1」を「スイッチSW2」、「スイッチSW3」・・・「スイッチSW8」とそれぞれ読み替えることでなされる。
 なお、スイッチSW2内のネットワークIF51は、スイッチSW2と直接通信するアクセスネットワーク装置(図1に示した例では、スイッチSW1およびSW3)と接続している。
 また、スイッチSW3~SW8内の各々のネットワークIF51は、それぞれ、スイッチSW3~SW8と直接通信するアクセスネットワーク装置と接続している。
 図4は、BRM3を示した図である。
 図4において、BRM3は、ネットワークIF61と、記憶部62と、管理部63と、を含む。
 ネットワークIF61は、BRM3と直接通信するアクセスネットワーク装置と接続している。
 記憶部62は、アクセスネットワーク1内の各装置(図1に示した例では、無線基地局eNB1およびeNB2とスイッチSW1~SW8)の通信状態を記憶する。
 管理部63は、通信部および第2通信部の一例である。
 管理部63は、無線基地局eNB1およびeNB2とスイッチSW1~SW8の各々から、各通信トンネルを介して、各通知用パケットを受信する。管理部63は、各通知用パケットをデカプセル化して各LLDPフレームを得る。管理部63は、LLDPフレームに示された通信状態を記憶部62に記憶する。
 管理部63は、記憶部62に記憶された各装置(無線基地局eNB1およびeNB2とスイッチSW1~SW8)の通信状態を用いて、アクセスネットワーク1の通信状態を制御する。
 次に、動作を説明する。
 まず、無線基地局eNB1の動作を説明する。なお、無線基地局eNB2の動作は、無線基地局eNB1の動作に準じるため、その説明を省略する。
 図5は、無線基地局eNB1の動作を説明するためのフローチャートである。
 通信トンネル制御部44は、無線基地局eNB1がアクセスネットワーク1に組み込まれた後、BRM3と無線基地局eNB1との間に第1通信トンネルを設定する(ステップS101)。
 例えば、通信トンネル制御部44は、無線基地局eNB1がアクセスネットワーク1に組み込まれた後に、無線基地局eNB1に電源電圧が投入されると、BRM3と無線基地局eNB1との間に第1通信トンネルを設定する。
 続いて、通信トンネル制御部44は、第1通信トンネルの両端となる無線基地局eNB1およびBRM3の各々のIP(Internet Protocol)アドレスを表す第1通信トンネル情報をLLDP処理部45に通知する。LLDP処理部45は、第1通信トンネル情報を受け付けると、第1通信トンネル情報を保持する。
 一方、通信処理部43は、無線基地局eNB1に電源電圧が投入されると、一般的な無線基地局(eNB)が有する機能を実行し、さらに、無線基地局eNB1の通信状態を特定する(ステップS102)。
 本実施形態では、通信処理部43は、通信処理部43とネットワークIF42との間でやり取りされるデータの量を用いて、無線基地局eNB1の1ホップ先のノードと無線基地局eNB1の間の回線での帯域使用量を、無線基地局eNB1の通信状態として特定する。なお、データは、パケットやフレームである。
 また、通信処理部43は、通信処理部43とネットワークIF42との間でやり取りされるデータの量を用いて、無線基地局eNB1が通常状態か輻輳状態か障害状態であるかを、無線基地局eNB1の通信状態として特定する。
 続いて、通信処理部43は、無線基地局eNB1の通信状態をLLDP処理部45に出力する。
 LLDP処理部45は、無線基地局eNB1の通信状態を受け付けると、無線基地局eNB1の通信状態を保持して管理する(ステップS103)。
 続いて、LLDP処理部45は、無線基地局eNB1の通信状態と無線基地局eNB1の識別情報とを示す第1LLDPフレームを生成する(ステップS104)。
 続いて、LLDP処理部45は、第1通信トンネル情報を参照し、第1LLDPフレームに対して第1通信トンネルに対応するカプセル化を実行して第1通知用パケットを生成する(ステップS105)。
 ここで、第1通信トンネルに対応するカプセル化とは、第1LLDPフレームに、送信元として無線基地局eNB1のIPアドレスが示され送信先としてBRM3のIPアドレスが示されたヘッダを付加することを意味する。
 続いて、LLDP処理部45は、第1通知用パケットをネットワークIF42から送信する(ステップS106)。
 第1通知用パケットには第1通信トンネルに対応するカプセル化が施されているため、第1通知用パケットは、第1通信トンネルを通ってBRM3にて受信される。
 続いて、LLDP処理部45は、第1通知用パケットを送信してから予め設定された第1時間経過するまで待つ(ステップS107)。
 第1通知用パケットを送信してから第1時間経過すると、LLDP処理部45は、通信処理部43に出力指示を出力する。
 通信処理部43は、出力指示を受け付けると、ステップS102を実行する。
 次に、スイッチSW1の動作を説明する。なお、スイッチSW2~SW8の動作は、スイッチSW1の動作に準じるため、その説明を省略する。
 図6は、スイッチSW1の動作を説明するためのフローチャートである。
 通信トンネル制御部53は、スイッチSW1がアクセスネットワーク1に組み込まれた後に、スイッチSW1に電源電圧が投入されると、BRM3とスイッチSW1との間に第2通信トンネルを設定する(ステップS201)。
 続いて、通信トンネル制御部53は、第2通信トンネルの両端となる無線基地局eNB1およびスイッチSW1の各々のIPアドレスを表す第2通信トンネル情報をLLDP処理部54に通知する。LLDP処理部54は、第2通信トンネル情報を受け付けると、第2通信トンネル情報を保持する。
 一方、通信処理部52は、スイッチSW1に電源電圧が投入されると、一般的なスイッチが有する機能を実行し、さらに、スイッチSW1の通信状態を特定する(ステップS202)。
 本実施形態では、通信処理部52は、通信処理部52とネットワークIF51との間でやり取りされるデータの量を用いて、スイッチSW1の1ホップ先のノードとスイッチSW1との間の回線での帯域使用量を、スイッチSW1の通信状態として特定する。
 また、通信処理部52は、通信処理部52とネットワークIF51との間でやり取りされるデータの量を用いて、スイッチSW1が通常状態か輻輳状態か障害状態であるかを、スイッチSW1の通信状態として特定する。
 続いて、通信処理部52は、スイッチSW1の通信状態をLLDP処理部54に出力する。
 LLDP処理部54は、スイッチSW1の通信状態を受け付けると、スイッチSW1の通信状態を保持して管理する(ステップS203)。
 続いて、LLDP処理部54は、スイッチSW1の通信状態とスイッチSW1の識別情報とを示す第2LLDPフレームを生成する(ステップS204)。
 続いて、LLDP処理部54は、第2通信トンネル情報を参照し、第2LLDPフレームに対して第2通信トンネルに対応するカプセル化を実行して第2通知用パケットを生成する(ステップS205)。
 ここで、第2通信トンネルに対応するカプセル化とは、第2LLDPフレームに、送信元としてスイッチSW1のIPアドレスが示され送信先としてBRM3のIPアドレスが示されたヘッダを付加することを意味する。
 続いて、LLDP処理部54は、第2通知用パケットをネットワークIF51から送信する(ステップS206)。
 第2通知用パケットには第2通信トンネルに対応するカプセル化が施されているため、第2通知用パケットは、第2通信トンネルを通ってBRM3にて受信される。
 続いて、LLDP処理部54は、第2通知用パケットを送信してから予め設定された第2時間経過するまで待つ(ステップS207)。第2時間は第1時間と同一でもよく異なっていてもよい。
 第2通知用パケットを送信してから第2時間経過すると、LLDP処理部54は、通信処理部52に出力指示を出力する。
 通信処理部52は、出力指示を受け付けると、ステップS202を実行する。
 次に、BRM3の動作を説明する。
 図7は、BRM3の動作を説明するためのフローチャートである。
 管理部63は、ネットワークIF61を介して、第1通知用パケットまたは第2通知用パケット(以下、まとめて「通知用パケット」と称する)を受信すると(ステップS301)、通知用パケットをデカプセル化してLLDPフレームを検出する(ステップS302)。
 続いて、管理部63は、LLDPフレームに示されたLLDPフレームの送信元の通信状態および送信元の識別情報を、互いに関連づけて記憶部62に記憶する(ステップS303)。
 図8は、記憶部62に記憶された情報の一例を示した図である。図8では、各装置の識別情報として、eNB1~eNB2とSW1~SW8が示されている。
 管理部63は、記憶部62に記憶された情報を用いて、アクセスネットワーク1中の輻輳や障害の発生を監視する。
 また、管理部63は、アクセスネットワーク1の中の輻輳や障害の状況に応じて、アクセスネットワーク1内の各装置(無線基地局やスイッチ)に対して、ルーティング情報の変更指示を実施する。
 例えば、図8、9に示すようにスイッチSW1が輻輳(Congestion)状態でありスイッチSW4が障害状態(Failure)である場合、アクセスネットワーク1内でのパケットロスや遅延にてサービス品質が低下してしまう。このため、管理部63は、アクセスネットワーク1内でのパケットロスや遅延にてサービス品質が低下することを回避するために、以下のように動作する。
 管理部63は、記憶部62を参照し、無線基地局eNB2のトラヒックを帯域使用量に余裕のあるスイッチSW#5に切り替える旨のルーティング情報の更新指示を、無線基地局eNB2に送信する。
 無線基地局eNB2では、通信処理部43は、管理部63からのルーティング情報の更新指示に従って、無線基地局eNB2のトラヒックをスイッチSW#5に切り替える。
 また、管理部63は、記憶部62を参照し、スイッチSW1にしか接続していない無線基地局eNB1に対して帯域制御(例えば、送受信帯域の変更や低優先サービス向けの回線帯域の変更)を行ってもよい。
 次に、本実施形態の効果について説明する。
 通信トンネル制御部44は、無線基地局eNB1がアクセスネットワーク1に組み込まれた後に、BRM3と無線基地局eNB1との間に第1通信トンネルを設定する。LLDP処理部45は、第1通信トンネルを介して第1LLDPフレームを送信する。
 このため、無線基地局eNB1とBRM3との間にノードが存在しても、第1LLDPフレームはBRM3に到達する。
 また、通信トンネル制御部53は、スイッチSW1がアクセスネットワーク1に組み込まれた後に、BRM3とスイッチSW1との間に第2通信トンネルを設定する。LLDP処理部54は、第2通信トンネルを介して第2LLDPフレームを送信する。
 このため、スイッチSW1とBRM3との間にノードが存在しても、第2LLDPフレームはBRM3に到達する。
 BRM3の管理部63は、各通信トンネルを介して、第1LLDPフレームや第2LLDPフレームを受信する。
 したがって、BRM3は、BRM3とアクセスネットワーク装置(例えば、無線基地局eNB1やスイッチSW1)との間にノードが存在しても、そのアクセスネットワーク装置が管理している情報をLLDPフレームから入手することが可能になる。
 上記効果は、通信トンネル制御部44とLLDP処理部45とからなる無線基地局や、通信トンネル制御部53とLLDP処理部54とからなるスイッチや、管理部63からなるBRMでも奏する。
 図10Aは、通信トンネル制御部44とLLDP処理部45とからなる無線基地局を示した図である。図10Bは、通信トンネル制御部53とLLDP処理部54とからなるスイッチを示した図である。図11は、管理部63からなるBRMを示した図である。
 本実施形態では、第1LLDPフレームは、無線基地局eNB1の通信状態を表す情報を含む。
また、第2LLDPフレームは、スイッチSW1の通信状態を表す情報を含む。
 このため、BRM3は、BRM3とアクセスネットワーク装置との間にノードが存在しても、そのアクセスネットワーク装置の通信状態を入手可能になる。また、L2ネットワークにおける状態管理(帯域使用量監視や障害監視)をBRM3が集中管理することが可能になる。
 BRM3では、記憶部62は、各アクセスネットワーク装置の通信状態を表す情報を記憶する。このため、管理部63は、記憶部62に記憶された情報を参照して、例えば、アクセスネットワーク1全体を意識したトラヒックのルーティング設定や、各アクセスネットワーク装置に対する帯域制御指示を実行することが可能になる。
 また、管理部63は、アクセスネットワーク内のトラヒック状況や障害状況についてLLDP機能を利用したL2レベルでの集中監視を行うことで、アクセスネットワーク1のリソースの有効活用を実現し、エンドユーザに安定したサービスを提供可能になる。
 (第2実施形態)
 第1実施形態では、各アクセスネットワーク装置は、自装置が管理している情報を、通信トンネルを介してBRM3に送信する。これに対して、第2実施形態では、アクセスネットワーク装置は、自装置が管理している情報と、隣接する他のアクセスネットワーク装置が管理している情報とを、LLDPフレームを用いて通信トンネルを介してBRM3に送信する。
 以下、第2実施形態について、第1実施形態と異なる点について説明する。第2実施形態の通信システムの全体構成は、図1に示した第1実施形態と同様である。
 第2実施形態では、各アクセスネットワーク装置(無線基地局やスイッチ)は、隣接する他のアクセスネットワーク装置とLLDPフレームをやり取りして、他のアクセスネットワーク装置の通信状態を取得する。
 以下では、隣接する他のアクセスネットワーク装置を「隣接装置」と称する。
 アクセスネットワーク装置と隣接装置との間でやり取りされるLLDPフレームには、LLDPフレームの送信元が通常状態か輻輳状態か障害状態と、送信元の1ホップ先のノードと送信元との間の回線での帯域使用量が、送信元の通信状態として示されている。
 図12は、第2実施形態で用いる無線基地局eNBを示した図である。図12において、図2に示したものと同一構成のものには同一符号を付してある。
 図12において、無線基地局eNBは、無線通信IF(インタフェース)41と、ネットワークIF42と、通信処理部43と、通信トンネル制御部44と、LLDP処理部45aと、を含む。
 LLDP処理部45aは、通信部の一例である。
 LLDP処理部45aは、隣接装置との間でLLDPフレームをやり取りする。このLLDPフレームには、上述したように、LLDPフレームの送信元が通常状態か輻輳状態か障害状態と、送信元の1ホップ先のノードと送信元との間の回線での帯域使用量が、送信元の通信状態として示されている。
 LLDP処理部45aは、通信処理部43から通知された無線基地局eNB1の通信状態と、隣接装置から通知された隣接装置の通信状態と、を管理する。
 LLDP処理部45aは、無線基地局eNB1の通信状態および識別情報と、隣接装置の通信状態および識別情報と、を示す第3LLDPフレームを生成する。LLDP処理部45aは、第1通信トンネル情報を参照し、第3LLDPフレームに対して第1通信トンネルに対応するカプセル化を実行して第3通知用パケットを生成する。LLDP処理部45aは、第3通知用パケットをネットワークIF42から送信する。
 図13は、第2実施形態で用いるスイッチSWを示した図である。図13において、図3に示したものと同一構成のものには同一符号を付してある。
 図13において、スイッチSWは、ネットワークIF51と、通信処理部52と、通信トンネル制御部53と、LLDP処理部54aと、を含む。
 LLDP処理部54aは、通信部の一例である。
 LLDP処理部54aは、隣接装置との間でLLDPフレームをやり取りする。このLLDPフレームには、上述したように、LLDPフレームの送信元が通常状態か輻輳状態か障害状態と、送信元の1ホップ先のノードと送信元との間の回線での帯域使用量が、送信元の通信状態として示されている。
 LLDP処理部54aは、通信処理部52から通知されたスイッチSWの通信状態と、隣接装置から通知された隣接装置の通信状態と、を管理する。
 LLDP処理部54aは、スイッチSWの通信状態および識別情報と、隣接装置の通信状態および識別情報と、を示す第4LLDPフレームを生成する。LLDP処理部54aは、第2通信トンネル情報を参照し、第4LLDPフレームに対して第2通信トンネルに対応するカプセル化を実行して第4通知用パケットを生成する。LLDP処理部54aは、第4通知用パケットをネットワークIF51から送信する。
 BRM3では、管理部63は、ネットワークIF61を介して、第3通知用パケットまたは第4通知用パケット(以下、まとめて「通知パケット」と称する)を受信すると、通知パケットをデカプセル化してLLDPフレームを検出する。
 管理部63は、LLDPフレームに示された、LLDPフレームの送信元の通信状態および送信元の識別情報と、隣接装置の通信状態および隣接蔵置の識別情報とを、記憶部62に記憶する。
 次に、本実施形態の効果を説明する。
 LLDP処理部45aは、無線基地局eNBの通信状態と隣接装置の通信状態を示す第3LLDPフレームを生成する。LLDP処理部45aは、第1通信トンネルを介して第3LLDPフレームを送信する。
 このため、無線基地局eNBとBRM3の間に他のノードが存在しても、第3LLDPフレームはBRM3に到達する。
 また、LLDP処理部54aは、スイッチSWの通信状態と隣接装置の通信状態を示す第4LLDPフレームを生成する。LLDP処理部54aは、第2通信トンネルを介して第4LLDPフレームを送信する。
 このため、スイッチSWとBRM3の間に他のノードが存在しても、第4LLDPフレームはBRM3に到達する。
 したがって、BRM3は、BRM3との間に他のノードが存在するアクセスネットワーク装置が管理している情報を、LLDPフレームから入手することが可能になる。
 また、アクセスネットワーク1内の各サブネットワークにおいて、サブネットワークに属するアクセスネットワーク装置の少なくとも1台の装置が、第3または第4LLDPフレームを送信すれば、BRM3は、アクセスネットワーク1の通信状態を管理可能になる。
 上記各実施形態について、以下のような変形例が挙げられる。
 アクセスネットワーク装置が帯域情報(帯域使用量)を算出せず、BRM3が、帯域情報を算出する。例えば、アクセスネットワーク装置の標準MIB(Management information base)の情報(IfInOctetsおよびIfOutOctets)が、LLDPフレームにて、アクセスネットワーク装置から通信トンネルを介してBRM3に送信される。そして、BRM3が、標準MIBの情報を用いて、帯域情報(帯域使用量)を算出する。標準MIBは、RFC(Request For Comment)1213で規定されている。
 他の変形例としては、アクセスネットワーク1の監視に対して要求されるレベルが高くない場合に、アクセスネットワーク装置が、帯域情報(帯域使用量)をBRM3に通知せず、BRM3が帯域情報を監視しなくてもよい。
 また、アクセスネットワーク装置が、物理回線や論理回線単位(VLAN単位や仮想IPアドレス単位)で送受信されるデータの帯域使用量を管理し、その帯域使用量情報を表すLLDPフレームを、通信トンネルを介してBRM3に送信してもよい。この場合、BRM3は、論理回線単位で帯域使用量を監視することが可能になる。よって、VLAN単位やサービス単位などで帯域使用量を細かく管理でき、BRM3は、きめ細かい制御を行うことが可能になる。
 また、管理部63が、輻輳判定用の第1閾値を保持し、ある回線の帯域使用量が第1閾値を超えている場合に、その回線が輻輳状態であると判定してもよい。
 さらに、管理部63が、輻輳解除判定用の第2閾値を保持し、輻輳状態と判定された回線の帯域使用量が第2閾値よりも低くなると、その回線において輻輳状態が解除されたと判定してもよい。なお、第2閾値は第1閾値よりも小さいものとする。
 また、管理部63が、輻輳に近づきつつある準輻輳状態の判定用の第3閾値を保持し、ある回線の帯域使用量が第3閾値を超え第1閾値以下である場合に、その回線が準輻輳状態であると判定してもよい。なお、第3閾値は、第1閾値よりも小さく第2閾値よりも大きいものとする。
 図14は、第1~第3閾値を使用した判定結果が記憶された記憶部62の一例を示した図である。ここで、第1閾値として680Mbps、第2閾値として650Mbps、第3閾値として480Mbpsが、それぞれ用いられている。なお、第1~第3閾値は、680Mbps、650Mbps、480Mbpsに限らず適宜変更可能である。
 図14では、右肩上がりの斜線で示された回線が「輻輳状態」と判定されている。また、図14において、横線で示された回線が「準輻輳状態」と判定されている。
 また、図14では、アクセスネットワーク装置(無線基地局eNB1~eNB2、スイッチSW1~SW8)の各々について、優先パス(Path)と優先トラヒックが、記憶部62に記憶されている。優先パス(Path)と優先トラヒックは、例えば、アクセスネットワーク1の管理者端末からの指示に応じて設定される。
 優先パスは、その優先パスが設定されたアクセスネットワーク装置が複数のパスを有する場合に、優先してデータが転送されるパスである。
 優先トラフィックは、その優先トラヒックが設定されたアクセスネットワーク装置がデータを転送する際に、優先するサービスやVLAN、DSCP(Differentiated Services Code Point)などの情報を示す。
 例えば、輻輳状態となったアクセスネットワーク装置について優先トラヒックが設定されている場合、管理部63は、そのアクセスネットワーク装置に対して、優先トラヒックとは異なるトラヒックを下げる旨の帯域制御指示や優先制御指示を送信する。アクセスネットワーク装置は、その帯域制御指示や優先制御指示を受信すると、その帯域制御指示や優先制御指示に従ってトラヒックを制御する。
 図15は、各実施形態や各変形例で使用されるLLDPフレームのフォーマット例を示した図である。
 図15に示したように、LLDPのVendor Specific TLV(Type, Length, Value)に、新規に、自装置の状態や隣接装置との間の回線に対する帯域情報が設けられている。
 なお、図15に示したようなLLDPフレームの拡張を行わない場合においても、既存の標準MIBから取得可能な情報から、管理部63は、一定のトラヒックコントロールを実行することができる。このため、上記各実施形態を既存のアクセスネットワークに適用することも可能である。
 また、BRM3の監視対象のアクセスネットワークは、LTE(Long Term Evolution)向けのEUTRAN(Evolved Universal Terrestrial Radio Access Network)に限らない。例えば、BRM3の監視対象のアクセスネットワークは、3GPP(3rd Generation Partnership Project)のUTRAN(Universal Terrestrial Radio Access Network)でもよい。また、BRM3の監視対象のアクセスネットワークは、GSM(Global System for Mobile Communications)(登録商標)のGERAN(Enhanced Data Rates for GSM Radio Access Network)でもよい。また、BRM3の監視対象のアクセスネットワークは、インターネットでもよい。この場合、無線基地局eNBは、Multiple RAT(Radio Access Technology)アクセスネットワーク接続が可能であることが望ましい。
 また、上記各実施形態において、無線基地局eNBは、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能なCD-ROM(Compact Disk Read Only Memory)のような記録媒体に記録されたプログラムを読込み実行して、無線基地局eNBが有する各機能を実行する。記録媒体は、CD-ROMに限らず適宜変更可能である。
 また、上記各実施形態において、スイッチSWは、コンピュータにて実現されてもよい。
この場合、コンピュータは、コンピュータにて読み取り可能な記録媒体に記録されたプログラムを読込み実行して、スイッチSWが有する各機能を実行する。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 上記の各実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)アクセスネットワークに組み込まれるアクセスネットワーク装置であって、 前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記アクセスネットワークを管理する管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定する制御部と、
 前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する通信部と、を有するアクセスネットワーク装置。
 (付記2)前記情報は、前記アクセスネットワーク装置の通信状態を表す情報を含むものである、付記1に記載のアクセスネットワーク装置。
 (付記3)前記情報は、さらに、前記アクセスネットワーク装置とレイヤ2レベルで通信する通信装置の通信状態を表す情報を含むものである、付記2に記載のアクセスネットワーク装置。
 (付記4)アクセスネットワークを管理する管理装置であって、
 前記アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する通信部を有する管理装置。
 (付記5)前記通信部は、複数の前記アクセスネットワーク装置の各々から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記レイヤ2メッセージを受信する、付記4に記載の管理装置。
 (付記6)各レイヤ2メッセージに含まれる情報を記憶する記憶部をさらに有する、付記5に記載の管理装置。
 (付記7)前記通信部は、前記記憶部に記憶された情報を用いて、前記アクセスネットワークの通信を制御する、付記6に記載の管理装置。
 (付記8)アクセスネットワークに組み込まれるアクセスネットワーク装置と、前記アクセスネットワークを管理する管理装置と、を含み、
 前記アクセスネットワーク装置は、
  前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定する制御部と、
  前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する第1通信部と、を有し、
 前記管理装置は、
  前記アクセスネットワーク装置から、前記通信トンネルを介して前記レイヤ2メッセージを受信する第2通信部を有する、通信システム。
 (付記9)前記通信システムは、
 前記アクセスネットワーク装置とは異なる第2のアクセスネットワーク装置を更に有し、
 前記第2のアクセスネットワーク装置は、
  前記第2のアクセスネットワーク装置が前記通信システムに組み込まれた後に、前記第2のアクセスネットワーク装置と前記管理装置との間に通信トンネルを設定する第2の制御部と、
  前記第2のアクセスネットワーク装置が管理している第2の情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する第3通信部と、を有し、
 前記管理装置の第2通信部は、前記第2の情報を含むレイヤ2メッセージを受信する、付記8に記載の通信システム。
 (付記10)前記管理装置は、
 前記情報を含むレイヤ2メッセージに含まれる前記情報と、前記第2の情報を含むレイヤ2メッセージに含まれる前記第2の情報と、を記憶する記憶部をさらに有する、付記9に記載の管理装置。
 (付記11)アクセスネットワークに組み込まれるアクセスネットワーク装置が行う情報通知方法であって、
 前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記アクセスネットワークを管理する管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定する制御ステップと、
 前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する送信ステップと、を有する情報通知方法。
 (付記12)アクセスネットワークを管理する管理装置が行う管理方法であって、
 前記アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する受信ステップを有する管理方法。
 (付記13)コンピュータに、
 前記コンピュータがアクセスネットワークに組み込まれた後に、アクセスネットワークを管理する管理装置と前記コンピュータとの間に通信トンネルを設定する制御手順と、
 前記コンピュータが管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する送信手順と、を実行させるためのプログラム。
 (付記14)コンピュータに、
 アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記コンピュータと前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する受信手順を実行させるためのプログラム。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2013年11月15日に出願された特願2013-236576を基礎とする優先権を主張し、その開示を全てここに取り込む。
 100   通信システム
   1   アクセスネットワーク
   2   EPCネットワーク
   3   BRM(管理装置)
   41  無線通信IF
   42  ネットワークIF
   43  通信処理部
   44  通信トンネル制御部
   45、45a LLDP処理部
   51  ネットワークIF
   52  通信処理部
   53  通信トンネル制御部
   54、54a LLDP処理部
   61  ネットワークIF
   62  記憶部
   63  管理部
   10A~10C ネットワーク
   eNB1~eNB2  無線基地局
   SW1~SW8      スイッチ

Claims (10)

  1.  アクセスネットワークに組み込まれるアクセスネットワーク装置であって、
     前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記アクセスネットワークを管理する管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定する制御手段と、
     前記アクセスネットワーク装置が管理する情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する通信手段と、を有するアクセスネットワーク装置。
  2.  前記情報は、前記アクセスネットワーク装置の通信状態を表す情報を含むものである、請求項1に記載のアクセスネットワーク装置。
  3.  前記情報は、さらに、前記アクセスネットワーク装置とレイヤ2レベルで通信する通信装置の通信状態を表す情報を含むものである、請求項2に記載のアクセスネットワーク装置。
  4.  アクセスネットワークを管理する管理装置であって、
     前記アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する通信手段を有する管理装置。
  5.  前記通信部は、複数の前記アクセスネットワーク装置の各々から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記レイヤ2メッセージを受信する、請求項4に記載の管理装置。
  6.  アクセスネットワークに組み込まれるアクセスネットワーク装置と、前記アクセスネットワークを管理する管理装置と、を含み、
     前記アクセスネットワーク装置は、
      前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定する制御手段と、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する第1通信手段と、を有し、
     前記管理装置は、
      前記アクセスネットワーク装置から、前記通信トンネルを介して前記レイヤ2メッセージを受信する第2通信手段を有する、通信システム。
  7.  アクセスネットワークに組み込まれるアクセスネットワーク装置が行う情報通知方法であって、
     前記アクセスネットワーク装置が前記アクセスネットワークに組み込まれた後に、前記アクセスネットワークを管理する管理装置と前記アクセスネットワーク装置との間に通信トンネルを設定し、
     前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する、情報通知方法。
  8.  アクセスネットワークを管理する管理装置が行う管理方法であって、
     前記アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記管理装置と前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する、管理方法。
  9.  コンピュータに、
     前記コンピュータがアクセスネットワークに組み込まれた後に、アクセスネットワークを管理する管理装置と前記コンピュータとの間に通信トンネルを設定する制御手順と、
     前記コンピュータが管理している情報を含むレイヤ2メッセージを、前記通信トンネルを介して送信する送信手順と、を実行させるためのプログラム。
  10.  コンピュータに、
     アクセスネットワークに組み込まれたアクセスネットワーク装置から、前記コンピュータと前記アクセスネットワーク装置との間に設定された通信トンネルを介して、前記アクセスネットワーク装置が管理している情報を含むレイヤ2メッセージを受信する受信手順を実行させるためのプログラム。
PCT/JP2014/005638 2013-11-15 2014-11-10 アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラム WO2015072129A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14861510.7A EP3070889B1 (en) 2013-11-15 2014-11-10 Access network management
US15/036,484 US20160270133A1 (en) 2013-11-15 2014-11-10 Access-network device, management device, communication system, information provision method, management method, and program
JP2015547633A JP6179602B2 (ja) 2013-11-15 2014-11-10 アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-236576 2013-11-15
JP2013236576 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072129A1 true WO2015072129A1 (ja) 2015-05-21

Family

ID=53057079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005638 WO2015072129A1 (ja) 2013-11-15 2014-11-10 アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラム

Country Status (4)

Country Link
US (1) US20160270133A1 (ja)
EP (1) EP3070889B1 (ja)
JP (1) JP6179602B2 (ja)
WO (1) WO2015072129A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029811A1 (ja) * 2015-08-20 2017-02-23 日本電気株式会社 通信システム、基地局装置、制御装置、及び通信方法
WO2019172190A1 (ja) * 2018-03-05 2019-09-12 日本電信電話株式会社 ネットワークサービス選択装置及びネットワークサービス選択方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894997B2 (en) * 2021-07-13 2024-02-06 Nile Global, Inc. Methods and systems for network diagnostic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090003337A1 (en) * 2007-06-29 2009-01-01 World Wide Packets, Inc. Determining the State of a Tunnel with Respect to a Control Protocol
JP2012134616A (ja) 2010-12-20 2012-07-12 Nec Corp ネットワーク監視システムおよびその監視対象装置の登録方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741678B (zh) * 2008-11-26 2012-02-29 华为技术有限公司 一种建立虚拟局域网连接的方法、设备与系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090003337A1 (en) * 2007-06-29 2009-01-01 World Wide Packets, Inc. Determining the State of a Tunnel with Respect to a Control Protocol
JP2012134616A (ja) 2010-12-20 2012-07-12 Nec Corp ネットワーク監視システムおよびその監視対象装置の登録方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070889A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029811A1 (ja) * 2015-08-20 2017-02-23 日本電気株式会社 通信システム、基地局装置、制御装置、及び通信方法
JPWO2017029811A1 (ja) * 2015-08-20 2018-05-10 日本電気株式会社 通信システム、基地局装置、制御装置、及び通信方法
US10624021B2 (en) 2015-08-20 2020-04-14 Nec Corporation Communication system, base station device, control device, and communication method
WO2019172190A1 (ja) * 2018-03-05 2019-09-12 日本電信電話株式会社 ネットワークサービス選択装置及びネットワークサービス選択方法

Also Published As

Publication number Publication date
JP6179602B2 (ja) 2017-08-16
JPWO2015072129A1 (ja) 2017-03-16
US20160270133A1 (en) 2016-09-15
EP3070889A4 (en) 2017-07-05
EP3070889B1 (en) 2020-03-11
EP3070889A1 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US10412650B2 (en) Data transmission method, apparatus and system
EP3793240A1 (en) Configuration method, data transmission method and apparatus
EP3474597B1 (en) Communication network apparatus, communication network system, and method of communication network apparatus
EP2846498B1 (en) Label distribution method and device
US9882819B2 (en) Method and apparatus for controlling service quality in communication system, and communication apparatus
US20150138952A1 (en) Communication system and method for path control
US10136412B2 (en) Communication system, communication apparatus, and control method and control apparatus thereof
JP2018510553A (ja) アクセス制御装置、システム、及び方法
WO2013182059A1 (zh) 多协议标签交换流量工程隧道建立方法及设备
WO2015136875A1 (ja) 通信装置およびトラフィック制御方法
US20160072930A1 (en) Data transmission method and apparatus, communications device, and communications system
ES2774286T3 (es) Método y dispositivo para desviar datos
JP7482997B2 (ja) データパケット送信方法および装置
US20190260857A1 (en) Data Packet Processing Method, Control Plane Network Element, And User Plane Network Element
EP3962157B1 (en) Mdbv determining methods and apparatuses
JP6128116B2 (ja) 通信端末、通信方法、通信システムおよびプログラム
JP6179602B2 (ja) アクセスネットワーク装置、管理装置、通信システム、情報通知方法、管理方法およびプログラム
KR20240004972A (ko) 노드의 마이그레이션을 처리하기 위한 제1 노드, 제2 노드, 및 그에 의해 실행되는 방법
WO2015113281A1 (zh) 用户数据处理方法、装置及网络系统
WO2020042986A1 (zh) 一种多跳数据传输方法及装置
CN110582993B (zh) 通过局域网连接进行通信的方法和装置
WO2015141229A1 (ja) 通信装置、通信方法、通信システムおよびプログラム
JP2024519639A (ja) Integrated Access and Backhaulネットワークにおけるバックホールリンク問題
JP5855171B2 (ja) 改善されたサービス品質処理のための通信方法、通信プロトコル及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547633

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15036484

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014861510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861510

Country of ref document: EP