WO2015072111A1 - Treatment agent for cathode active material, cathode active material composite, method for producing cathode active material composite, cathode, and electricity storage device - Google Patents

Treatment agent for cathode active material, cathode active material composite, method for producing cathode active material composite, cathode, and electricity storage device Download PDF

Info

Publication number
WO2015072111A1
WO2015072111A1 PCT/JP2014/005565 JP2014005565W WO2015072111A1 WO 2015072111 A1 WO2015072111 A1 WO 2015072111A1 JP 2014005565 W JP2014005565 W JP 2014005565W WO 2015072111 A1 WO2015072111 A1 WO 2015072111A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
transition metal
group
Prior art date
Application number
PCT/JP2014/005565
Other languages
French (fr)
Japanese (ja)
Inventor
尚 杉江
正則 原田
大 松代
加内江 鈴木
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015072111A1 publication Critical patent/WO2015072111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a treatment agent for a positive electrode active material used in a power storage device such as a lithium ion secondary battery, a positive electrode active material composite treated with the treatment agent, a method for producing the positive electrode active material composite, and the treatment
  • the present invention relates to a positive electrode using an agent and a power storage device using the positive electrode.
  • Power storage devices represented by lithium ion secondary batteries and lithium secondary batteries are conventionally known.
  • the battery capacity of the power storage device may decrease as the power storage device deteriorates over time.
  • the technique which suppresses degradation of such an electrical storage apparatus is regarded as important when developing an electrical storage apparatus.
  • a positive electrode active material for a power storage device a material containing lithium and a transition metal is known.
  • a positive electrode active material containing lithium and a transition metal is referred to as a Li-transition metal-based positive electrode active material as necessary.
  • the Li-transition metal-based positive electrode active material generally contains sulfate and sodium hydroxide as part of the raw material (see, for example, Patent Document 1).
  • the Li-transition metal-based positive electrode active material using such raw materials contains sodium (Na) and sulfur (S) as impurities, and these impurities remain in the vicinity of the surface of the Li-transition metal-based positive electrode active material. there is a possibility.
  • Na and S remaining in the vicinity of the surface of the Li-transition metal-based positive electrode active material can be elements that adversely affect the battery. That is, Na and S can cause deterioration of the power storage device.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a technology capable of suppressing deterioration of a power storage device.
  • the inventors of the present invention have formulated a positive active material layer by blending a specific treatment agent with a Li-transition metal-based positive electrode active material. It was found that Na and S were trapped. The inventors of the present invention have also found that deterioration of the power storage device can be suppressed by using a positive electrode including a positive electrode active material treated with the treating agent. Furthermore, it has been found that the treatment agent remains as an adhering material on the surface of the positive electrode active material and the adhering material can contribute to suppression of deterioration of the power storage device.
  • the positive electrode active material treated with the treatment agent is referred to as a positive electrode active material composite as necessary.
  • the treating agent for positive electrode active material of the present invention that solves the above problems is A treating agent for treating a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
  • the Li-transition metal-based positive electrode active material contains sodium and sulfur as impurities,
  • the treatment agent is capable of capturing the sodium and sulfur.
  • the first positive electrode active material composite of the present invention that solves the above problems is An adhering material containing an oxide having at least one element selected from the group consisting of Group 3 to Group 5 elements, sulfur, and phosphorus is adhered to the surface of the positive electrode active material.
  • the second positive electrode active material composite of the present invention that solves the above problems is An adhesion material containing at least one selected from the group consisting of Group 3 to Group 5 elements, sulfur, and phosphorus is attached to the surface of the positive electrode active material;
  • the positive electrode active material is a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
  • the sulfur is derived from the positive electrode active material.
  • the method for producing the positive electrode active material composite is represented by the chemical formula: (MO) 2 P 2 O 7 (M is at least one selected from the group consisting of Group 3 to Group 5 elements).
  • the positive electrode of the present invention that solves the above problems includes any of the positive electrode active material composites of the present invention described above.
  • the power storage device of the present invention that solves the above-described problems includes any of the positive electrodes of the present invention described above.
  • the treatment agent for positive electrode active material of the present invention can capture Na and S contained in the Li-transition metal-based positive electrode active material, and suppresses adverse effects on the power storage device due to Na and S, that is, deterioration of the power storage device. obtain. Moreover, according to the positive electrode of the present invention, deterioration of the power storage device can be suppressed.
  • the power storage device of the present invention is excellent in deterioration resistance.
  • FIG. 2 is a SEM image of a positive electrode active material treated with the treating agent of Example 1.
  • FIG. 4 is an EDS analysis result regarding a Zr element of a positive electrode active material treated with the treating agent of Example 1.
  • 3 is an EDS analysis result regarding a P element of the positive electrode active material treated with the treating agent of Example 1.
  • 3 is an EDS analysis result regarding S element of the positive electrode active material treated with the treating agent of Example 1.
  • It is an EDS analysis result regarding Na element of the positive electrode active material processed with the processing agent of Example 1.
  • (ZrO) 2 thermogravimetry of P 2 O 7: is a graph showing the (Thermogravimetry TG) results.
  • 10 shows a TEM image and a STEM analysis result of the positive electrode active material composite of Example 8.
  • FIG. 3 shows a TEM image and a STEM analysis result of the positive electrode active material composite of Example
  • the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”.
  • the numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples.
  • numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
  • the treatment agent for the Li-transition metal positive electrode active material of the present invention is simply referred to as a treatment agent.
  • the positive electrode containing the positive electrode active material composite material of this invention is called the positive electrode of this invention.
  • the method for producing the positive electrode of the present invention is referred to as the production method of the present invention.
  • a power storage device including the positive electrode of the present invention is referred to as a power storage device of the present invention.
  • the Li-transition metal-based positive electrode active material to be treated by the treating agent of the present invention contains lithium and a transition metal.
  • the positive electrode of the present invention and the power storage device of the present invention that are treated with the treating agent of the present invention may include a Li-transition metal-based positive electrode active material as at least a part of the positive electrode active material.
  • a positive electrode active material other than the material may be included.
  • the positive electrode active material composite, positive electrode, and power storage device of the present invention described later do not necessarily need to contain a Li-transition metal-based positive electrode active material as the positive electrode active material.
  • Li-transition metal-based positive electrode active material for example, a material containing two or more selected from nickel element (Ni), cobalt element (Co) and manganese element (Mn) is preferably used. Those containing all of Co and Mn are more preferably used.
  • Li-transition metal-based positive electrode active material Li 2 MnO 3 which is also a layered compound may be used.
  • Other Li-transition metal-based positive electrode active materials include solid solutions composed of spinels such as LiMn 2 O 4 and Li 2 Mn 2 O 4 , and mixtures of spinels and layered compounds, LiM 2 PO 4 , LiM 2 VO 4.
  • LiFePO 4 F LiM 3 PO 4 F (M 3 is a transition metal) tavorite based compound represented by such as the LiM 3 BO 3, such LiFeBO 3 (M 3 is a transition metal) borate compound represented by It can be cited as a Li-transition metal-based positive electrode active material.
  • the metal oxide used as the Li-transition metal positive electrode active material only needs to contain a lithium element and a transition metal element.
  • the above composition formula may be a basic composition, and a metal element included in the basic composition may be substituted with another metal element.
  • the positive electrode active material other than the Li-transition metal-based positive electrode active material that can be used in combination with the Li-transition metal-based positive electrode active material a material that does not contain a charge carrier may be selected.
  • the charge carrier refers to lithium ions that contribute to charge / discharge.
  • Examples of the positive electrode active material other than the Li-fiber metal positive electrode active material and including no charge carrier include, for example, sulfur alone (S), a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , Examples thereof include oxides such as V 2 O 5 and MnO 2 , polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, and conjugated materials such as conjugated diacetate-based organic substances.
  • the positive electrode active material can also be used.
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material.
  • only a positive electrode active material other than these Li-transition metal-based positive electrode active materials may be used as the positive electrode active material. In this case, at least S may be intentionally added to the positive electrode active material.
  • the Li-transition metal-based positive electrode active material contains Na and S as impurities.
  • the Li-transition metal-based positive electrode active material may contain Na and S as elements.
  • S may exist as sulfate ions.
  • Na may be present as Na carbonate or NaOH.
  • Na may be present as Li contained in the layered compound described above is replaced with Na.
  • Na and S referred to below are concepts including these.
  • Na and S contained in the Li-transition metal-based positive electrode active material may be contained in the Li-transition metal-based positive electrode active material in any process. That is, as described above, it may be inevitably included in the manufacturing process of the Li-transition metal-based positive electrode active material, or may be unavoidably included.
  • the term “impurity” as used herein means that Na and S are not mainly involved in occlusion and release of lithium ions as charge carriers, and the amounts thereof are not particularly limited. However, if these impurities are excessive, the adverse effect on the power storage device is great, which is not preferable. Therefore, the Li-transition metal-based positive electrode active material to be processed preferably contains an impurity in an amount smaller than the content of the transition metal element. Of course, since these impurities can cause deterioration of the power storage device, the smaller the content of impurities, the better.
  • a part of Na and / or S desorbed from the Li-transition metal positive electrode active material may be present together with the Li-transition metal positive electrode active material.
  • a part of Na and / or S used as a raw material at the time of manufacture but not constituting the Li-transition metal positive electrode active material may be present together with the Li-transition metal positive electrode active material without being removed.
  • at least S may be intentionally added to the Li-transition metal-based positive electrode active material.
  • the timing of addition is not particularly limited, and it may be added during the production process of the Li-transition metal-based positive electrode active material, or may be added to the Li-transition metal-based positive electrode active material after production.
  • Na and / or S constituting a part of the Li-transition metal-based positive electrode active material but also Na and / or S present together with the Li-transition metal-based positive electrode active material will be described later. It can become a processing target of a processing agent.
  • the treatment agent of the present invention is not particularly limited as long as it can capture Na and S, and any treatment agent may be used, but it should not adversely affect the power storage device. Specific examples include phosphoric acid compounds.
  • the treating agent of the present invention is a gel containing zirconium phosphate oxide represented by (ZrO) 2 P 2 O 7 and water, as will be described later.
  • ZrO zirconium phosphate oxide represented by (ZrO) 2 P 2 O 7 and water
  • the positive electrode active material treated with the treating agent of the present invention is a composite of an adhering material having the treating agent as a precursor and a positive electrode active material, and includes supplemented S in the adhering material.
  • the processing agent is a phosphoric acid compound (ZrO) is good containing phosphoric acid zirconium oxide represented by the 2 P 2 O 7. All of the phosphoric acid compound in the treating agent may be (ZrO) 2 P 2 O 7 , but the treating agent may contain a phosphoric acid compound other than (ZrO) 2 P 2 O 7 .
  • a compound having a phosphate skeleton can be used as the phosphate compound other than (ZrO) 2 P 2 O 7 .
  • the phosphate skeleton here means a structure in which at least three Os are bonded to P, one O is double-bonded to P, and the other at least two Os are bonded to H.
  • the compound having the phosphate skeleton is particularly preferably zirconium phosphate oxide. Specifically, at least one selected from ZrOHPO 4 , Zr (HPO 4 ) 2 , NH 4 Zr 2 (PO 4 ) 3 , Zr 2 O (PO 4 ) 2 , Zr 3 (PO 4 ) 4 may be mentioned. it can.
  • the treatment agent of the present invention may be used in any state, but is preferably used in a gel form.
  • the gel form refers to a solid state containing moisture.
  • a processing agent may contain polar solvents other than water. Examples of the polar solvent include those having a high polarity such as ethanol, methanol, n-propanol, acetone, and dioxane.
  • the treatment agent of the present invention in the form of a gel, there is an advantage that Na and S adhering to the surface of the Li-transition metal-based positive electrode active material can easily come into contact with the treatment agent.
  • the treating agent is zirconium phosphate oxide
  • gel zirconium phosphate oxide that is, treating agent
  • zirconium compounds such as ZrO (NO 3 ) 2 .2H 2 O and ZrOCl 2 may be used alone or in combination as a zirconium source.
  • phosphoric acid source phosphoric acid compounds such as (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 , and H 3 PO 4 may be used singly or in combination.
  • the treatment agent one containing another element instead of Zr may be selected.
  • the element replacing Zr include at least one metal element selected from the group consisting of Group 3 elements, Group 4 elements, and Group 5 elements. More preferably, the metal element is at least one selected from Zr, La, Y, Ti, Ta, and Nb.
  • the adhering material precursor is represented by the chemical formula: (M 1 O) 2 P 2 O 7 (M 1 is at least one selected from the group consisting of Group 3 to Group 5 elements). . At least one element selected from the group consisting of Group 3 to Group 5 elements combines with oxygen and forms a compound with phosphoric acid.
  • the compound contains an oxide having at least one element selected from the group consisting of Group 3 to Group 5 elements, and P.
  • the compound contains water and forms an amorphous gel. Further, as will be described later, the gel is considered to be crystallized by introducing S during heat treatment or the like.
  • the above-mentioned compound of Group 3 to Group 5 metal element and phosphoric acid is a precursor of the adhering material.
  • the precursor of the adhesive material is referred to as an adhesive material precursor.
  • an above-described gel contains an adhesion material precursor and water, and is equivalent to the processing agent in this invention. This gel is called a treatment agent gel.
  • the treatment agent gel is not only a treatment agent supplemented with S and Na, but also heat treated together with the supplemented S to constitute an adhesive material.
  • the treatment agent gel contains zirconium phosphate oxide and water, and most of the zirconium phosphate oxide exists as a hydrate in the treatment agent gel.
  • the zirconium phosphate oxide is particularly preferably (ZrO) 2 P 2 O 7 .
  • a compound having (ZrO) 2 P 2 O 7 as a basic skeleton of the structure may have excellent ionic conductivity. That is, (ZrO) 2 P 2 O 7 which is an adhering material precursor can form a compound having excellent ion conductivity. Therefore, an adhering material using (ZrO) 2 P 2 O 7 as a part of the material also has ion conductivity. It is considered excellent. Furthermore, the positive electrode active material (that is, the positive electrode active material composite material) formed by adhering the adhering material to the surface is also considered to have excellent ion conductivity. And it is thought that the battery resistance of an electrical storage apparatus reduces by containing the said positive electrode active material composite material in a positive electrode.
  • (ZrO) 2 P 2 O 7 contributes to side reaction suppression in this way, the adhesive material using (ZrO) 2 P 2 O 7 as a precursor also contributes to side reaction suppression, and as a result, the initial stage of the power storage device. Contributes to improved charge / discharge efficiency and storage characteristics.
  • S is introduced into the adhesive material in the present invention, it is considered that (ZrO) 2 P 2 O 7 without introduction of S partially remains in the adhesive material. This remaining (ZrO) 2 P 2 O 7 is also considered to exhibit excellent ion conductivity and suppress side reactions occurring on the electrode surface.
  • the adhering material prevents direct contact between the positive electrode active material and the electrolyte. For this reason, the presence of the adhering material reduces the decomposition of the electrolytic solution caused by the contact between the positive electrode active material and the electrolytic solution. This also improves the cycle characteristics of the power storage device.
  • the positive electrode of the present invention can suppress deterioration of the power storage device, and the power storage device of the present invention is hardly deteriorated.
  • the adhering material having (ZrO) 2 P 2 O 7 as a precursor has a partial structure derived from (ZrO) 2 P 2 O 7 .
  • this partial structure can be confirmed by XRD (powder X-ray diffraction). Therefore, the adhesion material having (ZrO) 2 P 2 O 7 as a precursor can be referred to as zirconium oxide based on this partial structure.
  • the said adhering material has further the partial structure which P and O couple
  • the adhering material having (ZrO) 2 P 2 O 7 as a part of the material is presumed to be a compound represented by the chemical formula: (ZrO) w P 2 O x (SO y ) z.
  • the In this formula w, x, y, and z are numbers exceeding 0, respectively. Furthermore, it is considered that 1.8 ⁇ w ⁇ 2.2, 6 ⁇ x ⁇ 8, 0 ⁇ y ⁇ 4, and 0 ⁇ z.
  • the adhering material containing Group 3 to Group 5 metal other than Zr has a partial structure in which the metal and O are bonded. Therefore, it can be said that the adhesive material in the present invention is a metal oxide. Further, even when the metal is other than Zr, it is presumed that the adhesion material in the present invention has a partial structure in which P and O are bonded and a partial structure in which S and O are bonded.
  • the production method of the present invention includes a step of obtaining the above-described positive electrode active material composite.
  • This process is called a positive electrode active material composite preparation process.
  • a positive electrode active material is brought into contact with a gel containing an adhesive precursor and water (that is, a treatment agent gel), and the active material-gel composite containing the gel and the positive electrode active material is heat-treated. It is a process to do.
  • At least one of the treating agent gel and the positive electrode active material used here contains S.
  • S contained in the positive electrode active material moves to the treatment agent gel and constitutes the adhesive material together with the adhesive material precursor. More specifically, it is considered that S in the treatment agent gel is introduced into the adhesive precursor as the water evaporates during the heat treatment, and constitutes the adhesive.
  • S may be included in the positive electrode active material as an unavoidable impurity or may be added to the treatment agent gel.
  • the Li-transition metal-based positive electrode active material contains S as an unavoidable impurity or the like, the Li-transition metal-based positive electrode active material is used as the positive electrode active material, and S derived from the positive electrode active material is used as an adhesive precursor. It is more efficient to introduce it into the body.
  • the positive electrode includes a current collector and a positive electrode active material layer provided on the current collector.
  • the positive electrode active material layer includes a Li-transition metal-based positive electrode active material and a treatment agent, and may include additives such as a binder and a conductive additive.
  • the positive electrode will be described, but the same applies to the negative electrode in a power storage device described later.
  • the binder plays a role of connecting the positive electrode active material to the surface of the current collector.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. it can.
  • a polymer having a hydrophilic group may be employed as the binder.
  • the hydrophilic group of the polymer having a hydrophilic group include a phosphate group such as a carboxyl group, a sulfo group, a silanol group, an amino group, a hydroxyl group, and a phosphate group.
  • Conductive aid is added to increase the conductivity of the positive electrode. Therefore, the conductive auxiliary agent may be optionally added when the positive electrode has insufficient conductivity, and may not be added when the positive electrode has sufficiently high conductivity.
  • the conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), vapor grown carbon fiber (Vapor Growth Carbon, carbonaceous fine particles). Fiber: VGCF) and various metal particles are exemplified. These conductive assistants can be added to the positive electrode active material layer alone or in combination of two or more.
  • the positive electrode active material is applied to the surface of the current collector using a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, or the like. It ’s fine.
  • a positive electrode active material, and, if necessary, a positive electrode active material layer forming composition (so-called positive electrode mixture, in the case of a negative electrode, a negative electrode mixture) containing a binder and a conductive additive are prepared, and this composition
  • An appropriate solvent is added to the product to form a paste, which is applied to the surface of the current collector and then dried.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the dried product may be compressed.
  • the current collector in the power storage device of the present invention is a chemically inert electronic high conductor that keeps a current flowing through the electrode during discharging or charging of the power storage device.
  • the current collector include at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, and molybdenum, or an alloy thereof. Is done.
  • stainless steel can be selected.
  • the current collector can take the form of a foil, a sheet, a film, a line, a rod, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. Further, a coat layer may be formed on the surface of the current collector. As the material for the coat layer, a material having excellent conductivity is preferably selected. The same applies to the negative electrode.
  • the power storage device of the present invention includes a negative electrode, an electrolytic solution, and, if necessary, a separator in addition to the positive electrode of the present invention.
  • the negative electrode Similar to the positive electrode, the negative electrode includes a current collector and a negative electrode active material layer provided on the current collector.
  • the negative electrode active material layer includes a negative electrode active material and may include additives such as a binder and a conductive additive.
  • the negative electrode active material a general material that can occlude and release charge carriers can be used.
  • a material capable of inserting and extracting lithium ions may be selected as the negative electrode active material. More specifically, any element (single element) that can be alloyed with a charge carrier such as lithium, an alloy containing the element, or a compound containing the element may be used.
  • a group 14 element such as Li, carbon, silicon, germanium or tin, a group 13 element such as aluminum or indium, a group 12 element such as zinc or cadmium, 15 such as antimony or bismuth, etc.
  • a group element, an alkaline earth metal such as magnesium and calcium, and a group 11 element such as silver and gold may be employed alone.
  • silicon or the like is employed as the negative electrode active material, one silicon atom reacts with a plurality of lithiums, so that a high capacity active material is obtained.
  • problems such as significant expansion and contraction of the volume of the negative electrode active material may occur with the insertion and extraction of lithium. Therefore, in order to reduce the fear, it is also preferable to employ an alloy or a compound in which another element such as a transition metal is combined with a simple substance such as silicon as the negative electrode active material.
  • the alloy or compound include tin-based materials such as Ag—Sn alloy, Cu—Sn alloy and Co—Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated into silicon simple substance and silicon dioxide). Examples thereof include silicon-based materials such as 0.3 ⁇ x ⁇ 1.6), silicon alone, or composites obtained by combining silicon-based materials and carbon-based materials.
  • the electrolyte solution is not particularly limited as long as the electrolyte solution corresponds to the type of power storage device.
  • the power storage device of the present invention is a non-aqueous electrolyte secondary battery
  • an electrolytic solution obtained by dissolving a supporting electrolyte (supporting salt) in an organic solvent may be used.
  • the organic solvent is an aprotic organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl At least one selected from methyl carbonate (EMC) and the like can be preferably selected.
  • the supporting electrolyte it is preferable to use a lithium metal salt that is soluble in an organic solvent.
  • the supporting electrolyte is selected from the group consisting of LiPF 6 , LiBF 4 , LIASF 6 , LiI, LiClO 4 , and LiCF 3 SO 3. It is preferable to use at least one kind.
  • the supporting electrolyte is preferably dissolved in the organic solvent at a concentration of about 0.5 mol / L to 1.7 mol / L.
  • a separator is used in the power storage device as necessary.
  • the separator separates the positive electrode and the negative electrode and allows the charge carrier to pass while preventing a short circuit of current due to contact between the two electrodes.
  • natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile and other polysaccharides, cellulose, amylose and other polysaccharides, fibroin, keratin, lignin and suberin Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics.
  • the separator may have a multilayer structure.
  • the electrode body may be any of a stacked type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a positive electrode, a separator and a negative electrode are sandwiched.
  • the power storage device of the present invention can be applied as various power storage devices such as a secondary battery and a capacitor.
  • the power storage device of the present invention may be charged and discharged within a voltage range suitable for the type of active material contained in the electrode.
  • the shape of the power storage device of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be employed.
  • the use of the power storage device of the present invention is not particularly limited, and examples thereof include various home appliances driven by electric power, such as personal computers and portable communication devices, office equipment, industrial equipment, and vehicles.
  • Example The present invention will be specifically described below based on examples and comparative examples. The present invention is not limited to the following examples and comparative examples. In the following, unless otherwise specified, “part” means part by mass, and “%” means mass%.
  • Example 1 The treatment agent of Example 1 and the method for producing the treatment agent will be described below.
  • the power storage device of Example 1 is a lithium ion secondary battery that is a kind of non-aqueous electrolyte secondary battery.
  • the treating agent of Example 1 is zirconium phosphate using ZrO (NO 3 ) 2 .2H 2 O as a zirconium source and (NH 4 ) 2 HPO 4 as a phosphoric acid source.
  • the positive electrode active material was added to the treating agent gel obtained in the above step and stirred to mix the gel and the positive electrode active material to obtain a positive electrode active material-gel composite.
  • impurities that is, Na and S
  • ethanol may be added according to the viscosity of the mixture so that the treating agent gel and the positive electrode active material are sufficiently kneaded and contacted.
  • FIG. 2 shows EDS analysis results of the positive electrode active material treated with the treating agent of Example 1.
  • FIG. 2 shows the results of elemental analysis at the same position as the position enclosed by the ellipse in FIG. 1, more specifically, the position enclosed by the rectangle within the ellipse. More specifically, FIG. 2 shows an analysis result regarding the Zr element, and a white portion in the drawing is a portion where the Zr element exists.
  • FIG. 2 shows an analysis result regarding the Zr element, and a white portion in the drawing is a portion where the Zr element exists.
  • FIG. 3 shows the analysis result regarding the P element, and the white portion in the figure is the portion where the P element exists.
  • FIG. 4 shows the analysis result regarding the S element, and the white part in the figure is the part where the S element exists.
  • FIG. 5 shows the analysis results regarding the Na element, and the white part in the figure is the part where the Na element exists.
  • the positive electrode active material composite of Example 1 has a large number of particulate substances.
  • This material is a positive electrode active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ).
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 of particulate of different materials looks are present in the portion surrounded by a circle.
  • the Zr element is confirmed at the same position where the substance exists.
  • the P element is further confirmed at the same position where the substance exists. That is, the results shown in FIGS. 1 to 3 indicate that the substance is a compound containing Zr and P, that is, zirconium phosphate oxide.
  • FIG. 4 it can be seen that the S element is confirmed at the same position where zirconium phosphate is present.
  • Na element is further confirmed at the same position where zirconium phosphate oxide is present. 4 and 5, it can be seen that the S element and the Na element are mainly present inside the block of zirconium phosphate oxide. That is, the results shown in FIGS. 1 to 5 indicate that Na and S are present together with zirconium phosphate oxide and are mainly trapped inside the zirconium phosphate oxide.
  • Example 2 The treatment method of Example 2 was the same as that of Example 1 except that the positive electrode active material: hydrated zirconium phosphate oxide was mixed at a mass ratio of 99.5: 0.5. A substance complex was obtained.
  • a positive electrode active material composite of Example 32 was obtained in the same manner as in Example 1 except that the ratio was mixed.
  • Comparative Example 1 LiNi 0.5 Co 0.2 Mn 0.3 O 2 that was not treated with the treating agent was used as the positive electrode active material of Comparative Example 1.
  • Lithium ion secondary battery Using the positive electrode active material composites of Examples 1 to 3 and the positive electrode active material of Comparative Example 1, lithium ion secondary batteries were produced.
  • the positive electrode active material composites of Examples 1 to 4 or the positive electrode active material of Comparative Example 1, polyvinylidene fluoride (PVdF) as a binder, and AB as a conductive additive were respectively added to the positive electrode active material composite (or the positive electrode).
  • Active material): binder: conducting aid 94: 3: 3 is mixed at a mass ratio, and N-methyl-2-pyrrolidone (NMP) as a solvent is further added and mixed to obtain a paste-like positive electrode mixture. Obtained.
  • NMP N-methyl-2-pyrrolidone
  • the current collector and the positive electrode mixture applied to the current collector were dried at 80 ° C. for 20 minutes to volatilize and remove NMP.
  • the current collector and the positive electrode mixture after drying were compressed using a roll press. By this step, the aluminum foil and the active material layer were firmly bonded.
  • the bonded product was heated at 120 ° C. for 6 hours using a vacuum dryer, and cut into a predetermined shape to obtain a positive electrode.
  • Graphite was used as the negative electrode active material.
  • binder a mixture of styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) at a mass ratio of 1: 1 was used.
  • Ketjen black (KB) was used as a conductive aid.
  • a negative electrode mixture was obtained. This negative electrode mixture was applied to a current collector using a doctor blade. A copper foil having a thickness of 20 ⁇ m was used as the current collector.
  • the current collector and the negative electrode mixture applied to the current collector were dried and compressed in the same manner as the positive electrode described above, further vacuum dried, and then cut into a predetermined shape to obtain a negative electrode.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a laminated lithium ion secondary battery was manufactured using the positive electrode, the negative electrode, and the electrolytic solution. Specifically, a rectangular sheet (thickness 25 ⁇ m) made of a resin film having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution was poured into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.
  • the lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 were subjected to a storage test. Specifically, each battery was charged to 4.32 V and stored at 60 ° C. for 20 days. The discharge capacity was measured before and after the storage test. The rate at the time of measurement was 0.33C, the discharge start voltage was 4.5V, and the discharge end voltage was 3.0V. In addition, 1C means the electric current value which completes discharge in 1 hour by CC discharge (constant current discharge). The percentage of the discharge capacity after the storage test with respect to the discharge capacity before the storage test was determined to obtain the capacity maintenance rate. Table 1 shows capacity retention ratios of the lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1.
  • the amount of treatment agent added is in the range of 0.1 to 1.0% by mass, it can be said that it is very effective for suppressing deterioration of the lithium ion secondary battery.
  • the addition amount of a processing agent is less than 0.05 mass%, it is somewhat inferior to the deterioration effect of a lithium ion secondary battery. Therefore, it can be said that the addition amount of the treatment agent may be 0.05% by mass or more.
  • the addition amount of a processing agent exceeds 1.0 mass%, when producing the slurry of positive electrode compound material, a slurry will be easy to gelatinize. Therefore, when the positive electrode manufacturing workability is taken into consideration, it can be said that the addition amount of the treatment agent is preferably 1.0% by mass or less. Therefore, the preferable addition amount of the additive is 0.05% by mass or more and 1.0% by mass or less.
  • the lithium ion secondary batteries of Examples 1 to 3 did not have the adhering material. It can be said that suppression of deterioration was seen compared with the lithium ion secondary battery.
  • the treating agent used in Examples 1 to 3 is a gel containing an adhesive precursor and water, and the adhesive precursor (that is, zirconium phosphate oxide) has a chemical formula: (ZrO) 2 P consisting of compounds represented by 2 O 7.
  • (ZrO) 2 P 2 O 7 may be a commercially available product, or may be produced as in the examples.
  • a hydrate of (ZrO) 2 P 2 O 7 is obtained by dissolving ZrO (NO 3 ) 2 .2H 2 O and (NH 4 ) 2 HPO 4 .6H 2 O at a fixed ratio in pure water. It can be deposited.
  • the precipitated hydrate of (ZrO) 2 P 2 O 7 is in a gel state (in other words, a state having poor crystallinity), and contains (ZrO) 2 P 2 O 7 which is zirconium phosphate oxide and water. If this gel is heat-treated at a temperature of 150 ° C. or higher, the moisture contained therein is reduced. In particular, if the dried gel is baked at 400 ° C. or higher, it is considered that the crystal water of (ZrO) 2 P 2 O 7 hydrate is almost eliminated and the crystallinity is increased.
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter of 10 ⁇ m was prepared as a positive electrode active material.
  • the mixture was stirred for 1 hour, the treated liquid after the suction was filtered by suction, and the slurry-like filtrate was heat-treated with a 120 ° C. dryer for 12 hours.
  • the filtrate obtained by evaporating water was pulverized using a pestle and mortar, placed in a crucible, and further heat-treated at 400 ° C. for 5 hours.
  • the sample was pulverized with a pestle and a mortar so that the average particle size was about 10 ⁇ m to obtain a sample for a confirmation test.
  • the manufacturing method of this sample is different from the manufacturing methods of Examples 1 to 3 in that the positive electrode active material is not contacted with the previously prepared gel-like zirconium phosphate oxide.
  • this sample is formed by adhering a deposit made of zirconium phosphate to the positive electrode active material. Further, the partial structure of zirconium phosphate oxide in the deposit of this sample is highly likely to coincide with the partial structure of zirconium phosphate oxide in the deposits obtained by the manufacturing methods of Examples 1 to 3.
  • the deposit on this sample was analyzed by powder X-ray diffraction (XRD) (SmartLab, Rigaku).
  • XRD powder X-ray diffraction
  • FIG. 6 The analysis results are shown in FIG. 6 together with the analysis results of ZrP 2 O 7 and (ZrO) 2 P 2 O 7 . From the position of the peak shown in FIG. 6, it was confirmed that the deposit on the sample had a partial structure containing zirconium oxide. That is, the zirconium phosphate oxide used in Examples 1 to 3 is not ZrP 2 O 7 but (ZrO) 2 P 2 O 7 , and the adhesive obtained in Examples 1 to 3 Was confirmed to have a partial structure containing zirconium oxide.
  • thermogravimetric change of the sample was measured with a thermal analyzer manufactured by TA Instruments.
  • the weight change of the sample is measured by raising the temperature from room temperature to 700 ° C. at a constant speed.
  • the original mass was taken as 100%, the mass at each temperature was measured, and the mass at each temperature was compared with the original mass and displayed in%.
  • the TG measurement results are shown in FIG.
  • the mass of (ZrO) 2 P 2 O 7 decreased in two steps as the temperature was increased. That is, in the temperature range from room temperature to 150 ° C., the mass of (ZrO) 2 P 2 O 7 decreased at a substantially constant rate, and the decrease in mass once became moderate near 150 ° C. In the temperature range from 150 ° C. to 500 ° C., the mass of (ZrO) 2 P 2 O 7 again decreased at a substantially constant rate. And the change of mass was not seen so much above 500 degreeC. The decrease in mass of (ZrO) 2 P 2 O 7 in the temperature range from room temperature to around 150 ° C.
  • Example 4 The treating agent of Example 4 was the same zirconium phosphate oxide as that of Example 1.
  • the positive electrode active material A used in the treatment method of Example 4 is LiNi 0.5 Co 0.2 Mn 0.3 O 2 which is a kind of Li-transition metal positive electrode active material.
  • This positive electrode active material A contains trace amounts of Na and S as inevitable impurities. Moreover, content of S of this positive electrode active material A was 0.06 mass%.
  • LiOH and Li 2 CO 3 which are a kind of Li compound, were attached to the surface of the positive electrode active material A.
  • the adhesion amount of LiOH was 0.13% by mass, and the adhesion amount of Li 2 CO 3 was 0.23% by mass.
  • the adhesion amount here is mass ratio which made the total amount of the positive electrode active material crude product containing impurities, such as Na, S, and Li compound, 100 mass%.
  • the positive electrode active material A described above was added to a treatment agent gel containing zirconium phosphate oxide and water.
  • a mixture of the positive electrode active material A and the treating agent gel, that is, the active material-gel composite was heated at 120 ° C. for 6 hours to perform a one-step heat treatment.
  • the positive electrode active material composite of Example 4 was obtained through the above steps.
  • Example 5 The treating agent of Example 5 was the same zirconium phosphate oxide as that of Example 1. In Example 5, the same positive electrode active material A as in Example 4 was used.
  • a mixture of the positive electrode active material A and the treating agent gel was first heated at 120 ° C. for 6 hours, and then heated at 400 ° C. for 6 hours to perform two-stage heat treatment.
  • the positive electrode active material composite of Example 5 was obtained through the above steps.
  • Example 6 The treating agent of Example 6 was the same zirconium phosphate oxide as that of Example 1. In Example 6, the same positive electrode active material A as in Example 4 was used.
  • the mixture of the positive electrode active material A and the treatment agent gel was subjected to one-stage heat treatment in the same manner as in Example 4.
  • the positive electrode active material composite of Example 6 was obtained through the above steps.
  • Example 7 The treating agent of Example 7 was the same zirconium phosphate oxide as that of Example 1. In Example 7, the same positive electrode active material A as in Example 4 was used.
  • the mixture of the positive electrode active material A and the treatment agent gel was subjected to two-stage heat treatment in the same manner as in Example 5.
  • the positive electrode active material composite of Example 7 was obtained through the above steps.
  • Comparative Example 2 The positive electrode active material of Comparative Example 2 was the same positive electrode active material A as used in Example 4. The positive electrode active material of the comparative collar 2 is not subjected to treatment with a treatment agent.
  • Example 8 The treating agent of Example 8 was the same zirconium phosphate oxide as that of Example 1.
  • the positive electrode active material B used in the treatment method of Example 8 is LiNi 0.5 Co 0.2 Mn 0.3 O 2 which is a kind of Li-transition metal positive electrode active material.
  • This positive electrode active material B contains trace amounts of Na and S as inevitable impurities. Further, the content of S in the positive electrode active material B was 0.11% by mass.
  • the amount of LiOH deposited on the positive electrode active material B was 0.06% by mass, and the amount of Li 2 CO 3 deposited was 0.12% by mass.
  • the mixture of the positive electrode active material B and the treatment agent gel was subjected to one-stage heat treatment in the same manner as in Example 4.
  • the positive electrode active material composite of Example 8 was obtained through the above steps.
  • Example 9 The treating agent of Example 9 was the same zirconium phosphate oxide as that of Example 1. In Example 9, the same positive electrode active material B as in Example 8 was used.
  • the mixture of the positive electrode active material B and the treatment agent gel was subjected to two-stage heat treatment in the same manner as in Example 5.
  • the positive electrode active material composite of Example 9 was obtained through the above steps.
  • Example 10 The treating agent of Example 10 was the same zirconium phosphate oxide as that of Example 1. In Example 10, the same positive electrode active material B as in Example 8 was used.
  • the mixture of the positive electrode active material B and the treatment agent gel was subjected to one-stage heat treatment in the same manner as in Example 4.
  • the positive electrode active material composite of Example 10 was obtained through the above steps.
  • Example 11 The treating agent of Example 11 was the same zirconium phosphate oxide as that of Example 1. In Example 11, the same positive electrode active material B as in Example 8 was used.
  • the mixture of the positive electrode active material B and the treatment agent gel was subjected to two-stage heat treatment in the same manner as in Example 5.
  • the positive electrode active material composite of Example 11 was obtained through the above steps.
  • Lithium ion secondary battery Production method of lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 using the positive electrode active material composites of Examples 8 to 11 and the positive electrode active materials of Comparative Examples 2 and 3 Lithium ion secondary batteries of Examples 8 to 11, Comparative Example 2 and Comparative Example 3 were produced by the same method as described above.
  • the lithium ion secondary batteries of Examples 8 to 11, Comparative Example 2 and Comparative Example 3 were subjected to a storage test. Specifically, each battery was charged to 4.32 V and stored at 60 ° C. for 6 days. Thereafter, the lithium ion secondary battery was CCCV charged (constant current constant voltage charging) under the conditions of a charge rate of 1C, a charge end voltage of 4.5V, and 2.5 hours. And the discharge capacity (namely, capacity after a test) of the lithium ion secondary battery after charge was measured. The lithium ion secondary battery before storage was similarly charged to 4.5 V, and the discharge capacity (that is, the initial capacity) was measured. The measurement conditions were a discharge rate of 0.33 C, a discharge start voltage of 4.5 V, a discharge end voltage of 3.0 V, and a CCCV discharge of 5 hours.
  • the percentage of the discharge capacity after the storage test with respect to the discharge capacity before the storage test was determined to obtain the capacity maintenance rate.
  • Table 2 shows the capacity retention rates of the lithium ion secondary batteries of Examples 8 to 11, Comparative Example 2 and Comparative Example 3.
  • the initial capacity (mAh / g) refers to the discharge capacity of each lithium ion secondary battery before the storage test.
  • the post-test capacity (mAh / g) refers to the discharge capacity after the storage test.
  • the power storage devices of Example 4 and Example 5 in which the treatment agent was used in an amount of 0.1% by mass maintained the capacity compared to the power storage device of Comparative Example 2 that did not use the treatment agent. Excellent rate.
  • the power storage devices of Example 8 and Example 9 in which the treatment agent was used in an amount of 0.1% by mass are superior in capacity retention rate compared to the power storage device of Comparative Example 3 in which no treatment agent was used. From this result, it can be said that the positive electrode active material composite of the present invention obtained by treatment with the treatment agent can suppress the deterioration of the power storage device as compared with the untreated positive electrode active material.
  • the positive electrode active material B shown in Table 2 has not only a large amount of S but also a small amount of Li 2 CO 3 on the surface of the positive electrode active material. Li 2 CO 3 prevents contact between the positive electrode active material, S contained in the positive electrode active material, and the adhesive precursor. Therefore, when the positive electrode active material B is used, it is considered that the efficiency of taking in the S of the adhesive precursor is improved. For this reason, when the positive electrode active material B is used, as the amount of the treatment agent increases and the amount of the adhering material precursor increases, the effect of suppressing the deterioration of the power storage device increases.
  • the material state of the adhering material formed after the heat treatment is predicted to change depending on the amount of S contained, and it is considered that the Li ion conductivity is particularly changed. Since the adhering material of the present invention has excellent Li ion conductivity, even if it adheres to the active material surface, it does not hinder the movement of Li ions, so that it can absorb and release Li ions with high efficiency while protecting the positive electrode active material. A possible positive electrode is realized and the life characteristics are improved. However, the adhering material containing excessive S is expected to be in a state where excessive S interferes with the conduction of Li ions.
  • the adhering material contains an excessive amount of S, even if the positive electrode active material can be protected by the adhering material, there is a possibility that the efficiency of absorbing and releasing Li is reduced in the positive electrode. As a result, the battery capacity is likely to be reduced.
  • the preferable range of the S content is determined according to the amount of phosphoric acid oxidation Zr that governs the molecular structure of the adhering material. Specifically, it is considered that the S content of the adhering material is preferably 5 to 20 (atomic%). This is a ratio in which P, Zr, and S are 100 atomic%. More preferably, the S content is in the range of 8 to 16 atomic%, and more preferably in the range of 10 to 14 atomic%.
  • Example 6 of Table 2 when the S content is small, the capacity retention rate is improved even if the amount of the treatment agent is increased. Therefore, it can be said that the amount of the treating agent can be appropriately set according to the amount of S in the active material-gel complex.
  • the heating method during the heat treatment also affects the capacity retention rate after the storage test. That is, the capacity retention rate after storage differs between the case where the one-step heat treatment is performed at 120 ° C. and the case where the two-step heat treatment is performed at 120 ° C. ⁇ 400 ° C. Considering only the improvement of the capacity retention rate after storage, it is preferable to perform a one-step heat treatment.
  • the temperature of the first stage heat treatment is preferably around 120 ° C., specifically 100 ° C. or more and 150 ° C. or less.
  • the temperature of the second stage heat treatment is preferably higher than 150 ° C. and around 400 ° C., specifically 180 ° C. or higher and 500 ° C. or lower.
  • the positive electrode active material composite of Example 8 and the positive electrode active material composite of Example 11 were each imaged with a TEM (Transmission Electron Microscope).
  • the TEM image of the positive electrode active material composite of Example 8 and the result of STEM analysis described later are shown in FIG. 8, and the TEM image of the positive electrode active material composite of Example 11 and the result of STEM analysis are shown in FIG. 8
  • the adhesive material of Example 11 had a greater intensity ratio of S peak (II) to P and Zr peaks (I) than the adhesive material of Example 8.
  • the adhesive material of Example 11 has a higher elemental content of S relative to P and Zr than the adhesive material of Example 8.
  • ⁇ (P element content + Zr element content) / 2 ⁇ :( S element content) 3.5: 1
  • the adhesive of Example 8 has about 1.8 atoms of P and Zr per S of one atom. This is considered to be caused by the amount of the treating agent and the heat treatment conditions when manufacturing each positive electrode active material composite.
  • the adhesive material of Example 11 uses a larger amount of treatment agent during the manufacture than the adhesive material of Example 8. For this reason, as described above, it is considered that S contained in the positive electrode active material particles moves to the surface of the positive electrode active material and is further taken into the treatment agent to constitute a part of the adhering material. Moreover, since the adhesive material of Example 11 was heat-treated in two stages of low temperature and high temperature, and the adhesive material of Example 8 was heat-treated only in one stage of low temperature, the above-described movement of S It is estimated that this also occurs in the heating process.
  • the adhering material after the first stage heat treatment is excellent in Li ion conductivity as described above, but is considered to be in a state of poor regularity in terms of structure. Specifically, the adhering material after the first stage heat treatment is excellent in the function of capturing and transmitting Li ions, but the structure regularity is poor. For this reason, there are few passages through which Li ions can easily pass inside the adhering material, and it is considered that the adhering material does not have sufficient Li ion diffusibility. Therefore, it is considered that the diffusibility of Li ions inside the adhering material can be improved by performing the second heat treatment to promote the crystallization of the adhering material.
  • the S content of the positive electrode active material, the amount of the treating agent, and the temperature of the heat treatment can be appropriately set according to the characteristics required for the power storage device.
  • the positive electrode and the power storage device of the present invention have the effect of improving the initial capacity derived from the adhering material and suppressing the life deterioration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The objective of the present invention is to provide a technology that can suppress degradation of a storage battery. That which is able to capture sodium and sulfur is used as a treatment agent for treating a Li-transition metal cathode active material containing lithium and a transition metal. The treatment agent is used in a gel form, and the treatment agent is effective because the Li-transition metal cathode active material contains sodium and sulfur as impurities.

Description

正極活物質用処理剤、正極活物質複合体、正極活物質複合体の製造方法、正極および蓄電装置Treatment agent for positive electrode active material, positive electrode active material complex, method for producing positive electrode active material complex, positive electrode and power storage device
 本発明は、リチウムイオン二次電池等の蓄電装置に用いられる正極活物質用の処理剤、当該処理剤により処理された正極活物質複合体、当該正極活物質複合体を製造する方法、当該処理剤を用いた正極、および、当該正極を用いた蓄電装置に関する。 The present invention relates to a treatment agent for a positive electrode active material used in a power storage device such as a lithium ion secondary battery, a positive electrode active material composite treated with the treatment agent, a method for producing the positive electrode active material composite, and the treatment The present invention relates to a positive electrode using an agent and a power storage device using the positive electrode.
 リチウムイオン二次電池やリチウム二次電池に代表される蓄電装置は、従来から知られている。蓄電装置の電池容量は、蓄電装置の経年劣化に伴って低下する場合がある。そして、このような蓄電装置の劣化を抑制する技術は、蓄電装置を開発する上で重要視されている。 2. Description of the Related Art Power storage devices represented by lithium ion secondary batteries and lithium secondary batteries are conventionally known. The battery capacity of the power storage device may decrease as the power storage device deteriorates over time. And the technique which suppresses degradation of such an electrical storage apparatus is regarded as important when developing an electrical storage apparatus.
 蓄電装置用の正極活物質として、リチウムおよび遷移金属を含有するものが知られている。以下、リチウムおよび遷移金属を含有する正極活物質を、必要に応じて、Li-遷移金属系正極活物質と呼ぶ。Li-遷移金属系正極活物質は、一般的に、原料の一部として硫酸塩および水酸化ナトリウムを含む(例えば、特許文献1参照)。このような原料を用いたLi-遷移金属系正極活物質は、不純物としてのナトリウム(Na)および硫黄(S)を含み、これらの不純物はLi-遷移金属系正極活物質の表面近傍に残存する可能性がある。しかし、Li-遷移金属系正極活物質の表面近傍に残存するNaおよびSは電池内で悪影響を及ぼす元素となり得る場合がある。つまり、NaおよびSは蓄電装置の劣化の原因になり得る。 As a positive electrode active material for a power storage device, a material containing lithium and a transition metal is known. Hereinafter, a positive electrode active material containing lithium and a transition metal is referred to as a Li-transition metal-based positive electrode active material as necessary. The Li-transition metal-based positive electrode active material generally contains sulfate and sodium hydroxide as part of the raw material (see, for example, Patent Document 1). The Li-transition metal-based positive electrode active material using such raw materials contains sodium (Na) and sulfur (S) as impurities, and these impurities remain in the vicinity of the surface of the Li-transition metal-based positive electrode active material. there is a possibility. However, there are cases where Na and S remaining in the vicinity of the surface of the Li-transition metal-based positive electrode active material can be elements that adversely affect the battery. That is, Na and S can cause deterioration of the power storage device.
特開2013-144625号公報JP 2013-144625 A
 本発明は上記事情に鑑みてなされたものであり、蓄電装置の劣化を抑制し得る技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a technology capable of suppressing deterioration of a power storage device.
 本発明の発明者等は、鋭意研究の結果、Li-遷移金属系正極活物質とともに特定の処理剤を配合して正極活物質層を形成すると、当該処理剤によってLi-遷移金属系正極活物質中のNaおよびSが捕捉されることを見出した。また、本発明の発明者等は、当該処理剤によって処理した正極活物質を含む正極を用いることで、蓄電装置の劣化を抑制し得ることを見出した。さらに、当該処理剤は正極活物質の表面に付着材として残るとともに当該付着材が蓄電装置の劣化抑制に寄与し得ることを見出した。以下、処理剤によって処理した正極活物質を、必要に応じて、正極活物質複合体と呼ぶ。 As a result of intensive studies, the inventors of the present invention have formulated a positive active material layer by blending a specific treatment agent with a Li-transition metal-based positive electrode active material. It was found that Na and S were trapped. The inventors of the present invention have also found that deterioration of the power storage device can be suppressed by using a positive electrode including a positive electrode active material treated with the treating agent. Furthermore, it has been found that the treatment agent remains as an adhering material on the surface of the positive electrode active material and the adhering material can contribute to suppression of deterioration of the power storage device. Hereinafter, the positive electrode active material treated with the treatment agent is referred to as a positive electrode active material composite as necessary.
 上記課題を解決する本発明の正極活物質用処理剤は、
 リチウムと遷移金属とを含むLi-遷移金属系正極活物質を処理するための処理剤であって、
 前記Li-遷移金属系正極活物質は、不純物としてナトリウムと硫黄とを含み、
 前記処理剤は、前記ナトリウムおよび前記硫黄を捕捉可能であるものである。
The treating agent for positive electrode active material of the present invention that solves the above problems is
A treating agent for treating a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
The Li-transition metal-based positive electrode active material contains sodium and sulfur as impurities,
The treatment agent is capable of capturing the sodium and sulfur.
 また、上記課題を解決する本発明の第1の正極活物質複合体は、
 第3族~第5族元素からなる群から選ばれる少なくとも一種の元素を有する酸化物と、硫黄と、リンと、を含む付着材が、正極活物質表面に付着してなるものである。
Moreover, the first positive electrode active material composite of the present invention that solves the above problems is
An adhering material containing an oxide having at least one element selected from the group consisting of Group 3 to Group 5 elements, sulfur, and phosphorus is adhered to the surface of the positive electrode active material.
 また、上記課題を解決する本発明の第2の正極活物質複合体は、
 第3族~第5族元素からなる群から選ばれる少なくとも一種と、硫黄と、リンと、を含む付着材が正極活物質表面に付着してなり、
 前記正極活物質はリチウムと遷移金属とを含むLi-遷移金属系正極活物質であり、
 前記硫黄は前記正極活物質由来であるものである。
In addition, the second positive electrode active material composite of the present invention that solves the above problems is
An adhesion material containing at least one selected from the group consisting of Group 3 to Group 5 elements, sulfur, and phosphorus is attached to the surface of the positive electrode active material;
The positive electrode active material is a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
The sulfur is derived from the positive electrode active material.
 また、上記正極活物質複合体を製造する方法は、化学式:(MO)(Mは第3族~第5族元素からなる群から選ばれる少なくも一種である)で表されるリン酸酸化金属と水とを含むゲルと、正極活物質と、を含む活物質-ゲル複合体を熱処理する正極活物質複合体調製工程を含み、
 前記ゲルと、前記正極活物質と、の少なくとも一方は硫黄を含む方法である。
The method for producing the positive electrode active material composite is represented by the chemical formula: (MO) 2 P 2 O 7 (M is at least one selected from the group consisting of Group 3 to Group 5 elements). A positive electrode active material composite preparation step of heat-treating an active material-gel composite containing a metal phosphate oxide and water gel and a positive electrode active material,
At least one of the gel and the positive electrode active material is a method containing sulfur.
 上記課題を解決する本発明の正極は、上記した本発明の正極活物質複合体の何れかを含むものである。 The positive electrode of the present invention that solves the above problems includes any of the positive electrode active material composites of the present invention described above.
 上記課題を解決する本発明の蓄電装置は、上記した本発明の正極の何れかを含むものである。 The power storage device of the present invention that solves the above-described problems includes any of the positive electrodes of the present invention described above.
 本発明の正極活物質用処理剤は、Li-遷移金属系正極活物質に含まれるNaおよびSを捕捉可能であり、NaおよびSによる蓄電装置への悪影響、つまり、蓄電装置の劣化を抑制し得る。また、本発明の正極によると、蓄電装置の劣化を抑制し得る。本発明の蓄電装置は耐劣化性に優れる。 The treatment agent for positive electrode active material of the present invention can capture Na and S contained in the Li-transition metal-based positive electrode active material, and suppresses adverse effects on the power storage device due to Na and S, that is, deterioration of the power storage device. obtain. Moreover, according to the positive electrode of the present invention, deterioration of the power storage device can be suppressed. The power storage device of the present invention is excellent in deterioration resistance.
実施例1の処理剤で処理された正極活物質のSEM像である。2 is a SEM image of a positive electrode active material treated with the treating agent of Example 1. FIG. 実施例1の処理剤で処理された正極活物質のZr元素に関するEDS分析結果である。4 is an EDS analysis result regarding a Zr element of a positive electrode active material treated with the treating agent of Example 1. 実施例1の処理剤で処理された正極活物質のP元素に関するEDS分析結果である。3 is an EDS analysis result regarding a P element of the positive electrode active material treated with the treating agent of Example 1. 実施例1の処理剤で処理された正極活物質のS元素に関するEDS分析結果である。3 is an EDS analysis result regarding S element of the positive electrode active material treated with the treating agent of Example 1. 実施例1の処理剤で処理された正極活物質のNa元素に関するEDS分析結果である。It is an EDS analysis result regarding Na element of the positive electrode active material processed with the processing agent of Example 1. 確認試験用の試料における付着物の粉末X線回折(XRD)結果である。It is a powder X-ray-diffraction (XRD) result of the deposit | attachment in the sample for confirmation tests. (ZrO)の熱重量測定(Thermogravimetry:TG)結果を示すグラフである。 (ZrO) 2 thermogravimetry of P 2 O 7: is a graph showing the (Thermogravimetry TG) results. 実施例8の正極活物質複合体のTEM像およびSTEM分析の結果である。10 shows a TEM image and a STEM analysis result of the positive electrode active material composite of Example 8. FIG. 実施例11の正極活物質複合体のTEM像およびSTEM分析の結果である。3 shows a TEM image and a STEM analysis result of the positive electrode active material composite of Example 11.
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。 Hereinafter, modes for carrying out the present invention will be described. Unless otherwise specified, the numerical range “a to b” described in this specification includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.
 また、必要に応じて、本発明のLi-遷移金属系正極活物質用処理剤を単に処理剤と呼ぶ。また、本発明の正極活物質複合材を含む正極を本発明の正極と呼ぶ。本発明の正極の製造方法を本発明の製造方法と呼ぶ。さらに、本発明の正極を含む蓄電装置を本発明の蓄電装置と呼ぶ。 If necessary, the treatment agent for the Li-transition metal positive electrode active material of the present invention is simply referred to as a treatment agent. Moreover, the positive electrode containing the positive electrode active material composite material of this invention is called the positive electrode of this invention. The method for producing the positive electrode of the present invention is referred to as the production method of the present invention. Furthermore, a power storage device including the positive electrode of the present invention is referred to as a power storage device of the present invention.
 <正極活物質>
 本発明の処理剤の処理対象となるLi-遷移金属系正極活物質は、上述したように、リチウムと遷移金属とを含む。本発明の処理剤で処理されてなる本発明の正極および本発明の蓄電装置は、正極活物質の少なくとも一部としてLi-遷移金属系正極活物質を含めば良く、Li-遷移金属系正極活物質以外の正極活物質を含んでも良い。さらに、後述する本発明の正極活物質複合体、正極および蓄電装置は、正極活物質として必ずしもLi-遷移金属系正極活物質を含む必要はない。
<Positive electrode active material>
As described above, the Li-transition metal-based positive electrode active material to be treated by the treating agent of the present invention contains lithium and a transition metal. The positive electrode of the present invention and the power storage device of the present invention that are treated with the treating agent of the present invention may include a Li-transition metal-based positive electrode active material as at least a part of the positive electrode active material. A positive electrode active material other than the material may be included. Furthermore, the positive electrode active material composite, positive electrode, and power storage device of the present invention described later do not necessarily need to contain a Li-transition metal-based positive electrode active material as the positive electrode active material.
 Li-遷移金属系正極活物質としては、例えば、層状化合物のLiNiCoMnが好ましく用いられる。なお、0.2≦a≦1.2、b+c+d+e=1、0<e<1、1.7≦f≦2.1であり、DはSを必須とし、その他、Li、Fe、Cr、Cu、Zn、Ca、Mg、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素を含み得る。この種のLi-遷移金属系正極活物質としては、例えば、ニッケル元素(Ni)、コバルト元素(Co)およびマンガン元素(Mn)から選ばれる2種以上を含有するものが好ましく用いられ、Ni、Co、Mnの全てを含むものがより好ましく用いられる。 Li- transition metal-based positive active material, for example, Li a Ni b Co c Mn d D e O f layered compounds are preferably used. Note that 0.2 ≦ a ≦ 1.2, b + c + d + e = 1, 0 <e <1, 1.7 ≦ f ≦ 2.1, D requires S, and Li, Fe, Cr, Cu Zn, Ca, Mg, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, and La may be included. As this type of Li-transition metal-based positive electrode active material, for example, a material containing two or more selected from nickel element (Ni), cobalt element (Co) and manganese element (Mn) is preferably used. Those containing all of Co and Mn are more preferably used.
 その他、Li-遷移金属系正極活物質としては、同じく層状化合物のLiMnOを用いても良い。それ以外のLi-遷移金属系正極活物質として、LiMn、LiMn等のスピネル、およびスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVOまたはLiSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることもできる。さらに、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物をLi-遷移金属系正極活物質として挙げることができる。Li-遷移金属系正極活物質として用いられる上記の金属酸化物は、リチウム元素と遷移金属元素とを含みさえすれば良い。例えば、上記の組成式を基本組成とすれば良く、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。 In addition, as the Li-transition metal-based positive electrode active material, Li 2 MnO 3 which is also a layered compound may be used. Other Li-transition metal-based positive electrode active materials include solid solutions composed of spinels such as LiMn 2 O 4 and Li 2 Mn 2 O 4 , and mixtures of spinels and layered compounds, LiM 2 PO 4 , LiM 2 VO 4. Another example is a polyanionic compound represented by Li 2 M 2 SiO 4 (wherein M 2 is selected from at least one of Co, Ni, Mn, and Fe). Moreover, LiFePO 4 F LiM 3 PO 4 F (M 3 is a transition metal) tavorite based compound represented by such as the LiM 3 BO 3, such LiFeBO 3 (M 3 is a transition metal) borate compound represented by It can be cited as a Li-transition metal-based positive electrode active material. The metal oxide used as the Li-transition metal positive electrode active material only needs to contain a lithium element and a transition metal element. For example, the above composition formula may be a basic composition, and a metal element included in the basic composition may be substituted with another metal element.
 Li-遷移金属系正極活物質と併用し得る、Li-遷移金属系正極活物質以外の正極活物質としては、電荷担体を含まないものを選択しても良い。電荷担体とは、充放電に寄与するリチウムイオン指す。Li-繊維金属系正極活物質以外であり、かつ、電荷担体を含まない正極活物質としては、例えば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリンおよびアントラキノンならびにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料が挙げられる。また、その他正極活物質として使用可能な公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用しても良い。さらには、これらのLi-遷移金属系正極活物質以外の正極活物質のみを正極活物質として用いても良い。この場合には、少なくともSを正極活物質に意図的に添加しても良い。 As the positive electrode active material other than the Li-transition metal-based positive electrode active material that can be used in combination with the Li-transition metal-based positive electrode active material, a material that does not contain a charge carrier may be selected. The charge carrier refers to lithium ions that contribute to charge / discharge. Examples of the positive electrode active material other than the Li-fiber metal positive electrode active material and including no charge carrier include, for example, sulfur alone (S), a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , Examples thereof include oxides such as V 2 O 5 and MnO 2 , polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, and conjugated materials such as conjugated diacetate-based organic substances. In addition, other known materials that can be used as the positive electrode active material can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material. Furthermore, only a positive electrode active material other than these Li-transition metal-based positive electrode active materials may be used as the positive electrode active material. In this case, at least S may be intentionally added to the positive electrode active material.
 Li-遷移金属系正極活物質は、不純物としてNaおよびSを含む。Li-遷移金属系正極活物質は、NaおよびSを元素として含めば良く、例えばSは、硫酸イオンとして存在しても良い。Naは、炭酸NaやNaOHとして存在しても良い。或いは、Naは、上述した層状化合物に含まれるLiがNaに置換されたものとして存在しても良い。以下で言うNaおよびSとは、これらを含む概念である。 The Li-transition metal-based positive electrode active material contains Na and S as impurities. The Li-transition metal-based positive electrode active material may contain Na and S as elements. For example, S may exist as sulfate ions. Na may be present as Na carbonate or NaOH. Alternatively, Na may be present as Li contained in the layered compound described above is replaced with Na. Na and S referred to below are concepts including these.
 Li-遷移金属系正極活物質に含まれるNaおよびSは、如何なる過程でLi-遷移金属系正極活物質に含まれても良い。つまり、上述したようにLi-遷移金属系正極活物質の製造過程で不可避的に含まれても良いし、或いは、可避的に含まれても良い。ここでいう不純物とは、NaおよびSが、電荷担体たるリチウムイオンの吸蔵および放出に主として関与するものではないことを指し、その量は特に限定しない。しかし、これらの不純物が過多である場合には蓄電装置に及ぼす悪影響が大きいため好ましくない。したがって、処理対象たるLi-遷移金属系正極活物質は、遷移金属元素の含有量よりも少ない量の不純物を含むのが良い。勿論、これらの不純物は蓄電装置の劣化の原因になり得るため、不純物の含有量は少なければ少ない程良い。 Na and S contained in the Li-transition metal-based positive electrode active material may be contained in the Li-transition metal-based positive electrode active material in any process. That is, as described above, it may be inevitably included in the manufacturing process of the Li-transition metal-based positive electrode active material, or may be unavoidably included. The term “impurity” as used herein means that Na and S are not mainly involved in occlusion and release of lithium ions as charge carriers, and the amounts thereof are not particularly limited. However, if these impurities are excessive, the adverse effect on the power storage device is great, which is not preferable. Therefore, the Li-transition metal-based positive electrode active material to be processed preferably contains an impurity in an amount smaller than the content of the transition metal element. Of course, since these impurities can cause deterioration of the power storage device, the smaller the content of impurities, the better.
 さらに、Li-遷移金属系正極活物質から脱離したNaおよび/またはSの一部が、Li-遷移金属系正極活物質とともに存在しても良い。或いは、製造時に原料に用いられたもののLi-遷移金属系正極活物質を構成しなかったNaおよび/またはSの一部が、除去されないままLi-遷移金属系正極活物質とともに存在しても良い。さらには、少なくともSをLi-遷移金属系正極活物質に意図的に添加しても良い。添加のタイミングは特に問わず、Li-遷移金属系正極活物質の製造過程で添加しても良いし、製造後のLi-遷移金属系正極活物質に添加しても良い。 Further, a part of Na and / or S desorbed from the Li-transition metal positive electrode active material may be present together with the Li-transition metal positive electrode active material. Alternatively, a part of Na and / or S used as a raw material at the time of manufacture but not constituting the Li-transition metal positive electrode active material may be present together with the Li-transition metal positive electrode active material without being removed. . Furthermore, at least S may be intentionally added to the Li-transition metal-based positive electrode active material. The timing of addition is not particularly limited, and it may be added during the production process of the Li-transition metal-based positive electrode active material, or may be added to the Li-transition metal-based positive electrode active material after production.
 何れの場合にも、Li-遷移金属系正極活物質の一部を構成するNaおよび/またはSだけでなく、Li-遷移金属系正極活物質とともに存在するNaおよび/またはSもまた、後述する処理剤の処理対象となり得る。 In any case, not only Na and / or S constituting a part of the Li-transition metal-based positive electrode active material, but also Na and / or S present together with the Li-transition metal-based positive electrode active material will be described later. It can become a processing target of a processing agent.
 <Li-遷移金属系正極活物質用処理剤>
 本発明の処理剤は、NaおよびSを捕捉可能なものであれば良く、如何なるものを用いても良いが、蓄電装置に悪影響を及ぼさないものであるのが良い。具体的にはリン酸化合物を挙げることができる。好ましくは、本発明の処理剤は、後述するように、(ZrO)で表されるリン酸酸化ジルコニウムと水とを含むゲルである。実施例で詳説するが、この種の処理剤によると、電極を作製する際に、ゲル状つまり含水状態でNaおよびSを捕捉でき、かつ、乾燥後にもNaおよびSを保持した状態を維持できる。本発明の処理剤で処理されてなる正極活物質は、上記処理剤を前駆体とする付着材と、正極活物質と、の複合体であり、補足されたSを付着材に含む。
<Treatment agent for Li-transition metal positive electrode active material>
The treatment agent of the present invention is not particularly limited as long as it can capture Na and S, and any treatment agent may be used, but it should not adversely affect the power storage device. Specific examples include phosphoric acid compounds. Preferably, the treating agent of the present invention is a gel containing zirconium phosphate oxide represented by (ZrO) 2 P 2 O 7 and water, as will be described later. As will be described in detail in Examples, according to this type of treatment agent, when an electrode is produced, Na and S can be captured in a gel state, that is, in a water-containing state, and a state in which Na and S are retained after drying can be maintained. . The positive electrode active material treated with the treating agent of the present invention is a composite of an adhering material having the treating agent as a precursor and a positive electrode active material, and includes supplemented S in the adhering material.
 なお、処理剤は、リン酸化合物として(ZrO)で表されるリン酸酸化ジルコニウムを含むのが良い。処理剤におけるリン酸化合物の全てが(ZrO)であっても良いが、処理剤は(ZrO)以外のリン酸化合物を含んでも良い。(ZrO)以外のリン酸化合物としては、リン酸骨格を持つ化合物を使用できる。ここでいうリン酸骨格とは、Pに少なくとも3つのOが結合し、一つのOはPと二重結合し他の少なくとも2つのOはHと結合した構造を指す。当該リン酸骨格を持つ化合物はリン酸酸化ジルコニウムであるのが特に好ましい。具体的には、ZrOHPO、Zr(HPO、NHZr(PO、ZrO(PO、Zr(POから選ばれる少なくとも一種を挙げることができる。 The processing agent is a phosphoric acid compound (ZrO) is good containing phosphoric acid zirconium oxide represented by the 2 P 2 O 7. All of the phosphoric acid compound in the treating agent may be (ZrO) 2 P 2 O 7 , but the treating agent may contain a phosphoric acid compound other than (ZrO) 2 P 2 O 7 . As the phosphate compound other than (ZrO) 2 P 2 O 7 , a compound having a phosphate skeleton can be used. The phosphate skeleton here means a structure in which at least three Os are bonded to P, one O is double-bonded to P, and the other at least two Os are bonded to H. The compound having the phosphate skeleton is particularly preferably zirconium phosphate oxide. Specifically, at least one selected from ZrOHPO 4 , Zr (HPO 4 ) 2 , NH 4 Zr 2 (PO 4 ) 3 , Zr 2 O (PO 4 ) 2 , Zr 3 (PO 4 ) 4 may be mentioned. it can.
 本発明の処理剤は、如何なる状態で用いても良いが、ゲル状で用いるのが好ましい。ここでいうゲル状とは、水分を含有する固体状であることを指す。なお、処理剤は、水以外の極性溶媒を含み得る。極性溶媒としては、例えば、エタノール、メタノール、n-プロパノール、アセトン、ジオキサン等の極性の高いものを挙げることができる。 The treatment agent of the present invention may be used in any state, but is preferably used in a gel form. Here, the gel form refers to a solid state containing moisture. In addition, a processing agent may contain polar solvents other than water. Examples of the polar solvent include those having a high polarity such as ethanol, methanol, n-propanol, acetone, and dioxane.
 本発明の処理剤をゲル状で用いることで、Li-遷移金属系正極活物質の表面に付着しているNaおよびSと、処理剤とが接触し易くなる利点がある。なお、処理剤をゲル状にするには、水中で処理剤を生成させるのが好ましい。例えば処理剤がリン酸酸化ジルコニウムであれば、ジルコニウム源とリン酸源とを水中で反応させて、濾過することにより、ゲル状のリン酸酸化ジルコニウム(つまり処理剤)を得ることができる。この場合、ジルコニウム源としてはZrO(NO・2HO、ZrOCl等のジルコニウム化合物を単独で或いは複数種混合して用いれば良い。また、リン酸源としては、(NHHPO、NHPO、および、HPO等のリン酸化合物を単独で或いは複数種混合して用いれば良い。 By using the treatment agent of the present invention in the form of a gel, there is an advantage that Na and S adhering to the surface of the Li-transition metal-based positive electrode active material can easily come into contact with the treatment agent. In addition, in order to make a processing agent into a gel form, it is preferable to produce | generate a processing agent in water. For example, when the treating agent is zirconium phosphate oxide, gel zirconium phosphate oxide (that is, treating agent) can be obtained by reacting a zirconium source and a phosphate source in water and filtering. In this case, zirconium compounds such as ZrO (NO 3 ) 2 .2H 2 O and ZrOCl 2 may be used alone or in combination as a zirconium source. Further, as the phosphoric acid source, phosphoric acid compounds such as (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 , and H 3 PO 4 may be used singly or in combination.
 処理剤としては、Zrにかわる他の元素を含むものを選択しても良い。Zrにかわる元素としては、第3族元素、第4族元素および第5族元素からなる群から選ばれる少なくとも一種の金属元素が挙げられる。より好ましくは、当該金属元素はZr、La、Y、Ti、TaおよびNbから選ばれる少なくとも一種であるのが良い。この場合、付着材の前駆体は、化学式:(MO)(Mは第3族~第5族元素からなる群から選ばれる少なくも一種である)で表される。第3族~第5族元素からなる群から選ばれる少なくも一種の元素は、酸素と結合し、かつ、リン酸とともに化合物を形成する。つまり、当該化合物は、第3族元素~第5族元素からなる群から選ばれる少なくとも一種の元素を有する酸化物、およびPを含むといえる。そして当該化合物は水分を含んで非晶質のゲル状をなす。さらに当該ゲルは、後述するように、熱処理時等にSが導入されて結晶化すると考えられる。 As the treatment agent, one containing another element instead of Zr may be selected. Examples of the element replacing Zr include at least one metal element selected from the group consisting of Group 3 elements, Group 4 elements, and Group 5 elements. More preferably, the metal element is at least one selected from Zr, La, Y, Ti, Ta, and Nb. In this case, the adhering material precursor is represented by the chemical formula: (M 1 O) 2 P 2 O 7 (M 1 is at least one selected from the group consisting of Group 3 to Group 5 elements). . At least one element selected from the group consisting of Group 3 to Group 5 elements combines with oxygen and forms a compound with phosphoric acid. That is, it can be said that the compound contains an oxide having at least one element selected from the group consisting of Group 3 to Group 5 elements, and P. The compound contains water and forms an amorphous gel. Further, as will be described later, the gel is considered to be crystallized by introducing S during heat treatment or the like.
 上記した第3族~第5族の金属元素とリン酸との化合物は、付着材の前駆体である。以下、必要に応じて、当該付着材の前駆体を付着材前駆体と呼ぶ。また、上記したゲルは、付着材前駆体と水とを含むものであり、本発明における処理剤に相当する。このゲルを処理剤ゲルと呼ぶ。当該処理剤ゲルは、SおよびNaを補足する処理剤であるだけでなく、補足したSとともに熱処理されて付着材を構成する。 The above-mentioned compound of Group 3 to Group 5 metal element and phosphoric acid is a precursor of the adhering material. Hereinafter, as necessary, the precursor of the adhesive material is referred to as an adhesive material precursor. Moreover, an above-described gel contains an adhesion material precursor and water, and is equivalent to the processing agent in this invention. This gel is called a treatment agent gel. The treatment agent gel is not only a treatment agent supplemented with S and Na, but also heat treated together with the supplemented S to constitute an adhesive material.
 なお、処理剤がリン酸酸化ジルコニウムであれば、処理剤ゲルはリン酸酸化ジルコニウムと水とを含み、処理剤ゲル中においてリン酸酸化ジルコニウムの多くは水和物として存在する。リン酸酸化ジルコニウムは、特に、(ZrO)であるのが好ましい。(ZrO)水和物を処理剤ゲルとして用いることで、正極活物質の表面には(ZrO)を付着材前駆体とする付着材が付着する。この付着材が存在することで、正極活物質が改質され、ひいては蓄電装置の劣化が抑制されると考えられる。 If the treatment agent is zirconium phosphate oxide, the treatment agent gel contains zirconium phosphate oxide and water, and most of the zirconium phosphate oxide exists as a hydrate in the treatment agent gel. The zirconium phosphate oxide is particularly preferably (ZrO) 2 P 2 O 7 . The use of (ZrO) 2 P 2 O 7-hydrate as a treatment agent gels, on the surface of the positive electrode active material deposited material adheres to the adhering member precursor (ZrO) 2 P 2 O 7 . Presence of this adhering material is considered to modify the positive electrode active material and thus suppress deterioration of the power storage device.
 詳細は不明だが、(ZrO)を構造の基本骨格とする化合物には、優れたイオン導電性があるのではないかと考えられている。つまり、付着材前駆体たる(ZrO)はイオン伝導性に優れる化合物を形成できるため、(ZrO)を材料の一部とする付着材もまた、イオン伝導性に優れると考えられる。さらに、表面に当該付着材が付着してなる正極活物質(つまり、正極活物質複合材)もまたイオン伝導性に優れると考えられる。そして、当該正極活物質複合材を正極に含有することで、蓄電装置の電池抵抗が低減すると考えられる。 Although details are unknown, it is thought that a compound having (ZrO) 2 P 2 O 7 as a basic skeleton of the structure may have excellent ionic conductivity. That is, (ZrO) 2 P 2 O 7 which is an adhering material precursor can form a compound having excellent ion conductivity. Therefore, an adhering material using (ZrO) 2 P 2 O 7 as a part of the material also has ion conductivity. It is considered excellent. Furthermore, the positive electrode active material (that is, the positive electrode active material composite material) formed by adhering the adhering material to the surface is also considered to have excellent ion conductivity. And it is thought that the battery resistance of an electrical storage apparatus reduces by containing the said positive electrode active material composite material in a positive electrode.
 さらに、(ZrO)を付着材前駆体として用いることで、電極表面で生じる副反応が抑制されると考えられる。つまり、付着材前駆体たる(ZrO)は、電極表面に存在すると、電極表面で生じる副反応を抑制すると考えられる。その結果、(ZrO)を正極に用いた蓄電装置においては、初期充放電効率が向上し、かつ、保存特性が向上する。これは、本願出願人による特許出願(特願2013-016851)に開示した試験結果から裏付けられる。このように(ZrO)は副反応抑制に寄与するため、(ZrO)を前駆体とする付着材もまた副反応抑制に寄与し、ひいては、蓄電装置の初期充放電効率、保存特性の向上に寄与する。なお、本発明における付着材にはSが導入されているが、Sの導入のない(ZrO)も付着材中に一部残存していると考えられる。この残存した(ZrO)もまた、優れたイオン伝導性を発揮し、電極表面で生じる副反応を抑制し得ると考えられる。 Furthermore, by using (ZrO) 2 P 2 O 7 as an adhesive precursor, it is considered that side reactions occurring on the electrode surface are suppressed. That is, it is considered that (ZrO) 2 P 2 O 7 which is an adhesive material precursor suppresses a side reaction occurring on the electrode surface when it exists on the electrode surface. As a result, in the power storage device using (ZrO) 2 P 2 O 7 as the positive electrode, the initial charge / discharge efficiency is improved and the storage characteristics are improved. This is supported by the test results disclosed in the patent application filed by the present applicant (Japanese Patent Application No. 2013-016851). Since (ZrO) 2 P 2 O 7 contributes to side reaction suppression in this way, the adhesive material using (ZrO) 2 P 2 O 7 as a precursor also contributes to side reaction suppression, and as a result, the initial stage of the power storage device. Contributes to improved charge / discharge efficiency and storage characteristics. In addition, although S is introduced into the adhesive material in the present invention, it is considered that (ZrO) 2 P 2 O 7 without introduction of S partially remains in the adhesive material. This remaining (ZrO) 2 P 2 O 7 is also considered to exhibit excellent ion conductivity and suppress side reactions occurring on the electrode surface.
 また、付着材は、正極活物質と電解液との直接接触を防止する。このため、付着材が存在することで、正極活物質と電解液との接触によって生じる電解液の分解は減少する。このことによっても蓄電装置のサイクル特性が向上する。これらの協働により、本発明の正極は蓄電装置の劣化を抑制でき、本発明の蓄電装置は劣化し難い。 Also, the adhering material prevents direct contact between the positive electrode active material and the electrolyte. For this reason, the presence of the adhering material reduces the decomposition of the electrolytic solution caused by the contact between the positive electrode active material and the electrolytic solution. This also improves the cycle characteristics of the power storage device. By these cooperation, the positive electrode of the present invention can suppress deterioration of the power storage device, and the power storage device of the present invention is hardly deteriorated.
 ところで、(ZrO)を前駆体とする付着材は、(ZrO)に由来する部分構造を持つ。この部分構造は、後述するように、XRD(粉末X線回折)により確認できる。したがって(ZrO)を前駆体とする付着材は、この部分構造に基づいて、ジルコニウム酸化物と呼ぶことができる。なお、当該付着材は、さらにPとOとが結合した部分構造、および、SとOとが結合した部分構造を持つと推測される。 By the way, the adhering material having (ZrO) 2 P 2 O 7 as a precursor has a partial structure derived from (ZrO) 2 P 2 O 7 . As will be described later, this partial structure can be confirmed by XRD (powder X-ray diffraction). Therefore, the adhesion material having (ZrO) 2 P 2 O 7 as a precursor can be referred to as zirconium oxide based on this partial structure. In addition, it is estimated that the said adhering material has further the partial structure which P and O couple | bonded, and the partial structure which S and O couple | bonded.
 より具体的には、(ZrO)を材料の一部とする付着材は、化学式:(ZrO)(SOで表される化合物であると推測される。この式中のw、x、y、zはそれぞれ0を超える数である。さらには、1.8<w<2.2、6<x<8、0<y≦4、0<zであるのが良いと考えられる。Zr以外の3族~5族金属を含む付着材においても同様に、当該金属とOとが結合した部分構造を持つといえる。したがって本発明における付着材は、金属酸化物と言うことができる。また、金属がZr以外のものである場合にも、本発明における付着材は、PとOとが結合した部分構造、および、SとOとが結合した部分構造を持つと推測される。 More specifically, the adhering material having (ZrO) 2 P 2 O 7 as a part of the material is presumed to be a compound represented by the chemical formula: (ZrO) w P 2 O x (SO y ) z. The In this formula, w, x, y, and z are numbers exceeding 0, respectively. Furthermore, it is considered that 1.8 <w <2.2, 6 <x <8, 0 <y ≦ 4, and 0 <z. Similarly, it can be said that the adhering material containing Group 3 to Group 5 metal other than Zr has a partial structure in which the metal and O are bonded. Therefore, it can be said that the adhesive material in the present invention is a metal oxide. Further, even when the metal is other than Zr, it is presumed that the adhesion material in the present invention has a partial structure in which P and O are bonded and a partial structure in which S and O are bonded.
 <正極の製造方法>
 本発明の製造方法は、上記した正極活物質複合体を得る工程を含む。この工程を、正極活物質複合体調製工程と呼ぶ。正極活物質複合体調製工程は、付着材前駆体と水とを含むゲル(つまり処理剤ゲル)に正極活物質を接触させ、当該ゲルと正極活物質とを含む活物質-ゲル複合体を熱処理する工程である。ここで用いられる処理剤ゲルと正極活物質との少なくとも一方は、Sを含む。例えば、正極活物質がSを含む場合には、正極活物質に含まれるSは処理剤ゲルに移動し、付着材前駆体とともに付着材を構成する。より詳しくは、処理剤ゲル中のSは、熱処理の際に水の蒸発に伴って付着材前駆体に導入され、付着材を構成すると考えられる。
<Method for producing positive electrode>
The production method of the present invention includes a step of obtaining the above-described positive electrode active material composite. This process is called a positive electrode active material composite preparation process. In the positive electrode active material composite preparation step, a positive electrode active material is brought into contact with a gel containing an adhesive precursor and water (that is, a treatment agent gel), and the active material-gel composite containing the gel and the positive electrode active material is heat-treated. It is a process to do. At least one of the treating agent gel and the positive electrode active material used here contains S. For example, when the positive electrode active material contains S, S contained in the positive electrode active material moves to the treatment agent gel and constitutes the adhesive material together with the adhesive material precursor. More specifically, it is considered that S in the treatment agent gel is introduced into the adhesive precursor as the water evaporates during the heat treatment, and constitutes the adhesive.
 付着材前駆体へのSの導入は、付着材前駆体をゲル状で用いない場合には生じ難いと考えられる。つまり、水が過剰に存在しゲル状でない処理液中で付着材前駆体とS(例えば、S源としての硫酸イオン)とを共存させた場合には、Sは水に優先的に溶解する。このため、当該処理液から濾別等により水を取り除くと、Sもまた水とともに処理液から失なわれる。このため、この場合には充分な量のSを付着材前駆体に導入し難い。例えば、水が過剰に含まれる当該処理液を長時間熱処理すれば、水の蒸発に伴って、水に溶解していたSが水から付着材前駆体に移動すると考えられるが、このような製造方法は生産効率に劣る。本発明の製造方法においては、Sとゲル状の付着材前駆体とを接触させることで、Sを付着材前駆体に効率良く導入できる利点がある。 It is considered that introduction of S into the adhesive material precursor hardly occurs when the adhesive material precursor is not used in a gel form. That is, when an adhesive precursor and S (for example, sulfate ions as an S source) coexist in a treatment liquid that is excessively present and not in a gel state, S is preferentially dissolved in water. For this reason, when water is removed from the processing solution by filtration or the like, S is also lost from the processing solution together with water. For this reason, in this case, it is difficult to introduce a sufficient amount of S into the adhesive precursor. For example, if the treatment liquid containing excessive water is heat-treated for a long time, it is considered that S dissolved in water moves from water to the adhering material precursor as the water evaporates. The method is inferior in production efficiency. The production method of the present invention has an advantage that S can be efficiently introduced into the adhesive precursor by bringing S into contact with the gel-like adhesive precursor.
 Sは不可避不純物等として正極活物質に含まれていても良いし、処理剤ゲルに添加されても良い。上記したように、Li-遷移金属系正極活物質には不可避不純物等としてSが含まれるため、正極活物質としてLi-遷移金属系正極活物質を用い、正極活物質由来のSを付着材前駆体に導入する方が効率的である。 S may be included in the positive electrode active material as an unavoidable impurity or may be added to the treatment agent gel. As described above, since the Li-transition metal-based positive electrode active material contains S as an unavoidable impurity or the like, the Li-transition metal-based positive electrode active material is used as the positive electrode active material, and S derived from the positive electrode active material is used as an adhesive precursor. It is more efficient to introduce it into the body.
 <正極>
 正極は、集電体と集電体上に設けられている正極活物質層とを含む。正極活物質層は、Li-遷移金属系正極活物質および処理剤を含むとともに、バインダや導電助剤等の添加剤を含み得る。以下、正極について説明するが、後述する蓄電装置における負極に関しても同様である。
<Positive electrode>
The positive electrode includes a current collector and a positive electrode active material layer provided on the current collector. The positive electrode active material layer includes a Li-transition metal-based positive electrode active material and a treatment agent, and may include additives such as a binder and a conductive additive. Hereinafter, the positive electrode will be described, but the same applies to the negative electrode in a power storage device described later.
 バインダは、正極活物質を集電体の表面に繋ぎ止める役割を果たすものである。バインダとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。 The binder plays a role of connecting the positive electrode active material to the surface of the current collector. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. it can.
 また、バインダとして、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基などリン酸系の基などが例示される。 Further, a polymer having a hydrophilic group may be employed as the binder. Examples of the hydrophilic group of the polymer having a hydrophilic group include a phosphate group such as a carboxyl group, a sulfo group, a silanol group, an amino group, a hydroxyl group, and a phosphate group.
 正極活物質層中のバインダの配合割合は、質量比で、正極活物質:バインダ=1:0.005~1:0.3であるのが好ましい。バインダが少なすぎると正極の成形性が低下し、また、バインダが多すぎると正極のエネルギー密度が低くなるためである。 The blending ratio of the binder in the positive electrode active material layer is preferably a positive electrode active material: binder = 1: 0.005 to 1: 0.3 in mass ratio. This is because when the amount of the binder is too small, the moldability of the positive electrode is lowered, and when the amount of the binder is too large, the energy density of the positive electrode is lowered.
 導電助剤は、正極の導電性を高めるために添加される。そのため、導電助剤は、正極の導電性が不足する場合に任意に加えれば良く、正極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。これらの導電助剤を単独でまたは二種以上組み合わせて正極活物質層に添加することができる。正極活物質層中の導電助剤の配合割合は、質量比で、正極活物質:導電助剤=1:0.01~1:0.5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると正極活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 Conductive aid is added to increase the conductivity of the positive electrode. Therefore, the conductive auxiliary agent may be optionally added when the positive electrode has insufficient conductivity, and may not be added when the positive electrode has sufficiently high conductivity. The conductive auxiliary agent may be any chemically inert electronic high conductor, such as carbon black, graphite, acetylene black, ketjen black (registered trademark), vapor grown carbon fiber (Vapor Growth Carbon, carbonaceous fine particles). Fiber: VGCF) and various metal particles are exemplified. These conductive assistants can be added to the positive electrode active material layer alone or in combination of two or more. The mixing ratio of the conductive additive in the positive electrode active material layer is preferably positive electrode active material: conductive auxiliary agent = 1: 0.01 to 1: 0.5 in terms of mass ratio. This is because if the amount of the conductive auxiliary is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary is too large, the formability of the positive electrode active material layer is deteriorated and the energy density of the electrode is lowered.
 集電体上に正極活物質層を形成するためには、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法を用いて、集電体の表面に正極活物質を塗布すれば良い。具体的には、正極活物質、ならびに必要に応じてバインダおよび導電助剤を含む正極活物質層形成用組成物(所謂正極合材、負極の場合には負極合材)を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 In order to form the positive electrode active material layer on the current collector, the positive electrode active material is applied to the surface of the current collector using a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, or the like. It ’s fine. Specifically, a positive electrode active material, and, if necessary, a positive electrode active material layer forming composition (so-called positive electrode mixture, in the case of a negative electrode, a negative electrode mixture) containing a binder and a conductive additive are prepared, and this composition An appropriate solvent is added to the product to form a paste, which is applied to the surface of the current collector and then dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, the dried product may be compressed.
  〔集電体〕
 本発明の蓄電装置における集電体は、蓄電装置の放電または充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体である。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、またはその合金が例示される。例えば、ステンレス鋼などを選択することもできる。
[Current collector]
The current collector in the power storage device of the present invention is a chemically inert electronic high conductor that keeps a current flowing through the electrode during discharging or charging of the power storage device. Examples of the current collector include at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, and molybdenum, or an alloy thereof. Is done. For example, stainless steel can be selected.
 集電体は、箔状、シート状、フィルム状、線状、棒状、メッシュ状などの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。さらに、集電体の表面にコート層を形成しても良い。コート層の材料は、導電性に優れるものを選択するのが良い。負極に関しても同様である。 The current collector can take the form of a foil, a sheet, a film, a line, a rod, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. Further, a coat layer may be formed on the surface of the current collector. As the material for the coat layer, a material having excellent conductivity is preferably selected. The same applies to the negative electrode.
 <蓄電装置>
 本発明の蓄電装置は、本発明の正極に加え、負極、電解液、さらには必要に応じてセパレータを含む。
<Power storage device>
The power storage device of the present invention includes a negative electrode, an electrolytic solution, and, if necessary, a separator in addition to the positive electrode of the present invention.
  〔負極〕
 負極は、正極と同様に、集電体と集電体上に設けられている負極活物質層とを含む。負極活物質層は、負極活物質を含むとともに、バインダや導電助剤等の添加剤を含み得る。
[Negative electrode]
Similar to the positive electrode, the negative electrode includes a current collector and a negative electrode active material layer provided on the current collector. The negative electrode active material layer includes a negative electrode active material and may include additives such as a binder and a conductive additive.
 負極活物質としては、電荷担体を吸蔵および放出し得る一般的なものを使用可能である。例えば、蓄電装置がリチウムイオン二次電池である場合には、負極活物質として、リチウムイオンを吸蔵および放出し得る材料を選択すれば良い。より詳しくは、リチウム等の電荷担体と合金化可能な元素(単体)、当該元素を含む合金、または当該元素を含む化合物であれば良い。 As the negative electrode active material, a general material that can occlude and release charge carriers can be used. For example, when the power storage device is a lithium ion secondary battery, a material capable of inserting and extracting lithium ions may be selected as the negative electrode active material. More specifically, any element (single element) that can be alloyed with a charge carrier such as lithium, an alloy containing the element, or a compound containing the element may be used.
 具体的には、負極活物質として、Liや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すれば良い。ケイ素等を負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となる。しかしその一方で、リチウムの吸蔵および放出に伴って負極活物質の体積の膨張および収縮が顕著となる等の問題が生じるおそれがある。したがって、当該恐れの軽減のために、ケイ素などの単体に遷移金属等の他の元素を組み合わせた合金または化合物を負極活物質として採用するのも好適である。 Specifically, as the negative electrode active material, a group 14 element such as Li, carbon, silicon, germanium or tin, a group 13 element such as aluminum or indium, a group 12 element such as zinc or cadmium, 15 such as antimony or bismuth, etc. A group element, an alkaline earth metal such as magnesium and calcium, and a group 11 element such as silver and gold may be employed alone. When silicon or the like is employed as the negative electrode active material, one silicon atom reacts with a plurality of lithiums, so that a high capacity active material is obtained. On the other hand, however, problems such as significant expansion and contraction of the volume of the negative electrode active material may occur with the insertion and extraction of lithium. Therefore, in order to reduce the fear, it is also preferable to employ an alloy or a compound in which another element such as a transition metal is combined with a simple substance such as silicon as the negative electrode active material.
 合金又は化合物の具体例としては、Ag-Sn合金、Cu-Sn合金、Co-Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質として、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、または、Li3-xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 Specific examples of the alloy or compound include tin-based materials such as Ag—Sn alloy, Cu—Sn alloy and Co—Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated into silicon simple substance and silicon dioxide). Examples thereof include silicon-based materials such as 0.3 ≦ x ≦ 1.6), silicon alone, or composites obtained by combining silicon-based materials and carbon-based materials. Further, as the negative electrode active material, oxides such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 , or Li 3-x M x N (M = Co Nitride represented by Ni, Cu) may be employed. One or more of these materials can be used as the negative electrode active material.
  〔電解液〕
 電解液は、蓄電装置の種類に応じたものを用いれば良く、特に限定されない。例えば、本発明の蓄電装置が非水電解質二次電池であれば、電解液として、有機溶媒に支持電解質(支持塩)を溶解させたものを用いれば良い。例えば蓄電装置がリチウムイオン二次電池の場合には、有機溶媒として、非プロトン性有機溶媒、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる少なくとも一種を好ましく選択できる。また、この場合の支持電解質としては、有機溶媒に可溶なリチウム金属塩を用いるのが良く、例えば、LiPF、LiBF、LIASF、LiI、LiClO、LiCFSOからなる群から選ばれる少なくとも一種を用いるのが好適である。支持電解質は、有機溶媒に0.5mol/L~1.7mol/L程度の濃度で溶解させるのが好ましい。
[Electrolyte]
The electrolyte solution is not particularly limited as long as the electrolyte solution corresponds to the type of power storage device. For example, if the power storage device of the present invention is a non-aqueous electrolyte secondary battery, an electrolytic solution obtained by dissolving a supporting electrolyte (supporting salt) in an organic solvent may be used. For example, when the power storage device is a lithium ion secondary battery, the organic solvent is an aprotic organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl At least one selected from methyl carbonate (EMC) and the like can be preferably selected. In this case, as the supporting electrolyte, it is preferable to use a lithium metal salt that is soluble in an organic solvent. For example, the supporting electrolyte is selected from the group consisting of LiPF 6 , LiBF 4 , LIASF 6 , LiI, LiClO 4 , and LiCF 3 SO 3. It is preferable to use at least one kind. The supporting electrolyte is preferably dissolved in the organic solvent at a concentration of about 0.5 mol / L to 1.7 mol / L.
  〔セパレータ〕
 蓄電装置には必要に応じてセパレータが用いられる。セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、電荷担体を通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としても良い。
[Separator]
A separator is used in the power storage device as necessary. The separator separates the positive electrode and the negative electrode and allows the charge carrier to pass while preventing a short circuit of current due to contact between the two electrodes. As separators, natural resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polymer), polyester, polyacrylonitrile and other polysaccharides, cellulose, amylose and other polysaccharides, fibroin, keratin, lignin and suberin Examples thereof include porous bodies, nonwoven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics. The separator may have a multilayer structure.
 上述した正極および負極に、必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータおよび負極を重ねた積層型、または、正極、セパレータおよび負極を捲いた捲回型の何れの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えることで蓄電装置を得ることが可能である。 セ パ レ ー タ Separator is sandwiched between the positive electrode and the negative electrode described above as necessary to obtain an electrode body. The electrode body may be any of a stacked type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a positive electrode, a separator and a negative electrode are sandwiched. After connecting the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal connected to the outside using a current collecting lead or the like, an electrolytic solution is added to the electrode body to obtain a power storage device It is possible.
 本発明の蓄電装置は、二次電池やキャパシタ等、種々の蓄電装置として適用可能である。また、本発明の蓄電装置は、電極に含まれる活物質の種類に適した電圧範囲で充放電を行えば良い。 The power storage device of the present invention can be applied as various power storage devices such as a secondary battery and a capacitor. The power storage device of the present invention may be charged and discharged within a voltage range suitable for the type of active material contained in the electrode.
 本発明の蓄電装置の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the power storage device of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be employed.
 本発明の蓄電装置の用途は特に限定されず、パーソナルコンピュータ、携帯通信機器など、電力で駆動される各種の家電製品、オフィス機器、産業機器、車両等が挙げられる。 The use of the power storage device of the present invention is not particularly limited, and examples thereof include various home appliances driven by electric power, such as personal computers and portable communication devices, office equipment, industrial equipment, and vehicles.
 (実施例)
 以下に、実施例および比較例を基に、本発明を具体的に説明する。なお、本発明は以下の実施例および比較例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。
(Example)
The present invention will be specifically described below based on examples and comparative examples. The present invention is not limited to the following examples and comparative examples. In the following, unless otherwise specified, “part” means part by mass, and “%” means mass%.
 (実施例1)
 実施例1の処理剤、処理剤の製造方法を以下に説明する。なお、実施例1の蓄電装置は非水電解質二次電池の一種であるリチウムイオン二次電池である。実施例1の処理剤はジルコニウム源としてZrO(NO・2HOを用い、リン酸源として(NHHPOを用いたリン酸酸化ジルコニウムである。
Example 1
The treatment agent of Example 1 and the method for producing the treatment agent will be described below. The power storage device of Example 1 is a lithium ion secondary battery that is a kind of non-aqueous electrolyte secondary battery. The treating agent of Example 1 is zirconium phosphate using ZrO (NO 3 ) 2 .2H 2 O as a zirconium source and (NH 4 ) 2 HPO 4 as a phosphoric acid source.
 先ず、ZrO(NO・2HOと(NHHPOとを、ZrとPのモル比が1:1となるように純水に溶解させた。この溶液を室温または常温で60分間攪拌した。なお、攪拌中の当該溶液には、ゲル状の白色粉末が沈殿物として生成された。この沈殿物を濾過することで、リン酸酸化ジルコニウムと水とを含む処理剤ゲルを回収した。処理剤ゲルは濾過されただけでありゲル状をなすため、当然乍ら、ある程度の水を含んでいる。このゲルは正極活物質を処理するための処理剤である。このゲルを実施例1の処理剤とした。 First, ZrO (NO 3 ) 2 .2H 2 O and (NH 4 ) 2 HPO 4 were dissolved in pure water so that the molar ratio of Zr and P was 1: 1. This solution was stirred at room temperature or room temperature for 60 minutes. In the solution under stirring, a gel-like white powder was produced as a precipitate. By filtering this precipitate, a treatment agent gel containing zirconium phosphate oxide and water was recovered. Since the treatment agent gel is only filtered and forms a gel, it naturally includes a certain amount of water. This gel is a treatment agent for treating the positive electrode active material. This gel was used as the treating agent of Example 1.
 上記の工程で得られた処理剤ゲルに正極活物質を加え、攪拌することで、ゲルと正極活物質とを混合して、正極活物質-ゲル複合体を得た。正極活物質としては、Li-遷移金属系正極活物質の一種であるLiNi0.5Co0.2Mn0.3を用いた。なお、一般式には示されていないが、この正極活物質は、不可避不純物として微量のNaおよびSを含む。より具体的には、この正極活物質と処理剤ゲルとを、正極活物質の質量:(処理剤ゲルの質量、すなわち水とリン酸酸化ジルコニウムとの質量和)=99.9:0.1となるように量りとり、乳鉢で混合した。このときのリン酸酸化ジルコニウムの添加量は、正極活物質とリン酸酸化ジルコニウムと水との質量の和を100質量%としたときに0.1質量%となる量であった。 The positive electrode active material was added to the treating agent gel obtained in the above step and stirred to mix the gel and the positive electrode active material to obtain a positive electrode active material-gel composite. As the positive electrode active material, LiNi 0.5 Co 0.2 Mn 0.3 O 2 which is a kind of Li-transition metal positive electrode active material was used. Although not shown in the general formula, this positive electrode active material contains trace amounts of Na and S as inevitable impurities. More specifically, the positive electrode active material and the treatment agent gel are mixed with the mass of the positive electrode active material: (the mass of the treatment agent gel, that is, the mass sum of water and zirconium phosphate oxide) = 99.9: 0.1. Weighed out and mixed in a mortar. The amount of zirconium phosphate oxide added at this time was 0.1 mass% when the total mass of the positive electrode active material, zirconium phosphate oxide and water was 100 mass%.
 このとき、正極活物質の表面に存在している不純物(つまりNaやS)が処理剤ゲルに含まれる水に溶解し、その後、リン酸酸化ジルコニウムに不可逆的に捕捉されると考えられる。なお、このとき、処理剤ゲルと正極活物質とが充分に混練され接触するように、混合物の粘度に応じてエタノールを加えても良い。 At this time, it is considered that impurities (that is, Na and S) present on the surface of the positive electrode active material are dissolved in water contained in the treatment agent gel and then irreversibly captured by zirconium phosphate oxide. At this time, ethanol may be added according to the viscosity of the mixture so that the treating agent gel and the positive electrode active material are sufficiently kneaded and contacted.
 なお、ここで、粘度調整のために水を加えると、正極活物質に含まれるLiまでもが水に溶解し処理剤に捕捉される可能性がある。このため、粘度調整用の媒体としてはエタノール等の非水媒体を選択するのが好ましい。正極活物質と処理剤ゲルとの混合物、つまり、活物質-ゲル複合体を120℃で6時間乾燥した。以上の工程により、実施例1の処理剤で処理した正極活物質複合体を得た。この正極活物質複合体を実施例1の正極活物質複合体とした。なお、正極活物質の表面には、非水溶性のSも存在している可能性がある。非水溶性のSは、処理剤ゲルに含まれる水には溶解しないが、熱処理時にリン酸酸化ジルコニウムに取り込まれる可能性がある。 Here, when water is added for viscosity adjustment, even Li contained in the positive electrode active material may be dissolved in water and trapped by the treatment agent. For this reason, it is preferable to select a non-aqueous medium such as ethanol as the viscosity adjusting medium. A mixture of the positive electrode active material and the treating agent gel, that is, the active material-gel composite was dried at 120 ° C. for 6 hours. Through the above steps, a positive electrode active material composite treated with the treating agent of Example 1 was obtained. This positive electrode active material composite was used as the positive electrode active material composite of Example 1. Note that water-insoluble S may also be present on the surface of the positive electrode active material. Water-insoluble S does not dissolve in water contained in the treatment agent gel, but may be taken into zirconium phosphate oxide during heat treatment.
 エネルギー分散型X線分析(EDS:Energy dispersive X-ray spectrometry)により、加速電圧15kVで、この正極活物質を元素分析した。実施例1の処理剤で処理された正極活物質のSEM像を図1に示す。また、実施例1の処理剤で処理された正極活物質のEDS分析結果を図2~図5に示す。詳しくは、図2~図5は、図1において楕円で囲んだ位置と同位置、より具体的には、楕円内の矩形で囲んだ位置における元素分析の結果を表す。さらに具体的には、図2は、Zr元素に関する分析結果であり、図中白い部分はZr元素の存在する部分である。図3は、P元素に関する分析結果であり、図中白い部分はP元素の存在する部分である。図4は、S元素に関する分析結果であり、図中白い部分はS元素の存在する部分である。図5は、Na元素に関する分析結果であり、図中白い部分はNa元素の存在する部分である。 This positive electrode active material was subjected to elemental analysis at an accelerating voltage of 15 kV by energy dispersive X-ray analysis (EDS: Energy dispersive X-ray spectroscopy). An SEM image of the positive electrode active material treated with the treating agent of Example 1 is shown in FIG. In addition, FIGS. 2 to 5 show EDS analysis results of the positive electrode active material treated with the treating agent of Example 1. FIG. Specifically, FIGS. 2 to 5 show the results of elemental analysis at the same position as the position enclosed by the ellipse in FIG. 1, more specifically, the position enclosed by the rectangle within the ellipse. More specifically, FIG. 2 shows an analysis result regarding the Zr element, and a white portion in the drawing is a portion where the Zr element exists. FIG. 3 shows the analysis result regarding the P element, and the white portion in the figure is the portion where the P element exists. FIG. 4 shows the analysis result regarding the S element, and the white part in the figure is the part where the S element exists. FIG. 5 shows the analysis results regarding the Na element, and the white part in the figure is the part where the Na element exists.
 図1のSEM像から、実施例1の正極活物質複合体には、粒子状の物質が多数存在することがわかる。この物質は正極活物質(LiNi0.5Co0.2Mn0.3)である。そして、この図1によると、粒子状のLiNi0.5Co0.2Mn0.3とは見た目の異なる物質が、円で囲んだ部分に存在していることがわかる。 From the SEM image in FIG. 1, it can be seen that the positive electrode active material composite of Example 1 has a large number of particulate substances. This material is a positive electrode active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ). Then, according to FIG. 1, it can be seen that the LiNi 0.5 Co 0.2 Mn 0.3 O 2 of particulate of different materials looks are present in the portion surrounded by a circle.
 また、図2によると、当該物質が存在するのと同位置でZr元素が確認されることがわかる。さらに、図3によると、当該物質が存在するのと同位置で、さらに、P元素が確認されることがわかる。つまり、図1~図3に示す結果から、当該物質はZrおよびPを含む化合物、つまり、リン酸酸化ジルコニウムであることがわかる。 Also, according to FIG. 2, it can be seen that the Zr element is confirmed at the same position where the substance exists. Furthermore, according to FIG. 3, it can be seen that the P element is further confirmed at the same position where the substance exists. That is, the results shown in FIGS. 1 to 3 indicate that the substance is a compound containing Zr and P, that is, zirconium phosphate oxide.
 また、図4によると、リン酸酸化ジルコニウムが存在するのと同位置でS元素が確認されることがわかる。さらに、図5によると、リン酸酸化ジルコニウムが存在するのと同位置で、さらに、Na元素が確認されることがわかる。また、図4および図5から、S元素およびNa元素は、主として、リン酸酸化ジルコニウムの塊の内部に存在していることがわかる。つまり、図1~図5に示す結果から、NaおよびSはリン酸酸化ジルコニウムとともに存在し、リン酸酸化ジルコニウムの主として内部に捕捉されていることがわかる。 Also, according to FIG. 4, it can be seen that the S element is confirmed at the same position where zirconium phosphate is present. Furthermore, according to FIG. 5, it can be seen that Na element is further confirmed at the same position where zirconium phosphate oxide is present. 4 and 5, it can be seen that the S element and the Na element are mainly present inside the block of zirconium phosphate oxide. That is, the results shown in FIGS. 1 to 5 indicate that Na and S are present together with zirconium phosphate oxide and are mainly trapped inside the zirconium phosphate oxide.
 (実施例2)
 実施例2の処理方法は、正極活物質:含水状態のリン酸酸化ジルコニウム=99.5:0.5の質量比で混合したこと以外は実施例1と同様にして、実施例2の正極活物質複合体を得た。
(Example 2)
The treatment method of Example 2 was the same as that of Example 1 except that the positive electrode active material: hydrated zirconium phosphate oxide was mixed at a mass ratio of 99.5: 0.5. A substance complex was obtained.
 (実施例3)
 実施例3の処理方法は、正極活物質と、含水状態のリン酸酸化ジルコニウム(つまり処理剤ゲル)とを、正極活物質:含水状態のリン酸酸化ジルコニウム=99.0:1.0の質量比で混合したこと以外は実施例1と同様にして、実施例32の正極活物質複合体を得た。
Example 3
In the treatment method of Example 3, the positive electrode active material and the water-containing zirconium phosphate oxide (that is, the treatment agent gel) are mixed into the positive electrode active material: water-containing zirconium phosphate oxide = 99.0: 1.0. A positive electrode active material composite of Example 32 was obtained in the same manner as in Example 1 except that the ratio was mixed.
 (比較例1)
 処理剤による処理をおこなっていないLiNi0.5Co0.2Mn0.3を比較例1の正極活物質とした。
(Comparative Example 1)
LiNi 0.5 Co 0.2 Mn 0.3 O 2 that was not treated with the treating agent was used as the positive electrode active material of Comparative Example 1.
  〔リチウムイオン二次電池〕
 実施例1~実施例3の正極活物質複合体、および、比較例1の正極活物質を用いて、リチウムイオン二次電池を作製した。
[Lithium ion secondary battery]
Using the positive electrode active material composites of Examples 1 to 3 and the positive electrode active material of Comparative Example 1, lithium ion secondary batteries were produced.
 先ず、実施例1~4の正極活物質複合体または比較例1の正極活物質、バインダとしてのポリフッ化ビニリデン(PVdF)、導電助剤としてのABを、それぞれ、正極活物質複合体(または正極活物質):バインダ:導電助剤=94:3:3の質量比で混合し、さらに溶剤としてのN-メチル-2-ピロリドン(NMP)を添加し混合して、ペースト状の正極合材を得た。このペースト状の正極合材を集電体にドクターブレードを用いて塗布した。集電体としては厚さ20μmのアルミニウム箔を用いた。集電体および集電体に塗布した正極合材を、80℃で20分間乾燥することで、NMPを揮発させ除去した。乾燥後の集電体および正極合材を、ロ-ルプレス機を用いて圧縮した。この工程により、アルミニウム箔と活物質層とを強固に密着接合させた。真空乾燥機を用い、当該接合物を120℃で6時間加熱し、所定の形状に切り取って、正極を得た。 First, the positive electrode active material composites of Examples 1 to 4 or the positive electrode active material of Comparative Example 1, polyvinylidene fluoride (PVdF) as a binder, and AB as a conductive additive were respectively added to the positive electrode active material composite (or the positive electrode). Active material): binder: conducting aid = 94: 3: 3 is mixed at a mass ratio, and N-methyl-2-pyrrolidone (NMP) as a solvent is further added and mixed to obtain a paste-like positive electrode mixture. Obtained. This paste-like positive electrode mixture was applied to a current collector using a doctor blade. As the current collector, an aluminum foil with a thickness of 20 μm was used. The current collector and the positive electrode mixture applied to the current collector were dried at 80 ° C. for 20 minutes to volatilize and remove NMP. The current collector and the positive electrode mixture after drying were compressed using a roll press. By this step, the aluminum foil and the active material layer were firmly bonded. The bonded product was heated at 120 ° C. for 6 hours using a vacuum dryer, and cut into a predetermined shape to obtain a positive electrode.
 上記の正極作製工程において80℃で乾燥し、および、120℃で真空乾燥したことにより、リン酸酸化ジルコニウムとともに処理剤ゲルに含まれていた水分、つまり、リン酸酸化ジルコニウムに含まれる付着水はほぼ全て蒸散し、NaとSとが捕捉されたリン酸酸化ジルコニウムのみが正極合剤中に残存した。 By drying at 80 ° C. and vacuum drying at 120 ° C. in the positive electrode preparation step, moisture contained in the treatment agent gel together with zirconium phosphate oxide, that is, adhering water contained in zirconium phosphate oxide is Almost all transpiration, and only the zirconium phosphate from which Na and S were trapped remained in the positive electrode mixture.
 負極活物質としては黒鉛を用いた。バインダとしてはスチレン-ブタジエンゴム(SBR)とカルボキシメチルセルロース(CMC)とを1:1の質量比で混合したものを用いた。導電助剤としてはケッチェンブラック(KB)を用いた。負極活物質、バインダおよび導電助剤を、負極活物質:バインダ:導電助剤=97:2:1の質量比で混合し、さらに、適量のイオン交換水を加えて混合して、スラリー状の負極合材を得た。この負極合材を、ドクターブレードを用いて集電体に塗布した。集電体としては厚さ20μmの銅箔を用いた。集電体および集電体に塗布した負極合材を、上記した正極と同様に乾燥後圧縮し、さらに真空乾燥した後に所定の形状に切り取って、負極を得た。 Graphite was used as the negative electrode active material. As the binder, a mixture of styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) at a mass ratio of 1: 1 was used. Ketjen black (KB) was used as a conductive aid. A negative electrode active material, a binder, and a conductive additive are mixed at a mass ratio of negative electrode active material: binder: conductive aid = 97: 2: 1, and an appropriate amount of ion-exchanged water is added and mixed to form a slurry-like material. A negative electrode mixture was obtained. This negative electrode mixture was applied to a current collector using a doctor blade. A copper foil having a thickness of 20 μm was used as the current collector. The current collector and the negative electrode mixture applied to the current collector were dried and compressed in the same manner as the positive electrode described above, further vacuum dried, and then cut into a predetermined shape to obtain a negative electrode.
 電解液用の有機溶媒としては、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=3:7の体積比で混合したものを用いた。支持塩としてはLiPFを用いた。この支持塩を有機溶媒に1Mとなるように溶解させて電解液を得た。 As the organic solvent for the electrolytic solution, an organic solvent mixed at a volume ratio of ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 was used. LiPF 6 was used as the supporting salt. This supporting salt was dissolved in an organic solvent so as to be 1 M to obtain an electrolytic solution.
 上記の正極、負極および電解液を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン/ポリエチレン/ポリプロピレンの3層構造の樹脂膜からなる矩形状シート(厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1~実施例3および比較例1のリチウムイオン二次電池を得た。 A laminated lithium ion secondary battery was manufactured using the positive electrode, the negative electrode, and the electrolytic solution. Specifically, a rectangular sheet (thickness 25 μm) made of a resin film having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the electrolyte solution was poured into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. Through the above steps, lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 were obtained.
  〔保存試験〕
 実施例1~実施例3および比較例1のリチウムイオン二次電池を保存試験に供した。具体的には、各電池を4.32Vまで充電し、60℃で20日間保存した。保存試験前および保存試験後に放電容量を測定した。測定時のレートは0.33Cであり、放電開始電圧は4.5Vであり、放電終止電圧は3.0Vであった。なお、1Cとは、CC放電(定電流放電)して、1時間で放電が完了する電流値をいう。保存試験前の放電容量に対する保存試験後の放電容量の百分率をもとめ、容量維持率とした。実施例1~実施例3および比較例1のリチウムイオン二次電池の容量維持率を表1に示す。
[Preservation test]
The lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 were subjected to a storage test. Specifically, each battery was charged to 4.32 V and stored at 60 ° C. for 20 days. The discharge capacity was measured before and after the storage test. The rate at the time of measurement was 0.33C, the discharge start voltage was 4.5V, and the discharge end voltage was 3.0V. In addition, 1C means the electric current value which completes discharge in 1 hour by CC discharge (constant current discharge). The percentage of the discharge capacity after the storage test with respect to the discharge capacity before the storage test was determined to obtain the capacity maintenance rate. Table 1 shows capacity retention ratios of the lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、処理剤で処理した正極活物質を用いた実施例1~実施例3のリチウムイオン二次電池は何れも高い容量維持率を示した。これに比べて、未処理の正極活物質を用いた比較例1のリチウムイオン二次電池の容量維持率は低い値であった。つまり、処理剤で処理した正極活物質を用いた実施例1~実施例3のリチウムイオン二次電池においては、未処理の正極活物質を用いた比較例1のリチウムイオン二次電池に比べて、リチウムイオン二次電池の劣化が生じ難かった。この結果から、正極活物質を本発明の処理剤で処理することによって、リチウムイオン二次電池の劣化を抑制できるといえる。 As shown in Table 1, all of the lithium ion secondary batteries of Examples 1 to 3 using the positive electrode active material treated with the treating agent exhibited a high capacity retention rate. Compared to this, the capacity retention rate of the lithium ion secondary battery of Comparative Example 1 using the untreated positive electrode active material was a low value. That is, the lithium ion secondary batteries of Examples 1 to 3 using the positive electrode active material treated with the treating agent are compared with the lithium ion secondary battery of Comparative Example 1 using the untreated positive electrode active material. The lithium ion secondary battery was hardly deteriorated. From this result, it can be said that the deterioration of the lithium ion secondary battery can be suppressed by treating the positive electrode active material with the treatment agent of the present invention.
 また、処理剤の添加量が0.1~1.0質量%の範囲内であれば、リチウムイオン二次電池の劣化抑制に非常に有効だといえる。なお、処理剤の添加量が0.05質量%に満たない場合には、リチウムイオン二次電池の劣化効果にやや劣る。したがって処理剤の添加量は0.05質量%以上であれば良いといえる。また、処理剤の添加量が1.0質量%を超えると正極合材のスラリーを作製する際に、スラリーがゲル化し易い。したがって、正極の製造作業性を考慮すると、処理剤の添加量は1.0質量%以下であるのが好ましいといえる。よって、添加剤の好ましい添加量は0.05質量%以上、かつ、1.0質量%以下である。 Also, if the amount of treatment agent added is in the range of 0.1 to 1.0% by mass, it can be said that it is very effective for suppressing deterioration of the lithium ion secondary battery. In addition, when the addition amount of a processing agent is less than 0.05 mass%, it is somewhat inferior to the deterioration effect of a lithium ion secondary battery. Therefore, it can be said that the addition amount of the treatment agent may be 0.05% by mass or more. Moreover, when the addition amount of a processing agent exceeds 1.0 mass%, when producing the slurry of positive electrode compound material, a slurry will be easy to gelatinize. Therefore, when the positive electrode manufacturing workability is taken into consideration, it can be said that the addition amount of the treatment agent is preferably 1.0% by mass or less. Therefore, the preferable addition amount of the additive is 0.05% by mass or more and 1.0% by mass or less.
 視点を変えると、処理剤およびSを材料とする付着材が正極活物質に付着していた実施例1~実施例3のリチウムイオン二次電池においては、当該付着材を持たない比較例1のリチウムイオン二次電池に比べて、劣化の抑制がみられたともいえる。 From a different viewpoint, in the lithium ion secondary batteries of Examples 1 to 3 in which the treating agent and the adhering material made of S were adhering to the positive electrode active material, the lithium ion secondary batteries of Examples 1 to 3 did not have the adhering material. It can be said that suppression of deterioration was seen compared with the lithium ion secondary battery.
 ところで、実施例1~実施例3で用いた処理剤は、付着材前駆体と水とを含むゲルであり、当該付着材前駆体(つまりリン酸酸化ジルコニウム)は、化学式:(ZrO)で表される化合物よりなる。(ZrO)は市販品を用いることもできるし、実施例のように作製することもできる。 By the way, the treating agent used in Examples 1 to 3 is a gel containing an adhesive precursor and water, and the adhesive precursor (that is, zirconium phosphate oxide) has a chemical formula: (ZrO) 2 P consisting of compounds represented by 2 O 7. (ZrO) 2 P 2 O 7 may be a commercially available product, or may be produced as in the examples.
 つまり、ZrO(NO・2HOと(NHHPO・6HOとを一定割合で純水中に溶解することによって(ZrO)の水和物を析出させることができる。析出した(ZrO)の水和物はゲル状(換言すると結晶性に乏しい状態)であり、リン酸酸化ジルコニウムたる(ZrO)と水とを含む。このゲルを150℃以上の温度で熱処理すれば、内部に含有される水分が減少する。特に乾燥したゲルを400℃以上で焼成すれば、(ZrO)の水和物の結晶水がほとんど抜けて結晶性が高まると考えられる。 That is, a hydrate of (ZrO) 2 P 2 O 7 is obtained by dissolving ZrO (NO 3 ) 2 .2H 2 O and (NH 4 ) 2 HPO 4 .6H 2 O at a fixed ratio in pure water. It can be deposited. The precipitated hydrate of (ZrO) 2 P 2 O 7 is in a gel state (in other words, a state having poor crystallinity), and contains (ZrO) 2 P 2 O 7 which is zirconium phosphate oxide and water. If this gel is heat-treated at a temperature of 150 ° C. or higher, the moisture contained therein is reduced. In particular, if the dried gel is baked at 400 ° C. or higher, it is considered that the crystal water of (ZrO) 2 P 2 O 7 hydrate is almost eliminated and the crystallinity is increased.
  〔確認試験〕
 正極活物質として平均粒径10μmのLiNi0.5Co0.2Mn0.3を準備した。
[Confirmation test]
LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter of 10 μm was prepared as a positive electrode active material.
 実施例1と同様に、ZrO(NO・2HOと(NHHPO・6HOとをZrとPのモル比がZr:P=1:1となるように純水に溶解させ、リン酸酸化ジルコニウムを得た。そして、この溶液にLiNi0.5Co0.2Mn0.3を添加して処理液を得た。LiNi0.5Co0.2Mn0.3の添加量は、LiNi0.5Co0.2Mn0.3を100質量%としたときに(ZrO)が0.1質量%となる量であった。 As in Example 1, ZrO (NO 3 ) 2 .2H 2 O and (NH 4 ) 2 HPO 4 .6H 2 O were purified so that the molar ratio of Zr to P was Zr: P = 1: 1. It was dissolved in water to obtain zirconium phosphate oxide. Then, to obtain a treating solution was added to LiNi 0.5 Co 0.2 Mn 0.3 O 2 in the solution. The amount of LiNi 0.5 Co 0.2 Mn 0.3 O 2 added is such that (ZrO) 2 P 2 O 7 is 100% by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2. The amount was 0.1% by mass.
 その後、1時間攪拌し、攪拌後の処理液を吸引濾過し、スラリー状の濾過物を120℃の乾燥機で12時間熱処理した。水が蒸発して塊状になった濾過物を乳棒および乳鉢を用いて粉砕し、坩堝にいれてさらに400℃で5時間熱処理した。400℃の熱処理後に、平均粒径が10μm程度となるように乳棒および乳鉢を用いて粉砕し、確認試験用の試料を得た。 Thereafter, the mixture was stirred for 1 hour, the treated liquid after the suction was filtered by suction, and the slurry-like filtrate was heat-treated with a 120 ° C. dryer for 12 hours. The filtrate obtained by evaporating water was pulverized using a pestle and mortar, placed in a crucible, and further heat-treated at 400 ° C. for 5 hours. After the heat treatment at 400 ° C., the sample was pulverized with a pestle and a mortar so that the average particle size was about 10 μm to obtain a sample for a confirmation test.
 なお、この試料の製造方法は、正極活物質に、予め調製したゲル状のリン酸酸化ジルコニウムを接触させていない点で実施例1~実施例3の製造方法と異なる。しかし、この試料は、正極活物質にリン酸酸化ジルコニウムを材料とする付着物が付着してなるものである。また、この試料の付着物におけるリン酸酸化ジルコニウムの部分構造は、実施例1~実施例3の製造方法で得られた付着材におけるリン酸酸化ジルコニウムの部分構造と一致する蓋然性が高い。 The manufacturing method of this sample is different from the manufacturing methods of Examples 1 to 3 in that the positive electrode active material is not contacted with the previously prepared gel-like zirconium phosphate oxide. However, this sample is formed by adhering a deposit made of zirconium phosphate to the positive electrode active material. Further, the partial structure of zirconium phosphate oxide in the deposit of this sample is highly likely to coincide with the partial structure of zirconium phosphate oxide in the deposits obtained by the manufacturing methods of Examples 1 to 3.
 この試料の付着物を、粉末X線回折(XRD)(リガク製 SmartLab)で分析した。この分析結果をZrP及び(ZrO)の分析結果と合わせて図6に示す。図6に示すピークの位置から、当該試料の付着物はジルコニウム酸化物を含む部分構造を持つことが確認された。つまり、実施例1~実施例3で用いたリン酸酸化ジルコニウムはZrPではなく(ZrO)であること、および、実施例1~実施例3で得られた付着材はジルコニウム酸化物を含む部分構造を持つことが確認された。 The deposit on this sample was analyzed by powder X-ray diffraction (XRD) (SmartLab, Rigaku). The analysis results are shown in FIG. 6 together with the analysis results of ZrP 2 O 7 and (ZrO) 2 P 2 O 7 . From the position of the peak shown in FIG. 6, it was confirmed that the deposit on the sample had a partial structure containing zirconium oxide. That is, the zirconium phosphate oxide used in Examples 1 to 3 is not ZrP 2 O 7 but (ZrO) 2 P 2 O 7 , and the adhesive obtained in Examples 1 to 3 Was confirmed to have a partial structure containing zirconium oxide.
  〔(ZrO)の熱重量測定(Thermogravimetry:TG)〕
 以下の方法でTG測定用の(ZrO)を準備した。純水中にZrO(NO・2HOと(NHHPO・6HOとをZr:P=1:1となるように入れ、攪拌して溶解させ溶液とした。そのまま1時間攪拌した。溶液を吸引濾過し、濾過物を120℃の乾燥機で12時間乾燥した。これをTG測定用の試料とした。
[Thermogravimetry (TG) of (ZrO) 2 P 2 O 7 ]
(ZrO) 2 P 2 O 7 for TG measurement was prepared by the following method. In pure water ZrO (NO 3) 2 · 2H 2 O and (NH 4) 2 and HPO 4 · 6H 2 O Zr: P = 1: 1 and so as to put and the solution stirred and dissolved. The mixture was stirred for 1 hour. The solution was filtered with suction, and the filtrate was dried in a dryer at 120 ° C. for 12 hours. This was used as a sample for TG measurement.
 上記試料の熱重量変化を、TA Instruments社製熱分析装置で測定した。TG測定では、室温から700℃まで一定の早さで昇温して試料の重量変化を測定する。元の質量を100%とし、各温度における質量を測定して、各温度における質量を元の質量と比較して%で表示した。TG測定結果を図7に示す。 The thermogravimetric change of the sample was measured with a thermal analyzer manufactured by TA Instruments. In the TG measurement, the weight change of the sample is measured by raising the temperature from room temperature to 700 ° C. at a constant speed. The original mass was taken as 100%, the mass at each temperature was measured, and the mass at each temperature was compared with the original mass and displayed in%. The TG measurement results are shown in FIG.
 図7に見られるように、(ZrO)の質量は、温度を上げていくと、2段階に減少した。つまり、室温から150℃までの温度域においては(ZrO)の質量は略一定割合で減少し、150℃付近では質量の減少が一旦緩やかになった。そして、150℃から500℃までの温度域においては(ZrO)の質量は再度略一定割合で減少した。そして、500℃以上では質量の変化はあまりみられなかった。室温から150℃付近までの温度域における(ZrO)の質量減少は、ゲル中に存在し単に(ZrO)に付着していた付着水の脱離による重量減少だと推測される。一方、150℃以上500℃以下の温度域における(ZrO)の質量減少は、(ZrO)に含まれていた結晶水が脱離したことによる質量減少だと推測される。 As can be seen in FIG. 7, the mass of (ZrO) 2 P 2 O 7 decreased in two steps as the temperature was increased. That is, in the temperature range from room temperature to 150 ° C., the mass of (ZrO) 2 P 2 O 7 decreased at a substantially constant rate, and the decrease in mass once became moderate near 150 ° C. In the temperature range from 150 ° C. to 500 ° C., the mass of (ZrO) 2 P 2 O 7 again decreased at a substantially constant rate. And the change of mass was not seen so much above 500 degreeC. The decrease in mass of (ZrO) 2 P 2 O 7 in the temperature range from room temperature to around 150 ° C. is due to the weight loss due to the desorption of adhering water that was present in the gel and adhered to (ZrO) 2 P 2 O 7. I guess. On the other hand, the mass reduction of (ZrO) 2 P 2 O 7 at 0.99 ° C. or higher 500 ° C. or less of the temperature range, that's mass reduction due to the (ZrO) 2 P 2 crystal water contained in the O 7 is eliminated Guessed.
 つまり、この結果から、ゲル状の(ZrO)に含まれる水は、150℃以上の温度で少なくとも一部脱離し、400℃以上でほぼ全てが脱離することがわかった。 That is, from this result, it was found that the water contained in the gel-like (ZrO) 2 P 2 O 7 was at least partially desorbed at a temperature of 150 ° C. or higher and almost all was desorbed at 400 ° C. or higher.
 (実施例4)
 実施例4の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。実施例4の処理方法で用いた正極活物質Aは、Li-遷移金属系正極活物質の一種であるLiNi0.5Co0.2Mn0.3である。この正極活物質Aは、不可避不純物として微量のNaおよびSを含む。また、この正極活物質AのSの含有量は0.06質量%であった。この正極活物質Aの表面には、Li化合物の一種であるLiOHおよびLiCOが付着していた。LiOHの付着量は0.13質量%であり、LiCOの付着量は0.23質量%であった。なお、ここでいう付着量とは、Na、S、Li化合物等の夾雑物を含む正極活物質粗製物の総量を100質量%とした質量比である。
Example 4
The treating agent of Example 4 was the same zirconium phosphate oxide as that of Example 1. The positive electrode active material A used in the treatment method of Example 4 is LiNi 0.5 Co 0.2 Mn 0.3 O 2 which is a kind of Li-transition metal positive electrode active material. This positive electrode active material A contains trace amounts of Na and S as inevitable impurities. Moreover, content of S of this positive electrode active material A was 0.06 mass%. LiOH and Li 2 CO 3 , which are a kind of Li compound, were attached to the surface of the positive electrode active material A. The adhesion amount of LiOH was 0.13% by mass, and the adhesion amount of Li 2 CO 3 was 0.23% by mass. In addition, the adhesion amount here is mass ratio which made the total amount of the positive electrode active material crude product containing impurities, such as Na, S, and Li compound, 100 mass%.
 上記した正極活物質Aを、リン酸酸化ジルコニウムおよび水を含む処理剤ゲルに添加した。このときのリン酸酸化ジルコニウムの添加量は、正極活物質Aの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.1であった。正極活物質Aと処理剤ゲルとの混合物、つまり、活物質-ゲル複合体を120℃で6時間加熱することで、一段階の熱処理をおこなった。以上の工程により実施例4の正極活物質複合体を得た。 The positive electrode active material A described above was added to a treatment agent gel containing zirconium phosphate oxide and water. The amount of zirconium phosphate oxide added at this time was the mass of the positive electrode active material A: (mass of water and zirconium phosphate oxide) = 99.9: 0.1. A mixture of the positive electrode active material A and the treating agent gel, that is, the active material-gel composite was heated at 120 ° C. for 6 hours to perform a one-step heat treatment. The positive electrode active material composite of Example 4 was obtained through the above steps.
 (実施例5)
 実施例5の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。また、実施例5では実施例4と同じ正極活物質Aを用いた。
(Example 5)
The treating agent of Example 5 was the same zirconium phosphate oxide as that of Example 1. In Example 5, the same positive electrode active material A as in Example 4 was used.
 実施例5の処理方法におけるリン酸酸化ジルコニウムの添加量は、正極活物質Aの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.1であった。正極活物質Aと処理剤ゲルとの混合物を先ず120℃で6時間加熱し、その後400℃で6時間加熱することで二段階の熱処理をおこなった。以上の工程により実施例5の正極活物質複合体を得た。 The amount of zirconium phosphate oxide added in the treatment method of Example 5 was the mass of the positive electrode active material A: (mass of water and zirconium phosphate oxide) = 99.9: 0.1. A mixture of the positive electrode active material A and the treating agent gel was first heated at 120 ° C. for 6 hours, and then heated at 400 ° C. for 6 hours to perform two-stage heat treatment. The positive electrode active material composite of Example 5 was obtained through the above steps.
 (実施例6)
 実施例6の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。また、実施例6では実施例4と同じ正極活物質Aを用いた。
(Example 6)
The treating agent of Example 6 was the same zirconium phosphate oxide as that of Example 1. In Example 6, the same positive electrode active material A as in Example 4 was used.
 実施例6の処理方法におけるリン酸酸化ジルコニウムの添加量は、正極活物質Aの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.5であった。正極活物質Aと処理剤ゲルとの混合物について、実施例4と同様に、一段階の熱処理をおこなった。以上の工程により実施例6の正極活物質複合体を得た。 The amount of zirconium phosphate oxide added in the treatment method of Example 6 was mass of positive electrode active material A: (mass of water and zirconium phosphate oxide) = 99.9: 0.5. The mixture of the positive electrode active material A and the treatment agent gel was subjected to one-stage heat treatment in the same manner as in Example 4. The positive electrode active material composite of Example 6 was obtained through the above steps.
 (実施例7)
 実施例7の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。また、実施例7では実施例4と同じ正極活物質Aを用いた。
(Example 7)
The treating agent of Example 7 was the same zirconium phosphate oxide as that of Example 1. In Example 7, the same positive electrode active material A as in Example 4 was used.
 実施例7の処理方法におけるリン酸酸化ジルコニウムの添加量は、正極活物質Aの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.5であった。正極活物質Aと処理剤ゲルとの混合物について、実施例5と同様に、二段階の熱処理をおこなった。以上の工程により実施例7の正極活物質複合体を得た。 The addition amount of zirconium phosphate oxide in the treatment method of Example 7 was mass of positive electrode active material A: (mass sum of water and zirconium phosphate oxide) = 99.9: 0.5. The mixture of the positive electrode active material A and the treatment agent gel was subjected to two-stage heat treatment in the same manner as in Example 5. The positive electrode active material composite of Example 7 was obtained through the above steps.
 (比較例2)
 比較例2の正極活物質は、実施例4で用いたものと同じ正極活物質Aであった。比較襟2の正極活物質は、処理剤による処理をおこなっていないものである。
(Comparative Example 2)
The positive electrode active material of Comparative Example 2 was the same positive electrode active material A as used in Example 4. The positive electrode active material of the comparative collar 2 is not subjected to treatment with a treatment agent.
 (実施例8)
 実施例8の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。実施例8の処理方法で用いた正極活物質Bは、Li-遷移金属系正極活物質の一種であるLiNi0.5Co0.2Mn0.3である。この正極活物質Bは、不可避不純物として微量のNaおよびSを含む。また、この正極活物質BのSの含有量は0.11質量%であった。この正極活物質BにおけるLiOHの付着量は0.06質量%であり、LiCOの付着量は0.12質量%であった。
(Example 8)
The treating agent of Example 8 was the same zirconium phosphate oxide as that of Example 1. The positive electrode active material B used in the treatment method of Example 8 is LiNi 0.5 Co 0.2 Mn 0.3 O 2 which is a kind of Li-transition metal positive electrode active material. This positive electrode active material B contains trace amounts of Na and S as inevitable impurities. Further, the content of S in the positive electrode active material B was 0.11% by mass. The amount of LiOH deposited on the positive electrode active material B was 0.06% by mass, and the amount of Li 2 CO 3 deposited was 0.12% by mass.
 実施例8において、リン酸酸化ジルコニウムの添加量は、正極活物質Bの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.1であった。正極活物質Bと処理剤ゲルとの混合物について、実施例4と同様に、一段階の熱処理をおこなった。以上の工程により実施例8の正極活物質複合体を得た。 In Example 8, the addition amount of zirconium phosphate oxide was the mass of the positive electrode active material B: (mass sum of water and zirconium phosphate oxide) = 99.9: 0.1. The mixture of the positive electrode active material B and the treatment agent gel was subjected to one-stage heat treatment in the same manner as in Example 4. The positive electrode active material composite of Example 8 was obtained through the above steps.
 (実施例9)
 実施例9の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。また、実施例9では実施例8と同じ正極活物質Bを用いた。
Example 9
The treating agent of Example 9 was the same zirconium phosphate oxide as that of Example 1. In Example 9, the same positive electrode active material B as in Example 8 was used.
 実施例9において、リン酸酸化ジルコニウムの添加量は、正極活物質Bの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.1であった。正極活物質Bと処理剤ゲルとの混合物について、実施例5と同様に、二段階の熱処理をおこなった。以上の工程により実施例9の正極活物質複合体を得た。 In Example 9, the addition amount of zirconium phosphate oxide was the mass of the positive electrode active material B: (mass sum of water and zirconium phosphate oxide) = 99.9: 0.1. The mixture of the positive electrode active material B and the treatment agent gel was subjected to two-stage heat treatment in the same manner as in Example 5. The positive electrode active material composite of Example 9 was obtained through the above steps.
 (実施例10)
 実施例10の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。また、実施例10では実施例8と同じ正極活物質Bを用いた。
(Example 10)
The treating agent of Example 10 was the same zirconium phosphate oxide as that of Example 1. In Example 10, the same positive electrode active material B as in Example 8 was used.
 実施例10において、リン酸酸化ジルコニウムの添加量は、正極活物質Bの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.5であった。正極活物質Bと処理剤ゲルとの混合物について、実施例4と同様に、一段階の熱処理をおこなった。以上の工程により実施例10の正極活物質複合体を得た。 In Example 10, the addition amount of zirconium phosphate oxide was the mass of the positive electrode active material B: (mass sum of water and zirconium phosphate oxide) = 99.9: 0.5. The mixture of the positive electrode active material B and the treatment agent gel was subjected to one-stage heat treatment in the same manner as in Example 4. The positive electrode active material composite of Example 10 was obtained through the above steps.
 (実施例11)
 実施例11の処理剤は実施例1の処理剤と同じリン酸酸化ジルコニウムであった。また、実施例11では実施例8と同じ正極活物質Bを用いた。
(Example 11)
The treating agent of Example 11 was the same zirconium phosphate oxide as that of Example 1. In Example 11, the same positive electrode active material B as in Example 8 was used.
 実施例11において、リン酸酸化ジルコニウムの添加量は、正極活物質Bの質量:(水とリン酸酸化ジルコニウムとの質量和)=99.9:0.5であった。正極活物質Bと処理剤ゲルとの混合物について、実施例5と同様に、二段階の熱処理をおこなった。以上の工程により実施例11の正極活物質複合体を得た。 In Example 11, the addition amount of zirconium phosphate oxide was the mass of the positive electrode active material B: (mass sum of water and zirconium phosphate oxide) = 99.9: 0.5. The mixture of the positive electrode active material B and the treatment agent gel was subjected to two-stage heat treatment in the same manner as in Example 5. The positive electrode active material composite of Example 11 was obtained through the above steps.
  〔リチウムイオン二次電池〕
 実施例8~実施例11の正極活物質複合体、および、比較例2、比較例3の正極活物質を用い、実施例1~実施例3および比較例1のリチウムイオン二次電池の製造方法と同様の方法により、実施例8~実施例11、比較例2および比較例3のリチウムイオン二次電池を作製した。
[Lithium ion secondary battery]
Production method of lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 using the positive electrode active material composites of Examples 8 to 11 and the positive electrode active materials of Comparative Examples 2 and 3 Lithium ion secondary batteries of Examples 8 to 11, Comparative Example 2 and Comparative Example 3 were produced by the same method as described above.
  〔保存試験〕
 実施例8~実施例11、比較例2および比較例3のリチウムイオン二次電池を保存試験に供した。具体的には、各電池を4.32Vまで充電し、60℃で6日間保存した。その後、充電レート1C、充電終止電圧4.5V、2.5時間の条件で、リチウムイオン二次電池をCCCV充電(定電流定電圧充電)した。そして、充電後のリチウムイオン二次電池の放電容量(つまり試験後容量)を測定した。保存前のリチウムイオン二次電池についても同様に4.5Vまで充電し、放電容量(つまり初期容量)を測定した。測定時の条件は放電レート0.33C、放電開始電圧4.5V、放電終止電圧3.0V、5時間のCCCV放電とした。
[Preservation test]
The lithium ion secondary batteries of Examples 8 to 11, Comparative Example 2 and Comparative Example 3 were subjected to a storage test. Specifically, each battery was charged to 4.32 V and stored at 60 ° C. for 6 days. Thereafter, the lithium ion secondary battery was CCCV charged (constant current constant voltage charging) under the conditions of a charge rate of 1C, a charge end voltage of 4.5V, and 2.5 hours. And the discharge capacity (namely, capacity after a test) of the lithium ion secondary battery after charge was measured. The lithium ion secondary battery before storage was similarly charged to 4.5 V, and the discharge capacity (that is, the initial capacity) was measured. The measurement conditions were a discharge rate of 0.33 C, a discharge start voltage of 4.5 V, a discharge end voltage of 3.0 V, and a CCCV discharge of 5 hours.
 保存試験前の放電容量に対する保存試験後の放電容量の百分率をもとめ、容量維持率とした。実施例8~実施例11、比較例2および比較例3のリチウムイオン二次電池の容量維持率を表2に示す。なお、表2において、初期容量(mAh/g)とは保存試験前の各リチウムイオン二次電池の放電容量を指す。試験後容量(mAh/g)とは保存試験後の放電容量を指す。 The percentage of the discharge capacity after the storage test with respect to the discharge capacity before the storage test was determined to obtain the capacity maintenance rate. Table 2 shows the capacity retention rates of the lithium ion secondary batteries of Examples 8 to 11, Comparative Example 2 and Comparative Example 3. In Table 2, the initial capacity (mAh / g) refers to the discharge capacity of each lithium ion secondary battery before the storage test. The post-test capacity (mAh / g) refers to the discharge capacity after the storage test.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、処理剤を0.1質量%となる量で用いた実施例4および実施例5の蓄電装置は、処理剤を用いなかった比較例2の蓄電装置に比べて容量維持率に優れる。同様に、処理剤を0.1質量%となる量で用いた実施例8および実施例9の蓄電装置は、処理剤を用いなかった比較例3の蓄電装置に比べて容量維持率に優れる。この結果から、処理剤で処理することで得られた本発明の正極活物質複合体は、未処理の正極活物質に比べて、蓄電装置の劣化を抑制し得るといえる。 As shown in Table 2, the power storage devices of Example 4 and Example 5 in which the treatment agent was used in an amount of 0.1% by mass maintained the capacity compared to the power storage device of Comparative Example 2 that did not use the treatment agent. Excellent rate. Similarly, the power storage devices of Example 8 and Example 9 in which the treatment agent was used in an amount of 0.1% by mass are superior in capacity retention rate compared to the power storage device of Comparative Example 3 in which no treatment agent was used. From this result, it can be said that the positive electrode active material composite of the present invention obtained by treatment with the treatment agent can suppress the deterioration of the power storage device as compared with the untreated positive electrode active material.
 また、表2に示すように、保存後の容量維持率向上の点においては、処理剤の量が過大であると、未処理の正極活物質を用いた場合に比べて劣化抑制作用が顕れ難い場合がある。これは、最終的に正極活物質粒子表面に形成される付着材そのものの量と、その付着材に含有されるS量とが関係しているためと考えられる。 In addition, as shown in Table 2, in terms of improving the capacity retention ratio after storage, if the amount of the treatment agent is excessive, the deterioration suppressing effect is less likely to appear compared to the case where an untreated positive electrode active material is used. There is a case. This is presumably because the amount of the adhering material itself finally formed on the surface of the positive electrode active material particles is related to the amount of S contained in the adhering material.
 例えば、表2に示す正極活物質Bは、S量が多いだけでなく、正極活物質表面のLiCO量が少ない状態である。LiCOは、正極活物質及び正極活物質に含有されるSと、付着材前駆体と、の接触を妨げる。よって、正極活物質Bを用いる場合には、付着材前駆体のSを取り込む効率が向上した状態と考えられる。このため、正極活物質Bを用いた場合には、処理剤の量が増大し付着材前駆体の量が増大するのに伴って、蓄電装置の劣化抑制作用が大きくなっている。 For example, the positive electrode active material B shown in Table 2 has not only a large amount of S but also a small amount of Li 2 CO 3 on the surface of the positive electrode active material. Li 2 CO 3 prevents contact between the positive electrode active material, S contained in the positive electrode active material, and the adhesive precursor. Therefore, when the positive electrode active material B is used, it is considered that the efficiency of taking in the S of the adhesive precursor is improved. For this reason, when the positive electrode active material B is used, as the amount of the treatment agent increases and the amount of the adhering material precursor increases, the effect of suppressing the deterioration of the power storage device increases.
 さらに、熱処理後に形成される付着材の材料状態は、含有するS量によって変化すると予測され、特にLiイオン伝導性が変化すると考えられる。本発明の付着材は、優れたLiイオン伝導性を持つため、活物質表面に付着してもLiイオンの移動を妨害しないため、正極活物質を保護しつつ高効率でLiイオンの吸放出が可能な正極電極を実現し、寿命特性を向上させている。しかし、Sを過剰に含有した付着材は、余剰なSがLiイオンの伝導を妨害する状態になっていると予測される。その結果、付着材がSを過剰に含有した場合には、付着材によって正極活物質を保護できても、正極においてはLiの吸放出効率が低下する可能性がある。そしてその結果、電池容量が低下する可能性が高いと考えられる。 Furthermore, the material state of the adhering material formed after the heat treatment is predicted to change depending on the amount of S contained, and it is considered that the Li ion conductivity is particularly changed. Since the adhering material of the present invention has excellent Li ion conductivity, even if it adheres to the active material surface, it does not hinder the movement of Li ions, so that it can absorb and release Li ions with high efficiency while protecting the positive electrode active material. A possible positive electrode is realized and the life characteristics are improved. However, the adhering material containing excessive S is expected to be in a state where excessive S interferes with the conduction of Li ions. As a result, when the adhering material contains an excessive amount of S, even if the positive electrode active material can be protected by the adhering material, there is a possibility that the efficiency of absorbing and releasing Li is reduced in the positive electrode. As a result, the battery capacity is likely to be reduced.
 そして、保存後の容量維持率向上を図るためには、付着材のS含有量には最適な範囲が存在すると考えられる。このS含有量の好適な範囲は、付着材の分子構造を支配しているリン酸酸化Zrの量に応じて決定されると考えられる。具体的には、付着材のS含有量は5~20(原子%)であるのが良いと考えられる。これは、P、Zr、Sを100原子%とした比率である。より好ましくは、S含有量は、8~16原子%の範囲内にあるのが良く、10~14原子%の範囲内にあるのがさらに好ましい。 And, in order to improve the capacity maintenance ratio after storage, it is considered that there is an optimum range for the S content of the adhering material. It is considered that the preferable range of the S content is determined according to the amount of phosphoric acid oxidation Zr that governs the molecular structure of the adhering material. Specifically, it is considered that the S content of the adhering material is preferably 5 to 20 (atomic%). This is a ratio in which P, Zr, and S are 100 atomic%. More preferably, the S content is in the range of 8 to 16 atomic%, and more preferably in the range of 10 to 14 atomic%.
 なお表2の実施例6に示すように、S含有量が少ない場合には、処理剤の量を多くしても容量維持率は向上する。したがって、処理剤の量は、活物質-ゲル複合体中のSの量に応じて適宜設定し得るといえる。 As shown in Example 6 of Table 2, when the S content is small, the capacity retention rate is improved even if the amount of the treatment agent is increased. Therefore, it can be said that the amount of the treating agent can be appropriately set according to the amount of S in the active material-gel complex.
 また、表2の結果から、熱処理時の加熱方法も保存試験後の容量維持率に影響を与えることもわかる。つまり、120℃で一段階の熱処理をおこなった場合と、120℃→400℃の二段階の熱処理をおこなった場合とで、保存後の容量維持率が異なる。保存後の容量維持率向上のみを考慮すると、一段階の熱処理を行う方が好ましい。一段階目の熱処理の温度は120℃付近、具体的には100℃以上150℃以下であるのが好ましい。また、二段階目の熱処理の温度は、150℃を超えかつ400℃付近、具体的には180℃以上500℃以下であるのが好ましい。 Also, from the results in Table 2, it can be seen that the heating method during the heat treatment also affects the capacity retention rate after the storage test. That is, the capacity retention rate after storage differs between the case where the one-step heat treatment is performed at 120 ° C. and the case where the two-step heat treatment is performed at 120 ° C. → 400 ° C. Considering only the improvement of the capacity retention rate after storage, it is preferable to perform a one-step heat treatment. The temperature of the first stage heat treatment is preferably around 120 ° C., specifically 100 ° C. or more and 150 ° C. or less. The temperature of the second stage heat treatment is preferably higher than 150 ° C. and around 400 ° C., specifically 180 ° C. or higher and 500 ° C. or lower.
 実施例8の正極活物質複合体、および、実施例11の正極活物質複合体をそれぞれTEM(透過型電子顕微鏡:Transmission Electron Microscope)により撮像した。実施例8の正極活物質複合体のTEM像および後述するSTEM分析の結果を図8に示し、実施例11の正極活物質複合体のTEM像およびSTEM分析の結果を図9に示す。 The positive electrode active material composite of Example 8 and the positive electrode active material composite of Example 11 were each imaged with a TEM (Transmission Electron Microscope). The TEM image of the positive electrode active material composite of Example 8 and the result of STEM analysis described later are shown in FIG. 8, and the TEM image of the positive electrode active material composite of Example 11 and the result of STEM analysis are shown in FIG.
 各TEM像において四角で囲った部分付近を、さらに、STEM(走査透過電子顕微鏡:Scanning Transmission Electron Microscope)により分析した。この部分には付着材があり、STEMにより付着材中の各元素の含有量が分析できる。さらに、実施例8および実施例11の正極活物質複合体の付着材中の各元素含有量を表3に示す。表3中の「元素含有量(%)」は、ZrとPとSの元素含有量の和を100%とする値である。以下、必要に応じて、各実施例の正極活物質複合体の付着材を、各実施例の付着材と略する。 In the TEM images, the area surrounded by a square was further analyzed by STEM (Scanning Transmission Electron Microscope). There is an adhering material in this portion, and the content of each element in the adhering material can be analyzed by STEM. Furthermore, Table 3 shows the content of each element in the adhering material of the positive electrode active material composites of Example 8 and Example 11. “Element content (%)” in Table 3 is a value where the sum of the element contents of Zr, P and S is 100%. Hereinafter, as necessary, the adhering material of the positive electrode active material composite of each example is abbreviated as the adhering material of each example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図8および図9に示すように、実施例11の付着材は、実施例8の付着材に比べて、PおよびZrのピーク(I)に対するSのピーク(II)の強度比が大きかった。換言すると、実施例11の付着材は、実施例8の付着材に比べて、PおよびZrに対するSの元素含有量が多い。具体的には、実施例11の付着材においては、{(P元素含有量+Zr元素含有量)/2}:(S元素含有量)=3.5:1であるのに対し、実施例8の付着材においては{(P元素含有量+Zr元素含有量)/2}:(S元素含有量)=1.8:1であった。つまり、実施例11の付着材は1原子のSあたりに、PおよびZrをそれぞれ約3.5原子有する。一方、実施例8の付着材は1原子のSあたりに、PおよびZrをそれぞれ約1.8原子有する。これは、各正極活物質複合体を製造する際の処理剤の量および熱処理条件に起因すると考えられる。 As shown in FIGS. 8 and 9, the adhesive material of Example 11 had a greater intensity ratio of S peak (II) to P and Zr peaks (I) than the adhesive material of Example 8. In other words, the adhesive material of Example 11 has a higher elemental content of S relative to P and Zr than the adhesive material of Example 8. Specifically, in the adhesive material of Example 11, {(P element content + Zr element content) / 2} :( S element content) = 3.5: 1, whereas Example 8 In the adhering material, {(P element content + Zr element content) / 2} :( S element content) = 1.8: 1. That is, the adhesive material of Example 11 has about 3.5 atoms of P and Zr per S of one atom. On the other hand, the adhesive of Example 8 has about 1.8 atoms of P and Zr per S of one atom. This is considered to be caused by the amount of the treating agent and the heat treatment conditions when manufacturing each positive electrode active material composite.
 つまり、実施例11の付着材は実施例8の付着材に比べて製造時に多くの処理剤が用いられている。このため、上述したように、正極活物質粒子に含まれていたSが正極活物質の表面に移動し、さらに処理剤に取り込まれて付着材の一部を構成したものと考えられる。また、実施例11の付着材は低温および高温の二段階で熱処理されたものであり、実施例8の付着材は低温の一段階のみで熱処理されたものであることから、上述したSの移動が加熱過程にも生じると推測される。 That is, the adhesive material of Example 11 uses a larger amount of treatment agent during the manufacture than the adhesive material of Example 8. For this reason, as described above, it is considered that S contained in the positive electrode active material particles moves to the surface of the positive electrode active material and is further taken into the treatment agent to constitute a part of the adhering material. Moreover, since the adhesive material of Example 11 was heat-treated in two stages of low temperature and high temperature, and the adhesive material of Example 8 was heat-treated only in one stage of low temperature, the above-described movement of S It is estimated that this also occurs in the heating process.
 さらに、〔(ZrO)の熱重量測定〕の項で説明したように、二段階で熱処理を行い400℃付近で加熱することにより、(ZrO)の結晶化が進行する。そしてこのときSは(ZrO)に由来する結晶構造中に強固に一体化されると考えられる。具体的には、Sは(ZrO)に化学的に結合すると推測される。このため、二段階の熱処理により、付着材が規則正しい結晶構造を有するようになり、付着材内部のLiイオンの通り道が規則正しく構成され、その結果Liの拡散性が向上すると考えられる。一段階目の熱処理後の付着材は、前述の通りLiイオンの伝導性に優れるが、構造的には規則性に乏しい状態と考えられる。具体的には、一段階目の熱処理後の付着材は、Liイオンを補足し伝える機能には優れるが、構造の規則性に乏しい。このため付着材の内部には、Liイオンが容易に通過できる通路が少なく、付着材は十分なLiイオン拡散性を有していない状態と考えられる。よって、二段階目の熱処理を行ない、付着材の結晶化を促進することにより、付着材内部におけるLiイオンの拡散性を改善できると考えられる。 Further, as described in the section of [(ZrO) thermogravimetry of 2 P 2 O 7], by heating at 400 around ℃ was heat-treated in two steps, crystallization of (ZrO) 2 P 2 O 7 Progresses. At this time, S is considered to be firmly integrated into the crystal structure derived from (ZrO) 2 P 2 O 7 . Specifically, it is speculated that S is chemically bonded to (ZrO) 2 P 2 O 7 . For this reason, it is considered that the two-stage heat treatment causes the adhering material to have a regular crystal structure, and the path of Li ions inside the adhering material is configured regularly, and as a result, the diffusibility of Li is improved. The adhering material after the first stage heat treatment is excellent in Li ion conductivity as described above, but is considered to be in a state of poor regularity in terms of structure. Specifically, the adhering material after the first stage heat treatment is excellent in the function of capturing and transmitting Li ions, but the structure regularity is poor. For this reason, there are few passages through which Li ions can easily pass inside the adhering material, and it is considered that the adhering material does not have sufficient Li ion diffusibility. Therefore, it is considered that the diffusibility of Li ions inside the adhering material can be improved by performing the second heat treatment to promote the crystallization of the adhering material.
 さらに、表2によると、全ての場合で一段階で熱処理した場合よりも二段階で熱処理した場合の方が、大きな初期容量を得られており、実施例11を除いては処理剤無しの場合よりも初期容量が増加している。これは、前述したLiイオンの拡散性向上効果によるものと理解できる。つまり、二段階目の熱処理には初期容量を向上する効果があるといえる。一方、過度な結晶化はLiイオン伝導性をかえって悪化させ、寿命特性を低下させてしまうことが、表2より予測される。 Furthermore, according to Table 2, a larger initial capacity was obtained in the case where the heat treatment was performed in two stages than in the case where the heat treatment was performed in one stage in all cases. Than the initial capacity has increased. This can be understood to be due to the above-described effect of improving the diffusibility of Li ions. That is, it can be said that the second stage heat treatment has an effect of improving the initial capacity. On the other hand, it is predicted from Table 2 that excessive crystallization deteriorates the Li ion conductivity and deteriorates the life characteristics.
 つまり、正極活物質のS含有量、処理剤の量、加熱処理の温度は、蓄電装置に要求される特性に応じて適宜設定可能である。何れの場合にも、本発明の正極および蓄電装置は、付着材に由来した初期容量の向上および寿命劣化抑制効果を有する。 That is, the S content of the positive electrode active material, the amount of the treating agent, and the temperature of the heat treatment can be appropriately set according to the characteristics required for the power storage device. In any case, the positive electrode and the power storage device of the present invention have the effect of improving the initial capacity derived from the adhering material and suppressing the life deterioration.

Claims (25)

  1.  リチウムと遷移金属とを含むLi-遷移金属系正極活物質を処理するための処理剤であって、
     前記Li-遷移金属系正極活物質は、不純物としてナトリウムと硫黄とを含み、
     前記処理剤は、前記ナトリウムおよび前記硫黄を捕捉可能である、Li-遷移金属系正極活物質用処理剤。
    A treating agent for treating a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
    The Li-transition metal-based positive electrode active material contains sodium and sulfur as impurities,
    The treatment agent is a treatment agent for a Li-transition metal-based positive electrode active material capable of capturing the sodium and sulfur.
  2.  前記処理剤は、ゲル状である請求項1に記載のLi-遷移金属系正極活物質用処理剤。 The treatment agent for a Li-transition metal-based positive electrode active material according to claim 1, wherein the treatment agent is in a gel form.
  3.  前記処理剤は、リン酸化合物を含む請求項1または請求項2に記載のLi-遷移金属系正極活物質用処理剤。 The treatment agent for a Li-transition metal-based positive electrode active material according to claim 1 or 2, wherein the treatment agent contains a phosphate compound.
  4.  前記Li-遷移金属系正極活物質は、遷移金属として、ニッケル、コバルト、およびマンガンから選ばれる2種以上を含む請求項1~請求項3の何れか一項に記載のLi-遷移金属系正極活物質用処理剤。 The Li-transition metal-based positive electrode according to any one of claims 1 to 3, wherein the Li-transition metal-based positive electrode active material includes two or more selected from nickel, cobalt, and manganese as a transition metal. Treatment agent for active material.
  5.  前記処理剤は、リン酸酸化ジルコニウムを含む請求項1~請求項4の何れか一項に記載のLi-遷移金属系正極活物質用処理剤。 The treatment agent for a Li-transition metal-based positive electrode active material according to any one of claims 1 to 4, wherein the treatment agent contains zirconium phosphate oxide.
  6.  集電体と前記集電体上に設けられる正極活物質層とを含み、
     前記正極活物質層は、リチウムと遷移金属とを含むLi-遷移金属系正極活物質と、請求項1~請求項5の何れか一項に記載のLi-遷移金属系正極活物質用処理剤と、を含む正極。
    A current collector and a positive electrode active material layer provided on the current collector,
    6. The positive electrode active material layer includes a Li-transition metal-based positive electrode active material containing lithium and a transition metal, and a treatment agent for a Li-transition metal-based positive electrode active material according to any one of claims 1 to 5. And a positive electrode.
  7.  第3族~第5族元素からなる群から選ばれる少なくとも一種の元素を有する酸化物と、硫黄と、リンと、を含む付着材が、正極活物質表面に付着してなる、正極活物質複合材。 A positive electrode active material composite in which an adhering material containing at least one element selected from the group consisting of Group 3 to Group 5 elements, sulfur, and phosphorus is attached to the surface of the positive electrode active material Wood.
  8.  前記付着材は、化学式:(MO)(Mは第3族~第5族元素からなる群から選ばれる少なくも一種である)で表されるリン酸酸化金属を前駆体とする請求項7に記載の正極活物質複合体。 The adhering material includes a metal phosphate oxide represented by a chemical formula: (MO) 2 P 2 O 7 (M is at least one selected from the group consisting of Group 3 to Group 5 elements) as a precursor. The positive electrode active material composite according to claim 7.
  9.  前記正極活物質複合材は、正極活物質と、前記前駆体と水とを含むゲルと、を含む活物質-ゲル複合体が熱処理されてなる請求項8に記載の正極活物質複合体。 The positive electrode active material composite according to claim 8, wherein the positive electrode active material composite is obtained by heat-treating an active material-gel composite containing a positive electrode active material and a gel containing the precursor and water.
  10.  前記正極活物質はリチウムと遷移金属とを含むLi-遷移金属系正極活物質であり、
     前記硫黄は前記正極活物質由来である、請求項7~請求項9の何れか一項に記載の正極活物質複合体。
    The positive electrode active material is a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
    The positive electrode active material composite according to any one of claims 7 to 9, wherein the sulfur is derived from the positive electrode active material.
  11.  前記第3族~第5族元素は、Zr、La、Y、Ti、TaおよびNbである請求項7~請求項10の何れか一項に記載の正極活物質複合体。 The positive electrode active material composite according to any one of claims 7 to 10, wherein the Group 3 to Group 5 elements are Zr, La, Y, Ti, Ta, and Nb.
  12.  前記Li-遷移金属系正極活物質は、遷移金属として、ニッケル、コバルト、およびマンガンから選ばれる2種以上を含む請求項10または請求項11に記載の正極活物質複合体。 The positive electrode active material composite according to claim 10 or 11, wherein the Li-transition metal-based positive electrode active material contains two or more kinds selected from nickel, cobalt, and manganese as a transition metal.
  13.  第3族~第5族元素からなる群から選ばれる少なくとも一種と、硫黄と、リンと、を含む付着材が正極活物質表面に付着してなり、
     前記正極活物質はリチウムと遷移金属とを含むLi-遷移金属系正極活物質であり、
     前記硫黄は前記正極活物質由来である正極活物質複合体。
    An adhesion material containing at least one selected from the group consisting of Group 3 to Group 5 elements, sulfur, and phosphorus is attached to the surface of the positive electrode active material;
    The positive electrode active material is a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
    The positive electrode active material composite in which the sulfur is derived from the positive electrode active material.
  14.  前記第3族~第5族元素からなる群から選ばれる少なくとも一種は酸化物を構成する請求項13に記載の正極活物質複合体。 14. The positive electrode active material composite according to claim 13, wherein at least one selected from the group consisting of the Group 3 to Group 5 elements constitutes an oxide.
  15.  前記付着材は、化学式:(MO)(Mは第3族~第5族元素からなる群から選ばれる少なくも一種である)で表されるリン酸酸化金属を前駆体とする13または請求項14に記載の正極活物質複合体。 The adhering material includes a metal phosphate oxide represented by a chemical formula: (MO) 2 P 2 O 7 (M is at least one selected from the group consisting of Group 3 to Group 5 elements) as a precursor. The positive electrode active material composite according to claim 13 or 14.
  16.  前記正極活物質複合材は、正極活物質と、前記前駆体と水とを含むゲルと、を含む活物質-ゲル複合体が熱処理されてなる請求項15に記載の正極活物質複合体。 16. The positive electrode active material composite according to claim 15, wherein the positive electrode active material composite is obtained by heat-treating an active material-gel composite containing a positive electrode active material and a gel containing the precursor and water.
  17.  前記第3族~第5族元素はZr、La、Y、Ti、TaおよびNbである請求項13~請求項16の何れか一項に記載の正極活物質複合体。 The positive electrode active material composite according to any one of claims 13 to 16, wherein the Group 3 to Group 5 elements are Zr, La, Y, Ti, Ta, and Nb.
  18.  前記Li-遷移金属系正極活物質は、遷移金属として、ニッケル、コバルト、およびマンガンから選ばれる2種以上を含む請求項13~請求項17の何れか一項に記載の正極活物質複合体。 The positive electrode active material composite according to any one of claims 13 to 17, wherein the Li-transition metal-based positive electrode active material includes two or more selected from nickel, cobalt, and manganese as a transition metal.
  19.  化学式:(MO)(Mは第3族~第5族元素からなる群から選ばれる少なくも一種である)で表されるリン酸酸化金属と水とを含むゲルと、正極活物質と、を含む活物質-ゲル複合体を熱処理する正極活物質複合体調製工程を含み、
     前記ゲルと、前記正極活物質と、の少なくとも一方は硫黄を含む正極活物質複合体の製造方法。
    A gel comprising a metal phosphate oxide represented by a chemical formula: (MO) 2 P 2 O 7 (M is at least one selected from the group consisting of Group 3 to Group 5 elements) and water, and a positive electrode A positive electrode active material composite preparation step of heat-treating an active material-gel composite containing the active material,
    A method for producing a positive electrode active material composite in which at least one of the gel and the positive electrode active material contains sulfur.
  20.  前記正極活物質複合体調製工程は、前記活物質-ゲル複合体を100℃以上150℃以下に加熱し、その後に180℃以上500℃以下に加熱する請求項19に記載の正極活物質複合体の製造方法。 The positive electrode active material composite according to claim 19, wherein in the positive electrode active material composite preparation step, the active material-gel composite is heated to 100 ° C or higher and 150 ° C or lower, and then heated to 180 ° C or higher and 500 ° C or lower. Manufacturing method.
  21.  前記正極活物質はリチウムと遷移金属とを含むLi-遷移金属系正極活物質であり、
     前記硫黄は前記正極活物質由来である請求項19または請求項20に記載の正極活物質複合体の製造方法。
    The positive electrode active material is a Li-transition metal-based positive electrode active material containing lithium and a transition metal,
    The method for producing a positive electrode active material composite according to claim 19 or 20, wherein the sulfur is derived from the positive electrode active material.
  22.  前記第3族~第5族元素は、Zr、La、Y、Ti、TaおよびNbである請求項19~請求項21の何れか一項に記載の正極活物質複合体の製造方法。 The method for producing a positive electrode active material composite according to any one of claims 19 to 21, wherein the Group 3 to Group 5 elements are Zr, La, Y, Ti, Ta, and Nb.
  23.  前記Li-遷移金属系正極活物質は、遷移金属として、ニッケル、コバルト、およびマンガンから選ばれる2種以上を含む請求項21または請求項22に記載の正極活物質複合体の製造方法。 23. The method for producing a positive electrode active material composite according to claim 21, wherein the Li-transition metal-based positive electrode active material contains two or more selected from nickel, cobalt, and manganese as a transition metal.
  24.  集電体と前記集電体上に設けられる正極活物質層とを含み、
     請求項7~請求項18の何れか一項に記載の正極活物質複合体を含む正極。
    A current collector and a positive electrode active material layer provided on the current collector,
    A positive electrode comprising the positive electrode active material composite according to any one of claims 7 to 18.
  25.  請求項6または請求項24に記載の正極を含む蓄電装置。 A power storage device including the positive electrode according to claim 6 or 24.
PCT/JP2014/005565 2013-11-14 2014-11-05 Treatment agent for cathode active material, cathode active material composite, method for producing cathode active material composite, cathode, and electricity storage device WO2015072111A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013235545 2013-11-14
JP2013-235545 2013-11-14
JP2014096317A JP5907209B2 (en) 2013-11-14 2014-05-07 Treatment agent for positive electrode active material, positive electrode active material complex, method for producing positive electrode active material complex, positive electrode and power storage device
JP2014-096317 2014-05-07

Publications (1)

Publication Number Publication Date
WO2015072111A1 true WO2015072111A1 (en) 2015-05-21

Family

ID=53057064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005565 WO2015072111A1 (en) 2013-11-14 2014-11-05 Treatment agent for cathode active material, cathode active material composite, method for producing cathode active material composite, cathode, and electricity storage device

Country Status (2)

Country Link
JP (1) JP5907209B2 (en)
WO (1) WO2015072111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146237A1 (en) * 2016-02-25 2017-08-31 旭化成株式会社 Nonaqueous electrolyte battery inorganic particles and nonaqueous electrolyte battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243301A (en) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008300204A (en) * 2007-05-31 2008-12-11 Toyota Central R&D Labs Inc Aqueous lithium secondary battery
JP2010027482A (en) * 2008-07-23 2010-02-04 Sony Corp Method for manufacturing positive electrode active material and positive electrode active material
JP2012038534A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Positive electrode material for lithium secondary battery, lithium secondary battery and secondary battery module using the same
JP2012038680A (en) * 2010-08-11 2012-02-23 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery using the positive electrode active material and lithium secondary battery
JP2013077420A (en) * 2011-09-30 2013-04-25 Fuji Heavy Ind Ltd Power storage device, and positive electrode for power storage device
WO2014073189A1 (en) * 2012-11-12 2014-05-15 株式会社豊田自動織機 Lithium-ion secondary battery positive electrode active material and lithium ion secondary battery having same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243301A (en) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008300204A (en) * 2007-05-31 2008-12-11 Toyota Central R&D Labs Inc Aqueous lithium secondary battery
JP2010027482A (en) * 2008-07-23 2010-02-04 Sony Corp Method for manufacturing positive electrode active material and positive electrode active material
JP2012038534A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Positive electrode material for lithium secondary battery, lithium secondary battery and secondary battery module using the same
JP2012038680A (en) * 2010-08-11 2012-02-23 Mitsubishi Chemicals Corp Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery using the positive electrode active material and lithium secondary battery
JP2013077420A (en) * 2011-09-30 2013-04-25 Fuji Heavy Ind Ltd Power storage device, and positive electrode for power storage device
WO2014073189A1 (en) * 2012-11-12 2014-05-15 株式会社豊田自動織機 Lithium-ion secondary battery positive electrode active material and lithium ion secondary battery having same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146237A1 (en) * 2016-02-25 2017-08-31 旭化成株式会社 Nonaqueous electrolyte battery inorganic particles and nonaqueous electrolyte battery
US10680291B2 (en) 2016-02-25 2020-06-09 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles and nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2015118905A (en) 2015-06-25
JP5907209B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP6543726B2 (en) Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
US20150303460A1 (en) Method for producing negative electrode material for lithium ion batteries
JP7024715B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
WO2016139957A1 (en) Positive electrode for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
CN107834102B (en) Lithium ion secondary battery and method for manufacturing same
JP2011258541A (en) Negative electrode active material, and electrode and lithium battery adopting the same
JPWO2016042728A1 (en) MSix (M is at least one element selected from Group 3 to 9 elements, where 1/3 ≦ x ≦ 3) containing silicon material and manufacturing method thereof
JP5858297B2 (en) Negative electrode active material and power storage device
JP6135931B2 (en) Power storage device manufacturing method and power storage device
JP5534377B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
US10847788B2 (en) Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same
JP6357863B2 (en) Positive electrode, power storage device, and method of manufacturing positive electrode
JP5820566B2 (en) Method for producing positive electrode material
JP4282107B2 (en) Carbon material for negative electrode of lithium secondary battery and lithium secondary battery using the same
JP5907209B2 (en) Treatment agent for positive electrode active material, positive electrode active material complex, method for producing positive electrode active material complex, positive electrode and power storage device
JP2016216340A (en) Material having lithium composite metal oxide part and boron-containing part and manufacturing method therefor
JP6528982B2 (en) Lithium ion secondary battery
JP6338091B2 (en) Lithium composite metal oxide and method for producing the same
JP6366908B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP6299154B2 (en) Negative electrode active material and power storage device
JP2017095326A (en) M-CONTAINING SILICON MATERIAL, WHERE M IS AT LEAST ONE ELEMENT SELECTED FROM Sn, Pb, Sb, Bi, In, Zn OR Au, AND MANUFACTURING METHOD THEREFOR
EP3314685A1 (en) Electrode, battery cell and battery arrangement
JP6848981B2 (en) Negative electrode for electrical devices and electrical devices using them
JP6819220B2 (en) Negative electrode for electrical devices and electrical devices using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861988

Country of ref document: EP

Kind code of ref document: A1