WO2015072036A1 - Inverter control device - Google Patents

Inverter control device Download PDF

Info

Publication number
WO2015072036A1
WO2015072036A1 PCT/JP2013/081049 JP2013081049W WO2015072036A1 WO 2015072036 A1 WO2015072036 A1 WO 2015072036A1 JP 2013081049 W JP2013081049 W JP 2013081049W WO 2015072036 A1 WO2015072036 A1 WO 2015072036A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase modulation
inverter
modulation mode
current
frequency
Prior art date
Application number
PCT/JP2013/081049
Other languages
French (fr)
Japanese (ja)
Inventor
真一 古谷
一文 平林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015547371A priority Critical patent/JP6160706B2/en
Priority to PCT/JP2013/081049 priority patent/WO2015072036A1/en
Priority to CN201380080948.6A priority patent/CN105765837B/en
Publication of WO2015072036A1 publication Critical patent/WO2015072036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to an inverter control device.
  • Patent Document 1 describes a motor control device including an inverter. This motor control device controls switching of the inverter by two-phase modulation. The motor control device switches between the upper alignment state and the lower alignment state at regular intervals when performing two-phase modulation in the double alignment mode.
  • An object of the present invention is to provide an inverter control device that can suppress noise and vibration caused by current pulsation of an electric load.
  • the inverter control device includes first determination means, two-phase modulation mode setting means for designating a two-phase modulation mode for driving the inverter based on the output frequency of the inverter, a voltage command, and 2 Two-phase modulation processing means for performing two-phase modulation based on the two-phase modulation mode designated by the phase modulation mode setting means, wherein the first determination means sets x to an odd number, and 3x of the output frequency of the inverter It is determined whether or not the double frequency is included in a preset frequency band, and the two-phase modulation mode setting means increases the mode when it is determined that the frequency band of 3x times the output frequency of the inverter is included in the frequency band.
  • the downshift mode is designated as the two-phase modulation mode and it is determined that the frequency output 3 ⁇ times the inverter output frequency is not included in the frequency band, It is to specify both asked mode switching between top justify state and lower gripping state as a two-phase modulation mode in accordance with the sex.
  • noise and vibration caused by current pulsation of an electric load driven by an inverter can be suppressed.
  • Embodiment 1 of this invention It is a block diagram of the inverter control apparatus in Embodiment 1 of this invention. It is a figure for demonstrating the dead time compensation in Embodiment 1 of this invention. It is a figure for demonstrating the dead time compensation in Embodiment 1 of this invention. It is a block diagram of the inverter control apparatus in Embodiment 3 of this invention. It is a table
  • Embodiment 1 FIG.
  • the inverter control device is connected to the PWM inverter.
  • the PWM inverter is connected to an electrical load.
  • the electric load is, for example, an AC motor.
  • FIG. 1 is a switching circuit diagram of a PWM inverter.
  • FIG. 1 shows a switching circuit of a two-level three-phase inverter.
  • the switching circuit is supplied with DC power from the DC bus.
  • Two switching elements are connected in series between the high potential side and the low potential side of the DC bus.
  • the switching circuit includes three pairs of switching elements connected in series. The three pairs of switching elements are connected in parallel. Each switching element pair corresponds to one of the U phase, V phase, and W phase of the electrical load.
  • a free-wheeling diode is connected to each switching element in parallel.
  • the switching element connected to the high potential side of the DC bus is called the upper arm.
  • the switching element connected to the low potential side of the DC bus is called the lower arm. Note that the polarity of the current from the switching circuit to the electric load is positive.
  • the PWM inverter outputs a voltage in a desired form by switching on and off a plurality of switching elements.
  • the inverter control device generates a switching command to the PWM inverter by PWM (pulse width modulation). For example, when converting DC power to AC power, the inverter control device obtains a duty command from the voltage command and the voltage value of the DC input. The inverter control device generates a switching command based on the comparison result between the duty command and the triangular wave as the carrier.
  • the voltage command indicates a voltage to be output from the PWM inverter.
  • the duty command is a ratio of the pulse width of the switching command.
  • the carrier frequency is sufficiently higher than the frequency of the duty command.
  • Two-phase modulation is intended to reduce switching loss by reducing the number of switching operations by operating a voltage command. In the two-phase modulation, the number of times of switching is reduced to 2/3 compared with the three-phase modulation.
  • a specific method of two-phase modulation is referred to as a two-phase modulation mode.
  • FIGS. 2 to 4 are diagrams showing changes in duty command due to two-phase modulation.
  • the description of the carrier waveform is omitted.
  • the PWM inverter is a two-level three-phase inverter.
  • the inverter control device generates a duty command from the voltage command.
  • the inverter control device generates a switching command based on a comparison result between the duty command and the carrier.
  • the PWM inverter is driven based on a switching command.
  • a zero voltage vector section and a non-zero voltage vector section appear alternately. At this time, the non-zero voltage vectors across the vertices of the carriers are the same. In the two-phase modulation, this is used to achieve the omission of switching by connecting a non-zero voltage vector.
  • the zero voltage vector section is a section where the inverter output line voltage is zero.
  • FIG. 2 is a diagram illustrating a change in duty command due to two-phase modulation in the upward mode.
  • FIG. 2 shows a two-phase modulation process in which non-zero voltage vectors are connected at a carrier peak.
  • the inverter control device fixes the voltage command of the phase that is positive among the three phases and has the maximum absolute value to the maximum constant value. Switching does not occur in the phase where the voltage command is the maximum constant value.
  • the inverter control device slides the remaining two-phase voltage commands in the positive direction while maintaining the line voltage.
  • changing the voltage command or the duty command of each phase in this way is referred to as “uplifting”.
  • the two-phase modulation mode in which switching is omitted due to the upper adjustment is referred to as “upward adjustment mode”.
  • a phase in which the voltage command is fixed so as not to cause switching is referred to as a “fixed phase”.
  • a phase that is not a stationary phase is called a “non-stationary phase”.
  • FIG. 3 is a diagram illustrating a change in the duty command due to the two-phase modulation in the lowering mode.
  • FIG. 3 shows a two-phase modulation process in which non-zero voltage vectors are connected at carrier valleys.
  • the inverter control device fixes the voltage command of the phase that has a negative value and the maximum absolute value among the three phases to a minimum constant value. Switching does not occur in the phase where the voltage command is the minimum constant value.
  • the inverter control device slides the remaining two-phase voltage commands in the negative direction while maintaining the line voltage.
  • changing the voltage command or duty command of each phase in this way is referred to as “lowering”.
  • a two-phase modulation mode in which switching is omitted due to lowering is referred to as “lowering mode”.
  • FIG. 4 is a diagram showing a change in duty command due to two-phase modulation in the shift mode.
  • FIG. 4 shows a two-phase modulation process in which the upper and lower adjustment modes are combined.
  • the inverter control device sequentially selects the phase having the maximum absolute value of the voltage command among the three phases as the fixed phase.
  • the sign of the voltage command of the phase selected as the stationary phase is positive
  • the inverter control device performs upswing.
  • the inverter control device performs lowering when the sign of the voltage command of the phase selected as the stationary phase is negative.
  • double alignment mode the two-phase modulation mode that switches between the upper and lower alignment states and omits switching will be referred to as a “double alignment mode”. It should be noted that switching between the upper and lower alignment states in the double alignment mode can be performed based on the voltage command phase instead of the magnitude and magnitude of the voltage command sign and absolute value.
  • the switching element of the PWM inverter does not switch on and off instantaneously. Therefore, a dead time is provided in order to prevent a short circuit between the switching element of the upper arm and the switching element of the lower arm. In the dead time section, the switching elements of the upper arm and the lower arm are both turned off.
  • the inverter output voltage in the dead time interval is determined by the polarity of the current. As a result, an error with respect to the voltage command occurs in the inverter output voltage. Compensating for this error is called dead time compensation.
  • the inverter control device adds or subtracts the dead time compensation value to the voltage command according to the polarity of the current.
  • the dead time compensation value as a voltage value is calculated by the following equation (1).
  • Td is the dead time length.
  • Vdc is the magnitude of the DC voltage input to the PWM inverter.
  • fc is a carrier frequency.
  • the time average value of the inverter output voltage in the section between the vertices of the carrier coincides with the voltage command.
  • the timing at which the non-zero voltage vector section appears shifts due to the dead time.
  • the inverter output voltage pulse is delayed by Td / 2 as compared with the case where there is no dead time.
  • FIG. 5 is a diagram for explaining the delay of the inverter output voltage pulse due to the dead time.
  • the duty command waveform shown in FIG. 5 is obtained by enlarging the extremely short time range of the waveform as shown in FIG.
  • FIG. 5A shows an inverter output terminal voltage of an ideal PWM inverter having no dead time.
  • the upper arm switching element is turned on under the condition that the duty command exceeds the carrier. While the upper arm switching element is on, a voltage pulse of Vdc is output from the inverter output terminal.
  • FIG. 5B shows an inverter output terminal voltage when dead time compensation is not performed for a PWM inverter having a dead time.
  • the polarity of the current is positive.
  • the PWM inverter has a dead time
  • a delay is inserted into the command to the switching element at the timing of shifting from the off state to the on state.
  • the switching elements of the upper arm and the lower arm are both turned off. Since the polarity of the current is positive, in the dead time section, the current flows through the free wheel diode in parallel with the lower arm switching element. For this reason, the low potential side voltage of the inverter DC input voltage appears as the inverter output terminal voltage via the freewheeling diode. Therefore, the inverter output terminal voltage is zero in the dead time interval. As a result, the width of the voltage pulse is reduced as compared with FIG.
  • FIG. 5C shows the inverter output terminal voltage when dead time compensation is performed on a PWM inverter with dead time.
  • the inverter control device performs dead time compensation by converting a dead time compensation value as a voltage value calculated by the equation (1) into a value as a duty command.
  • the width of the voltage pulse is compensated at the timing when the switching element of the upper arm shifts from the off state to the on state by dead time compensation. Further, the width of the voltage pulse is compensated at the timing when the switching element of the upper arm shifts from the on state to the off state. As a result, the width of the voltage pulse coincides with the case of FIG. When attention is paid only to the section from the peak to the valley of the carrier, the width of the voltage pulse is reduced in FIG.
  • the load current When power is supplied from the PWM inverter to the electric load, the load current includes a current ripple due to switching. Also, noise may occur with switching. In order to avoid current ripple and noise, the load current sampling timing is often set near the center of the zero voltage vector section. That is, the load current sampling timing is often set to the timing of the top of the carrier.
  • FIG. 6 is a diagram for explaining a mechanism in which a ripple component is superimposed on a load current.
  • FIG. 6 shows a load current in the case where two-phase modulation is performed in the upward mode.
  • Average current indicates an average value of the load current.
  • the timing of the vertex of the carrier when there is no dead time, the timing of the vertex of the carrier is near the center of the zero voltage vector section or the non-zero voltage vector section. However, when there is a dead time, the timing of the vertex of the carrier deviates from the vicinity of the center of the zero voltage vector section or the non-zero voltage vector section. Thereby, the current sampling performed at the timing of the carrier vertex is performed at a timing relatively shifted from the vicinity of the center of the zero voltage vector section. Furthermore, when performing two-phase modulation, the timing of the top of the carrier is not necessarily within the zero voltage vector interval. In the example of FIG. 6, the timing of the carrier valley is in the zero voltage vector interval, but the timing of the carrier peak is in the non-zero voltage vector interval.
  • FIG. 7 is a diagram illustrating an example of a simulation result in which a current pulsation having a period three times the inverter output frequency is generated in the load current.
  • FIG. 7 shows a case where current sampling is performed only at the valley of the carrier.
  • FIG. 7 shows a case where two-phase modulation is performed in the shift mode.
  • Iq is a waveform indicating the load current.
  • the Iq average is a waveform indicating an average current actually flowing through the electric load.
  • the Iq sampling value is a waveform indicating a sampling current value obtained by current sampling.
  • the ripple component is included in the sampling current, it cannot be detected by the inverter control device unless specially devised. For this reason, it is difficult to remove the ripple component.
  • the current pulsation is manifested by switching between the upper and lower states in the two-phase modulation.
  • the sampling current value at the timing of only one of the peak and valley of the carrier includes an error with respect to the average value of the load current.
  • the sampling current value at the timing of only the carrier valley is larger than the average value of the load current.
  • the sampling current value at the timing of only the carrier peak is smaller than the average value of the load current.
  • the sampling current value at the timing of only the carrier valley is smaller than the average value of the load currents in the lowering state. In the lowering state, the sampling current value at the timing of only the carrier peak is larger than the average value of the load current. For this reason, the Iq sampling value deviates from the Iq average.
  • FIG. 8 is a configuration diagram of the inverter control device according to Embodiment 1 of the present invention.
  • a PWM inverter (not shown) is connected to the inverter control device.
  • An electrical load (not shown) is connected to the PWM inverter.
  • the inverter control device is configured to perform current control of the electric load.
  • the electric load is an AC motor.
  • the inverter control apparatus includes a current command calculation unit 1, a current control unit 3, a first coordinate converter 5, a second coordinate converter 8, a two-phase modulation processing unit 10, a dead time compensation unit 12, a PWM processing unit 14, An integrator 17 and a two-phase modulation mode setting means 19 are provided.
  • the two-phase modulation mode setting unit 19 includes a current pulsation frequency calculation unit 19a, a prohibited frequency band information recording unit 19c, a first determination unit 19e, a second determination unit 19g, and a power loss calculation unit 19h.
  • the current command calculation means 1 outputs a current command 2.
  • the detection current 4 is detected from an AC motor that is an electric load.
  • the detection current 4 is an AC signal.
  • the first coordinate converter 5 converts the detected current 4 into a detected current 6 on dq rotation coordinates.
  • the first coordinate converter 5 outputs a detection current 6.
  • the detection current 4 and the detection current 6 correspond to a sampling current.
  • the current control means 3 performs a current control process so that the current command 2 and the detected current 6 match.
  • the current control means 3 generates a duty command 7 by performing a current control process.
  • the current control means 3 outputs a duty command 7.
  • the duty command 7 indicates ON or OFF of the switching voltage pulse of the PWM inverter.
  • the duty command is converted from the voltage command by the following equation (2).
  • Vd * and Vq * are voltage commands on dq rotation coordinates.
  • Dd * and Dq * are duty commands.
  • Vdc is the voltage of the PWM inverter DC input section.
  • the second coordinate converter 8 converts the duty command 7 into a duty command 9 on stationary coordinates.
  • the duty command 9 has a value in the range of ⁇ 1 to 1.
  • the two-phase modulation mode setting means 19 outputs a two-phase modulation mode command 20.
  • the two-phase modulation mode command 20 designates in which two-phase modulation mode the two-phase modulation processing means 10 performs the two-phase modulation.
  • the two-phase modulation processing means 10 performs a two-phase modulation process based on the duty command 9 and the two-phase modulation mode command 20.
  • the two-phase modulation processing means 10 outputs a duty command 11 that has been subjected to two-phase modulation processing.
  • the two-phase modulation processing unit 10 sets a phase having a positive value and a maximum absolute value in the duty command 9 as a fixed phase.
  • the two-phase modulation processing means 10 slides the value of the fixed phase duty command to 1.
  • the two-phase modulation processing means 10 adds the same value as the slide amount with respect to the fixed phase duty command to the non-fixed phase duty command.
  • the two-phase modulation processing unit 10 sets a phase having a negative value and a maximum absolute value in the duty command 9 as a fixed phase.
  • the two-phase modulation processing means 10 slides the value of the fixed phase duty command to -1.
  • the two-phase modulation processing means 10 subtracts the same value as the sliding amount with respect to the fixed phase duty command from the non-fixed phase duty command.
  • the two-phase modulation processing unit 10 sets the phase having the maximum absolute value in the duty command 9 as a fixed phase.
  • the two-phase modulation processing means 10 performs upper adjustment when the sign of the fixed phase duty command is positive.
  • the two-phase modulation processing means 10 performs lowering when the sign of the fixed phase duty command is negative.
  • the duty command 9 When the electric load is a three-phase AC motor, the duty command 9 has an AC sine wave waveform whose phase is shifted by 2 ⁇ / 3 as shown in FIG. Therefore, the phase having the maximum absolute value and the polarity of the duty command 9 can be determined from the phase of the duty command 9. That is, the two-phase modulation processing means 10 can also determine the fixed phase based on the phase of the duty command 9.
  • the dead time compensation means 12 performs dead time compensation for the duty command 11. However, in the stationary phase, no dead time compensation is required because switching is not performed.
  • the dead time compensation means 12 performs dead time compensation according to the current polarity in the non-fixed phase. Since the calculated value of the equation (1) is a voltage value, the dead time compensation means 12 performs dead time compensation using the dead time compensation value converted into a value as a duty command.
  • the dead time compensation value converted into a value as a duty command is calculated by the following equation (3).
  • the dead time compensation means 12 outputs the duty command 13 after dead time compensation.
  • the PWM processing unit 14 converts the duty command 13 into the switching command 15 by performing comparison with the carrier.
  • the PWM processing means 14 outputs a switching command 15.
  • the PWM inverter is driven based on the switching command 15.
  • the frequency command 16 corresponds to the inverter output frequency.
  • the frequency command 16 also corresponds to the voltage applied to the AC motor and the frequency of the current flowing through the AC motor.
  • the integrator 17 performs an integration process on the frequency command 16.
  • the frequency command 16 becomes a phase signal 18 by integration processing.
  • the phase signal 18 is used in the first coordinate converter 5 and the second coordinate converter 8. A plurality of methods for acquiring and calculating the frequency command 16 and the phase signal 18 are known depending on the type and control method of the AC motor, but the description thereof is omitted.
  • the current sampling is performed at the timing of only the peak or the valley of the carrier.
  • the sampling current value taken into the inverter control device is constant.
  • the load current that actually flows through the AC motor pulsates with the switching between the upper and lower positions.
  • one of the causes of this current pulsation is the delay of the inverter output voltage pulse due to the dead time.
  • the influence of the delay becomes relatively greater as the amplitude of the inverter output voltage is smaller. For this reason, the smaller the amplitude of the inverter output voltage, the larger the amplitude of the current pulsation.
  • the case where the amplitude of the inverter output voltage is small is, for example, a case where an AC motor that is an electric load is driven at a low speed.
  • the current pulsation When current sampling is performed at the timing of only the peak or the valley of the carrier and two-phase modulation is performed in the shift mode, the current pulsation has a frequency three times the frequency of the duty command. Since this current pulsation has a rectangular wave shape, it includes a harmonic component. For this reason, the current pulsation includes a component 3x times the inverter output frequency, where x is an odd number.
  • the current pulsation frequency calculation means 19 a calculates a frequency that is 3 ⁇ times the inverter output frequency.
  • the current pulsation frequency calculation means 19a outputs the calculated frequency as frequency information 19b.
  • the frequency information 19b is a frequency component of current pulsation that accompanies switching between the up-shift state and the down-shift state in the double shift mode.
  • the prohibited frequency band information recording means 19c records in advance frequency band information 19d indicating a frequency band that is not desirably included in the load current.
  • the frequency band information 19d is, for example, the resonance frequency of the AC motor and its mechanical load.
  • the first determination unit 19e determines whether or not the frequency information 19b is included in the frequency band information 19d.
  • the first determination means 19e outputs a two-phase modulation mode command 19f based on the determination result.
  • the two-phase modulation mode command 19f indicates whether or not to perform two-phase modulation in the shift mode.
  • the first determination unit 19e When the frequency information 19b is not included in the frequency band information 19d, the first determination unit 19e outputs a two-phase modulation mode command 19f that designates the shift mode as the two-phase modulation mode. On the other hand, when the frequency information 19b is included in the frequency band information 19d, the first determination unit 19e outputs a two-phase modulation mode command 19f that does not designate the shift mode as the two-phase modulation mode.
  • the second determination unit 19g outputs a two-phase modulation mode command 20 based on the two-phase modulation mode command 19f.
  • the second determination unit 19g similarly gives the two-phase modulation mode command 20 that designates the registration mode as the two-phase modulation mode. Output.
  • the second determination unit 19g selects either the upper shift mode or the lower shift mode as the two-phase modulation mode.
  • the second determination unit 19g selects either the upshift mode or the downshift mode based on the power loss 19i in each switching element of the PWM inverter.
  • the power loss 19i is output from the power loss calculation means 19h.
  • the power loss in the switching element of the PWM inverter will be described.
  • the upper arm of the PWM inverter corresponding to the fixed phase is kept on.
  • a current flows through the switching element of the upper arm, and power loss occurs.
  • no power loss occurs in the switching element of the lower arm.
  • the power loss in the entire PWM inverter is reduced.
  • the switching element is, for example, an IGBT or an FWD.
  • the second determination unit 19g determines whether the upper shift mode or the lower shift mode 19g is based on the power loss 19i of each switching element. Select one of the shift modes. Specifically, the second determination unit 19g determines which of the switching elements of the PWM inverter the switching element with the maximum power loss 19i belongs to the upper arm group or the lower arm group. When the switching element that maximizes the power loss 19i belongs to the upper arm group, the second determination unit 19g selects the lowering mode. When the switching element that maximizes the power loss 19i belongs to the lower arm group, the second determination unit 19g selects the upward mode. Then, the second determination means 19g outputs a two-phase modulation mode command 20 that designates the selected one as the two-phase modulation mode.
  • the power loss calculating unit 19h calculates the power loss 19i of each switching element from the duty command 11, the detected current 4, and the like. In the present embodiment, a specific description of the calculation method of the power loss 19i is omitted. A method for calculating the power loss 19i is provided by a power module manufacturer in the form of an application note or the like. The calculation method of the power loss 19i is described in "Transistor technology SPECIAL No. 85 revision * Practical power electronics (P87 to P91)".
  • the inverter control device in the present embodiment increases the accuracy of dead time compensation processing. Specifically, the dead time compensation unit 12 changes the dead time compensation value represented by the equation (3) based on the two-phase modulation mode command 20.
  • FIGS. 9 and 10 are diagrams for explaining the dead time compensation in the first embodiment of the present invention.
  • FIG. 9 shows an example in which the duty command is switched from the top-up state to the bottom-up state.
  • FIG. 10 shows an example in which the duty command is switched from the bottom-up state to the top-up state.
  • FIGS. 9 and 10 show the U phase among the three phases.
  • the U phase shown in FIG. 9 is a non-stationary phase when in the up-aligned state, and is a stationary phase when in the down-aligned state.
  • the V phase and the W phase are non-stationary phases when in the lowering state.
  • This deviation of the inverter output terminal voltage is caused by switching associated with switching between the upper and lower states. Therefore, the deviation of the inverter output terminal voltage cannot be compensated by a process of adding a dead time compensation value to the U-phase duty command as in the normal dead time compensation.
  • the dead time compensation values corresponding to the V phase and the W phase are changed so that the change timings of the V-phase and W-phase inverter output terminal voltages that have become non-fixed phases are delayed by Td. Thereby, although the generation timing of the voltage vector is delayed, the line voltage applied to the AC motor is maintained.
  • Specific processing for the duty command of the V phase and the W phase, which have become non-fixed phases, is performed as follows.
  • the dead time compensation means 12 changes the dead time compensation value corresponding to the V phase to zero. The same applies to the W phase.
  • the inverter control device improves the dead time compensation processing as follows.
  • the inverter control device calculates the frequency component of the rectangular wave-like current pulsation that occurs in association with the switching between the up-shifted state and the down-shifted state. Then, when the frequency component of the current pulsation is included in the pre-recorded frequency band, the inverter control device sets the two-phase modulation mode to the upshift mode or the downshift mode instead of the double shift mode. That is, the occurrence of current pulsation is suppressed by fixing the duty command to the up-shifted state or the down-shifted state. Thereby, excitation of mechanical resonance components such as a motor driven by the PWM inverter can be prevented. As a result, noise and vibration caused by current pulsation can be suppressed.
  • the inverter control device selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the power loss 19i of each switching element.
  • the inverter control device selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the power loss 19i of each switching element.
  • the inverter control device in the present embodiment increases the accuracy of the dead time compensation processing based on the two-phase modulation mode command 20. As a result, it is possible to appropriately compensate for a voltage error that occurs due to unintended switching associated with switching between the upper and lower states. As a result, a highly accurate inverter output voltage can be obtained.
  • the inverter control device selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the power loss 19i of each switching element.
  • the same effect can be obtained by selecting the two-phase modulation mode based on the average power loss of the upper arm group and the average power loss of the lower arm group.
  • the inverter control device compares the average power loss of the upper arm group with the average power loss of the lower arm group.
  • the inverter control device selects the uplift mode when the average value of the power loss of the upper arm group is smaller than the average value of the power loss of the lower arm group.
  • the inverter control device selects the lowering mode when the average power loss of the upper arm group is larger than the average power loss of the lower arm group.
  • the inverter control device selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the power loss 19i of each switching element.
  • the same effect can be obtained by selecting the two-phase modulation mode based on the junction temperature of each switching element.
  • the inverter control device determines which of the switching elements, the switching element having the maximum junction temperature belongs to the upper arm group or the lower arm group. When the switching element having the maximum junction temperature belongs to the lower arm group, the inverter control device selects the uplift mode. When the switching element having the maximum junction temperature belongs to the upper arm group, the inverter control device selects the lowering mode.
  • Embodiment 2 the operation of the second determination means 19g is different from that of the first embodiment.
  • the difference from the first embodiment will be mainly described.
  • the second determination unit 19g selects either the upper mode or the lower mode as the two-phase modulation mode based on the power loss or the junction temperature of the switching element. However, in the present embodiment, the second determination unit 19g selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the electric energy for each switching element.
  • the amount of power is an integrated value of power loss.
  • the two-phase modulation mode is selected based on the amount of power for each switching element so as to alleviate the non-uniformity of the current burden. As a result, fatigue concentration on a specific switching element can be prevented and the life of the power module can be extended.
  • a large-capacity PWM inverter has a large main circuit structure on which a power module is mounted. For this reason, the temperature of each switching element may become non-uniform
  • the two-phase modulation mode can be selected based on the electric energy for each switching element so as to alleviate the non-uniformity of current burden. As a result, fatigue concentration on a specific switching element can be prevented and the life of the power module can be extended.
  • a system having a plurality of mechanical resonance frequencies, such as an elevator is higher than the shift mode.
  • the time during which the two-phase modulation is performed in the shift mode or the shift mode is relatively long. For this reason, the selection method of the two-phase modulation mode based on the electric energy in the present embodiment is particularly effective in preventing fatigue concentration on a specific switching element.
  • FIG. FIG. 11 is a configuration diagram of the inverter control device according to the third embodiment of the present invention. Hereinafter, the difference from the first embodiment will be mainly described.
  • the inverter control device includes a two-phase modulation mode setting unit 21, an inverter output voltage calculation unit 22, a current compensation value calculation unit 24, and an adder 26.
  • the inverter control device estimates the difference between the sampling current value and the average value of the load current. Then, the inverter control device eliminates the influence of the current pulsation by compensating the detected current 6. Therefore, the operation of the two-phase modulation mode setting means 21 simply designates any of the shift mode, the upper shift mode, and the lower shift mode as the two-phase modulation mode.
  • the current pulsation is caused by the current ripple by PWM and the sampling timing of the load current.
  • the influence of current ripple is reduced if current sampling is performed near the center of the zero voltage vector section or the non-zero voltage vector section.
  • current pulsation occurs because the non-zero voltage vector section is delayed by Td / 2 due to the dead time. Therefore, a current value at a time point Td / 2 ahead of the sampling timing is predicted.
  • the sampling current value is compensated by the difference value between the sampling current value and the predicted current value. Compensating the sampling current value in this way corresponds to performing current control using the predicted current value.
  • an IPM is taken as an example of the AC motor.
  • the IPM is an embedded magnet type permanent magnet synchronous motor.
  • the circuit equation of IPM is the following equation (4).
  • Vd and Vq are dq axis voltages.
  • id and iq are dq axis currents.
  • is an electrical angular frequency.
  • Ld is a d-axis inductance.
  • Lq is a q-axis inductance.
  • R is a resistance.
  • is an induced voltage constant.
  • equation (4) When equation (4) is transformed into a state equation, the following equation (5) is obtained.
  • p is a differential operator.
  • Equation (5) corresponds to the current differential value of the dq axis.
  • Td / 2 which is time
  • equation (6) is obtained.
  • idsmp and iqsmp are sampling current values.
  • idsmp and iqsmp correspond to the detection current 6.
  • idcmp and iqcmp are dq axis current compensation values.
  • idcmp and iqcmp correspond to the current compensation signal 25.
  • Vdinv and Vqinv are dq axis voltages.
  • the current compensation value calculation means 24 calculates a current compensation value by the equation (6) using an electric load model.
  • the current compensation value calculation means 24 outputs a current compensation signal 25.
  • the adder 26 adds the current compensation signal 25 to the detected current 6.
  • the current control means 3 performs a current control process using the compensated detection current 6. Thereby, a current ripple component can be compensated and current pulsation can be suppressed. That is, the adder 26 functions as current compensation means.
  • Vdinv and Vqinv are calculated based on the duty command 11 and the two-phase modulation mode command 20 in consideration of PWM.
  • the sampling timing When current sampling is performed at the timing of only the carrier peak in the bottom-up state, the sampling timing is within the zero voltage vector interval. In this case, the dq axis voltage is zero. In addition, when current sampling is performed at the timing of only the carrier valley in the upward state, the sampling timing is within the zero voltage vector interval. Also in this case, the dq-axis voltage is zero.
  • the inverter output voltage calculation means 22 estimates the voltage vector output from the PWM inverter in consideration of the PWM. For example, let us consider a case in which current sampling is performed at the timing of only the carrier peak in the upward state.
  • the U phase is a stationary phase
  • the switching element of the upper arm of the U phase is turned on.
  • the switching elements of the upper arms of the V phase and the W phase are turned off.
  • the inverter output voltages Vuinv, Vvinv, and Vwinv are expressed by the following equation (7).
  • the equation (7) is converted onto the ⁇ phase which is the stationary two-phase coordinate
  • the following equation (8) is obtained.
  • V ⁇ inv and V ⁇ inv are inverter output voltages on stationary two-phase coordinates.
  • FIG. 12 and 13 are tables for estimating the inverter output voltage in the third embodiment of the present invention.
  • FIG. 12 describes information when current sampling is performed at the timing of only the carrier peak in the upward state.
  • FIG. 13 shows information when current sampling is performed at the timing of only the carrier valley in the bottom-up state.
  • the voltage command phase (U) is a phase in which the U-phase voltage command or the duty command becomes a cos signal.
  • the inverter output voltage coefficient is a coefficient that becomes an inverter output voltage when multiplied by Vdc.
  • the inverter output voltage calculation means 22 determines the fixed phase when the two-phase modulation is performed based on the duty command 11 and the two-phase modulation mode command 20. And the inverter output voltage calculation means 22 calculates inverter output voltage V (alpha) inv and V (beta) inv based on the information of FIG.12 and FIG.13. V ⁇ inv and V ⁇ inv are converted into voltages Vdinv and Vqinv on the dq rotation coordinates by the following equation (9). Vdinv and Vqinv correspond to the inverter voltage signal 23.
  • the current compensation value calculation means 24 calculates the equation (6) using the calculation result of the equation (9). Note that ⁇ is a signal for coordinate conversion. ⁇ corresponds to the phase signal 18.
  • the inverter control device in the present embodiment predicts a current value at a time point that is Td / 2 ahead of the sampling timing.
  • the inverter control device eliminates the influence of the current pulsation by compensating the sampling current value with a difference value between the sampling current value and the predicted current value. Thereby, excitation of mechanical resonance components such as a motor driven by the PWM inverter can be prevented. As a result, noise and vibration caused by current pulsation can be suppressed.
  • the present invention is applied to a two-level three-phase inverter.
  • the present invention may be applied to, for example, a three-level three-phase inverter. In this case, the same effect can be obtained by suppressing the influence of the current pulsation.
  • the switching element and the diode element may be formed of a wide band gap semiconductor.
  • Wide band gap semiconductors have high voltage resistance and allowable current density. For this reason, a switching element and a diode element can be reduced in size by using a wide band gap semiconductor.
  • an inverter control device incorporating these elements can be miniaturized. That is, the inverter control device can be reduced in size by using a switching element and a diode element formed of a wide band gap semiconductor.
  • the inverter control device can be used for an inverter that drives an electric load.
  • 1 current command calculation means 2 current command, 3 current control means, 4, 6 detection current, 5 first coordinate converter, 7, 9, 11, 13 duty command, 8 second coordinate converter, 10 2 phase Modulation processing means, 12 dead time compensation means, 14 PWM processing means, 15 switching command, 16 frequency command, 17 integrator, 18 phase signal, 19 two-phase modulation mode setting means, 19a current pulsation frequency calculation means, 19b frequency information, 19c Prohibited frequency band information recording means, 19d frequency band information, 19e first determination means, 19f, 20 two-phase modulation mode command, 19g second determination means, 19h power loss calculation means, 19i power loss, 21 two-phase modulation Mode setting means, 22 Inverter output voltage calculation means, 23 Inverter voltage signal, 24 Current ⁇ calculation unit, 25 current compensation signal, 26 an adder

Abstract

Provided is an inverter control device capable of suppressing the noise and oscillation attributable to current ripples in an electric load. The inverter control device comprises: a two-phase modulation mode setting means (19) having a first determination means (19e) and designating a two-phase modulation mode on the basis of the output frequency (16) of an inverter; and a two-phase modulation processing means (10) for carrying out a two-phase modulation on the basis of a duty command (7) and the two-phase modulation mode. When an odd number is denoted by x, the first determination means (19e) determines whether a frequency of 3x-times the output frequency (16) of the inverter is included in a preset frequency band or not. When it is determined that the 3x-times frequency is included in the frequency band, the two-phase modulation mode setting means (19) designates an upward sliding mode or a downward sliding mode as a two-phase modulation mode. When it is determined that the 3x-times frequency is not included in the frequency band, a two-way sliding mode in which an upward sliding state and a downward sliding state are switched according to the absolute value and polarity of the duty command (7) is designated as the two-phase modulation mode.

Description

インバータ制御装置Inverter control device
 本発明は、インバータ制御装置に関するものである。 The present invention relates to an inverter control device.
 下記特許文献1には、インバータを備えたモータ制御装置が記載されている。このモータ制御装置は、2相変調によりインバータのスイッチングを制御する。モータ制御装置は、両寄せモードで2相変調を実施する際に、上寄せ状態と下寄せ状態とを一定時間ごとに切り替える。 The following Patent Document 1 describes a motor control device including an inverter. This motor control device controls switching of the inverter by two-phase modulation. The motor control device switches between the upper alignment state and the lower alignment state at regular intervals when performing two-phase modulation in the double alignment mode.
日本特許第4426433号公報Japanese Patent No. 4426433
 特許文献1に記載のモータ制御装置では、インバータによって駆動されるモータの電流脈動に起因する騒音及び振動が発生する。 In the motor control device described in Patent Document 1, noise and vibration are generated due to current pulsation of a motor driven by an inverter.
 本発明は、上記の課題を解決するためになされた。その目的は、電気負荷の電流脈動に起因する騒音及び振動を抑制できるインバータ制御装置を提供することである。 The present invention has been made to solve the above problems. An object of the present invention is to provide an inverter control device that can suppress noise and vibration caused by current pulsation of an electric load.
 本発明に係るインバータ制御装置は、第1の判定手段を有し、インバータの出力周波数に基づいてインバータを駆動するための2相変調モードを指定する2相変調モード設定手段と、電圧指令及び2相変調モード設定手段により指定された2相変調モードに基づいて2相変調を実施する2相変調処理手段と、を備え、第1の判定手段は、xを奇数として、インバータの出力周波数の3x倍周波数が予め設定された周波数帯域に含まれるか否かを判定し、2相変調モード設定手段は、インバータの出力周波数の3x倍周波数が周波数帯域に含まれると判定された場合は上寄せモード又は下寄せモードを2相変調モードとして指定し、インバータの出力周波数の3x倍周波数が周波数帯域に含まれないと判定された場合は電圧指令の絶対値及び極性に応じて上寄せ状態と下寄せ状態とを切り替える両寄せモードを2相変調モードとして指定するものである。 The inverter control device according to the present invention includes first determination means, two-phase modulation mode setting means for designating a two-phase modulation mode for driving the inverter based on the output frequency of the inverter, a voltage command, and 2 Two-phase modulation processing means for performing two-phase modulation based on the two-phase modulation mode designated by the phase modulation mode setting means, wherein the first determination means sets x to an odd number, and 3x of the output frequency of the inverter It is determined whether or not the double frequency is included in a preset frequency band, and the two-phase modulation mode setting means increases the mode when it is determined that the frequency band of 3x times the output frequency of the inverter is included in the frequency band. Alternatively, when the downshift mode is designated as the two-phase modulation mode and it is determined that the frequency output 3 × times the inverter output frequency is not included in the frequency band, It is to specify both asked mode switching between top justify state and lower gripping state as a two-phase modulation mode in accordance with the sex.
 本発明によれば、インバータによって駆動される電気負荷の電流脈動に起因する騒音及び振動を抑制できる。 According to the present invention, noise and vibration caused by current pulsation of an electric load driven by an inverter can be suppressed.
PWMインバータのスイッチング回路図である。It is a switching circuit diagram of a PWM inverter. 上寄せモードでの2相変調によるデューティ指令の変化を示す図である。It is a figure which shows the change of the duty instruction | command by the two-phase modulation in the top adjustment mode. 下寄せモードでの2相変調によるデューティ指令の変化を示す図である。It is a figure which shows the change of the duty command by the two-phase modulation in the bottoming-up mode. 両寄せモードでの2相変調によるデューティ指令の変化を示す図である。It is a figure which shows the change of the duty instruction | command by the two-phase modulation in the double shift mode. デッドタイムによるインバータ出力電圧パルスの遅れを説明するための図である。It is a figure for demonstrating the delay of the inverter output voltage pulse by dead time. 負荷電流にリプル成分が重畳する仕組みを説明するための図である。It is a figure for demonstrating the mechanism in which a ripple component is superimposed on a load current. 負荷電流にインバータ出力周波数の3倍の周期の電流脈動が発生するシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result in which the current pulsation of a period 3 times the inverter output frequency generate | occur | produces in load current. 本発明の実施の形態1におけるインバータ制御装置の構成図である。It is a block diagram of the inverter control apparatus in Embodiment 1 of this invention. 本発明の実施の形態1におけるデッドタイム補償を説明するための図である。It is a figure for demonstrating the dead time compensation in Embodiment 1 of this invention. 本発明の実施の形態1におけるデッドタイム補償を説明するための図である。It is a figure for demonstrating the dead time compensation in Embodiment 1 of this invention. 本発明の実施の形態3におけるインバータ制御装置の構成図である。It is a block diagram of the inverter control apparatus in Embodiment 3 of this invention. 本発明の実施の形態3におけるインバータ出力電圧推定用の表である。It is a table | surface for inverter output voltage estimation in Embodiment 3 of this invention. 本発明の実施の形態3におけるインバータ出力電圧推定用の表である。It is a table | surface for inverter output voltage estimation in Embodiment 3 of this invention.
 添付の図面を参照して、本発明を詳細に説明する。各図では、同一又は相当する部分に同一の符号を付している。重複する説明は、適宜簡略化あるいは省略する。なお、以下の実施の形態によって本発明が限定されるものではない。 The present invention will be described in detail with reference to the accompanying drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals. The overlapping description will be simplified or omitted as appropriate. Note that the present invention is not limited to the following embodiments.
実施の形態1.
 インバータ制御装置は、PWMインバータに接続される。PWMインバータは、電気負荷に接続される。電気負荷は、例えば、交流モータである。
Embodiment 1 FIG.
The inverter control device is connected to the PWM inverter. The PWM inverter is connected to an electrical load. The electric load is, for example, an AC motor.
図1は、PWMインバータのスイッチング回路図である。図1は、2レベル3相インバータのスイッチング回路を示している。スイッチング回路は、直流母線から直流電力の供給を受ける。直流母線の高電位側と低電位側との間には、2つのスイッチング素子が直列に接続されている。スイッチング回路は、直列に接続されたスイッチング素子を3対備えている。3対のスイッチング素子は、並列に接続されている。それぞれのスイッチング素子対は、電気負荷のU相、V相及びW相のいずれかに対応する。各スイッチング素子には、還流ダイオードが並列に接続されている。直流母線の高電位側に接続されているスイッチング素子を上アームと呼ぶ。直流母線の低電位側に接続されているスイッチング素子を下アームと呼ぶ。なお、スイッチング回路から電気負荷へ向かう電流の極性を正とする。 FIG. 1 is a switching circuit diagram of a PWM inverter. FIG. 1 shows a switching circuit of a two-level three-phase inverter. The switching circuit is supplied with DC power from the DC bus. Two switching elements are connected in series between the high potential side and the low potential side of the DC bus. The switching circuit includes three pairs of switching elements connected in series. The three pairs of switching elements are connected in parallel. Each switching element pair corresponds to one of the U phase, V phase, and W phase of the electrical load. A free-wheeling diode is connected to each switching element in parallel. The switching element connected to the high potential side of the DC bus is called the upper arm. The switching element connected to the low potential side of the DC bus is called the lower arm. Note that the polarity of the current from the switching circuit to the electric load is positive.
PWMインバータは、複数のスイッチング素子のオン及びオフを切り替えることで、所望の形態の電圧を出力する。インバータ制御装置は、PWM(pulse width modulation)によってPWMインバータへのスイッチング指令を生成する。例えば、直流電力を交流電力に変換する場合、インバータ制御装置は、電圧指令及び直流入力の電圧値からデューティ指令を求める。インバータ制御装置は、デューティ指令とキャリアである三角波との比較結果に基づいてスイッチング指令を生成する。なお、電圧指令は、PWMインバータから出力させたい電圧を示す。デューティ指令は、スイッチング指令のパルス幅の割合である。キャリアの周波数は、デューティ指令の周波数と比較して十分に高い。 The PWM inverter outputs a voltage in a desired form by switching on and off a plurality of switching elements. The inverter control device generates a switching command to the PWM inverter by PWM (pulse width modulation). For example, when converting DC power to AC power, the inverter control device obtains a duty command from the voltage command and the voltage value of the DC input. The inverter control device generates a switching command based on the comparison result between the duty command and the triangular wave as the carrier. The voltage command indicates a voltage to be output from the PWM inverter. The duty command is a ratio of the pulse width of the switching command. The carrier frequency is sufficiently higher than the frequency of the duty command.
PWMインバータのスイッチング素子では、導通損失及びスイッチングに伴うスイッチング損失等が発生する。これらの損失を抑制するための制御技術の1つが2相変調である。2相変調は、電圧指令を操作してスイッチング回数を低減することでスイッチング損失の削減を図るものである。2相変調では、3相変調と比較してスイッチング回数が2/3に低減される。以下、2相変調の具体的な方式を2相変調モードと呼ぶ。 In the switching element of the PWM inverter, conduction loss, switching loss accompanying switching, and the like occur. One control technique for suppressing these losses is two-phase modulation. Two-phase modulation is intended to reduce switching loss by reducing the number of switching operations by operating a voltage command. In the two-phase modulation, the number of times of switching is reduced to 2/3 compared with the three-phase modulation. Hereinafter, a specific method of two-phase modulation is referred to as a two-phase modulation mode.
図2から図4を参照して、複数の2相変調モードについて説明する。図2から図4は、2相変調によるデューティ指令の変化を示す図である。図2から図4では、キャリア波形の記載を省略している。なお、PWMインバータは、2レベル3相インバータとする。 A plurality of two-phase modulation modes will be described with reference to FIGS. 2 to 4 are diagrams showing changes in duty command due to two-phase modulation. In FIG. 2 to FIG. 4, the description of the carrier waveform is omitted. The PWM inverter is a two-level three-phase inverter.
インバータ制御装置は、電圧指令からデューティ指令を生成する。インバータ制御装置は、デューティ指令とキャリアとの比較結果に基づいてスイッチング指令を生成する。PWMインバータは、スイッチング指令に基づいて駆動される。インバータ出力電圧には、ゼロ電圧ベクトル区間と非ゼロ電圧ベクトル区間とが交互に現れる。このとき、キャリアの頂点間を挟む非ゼロ電圧ベクトルは同じである。2相変調では、このことを利用して、非ゼロ電圧ベクトルを接続することでスイッチングの省略を達成する。なお、ゼロ電圧ベクトル区間とは、インバータ出力線間電圧がゼロとなる区間である。 The inverter control device generates a duty command from the voltage command. The inverter control device generates a switching command based on a comparison result between the duty command and the carrier. The PWM inverter is driven based on a switching command. In the inverter output voltage, a zero voltage vector section and a non-zero voltage vector section appear alternately. At this time, the non-zero voltage vectors across the vertices of the carriers are the same. In the two-phase modulation, this is used to achieve the omission of switching by connecting a non-zero voltage vector. The zero voltage vector section is a section where the inverter output line voltage is zero.
図2は、上寄せモードでの2相変調によるデューティ指令の変化を示す図である。図2は、キャリアの山で非ゼロ電圧ベクトルの接続を行う2相変調処理を示している。この場合、インバータ制御装置は、3相のうち正値でありかつ絶対値が最大となる相の電圧指令を最大一定値に固定する。電圧指令が最大一定値の相では、スイッチングが発生しない。インバータ制御装置は、線間電圧を維持したまま残りの2相の電圧指令を正方向にスライドさせる。以下、このように各相の電圧指令又はデューティ指令を変化させることを「上寄せ」と呼ぶ。上寄せによってスイッチングを省略する2相変調モードを「上寄せモード」と呼ぶ。なお、スイッチングが発生しないように電圧指令が固定された相を「固定相」と呼ぶ。固定相でない相を「非固定相」と呼ぶ。 FIG. 2 is a diagram illustrating a change in duty command due to two-phase modulation in the upward mode. FIG. 2 shows a two-phase modulation process in which non-zero voltage vectors are connected at a carrier peak. In this case, the inverter control device fixes the voltage command of the phase that is positive among the three phases and has the maximum absolute value to the maximum constant value. Switching does not occur in the phase where the voltage command is the maximum constant value. The inverter control device slides the remaining two-phase voltage commands in the positive direction while maintaining the line voltage. Hereinafter, changing the voltage command or the duty command of each phase in this way is referred to as “uplifting”. The two-phase modulation mode in which switching is omitted due to the upper adjustment is referred to as “upward adjustment mode”. A phase in which the voltage command is fixed so as not to cause switching is referred to as a “fixed phase”. A phase that is not a stationary phase is called a “non-stationary phase”.
図3は、下寄せモードでの2相変調によるデューティ指令の変化を示す図である。図3は、キャリアの谷で非ゼロ電圧ベクトルの接続を行う2相変調処理を示している。この場合、インバータ制御装置は、3相のうち負値でありかつ絶対値が最大となる相の電圧指令を最小一定値に固定する。電圧指令が最小一定値の相では、スイッチングが発生しない。インバータ制御装置は、線間電圧を維持したまま残りの2相の電圧指令を負方向にスライドさせる。以下、このように各相の電圧指令又はデューティ指令を変化させることを「下寄せ」と呼ぶ。下寄せによってスイッチングを省略する2相変調モードを「下寄せモード」と呼ぶ。 FIG. 3 is a diagram illustrating a change in the duty command due to the two-phase modulation in the lowering mode. FIG. 3 shows a two-phase modulation process in which non-zero voltage vectors are connected at carrier valleys. In this case, the inverter control device fixes the voltage command of the phase that has a negative value and the maximum absolute value among the three phases to a minimum constant value. Switching does not occur in the phase where the voltage command is the minimum constant value. The inverter control device slides the remaining two-phase voltage commands in the negative direction while maintaining the line voltage. Hereinafter, changing the voltage command or duty command of each phase in this way is referred to as “lowering”. A two-phase modulation mode in which switching is omitted due to lowering is referred to as “lowering mode”.
図4は、両寄せモードでの2相変調によるデューティ指令の変化を示す図である。図4は、上寄せモードと下寄せモードとを組み合わせた2相変調処理を示している。この場合、インバータ制御装置は、3相のうち電圧指令の絶対値が最大となる相を固定相として順次選択する。インバータ制御装置は、固定相として選択した相の電圧指令の符号が正のときは上寄せを行う。インバータ制御装置は、固定相として選択した相の電圧指令の符号が負のときは下寄せを行う。以下、このように上寄せ状態と下寄せ状態を切り替えてスイッチングを省略する2相変調モードを「両寄せモード」と呼ぶ。なお、両寄せモードにおける上寄せ状態と下寄せ状態の切り替えは、電圧指令の符号及び絶対値の大小ではなく、電圧指令位相に基づいて行うことも可能である。 FIG. 4 is a diagram showing a change in duty command due to two-phase modulation in the shift mode. FIG. 4 shows a two-phase modulation process in which the upper and lower adjustment modes are combined. In this case, the inverter control device sequentially selects the phase having the maximum absolute value of the voltage command among the three phases as the fixed phase. When the sign of the voltage command of the phase selected as the stationary phase is positive, the inverter control device performs upswing. The inverter control device performs lowering when the sign of the voltage command of the phase selected as the stationary phase is negative. Hereinafter, the two-phase modulation mode that switches between the upper and lower alignment states and omits switching will be referred to as a “double alignment mode”. It should be noted that switching between the upper and lower alignment states in the double alignment mode can be performed based on the voltage command phase instead of the magnitude and magnitude of the voltage command sign and absolute value.
PWMインバータのスイッチング素子は、オンとオフとが瞬時には切り替わらない。このため、上アームのスイッチング素子と下アームのスイッチング素子との短絡を防止するために、デッドタイムが設けられている。デッドタイム区間では、上アーム及び下アームのスイッチング素子が共にオフとなる。デッドタイム区間のインバータ出力電圧は、電流の極性によって定まる。その結果、インバータ出力電圧には、電圧指令に対する誤差が生じる。この誤差を補償することをデッドタイム補償と呼ぶ。 The switching element of the PWM inverter does not switch on and off instantaneously. Therefore, a dead time is provided in order to prevent a short circuit between the switching element of the upper arm and the switching element of the lower arm. In the dead time section, the switching elements of the upper arm and the lower arm are both turned off. The inverter output voltage in the dead time interval is determined by the polarity of the current. As a result, an error with respect to the voltage command occurs in the inverter output voltage. Compensating for this error is called dead time compensation.
ここで、デッドタイム補償について説明する。インバータ制御装置は、電流の極性に応じてデッドタイム補償値を電圧指令に加算又は減算する。電圧値としてのデッドタイム補償値は、下記(1)式で計算される。インバータ制御装置は、電流の極性が正の場合、電圧指令に(1)式の計算値を加算する。インバータ制御装置は、電流の極性が負の場合、電圧指令から(1)式の計算値を減算する。Tdは、デッドタイム長さである。Vdcは、PWMインバータへ入力される直流電圧の大きさである。fcは、キャリア周波数である。 Here, dead time compensation will be described. The inverter control device adds or subtracts the dead time compensation value to the voltage command according to the polarity of the current. The dead time compensation value as a voltage value is calculated by the following equation (1). When the polarity of the current is positive, the inverter control device adds the calculated value of equation (1) to the voltage command. When the polarity of the current is negative, the inverter control device subtracts the calculated value of equation (1) from the voltage command. Td is the dead time length. Vdc is the magnitude of the DC voltage input to the PWM inverter. fc is a carrier frequency.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
デッドタイム補償により、キャリアの頂点間の区間におけるインバータ出力電圧の時間平均値は電圧指令と一致する。ただし、デッドタイムがあることにより非ゼロ電圧ベクトル区間の現れるタイミングがずれる。具体的には、デッドタイムがない場合と比較して、インバータ出力電圧パルスにはTd/2だけ遅れが生じる。 Due to the dead time compensation, the time average value of the inverter output voltage in the section between the vertices of the carrier coincides with the voltage command. However, the timing at which the non-zero voltage vector section appears shifts due to the dead time. Specifically, the inverter output voltage pulse is delayed by Td / 2 as compared with the case where there is no dead time.
図5は、デッドタイムによるインバータ出力電圧パルスの遅れを説明するための図である。図5に示すデューティ指令の波形は、例えば図2等に示すような波形の極短時間の範囲を拡大したものである。 FIG. 5 is a diagram for explaining the delay of the inverter output voltage pulse due to the dead time. The duty command waveform shown in FIG. 5 is obtained by enlarging the extremely short time range of the waveform as shown in FIG.
図5の(A)は、デッドタイムがない理想的なPWMインバータのインバータ出力端子電圧を示している。理想的なPWMインバータでは、デューティ指令がキャリアを上回るという条件で、上アームのスイッチング素子がオンとなる。上アームのスイッチング素子がオンとなっている間は、インバータ出力端子からVdcの電圧パルスが出力される。 FIG. 5A shows an inverter output terminal voltage of an ideal PWM inverter having no dead time. In an ideal PWM inverter, the upper arm switching element is turned on under the condition that the duty command exceeds the carrier. While the upper arm switching element is on, a voltage pulse of Vdc is output from the inverter output terminal.
図5の(B)は、デッドタイムがあるPWMインバータに対してデッドタイム補償が実施されない場合のインバータ出力端子電圧を示している。ここでは、電流の極性は正とする。PWMインバータにデッドタイムがある場合、スイッチング素子への指令には、オフ状態からオン状態へ移行するタイミングでディレイが挿入される。デッドタイム区間では、上アームと下アームのスイッチング素子が共にオフとなる。電流の極性が正であるため、デッドタイム区間では、下アームのスイッチング素子に並列した還流ダイオードに電流が流れる。このため、還流ダイオードを介して、インバータ直流入力電圧の低電位側電圧がインバータ出力端子電圧として現れる。したがって、デッドタイム区間では、インバータ出力端子電圧はゼロとなる。その結果、図5の(A)と比較して、電圧パルスの幅が減少している。 FIG. 5B shows an inverter output terminal voltage when dead time compensation is not performed for a PWM inverter having a dead time. Here, the polarity of the current is positive. When the PWM inverter has a dead time, a delay is inserted into the command to the switching element at the timing of shifting from the off state to the on state. In the dead time section, the switching elements of the upper arm and the lower arm are both turned off. Since the polarity of the current is positive, in the dead time section, the current flows through the free wheel diode in parallel with the lower arm switching element. For this reason, the low potential side voltage of the inverter DC input voltage appears as the inverter output terminal voltage via the freewheeling diode. Therefore, the inverter output terminal voltage is zero in the dead time interval. As a result, the width of the voltage pulse is reduced as compared with FIG.
図5の(C)は、デッドタイムがあるPWMインバータに対してデッドタイム補償が実施された場合のインバータ出力端子電圧を示している。インバータ制御装置は、(1)式で計算される電圧値としてのデッドタイム補償値をデューティ指令としての値に換算してデッドタイム補償を実施している。図5の(C)では、デッドタイム補償により、上アームのスイッチング素子がオフ状態からオン状態へ移行するタイミングで電圧パルスの幅が補償されている。また、上アームのスイッチング素子がオン状態からオフ状態へ移行するタイミングで電圧パルスの幅が補償されている。その結果、電圧パルスの幅は、図5の(A)の場合と一致している。キャリアの山から谷までの区間のみに着目すると、図5の(C)では図5の(A)よりも電圧パルスの幅が減少している。また、キャリアの谷から山までの区間のみに着目すると、図5の(C)では図5の(A)よりも電圧パルスの幅が増加している。しかし、他の相においても同様に電圧パルスの幅の増減が発生しているため、線間電圧は維持されている。その結果、電圧指令と同じインバータ出力電圧が得られる。ただし、図5の(C)では、図5の(A)と比較して電圧パルスの発生タイミングがTd/2だけ遅れる。このデッドタイムによる非ゼロ電圧ベクトル区間のずれは、2相変調の実施時にも同様に発生する。これは、2相変調の実施時に、固定相ではスイッチングが発生しないが非固定相でスイッチングのタイミングが遅れるためである。 FIG. 5C shows the inverter output terminal voltage when dead time compensation is performed on a PWM inverter with dead time. The inverter control device performs dead time compensation by converting a dead time compensation value as a voltage value calculated by the equation (1) into a value as a duty command. In FIG. 5C, the width of the voltage pulse is compensated at the timing when the switching element of the upper arm shifts from the off state to the on state by dead time compensation. Further, the width of the voltage pulse is compensated at the timing when the switching element of the upper arm shifts from the on state to the off state. As a result, the width of the voltage pulse coincides with the case of FIG. When attention is paid only to the section from the peak to the valley of the carrier, the width of the voltage pulse is reduced in FIG. 5C than in FIG. When attention is paid only to the section from the trough to the peak of the carrier, the width of the voltage pulse is increased in FIG. 5C than in FIG. However, since the voltage pulse width also increases and decreases in the other phases as well, the line voltage is maintained. As a result, the same inverter output voltage as the voltage command is obtained. However, in FIG. 5C, the generation timing of the voltage pulse is delayed by Td / 2 as compared with FIG. The deviation of the non-zero voltage vector section due to the dead time occurs in the same manner when the two-phase modulation is performed. This is because when the two-phase modulation is performed, switching does not occur in the stationary phase, but the switching timing is delayed in the non-stationary phase.
PWMインバータから電気負荷に電力を供給する場合、負荷電流には、スイッチングにより電流リプルが含まれる。また、スイッチングに伴いノイズが発生する場合もある。電流リプル及びノイズを避けるために、負荷電流のサンプリングタイミングはゼロ電圧ベクトル区間の中心近傍に設定されることが多い。つまり、負荷電流のサンプリングタイミングはキャリアの頂点のタイミングに設定されることが多い。 When power is supplied from the PWM inverter to the electric load, the load current includes a current ripple due to switching. Also, noise may occur with switching. In order to avoid current ripple and noise, the load current sampling timing is often set near the center of the zero voltage vector section. That is, the load current sampling timing is often set to the timing of the top of the carrier.
図6は、負荷電流にリプル成分が重畳する仕組みを説明するための図である。図6は、上寄せモードで2相変調を実施する場合の負荷電流を示している。図6における「平均電流」は、負荷電流の平均値を示している。 FIG. 6 is a diagram for explaining a mechanism in which a ripple component is superimposed on a load current. FIG. 6 shows a load current in the case where two-phase modulation is performed in the upward mode. “Average current” in FIG. 6 indicates an average value of the load current.
図6に示すように、デッドタイムがない場合は、キャリアの頂点のタイミングがゼロ電圧ベクトル区間あるいは非ゼロ電圧ベクトル区間の中心近傍となる。しかし、デッドタイムがある場合は、キャリアの頂点のタイミングがゼロ電圧ベクトル区間あるいは非ゼロ電圧ベクトル区間の中心近傍からずれる。これにより、キャリア頂点のタイミングにて実施される電流サンプリングは、ゼロ電圧ベクトル区間の中心近傍から相対的にずれたタイミングで行われる。さらに、2相変調の実施時には、キャリアの頂点のタイミングがゼロ電圧ベクトル区間内であるとは限らない。図6の例では、キャリアの谷のタイミングはゼロ電圧ベクトル区間内となるが、キャリアの山のタイミングは非ゼロ電圧ベクトル区間内となる。このように、2相変調の実施時には、電流サンプリングは、非ゼロ電圧ベクトル区間でも行われる。従って、デッドタイムによる電圧パルス発生タイミングの遅れにより、非ゼロ電圧ベクトル区間のサンプリングにおいても、同ベクトル区間中心近傍からの相対的なタイミングのずれが発生する。このため、図6に記載するように、2相変調の実施時には、キャリアの山のタイミングと谷のタイミングとでは、ゼロ電圧ベクトル区間か非ゼロ電圧ベクトル区間かという違いが生じる。さらにデッドタイムによる出力電圧パルスの遅れも相まって、キャリアの山のタイミングと谷のタイミングとで電流リプルの現れ方が異なり、サンプリングされた電流値には電流リプル分が重畳される。例えばキャリアの谷のタイミングのみで電流サンプリングを行う場合、図6の黒丸にて記載のように、電流の平均値に対して若干大きめの電流値がサンプリングされる。以上は図6に基づき2相変調の上寄せモード時について説明したが、2相変調の下寄せモードでも同様にサンプリング電流値は電流リプルの影響を受ける。ただし、下寄せモード時はキャリアの谷の近傍の非ゼロ電圧ベクトル区間が現れる。従って、下寄せモード時は、電流リプルの影響も上寄せモード時とは反転する。例えばキャリアの谷のみで電流サンプリングを行う場合、電流の平均値に対して若干小さめの電流値がサンプリングされる。 As shown in FIG. 6, when there is no dead time, the timing of the vertex of the carrier is near the center of the zero voltage vector section or the non-zero voltage vector section. However, when there is a dead time, the timing of the vertex of the carrier deviates from the vicinity of the center of the zero voltage vector section or the non-zero voltage vector section. Thereby, the current sampling performed at the timing of the carrier vertex is performed at a timing relatively shifted from the vicinity of the center of the zero voltage vector section. Furthermore, when performing two-phase modulation, the timing of the top of the carrier is not necessarily within the zero voltage vector interval. In the example of FIG. 6, the timing of the carrier valley is in the zero voltage vector interval, but the timing of the carrier peak is in the non-zero voltage vector interval. As described above, when the two-phase modulation is performed, the current sampling is also performed in the non-zero voltage vector section. Therefore, due to the delay of the voltage pulse generation timing due to the dead time, a relative timing shift from the vicinity of the center of the vector section occurs even in the sampling of the non-zero voltage vector section. For this reason, as shown in FIG. 6, when two-phase modulation is performed, there is a difference between a carrier peak timing and a valley timing, which is a zero voltage vector interval or a non-zero voltage vector interval. Further, the output voltage pulse delay due to the dead time is combined, and the appearance of the current ripple differs between the timing of the peak of the carrier and the timing of the valley, and the current ripple is superimposed on the sampled current value. For example, when current sampling is performed only at the timing of the carrier valley, a current value slightly larger than the average value of the current is sampled as described by the black circle in FIG. Although the above description has been given of the two-phase modulation upshift mode based on FIG. 6, the sampling current value is similarly affected by the current ripple in the two-phase modulation bottom-up mode. However, in the bottom-up mode, a non-zero voltage vector section near the carrier valley appears. Therefore, in the downshift mode, the influence of current ripple is reversed from that in the upshift mode. For example, when current sampling is performed only in the valley of the carrier, a current value slightly smaller than the average value of the current is sampled.
以上に説明したように、単純にキャリアの山及び谷のタイミングで電流サンプリングを行う場合、図6に記載するように両者のサンプリング電流値に差異が生じる。これにより、例えばサンプリング電流値を用いて電気負荷の電流制御を行う場合は、制御応答を高くすると負荷電流が発振する。このため、電流制御における制御応答をあまり高く設定することができない。この問題を防止するためには、キャリアの山又は谷の一方のみのタイミングで電流サンプリングを行えばよい。 As described above, when current sampling is simply performed at the timing of the peak and valley of the carrier, a difference occurs between the sampling current values of both as shown in FIG. Thereby, for example, when current control of an electric load is performed using a sampling current value, the load current oscillates when the control response is increased. For this reason, the control response in current control cannot be set very high. In order to prevent this problem, current sampling may be performed at the timing of only one of the peak or valley of the carrier.
しかし、さらに、図6に記載したようにキャリアの山のみ又は谷のみで電流サンプリングを行う場合において、負荷電流にインバータ出力周波数の3倍の周期の電流脈動が発生するという問題が存在する。この電流脈動は、サンプリング電流と平均電流の差異が2相変調の上寄せモード時と下寄せモード時とで異なることによって生じる。次に詳細を説明する。 However, as shown in FIG. 6, when current sampling is performed only in the peak or valley of the carrier, there is a problem that a current pulsation having a period three times the inverter output frequency is generated in the load current. This current pulsation is caused by the difference between the sampling current and the average current being different between the two-phase modulation upshift mode and the downshift mode. Details will be described below.
図7は、負荷電流にインバータ出力周波数の3倍の周期の電流脈動が発生するシミュレーション結果の一例を示す図である。図7は、電流サンプリングをキャリアの谷のみタイミングで行う場合を示している。図7は、両寄せモードで2相変調を実施する場合を示している。Iqは、負荷電流を示す波形である。Iq平均は、実際に電気負荷に流れている平均的な電流を示す波形である。Iqサンプリング値は、電流サンプリングにより得られるサンプリング電流値を示す波形である。 FIG. 7 is a diagram illustrating an example of a simulation result in which a current pulsation having a period three times the inverter output frequency is generated in the load current. FIG. 7 shows a case where current sampling is performed only at the valley of the carrier. FIG. 7 shows a case where two-phase modulation is performed in the shift mode. Iq is a waveform indicating the load current. The Iq average is a waveform indicating an average current actually flowing through the electric load. The Iq sampling value is a waveform indicating a sampling current value obtained by current sampling.
図7に示すように、両寄せモードでの2相変調では、電圧指令一周期の間に、上寄せ状態と下寄せ状態とがπ/3ごとに合計6回切り替わる。このとき、サンプリング電流には、π/3ごとに異なるリプル成分が流入する。その結果、交流である負荷電流に同期した回転座標上で確認すると、負荷電流には、インバータ出力周波数の3倍の周波数の基本波成分を持つ矩形波状の電流脈動が生じる。電気負荷がモータの場合、この電流脈動によりトルクリプルが生じる。トルクリプルは、騒音及び振動の原因となる。特に、電流脈動の周波数がモータ機械負荷の共振周波数に合致した場合は、騒音及び振動が顕著に現れる。リプル成分は、サンプリング電流に含まれるため、特に工夫しなければインバータ制御装置により検知することができない。このため、リプル成分を除去することは困難である。電流脈動は、2相変調における上寄せ状態と下寄せ状態の切り替えにより顕在化する。 As shown in FIG. 7, in the two-phase modulation in the double shift mode, the upper shift state and the lower shift state are switched a total of six times every π / 3 during one period of the voltage command. At this time, different ripple components flow into the sampling current every π / 3. As a result, when confirmed on a rotating coordinate synchronized with an alternating load current, a rectangular wave current pulsation having a fundamental wave component having a frequency three times the inverter output frequency is generated in the load current. When the electric load is a motor, torque ripple occurs due to this current pulsation. Torque ripple causes noise and vibration. In particular, when the frequency of the current pulsation matches the resonance frequency of the motor machine load, noise and vibration are noticeable. Since the ripple component is included in the sampling current, it cannot be detected by the inverter control device unless specially devised. For this reason, it is difficult to remove the ripple component. The current pulsation is manifested by switching between the upper and lower states in the two-phase modulation.
なお、デッドタイムがある場合、キャリアの山又は谷の一方のみのタイミングにおけるサンプリング電流値は、負荷電流の平均値に対する誤差を含んでいる。図6に示すように、上寄せ状態のとき、キャリアの谷のみのタイミングにおけるサンプリング電流値は、負荷電流の平均値よりも大きい。上寄せ状態のとき、キャリアの山のみのタイミングにおけるサンプリング電流値は、負荷電流の平均値よりも小さい。一方、図示しないが、下寄せ状態のとき、キャリアの谷のみのタイミングにおけるサンプリング電流値は、負荷電流の平均値よりも小さい。下寄せ状態のとき、キャリアの山のみのタイミングにおけるサンプリング電流値は、負荷電流の平均値よりも大きい。このため、Iqサンプリング値はIq平均から乖離する。 When there is a dead time, the sampling current value at the timing of only one of the peak and valley of the carrier includes an error with respect to the average value of the load current. As shown in FIG. 6, in the upward state, the sampling current value at the timing of only the carrier valley is larger than the average value of the load current. In the uplift state, the sampling current value at the timing of only the carrier peak is smaller than the average value of the load current. On the other hand, although not shown in the drawing, the sampling current value at the timing of only the carrier valley is smaller than the average value of the load currents in the lowering state. In the lowering state, the sampling current value at the timing of only the carrier peak is larger than the average value of the load current. For this reason, the Iq sampling value deviates from the Iq average.
図8は、本発明の実施の形態1におけるインバータ制御装置の構成図である。インバータ制御装置には、図示しないPWMインバータが接続されている。PWMインバータには、図示しない電気負荷が接続されている。インバータ制御装置は、電気負荷の電流制御を行うように構成されている。ここでは、一例として、電気負荷を交流モータとする。 FIG. 8 is a configuration diagram of the inverter control device according to Embodiment 1 of the present invention. A PWM inverter (not shown) is connected to the inverter control device. An electrical load (not shown) is connected to the PWM inverter. The inverter control device is configured to perform current control of the electric load. Here, as an example, the electric load is an AC motor.
インバータ制御装置は、電流指令計算手段1、電流制御手段3、第1の座標変換器5、第2の座標変換器8、2相変調処理手段10、デッドタイム補償手段12、PWM処理手段14、積分器17及び2相変調モード設定手段19を備えている。 The inverter control apparatus includes a current command calculation unit 1, a current control unit 3, a first coordinate converter 5, a second coordinate converter 8, a two-phase modulation processing unit 10, a dead time compensation unit 12, a PWM processing unit 14, An integrator 17 and a two-phase modulation mode setting means 19 are provided.
2相変調モード設定手段19は、電流脈動周波数計算手段19a、禁止周波数帯域情報記録手段19c、第1の判定手段19e、第2の判定手段19g及び電力損失計算手段19hを備えている。 The two-phase modulation mode setting unit 19 includes a current pulsation frequency calculation unit 19a, a prohibited frequency band information recording unit 19c, a first determination unit 19e, a second determination unit 19g, and a power loss calculation unit 19h.
電流指令計算手段1は、電流指令2を出力する。検出電流4は、電気負荷である交流モータから検出される。検出電流4は、交流信号である。第1の座標変換器5は、検出電流4をdq回転座標上の検出電流6に変換する。第1の座標変換器5は、検出電流6を出力する。検出電流4及び検出電流6は、サンプリング電流に相当する。 The current command calculation means 1 outputs a current command 2. The detection current 4 is detected from an AC motor that is an electric load. The detection current 4 is an AC signal. The first coordinate converter 5 converts the detected current 4 into a detected current 6 on dq rotation coordinates. The first coordinate converter 5 outputs a detection current 6. The detection current 4 and the detection current 6 correspond to a sampling current.
電流制御手段3は、電流指令2と検出電流6とが一致するように電流制御処理を行う。電流制御手段3は、電流制御処理を行うことでデューティ指令7を生成する。電流制御手段3は、デューティ指令7を出力する。デューティ指令7は、PWMインバータのスイッチング電圧パルスのオン又はオフを示している。デューティ指令は、下記(2)式により電圧指令から換算される。Vd及びVqは、dq回転座標上の電圧指令である。Dd及びDqは、デューティ指令である。Vdcは、PWMインバータ直流入力部の電圧である。 The current control means 3 performs a current control process so that the current command 2 and the detected current 6 match. The current control means 3 generates a duty command 7 by performing a current control process. The current control means 3 outputs a duty command 7. The duty command 7 indicates ON or OFF of the switching voltage pulse of the PWM inverter. The duty command is converted from the voltage command by the following equation (2). Vd * and Vq * are voltage commands on dq rotation coordinates. Dd * and Dq * are duty commands. Vdc is the voltage of the PWM inverter DC input section.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
第2の座標変換器8は、デューティ指令7を静止座標上のデューティ指令9に変換する。デューティ指令9は、-1~1の範囲の値となる。 The second coordinate converter 8 converts the duty command 7 into a duty command 9 on stationary coordinates. The duty command 9 has a value in the range of −1 to 1.
2相変調モード設定手段19は、2相変調モード指令20を出力する。2相変調モード指令20は、2相変調処理手段10がどの2相変調モードで2相変調を実施するかを指定するものである。2相変調処理手段10は、デューティ指令9及び2相変調モード指令20に基づいて2相変調処理を実施する。2相変調処理手段10は、2相変調処理されたデューティ指令11を出力する。 The two-phase modulation mode setting means 19 outputs a two-phase modulation mode command 20. The two-phase modulation mode command 20 designates in which two-phase modulation mode the two-phase modulation processing means 10 performs the two-phase modulation. The two-phase modulation processing means 10 performs a two-phase modulation process based on the duty command 9 and the two-phase modulation mode command 20. The two-phase modulation processing means 10 outputs a duty command 11 that has been subjected to two-phase modulation processing.
上寄せモードで2相変調を実施する場合、2相変調処理手段10は、デューティ指令9のうち正の値かつ絶対値が最大となる相を固定相とする。2相変調処理手段10は、固定相のデューティ指令の値を1にスライドさせる。2相変調処理手段10は、固定相のデューティ指令に対するスライド量と同じ値を非固定相のデューティ指令に加算する。 When the two-phase modulation is performed in the upshift mode, the two-phase modulation processing unit 10 sets a phase having a positive value and a maximum absolute value in the duty command 9 as a fixed phase. The two-phase modulation processing means 10 slides the value of the fixed phase duty command to 1. The two-phase modulation processing means 10 adds the same value as the slide amount with respect to the fixed phase duty command to the non-fixed phase duty command.
下寄せモードで2相変調を実施する場合、2相変調処理手段10は、デューティ指令9のうち負の値かつ絶対値が最大となる相を固定相とする。2相変調処理手段10は、固定相のデューティ指令の値を-1にスライドさせる。2相変調処理手段10は、固定相のデューティ指令に対するスライド量と同じ値を非固定相のデューティ指令から減算する。 When the two-phase modulation is performed in the downshift mode, the two-phase modulation processing unit 10 sets a phase having a negative value and a maximum absolute value in the duty command 9 as a fixed phase. The two-phase modulation processing means 10 slides the value of the fixed phase duty command to -1. The two-phase modulation processing means 10 subtracts the same value as the sliding amount with respect to the fixed phase duty command from the non-fixed phase duty command.
両寄せモードで2相変調を実施する場合、2相変調処理手段10は、デューティ指令9のうち絶対値が最大となる相を固定相とする。2相変調処理手段10は、固定相のデューティ指令の符号が正のときは上寄せを行う。2相変調処理手段10は、固定相のデューティ指令の符号が負のときは下寄せを行う。 When two-phase modulation is performed in the shift mode, the two-phase modulation processing unit 10 sets the phase having the maximum absolute value in the duty command 9 as a fixed phase. The two-phase modulation processing means 10 performs upper adjustment when the sign of the fixed phase duty command is positive. The two-phase modulation processing means 10 performs lowering when the sign of the fixed phase duty command is negative.
なお、電気負荷が3相交流モータの場合、図2等に示すように、デューティ指令9は位相が2π/3ずつずれた交流正弦波波形となる。このため、デューティ指令9のうち絶対値が最大となる相及びその極性は、デューティ指令9の位相から判別できる。つまり、2相変調処理手段10は、デューティ指令9の位相に基づいて固定相を決定することもできる。 When the electric load is a three-phase AC motor, the duty command 9 has an AC sine wave waveform whose phase is shifted by 2π / 3 as shown in FIG. Therefore, the phase having the maximum absolute value and the polarity of the duty command 9 can be determined from the phase of the duty command 9. That is, the two-phase modulation processing means 10 can also determine the fixed phase based on the phase of the duty command 9.
デッドタイム補償手段12は、デューティ指令11に対しデッドタイム補償を実施する。ただし、固定相では、スイッチングが実施されないためデッドタイム補償は不要である。デッドタイム補償手段12は、非固定相において、電流極性に応じてデッドタイム補償を実施する。(1)式の計算値は電圧値であるため、デッドタイム補償手段12は、デューティ指令としての値に換算されたデッドタイム補償値を用いてデッドタイム補償を行う。デューティ指令としての値に換算されたデッドタイム補償値は、下記(3)式により計算される。 The dead time compensation means 12 performs dead time compensation for the duty command 11. However, in the stationary phase, no dead time compensation is required because switching is not performed. The dead time compensation means 12 performs dead time compensation according to the current polarity in the non-fixed phase. Since the calculated value of the equation (1) is a voltage value, the dead time compensation means 12 performs dead time compensation using the dead time compensation value converted into a value as a duty command. The dead time compensation value converted into a value as a duty command is calculated by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
デッドタイム補償手段12は、デッドタイム補償後のデューティ指令13を出力する。PWM処理手段14は、キャリアとの比較等を実施することで、デューティ指令13をスイッチング指令15に変換する。PWM処理手段14は、スイッチング指令15を出力する。PWMインバータは、スイッチング指令15に基づいて駆動される。 The dead time compensation means 12 outputs the duty command 13 after dead time compensation. The PWM processing unit 14 converts the duty command 13 into the switching command 15 by performing comparison with the carrier. The PWM processing means 14 outputs a switching command 15. The PWM inverter is driven based on the switching command 15.
周波数指令16は、インバータ出力周波数に相当する。また、周波数指令16は、交流モータに印加する電圧及び交流モータに流れる電流の周波数にも相当する。積分器17は、周波数指令16に対して積分処理を行う。周波数指令16は、積分処理により位相信号18となる。位相信号18は、第1の座標変換器5及び第2の座標変換器8にて用いられる。周波数指令16及び位相信号18の取得方法及び計算方法は、交流モータの種類及び制御方法に応じて複数のものが知られているが、説明は省略する。 The frequency command 16 corresponds to the inverter output frequency. The frequency command 16 also corresponds to the voltage applied to the AC motor and the frequency of the current flowing through the AC motor. The integrator 17 performs an integration process on the frequency command 16. The frequency command 16 becomes a phase signal 18 by integration processing. The phase signal 18 is used in the first coordinate converter 5 and the second coordinate converter 8. A plurality of methods for acquiring and calculating the frequency command 16 and the phase signal 18 are known depending on the type and control method of the AC motor, but the description thereof is omitted.
以下、2相変調モード設定手段19の動作について説明する。ここでは、電流サンプリングをキャリアの山のみ又は谷のみのタイミングで行うこととする。 Hereinafter, the operation of the two-phase modulation mode setting means 19 will be described. Here, the current sampling is performed at the timing of only the peak or the valley of the carrier.
図7に示すように両寄せモードで2相変調を実施すると、インバータ制御装置に取り込まれるサンプリング電流値は一定である。しかし、実際に交流モータに流れる負荷電流は、上寄せ状態と下寄せ状態の切り替えに伴って脈動する。特に、図6に示すように、キャリアの山のみ又は谷のみのタイミングで電流サンプリングを行う場合は顕著である。上述したとおり、この電流脈動の原因の1つは、デッドタイムによるインバータ出力電圧パルスのディレイである。ディレイの影響は、インバータ出力電圧の振幅が小さいほど相対的に大きくなる。このため、インバータ出力電圧の振幅が小さいほど電流脈動の振幅が大きい。インバータ出力電圧の振幅が小さい場合とは、例えば、電気負荷である交流モータが低い速度で駆動する場合である。 As shown in FIG. 7, when the two-phase modulation is performed in the shift mode, the sampling current value taken into the inverter control device is constant. However, the load current that actually flows through the AC motor pulsates with the switching between the upper and lower positions. In particular, as shown in FIG. 6, it is remarkable when current sampling is performed at the timing of only the peak or the valley of the carrier. As described above, one of the causes of this current pulsation is the delay of the inverter output voltage pulse due to the dead time. The influence of the delay becomes relatively greater as the amplitude of the inverter output voltage is smaller. For this reason, the smaller the amplitude of the inverter output voltage, the larger the amplitude of the current pulsation. The case where the amplitude of the inverter output voltage is small is, for example, a case where an AC motor that is an electric load is driven at a low speed.
電流サンプリングをキャリアの山のみ又は谷のみのタイミングで行い、両寄せモードで2相変調を実施すると、電流脈動はデューティ指令の周波数の3倍の周波数を持つ。この電流脈動は、矩形波状であるため高調波成分を含む。このため、電流脈動は、xを奇数として、インバータ出力周波数の3x倍の成分を含むこととなる。 When current sampling is performed at the timing of only the peak or the valley of the carrier and two-phase modulation is performed in the shift mode, the current pulsation has a frequency three times the frequency of the duty command. Since this current pulsation has a rectangular wave shape, it includes a harmonic component. For this reason, the current pulsation includes a component 3x times the inverter output frequency, where x is an odd number.
電流脈動周波数計算手段19aは、周波数指令16に基づいて、インバータ出力周波数の3x倍の周波数を計算する。電流脈動周波数計算手段19aは、計算した周波数を周波数情報19bとして出力する。周波数情報19bは、両寄せモードにおける上寄せ状態と下寄せ状態の切り替えに伴う電流脈動の周波数成分である。 Based on the frequency command 16, the current pulsation frequency calculation means 19 a calculates a frequency that is 3 × times the inverter output frequency. The current pulsation frequency calculation means 19a outputs the calculated frequency as frequency information 19b. The frequency information 19b is a frequency component of current pulsation that accompanies switching between the up-shift state and the down-shift state in the double shift mode.
禁止周波数帯域情報記録手段19cは、負荷電流に含ませるのが望ましくない周波数帯域を示す周波数帯域情報19dを予め記録している。周波数帯域情報19dは、例えば、交流モータ及びその機械負荷の共振周波数等である。 The prohibited frequency band information recording means 19c records in advance frequency band information 19d indicating a frequency band that is not desirably included in the load current. The frequency band information 19d is, for example, the resonance frequency of the AC motor and its mechanical load.
第1の判定手段19eは、周波数情報19bが周波数帯域情報19dに含まれているか否かの判定を行う。第1の判定手段19eは、判定結果に基づいて2相変調モード指令19fを出力する。2相変調モード指令19fは、両寄せモードで2相変調を実施するか否かを示すものである。 The first determination unit 19e determines whether or not the frequency information 19b is included in the frequency band information 19d. The first determination means 19e outputs a two-phase modulation mode command 19f based on the determination result. The two-phase modulation mode command 19f indicates whether or not to perform two-phase modulation in the shift mode.
周波数情報19bが周波数帯域情報19dに含まれていない場合、第1の判定手段19eは、2相変調モードとして両寄せモードを指定する2相変調モード指令19fを出力する。一方、周波数情報19bが周波数帯域情報19dに含まれている場合、第1の判定手段19eは、2相変調モードとして両寄せモードを指定しない2相変調モード指令19fを出力する。 When the frequency information 19b is not included in the frequency band information 19d, the first determination unit 19e outputs a two-phase modulation mode command 19f that designates the shift mode as the two-phase modulation mode. On the other hand, when the frequency information 19b is included in the frequency band information 19d, the first determination unit 19e outputs a two-phase modulation mode command 19f that does not designate the shift mode as the two-phase modulation mode.
第2の判定手段19gは、2相変調モード指令19fに基づいて2相変調モード指令20を出力する。2相変調モード指令19fが2相変調モードとして両寄せモードを指定している場合、第2の判定手段19gは、同様に2相変調モードとして両寄せモードを指定する2相変調モード指令20を出力する。 The second determination unit 19g outputs a two-phase modulation mode command 20 based on the two-phase modulation mode command 19f. When the two-phase modulation mode command 19f designates the registration mode as the two-phase modulation mode, the second determination unit 19g similarly gives the two-phase modulation mode command 20 that designates the registration mode as the two-phase modulation mode. Output.
2相変調モード指令19fが2相変調モードとして両寄せモードを指定していない場合、第2の判定手段19gは、上寄せモード又は下寄せモードのどちらかを2相変調モードとして選択する。第2の判定手段19gは、PWMインバータの各スイッチング素子における電力損失19iに基づいて上寄せモード又は下寄せモードのどちらかを選択する。電力損失19iは、電力損失計算手段19hから出力される。 When the two-phase modulation mode command 19f does not designate the shift mode as the two-phase modulation mode, the second determination unit 19g selects either the upper shift mode or the lower shift mode as the two-phase modulation mode. The second determination unit 19g selects either the upshift mode or the downshift mode based on the power loss 19i in each switching element of the PWM inverter. The power loss 19i is output from the power loss calculation means 19h.
ここで、PWMインバータのスイッチング素子における電力損失について説明する。例えば、上寄せモードで2相変調を実施すると、固定相に対応したPWMインバータの上アームがオンし続ける状態となる。これにより、上アームのスイッチング素子に電流が流れ、電力損失が発生する。このとき、下アームのスイッチング素子において電力損失は発生しない。このため、2相変調を実施すると、PWMインバータ全体での電力損失は減少する。しかし、上寄せ状態及び下寄せ状態では、上アームと下アームのスイッチング素子間で電力損失の偏りが生じる。その結果、スイッチング素子間で発熱に偏りが生じる。なお、スイッチング素子は、例えば、IGBT及びFWD等である。 Here, the power loss in the switching element of the PWM inverter will be described. For example, when two-phase modulation is performed in the upward mode, the upper arm of the PWM inverter corresponding to the fixed phase is kept on. As a result, a current flows through the switching element of the upper arm, and power loss occurs. At this time, no power loss occurs in the switching element of the lower arm. For this reason, when the two-phase modulation is performed, the power loss in the entire PWM inverter is reduced. However, in the upper and lower positions, power loss is uneven between the switching elements of the upper arm and the lower arm. As a result, the heat generation is biased between the switching elements. Note that the switching element is, for example, an IGBT or an FWD.
第2の判定手段19gは、2相変調モード指令19fが両寄せモードを指定するものから両寄せモードを指定しないものに切り替わる際に、各スイッチング素子の電力損失19iに基づいて上寄せモード又は下寄せモードのどちらかを選択する。具体的には、第2の判定手段19gは、PWMインバータの各スイッチング素子のうち電力損失19iが最大となるスイッチング素子が上アーム群と下アーム群のどちらに属するかを判定する。電力損失19iが最大となるスイッチング素子が上アーム群に属する場合、第2の判定手段19gは、下寄せモードを選択する。電力損失19iが最大となるスイッチング素子が下アーム群に属する場合、第2の判定手段19gは、上寄せモードを選択する。そして、第2の判定手段19gは、選択された一方を2相変調モードとして指定する2相変調モード指令20を出力する。 When the two-phase modulation mode command 19f switches from the one specifying the shift mode to the one not specifying the shift mode, the second determination unit 19g determines whether the upper shift mode or the lower shift mode 19g is based on the power loss 19i of each switching element. Select one of the shift modes. Specifically, the second determination unit 19g determines which of the switching elements of the PWM inverter the switching element with the maximum power loss 19i belongs to the upper arm group or the lower arm group. When the switching element that maximizes the power loss 19i belongs to the upper arm group, the second determination unit 19g selects the lowering mode. When the switching element that maximizes the power loss 19i belongs to the lower arm group, the second determination unit 19g selects the upward mode. Then, the second determination means 19g outputs a two-phase modulation mode command 20 that designates the selected one as the two-phase modulation mode.
なお、電力損失計算手段19hは、デューティ指令11及び検出電流4等から各スイッチング素子の電力損失19iを計算する。本実施の形態では、電力損失19iの計算方法の具体的な説明は省略する。電力損失19iの計算方法は、パワーモジュールメーカからアプリケーションノート等の体裁で提供されている。また、電力損失19iの計算方法は、「トランジスタ技術SPECIAL No.85 改訂*実践パワー・エレクトロニクス(P87~P91)」に記載されている。 The power loss calculating unit 19h calculates the power loss 19i of each switching element from the duty command 11, the detected current 4, and the like. In the present embodiment, a specific description of the calculation method of the power loss 19i is omitted. A method for calculating the power loss 19i is provided by a power module manufacturer in the form of an application note or the like. The calculation method of the power loss 19i is described in "Transistor technology SPECIAL No. 85 revision * Practical power electronics (P87 to P91)".
本実施の形態におけるインバータ制御装置は、デッドタイム補償処理を高精度化する。具体的には、デッドタイム補償手段12は、(3)式で示されるデッドタイム補償値を2相変調モード指令20に基づいて変更する。 The inverter control device in the present embodiment increases the accuracy of dead time compensation processing. Specifically, the dead time compensation unit 12 changes the dead time compensation value represented by the equation (3) based on the two-phase modulation mode command 20.
図9及び図10は、本発明の実施の形態1におけるデッドタイム補償を説明するための図である。図9は、デューティ指令が上寄せ状態から下寄せ状態に切り替わる場合の例を示している。図10は、デューティ指令が下寄せ状態から上寄せ状態に切り替わる場合の例を示している。ここでは、一例として、図9及び図10が3相のうちU相について示しているものとする。以下、図9及び図10を参照して、デッドタイム補償の高精度化について説明する。 9 and 10 are diagrams for explaining the dead time compensation in the first embodiment of the present invention. FIG. 9 shows an example in which the duty command is switched from the top-up state to the bottom-up state. FIG. 10 shows an example in which the duty command is switched from the bottom-up state to the top-up state. Here, as an example, FIGS. 9 and 10 show the U phase among the three phases. Hereinafter, with reference to FIG. 9 and FIG.
図9に示すU相は、上寄せ状態のときに非固定相であり、下寄せ状態のときに固定相となる。つまり、下寄せ状態のときはV相及びW相が非固定相となる。上寄せ状態から下寄せ状態に切り替わると、U相に対応するデューティ指令は、-1と1の間の値から-1に変化する。このとき、デューティ指令がキャリアと交差するため、スイッチングが発生する。U相の電流極性が負の場合、デッドタイム区間において、上アームのスイッチング素子に並列した還流ダイオードに電流が流れる。このため、デッドタイム区間におけるU相のインバータ出力端子電圧はVdcとなり、電圧パルス幅はTdだけ増加する。このインバータ出力端子電圧のずれは、上寄せ状態と下寄せ状態の切り替えに伴うスイッチングにより生じている。したがって、このインバータ出力端子電圧のずれは、通常のデッドタイム補償のようにU相のデューティ指令にデッドタイム補償値を加えるといった処理では補償できない。 The U phase shown in FIG. 9 is a non-stationary phase when in the up-aligned state, and is a stationary phase when in the down-aligned state. In other words, the V phase and the W phase are non-stationary phases when in the lowering state. When the state is switched from the upper alignment state to the lower alignment state, the duty command corresponding to the U phase changes from a value between -1 and 1 to -1. At this time, switching occurs because the duty command intersects with the carrier. When the U-phase current polarity is negative, a current flows through the free wheel diode in parallel with the upper arm switching element in the dead time interval. Therefore, the U-phase inverter output terminal voltage in the dead time interval becomes Vdc, and the voltage pulse width increases by Td. This deviation of the inverter output terminal voltage is caused by switching associated with switching between the upper and lower states. Therefore, the deviation of the inverter output terminal voltage cannot be compensated by a process of adding a dead time compensation value to the U-phase duty command as in the normal dead time compensation.
そこで、非固定相となったV相及びW相のインバータ出力端子電圧の変化タイミングがTdだけ遅れるように、V相及びW相に対応するデッドタイム補償値を変更する。これにより、電圧ベクトルの発生タイミングは遅れるが、交流モータに印加される線間電圧は維持される。非固定相となったV相及びW相のデューティ指令に対する具体的な処理は、次のように行う。 Therefore, the dead time compensation values corresponding to the V phase and the W phase are changed so that the change timings of the V-phase and W-phase inverter output terminal voltages that have become non-fixed phases are delayed by Td. Thereby, although the generation timing of the voltage vector is delayed, the line voltage applied to the AC motor is maintained. Specific processing for the duty command of the V phase and the W phase, which have become non-fixed phases, is performed as follows.
V相の電流極性が負の場合、デッドタイム区間におけるV相のインバータ出力端子電圧はVdcとなる。つまり、V相のインバータ出力端子電圧の変化タイミングは、デッドタイムにより半ば自動的にTdだけ遅れる。このため、V相においてデッドタイム補償は不要である。この場合、デッドタイム補償手段12は、V相に対応するデッドタイム補償値をゼロに変更する。なお、W相についても同様である。 When the V-phase current polarity is negative, the V-phase inverter output terminal voltage in the dead time section is Vdc. That is, the change timing of the V-phase inverter output terminal voltage is automatically delayed by Td halfway due to the dead time. For this reason, dead time compensation is unnecessary in the V phase. In this case, the dead time compensation means 12 changes the dead time compensation value corresponding to the V phase to zero. The same applies to the W phase.
V相の電流極性が正の場合、デッドタイム区間におけるV相のインバータ出力端子電圧はゼロとなる。このため、V相のインバータ出力端子電圧の変化タイミングをTdだけ遅らせる必要がある。キャリアの時間変化率は、図9に示すキャリア波形の傾きである。キャリア波形の傾きは、{1-(-1)}/{1/(2・fc)}=4・fcであるから、デッドタイム補償値は4・Td・fcとなる。この値は、(3)式の計算値の2倍である。つまり、デッドタイム補償手段12は、V相に対応するデッドタイム補償値を(3)式の計算値の2倍に変更する。なお、W相についても同様である。 When the V-phase current polarity is positive, the V-phase inverter output terminal voltage in the dead time interval is zero. For this reason, it is necessary to delay the change timing of the V-phase inverter output terminal voltage by Td. The time change rate of the carrier is the slope of the carrier waveform shown in FIG. Since the slope of the carrier waveform is {1-(− 1)} / {1 / (2 · fc)} = 4 · fc, the dead time compensation value is 4 · Td · fc. This value is twice the calculated value of equation (3). That is, the dead time compensation means 12 changes the dead time compensation value corresponding to the V phase to twice the calculated value of equation (3). The same applies to the W phase.
まとめると、インバータ制御装置は、以下のようにしてデッドタイム補償処理を高精度化する。 In summary, the inverter control device improves the dead time compensation processing as follows.
[図9の場合]
 キャリアの谷のタイミングで上寄せ状態から下寄せ状態に切り替わり、上寄せ状態時に非固定相かつ下寄せ状態時に固定相となる相の電流極性が負の場合。
 ・下寄せ状態時の非固定相の電流極性が正ならば、その非固定相に対応するデッドタイム補償値を(3)式の計算値の2倍にする。
 ・下寄せ状態時の非固定相の電流極性が負ならば、その非固定相に対応するデッドタイム補償値をゼロにする。
[In the case of FIG. 9]
When the carrier valley is switched from the top-down state to the bottom-up state, and the current polarity of the non-fixed phase in the top-up state and the phase that becomes the stationary phase in the bottom-up state is negative.
-If the current polarity of the non-fixed phase in the bottoming-up state is positive, the dead time compensation value corresponding to the non-fixed phase is doubled from the calculated value of equation (3).
・ If the current polarity of the non-stationary phase is negative in the bottom-up state, the dead time compensation value corresponding to the non-stationary phase is set to zero.
[図10の場合]
 キャリアの山のタイミングで下寄せ状態から上寄せ状態に切り替わり、下寄せ状態時に非固定相かつ上寄せ状態時に固定相となる相の電流極性が正の場合。
 ・上寄せ状態時の非固定相の電流極性が正ならば、その非固定相に対応するデッドタイム補償値を(3)式の計算値の2倍にする。
 ・上寄せ状態時の非固定相の電流極性が負ならば、その非固定相に対応するデッドタイム補償値をゼロにする。
[In the case of FIG. 10]
When the carrier peak is switched from the bottom-up state to the top-up state, and the current polarity of the non-stationary phase in the bottom-up state and the phase that becomes the stationary phase in the top-up state is positive.
-If the current polarity of the non-stationary phase in the upward state is positive, the dead time compensation value corresponding to the non-stationary phase is doubled from the calculated value of equation (3).
・ If the current polarity of the non-fixed phase in the up-aligned state is negative, the dead time compensation value corresponding to the non-fixed phase is set to zero.
上述したとおり、本実施の形態におけるインバータ制御装置は、上寄せ状態と下寄せ状態との切り替えに伴って発生する矩形波状の電流脈動の周波数成分を計算する。そして、インバータ制御装置は、電流脈動の周波数成分が予め記録された周波数帯域に含まれている場合、2相変調モードを両寄せモードでなく上寄せモード又は下寄せモードとする。つまり、デューティ指令を上寄せ状態又は下寄せ状態に固定することで、電流脈動の発生を抑制する。これにより、PWMインバータによって駆動されるモータ等の機械共振成分の励起を防止できる。その結果、電流脈動に起因する騒音及び振動を抑制することができる。 As described above, the inverter control device according to the present embodiment calculates the frequency component of the rectangular wave-like current pulsation that occurs in association with the switching between the up-shifted state and the down-shifted state. Then, when the frequency component of the current pulsation is included in the pre-recorded frequency band, the inverter control device sets the two-phase modulation mode to the upshift mode or the downshift mode instead of the double shift mode. That is, the occurrence of current pulsation is suppressed by fixing the duty command to the up-shifted state or the down-shifted state. Thereby, excitation of mechanical resonance components such as a motor driven by the PWM inverter can be prevented. As a result, noise and vibration caused by current pulsation can be suppressed.
上述したとおり、本実施の形態におけるインバータ制御装置は、各スイッチング素子の電力損失19iに基づいて、上寄せモード又は下寄せモードのどちらかを2相変調モードとして選択する。これにより、特定のスイッチング素子に電流負担が集中することを防止できる。このため、特定のスイッチング素子への温度集中を防止できる。その結果、スイッチング素子の破壊を防止し、パワーモジュールの寿命を延長することができる。 As described above, the inverter control device according to the present embodiment selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the power loss 19i of each switching element. Thereby, it can prevent that a current burden concentrates on a specific switching element. For this reason, temperature concentration on a specific switching element can be prevented. As a result, destruction of the switching element can be prevented and the life of the power module can be extended.
上述したとおり、本実施の形態におけるインバータ制御装置は、2相変調モード指令20に基づいてデッドタイム補償処理を高精度化する。これにより、上寄せ状態と下寄せ状態の切り替えに伴う意図しないスイッチングにより発生する電圧誤差を適切に補償できる。その結果、高精度なインバータ出力電圧を得ることができる。 As described above, the inverter control device in the present embodiment increases the accuracy of the dead time compensation processing based on the two-phase modulation mode command 20. As a result, it is possible to appropriately compensate for a voltage error that occurs due to unintended switching associated with switching between the upper and lower states. As a result, a highly accurate inverter output voltage can be obtained.
上述したとおり、本実施の形態におけるインバータ制御装置は、各スイッチング素子の電力損失19iに基づいて、上寄せモード又は下寄せモードのどちらかを2相変調モードとして選択している。しかし、上アーム群の電力損失の平均値及び下アーム群の電力損失の平均値に基づいて2相変調モードを選択することとしても同様の効果が得られる。この場合、インバータ制御装置は、上アーム群の電力損失の平均値と下アーム群の電力損失の平均値とを比較する。インバータ制御装置は、上アーム群の電力損失の平均値が下アーム群の電力損失の平均値より小さい場合は上寄せモードを選択する。インバータ制御装置は、上アーム群の電力損失の平均値が下アーム群の電力損失の平均値より大きい場合は下寄せモードを選択する。 As described above, the inverter control device according to the present embodiment selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the power loss 19i of each switching element. However, the same effect can be obtained by selecting the two-phase modulation mode based on the average power loss of the upper arm group and the average power loss of the lower arm group. In this case, the inverter control device compares the average power loss of the upper arm group with the average power loss of the lower arm group. The inverter control device selects the uplift mode when the average value of the power loss of the upper arm group is smaller than the average value of the power loss of the lower arm group. The inverter control device selects the lowering mode when the average power loss of the upper arm group is larger than the average power loss of the lower arm group.
上述したとおり、本実施の形態におけるインバータ制御装置は、各スイッチング素子の電力損失19iに基づいて、上寄せモード又は下寄せモードのどちらかを2相変調モードとして選択している。しかし、各スイッチング素子のジャンクション温度に基づいて2相変調モードを選択することとしても同様の効果が得られる。この場合、インバータ制御装置は、各スイッチング素子のうちジャンクション温度が最大となるスイッチング素子が上アーム群と下アーム群のどちらに属するかを判定する。ジャンクション温度が最大となるスイッチング素子が下アーム群に属する場合、インバータ制御装置は、上寄せモードを選択する。ジャンクション温度が最大となるスイッチング素子が上アーム群に属する場合、インバータ制御装置は、下寄せモードを選択する。 As described above, the inverter control device according to the present embodiment selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the power loss 19i of each switching element. However, the same effect can be obtained by selecting the two-phase modulation mode based on the junction temperature of each switching element. In this case, the inverter control device determines which of the switching elements, the switching element having the maximum junction temperature belongs to the upper arm group or the lower arm group. When the switching element having the maximum junction temperature belongs to the lower arm group, the inverter control device selects the uplift mode. When the switching element having the maximum junction temperature belongs to the upper arm group, the inverter control device selects the lowering mode.
実施の形態2.
 本実施の形態では、第2の判定手段19gの動作が実施の形態1と相違する。以下、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
In the present embodiment, the operation of the second determination means 19g is different from that of the first embodiment. Hereinafter, the difference from the first embodiment will be mainly described.
実施の形態1では、第2の判定手段19gは、スイッチング素子の電力損失又はジャンクション温度に基づいて、上寄せモード又は下寄せモードのどちらかを2相変調モードとして選択している。しかし、本実施の形態では、第2の判定手段19gは、スイッチング素子ごとの電力量に基づいて、上寄せモード又は下寄せモードのどちらかを2相変調モードとして選択する。なお、電力量とは、電力損失の積算値である。 In the first embodiment, the second determination unit 19g selects either the upper mode or the lower mode as the two-phase modulation mode based on the power loss or the junction temperature of the switching element. However, in the present embodiment, the second determination unit 19g selects either the upshift mode or the downshift mode as the two-phase modulation mode based on the electric energy for each switching element. The amount of power is an integrated value of power loss.
ここで、頻繁な加減速及び停止を繰り返すモータを駆動する大容量のPWMインバータを考える。このようなモータは、例えば、エレベータの巻上等に用いられる。このようなモータは、停止時を含め極低速運転をする場合がある。このため、長い期間におけるPWMインバータの各スイッチング素子の電流負担は不均一となることが多い。このような場合、電力量を参照することは、電流負担の履歴を参照することに相当する。本実施の形態では、スイッチング素子ごとの電力量に基づいて、電流負担の不均一性を緩和するように2相変調モードを選択する。その結果、特定のスイッチング素子への疲労集中を防止し、パワーモジュールの寿命を延長することができる。 Here, consider a large-capacity PWM inverter that drives a motor that repeats frequent acceleration / deceleration and stoppage. Such a motor is used for hoisting an elevator, for example. Such a motor may be operated at a very low speed including when stopped. For this reason, the current burden of each switching element of the PWM inverter in a long period often becomes non-uniform. In such a case, referring to the electric energy corresponds to referring to the current burden history. In the present embodiment, the two-phase modulation mode is selected based on the amount of power for each switching element so as to alleviate the non-uniformity of the current burden. As a result, fatigue concentration on a specific switching element can be prevented and the life of the power module can be extended.
また、大容量のPWMインバータは、パワーモジュールを搭載する主回路部の構造が大きくなる。このため、冷却器の熱抵抗が均一でなくなることにより各スイッチング素子の温度が不均一となる場合がある。この温度の不均一性は、PWMインバータの筐体構造に由来するため、各スイッチング素子の電流負担を均一としても解消されない場合がある。このような場合、単純に温度に基づいて2相変調モードを選択すると、温度が低いスイッチング素子に電流負担が集中する。パワーモジュールの疲労は、温度の絶対値だけでなく、温度の上昇と下降の繰り返しにも依存する。このため、単純に温度に基づいて2相変調モードを選択すると、特定のスイッチング素子に疲労が集中する。本実施の形態では、スイッチング素子ごとの電力量に基づいて、電流負担の不均一性を緩和するように2相変調モードを選択できる。その結果、特定のスイッチング素子への疲労集中を防止し、パワーモジュールの寿命を延長することができる。 In addition, a large-capacity PWM inverter has a large main circuit structure on which a power module is mounted. For this reason, the temperature of each switching element may become non-uniform | heterogenous because the thermal resistance of a cooler becomes non-uniform | heterogenous. Since this temperature non-uniformity is derived from the housing structure of the PWM inverter, it may not be resolved even if the current burden of each switching element is made uniform. In such a case, when the two-phase modulation mode is simply selected based on the temperature, the current burden is concentrated on the switching element having a low temperature. The fatigue of the power module depends not only on the absolute value of the temperature but also on the repeated rise and fall of the temperature. For this reason, if the two-phase modulation mode is simply selected based on temperature, fatigue concentrates on a specific switching element. In the present embodiment, the two-phase modulation mode can be selected based on the electric energy for each switching element so as to alleviate the non-uniformity of current burden. As a result, fatigue concentration on a specific switching element can be prevented and the life of the power module can be extended.
実施の形態1にて説明したような2相変調の両寄せモードを条件に応じて停止する制御を行う場合、エレベータ等のように複数の機械共振周波数を持つシステムでは、両寄せモードよりも上寄せモード又は下寄せモードで2相変調が実施される時間が相対的に長くなる。このため、本実施の形態における電力量に基づいた2相変調モードの選択方法は、特定のスイッチング素子への疲労集中を防止するのに特に有効である。 When performing control to stop the two-phase modulation shift mode as described in the first embodiment according to conditions, a system having a plurality of mechanical resonance frequencies, such as an elevator, is higher than the shift mode. The time during which the two-phase modulation is performed in the shift mode or the shift mode is relatively long. For this reason, the selection method of the two-phase modulation mode based on the electric energy in the present embodiment is particularly effective in preventing fatigue concentration on a specific switching element.
実施の形態3.
 図11は、本発明の実施の形態3におけるインバータ制御装置の構成図である。以下、実施の形態1との相違点を中心に説明する。
Embodiment 3 FIG.
FIG. 11 is a configuration diagram of the inverter control device according to the third embodiment of the present invention. Hereinafter, the difference from the first embodiment will be mainly described.
図11に示すように、本実施の形態において、インバータ制御装置は、2相変調モード設定手段21、インバータ出力電圧計算手段22、電流補償値計算手段24及び加算器26を備えている。 As shown in FIG. 11, in the present embodiment, the inverter control device includes a two-phase modulation mode setting unit 21, an inverter output voltage calculation unit 22, a current compensation value calculation unit 24, and an adder 26.
上述したとおり、負荷電流には、上寄せ状態と下寄せ状態の切り替えに伴って矩形波状の電流脈動が発生する。本実施の形態において、インバータ制御装置は、サンプリング電流値と負荷電流の平均値との差を推定する。そして、インバータ制御装置は、検出電流6を補償することで電流脈動の影響を解消する。したがって、2相変調モード設定手段21の動作は、単に両寄せモード、上寄せモード及び下寄せモードのいずれかを2相変調モードとして指定するのみとなる。 As described above, a rectangular wave-shaped current pulsation is generated in the load current in accordance with the switching between the upper and lower states. In the present embodiment, the inverter control device estimates the difference between the sampling current value and the average value of the load current. Then, the inverter control device eliminates the influence of the current pulsation by compensating the detected current 6. Therefore, the operation of the two-phase modulation mode setting means 21 simply designates any of the shift mode, the upper shift mode, and the lower shift mode as the two-phase modulation mode.
 以下、検出電流6の具体的な補償方法について説明する。図6に示すように、電流脈動は、PWMによる電流リプル及び負荷電流のサンプリングタイミングに起因する。電流リプルの影響は、ゼロ電圧ベクトル区間又は非ゼロ電圧ベクトル区間の中心近傍で電流サンプリングを行えば少なくなる。しかし、実際は、デッドタイムによりTd/2だけ非ゼロ電圧ベクトル区間が遅れるため電流脈動が発生する。そこで、サンプリングタイミングよりもTd/2だけ先の時点の電流値を予測する。そして、サンプリング電流値と予測した電流値との差分値でサンプリング電流値を補償する。このようにサンプリング電流値を補償することは、予測した電流値を用いて電流制御を行うことに相当する。 Hereinafter, a specific compensation method for the detection current 6 will be described. As shown in FIG. 6, the current pulsation is caused by the current ripple by PWM and the sampling timing of the load current. The influence of current ripple is reduced if current sampling is performed near the center of the zero voltage vector section or the non-zero voltage vector section. However, in reality, current pulsation occurs because the non-zero voltage vector section is delayed by Td / 2 due to the dead time. Therefore, a current value at a time point Td / 2 ahead of the sampling timing is predicted. Then, the sampling current value is compensated by the difference value between the sampling current value and the predicted current value. Compensating the sampling current value in this way corresponds to performing current control using the predicted current value.
ここで、交流モータとしてIPMを例に取る。IPMとは、埋め込み磁石型の永久磁石同期モータである。IPMの回路方程式は、下記(4)式である。Vd及びVqは、dq軸電圧である。id及びiqは、dq軸電流である。ωは、電気角周波数である。Ldは、d軸インダクタンスである。Lqは、q軸インダクタンスである。Rは、抵抗である。Φは、誘起電圧定数である。 Here, an IPM is taken as an example of the AC motor. The IPM is an embedded magnet type permanent magnet synchronous motor. The circuit equation of IPM is the following equation (4). Vd and Vq are dq axis voltages. id and iq are dq axis currents. ω is an electrical angular frequency. Ld is a d-axis inductance. Lq is a q-axis inductance. R is a resistance. Φ is an induced voltage constant.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
(4)式を状態方程式に変形すると、下記(5)式となる。pは微分演算子である。 When equation (4) is transformed into a state equation, the following equation (5) is obtained. p is a differential operator.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
(5)式の右辺は、dq軸の電流微分値に相当する。(5)式の右辺に時間であるTd/2を乗算すると、下記(6)式となる。idsmp及びiqsmpは、サンプリング電流値である。idsmp及びiqsmpは、検出電流6に相当する。idcmp及びiqcmpは、dq軸の電流補償値である。idcmp及びiqcmpは、電流補償信号25に相当する。Vdinv及びVqinvは、dq軸電圧である。 The right side of equation (5) corresponds to the current differential value of the dq axis. When the right side of equation (5) is multiplied by Td / 2, which is time, the following equation (6) is obtained. idsmp and iqsmp are sampling current values. idsmp and iqsmp correspond to the detection current 6. idcmp and iqcmp are dq axis current compensation values. idcmp and iqcmp correspond to the current compensation signal 25. Vdinv and Vqinv are dq axis voltages.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
電流補償値計算手段24は、電気負荷モデルを用いて(6)式により電流補償値を計算する。電流補償値計算手段24は、電流補償信号25を出力する。加算器26は、検出電流6に電流補償信号25を加算する。電流制御手段3は、補償された検出電流6を用いて電流制御処理を行う。これにより、電流リプル成分を補償して電流脈動を抑制できる。つまり、加算器26は、電流補償手段として働く。 The current compensation value calculation means 24 calculates a current compensation value by the equation (6) using an electric load model. The current compensation value calculation means 24 outputs a current compensation signal 25. The adder 26 adds the current compensation signal 25 to the detected current 6. The current control means 3 performs a current control process using the compensated detection current 6. Thereby, a current ripple component can be compensated and current pulsation can be suppressed. That is, the adder 26 functions as current compensation means.
以下、(6)式の計算に用いられるdq軸電圧Vdinv及びVqinvについて説明する。Vdinv及びVqinvは、PWMを考慮して、デューティ指令11及び2相変調モード指令20に基づいて計算される。 Hereinafter, the dq axis voltages Vdinv and Vqinv used for the calculation of the equation (6) will be described. Vdinv and Vqinv are calculated based on the duty command 11 and the two-phase modulation mode command 20 in consideration of PWM.
下寄せ状態において、キャリアの山のみのタイミングで電流サンプリングを行う場合、サンプリングタイミングはゼロ電圧ベクトル区間内になる。この場合、dq軸電圧はゼロとなる。また、上寄せ状態において、キャリアの谷のみのタイミングで電流サンプリングを行う場合も、サンプリングタイミングはゼロ電圧ベクトル区間内になる。この場合も、dq軸電圧はゼロとなる。 When current sampling is performed at the timing of only the carrier peak in the bottom-up state, the sampling timing is within the zero voltage vector interval. In this case, the dq axis voltage is zero. In addition, when current sampling is performed at the timing of only the carrier valley in the upward state, the sampling timing is within the zero voltage vector interval. Also in this case, the dq-axis voltage is zero.
上記2つの条件以外の場合、インバータ出力電圧計算手段22は、PWMを考慮してPWMインバータが出力する電圧ベクトルを推定する。例えば、上寄せ状態において、キャリアの山のみのタイミングで電流サンプリングを行う場合を考える。U相が固定相のとき、U相の上アームのスイッチング素子がオン状態となる。一方、V相及びW相の上アームのスイッチング素子はオフ状態となる。このとき、インバータ出力電圧Vuinv、Vvinv及びVwinvは、下記(7)式で表される。(7)式を静止2相座標であるαβ相上へ変換すると、下記(8)式となる。Vαinv及びVβinvは、静止2相座標上のインバータ出力電圧である。 In cases other than the above two conditions, the inverter output voltage calculation means 22 estimates the voltage vector output from the PWM inverter in consideration of the PWM. For example, let us consider a case in which current sampling is performed at the timing of only the carrier peak in the upward state. When the U phase is a stationary phase, the switching element of the upper arm of the U phase is turned on. On the other hand, the switching elements of the upper arms of the V phase and the W phase are turned off. At this time, the inverter output voltages Vuinv, Vvinv, and Vwinv are expressed by the following equation (7). When the equation (7) is converted onto the αβ phase which is the stationary two-phase coordinate, the following equation (8) is obtained. Vαinv and Vβinv are inverter output voltages on stationary two-phase coordinates.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
図12及び図13は、本発明の実施の形態3におけるインバータ出力電圧推定用の表である。図12には、上寄せ状態において、キャリアの山のみのタイミングで電流サンプリングを行う場合の情報が記載されている。図13には、下寄せ状態において、キャリアの谷のみのタイミングで電流サンプリングを行う場合の情報が記載されている。電圧指令位相(U)は、U相の電圧指令又はデューティ指令がcos信号となる位相である。インバータ出力電圧係数は、Vdcを乗算するとインバータ出力電圧となる係数である。 12 and 13 are tables for estimating the inverter output voltage in the third embodiment of the present invention. FIG. 12 describes information when current sampling is performed at the timing of only the carrier peak in the upward state. FIG. 13 shows information when current sampling is performed at the timing of only the carrier valley in the bottom-up state. The voltage command phase (U) is a phase in which the U-phase voltage command or the duty command becomes a cos signal. The inverter output voltage coefficient is a coefficient that becomes an inverter output voltage when multiplied by Vdc.
インバータ出力電圧計算手段22は、デューティ指令11及び2相変調モード指令20に基づいて2相変調実施時の固定相を判別する。そして、インバータ出力電圧計算手段22は、図12及び図13に記載の情報に基づいて、インバータ出力電圧Vαinv及びVβinvを計算する。Vαinv及びVβinvは、下記(9)式によりdq回転座標上の電圧Vdinv及びVqinvに変換される。Vdinv及びVqinvは、インバータ電圧信号23に相当する。電流補償値計算手段24は、(9)式の計算結果を用いて(6)式の計算を行う。なお、θは座標変換用の信号である。θは位相信号18に相当する。 The inverter output voltage calculation means 22 determines the fixed phase when the two-phase modulation is performed based on the duty command 11 and the two-phase modulation mode command 20. And the inverter output voltage calculation means 22 calculates inverter output voltage V (alpha) inv and V (beta) inv based on the information of FIG.12 and FIG.13. Vαinv and Vβinv are converted into voltages Vdinv and Vqinv on the dq rotation coordinates by the following equation (9). Vdinv and Vqinv correspond to the inverter voltage signal 23. The current compensation value calculation means 24 calculates the equation (6) using the calculation result of the equation (9). Note that θ is a signal for coordinate conversion. θ corresponds to the phase signal 18.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
上述したとおり、本実施の形態におけるインバータ制御装置は、サンプリングタイミングよりもTd/2だけ先の時点の電流値を予測する。インバータ制御装置は、サンプリング電流値と予測した電流値との差分値でサンプリング電流値を補償することで、電流脈動の影響を解消する。これにより、PWMインバータによって駆動されるモータ等の機械共振成分の励起を防止できる。その結果、電流脈動に起因する騒音及び振動を抑制することができる。 As described above, the inverter control device in the present embodiment predicts a current value at a time point that is Td / 2 ahead of the sampling timing. The inverter control device eliminates the influence of the current pulsation by compensating the sampling current value with a difference value between the sampling current value and the predicted current value. Thereby, excitation of mechanical resonance components such as a motor driven by the PWM inverter can be prevented. As a result, noise and vibration caused by current pulsation can be suppressed.
実施の形態1から3では、本発明を2レベル3相インバータに適用した場合について説明している。しかし、本発明は、例えば3レベル3相インバータ等に適用してもよい。この場合も、電流脈動の影響を抑制することで同様の効果が得られる。 In the first to third embodiments, the case where the present invention is applied to a two-level three-phase inverter is described. However, the present invention may be applied to, for example, a three-level three-phase inverter. In this case, the same effect can be obtained by suppressing the influence of the current pulsation.
上記のスイッチング素子及びダイオード素子は、ワイドバンドギャップ半導体によって形成されてもよい。ワイドバンドギャップ半導体は、耐電圧性及び許容電流密度が高い。このため、ワイドバンドギャップ半導体を用いることにより、スイッチング素子及びダイオード素子を小型化できる。小型化されたスイッチング素子及びダイオード素子を用いることにより、これらの素子が組み込まれたインバータ制御装置を小型化できる。つまり、ワイドバンドギャップ半導体によって形成されたスイッチング素子及びダイオード素子を用いることにより、インバータ制御装置を小型化することができる。 The switching element and the diode element may be formed of a wide band gap semiconductor. Wide band gap semiconductors have high voltage resistance and allowable current density. For this reason, a switching element and a diode element can be reduced in size by using a wide band gap semiconductor. By using miniaturized switching elements and diode elements, an inverter control device incorporating these elements can be miniaturized. That is, the inverter control device can be reduced in size by using a switching element and a diode element formed of a wide band gap semiconductor.
以上のように、本発明に係るインバータ制御装置は、電気負荷を駆動するインバータに利用できる。 As described above, the inverter control device according to the present invention can be used for an inverter that drives an electric load.
1 電流指令計算手段、2 電流指令、3 電流制御手段、4,6 検出電流、5 第1の座標変換器、7,9,11,13 デューティ指令、8 第2の座標変換器、10 2相変調処理手段、12 デッドタイム補償手段、14 PWM処理手段、15 スイッチング指令、16 周波数指令、17 積分器、18 位相信号、19 2相変調モード設定手段、19a 電流脈動周波数計算手段、19b 周波数情報、19c 禁止周波数帯域情報記録手段、19d 周波数帯域情報、19e 第1の判定手段、19f,20 2相変調モード指令、19g 第2の判定手段、19h 電力損失計算手段、19i 電力損失、21 2相変調モード設定手段、22 インバータ出力電圧計算手段、23 インバータ電圧信号、24 電流補償値計算手段、25 電流補償信号、26 加算器 1 current command calculation means, 2 current command, 3 current control means, 4, 6 detection current, 5 first coordinate converter, 7, 9, 11, 13 duty command, 8 second coordinate converter, 10 2 phase Modulation processing means, 12 dead time compensation means, 14 PWM processing means, 15 switching command, 16 frequency command, 17 integrator, 18 phase signal, 19 two-phase modulation mode setting means, 19a current pulsation frequency calculation means, 19b frequency information, 19c Prohibited frequency band information recording means, 19d frequency band information, 19e first determination means, 19f, 20 two-phase modulation mode command, 19g second determination means, 19h power loss calculation means, 19i power loss, 21 two-phase modulation Mode setting means, 22 Inverter output voltage calculation means, 23 Inverter voltage signal, 24 Current償値 calculation unit, 25 current compensation signal, 26 an adder

Claims (7)

  1.  第1の判定手段を有し、インバータの出力周波数に基づいて前記インバータを駆動するための2相変調モードを指定する2相変調モード設定手段と、
     電圧指令及び前記2相変調モード設定手段により指定された2相変調モードに基づいて2相変調を実施する2相変調処理手段と、
    を備え、
     前記第1の判定手段は、xを奇数として、前記インバータの出力周波数の3x倍周波数が予め設定された周波数帯域に含まれるか否かを判定し、
     前記2相変調モード設定手段は、前記インバータの出力周波数の3x倍周波数が前記周波数帯域に含まれると判定された場合は上寄せモード又は下寄せモードを2相変調モードとして指定し、前記インバータの出力周波数の3x倍周波数が前記周波数帯域に含まれないと判定された場合は電圧指令の絶対値及び極性に応じて上寄せ状態と下寄せ状態とを切り替える両寄せモードを2相変調モードとして指定するインバータ制御装置。
    Two-phase modulation mode setting means for specifying a two-phase modulation mode for driving the inverter based on an output frequency of the inverter;
    Two-phase modulation processing means for performing two-phase modulation based on a voltage command and a two-phase modulation mode designated by the two-phase modulation mode setting means;
    With
    The first determination means determines whether x is an odd number and a frequency that is 3x times the output frequency of the inverter is included in a preset frequency band;
    The two-phase modulation mode setting means designates the upshift mode or the downshift mode as the two-phase modulation mode when it is determined that the frequency band of 3 × times the output frequency of the inverter is included in the frequency band, When it is determined that a frequency 3x times the output frequency is not included in the frequency band, a two-phase modulation mode is designated as a two-phase modulation mode that switches between the upper and lower states according to the absolute value and polarity of the voltage command. Inverter control device.
  2.  前記2相変調モード設定手段は、前記インバータの出力周波数の3x倍周波数が前記周波数帯域に含まれると判定された場合は、前記インバータのスイッチング素子における電力損失に基づいて上寄せモード又は下寄せモードを2相変調モードとして指定する請求項1に記載のインバータ制御装置。 The two-phase modulation mode setting means, when it is determined that a frequency that is 3x times the output frequency of the inverter is included in the frequency band, is based on the power loss in the switching element of the inverter, The inverter control device according to claim 1, which designates as a two-phase modulation mode.
  3.  前記2相変調モード設定手段は、前記インバータの出力周波数の3x倍周波数が前記周波数帯域に含まれると判定された場合は、前記インバータのスイッチング素子の温度に基づいて上寄せモード又は下寄せモードを2相変調モードとして指定する請求項1に記載のインバータ制御装置。 The two-phase modulation mode setting means, when it is determined that a frequency that is 3x times the output frequency of the inverter is included in the frequency band, is based on the temperature of the switching element of the inverter, The inverter control device according to claim 1 specified as a two-phase modulation mode.
  4.  前記2相変調モード設定手段は、前記インバータの出力周波数の3x倍周波数が前記周波数帯域に含まれると判定された場合は、前記インバータのスイッチング素子ごとにおける電力損失を積算した電力量に基づいて上寄せモード又は下寄せモードを2相変調モードとして指定する請求項1に記載のインバータ制御装置。 If it is determined that the frequency band includes a frequency that is 3 × times the output frequency of the inverter, the two-phase modulation mode setting means may increase the power based on the amount of power accumulated by the power loss for each switching element of the inverter. The inverter control device according to claim 1, wherein the shift mode or the shift mode is designated as a two-phase modulation mode.
  5.  インバータの出力電圧を計算するインバータ出力電圧計算手段と、
     前記インバータ出力電圧計算手段により計算された出力電圧及び電気負荷モデルに基づいて電流補償値を計算する電流補償値計算手段と、
     前記電流補償値計算手段により計算された電流補償値を加算することで、前記インバータに接続された電気負荷から検出される検出電流を補償する電流補償手段と、
     前記インバータを駆動するための2相変調モードを指定する2相変調モード設定手段と、
     電圧指令及び前記2相変調モード設定手段により指定された2相変調モードに基づいて2相変調を実施する2相変調処理手段と、
    を備えたインバータ制御装置。
    An inverter output voltage calculation means for calculating the output voltage of the inverter;
    Current compensation value calculation means for calculating a current compensation value based on the output voltage and electric load model calculated by the inverter output voltage calculation means;
    Current compensation means for compensating the detected current detected from the electrical load connected to the inverter by adding the current compensation value calculated by the current compensation value calculation means;
    Two-phase modulation mode setting means for designating a two-phase modulation mode for driving the inverter;
    Two-phase modulation processing means for performing two-phase modulation based on a voltage command and a two-phase modulation mode designated by the two-phase modulation mode setting means;
    Inverter control device equipped with.
  6.  前記インバータの出力電圧と電圧指令との電圧誤差を補償するデッドタイム補償手段を備え、
     前記デッドタイム補償手段は、前記2相変調モード設定手段により指定された2相変調モードに基づいて、上寄せ状態と下寄せ状態とが切り替わる場合にデッドタイム補償値を変更する請求項1から5のいずれか1項に記載のインバータ制御装置。
    A dead time compensation means for compensating a voltage error between the output voltage of the inverter and a voltage command;
    6. The dead time compensation means changes a dead time compensation value when an upshift state and a downshift state are switched based on a two-phase modulation mode designated by the two-phase modulation mode setting means. The inverter control device according to any one of the above.
  7.  前記スイッチング素子はワイドバンドギャップ半導体によって形成されている請求項2又は3に記載のインバータ制御装置。 The inverter control device according to claim 2 or 3, wherein the switching element is formed of a wide band gap semiconductor.
PCT/JP2013/081049 2013-11-18 2013-11-18 Inverter control device WO2015072036A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015547371A JP6160706B2 (en) 2013-11-18 2013-11-18 Inverter control device
PCT/JP2013/081049 WO2015072036A1 (en) 2013-11-18 2013-11-18 Inverter control device
CN201380080948.6A CN105765837B (en) 2013-11-18 2013-11-18 Control device for inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081049 WO2015072036A1 (en) 2013-11-18 2013-11-18 Inverter control device

Publications (1)

Publication Number Publication Date
WO2015072036A1 true WO2015072036A1 (en) 2015-05-21

Family

ID=53056996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081049 WO2015072036A1 (en) 2013-11-18 2013-11-18 Inverter control device

Country Status (3)

Country Link
JP (1) JP6160706B2 (en)
CN (1) CN105765837B (en)
WO (1) WO2015072036A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198893A1 (en) * 2017-04-24 2018-11-01 パナソニックIpマネジメント株式会社 Power conversion system
WO2019038900A1 (en) * 2017-08-25 2019-02-28 株式会社日立製作所 Motor control system
JP2020129919A (en) * 2019-02-08 2020-08-27 株式会社豊田自動織機 Inverter
JPWO2020241423A1 (en) * 2019-05-27 2020-12-03
CN112953257A (en) * 2019-12-11 2021-06-11 株式会社日立制作所 Power conversion device, X-ray image capturing device, and motor drive device
WO2023032195A1 (en) * 2021-09-06 2023-03-09 三菱電機株式会社 Control unit for power converter, and power conversion apparatus
CN116232100A (en) * 2023-03-17 2023-06-06 江苏吉泰科电气有限责任公司 Pulse width modulation method and system for reducing heating imbalance of switching device
WO2024071023A1 (en) * 2022-09-30 2024-04-04 ニデック株式会社 Motor control device, motor module, motor control program, and motor control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662579A (en) * 1992-08-05 1994-03-04 Hitachi Ltd Voltage-type inverter device
JPH06233549A (en) * 1992-12-08 1994-08-19 Nippondenso Co Ltd Inverter control device
JP2002247860A (en) * 2001-02-22 2002-08-30 Fuji Electric Co Ltd Controlling method for voltage-type converter
JP2012125022A (en) * 2010-12-07 2012-06-28 Denso Corp Electric power conversion apparatus
JP2013141336A (en) * 2011-12-28 2013-07-18 Hitachi Appliances Inc Motor control device and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866216B2 (en) * 2006-11-22 2012-02-01 株式会社日立製作所 Power converter
ES2385095T3 (en) * 2007-04-20 2012-07-18 Mitsubishi Electric Corporation Inverter controller
JP4616397B2 (en) * 2009-02-23 2011-01-19 ファナック株式会社 PWM rectifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662579A (en) * 1992-08-05 1994-03-04 Hitachi Ltd Voltage-type inverter device
JPH06233549A (en) * 1992-12-08 1994-08-19 Nippondenso Co Ltd Inverter control device
JP2002247860A (en) * 2001-02-22 2002-08-30 Fuji Electric Co Ltd Controlling method for voltage-type converter
JP2012125022A (en) * 2010-12-07 2012-06-28 Denso Corp Electric power conversion apparatus
JP2013141336A (en) * 2011-12-28 2013-07-18 Hitachi Appliances Inc Motor control device and air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165359B2 (en) 2017-04-24 2021-11-02 Panasonic Intellectual Property Management Co., Ltd. Power conversion system configured to perform power conversion between direct current and three-phase alternating current
JPWO2018198893A1 (en) * 2017-04-24 2020-05-14 パナソニックIpマネジメント株式会社 Power conversion system
WO2018198893A1 (en) * 2017-04-24 2018-11-01 パナソニックIpマネジメント株式会社 Power conversion system
JP7008222B2 (en) 2017-04-24 2022-01-25 パナソニックIpマネジメント株式会社 Power conversion system
WO2019038900A1 (en) * 2017-08-25 2019-02-28 株式会社日立製作所 Motor control system
JP2020129919A (en) * 2019-02-08 2020-08-27 株式会社豊田自動織機 Inverter
JP7115348B2 (en) 2019-02-08 2022-08-09 株式会社豊田自動織機 inverter
JPWO2020241423A1 (en) * 2019-05-27 2020-12-03
JP7267412B2 (en) 2019-05-27 2023-05-01 三菱電機株式会社 POWER CONVERTER AND METHOD FOR MANUFACTURING POWER CONVERTER
CN112953257A (en) * 2019-12-11 2021-06-11 株式会社日立制作所 Power conversion device, X-ray image capturing device, and motor drive device
JP7390881B2 (en) 2019-12-11 2023-12-04 富士フイルムヘルスケア株式会社 Power conversion equipment, X-ray imaging equipment, motor drive equipment
WO2023032195A1 (en) * 2021-09-06 2023-03-09 三菱電機株式会社 Control unit for power converter, and power conversion apparatus
WO2024071023A1 (en) * 2022-09-30 2024-04-04 ニデック株式会社 Motor control device, motor module, motor control program, and motor control method
CN116232100A (en) * 2023-03-17 2023-06-06 江苏吉泰科电气有限责任公司 Pulse width modulation method and system for reducing heating imbalance of switching device
CN116232100B (en) * 2023-03-17 2023-10-24 江苏吉泰科电气有限责任公司 Pulse width modulation method and system for reducing heating imbalance of switching device

Also Published As

Publication number Publication date
CN105765837A (en) 2016-07-13
JP6160706B2 (en) 2017-07-12
JPWO2015072036A1 (en) 2017-03-16
CN105765837B (en) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6160706B2 (en) Inverter control device
US10103675B2 (en) Control device of alternating-current electric motor
JP5599538B1 (en) Power converter
US8278865B2 (en) Control device
JP4717114B2 (en) Control device for power converter
JP5844006B1 (en) Power conversion device and vehicle drive system
WO2013046462A1 (en) Power conversion control device, power conversion control method, electric motor and vehicle drive system
US10027271B2 (en) Rotating electrical machine control device
KR101251238B1 (en) Motor control system
JP5813934B2 (en) Power converter
JP2013039033A (en) Polyphase motor driving apparatus
JP2011211818A (en) Power conversion equipment, method of converting power, and motor drive system
JP4722002B2 (en) PWM inverter control device, PWM inverter control method, and refrigeration air conditioner
CN107925373B (en) Power conversion device and heat pump device
WO2021145029A1 (en) Rotating electrical machine control device
JP4893152B2 (en) Space vector modulation method for AC-AC direct conversion device
US11303224B2 (en) Inverter device with high follow-up capability
JP2009131024A (en) Power conversion apparatus and its control method
WO2017034028A1 (en) Control method and control device for inverter, and inverter device
JP2003189634A (en) Controller of voltage type pwm inverter
WO2022209315A1 (en) Rotating electrical machine control device
WO2022130480A1 (en) Power conversion device
JP7182478B2 (en) power converter
JP2020137385A (en) Power conversion device
JP2012085405A (en) Power converter, power conversion method and motor drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897334

Country of ref document: EP

Kind code of ref document: A1