WO2015071239A1 - Mit poly(meth)acrylimid-schaum gefüllte wabenstrukturen - Google Patents

Mit poly(meth)acrylimid-schaum gefüllte wabenstrukturen Download PDF

Info

Publication number
WO2015071239A1
WO2015071239A1 PCT/EP2014/074227 EP2014074227W WO2015071239A1 WO 2015071239 A1 WO2015071239 A1 WO 2015071239A1 EP 2014074227 W EP2014074227 W EP 2014074227W WO 2015071239 A1 WO2015071239 A1 WO 2015071239A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
foam
particles
filled
lightweight
Prior art date
Application number
PCT/EP2014/074227
Other languages
English (en)
French (fr)
Inventor
Thomas Richter
Kay Bernhard
Ina LIEBL
Tim DENK
Matthias Alexander Roth
Original Assignee
Evonik Industries Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Industries Ag filed Critical Evonik Industries Ag
Publication of WO2015071239A1 publication Critical patent/WO2015071239A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/18Filling preformed cavities
    • B29C44/186Filling multiple cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/12Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/034Post-expanding of foam beads or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides

Definitions

  • honeycomb structures In the field of lightweight construction, especially in aircraft construction, but increasingly also in the automotive industry, two technologies occupy an outstanding position in terms of weight savings combined with high strength: honeycomb structures and hard foam materials.
  • the invention relates to a process for producing honeycomb structures filled with poly (meth) acrylimide (P (M) 1) foams.
  • P (M) 1 poly (meth) acrylimide
  • the present invention also encompasses the novel materials produced by this method, which, with a very low weight, the advantages of the honeycomb structures, such as the high vertical load capacity and the
  • Honeycomb structures in particular of metals such as aluminum, titanium or steel, have long been known in lightweight construction. In addition to the low weight of these structures have the great advantage that they are very good vertical load.
  • Honeycomb structures are sometimes referred to simply as honeycombs.
  • This load capacity is very high, in particular, when the corresponding surface is coated with a material, such as e.g. a metal or wooden plate or a composite, is covered. Disadvantage of these structures, however, is that these
  • metal honeycombs in the application of a cover layer in the form of a resin-based composite have the disadvantage that they are in one
  • honeycomb structures are that beveled honeycomb edges must be filled out, since the honeycomb can absorb only poor lateral forces, and that not completely sealed honeycomb with condensed
  • Rigid foams can be used as sheet material in lightweight construction.
  • the top and optionally the underside are covered with a metal, wood or composite plate as a cover layer, analogous to the honeycomb.
  • the connection of the cover to the rigid foam then called foam core or core material is usually done by gluing, sewing or by connecting with pins. Such a sewing method is described for example in EP 2 203 298.
  • the bonding of the cover layers to the foam core by means of pins results, for example, from EP 1 907 193.
  • rigid foam materials have the disadvantage that they are not impact resistant. Although this can be partially counteracted by introducing the cover layers, there is usually no protection against lateral action.
  • DE 18 17 156 and DE 27 26 260 describe the production of PMI foams which have excellent mechanical properties even at high temperatures.
  • the production of the foams is carried out by casting, ie, the monomers and required additives are mixed and in one Chamber polymerized. The polymer is passed through in a second step
  • WO 2013/05947 describes an in-mold process in which at least the latter problem has been solved in that the particles, prior to filling in the shaping foaming tool, are treated with a bonding agent, e.g. with a
  • Polyamide or a polymethacrylate are coated. This achieves a very good grain boundary adhesion. The uneven pore distribution in the final product is not avoided by this method.
  • Mechanical resilience includes both a high impact strength and a high compressive strength.
  • Cover layers are provided and thus present as a sandwich material, perpendicular to these cover layers have improved in comparison with the prior art pressure resistance.
  • these composite materials in a lateral action, so in a direct impact on the nuclear material, both opposite
  • Hard foam cores an improved impact resistance, as opposed to
  • Metal honeycomb cores have improved pressure resistance. Furthermore, a method for producing these lightweight materials,
  • the core materials should be simple, e.g. by Harzinfusions- or injection processes for the production of outer layers, be further processed.
  • Lightweight material having honeycomb filled with a P (M) I foam.
  • this lightweight material may be such that the honeycombs filled with the P (M) I foam are in the form of a plate as core material, and that this core material is provided with cover layers on one or two sides.
  • the cover layers in this case are preferably metal, wood or composite plates, which are connected to the core material by sewing, gluing or by means of pins.
  • aluminum, magnesium, steel and titanium are suitable metals.
  • Composite materials may be, for example, pure thermoplastics, fabrics or knits or composites thereof, e.g. so-called
  • the cover material is preferably a fiber-reinforced plastic.
  • the fibers may in turn be, for example, aramid, glass, carbon, polymer or textile fibers.
  • the thermoplastic material may preferably be PP, polyethylene (PE), polycarbonate (PC), polyvinyl chloride (PVC), an epoxy resin, an isocyanate resin, an acrylate resin, a polyester or a polyamide.
  • a reactive resin such as a polyurethane, epoxy, phenolic, vinyl or (meth) acrylate resin, followed by curing to form a composite material.
  • the material for the foam core in this case represents P (M) I, preferably PMI.
  • P (M) I foams are also referred to as rigid foams and are characterized by a particular strength.
  • the P (M) I foams are normally produced in a two-stage process: a) production of a cast polymer and b) foaming of this cast polymer.
  • monomer mixtures which contain (meth) acrylic acid and (meth) acrylonitrile, preferably in a molar ratio of between 2: 3 and 3: 2, as main constituents, are first prepared.
  • other comonomers may be used, such as e.g. Esters of acrylic or methacrylic acid, styrene, maleic acid or itaconic acid or their anhydrides or vinylpyrrolidone.
  • the proportion of the comonomers should not be more than 30% by weight.
  • Small amounts of crosslinking monomers, e.g. Allyl acrylate, can also be used. However, the amounts should preferably be at most 0.05 to 2.0% by weight.
  • the mixture for the copolymerization further contains blowing agents which are in
  • the density of the hard foam matehal is relatively freely selectable.
  • P (M) I foams can be used, for example, in a density range from 20 to 250 kg / m 3 , preferably from 25 to 220 kg / m 3 . Particular preference is given to using a PMI foam having a density of between 30 and 200 kg / m 3 .
  • honeycombs of the lightweight material according to the invention may preferably consist of paper, plastic or a metal.
  • Suitable metals are in particular aluminum, magnesium, titanium or steel in question.
  • a particularly suitable embodiment is, for example, the use of one
  • Aramid paper which is impregnated with a phenolic resin and then cured.
  • the honeycomb made of aluminum.
  • honeycombs can be partially filled with the non-foamed or pre-foamed particles of the later foam material.
  • honeycombs are preferably square from square view, trapezoidal, hexagonal or octagonal. Also combinations of different forms are conceivable. Preferred is an embodiment in which approximately the same size honeycomb cover the area.
  • the diameter of such a honeycomb is preferably at the thickest point of the honeycomb between 0.1 and 20 cm, in particular between 1 and 10 cm.
  • the height of the honeycomb is absolutely freely selectable. It is only to be noted that the volume of the individual honeycomb naturally determines, taking into account the density of the foam to be achieved, the amount of foamable particles with which a single honeycomb is filled before foaming, this amount is for the
  • the type of material to be foamed From the honeycomb volume, the type of material to be foamed, the density to be achieved, the concentration of blowing agent in this material and the temperature during foaming and a known Composition of the material to be foamed even without preliminary tests adjustable.
  • the density of the honeycomb material used, as well as the honeycomb size and the web thickness determine in part the weight and the mechanical properties of the lightweight material according to the invention.
  • Total weight or to improve the mechanical strength can be easily optimized.
  • a method for the production of foam-filled honeycombs is also part of the present invention.
  • this method according to the invention is not restricted exclusively to honeycombs filled with P (M) I, but can also be applied to other foamable plastics which are present in particulate form in the non-foamed state.
  • the inventive method for the production of lightweight materials comprising honeycomb-filled honeycomb, is characterized in particular by the following process steps: a. Filling a honeycomb material with foamable particles, b. Foaming of the particles, wherein the foamable particles of PE, PP, PMMA, PS or P (M) I exist.
  • PE or PP foams are known above all as insulation material, in transport containers and as sandwich material. PE or PP foams can contain fillers and are usually commercially available in a density range between 20 and 200 kg / m 3 . PMMA foams are characterized by a particularly good
  • PS Polystyrene
  • M Polystyrene
  • P (M) I particles these can preferably be obtained by means of two alternatives.
  • the P (M) I is prepared as described above as P (M) I semifinished product, in particular as a plate. It can then be obtained by painting the granules in a particle size that is easy to set.
  • the P (M) I particles are suspension polymers.
  • the preparation of such P (M) I suspension polymers can be found, for example, in European patent application with the filing 13155413.1, filed on 15.02.2013,
  • honeycombs with prefoamed particles are particularly preferred.
  • Both the optional pre-foaming and the foaming in process step b. can be done thermally and / or by means of microwaves.
  • the process parameters to be used depend on the blowing agent used, the foam material, the density to be achieved and the honeycomb size. These parameters are easy to deduce for the skilled person from the known prior art.
  • a particularly uniform pore distribution and thus uniform density within a honeycomb is obtained if the honeycombs filled with the particles are moved horizontally and / or vertically and / or rotated during foaming. Particularly preferred is a horizontal rotation, which can optionally be combined with other movements.
  • Device for example, sources for microwaves, which are directed to the honeycomb, have.
  • the lightweight construction material produced according to the invention in particular the honeycomb filled with the P (M) I foam, preferably has a density between 30 and 350 kg / m 3 , preferably between 40 and 300 kg / m 3 and particularly preferably between 50 and 250 kg / m 3 up.
  • This density includes both the webs of the honeycomb material and the foam filling, as well as any open spaces. In the case of adding cover layers, this density refers to the core material without these cover layers.
  • method step b. done in a press.
  • This press is constructed so that the foam at the edges of the honeycomb after removal from the press closes. This means that the press ideally rests on the open edges of the honeycomb. A great pressure does not have to be exercised. Rather, a pressure sufficient to withstand the foaming pressure.
  • the foam-filled honeycomb after the completed process step b. and the subsequent cooling by means of sewing, piercing with pins or gluing with one or two cover layers as described above for the honeycombs filled with P (M) I foam.
  • Cover material is inserted in the press.
  • Such an approach can optionally be dispensed with a further bonding, sewing or piercing with pins. It is also possible to provide the cover material with an adhesive layer. Due to the direct contact between the tool shells of the press and the
  • Cover material can be done very fast curing of the resin.
  • the temperature used to cure the resin will depend on the particular resin used and will be readily apparent to those skilled in the art. As a rule, such temperatures are between 100 and 300 ° C. Thus, in particular, the preferred foaming of the foam core temperatures between 170 and 250 ° C for most resin systems are suitable. For the less preferred case of a higher required temperature, the curing of the resin may be carried out in another heating station.
  • adhesion promoters can be used to improve adhesion between the foam core material and cover layers. These adhesion promoters may be contained in the matrix material of the decoating layers. Alternatively, the adhesion promoters can also be applied to the surface of the cover layers or of the foam core prior to the combination. Alternatively, suitable adhesives may be used in this procedure. Particularly suitable adhesion promoters are polyesters, polyamides or poly (meth) acrylates. But it can also be low molecular weight compounds resulting from the production of
  • Matrix material of the cover layer known in the art, can be used.
  • the process parameters to be selected depend on the plant used in the individual case and their
  • the lightweight construction materials according to the invention or the lightweight construction materials produced according to the method according to the invention are very widely applicable.
  • Lightweight construction material produced according to the invention can be used in particular in mass production, e.g. for body shop or for
  • a prefoamed PMI granulate was used for foaming the honeycomb. This was prepared from a PMI granules with a particle size of ⁇ 0.1 mm, which was prefoamed at 200 ° C for 15 min in an oven and then had an average particle size of about 1 mm.
  • the PMI granules used were a material sold as PMI foam under the product name ROHACELL RIMA by Evonik Industries. As honeycomb became one
  • Aramid honeycomb with a cell size of 5 mm and a thickness of 13 mm used.
  • the density of the honeycomb was 50 kg / m 3 .
  • the honeycomb was cut to size in such a way that it in a metal frame (size 16x16cm) with
  • Metal bottom plate could be inserted accurately.
  • the metal frame in this case had a height which corresponded to the thickness of the honeycomb, so that they
  • 31 g of the previously prefoamed granules were filled evenly, so that all holes of the honeycomb were filled to about half their height with prefoamed granules.
  • the thus filled honeycomb was covered with a PTFE film and placed in a heated press at 230 ° C. The press was closed
  • Example 2 Analogously to Example 1, but the filling of the honeycomb was carried out so that first the bottom plate of the metal frame was uniformly covered with 31 g prefoamed granules and then the honeycomb except for the bottom plate of the

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von mit Poly(meth)acrylimid-(P(M)l)-Schäumen gefüllten Wabenstrukturen. Bei diesem Verfahren werden die einzelnen Waben einer Wabenstruktur mit P(M)I-Partikeln, die bevorzugt vorgeschäumt sein können, gefüllt und anschließend thermisch ausgeschäumt. Gleichzeitig umfasst die vorliegende Erfindung auch die mittels dieses Verfahrens hergestellten, neuartigen Werkstoffe, die bei einem sehr geringen Gewicht die Vorteile der Wabenstrukturen, wie hohe senkrechte Belastbarkeit und Schlagzähigkeit, mit den Vorteilen der P(M)I- Schäume, insbesondere der hohen Druckbelastbarkeit in allen Richtungen und der hohen Steifigkeit, verbindet.

Description

Mit Poly(meth)acrylimid-Schaum gefüllte Wabenstrukturen
Gebiet der Erfindung
Im Bereich des Leichtbaus, insbesondere im Flugzeugbau, zunehmend aber auch im Automobilbau nehmen zweierlei Technologien eine herausragende Position in Bezug auf Gewichtseinsparungen bei gleichzeitig hoher Festigkeit ein: Wabenstrukturen und Hartschaumwerkstoffe.
Die Erfindung betrifft ein Verfahren zur Herstellung von mit Poly(meth)acrylimid- (P(M)l-)Schäumen gefüllte Wabenstrukturen. Bei diesem Verfahren werden die einzelnen Waben einer Wabenstruktur mit P(M)I-Partikeln, die bevorzugt
vorgeschäumt sein können, gefüllt und anschließend thermisch ausgeschäumt.
Gleichzeitig umfasst die vorliegende Erfindung auch die mittels dieses Verfahrens hergestellten, neuartigen Werkstoffe, die bei einem sehr geringem Gewicht, die Vorteile der Wabenstrukturen, wie die hohe senkrechte Belastbarkeit und die
Schlagzähigkeit, mit den Vorteilen der P(M)I-Schäume, insbesondere die hohe Druckbelastbarkeit in alle Richtungen und die hohe Steifigkeit, miteinander verbindet.
Stand der Technik
Wabenstrukturen, insbesondere aus Metallen wie Aluminium, Titan oder Stahl, sind im Leichtbau seit langem bekannt. Neben dem geringen Gewicht haben diese Strukturen den großen Vorteil, dass sie sehr gut senkrecht belastbar sind. Diese
Wabenstrukturen werden manchmal auch schlicht als Honigwaben bezeichnet.
Senkrecht bedeutet in diesem Zusammenhang in Richtung der offenen Waben.
Diese Belastbarkeit ist insbesondere dann sehr hoch, wenn die entsprechende Oberfläche mit einem Material, wie z.B. einer Metall- oder Holzplatte oder einem Composite, abgedeckt ist. Nachteil dieser Strukturen ist jedoch, dass diese
gegenüber einer seitlichen Druckbelastung äußerst instabil sind. Darüber hinaus haben Metallwaben bei dem Aufbringen einer Deckschicht in Form eines Harz-basierten Composites den Nachteil, dass sich diese in einem
Harzinfusionsverfahren nur schwierig verarbeiten lassen, da die einzelnen Zellen aus Kosten- und Gewichtsgründen nicht mit Harz volllaufen dürfen. Im Gegensatz zu den weiter unten beschriebenen Hartschäumen müssen Sie vorher aufwändig
abgedichtet werden.
Weitere Nachteile der Wabenstrukturen sind, dass abgeschrägte Wabenkanten ausgespachtelt werden müssen, da die Wabe nur schlecht laterale Kräfte aufnehmen kann, und dass nicht vollständig abgedichtete Waben sich mit kondensiertem
Wasser füllen können. Letzteres stellt vor allem in der Luftfahrt ein großes Problem, allein schon durch die damit verbundene Gewichtszunahme, dar.
Eine Alternative zu solchen Metallwaben sind Hartschäume, insbesondere aus Polymethacrylimid (PMI) bzw. Polyacrylimid (PI) - zusammengefasst kurz als
Poly(meth)acrylimid (P(M)I) bezeichnet. Hartschäume können als Plattenware im Leichtbau eingesetzt werden. Dazu werden die Ober- und optional die Unterseite analog zu den Waben mit einer Metall-, Holz- oder Compositeplatte als Deckschicht abgedeckt. Die Verbindung der Abdeckung zu dem dann als Schaumkern oder Kernmaterial bezeichneten Hartschaum erfolgt in der Regel mittels Kleben, Nähen oder durch Verbinden mit Pins. Ein solches Nähverfahren ist beispielsweise in EP 2 203 298 beschrieben. Das Verbinden der Deckschichten mit dem Schaumkern mittels Pins ergibt sich beispielsweise aus EP 1 907 193.
Hartschaumwerkstoffe haben jedoch den Nachteil, dass diese nicht schlagzäh sind. Dem kann durch Einführen der Deckschichten zwar teilweise entgegengewirkt werden, jedoch besteht zumeist kein Schutz gegenüber seitlicher Einwirkung.
Weiterhin ist auch die Stabilität in senkrechter Richtung auf die Deckschicht sowohl bei Wabenkernen als auch bei Hartschaumkernen noch verbesserungswürdig.
In DE 18 17 156 bzw. DE 27 26 260 werden die Herstellung von PMI-Schäumen beschrieben, die ausgezeichnete mechanische Eigenschaften auch bei hohen Temperaturen aufweisen. Die Herstellung der Schäume erfolgt im Gussverfahren, d.h. die Monomere und erforderliche Zusatzstoffe werden gemischt und in einer Kammer polymerisiert. Das Polymerisat wird in einem zweiten Schritt durch
Erwärmen geschäumt. Neben diesen PMI-Schäumen sind mit ähnlichen
Eigenschaften auch Schäume auf Basis von Methacrylsäure und Acrylnitril (Pl- Schäume) bekannt. Diese werden beispielsweise in der CN 100420702C
beschrieben. Auch diese Schäume werden zunächst als Platten hergestellt.
Es sind neben diesen Verfahren, die von einer nicht geschäumten Polymerplatte ausgehen, auch so genannte In-Mould-Foaming Prozesse, ausgehend von einem Granulat, bekannt. Gegenüber den beschriebenen Verfahren haben diese jedoch grundsätzlich mehrere Nachteile. So wird nur eine ungleichmäßige Porenstruktur, die sich zwischen dem Inneren der ursprünglichen Partikel und den Grenzflächen zwischen den ursprünglichen Partikeln unterscheidet, erzielt. Weiterhin ist die Dichte des Schaums aufgrund der ungleichmäßigen Verteilung der Partikel beim
Aufschäumen - wie bereits beschrieben - zusätzlich inhomogen. Weiterhin kann man bei diesen aus Granulat geschäumten Produkten eine schlechtere Kohäsion an den Grenzflächen, die sich zwischen den ursprünglichen Partikeln beim Schäumen bilden, und damit gegenüber aus einer Halbzeugplatte geschäumten Materialien schlechtere mechanische Eigenschaften beobachten.
in WO 2013/05947 wird ein In-Mould-Verfahren beschrieben, bei dem zumindest letzteres Problem dadurch gelöst wurde, dass die Partikel vor dem Abfüllen in das formgebende Schäumungswerkzeug mit einem Haftvermittler, z.B. mit einem
Polyamid oder einem Polymethacrylat beschichtet werden. Damit wird eine sehr gute Korngrenzenhaftung erzielt. Die ungleiche Porenverteilung im Endprodukt wird durch diese Methode jedoch nicht vermieden.
Aufgabe
Vor dem Hintergrund des diskutierten Standes der Technik war es daher Aufgabe der vorliegenden Erfindung, neue Leichtbauwerkstoffe, insbesondere verwendbar als
Kernmaterialien für Composite Sandwich-Materialien für den Leichtbau zur
Verfügung zu stellen, die besonders hohen mechanischen Belastungen standhalten können. Mechanische Belastbarkeit umfasst dabei sowohl eine hohe Schlagzähigkeit als auch eine hohe Druckbelastbarkeit.
Insbesondere war es Aufgabe der vorliegenden Erfindung neue Composite- Materialien zur Verfügung zu stellen, die, wenn sie auf zwei Seiten mit
Deckschichten versehen sind und damit als Sandwichmaterial vorliegen, senkrecht zu diesen Deckschichten eine im Vergleich zum Stand der Technik verbesserte Druckbeständigkeit aufweisen. Darüber hinaus sollen diese Compositematerialien bei einer seitlichen Einwirkung, also bei einer direkten Einwirkung auf das Kernmaterial, sowohl gegenüber
Hartschaumkernen eine verbesserte Schlagzähigkeit, als gegenüber
Metallwabenkernen eine verbesserte Druckbeständigkeit aufweisen. Weiterhin soll ein Verfahren zur Herstellung dieser Leichtbau-Materialien,
insbesondere in Form von Sandwichmaterialien schnell und einfach durchführbar sein.
Darüber hinaus sollen die Kernmaterialien einfach, z.B. mittels Harzinfusions- oder Injektionsprozessen zur Herstellung von Deckschichten, weiter verarbeitbar sein.
Weitere, an dieser Stelle nicht explizit diskutierte Aufgaben, können sich aus dem Stand der Technik, der Beschreibung, den Ansprüchen oder den
Ausführungsbeispielen ergeben.
Lösung
Inn Weiteren werden unter der Formulierung Poly(meth)acrylimid (P(M)I)
Polymethacrylimide (PMI), Polyacrylimide (PI) oder Mischungen daraus verstanden. Entsprechendes gilt für die entsprechenden Monomere wie (Meth)acrylimid bzw. (Meth)acrylsäure. So werden beispielsweise unter dem Begriff (Meth)acrylsäure sowohl Methacrylsäure als auch Acrylsäure sowie Mischungen aus diesen beiden verstanden. Gelöst werden die gestellten Aufgaben durch das Bereitstellen eines neuen
Leichtbauwerkstoffs, der mit einem P(M)I-Schaum gefüllte Waben aufweist.
Insbesondere kann dieser Leichtbauwerkstoff dergestalt sein, dass die mit dem P(M)I-Schaum gefüllten Waben in Form einer Platte als Kernmaterial vorliegen, und dass dieses Kernmaterial auf einer oder zwei Seiten mit Deckschichten versehen ist. Bei den Deckschichten handelt es sich in diesem Fall bevorzugt um Metall-, Holzoder Composite-Platten, die mit dem Kernmaterial durch Nähen, Kleben oder mittels Pins verbunden sind. Als Metalle sind dabei insbesondere Aluminium, Magnesium, Stahl und Titan geeignet.
Überraschenderweise ist die Wahl des Deckmaterials relativ frei. Im Falle von
Composite-Materialien kann es sich dabei beispielsweise um reine Thermoplasten, um Gewebe oder Gestricke oder Verbünde daraus, wie z.B. so genannte
Organobleche oder kunststoffbeschichtete textile Trägerbahnen wie z.B. Kunstleder handeln. Bevorzugt handelt es sich bei dem Deckmaterial um einen faserverstärkten Kunststoff. Bei den Fasern kann es sich wiederum beispielsweise um Aramid-, Glas-, Kohle-, Polymer- oder Textilfasern handeln. Bei dem thermoplastischen Kunststoff wiederum kann es sich bevorzugt um PP, Polyethylen (PE), Polycarbonat (PC), Polyvinylchlorid (PVC), ein Epoxidharz, ein Isocyanatharz, ein Acrylatharz, einen Polyester oder um ein Polyamid handeln. Im Falle von duroplastischen oder elastomeren Deckmaterialien werden die erwähnten Fasern durch Tränken mit einem Reaktivharz, wie zum Beispiel einem Polyurethan-, Epoxid-, Phenol-, Vinyl- oder (Meth)acrylatharz, und anschließendes Aushärten zu einem Composite-Material verarbeitet.
Das Material für den Schaumkern stellt dabei P(M)I, bevorzugt PMI dar. Solche P(M)I-Schäume werden auch als Hartschäume bezeichnet und zeichnen sich durch eine besondere Festigkeit aus. Die P(M)I-Schäume werden normalerweise in einem zweistufigen Verfahren hergestellt: a) Herstellung eines Gusspolymerisats und b) Aufschäumen dieses Gusspolymerisats.
Zur Herstellung des Gusspolymerisats werden zunächst Monomergemische, welche (Meth)acrylsäure und (Meth)acrylnitril, vorzugsweise in einem Molverhältnis zwischen 2:3 und 3:2, als Hauptbestandteile enthalten, hergestellt. Zusätzlich können weitere Comonomere verwendet werden, wie z.B. Ester der Acryl- oder Methacrylsäure, Styrol, Maleinsäure oder Itaconsäure bzw. deren Anhydride oder Vinylpyrrolidon. Dabei sollte der Anteil der Comonomeren jedoch nicht mehr als 30 Gew% betragen. Geringe Mengen von vernetzenden Monomeren, wie z.B. Allylacrylat, können auch verwendet werden. Die Mengen sollten jedoch vorzugsweise höchstens 0,05 bis 2,0 Gew% betragen. Das Gemisch für die Copolymerisation enthält ferner Treibmittel, die sich bei
Temperaturen von etwa 150 bis 250 °C entweder zersetzen oder verdampfen und dabei eine Gasphase bilden. Die Polymerisation erfolgt unterhalb dieser Temperatur, so dass das Gusspolymerisat ein latentes Treibmittel enthält. Die Polymerisation findet zweckmäßig in Blockform zwischen zwei Glasplatten statt. Zur Herstellung von geschäumten Platten erfolgt darauf gemäß Stand der Technik in einem zweiten
Schritt dann bei entsprechender Temperatur das Aufschäumen des
Gusspolymerisats. Die Herstellung solcher PMI-Schäume ist dem Fachmann grundsätzlich bekannt und kann beispielsweise in EP 1 444 293, EP 1 678 244 oder WO 201 1/138060 nachgelesen werden. Als PMI-Schäume seien insbesondere ROHACELL®-Typen der Firma Evonik Industries AG genannt. Bezüglich Herstellung und Verarbeitung sind zu den PMI-Schäumen Acrylimid-Schäume als Analoga anzusehen. Aus toxikologischen Gründen sind diese jedoch gegenüber anderen Schaummate alien deutlich weniger bevorzugt.
Die Dichte des Hartschaummatehals ist relativ frei wählbar. P(M)I Schäume können beispielsweise in einem Dichtebereich von 20 bis 250 kg/m3, bevorzugt von 25 bis 220 kg/m3 eingesetzt werden. Besonders bevorzugt wird ein PMI-Schaum mit einer Dichte zwischen 30 und 200 kg/m3 eingesetzt.
Die Waben des erfindungsgemäßen Leichtbauwerkstoffs können bevorzugt aus Papier, Kunststoff oder einem Metall bestehen. Als Metalle kommen dabei insbesondere Aluminium, Magnesium, Titan oder Stahl in Frage. Eine besonders geeignete Ausführungsform ist zum Beispiel die Verwendung von einem
Aramidpapier, das mit einem Phenolharz getränkt und anschließend ausgehärtet wird. Gleichfalls besonders bevorzugt bestehen die Waben aus Aluminium.
Die Form, der Durchmesser und die Höhe der einzelnen Waben sind dem Fachmann grundsätzlich aus dem Leichtbau bekannt und einfach auf diese Erfindung
übertragbar. Wichtig ist nur, dass die Waben mit den nicht oder vor-geschäumten Partikeln des späteren Schaummaterials teilweise gefüllt werden können.
Bevorzugt sind die Waben aus senkrechter Blickrichtung quadratisch, trapezförmig, sechs- oder achteckig. Auch Kombinationen verschiedener Formen sind denkbar. Bevorzugt ist eine Ausgestaltung, bei der ungefähr gleichgroße Waben die Fläche abdecken. Der Durchmesser einer solchen Wabe ist dabei an der dicksten Stelle der Wabe bevorzugt zwischen 0,1 und 20 cm, insbesondere zwischen 1 und 10 cm. Die Höhe der Wabe ist dagegen absolut frei wählbar. Es ist nur zu beachten, dass das Volumen der einzelnen Wabe naturgemäß unter Berücksichtigung der zu erzielenden Dichte des Schaums die Menge an schäumbaren Partikeln bestimmt, mit der eine einzelne Wabe vor dem Aufschäumen gefüllt wird, diese Menge ist für den
Fachmann aus dem Wabenvolumen, der Art des zu schäumenden Materials, der zu erzielenden Dichte, der Konzentration an Treibmittel in diesem Material und der Temperatur beim Schäumen einfach zu bestimmen und bei einer bekannten Zusammensetzung des zu schäumenden Materials sogar ohne Vorversuche einstellbar.
Die Dichte des eingesetzten Wabenmaterials, sowie die Wabengröße und die Stegdicke bestimmen teilweise das Gewicht sowie die mechanischen Eigenschaften des erfindungsgemäßen Leichtbauwerkstoffs. Durch Wahl eines entsprechenden P(M)I-Schaums können durch die Wahl dessen Eigenschaften, insbesondere der Dichte, die Leichtbauwerkstoffe in Hinblick auf eine Reduzierung des
Gesamtgewichts oder auf eine Verbesserung der mechanischen Festigkeit einfach optimiert werden.
Neben den beschriebenen, mit einem P(M)I-Hartschaum gefüllten Waben ist insbesondere auch ein Verfahren zur Herstellung von mit Schaum gefüllten Waben Teil der vorliegenden Erfindung. Dabei ist dieses erfindungsgemäße Verfahren nicht ausschließlich auf mit P(M)I gefüllte Waben beschränkt, sondern lässt sich auch auf andere schäumbare, im nicht geschäumten Zustand in Partikelform vorliegenden Kunststoffe anwenden.
Das erfindungsgemäße Verfahren zur Herstellung von Leichtbauwerkstoffen, aufweisend mit einem Schaum gefüllte Waben, zeichnet sich insbesondere durch folgende Prozessschritte aus: a. Füllen eines Wabenmaterials mit schäumbaren Partikeln, b. Ausschäumen der Partikel, wobei die schäumbaren Partikel aus PE, PP, PMMA, PS oder P(M)I bestehen.
Dabei gilt für das Wabenmaterial das gleiche, wie es zuvor für die mit P(M)I- Hartschaum gefüllten Waben beschrieben wurde. Für das P(M)I bzw. den aus diesem hergestellten Schaum gilt gleichfalls die oben erfolgte Charakterisierung bevorzugter Charakteristika. PE- bzw. PP-Schäume sind vor allem als Isolationsmaterial, in Transportbehältern und als Sandwichmaterial bekannt. PE- bzw. PP-Schäume können Füllstoffe enthalten und sind zumeist in einem Dichtebereich zwischen 20 bis 200 kg/m3 kommerziell verfügbar. PMMA-Schäume zeichnen sich dagegen durch eine besonders gute
Witterungsstabilität und eine hohe UV-Beständigkeit aus. Bis dato sind PMMA- Schäume jedoch technisch von eher untergeordneter Bedeutung.
Polystyrol (PS) als Schaummaterial ist dagegen hinlänglich bekannt. Wenn PS verwendet wird, entfallen die meisten der zuvor beschriebenen Vorteile einer mit P(M)l-gefüllten Wabenstruktur, da PS-Schäume mechanisch bei weitem nicht derart belastbar sind. Bestehen bleibt jedoch der große Vorteil gegenüber einer ungefüllten Wabenstruktur, dass diese aufgrund der Füllung deutlich besser weiterverarbeitbar ist. Dies gilt insbesondere, wenn Flüssigharze zur Bildung von Deckschichten verwendet werden sollen. Bevorzugt werden im erfinderischen Verfahren schäumbare Partikel aus P(M)I, besonders bevorzugt aus PMI eingesetzt.
In Bezug auf P(M)I-Partikel können diese bevorzugt mittels zweier Alternativen erhalten werden. In der ersten Alternative wird das P(M)I wie zuvor beschrieben als P(M)I-Halbzeug, insbesondere als Platte hergestellt. Daraus kann dann mittels Malen das Granulat in einer einfach einzustellenden Partikelgröße erhalten werden.
In einer zweiten, gleichsam bevorzugten Alternative handelt es sich bei den P(M)I- Partikeln um Suspensionspolymerisate. Die Herstellung solcher P(M)I- Suspensionspolymerisate kann beispielsweise in der europäischen Patentanmeldung mit dem Anmeldeaktenzeichen 13155413.1 , angemeldet am 15.02.2013,
nachgelesen werden.
Besonders bevorzugt werden die Waben mit vorgeschäumten Partikeln,
insbesondere mit einer Dichte zwischen 25 und 220 kg/m3 gefüllt. Dabei hat sich überraschend gezeigt, dass beim Einsatz vorgeschäumter Partikel die spätere Schaumfüllung der einzelnen Waben besonders gleichmäßig und damit mit besonders guten mechanischen Eigenschaften vorliegt.
Sowohl das optionale Vorschäumen als auch das Ausschäumen in Verfahrensschritt b. kann thermisch und/oder mittels Mikrowellen erfolgen. Die jeweilig
anzuwendenden Prozessparameter hängen dabei von dem eingesetzten Treibmittel, dem Schaummaterial, der zu erzielenden Dichte und der Wabengröße ab. Diese Parameter sind für den Fachmann einfach aus dem bekannten Stand der Technik herzuleiten.
Eine besonders gleichmäßige Porenverteilung und damit gleichmäßige Dichte innerhalb einer Wabe erhält man, wenn man die mit den Partikeln gefüllten Waben während des Schäumens horizontal und/oder vertikal bewegt und/oder rotieren lässt. Besonders bevorzugt ist eine horizontale Rotation, welche optional mit weiteren Bewegungen kombiniert werden kann. Eine entsprechende Vorrichtung zur
Bewegung lässt sich einfach in einem Ofen installieren. Alternativ kann diese
Vorrichtung zum Beispiel Quellen für Mikrowellen, die auf die Waben gerichtet sind, aufweisen.
Bevorzugt weist der erfindungsgemäß hergestellte Leichtbauwerkstoff, insbesondere die erfindungsgemäßen mit dem P(M)I-Schaum gefüllten Waben eine Dichte zwischen 30 und 350 kg/m3, bevorzugt zwischen 40 und 300 kg/m3 und besonders bevorzugt zwischen 50 und 250 kg/m3 auf. Diese Dichte umfasst dabei sowohl die Stege des Wabenmaterials als auch die Schaumfüllung, sowie eventuelle Freiräume. Im Falle des Hinzufügens von Deckschichten bezieht sich diese Dichte auf das Kernmaterial ohne diese Deckschichten.
Alternativ oder zusätzlich, insbesondere aber bevorzugt wird Verfahrensschritt b. in einer Presse durchgeführt. Diese Presse ist dergestalt aufgebaut, dass der Schaum an den Rändern der Waben nach Entnahme aus der Presse abschließt. Dies bedeutet, dass die Presse idealerweise auf den offenen Rändern der Waben aufliegt. Ein großer Druck muss dabei nicht ausgeübt werden. Vielmehr reicht ein Druck, der dem Schäumungsdruck standhält. In einem weiteren Verfahrensschritt können die mit Schaum gefüllten Waben nach dem abgeschlossenen Verfahrensschritt b. und dem darauf folgenden Abkühlen mittels Nähen, Durchstoßen mit Pins oder Kleben mit einer oder zwei Deckschichten gemäß obiger Beschreibung der mit P(M)I -Schaum gefüllten Waben verbunden werden.
Alternativ und gleichzeitig bevorzugt ist eine Ausführungsform, bei der das
Deckmaterial mit in der Presse eingelegt wird. Bei einem solchen Vorgehen kann optional auf ein weiteres Verkleben, Vernähen oder Durchstoßen mit Pins verzichtet werden. Auch ist es möglich das Deckmaterial mit einer Kleberschicht zu versehen. Durch den direkten Kontakt zwischen den Werkzeugschalen der Presse und dem
Deckmaterial kann dabei eine sehr schnelle Aushärtung des Harzes erfolgen. Die zur Härtung des Harzes verwendete Temperatur hängt von dem jeweilig verwendeten Harz ab und ist für den Fachmann leicht ermittelbar. In der Regel liegen solche Temperaturen zwischen 100 und 300 °C. Damit sind insbesondere auch die für die Schäumung des Schaumkerns bevorzugten Temperaturen zwischen 170 und 250 °C für die meisten Harzsysteme geeignet. Für den weniger bevorzugten Fall einer benötigten höheren Temperatur, kann die Härtung des Harzes in einer weiteren Heizstation erfolgen.
Zusätzlich können zur Verbesserung der Haftung zwischen Schaumkernmaterial und Deckschichten Haftvermittler verwendet werden. Diese Haftvermittler können im Matrixmaterial der Dekschichten enthalten sein. Alternativ können die Haftvermittler auch vor dem Zusammenführen auf der Oberfläche der Deckschichten oder des Schaumkerns aufgetragen werden. Bei diesem Vorgehen können alternativ auch geeignete Klebstoffe eingesetzt werden. Als Haftvermittler haben sich insbesondere Polyester, Polyamide oder Poly(meth)acrylate als geeignet erwiesen. Es können aber auch niedermolekulare Verbindungen, die aus der Herstellung von
Compositematerialien, insbesondere in Abhängigkeit vom verwendeten
Matrixmaterial der Deckschicht, dem Fachmann bekannt sind, verwendet werden. Für das gesamte erfindungsgemäße Verfahren richten sich die zu wählenden Verfahrensparameter nach der im Einzelfall eingesetzten Anlage und deren
Auslegung, sowie den eingesetzten Materialien. Sie können durch wenige
Vorversuche für den Fachmann leicht ermittelt werden.
Grundsätzlich sind die erfindungsgemäßen Leichtbauwerkstoffe bzw. die gemäß dem erfindungsgemäßen Verfahrens hergestellten Leichtbauwerkstoffe sehr breit einsetzbar. Erfindungsgemäß hergestellte Leichtbauwerkstoff können insbesondere Anwendung in der Serienfertigung z.B. für Karosseriebau oder für
Innenverkleidungen in der Automobilindustrie, Teile zur Inneneinrichtung im
Schienenfahrzeugs- oder Schiffsbau, in der Luft- und Raumfahrtindustrie, im
Maschinenbau, zur Herstellung von Sportgeräten, beim Möbelbau oder bei der Konstruktion von Windkraftanlagen finden.
Ausführungsbeispiele
Beispiel 1
Zum Ausschäumen der Wabe wurde ein vorgeschäumtes PMI Granulat verwendet. Dieses wurde aus einem PMI Granulat mit einer Korngröße von < 0.1 mm hergestellt, welches bei 200°C für 15 min in einem Ofen vorgeschäumt wurde und danach eine durchschnittliche Korngröße von ca. 1 mm aufwies. Als PMI-Granulat wurde ein Material verwendet, das als PMI-Schaum unter dem Produktnamen ROHACELL RIMA von der Firma Evonik Industries vertrieben wird. Als Wabe wurde eine
Aramidwabe mit einer Zellgröße von 5 mm und einer Dicke von 13 mm verwendet. Die Dichte der Wabe betrug 50 kg/m3. Die Wabe wurde derart auf eine Größe zugeschnitten, dass sie in einen Metallrahmen (Größe 16x16cm) mit
Metallbodenplatte passgenau eingelegt werden konnte. Der Metallrahmen hatte hierbei eine Höhe welche der Dicke der Wabe entsprach, so dass sie
Wabenoberseite bündig mit dem Rahmen abschloss. In die so eingelegte Wabe wurden 31 g des vorher vorgeschäumten Granulates gleichmäßig eingefüllt, so dass alle Löcher der Wabe zu ca. der Hälfte ihrer Höhe mit vorgeschäumtem Granulat gefüllt waren. Die so gefüllte Wabe wurde mit einer PTFE-Folie abgedeckt und in eine beheizte Presse bei 230°C eingelegt. Die Presse wurde geschlossen
(Schließkraft 50bar). Nach 60min wurde die Presse auf Raumtemperatur gekühlt und der Metallrahmen sowie die PTFE-Folie entnommen. Als Produkt wurde eine
Wabenstruktur erhalten, welche gleichmäßig mit PMI Schaum gefüllt war.
Beispiel 2 Analog Beispiel 1 , jedoch wurde die Befüllung der Wabe so vorgenommen, dass zuerst das Bodenblech des Metallrahmens mit 31 g vorgeschäumtem Granulat gleichmäßig bedeckt wurde und dann die Wabe bis auf das Bodenblech des
Metallrahmens in diese gleichmäßige Schicht Granulat eingedrückt wurde. Es resultierte eine sehr gleichmäßige Füllung der Löcher der Wabe mit vorgeschäumtem Granulat. Die Ausschäumung der Wabe verlief wie in Beispiel 1 .

Claims

Ansprüche
1 . Leichtbauwerkstoff, dadurch gekennzeichnet, dass der Leichtbauwerkstoff eine mit einem Poly(meth)acrylimid-Schaum (P(M)I) gefüllte Wabenstruktur aufweist.
2. Leichtbauwerkstoff gemäß Anspruch 1 , dadurch gekennzeichnet, dass die mit dem P(M)I-Schaum gefüllten Waben in Form einer Platte als Kernmaterial vorliegen und auf mindestens einer Seite mit Deckschichten versehen sind.
3. Leichtbauwerkstoff gemäß Anspruch 2, dadurch gekennzeichnet, dass es sich bei den Deckschichten um Metall-, Holz- oder Composite-Platten handelt, die mit dem Kernmaterial durch Nähen, Kleben oder mittels Pins verbunden sind.
4. Leichtbauwerkstoff gemäß Anspruch 3, dadurch gekennzeichnet, dass es sich bei dem Composite-Material um ein Material bestehend aus Glas-, Kohle-, Aramid- oder Textilfasern und einem Polyurethan-, Polyester-, Epoxid-, Phenol- oder (Meth)acrylatharz handelt.
5. Leichtbauwerkstoff gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem P(M)I-Schaum um einen PMI-Schaum mit einer Dichte zwischen 20 und 250 kg/m3 handelt.
6. Leichtbauwerkstoff gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Waben aus Papier, Kunststoff oder einem Metall bestehen und die mit dem P(M)I-Schaum gefüllten Waben eine Dichte zwischen 30 und 350 kg/m3 aufweisen.
7. Leichtbauwerkstoff gemäß Anspruch 6, dadurch gekennzeichnet, dass die Waben aus Aluminium, Magnesium, Titan oder Stahl bestehen.
8. Verfahren zur Herstellung von Leichtbauwerkstoffen, dadurch gekennzeichnet, dass das Verfahren folgende Verfahrensschritte aufweist: a. Füllen einer Wabenstruktur mit schäumbaren Partikeln, b. Ausschäumen der Partikel, wobei die schäumbaren Partikel aus PE, PP, PMMA, PS oder P(M)I bestehen.
9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die
schäumbaren Partikel aus P(M)I, bevorzugt aus PMI bestehen
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die P(M)I- Partikel zuvor als Granulat durch Malen aus einem P(M)I-Halbzeug erhalten wurden.
1 1 .Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass es sich bei den P(M)I-Partikeln um Suspensionspolymerisate handelt.
12. Verfahren gemäß einem der Ansprüche 8 bis 1 1 , dadurch gekennzeichnet, dass es sich bei den in Verfahrensschritt a. in die Waben gefüllten Partikeln um vorgeschäumte Partikel mit einer Dichte zwischen 25 und 250 kg/m3 handelt.
13. Verfahren gemäß einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass das Ausschäumen in Verfahrensschritt b. thermisch und/oder mittels Mikrowellen erfolgt.
14. Verfahren gemäß einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die mit den Partikeln gefüllten Waben während des Schäumens horizontal und /oder vertikal bewegt und/oder rotiert werden.
15. Verfahren gemäß einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass Verfahrensschritt b. in einer Presse durchgeführt wird und der Schaum nach Entnahme aus der Presse an den Rändern der Waben abschließt.
16. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, dass in der Presse die mit den schäumbaren Partikeln befüllten Waben mit mindestens einer Deckschicht belegt wird.
17. Verfahren gemäß Anspruch 16, dadurch gekennzeichnet, dass die
Deckschichten als Prepregs eingelegt werden und diese gleichzeitig mit dem
Schäumen in Verfahrensschritt b. ausgehärtet werden.
18. Verfahren gemäß Anspruch 15, dadurch gekennzeichnet, dass die mit
Schaum gefüllten Waben mittels Nähen, Pins oder Kleben mit mindestens einer Deckschicht gemäß Anspruch 3 oder 4 verbunden werden.
PCT/EP2014/074227 2013-11-15 2014-11-11 Mit poly(meth)acrylimid-schaum gefüllte wabenstrukturen WO2015071239A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013223347.7 2013-11-15
DE102013223347.7A DE102013223347A1 (de) 2013-11-15 2013-11-15 Mit Poly(meth)acrylimid-Schaum gefüllte Wabenstrukturen

Publications (1)

Publication Number Publication Date
WO2015071239A1 true WO2015071239A1 (de) 2015-05-21

Family

ID=51905031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/074227 WO2015071239A1 (de) 2013-11-15 2014-11-11 Mit poly(meth)acrylimid-schaum gefüllte wabenstrukturen

Country Status (3)

Country Link
DE (1) DE102013223347A1 (de)
TW (1) TW201532826A (de)
WO (1) WO2015071239A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164741A (zh) * 2017-12-12 2018-06-15 湖北航天化学技术研究所 一种芳纶蜂窝增强的硅基绝热材料及其制备方法
CN109553905A (zh) * 2018-11-24 2019-04-02 浙江中科恒泰新材料科技有限公司 一种增强的聚甲基丙烯酰亚胺泡沫复合材料的制备方法
WO2019062731A1 (en) * 2017-09-28 2019-04-04 Evonik Specialty Chemicals (Shanghai) Co., Ltd. EXTRUSION MOLDING PROCESS OF POLYMER COMPOUNDS COMPRISING POLY (METH) ACRYLIMIDE FOAM PARTICLES
CN110154703A (zh) * 2019-06-28 2019-08-23 东莞职业技术学院 复合填充蜂窝铝芯及采用该铝芯的汽车车门
WO2020148066A1 (en) * 2019-01-16 2020-07-23 Evonik Operations Gmbh Foaming of blowing agent containing polymers through the use of microwaves
WO2021018637A1 (de) * 2019-07-30 2021-02-04 Airbus Operations Gmbh Verfahren zur herstellung eines verbundbauteils
US11155662B2 (en) 2016-09-12 2021-10-26 Evonik Operations Gmbh Improving the properties in PMMA foams by using methacrylic amides
US11904514B2 (en) 2019-01-16 2024-02-20 Evonik Operations Gmbh Foaming process for production of foam materials

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778957B (zh) * 2016-03-30 2022-10-01 大陸商贏創特種化學(上海)有限公司 包含聚(甲基)丙烯醯亞胺發泡體粒子的聚合物混合物
DE102018122098A1 (de) * 2018-09-11 2020-03-12 Rehau Ag + Co Verfahren zur Herstellung einer geschäumten Platte
DE102020204873A1 (de) 2020-04-17 2021-10-21 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Sandwichbauteils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1817156A1 (de) * 1968-12-27 1970-07-16 Roehm & Haas Gmbh Schaeumbarer Kunststoff
DE1932761A1 (de) * 1969-06-09 1971-03-11 Bentfors Karl Waldemar Isolierplatten und Verfahren zu deren Herstellung
EP1719698A1 (de) * 2005-05-05 2006-11-08 Northrop Grumman Corporation Thermische Isolierung einer verjüngten Fuge
WO2013056947A1 (de) * 2011-10-21 2013-04-25 Evonik Röhm Gmbh Verfahren zur herstellung von expandierten copolymeren auf basis von poly (meth) acrylimid enthaltend einen haftvermittler

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2726260C2 (de) 1977-06-10 1983-05-26 Röhm GmbH, 6100 Darmstadt Schäumbares Polymermaterial
DE10141757A1 (de) 2001-08-29 2003-03-27 Roehm Gmbh Verbessertes Verfahren zur Herstellung von PMI-Schäumen
DE10350971A1 (de) 2003-10-30 2005-06-02 Röhm GmbH & Co. KG Wärmeformbeständige Polymethacrylimid-Schaumstoffe mit feinen Poren
DE102005035681A1 (de) 2005-07-27 2007-02-08 Röhm Gmbh Fertigungsverfahren zur Armierung von Kernmaterialien für Kernverbunde sowie von Kernverbund-Strukturen
CN100420702C (zh) 2005-07-28 2008-09-24 西北工业大学 一种maa/an共聚物泡沫塑料及其制备方法
DE102007051422A1 (de) 2007-10-25 2009-04-30 Evonik Röhm Gmbh Zweiseiten-Einnadel-Unterfaden-Nähtechnik
DE102010028695A1 (de) 2010-05-06 2011-11-10 Evonik Röhm Gmbh Polymethacrylimid-Schaumstoffe mit verminderter Entflammbarkeit sowie Verfahren zur Herstellung dieser
KR101860440B1 (ko) 2011-07-01 2018-05-24 삼성전자주식회사 기기 간 통신 시스템에서 멀티캐스트 데이터 암호화 키 관리 방법, 장치 그리고 시스템
CN104995243A (zh) 2013-02-15 2015-10-21 赢创罗姆有限公司 用于制备pmi泡沫的珠状聚合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1817156A1 (de) * 1968-12-27 1970-07-16 Roehm & Haas Gmbh Schaeumbarer Kunststoff
DE1932761A1 (de) * 1969-06-09 1971-03-11 Bentfors Karl Waldemar Isolierplatten und Verfahren zu deren Herstellung
EP1719698A1 (de) * 2005-05-05 2006-11-08 Northrop Grumman Corporation Thermische Isolierung einer verjüngten Fuge
WO2013056947A1 (de) * 2011-10-21 2013-04-25 Evonik Röhm Gmbh Verfahren zur herstellung von expandierten copolymeren auf basis von poly (meth) acrylimid enthaltend einen haftvermittler

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155662B2 (en) 2016-09-12 2021-10-26 Evonik Operations Gmbh Improving the properties in PMMA foams by using methacrylic amides
WO2019062731A1 (en) * 2017-09-28 2019-04-04 Evonik Specialty Chemicals (Shanghai) Co., Ltd. EXTRUSION MOLDING PROCESS OF POLYMER COMPOUNDS COMPRISING POLY (METH) ACRYLIMIDE FOAM PARTICLES
CN108164741A (zh) * 2017-12-12 2018-06-15 湖北航天化学技术研究所 一种芳纶蜂窝增强的硅基绝热材料及其制备方法
CN108164741B (zh) * 2017-12-12 2021-03-26 湖北航天化学技术研究所 一种芳纶蜂窝增强的硅基绝热材料及其制备方法
CN109553905A (zh) * 2018-11-24 2019-04-02 浙江中科恒泰新材料科技有限公司 一种增强的聚甲基丙烯酰亚胺泡沫复合材料的制备方法
WO2020148066A1 (en) * 2019-01-16 2020-07-23 Evonik Operations Gmbh Foaming of blowing agent containing polymers through the use of microwaves
JP2022518454A (ja) * 2019-01-16 2022-03-15 エボニック オペレーションズ ゲーエムベーハー マイクロ波の使用による発泡剤含有ポリマーの発泡
US11904514B2 (en) 2019-01-16 2024-02-20 Evonik Operations Gmbh Foaming process for production of foam materials
CN110154703A (zh) * 2019-06-28 2019-08-23 东莞职业技术学院 复合填充蜂窝铝芯及采用该铝芯的汽车车门
WO2021018637A1 (de) * 2019-07-30 2021-02-04 Airbus Operations Gmbh Verfahren zur herstellung eines verbundbauteils
US11840052B2 (en) 2019-07-30 2023-12-12 Airbus Operations Gmbh Method for producing a composite component

Also Published As

Publication number Publication date
DE102013223347A1 (de) 2015-05-21
TW201532826A (zh) 2015-09-01

Similar Documents

Publication Publication Date Title
WO2015071239A1 (de) Mit poly(meth)acrylimid-schaum gefüllte wabenstrukturen
EP3237510B1 (de) Faserverstärkte formkörper aus expandiertem partikelschaum
EP3077451B1 (de) Vorschäumung von poly(meth)acrylimid-partikeln für das anschliessende formschäumen in geschlossenen werkzeugen
EP2877342B1 (de) Neuer formgebungsprozess für pmi-schaumwerkstoffe bzw. daraus hergestellte compositebauteile
EP3237511B1 (de) Faserverstärkung anisotroper schaumstoffe
EP3160707B1 (de) Druckabhängiges formschäumen von poly(meth)acrylimid-partikeln in geschlossenen werkzeugen zur herstellung von hartschaumstoffkernen
EP3237509B1 (de) Faserverstärkung von treibmittelhaltigen schaumstoffen
EP2655035A1 (de) Verfahren zur herstellung von oberflächenendbearbeiteten leichtbauteilen mit hohem naturfaseranteil und integrierten befestigungselementen
EP3237508B1 (de) Faserverstärkung von schaumstoffen aus miteinander verbundenen segmenten
WO2015177013A1 (de) Formschäumen von poly(meth)acrylimid-partikeln in geschlossenen werkzeugen zur herstellung von hartschaumkernen
EP0032720B1 (de) Verfahren zum Herstellen von transparenten Schaumkunststoffen
WO2015071155A1 (de) One-shot herstellung von composites
EP3536494A1 (de) Einstufiges fügeverfahren für verbundkörper aus faserverstärktem bauteil und aerogel
DE102011011387B4 (de) Verfahren zur Herstellung eines mehrschichtigen Faserkunststoffverbundhalbzeugs
EP2937379B1 (de) Verfahren zur herstellung von epp-formteilen
DE102012001317A1 (de) Faserverbundkunststoff-Bauteil und Herstellungsverfahren dafür
WO2021009720A2 (de) Verfahren zur herstellung von formteilen aus partikelschäumen
WO2017067867A2 (de) Herstellung von komplexen schaum-/ oder sandwichholstrukturen mittels eines formkerns
WO2016020252A1 (de) Sandwich-bauteile aus poly(meth)acrylat-basierten schaumkörpern und reversibel vernetzbaren composites
EP0794214B1 (de) Zur Herstellung lackierbarer Teile geeignete glasmattenverstärkte Thermoplasten
WO2003078514A2 (de) Polymethacrylimid-schaumstoffe mit verringerter porengrösse
EP3225654A1 (de) Verkürzung der abkühlphase beim partikelschäumen durch die wärmeleitung erhöhende additive
DE102019116321A1 (de) Verfahren zur Herstellung einer Sandwichstruktur
WO2016001049A1 (de) One-shot hd-rtm-verfahren
AT354927B (de) Verfahren zur herstellung eines plattenfoermigen koerpers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14799713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14799713

Country of ref document: EP

Kind code of ref document: A1