WO2015070706A1 - 电极浆料、负电极及应用该负电极的锂离子电池 - Google Patents

电极浆料、负电极及应用该负电极的锂离子电池 Download PDF

Info

Publication number
WO2015070706A1
WO2015070706A1 PCT/CN2014/089738 CN2014089738W WO2015070706A1 WO 2015070706 A1 WO2015070706 A1 WO 2015070706A1 CN 2014089738 W CN2014089738 W CN 2014089738W WO 2015070706 A1 WO2015070706 A1 WO 2015070706A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion battery
lithium ion
electrode
negative
Prior art date
Application number
PCT/CN2014/089738
Other languages
English (en)
French (fr)
Inventor
陈敬波
王要武
何向明
赵骁
方谋
徐盛明
李建军
王莉
高剑
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2015070706A1 publication Critical patent/WO2015070706A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode slurry, a negative electrode, and a lithium ion battery using the same.
  • the commercial anode materials for lithium-ion batteries mostly use graphite, but the theoretical lithium storage capacity of graphite materials is only 372 mAh/g.
  • transition metal oxides such as Fe, Ni, Co, Cu, etc.
  • Transition metal oxides such as Fe, Ni, Co, Cu, etc.
  • the mechanism of lithium deintercalation is generally: when lithium is intercalated, Li is embedded in the transition metal oxide, and metal nanoparticles are formed by displacement reaction and uniformly embedded in the generated Li 2 O matrix; when delithiation, reversible transition is generated.
  • Metal oxides and lithium are generally: when lithium is intercalated, Li is embedded in the transition metal oxide, and metal nanoparticles are formed by displacement reaction and uniformly embedded in the generated Li 2 O matrix; when delithiation, reversible transition is generated. Metal oxides and lithium.
  • metal manganese oxides such as MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 and the like are widely used in various types of electrochemical energy storage devices and have attracted wide interest.
  • Manganese oxides have numerous structures, and their electrochemical behavior is strongly dependent on oxidation states, nanostructures, and morphology. According to theoretical calculations, the theoretical lithium storage capacities of MnO, Mn 3 O 4 , Mn 2 O 3 , and MnO 2 are 755, 936, 1018, and 1232 mAh/g, respectively. Therefore, the specific capacity of MnO 2 is the highest.
  • MnO 2 has been widely used as a positive electrode material for primary lithium batteries in the field of batteries, and cannot be applied to secondary lithium ion batteries due to its low reversible capacity and poor cycle stability.
  • MnO 2 has a high theoretical specific capacity, and is rich in natural resources, there is a growing trend in the study as a lithium-ion battery anode material of MnO 2, however, is far MnO 2 electrochemical performance not satisfactory, The first reversible specific capacity is low, and it is even more unacceptable that the cycle performance is extremely poor, and the battery capacity decays rapidly as the number of cycles increases. Even researchers have doubted whether MnO 2 is electrochemically active and can be applied to secondary lithium-ion batteries.
  • the binder used in the lithium ion battery can be divided into two types, one is an organic solvent type binder, an organic solvent is used as a dispersing agent, and the other is a water-based binder. Water is used as a dispersing agent.
  • organic solvent used as a dispersing agent
  • water used as a dispersing agent.
  • PVDF polyvinylidene fluoride
  • the binder In lithium ion batteries, the binder generally requires a small ohmic resistance and stable performance in the electrolyte, such as adhesion, flexibility, hydrophilicity and alkali resistance, which directly affects the performance of the lithium ion battery.
  • the choice of a suitable binder is related to whether a higher specific capacity, a longer cycle life, and a lower internal resistance can be obtained, and it is advantageous to improve the rate performance and low temperature performance of the battery.
  • An electrode slurry for preparing a negative electrode of a lithium ion battery comprising manganese dioxide, styrene butadiene rubber, carboxymethyl cellulose, water, and a conductive agent.
  • a negative electrode of a lithium ion battery includes a negative electrode current collector and a negative electrode material layer attached to a surface of the negative electrode current collector, the negative electrode material layer comprising manganese dioxide, styrene butadiene rubber, carboxymethyl cellulose and a conductive agent.
  • a lithium ion battery includes a negative electrode, a positive electrode and a nonaqueous electrolyte between the positive electrode and the negative electrode, the negative electrode comprising a negative electrode current collector and a negative electrode material layer attached to the surface of the negative current collector, the negative electrode material
  • the layers include manganese dioxide, styrene butadiene rubber, carboxymethyl cellulose, and a conductive agent.
  • the present invention provides a novel electrode binder (or binder system, hereinafter collectively referred to as a binder) for preparing an electrode pole piece of a lithium ion battery anode material MnO 2 , including styrene-butadiene rubber and Carboxymethyl cellulose, which forms a good fit with MnO 2 , helps the lithium ion battery anode material MnO 2 to exhibit a high first reversible specific capacity and exhibit excellent cycle performance.
  • a novel electrode binder or binder system, hereinafter collectively referred to as a binder for preparing an electrode pole piece of a lithium ion battery anode material MnO 2 , including styrene-butadiene rubber and Carboxymethyl cellulose, which forms a good fit with MnO 2 , helps the lithium ion battery anode material MnO 2 to exhibit a high first reversible specific capacity and exhibit excellent cycle performance.
  • 1 is a charge and discharge cycle test curve of a negative electrode active material MnO 2 according to an embodiment of the present invention.
  • Embodiments of the present invention provide an electrode slurry for fabricating a negative electrode of a lithium ion battery, including manganese dioxide (MnO 2 ), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), water, and a conductive agent. .
  • MnO 2 manganese dioxide
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the MnO 2 is a negative electrode active material
  • SBR and CMC are binders
  • water is a solvent.
  • the conductive agent is not particularly limited, and may be a conductive agent commonly used in a negative electrode of a lithium ion battery, such as one or more of conductive carbon black, conductive graphite, acetylene black, carbon fiber, carbon nanotube, graphene, and graphite.
  • CMC acts as a thickener to improve and enhance the dispersion effect of MnO 2 in the electrode slurry
  • SBR acts as a binder to bond the MnO 2 particles and the MnO 2 particles to the conductive agent particles. Together, and adhere to the surface of the current collector.
  • the chemical formulas of SBR and CMC are as follows:
  • the binder comprises a combination of SBR and CMC.
  • the mass ratio between SBR and CMC is 1:5 ⁇ 5:1.
  • the mass ratio between SBR and CMC is 1:2 ⁇ 2:1.
  • the ratio of the total mass of the MnO 2 , the conductive agent, the SBR and the CMC to the mass of the water is preferably 1:5 to 5:1, preferably 1:1 to 1:2, so that the electrode slurry can be made better.
  • the rheology is good for coating.
  • the mass of the MnO 2 accounts for 50% to 90% of the total mass
  • the mass of the SBR accounts for 1% to 10% of the total mass
  • the mass of the CMC accounts for the total mass. 1% ⁇ 10%.
  • the embodiment of the invention further provides a negative electrode comprising a negative current collector and a negative material layer attached to the surface of the negative current collector.
  • the anode current collector may be copper or nickel, but is not limited to copper and nickel.
  • the negative electrode material layer includes manganese dioxide, styrene butadiene rubber, carboxymethyl cellulose, and a conductive agent.
  • the negative electrode material layer is formed by coating the above electrode slurry on the surface of the negative electrode current collector and removing water.
  • the mass of MnO 2 accounts for 50% to 90% of the total mass
  • the mass of SBR accounts for 1% to 10% of the total mass
  • the mass of CMC accounts for 1% to 10% of the total mass.
  • the binder functions to adhere the electrode active material to the current collector, and enhances electronic contact between the electrode active material and the conductive agent, the electrode active material, and the current collector.
  • the combination of SBR and CMC can also serve as a buffer to stabilize the structure of the negative electrode.
  • the electrode paste and the negative electrode may be prepared by uniformly mixing MnO 2 and a conductive agent in the above ratio, and then sequentially adding a CMC solution and an SBR solution, respectively, and then adding water, and uniformly stirring to form the electrode slurry.
  • the solvent of both the CMC solution and the SBR solution is water.
  • the electrode slurry was uniformly applied to a copper foil, a copper mesh, a nickel foil or a nickel mesh, dried and then cut into a negative electrode.
  • the MnO 2 may be solid particles, hollow spheres, nanofibers, nanorods, and nanotubes, but is not limited to solid particles, hollow spheres, nanofibers, nanorods, and nanotubes.
  • the wall thickness of the MnO 2 nanotubes is about 5 nm to 30 nm.
  • the MnO 2 nanotubes have a linear structure.
  • the preparation method of the MnO 2 nanotubes can be:
  • the mixed solution is hydrothermally reacted in a hydrothermal kettle at a reaction temperature of 120 ° C to 180 ° C to form MnO 2 nanotubes.
  • potassium permanganate and hydrochloric acid may be dissolved in deionized water to prepare a solution, and then the potassium permanganate solution is mixed with a hydrochloric acid solution, and then PVP is added as a surfactant to form
  • the mixture containing potassium permanganate, HCl, and PVP may be 1:10 to 4:1, and the mass of PVP added is preferably 0.01% to 10%, more preferably 0.1%, of the mass of potassium permanganate. 1%.
  • the concentration of potassium permanganate in the mixture is preferably from 0.01 mol/L to 1 mol/L.
  • step S2 the mixed solution is placed in a hydrothermal reaction vessel, and the hydrothermal kettle is sealed and heated to 120 ° C to 180 ° C for hydrothermal reaction, and the incubation temperature is 1 hour to 48 hours.
  • the hydrothermal kettle was naturally cooled to room temperature, and a black precipitate in a hydrothermal kettle was collected, washed with deionized water to remove impurity ions, and then dried in the air to obtain MnO 2 nanotubes.
  • Embodiments of the present invention further provide a lithium ion battery including the above negative electrode, and further comprising a positive electrode, and a nonaqueous electrolyte located between the positive electrode and the negative electrode.
  • the positive electrode may include a positive electrode current collector and a positive electrode material layer attached to the surface of the positive electrode current collector, and the positive electrode current collector may be aluminum or titanium, and the positive electrode material layer includes a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode active material may be a conventional lithium ion battery positive electrode active material such as lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate.
  • the nonaqueous electrolyte may be an existing lithium ion battery electrolyte such as a nonaqueous electrolyte or a solid electrolyte membrane.
  • the lithium ion battery using the nonaqueous electrolyte further includes a separator disposed between the positive electrode material layer and the negative electrode material layer.
  • the solid electrolyte membrane is disposed between the positive electrode material layer and the negative electrode material layer by a lithium ion battery using the solid electrolyte membrane.
  • the nonaqueous electrolytic solution includes a solvent and a solute dissolved in a solvent
  • the solvent may be one or more of a cyclic carbonate, a chain carbonate, a cyclic ether, a chain ether, a nitrile, and an amide.
  • a cyclic carbonate a chain carbonate, a cyclic ether, a chain ether, a nitrile, and an amide.
  • the solute may be exemplified by one or more of LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiClO 4 , and LiBOB.
  • the material of the solid electrolyte membrane may be a mixture of a polymer matrix such as LiI, LiN 3 or polyoxyethylene or polyacrylonitrile and a solute of the above nonaqueous electrolyte.
  • the binder system CMC and SBR combination provided by the embodiments of the present invention is a water-based binder, and water is used as a dispersing agent.
  • the PVDF binder used for the lithium ion battery anode active material MnO 2 is an organic solvent type binder, and NMP is required as a dispersing agent. Since inexpensive water is used as the dispersing agent, the binder using a combination of CMC and SBR can significantly reduce the cost, and the required amount of use can also be reduced. More importantly, for the negative active material MnO 2 whose volume changes during charge and discharge, the combination of SBR and CMC can also serve as a buffer to stabilize the structure of the negative electrode.
  • the embodiment of the present invention uses a combination of CMC and SBR as a binder to prepare a negative electrode sheet with MnO 2 to have better electrochemical performance, higher specific capacity, stable cycle performance, and display.
  • a lithium ion battery having a combination of CMC and SBR as a binder applied to a MnO 2 anode active material has a good prospect.
  • the MnO 2 nanotubes, the conductive agent acetylene black, the SBR and the CMC are mixed at a mass ratio of 60:30:5:5, and the slurry is added by stirring with water, uniformly coated on the copper foil, dried and then cut into a round negative Electrode pole piece, and lithium metal battery composed of lithium metal for constant current charge and discharge experiments.
  • the lithium ion battery is subjected to electrochemical cycle performance test, and the charge and discharge current is 100 mA/g, and the charge and discharge voltage ranges from 0.01 V to 3 V.
  • the first discharge specific capacity is about 1593 mAh/g
  • the charge specific capacity is about 1119 mAh/g
  • the discharge specific capacity of 100 cycles is about 1100 mAh/g
  • the charge specific capacity is about 1086 mAh/g
  • the reversible specific capacity is more than 1000 mAh/g.
  • the MnO 2 nanotubes, the conductive agent acetylene black, SBR and CMC are mixed at a mass ratio of 50:30:10:10, and the mixture is stirred with water to form a slurry, uniformly coated on the copper foil, dried and then cut into a round negative Electrode pole piece, and lithium metal battery composed of lithium metal for constant current charge and discharge experiments.
  • the lithium ion battery was subjected to electrochemical cycle performance test, and the charge and discharge current was 100 mA/g, and the charge and discharge voltage range was 0.01 V to 3 V.
  • the first discharge specific capacity was about 820 mAh/g, and the charge specific capacity was 582 mAh/g.
  • the MnO 2 nanotubes, the conductive agent acetylene black, SBR and CMC are mixed at a mass ratio of 60:25:10:5, and added with water to make a slurry, uniformly coated on the copper foil, dried and then cut into a round negative Electrode pole piece, and lithium metal battery composed of lithium metal for constant current charge and discharge experiments.
  • the lithium ion battery was subjected to electrochemical cycle performance test, and the charge and discharge current was 100 mA/g, and the charge and discharge voltage range was 0.01 V to 3 V.
  • the first discharge specific capacity is about 930 mAh/g, and the charge specific capacity is 655 mAh/g.
  • Electrolyte solution containing 1mol / l LiPF EC / DEC 6 of (1: 1, W / W ) solvent.
  • the lithium ion battery was subjected to electrochemical cycle performance test, and the charge and discharge current was 100 mA/g, and the charge and discharge voltage range was 0.01 V to 3 V.
  • the first discharge specific capacity is about 891 mAh/g, and the charge specific capacity is 611 mAh/g.
  • the MnO 2 nanotubes, the conductive agent acetylene black, the SBR and the CMC are mixed at a mass ratio of 60:38:1:1, and the slurry is added by stirring with water, uniformly coated on the copper foil, dried and then cut into a round negative Electrode pole piece, and lithium metal battery composed of lithium metal for constant current charge and discharge experiments.
  • the lithium ion battery was subjected to electrochemical cycle performance test, and the charge and discharge current was 100 mA/g, and the charge and discharge voltage range was 0.01 V to 3 V.
  • the first discharge specific capacity was about 210 mAh/g, and the charge specific capacity was 151 mAh/g.
  • the MnO 2 nanotubes, the conductive agent acetylene black, the SBR and the CMC are mixed at a mass ratio of 50:36:7:7, and the slurry is added by stirring with water, uniformly coated on the copper foil, dried and then cut into a round negative Electrode pole piece, and lithium metal battery composed of lithium metal for constant current charge and discharge experiments.
  • the lithium ion battery was subjected to electrochemical cycle performance test, and the charge and discharge current was 100 mA/g, and the charge and discharge voltage range was 0.01 V to 3 V.
  • the first discharge specific capacity was about 947 mAh/g, and the charge specific capacity was 683 mAh/g.
  • the MnO 2 particles, the conductive agent acetylene black, SBR and CMC are mixed at a mass ratio of 60:30:5:5, stirred with water to form a slurry, uniformly coated on a copper foil, dried and then cut into a circular negative electrode.
  • the lithium ion battery was subjected to electrochemical cycle performance test, and the charge and discharge current was 100 mA/g, and the charge and discharge voltage range was 0.01 V to 3 V.
  • the first discharge specific capacity was about 914 mA/g, and the charge specific capacity was about 638 mA/g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种电极浆料,用于制作锂离子电池的负电极,包括二氧化锰、丁苯橡胶、羧甲基纤维素、水及导电剂。一种锂离子电池的负电极,包括负极集流体及附着在该负极集流体表面的负极材料层,该负极材料层包括二氧化锰、丁苯橡胶、羧甲基纤维素及导电剂。一种锂离子电池,包括负电极、正电极及位于该正电极及负电极之间的非水电解质,该负电极包括负极集流体及附着在该负极集流体表面的负极材料层,该负极材料层包括二氧化锰、丁苯橡胶、羧甲基纤维素及导电剂。

Description

电极浆料、负电极及应用该负电极的锂离子电池 技术领域
本发明涉及一种电极浆料、负电极及应用该负电极的锂离子电池。
背景技术
锂离子电池商业化的负极材料大多采用石墨,但是石墨材料的理论储锂容量只有372mAh/g。为满足高容量锂离子电池的需求,研究开发新型的高比容量锂离子电池负极材料替代目前商业化应用的石墨负极材料显得非常迫切和必要。
自从2000年Poizot等人首次报道过渡金属氧化物(TMOs, transition metal oxides)作为锂离子电池负极材料以来,过渡金属氧化物以及其他过渡金属化合物(TMX)作为锂离子电池负极材料颇受关注。过渡金属氧化物,如Fe、Ni、Co、Cu等,一般具有类似的电化学行为。其脱嵌锂机理一般是:嵌锂时,Li嵌入到过渡金属氧化物中,通过置换反应生成金属纳米颗粒,并均匀包埋在生成的Li2O基质中;脱锂时,又可逆生成过渡金属氧化物和锂。
在这些过渡金属氧化物中,金属锰的氧化物,如MnO、Mn3O4、Mn2O3、MnO2等,广泛应用于各类电化学储能设备而引起广泛的兴趣。锰的氧化物具有众多的结构,其电化学行为强烈依赖于氧化态、纳米结构和形态。根据理论计算,MnO、Mn3O4、Mn2O3、MnO2的理论储锂比容量分别为755、936、1018、1232mAh/g。因此MnO2的比容量最高。传统上,MnO2在电池领域中作为一次锂电池的正极材料广泛使用,由于其较低的可逆容量和较差的循环稳定性无法应用于二次锂离子电池。
近年来,由于MnO2具有较高的理论比容量,以及丰富的自然资源,对MnO2作为锂离子电池负极材料的研究有增多的趋势,然而,MnO2电化学性能远远无法令人满意,首次可逆比容量较低,更无法令人接受的是循环性能极差,随着循环次数的增加电池容量衰减迅速。甚至有研究者怀疑MnO2是否具有电化学活性,能否应用于二次锂离子电池。另一方面,根据亲水性,锂离子电池所用的粘结剂可以分为两类,一类是有机溶剂型粘结剂,采用有机溶剂作为分散剂,一类是水基型粘结剂,采用水作为分散剂。在MnO2负电极的极片制作上,现有技术采用聚偏氟乙烯(PVDF)作为粘结剂,采用有机溶剂作为分散剂。目前还没有见到采用其他粘结剂的报道。
在锂离子电池中,粘结剂一般要求欧姆电阻小,在电解液中性能稳定,如粘结性、柔韧性、亲水性和耐碱性等,这直接影响了锂离子电池的性能。选择合适的粘结剂关系到是否可以获得较高的比容量、较长的循环寿命和较低的内阻,而且有利于提高电池的倍率性能和低温性能。
发明内容
有鉴于此,确有必要提供一种电极浆料、负电极及应用该负电极的锂离子电池,该锂离子电池具有较高的首次可逆比容量和优异的循环性能。
一种电极浆料,用于制作锂离子电池的负电极,包括二氧化锰、丁苯橡胶、羧甲基纤维素、水及导电剂。
一种锂离子电池的负电极,包括负极集流体及附着在该负极集流体表面的负极材料层,该负极材料层包括二氧化锰、丁苯橡胶、羧甲基纤维素及导电剂。
一种锂离子电池,包括负电极、正电极及位于该正电极及负电极之间的非水电解质,该负电极包括负极集流体及附着在该负极集流体表面的负极材料层,该负极材料层包括二氧化锰、丁苯橡胶、羧甲基纤维素及导电剂。
相较于现有技术,本发明提供一种锂离子电池负极材料MnO2制作电极极片所用的新型电极粘结剂(或粘结剂体系,下面统称为粘结剂),包括丁苯橡胶及羧甲基纤维素,这种粘结剂与MnO2能够形成较好的配合,有助于锂离子电池负极材料MnO2发挥出较高的首次可逆比容量和显示出优异的循环性能。
附图说明
图1为本发明实施例的负极活性材料MnO2的充放电循环测试曲线。
具体实施方式
下面将结合附图及具体实施例对本发明提供的电极浆料、负电极及应用该负电极的锂离子电池作进一步的详细说明。
本发明实施例提供一种电极浆料,用于制作锂离子电池的负电极,包括二氧化锰(MnO2)、丁苯橡胶(SBR)、羧甲基纤维素(CMC)、水及导电剂。
具体地,该MnO2为负极活性材料,SBR及CMC为粘结剂,水为溶剂。导电剂无特殊限制,可以为锂离子电池负电极中常用的导电剂,如导电碳黑、导电石墨、乙炔黑、碳纤维、碳纳米管、石墨烯及石墨等中的一种或多种。
在该粘结剂中,CMC起增稠剂的作用,改善和提高电极浆料中MnO2的分散效果,SBR起粘结作用,将MnO2颗粒、以及MnO2颗粒与导电剂颗粒粘结在一起,并黏附在集流体表面。SBR与CMC的化学式如下所示:
Figure WO030-appb-I000001
该粘结剂包括SBR与CMC的组合,SBR与CMC之间的质量比为1:5~5:1,优选地,SBR与CMC之间的质量比为1:2~2:1。该MnO2、导电剂、SBR及CMC的总质量与该水的质量之比优选为1:5~5:1,优选为1:1~1:2,从而可以使该电极浆料具有较好的流变性,利于涂膜。
在该MnO2、导电剂、SBR及CMC中,优选地,MnO2的质量占总质量的50%~90%,SBR的质量占总质量的1%~10%,CMC的质量占总质量的1%~10%。
本发明实施例进一步提供一种负电极,包括负极集流体及附着在该负极集流体表面的负极材料层。该负极集流体可以为铜或镍,但是不限于铜和镍。该负极材料层包括二氧化锰、丁苯橡胶、羧甲基纤维素及导电剂。该负极材料层为将上述电极浆料涂覆在负极集流体表面并除去水后形成。在该负极材料层中,优选地,MnO2的质量占总质量的50%~90%,SBR的质量占总质量的1%~10%,CMC的质量占总质量的1%~10%。
在锂离子电池中,粘结剂的作用是将电极活性物质黏附在集流体上,增强电极活性物质与导电剂、电极活性物质与集流体之间的电子接触。而对于在充放电过程中体积发生变化的负极活性材料MnO2来说,采用SBR与CMC的组合作为粘结剂还能起到一定的缓冲作用,稳定负电极的结构。
上述电极浆料及负电极的制备方法可以是将MnO2和导电剂按上述比例混合均匀,然后依次分别滴加CMC溶液和SBR溶液,再加入水,搅拌均匀形成该电极浆料。该CMC溶液和SBR溶液的溶剂均为水。将该电极浆料均匀涂覆于铜箔、铜网、镍箔或镍网上,烘干后剪切成负电极。
在上述电极浆料及负电极中,该MnO2可以为实心颗粒、空心球、纳米纤维、纳米棒和纳米管,但不限于实心颗粒、空心球、纳米纤维、纳米棒和纳米管。
在一实施例中,该MnO2为纳米管,该MnO2纳米管的直径约为50纳米~200纳米。该MnO2纳米管的管壁厚度约为5纳米~30纳米。该MnO2纳米管为直线型结构。
该MnO2纳米管的制备方法可以为:
S1,将高锰酸钾(KMnO4)、氯化氢(HCl)及表面活性剂聚乙烯吡咯烷酮(PVP)在水中混合形成一混合液;以及
S2,将该混合液在水热釜中进行水热反应,反应温度为120℃~180℃,生成MnO2纳米管。
具体地,在该步骤S1中,可分别将高锰酸钾及盐酸溶解于去离子水中配置成溶液,再将该高锰酸钾溶液与盐酸溶液进行混合,然后加入PVP作为表面活性剂,形成含有高锰酸钾、HCl及PVP的所述混合液。在该混合液中,高锰酸钾和HCl的摩尔比可以为1:10~4:1,PVP的加入质量优选为高锰酸钾的质量的0.01%~10%,更优选为0.1%~1%。该混合液中高锰酸钾的浓度优选为0.01 mol/L~1 mol/L。
在该步骤S2中,将该混合液放入水热反应釜中,将水热釜密封并加热至120℃~180℃进行水热反应,在该反应温度保温时间为1小时~48小时。
反应完毕后水热釜自然冷却至室温,收集水热釜中的黑色沉淀,用去离子水洗涤以除去杂质离子,然后在空气中干燥,得到MnO2纳米管。
本发明实施例进一步提供一种锂离子电池,该锂离子电池包括上述负电极,并进一步包括正电极、以及位于该正电极及负电极之间的非水电解质。该正电极可以包括正极集流体及附着在该正极集流体表面的正极材料层,该正极集流体可以为铝或钛,该正极材料层包括正极活性材料、导电剂及粘结剂。该正极活性材料可以为现有的锂离子电池正极活性材料,如钴酸锂、镍酸锂、锰酸锂及磷酸铁锂等。该非水电解质可以是现有的锂离子电池电解质,如非水电解液或固体电解质膜。采用该非水电解液的锂离子电池进一步包括设置在该正极材料层及负极材料层之间隔膜。采用该固体电解质膜的锂离子电池将该固体电解质膜设置在该正极材料层及负极材料层之间。该非水电解液包括溶剂及溶于溶剂的溶质,该溶剂可列举为环状碳酸酯、链状碳酸酯、环状醚类、链状醚类、腈类及酰胺类中的一种或多种,如碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、γ-丁内酯、四氢呋喃、1,2-二甲氧基乙烷、乙腈及二甲基甲酰胺。该溶质可列举为LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiClO4及LiBOB中的一种或多种。该固体电解质膜的材料可列举为LiI、LiN3或聚氧乙烯或聚丙烯腈等聚合物基体与上述非水电解液的溶质的混合。
本发明实施例提供的粘结剂体系CMC与SBR的组合是水基型粘结剂,采用水作为分散剂。而目前针对锂离子电池负极活性材料MnO2所采用的PVDF粘结剂为有机溶剂型粘结剂,需要采用NMP作为分散剂。由于采用廉价的水作为分散剂,因此采用CMC与SBR的组合的粘结剂可以显著地降低成本,而且所需的使用量也可以降低。更重要的是,对于在充放电过程中体积发生变化的负极活性材料MnO2来说,采用SBR与CMC的组合作为粘结剂还能起到一定的缓冲作用,稳定负电极的结构。与采用PVDF为粘结剂相比,本发明实施例采用CMC与SBR的组合作为粘结剂与MnO2配合制作的负极片具有更好的电化学性能,比容量较高,循环性能稳定,显示出CMC与SBR的组合作为粘结剂应用于MnO2负极活性材料的锂离子电池具有良好的前景。
实施例1
将MnO2纳米管、导电剂乙炔黑、SBR和CMC按质量比60:30:5:5混合,加入水搅拌制成浆料,均匀涂于铜箔上,烘干后剪切成圆形负电极极片,与金属锂组成锂离子电池进行恒电流充放电实验。电解液为含1mol/l LiPF6的EC/DEC (1:1,W/W)溶剂。
请参阅图1,将该锂离子电池进行电化学循环性能测试,充放电电流为100mA/g,充放电电压范围为0.01V-3V。首次放电比容量约为1593mAh/g,充电比容量约为1119 mAh/g,100次循环的放电比容量约为1100mAh/g,充电比容量约为1086mAh/g,可逆比容量大于1000mAh/g。
实施例2
将MnO2纳米管、导电剂乙炔黑、SBR和CMC按质量比50:30:10:10混合,加入水搅拌制成浆料,均匀涂于铜箔上,烘干后剪切成圆形负电极极片,与金属锂组成锂离子电池进行恒电流充放电实验。电解液为含1mol/l LiPF6的EC/DEC (1:1,W/W)溶剂。
将该锂离子电池进行电化学循环性能测试,充放电电流为100mA/g,充放电电压范围为0.01V-3V。首次放电比容量约为820mAh/g,充电比容量为582 mAh/g。
实施例3
将MnO2纳米管、导电剂乙炔黑、SBR和CMC按质量比60:25:10:5混合,加入水搅拌制成浆料,均匀涂于铜箔上,烘干后剪切成圆形负电极极片,与金属锂组成锂离子电池进行恒电流充放电实验。电解液为含1mol/l LiPF6的EC/DEC (1:1,W/W)溶剂。
将该锂离子电池进行电化学循环性能测试,充放电电流为100mA/g,充放电电压范围为0.01V-3V。首次放电比容量约为930mAh/g,充电比容量为655 mAh/g。
实施例4
将MnO2纳米管、导电剂乙炔黑、SBR和CMC按质量比60:25:5:10混合,加入水搅拌制成浆料,均匀涂于铜箔上,烘干后剪切成圆形负电极极片,与金属锂组成锂离子电池进行恒电流充放电实验。电解液为含1mol/l LiPF6的EC/DEC (1:1,W/W)溶剂。
将该锂离子电池进行电化学循环性能测试,充放电电流为100mA/g,充放电电压范围为0.01V-3V。首次放电比容量约为891mAh/g,充电比容量为611 mAh/g。
实施例5:
将MnO2纳米管、导电剂乙炔黑、SBR和CMC按质量比60:38:1:1混合,加入水搅拌制成浆料,均匀涂于铜箔上,烘干后剪切成圆形负电极极片,与金属锂组成锂离子电池进行恒电流充放电实验。电解液为含1mol/l LiPF6的EC/DEC (1:1,W/W)溶剂。
将该锂离子电池进行电化学循环性能测试,充放电电流为100mA/g,充放电电压范围为0.01V-3V。首次放电比容量约为210mAh/g,充电比容量为151 mAh/g。
实施例6:
将MnO2纳米管、导电剂乙炔黑、SBR和CMC按质量比50:36:7:7混合,加入水搅拌制成浆料,均匀涂于铜箔上,烘干后剪切成圆形负电极极片,与金属锂组成锂离子电池进行恒电流充放电实验。电解液为含1mol/l LiPF6的EC/DEC (1:1,W/W)溶剂。
将该锂离子电池进行电化学循环性能测试,充放电电流为100mA/g,充放电电压范围为0.01V-3V。首次放电比容量约为947mAh/g,充电比容量为683 mAh/g。
实施例7
将MnO2颗粒、导电剂乙炔黑、SBR和CMC按质量比60:30:5:5混合,加入水搅拌制成浆料,均匀涂于铜箔上,烘干后剪切成圆形负电极极片,与金属锂组成锂离子电池进行恒电流充放电实验。电解液为含1mol/l LiPF6的EC/DEC (1:1,W/W)溶剂。
将该锂离子电池进行电化学循环性能测试,充放电电流为100mA/g,充放电电压范围为0.01V-3V。首次放电比容量约为914mA/g,充电比容量约为638mA/g。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

  1. 一种电极浆料,用于制作锂离子电池的负电极,其特征在于,包括二氧化锰、丁苯橡胶、羧甲基纤维素、水及导电剂。
  2. 如权利要求1所述的电极浆料,其特征在于,该丁苯橡胶与羧甲基纤维素的质量比为1:5至5:1。
  3. 如权利要求1所述的电极浆料,其特征在于,该二氧化锰、导电剂、丁苯橡胶与羧甲基纤维素中,丁苯橡胶的质量占1%至10%,羧甲基纤维素的质量占1%至10%。
  4. 如权利要求1所述的电极浆料,其特征在于,该二氧化锰为二氧化锰纳米管。
  5. 如权利要求1所述的电极浆料,其特征在于,由二氧化锰、丁苯橡胶、羧甲基纤维素、水及导电剂组成。
  6. 一种锂离子电池的负电极,包括负极集流体及附着在该负极集流体表面的负极材料层,其特征在于,该负极材料层包括二氧化锰、丁苯橡胶、羧甲基纤维素及导电剂。
  7. 如权利要求6所述的锂离子电池的负电极,其特征在于,该丁苯橡胶与羧甲基纤维素的质量比为1:5至5:1。
  8. 如权利要求6所述的锂离子电池的负电极,其特征在于,该丁苯橡胶的质量占1%至10%,羧甲基纤维素的质量占1%至10%。
  9. 如权利要求1所述的锂离子电池的负电极,其特征在于,该二氧化锰为二氧化锰纳米管。
  10. 一种锂离子电池,包括如权利要求6至9中任意一项中的锂离子电池的负电极,并进一步包括正电极及位于该正电极及负电极之间的非水电解质。
PCT/CN2014/089738 2013-11-12 2014-10-28 电极浆料、负电极及应用该负电极的锂离子电池 WO2015070706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310560322.7 2013-11-12
CN201310560322.7A CN103647040A (zh) 2013-11-12 2013-11-12 电极浆料、负电极及应用该负电极的锂离子电池

Publications (1)

Publication Number Publication Date
WO2015070706A1 true WO2015070706A1 (zh) 2015-05-21

Family

ID=50252232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089738 WO2015070706A1 (zh) 2013-11-12 2014-10-28 电极浆料、负电极及应用该负电极的锂离子电池

Country Status (2)

Country Link
CN (1) CN103647040A (zh)
WO (1) WO2015070706A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969208A (zh) * 2020-08-25 2020-11-20 安普瑞斯(无锡)有限公司 一种负极粘接剂及包含该负极粘接剂的电极
CN115594223A (zh) * 2022-10-25 2023-01-13 广东邦普循环科技有限公司(Cn) 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647040A (zh) * 2013-11-12 2014-03-19 江苏华东锂电技术研究院有限公司 电极浆料、负电极及应用该负电极的锂离子电池
CN108539121A (zh) * 2018-04-16 2018-09-14 江西迪芯能源科技有限公司 一种锂离子电池负极浆料及锂离子电池
CN108987715A (zh) * 2018-07-23 2018-12-11 芜湖彰鸿工程技术有限公司 一种锂离子电池负极浆料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459237A (zh) * 2007-12-10 2009-06-17 深圳市比克电池有限公司 一种电池负极浆料、制备方法以及使用该负极浆料制作的电池
CN101667659A (zh) * 2009-09-16 2010-03-10 保定风帆新能源有限公司 一种锂离子电池电芯
CN102013517A (zh) * 2010-11-05 2011-04-13 湖南天恒新能源有限公司 一种聚合物锂离子低温电池
CN102290597A (zh) * 2011-08-01 2011-12-21 珠海市鹏辉电池有限公司 高能量密度安全型锂离子电池
CN103647040A (zh) * 2013-11-12 2014-03-19 江苏华东锂电技术研究院有限公司 电极浆料、负电极及应用该负电极的锂离子电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127395A (zh) * 2006-08-15 2008-02-20 深圳市比克电池有限公司 一种锂二次电池负极及其制造方法
JP2009272120A (ja) * 2008-05-07 2009-11-19 Hitachi Maxell Ltd 負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN102290568A (zh) * 2011-07-25 2011-12-21 青岛海霸能源集团有限公司 100ah磷酸铁锂方形电池及其制作工艺
CN102522525A (zh) * 2011-12-19 2012-06-27 李�浩 一种锂离子负极材料及其制备方法
CN103227321B (zh) * 2013-03-27 2015-07-08 山东大学 锂离子电池负极用MnOx/Fe2O3纳米复合材料的制备方法
CN103311504B (zh) * 2013-06-13 2015-04-08 高平唐一新能源科技有限公司 一种锂离子电池浆料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459237A (zh) * 2007-12-10 2009-06-17 深圳市比克电池有限公司 一种电池负极浆料、制备方法以及使用该负极浆料制作的电池
CN101667659A (zh) * 2009-09-16 2010-03-10 保定风帆新能源有限公司 一种锂离子电池电芯
CN102013517A (zh) * 2010-11-05 2011-04-13 湖南天恒新能源有限公司 一种聚合物锂离子低温电池
CN102290597A (zh) * 2011-08-01 2011-12-21 珠海市鹏辉电池有限公司 高能量密度安全型锂离子电池
CN103647040A (zh) * 2013-11-12 2014-03-19 江苏华东锂电技术研究院有限公司 电极浆料、负电极及应用该负电极的锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, LIHONG ET AL.: "?-MnO2 nanotubes: high surface area and enhanced lithium battery properties", CHEMICAL COMMUNICATIONS, 21 May 2012 (2012-05-21), pages 6946 AND 6947 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969208A (zh) * 2020-08-25 2020-11-20 安普瑞斯(无锡)有限公司 一种负极粘接剂及包含该负极粘接剂的电极
CN111969208B (zh) * 2020-08-25 2022-04-29 安普瑞斯(无锡)有限公司 一种负极粘接剂及包含该负极粘接剂的电极
CN115594223A (zh) * 2022-10-25 2023-01-13 广东邦普循环科技有限公司(Cn) 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法

Also Published As

Publication number Publication date
CN103647040A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
KR100796687B1 (ko) 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US8034485B2 (en) Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
US8758938B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
CN109616614B (zh) 负极极片和使用其的电化学装置和电子装置
WO2016023398A1 (zh) 负极活性材料及其制备方法以及锂离子电池
CN115498177A (zh) 正极活性材料及其制备方法、正极极片及钠离子电池
JP5885984B2 (ja) 電極形成材と該電極形成材を用いた電極の製造方法
US20130171524A1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
US20050130040A1 (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
WO2013085241A1 (ko) 구형화 천연 흑연을 음극 활물질로 포함하는 리튬 이차전지
CN112151764A (zh) 一种电极极片及其制备方法和应用
WO2015070706A1 (zh) 电极浆料、负电极及应用该负电极的锂离子电池
KR20200133317A (ko) 수산화철(FeOOH)의 제조방법 및 수산화철을 포함하는 리튬-황 전지용 양극
WO2015067136A1 (zh) 锂离子电池负极活性材料及其制备方法以及锂离子电池
CN113851608A (zh) 用于锂二次电池的负极和包含其的锂二次电池
KR20200100961A (ko) 나노클레이를 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
JP2016076342A (ja) 非水系二次電池用電極及び非水系二次電池
WO2014081221A1 (ko) 리튬 이차전지
US20130252102A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
CN101414679A (zh) 一种复合材料及其制备方法和负极及锂电池
CN112259714B (zh) 固态电池复合电极片及其制备方法、包含其的固态电池
WO2016023399A1 (zh) 负极活性材料及其制备方法以及锂离子电池
CN110061189A (zh) 锂二次电池
JP2005025991A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862583

Country of ref document: EP

Kind code of ref document: A1