KR100796687B1 - 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
KR100796687B1
KR100796687B1 KR1020050115824A KR20050115824A KR100796687B1 KR 100796687 B1 KR100796687 B1 KR 100796687B1 KR 1020050115824 A KR1020050115824 A KR 1020050115824A KR 20050115824 A KR20050115824 A KR 20050115824A KR 100796687 B1 KR100796687 B1 KR 100796687B1
Authority
KR
South Korea
Prior art keywords
active
lithium
battery
conductive
carbon
Prior art date
Application number
KR1020050115824A
Other languages
English (en)
Other versions
KR20070056765A (ko
Inventor
강용묵
김성수
김준섭
성민석
심규윤
이영희
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020050115824A priority Critical patent/KR100796687B1/ko
Publication of KR20070056765A publication Critical patent/KR20070056765A/ko
Application granted granted Critical
Publication of KR100796687B1 publication Critical patent/KR100796687B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/13915Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 상기 활물질은 활성 물질을 포함하는 코어 및 상기 코어에 형성되고, 섬유형 또는 튜브형 탄소 도전재를 포함하는 도전성 쉘을 포함한다.
본 발명의 활물질은 섬유형 또는 튜브형 탄소 도전재를 포함하는 도전성 쉘을 포함하여, 전도성이 향상되어 방전용량이 증가되고 또한 충방전 사이클 진행시 입자간 경로를 유지시켜 수명 효율도 향상시킬 수 있다.
리튬이차전지,카본나노튜브,카본나노섬유,전도성,수명

Description

리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지{ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY, METHOD OF PREPARING THEREOF AND RECHARGEABLE LITHIUM BATTERY COMPRISING SAME}
도 1은 본 발명의 리튬 이차 전지의 구조를 개략적으로 나타낸 도면.
도 2는 본 발명의 실시예 1에 따른 코인셀의 40회 충방전 이후 극판 표면을 나타낸 SEM 사진.
도 3은 본 발명의 실시예 2에 따른 코인셀의 40회 충방전 이후 극판 표면을 나타낸 SEM 사진.
도 4는 비교예 1에 따른 코인셀의 40회 충방전 이후 극판 표면을 나타낸 SEM 사진.
[산업상 이용 분야]
본 발명은 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 고율 특성 및 수명 특성이 우수한 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
[종래 기술]
최근 첨단 전자 산업의 발달로 전자장비의 소량화 및 경량화가 가능하게 됨에 따라 휴대용 전자 기기의 사용이 증대되고 있다. 이러한 휴대용 전자 기기의 전원으로 높은 에너지 밀도를 가진 전지의 필요성이 증대되어 리튬 이차 전지의 연구가 활발하게 진행되고 있다.
리튬 이차 전지의 양극 활물질로는 리튬-전이금속 산화물을 일반적으로 사용하며 또한 음극 활물질로는 탄소계 활물질 또는 실리콘, 주석 또는 다른 금속과의 합금계 활물질을 사용한다.
상기 리튬 이차 전지에서 리튬-전이금속 산화물이나, 실리콘, 주석 또는 다른 금속과의 합금계 활물질과 같이 비탄소계 활물질을 사용하여 고용량 전지를 제조하기 위해서는 비탄소계 활물질이 전자 전도도가 낮기 때문에 탄소계 도전재를 첨가하여야한다.
이때 도전재로는 일반적으로 도전성을 갖는 카본 블랙과 같은 탄소계 도전재가 사용되었다.
특히 카본 블랙은 아주 작은 나노 비드가 뭉쳐있는 형태를 이루고 그 비표면적이 매우 커 도전재로 가장 널리 사용되고 있다. 그러나 카본 블랙은 나노 비드의 정전기적 응집체이므로 극판 첨가 후 장수명 진행시 극판 팽창에 따른 활물질 입자간 간극이 벌어질 경우 카본블랙 입자의 응집체는 쉽게 분리가 되어 전도경로가 줄어들게 되고 이는 전지 내 저항요소로 작용하여 수명하락의 주요 원인이 된다. 또한 단순 첨가에 의한 도전재와 활물질 입자간 접촉이 충분하지 못하여 도전 재를 대량 첨가해야하는 문제가 있었다.
본 발명의 목적은 수명 특성이 우수하고, 도전재를 소량 사용하여도 고전도도를 나타낼 수 있는 리튬 이차 전지용 활물질을 제공하는 것이다.
본 발명의 다른 목적은 상기 활물질을 포함하여, 고율 특성 및 수명특성이 우수한 리튬 이차 전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 활성 물질 및 이 활성 물질 표면에 부착된 섬유형 또는 튜브형 탄소 도전재를 포함하는 리튬 이차 전지용 활물질을 제공한다.
본 발명은 또한 양극, 음극 및 전해액을 포함하는 리튬 이차 전지로서, 상기 양극 및 음극 중 적어도 하나는 상기 활물질을 포함하는 것인 리튬 이차 전지를 제공한다.
이하 본 발명을 더욱 상세하게 설명한다.
본 발명은 고전도도를 갖는 리튬 이차 전지용 활물질에 관한 것으로서, 종래 활물질로 사용되던 활성 물질의 표면을 도전재로 코팅한 것이다.
리튬 이차 전지에서 전극은 통상적으로 활물질, 도전재 및 바인더를 유기 용매 중에서 혼합하여 슬러리 타입의 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포한 후, 압연하여 제조된다. 이와 같이 제조된 전극은 전류 집전체와, 이 전류 집전체에 형성된 상기 양극 활물질, 도전재 및 바인더로 구성된 전극 합재(active mass) 층으로 구성된다.
상기 도전재로는 주로 카본 블랙이 아주 작은 나노 비드가 뭉쳐있는 형태를 이루고 그 비표면적이 매우 커 주로 사용되나, 정전기적 응집체인 관계로 극판의 팽창시 입자간 카본블랙이 만들어주는 전도 네트워크가 쉽게 끊어져 전지 내 저항을 증가시키는 요인이 된다. 또한 입자 표면에 충분한 전자 전도 경로를 제공하지 못하여 다량의 도전재를 첨가하여야 충방전 용량을 얻을 수 있다.
이에 대하여, 본 발명에서는 도전재를 활물질 표면에 직접 코팅함으로서 입자의 표면 전도성을 향상시켰다. 상기 도전재로는 섬유형 또는 튜브형 탄소 도전재가 바람직하다.
종래 카본 나노 튜브를 도전재로 사용하는 내용이 Implementation of a Thick-Film Composite Li-Ion Microcathode Using Carbon Nanotubes as the Conductive Filler(Qian Lin and John N. Harb, Journal of The Electrochemical Society, 151(8) A1115-A1119(2004))에 기술되어 있다. 그러나 이 문헌은 마이크로배터리에 사용하는 것으로서, 본 발명의 리튬 이차 전지와는 그 구성 및 작동 메커니즘이 서로 상이한 발명이다.
상기 문헌과 같이 마이크로배터리의 경우에는 흑연이나 카본 블랙과 같은 입자성 도전재의 점접촉을 통해 도전성을 확보하기 위해 압연 공정을 실시하였으나, 카본 나노 튜브와 같이 섬유형을 사용하는 경우 압연을 하지 않아도 접촉을 서로 잘 하므로, 압연하는 공정을 생략할 수 있다는 내용이 기술되어 있다. 즉, 본 발명과 같은 리튬 이차 전지에서는 압연 공정을 실시하는 것이 고밀도 전지를 제조하 기 위해서이며, 이는 고용량 전지를 제조하고, 또한 적절한 두께를 갖는 리튬 이차 전지의 전극을 제조하기 위해 반드시 실시하여야 하나, 상기 문헌에서와 같은 마이크로배터리인 경우에는 전도성이 확보되면 압연 공정을 반드시 실시해야하는 것이 아니다.
또한, 상기 문헌과 같은 마이크로배터리에서는 양극 활물질이 미분이어야 하고, 따라서 양극의 비표면적(BET)이 커지게 되고, 따라서 카본 나노 튜브를 과량으로 사용하여야한다. 그러나 이와 같은 과량의 카본 나노 튜브의 사용은 전극 두께를 100㎛ 보다 두껍게 제조할 수 없게 하며, 만약 100㎛ 보다 두껍게 제조할 경우, 바인더를 15 중량% 정도로 과량을 사용하더라도 접착력이 약하여 건조 공정에서 표면에 크랙(crack)이 발생하는 문제가 있기 때문이다.
따라서 이와 같이 마이크로배터리와 리튬 이차 전지는 그 구성 및 작용이 서로 매우 상이한 전지이며, 카본 나노 튜브를 사용하는 목적 및 그에 따른 효과도 서로 상이하므로, 당해 분야에 종사하는 사람들에게도 상기 문헌으로부터 본원 발명을 용이하게 실시할 수 없음은 명백한 일이다.
Journal of Power Sources 119121 (2003) 770773 Roberto Dominko는 양극 활물질(리튬 코발트 옥사이드)의 표면에 카본블랙을 접착시켜 입자표면의 전도성을 향상시켰다. 이 실험을 통해 양극활물질의 표면 전도도를 향상시키는 것은 가능하다. 그러나 장 수명 실험시 발생하는 극판 팽창에 의한 입자 점접촉 부분에서 분리가 발생하면서 전도도 저하를 억제하기는 어려울 것으로 판단된다.
본 발명의 리튬 이차 전지용 활물질은 활성 물질 및 이 활성 물질 표면에 부 착된 섬유형 또는 튜브형 탄소 도전재를 포함한다. 본 발명에서 섬유형 또는 튜브형 탄소 도전재가 부착된 형태는 상기 활성 물질 표면의 일부에 부착될 수도 있고 또는 전체에 부착되어 있을 수 있다.
또한 본 발명에서는 이러한 섬유형 또는 튜브형 탄소 도전재를 혼합하여 활성 물질 표면에 부착시킨 것으로서, 섬유형 또는 튜브형 탄소 도전재를 활성 물질 표면에서 성장시키는 것에 비하여 공정이 간단하다. 또한 섬유형 또는 튜브형 탄소 도전재를 성장시키기 위해서는 산소없는 분위기에서 열처리를 실시하여야 하나, 금속 또는 금속 산화물 같은 비탄소계 활성 물질의 경우 이러한 산소없는 분위기에서 열처리하면 조성이 변화되어 열화되는 문제가 있을 수 있으나, 본 발명에서는 열처리 공정을 실시할 필요가 없으므로 이러한 문제가 없다.
상기 섬유형 또는 튜브형 탄소 도전재로는 탄소 나노 섬유 또는 탄소 나노 튜브가 바람직하다. 탄소 도전재로 섬유형 또는 튜브형이 아닌, 카본 블랙과 같은 분말 타입의 도전재를 사용하는 경우에는 표면에 크랙이 발생하여 입자간 접촉 불량이 발생할 우려가 있다.
또한 상기 섬유형 또는 튜브형 탄소 도전재의 함량은 전체 활물질 중량에 대하여 0.05 내지 20 중량%가 바람직하며, 0.3 내지 10 중량%가 더욱 바람직하다. 상기 도전재의 함량이 0.05 중량% 미만인 경우에는 충분한 도전성 부여에 문제가 있고, 20 중량%를 초과하는 경우에는 극판상에서의 활물질 접착력에 문제가 있어 바람직하지 않다.
본 발명에서 상기 활성 물질은 일반적으로 리튬 이차 전지에서 양극 활물질 또는 음극 활물질로 사용되는 것은 어떠한 것도 가능하며, 또한 본 발명의 도전성 쉘이 도전성이 거의 없는 비탄소계 활물질에 도전성을 향상시키기 위한 것이나, 도전성이 있는 탄소계 활물질에 적용하는 경우에도 도전성을 더욱 향상시킬 수 있다. 따라서 본 발명으로 인한 효과는 도전성이 거의 없는 비탄소계 활물질에 적용하는 경우 극대화될 수 있다.
이러한 본 발명의 활성 물질로는 탄소재 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 합금, 또는 리튬 함유 칼코게나이드 화합물을 들 수 있다.
상기 탄소재 물질로는 결정질 탄소, 비정질 탄소 또는 이들의 혼합물을 들 수 있다.
상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질로는 Si, Si 산화물, Sn, Sn 산화물, 틴 합금 복합체(composite tin alloys), 전이 금속 산화물, 리튬 금속 질화물 또는 하기 화학식 1과 같은 리튬 금속 산화물을사용할 수 있다.
[화학식 1]
LixMyVzO2+d
(상기 식에서, 0.1 ≤ x ≤ 2.5, 0 < y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이고, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이다)
상기 리튬 합금은 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, Fe 및 Sn으로 이루어진 군에서 선택되는 금속과 리튬의 합금을 사용할 수 있다.
상기 리튬 함유 칼코게나이드 화합물은 하기 화학식 2 내지 16으로 이루어진 군에서 선택되는 것이다.
[화학식 2]
LiAO2
[화학식 3]
LiMn2O4
[화학식 4]
LiaNibBcMdO2(0.95 ≤ a ≤ 1.1, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1)
[화학식 5]
LiaNibCocMndMeO2(0.95 ≤ a ≤ 1.1, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤ 0.5, 0.001 ≤ e ≤ 0.1)
[화학식 6]
LiaAMbO2(0.95 ≤ a ≤ 1.1, 0.001 ≤ b ≤ 0.1)
[화학식 7]
LiaMn2MbO4(0.95 ≤ a ≤ 1.1, 0.001 ≤ b ≤ 0.1)
[화학식 8]
DX2
[화학식 9]
LiDS2
[화학식 10]
V2O5
[화학식 11]
LiV2O5
[화학식 12]
LiEO2
[화학식 13]
LiNiVO4
[화학식 14]
Li(3-x)F2(PO4)3(0 ≤ x ≤ 3)
[화학식 15]
Li(3-x)Fe2(PO4)3(0 ≤ x ≤ 2)
[화학식 16]
LiaM'bM""c(PO4)d(0 < < 3, 0 < b+c ≤ 2, 0 < d < ≤ 3)
(상기 화학식 2 내지 16에서,
A는 Co, Ni 및 Mn으로 이루어진 군에서 선택되는 것이고,
B는 Co 또는 Mn이고,
D는 Ti, Mo 또는 Mn이고,
E는 Cr, V, Fe, Sc 및 Y로 이루어진 군에서 선택되는 것이고,
F는 V, Cr, M, Co, Ni 및 Cu로 이루어진 군에서 선택되는 것이며,
M은 Al, Cr, Mn, Fe, Mg, La, Ce, Sr 및 V로 이루어진 군에서 선택되는 전이 금속 또는 란타나이드 금속 중 하나 이상의 금속이고,
M' 및 M"는 동일하거나 서로 다르며, Fe, Co, Ni, Mn, Cu, V, Sn, Ti 및 Cr로 이루어진 군에서 선택되고,
X는 O 또는 S이다)
이하 본 발명의 활물질을 제조하는 방법을 설명한다.
먼저, 수용성 폴리머가 부착된 활성 물질을 섬유형 또는 튜브형 탄소 도전재 액에 첨가한다. 이때, 활성 물질에 부착된 수용성 폴리머에 상기 탄소 도전재가 활성 물질 표면에 결합된다.
상기 도전재와 활성 물질의 혼합 비율은 0.05 내지 20 중량% : 99.95 내지 80 중량%가 되는 것이 바람직하다. 도전재 액의 농도는 이 비율이 되도록 적절하게 조절할 수 있다.
상기 수용성 폴리머로는 점성이 있는 수용성 폴리머는 어떠한 것도 사용할 수 있으며, 그 대표적인 예로 젤라틴, 폴리비닐알코올 또는 셀룰로즈 계열 화합물을 들 수 있다. 상기 셀룰로즈 계열 화합물로는 카르복시 메틸 셀룰로즈, 메틸 셀룰로즈, 에틸 셀룰로즈, 하이드록시 프로필 메틸 셀룰로즈 또는 하이드록시 프로필 에틸 셀룰로즈를 사용할 수 있으며 또는 이들의 염도 사용할 수 있다. 셀룰로즈 계열 화합물의 염으로는 Na, K 또는 Li과 같은 알칼리 금속 염을 사용할 수 있다.
상기 수용성 폴리머가 부착된 활성 물질은 수용성 폴리머 액에 활성 물질을 침지한 후, 활성 물질을 꺼내어 건조하는 공정으로 제조될 수 있다. 수용성 폴리머 액에서 용매는 물이 대표적으로 사용되나 이에 한정되는 것은 아니다. 상기 수용성 폴리머 액의 농도는 특별히 한정할 필요는 없으나, 수용성 폴리머가 활성 물질 중량에 대하여 5 중량% 이하, 바람직하게는 2 중량% 이하가 되도록 하는 것이 적당하다. 상기 활성 물질의 첨가량, 건조 공정 등은 적당하게 조절할 수 있다.
상기 섬유형 또는 튜브형 탄소 도전재 액은 섬유형 또는 튜브형 탄소 도전재를 용매에 첨가하여 제조되는 것으로서, 농도는 적당하게 조절하면 되며, 용매로는 물 또는 N-메틸피롤리돈과 같은 유기 용매를 사용할 수 있으나, 이에 한정되는 것은 아니다.
단, 상기 탄소 도전재 액을 제조시 도전재 분산이 보다 잘되게 하기 위해서 도전재를 산처리하여 사용할 수도 있고, 또는 계면 활성제를 더욱 첨가할 수도 있다.
상기 산처리는 황산, 염산 등의 산에 도전재를 침지하여 표면을 산화시키는 공정으로서, 이 공정에 따라 용매, 특히 물에 분산이 잘 될 수 있다.
상기 계면 활성제로는 비이온성, 양이온성 또는 음이온성 계면 활성제를 사용할 수 있다. 상기 양이온성 또는 음이온성 계면 활성제의 대표적인 예로는 설포네이트(RSO3 -), 설페이트(RSO4 -), 카르복실레이트(RCOO-), 포스페이트(RPO4 -), 암모늄(RyHyN+: x는 1-3이고, y는 3-1이다), 4차 암모늄(R4N+), 베타인(Betaines: RN+(CH3)2CH2COO-) 또는 설포베타인(Sulfobetaines: RN+(CH3)2CH2SO3 -)을 들 수 있고, 상기 비이온성 계면 활성제로는 폴리에틸렌옥사이드(R-OCH2CH2(OCH2CH2)nOH) 또는 아민 화합물을 들 수 있다. 상기 R은 포화 또는 불포화 탄화수소기이고, 바람직하게는 탄소수 2 내지 1000의 포화 또는 불포화 탄화수소기이다. 또한, 본 발명에서 사용되는 계면 활성제는 분자량이 5 내지 10000인 것을 사용할 수 있다.
계면 활성제의 사용량은 본 발명의 효과에 영향을 미치지 않으므로 적절하게 사용하면 된다.
이어서, 얻어진 혼합물의 pH를 조절한다. 이때 pH는 3 내지 4로 조절하는 것이 바람직하다. pH는 산이나 염기를 첨가하여 조절하며, 그 예로는 아세트산, 염산, 황산, 암모니아 등을 들 수 있다.
상기 pH가 조절된 2차 혼합물을 열처리한다. 상기 열처리 공정은 300 내지 450℃에서 실시하는 것이 바람직하다. 상기 열처리 공정에서 상기 활성 물질과 상 기 탄소 도전재 사이에 존재하던 수용성 폴리머가 분해되어 제거되며 또한 잔존할 수 있는 수분이 제거되므로, 최종 활물질에는 수용성 폴리머가 존재하지 않게 된다.
상기 공정 전체를 1회 실시할 수도 있고, 이 공정이 완료된 후, 탄소계 도전재를 사용하여 다시 동일한 공정을 반복하여 실시할 수도 있다. 즉, 상기 열처리하는 공정 이후, 얻어진 생성물에 탄소 도전재를 첨가하여 2차 혼합물을 제조하고, 상기 2차 혼합물의 pH를 조절하고, pH가 조절된 2차 혼합물을 열처리하는 공정을 실시할 수도 있다. 이때, 혼합 비율, 첨가량, pH 조절, 및 열처리 공정 등의 조건은 상술한 바와 동일하다. 단, 상기 탄소계 도전재로는 탄소 나노 섬유, 탄소 나노 튜브, 카본 블랙, 케첸 블랙, 아세틸렌 블랙 또는 활성 탄소를 사용할 수 있다.
이와 같이 전체 공정을 두 번 반복하여 실시하는 경우에도 최종 활물질에 포함되는 도전재의 함량은 0.05 내지 20 중량% 범위, 바람직하게는 0.3 내지 10 중량%가 되도록 적절히 조절하여 사용한다.
본 발명의 활물질을 사용하여 전극을 제조하는 방법은 먼저, 활물질, 바인더 및 용매를 혼합하여 슬러리 타입의 활물질 조성물을 제조한다.
상기 바인더는 활물질 입자들을 서로 잘 부착시키고, 또한 활물질을 전류 집전체에 잘 부착시키기 위한 역할을 하는 것으로서, 상기 바인더로는 리튬 이차 전지에서 일반적으로 사용되는 물질은 모두 사용할 수 있다. 즉 유기 용매 가용성 바인더 또는 수용성 바인더를 사용할 수 있다. 상기 유기 용매 가용성 바인더로는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필 렌, 폴리비닐클로라이드, 폴리비닐피롤리돈 또는 폴리비닐알콜 등을 사용할 수 있다.
상기 수용성 바인더로는 스티렌-부타디엔 고무, 폴리아크릴산 나트륨, 프로필렌과 탄소수가 2 내지 8의 올레핀 공중합체, 또는 (메타)아크릴산과 (메타)아크릴산알킬에스테르의 공중합체를 사용할 수 있다.
또한, 상기 수용성 바인더를 사용하는 경우에는 수용성 바인더에 결착성을 향상시키기 위하여, 수용성 증점제를 포함할 수 있다. 상기 수용성 증점제로는 셀룰로오스계 화합물을 사용할 수 있다. 상기 셀룰로오스계 화합물로는 카르복시메틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 하이드록시프로필 메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 에틸 셀룰로오스 또는 메틸 셀룰로오스를 사용할 수 있다. 또한, 이들의 알칼리 금속염을 사용할 수도 있다. 상기 알칼리 금속염에서 알칼리 금속으로는 Na, K, Li을 사용할 수 있고, 이와 같이 알칼리 금속염이 부가된 셀룰로오스계 화합물을 사용하면, 셀룰로오스계 화합물을 단독으로 사용할 경우보다 전지의 고율 방전 특성을 향상시킬 수 있어 바람직하다.
상기 활물질 조성물을 전류집전체에 도포하고 건조한 후, 압연 공정을 실시하여 전극을 제조한다. 상기 전류 집전체로는 일반적으로 Al 또는 Cu 포일 등을 사용할 수 있다.
상술한 구성을 갖는 양극을 포함하는 리튬 이차 전지는 음극 및 전해액을 포함한다.
상기 전해액은 비수성 유기 용매 및 리튬염을 포함한다. 이 비수성 유기 용 매는 전지의 전기화학적인 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 상기 비수성 유기 용매로는카보네이트, 에스테르, 에테르 또는 케톤을 사용할 수 있다. 상기 카보네이트로는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 등이 사용될 수 있으며, 상기 에스테르로는 γ-부티로락톤, n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트 등이 사용될 수 있고, 상기 에테르의 예로는 디부틸 에테르가 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. 상기 비수성 유기 용매 중 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1 : 1 내지 1 : 9의 부피비로 혼합하여 사용하는 것이 바람직하며, 상기 환형 카보네이트와 사슬형 카보네이트의 혼합 비율이 상기 범위에 포함되어야 전해질의 성능이 바람직하게 나타날 수 있다.
상기 비수성 유기 용매는 또한 방향족 탄화수소계 유기 용매를 더욱 포함할 수 있으며, 이 경우에는 카보네이트 유기 용매와 혼합하여 사용하는 것이 좋다. 상기 방향족 탄화수소계 유기 용매는 하기 화학식 17의 방향족 탄화 수소계 화합물이 사용될 수 있다.
[화학식 17]
Figure 112007060524446-pat00001
(상기 화학식 17에서, R은 할로겐, 니트로 또는 탄소수 1 내지 10의 알킬기또는 할로알킬기이고, q는 0 내지 6의 정수이다)
상기 방향족 탄화 수소계 유기 용매의 구체적인 예로는 벤젠, 플루오로 벤젠, 클로로벤젠, 니트로 벤젠, 톨루엔, 플루오로톨루엔, 트리플루오로톨루엔, 자일렌 등을 들 수 있다. 방향족 탄화 수소계 유기 용매를 포함하는 전해질에서 카보네이트 용매/방향족 탄화 수소계 용매의 부피비가 1 : 1 내지 30 : 1인 것이 바람직하다. 상기 부피비로 혼합되어야 전해질의 성능이 바람직하게 나타날 수 있다.
상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 전지의 작동을 가능하게 하며, 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 상기 리튬염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, CF3SO3Li, LiN(SO2CF3)2, LiC4F9SO3, LiAlO4, LiAlOCl4, LiN(SO2C2F5)2), LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl 및 LiI들 중의 하나 혹은 둘 이상을 혼합하여 사용할 수 있다.
상기 전해액에서, 상기 지지 전해염의 농도는 0.1 내지 2.0M이 바람직하다. 상기 지지 전해염의 농도가 0.1M 미만이면, 전해질의 전도도가 낮아져 전해질 성능 이 떨어지고 2.0M을 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있다.
이러한 구성을 갖는 본 발명의 리튬 이차 전지의 대표적인 예를 도 1에 나타내었다. 도 1은 음극(2), 양극(4), 이 음극(2) 및 양극(4) 사이에 배치된 세퍼레이터(3), 상기 음극(2), 상기 양극(4) 및 상기 세퍼레이터(3)에 함침된 전해액과, 전지 용기(5)와, 전지 용기(5)를 봉입하는 봉입 부재(6)를 주된 부분으로 하여 구성되어 있는 원통형 리튬 이온 전지(1)를 나타낸 것이다. 물론, 본 발명의 리튬 이차 전지가 이 형상으로 한정되는 것은 아니며, 본 발명의 양극 활물질을 포함하며 전지로서 작동할 수 있는 각형, 파우치 등 어떠한 형성도 가능함은 당연하다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기한 실시예에 의해 한정되는 것은 아니다.
(실시예 1)
카본 나노 튜브 도전재를 황산에 침지한 후, 꺼내는 산처리를 실시하고, 산처리된 카본 나노 튜브 도전재를 탈이온수에 넣어 카본 나노 튜브 도전재 액을 제조하였다.
2 중량% 농도의 젤라틴 수용액 100ml에 리튬 코발트 옥사이드 활성 물질 20g을 첨가하고, 여과하여 젤라틴 층이 코팅된 리튬 코발트 옥사이드를 제조하였다.
제조된 젤라틴 층이 코팅된 리튬 코발트 옥사이드를 상기 카본 나노 튜브 도전재 액에 첨가하여 교반하였다. 이때 리튬 코발트 옥사이드와 카본 나노 튜브 도 전재의 사용량은 96.5 : 0.5 중량비로 하였다.
얻어진 혼합물을 아세트산으로 pH 3 내지 4로 조절하여 카본 나노 튜브가 응집되면서 젤라틴 층이 코팅된 리튬 코발트 옥사이드 표면에 접착이 되도록 하였다.
이어서, 카본 나노 튜브가 접착된 리튬 코발트 옥사이드를 약 400℃에서 산화시켜 미량의 젤라틴 및 흡착된 수분을 제거하여 리튬 코발트 옥사이드 코어 및 이 코어에 형성된 카본 나노 튜브 도전성 쉘을 갖는 활물질을 제조하였다.
제조된 활물질을 N-메틸피롤리돈 유기 용매와 혼합하고 폴리비닐리덴 플루오라이드 바인더를 첨가하여 슬러리를 제조하였다. 이때, 활물질과 바인더의 사용량은 97 중량%와 3 중량%로 하였으며, 활물질과 바인더의 혼합물에서 도전재의 함량은 0.5 중량%였다. 제조된 슬러리를 알루미늄 집전체에 도포하고, 압연하여 양극을 제조하였다. 주어진 양극으로 코인셀을 제조하였다.
(실시예 2)
리튬 코발트 옥사이드와 카본 나노 튜브 도전재의 사용량을 96.7 : 0.3 중량비로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 3)
리튬 코발트 옥사이드와 카본 나노 튜브 도전재의 사용량은 96.9 : 0.1 중량비로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 4)
리튬 코발트 옥사이드와 카본 나노 튜브 도전재의 사용량은 96.7 : 0.3 중량비로 변경하여 상기 실시예 1과 동일한 공정에 따라 카본 나노 튜브 도전성 쉘이 형성된 리튬 코발트 옥사이드를 제조한 후, 여기에 0.2 중량%의 카본 나노 튜브를 다시 사용하여 동일한 공정으로 총 0.5 중량%의 카본 나노 튜브 도전성 쉘이 형성된 활물질을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 5)
리튬 코발트 옥사이드와 카본 나노 튜브 도전재의 사용량은 96.7 : 0.3 중량비로 변경하여 상기 실시예 1과 동일한 공정에 따라 카본 나노 튜브 도전성 쉘이 형성된 리튬 코발트 옥사이드를 제조한 후, 여기에 0.2 중량%의 카본 블랙을 다시 사용하여 동일한 공정으로 총 0.5 중량%의 도전재가 부착된 활물질을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 6)
리튬 코발트 옥사이드 대신 LiFePO4를 활성 물질로 사용하여 상기 실시예 1과 동일한 공정으로 활물질을 제조하고, 이 활물질 97 중량%, 카본 나노 튜브 도전재 0.5 중량% 및 폴리비닐리덴 플루오라이드 바인더 2.5 중량%를 N-메틸피롤리돈 용매 중에서 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 7)
리튬 코발트 옥사이드 대신 Li1.2Mo0.06V0.85O2인 활성 물질을 사용하여 상기 실시예 1과 동일한 공정으로 활물질을 제조하였다. 이어서, 제조된 활물질 87 중량%, 카본 나노 튜브 도전재 5 중량% 및 폴리비닐리덴 플루오라이드 바인더 8 중량%를 혼합하여 활물질 슬러리를 제조하고, 이 슬러리를 구리 집전체에 도포하여 음극 을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 8)
리튬 코발트 옥사이드 대신 실리콘 활성 물질을 사용하여 상기 실시예 5와 동일한 공정으로 활물질을 제조하였다. 이어서, 제조된 활물질 87 중량%, 카본 나노 튜브 도전재 5 중량% 및 폴리비닐리덴 플루오라이드 바인더 8 중량%를 혼합하여 활물질 슬러리를 제조하고, 이 슬러리를 구리 집전체에 도포하여 음극을 제조한 것을 제외하고는 상기 실시예 5와 동일하게 실시하였다.
(실시예 9)
아나타제(anatase)형 TiO2를 활성 물질로 사용하고 추가로 카본 나노 튜브를 1중량% 첨가하여 상기 실시예 8과 동일하게 실시하였다.
(실시예 10)
리튬 코발트 옥사이드 대신 흑연을 활성 물질로 사용하고, 집전체로 구리 집전체를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 11)
리튬 코발트 옥사이드 대신 흑연을 활성 물질로 사용하여 상기 실시예 1과 동일한 공정으로 활물질을 제조하였다. 이어서, 제조된 활물질 97 중량%, 카본 나노 튜브 0.5 중량% 및 폴리비닐리덴 플루오라이드 바인더 2.5 중량%를 혼합하여 활물질 슬러리를 제조하고, 이 슬러리를 구리 집전체에 도포하여 음극을 제조한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(실시예 12)
Si, Sn, Cu 및 Al를 아르곤 가스 분위기 하에서 혼합하고, 1500℃ 이상에서 용융하는 아크용해법으로 제조하고, 제조된 SiCuAl 합금을 급냉 리본 응고법을 이용하여, Cu-Al 매트릭스 내에 Si이 위치하는 활성 물질을 제조하였다. 이때, 급냉 속도(즉 카파롤의 회전 속도)는 3000rpm으로 하였다. 상기 제조된 음극 활물질에서 Si의 함량은 40 중량%였고, Sn 10 중량%, Cu의 함량은 44.15 중량%였으며, Al의 함량은 5.852 중량%였다.
상기 활성 물질을 사용하여 실시예 1과 동일한 공정으로 음극 활물질을 제조하였다. 단, 400℃ 산화 공정은 400℃에서 Ar 비활성 분위기 하에서 실시하였다.
(비교예 1)
카본 블랙을 0.5 중량% 사용하여 실시예 1과 동일한 공정으로 카본 블랙이 코팅된 활물질을 제조하였다.
(비교예 2)
리튬 코발트 옥사이드, 카본 블랙 도전재 및 폴리비닐리덴 플루오라이드 바인더를 N-메틸 피롤리돈 용매중에서 96.5 중량%, 카본 블랙의 사용량은 0.5% 중량 그리고 바인더의 사용량은 3 중량%로 하였다.
상기 슬러리를 사용하여 상기 실시예 1과 동일하게 양극을 제조하였다.
(비교예 3)
카본 블랙의 사용량을 0.3 중량%로 변경한 것을 제외하고는 상기 비교예 2와 동일하게 실시하였다.
(비교예 4)
카본 블랙 0.3 중량%를 상기 실시예 1과 동일한 방법으로 리튬 코발트 옥사이드 표면에 코팅하여 카본 블랙이 코팅된 리튬 코발트 옥사이드를 제조하고, 카본 블랙이 코팅된 리튬 코발트 옥사이드 96.5 중량%, 카본 블랙 0.2 중량% 및 폴리비닐리덴 플루오라이드 바인더 3 중량%를 N-메틸 피롤리돈 중에서 혼합하여 슬리러를 제조하였다. 이 슬러리를 사용하여 상기 실시예 1과 동일한 방법으로 양극을 제조하였다.
(비교예 5)
리튬 코발트 옥사이드 대신에 LiFePO4 활성 물질을 사용하여 카본 블랙이 코팅된 LiFePO4 활성 물질을 제조하고, 이 활성 물질 96.5 중량%, 카본블랙 0.5 중량% 및 폴리비닐리덴 플루오라이드 바인더 3 중량%를 혼합하여 슬러리를 제조한 것을 제외하고는 상기 비교예 1과 동일하게 실시하였다.
(비교예 6)
Li1.2Mo0.06V0.85O2인 활성 물질인 카본 블랙이 표면에 코팅된 활물질을 제조하였다.
상기 카본 블랙이 표면에 코팅된 활물질 87 중량%, 카본 블랙 도전재 5 중량% 및 바인더 8 중량%를 N-메틸 피롤리돈 용매 중에서 혼합하여 슬러리를 제조하고, 상기 슬러리를 구리 집전체에 도포한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(비교예 7)
실리콘 활성 물질을 사용하여 카본 블랙이 표면에 코팅된 활물질을 제조하고, 상기 카본 블랙이 표면에 코팅된 활물질 87 중량%, 카본블랙 도전재 5 중량% 및 바인더 8 중량%를 사용한 것을 제외하고는 상기 실시예 5와 동일하게 실시하였다.
(비교예 8)
아나타제형 TiO2 활성 물질 및 카본 블랙 1중량%를 사용하여 상기 실시예 8과 동일한 공정으로 카본 블랙 도전성 쉘이 형성된 TiO2-아나타제를 제조하고, 이 TiO2-아나타제에 다시 카본 블랙 1중량%를 사용하여 동일한 공정으로 총 도전재량이 2중량%가 되도록 코팅하여 카본 블랙 도전성 쉘이 형성된 활물질을 제조한 것을 제외하고는 실시예 8과 동일하게 실시하였다.
(비교예 9)
카본 블랙 대신 흑연을 사용한 것을 제외하고는 상기 비교예 1과 동일하게 실시하였다.
(비교예 10)
카본 블랙 대신 흑연을 사용하여 상기 비교예 1과 동일하게 실시하여 활물질을 제조하였다. 이어서, 제조된 활물질 96.5 중량%, 카본 나노 튜브 0.5 중량% 및 폴리비닐리덴 플루오라이드 바인더 3 중량%를 혼합하여 활물질 슬러리를 제조한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
(비교예 11)
실시예 12에서 제조된 활성 물질을 음극 활물질로 그대로 사용하였다.
상기 실시예 1 내지 2 및 비교예 1에 따라 제조된 코인셀을 40회 충방전 이후의 극판 SEM 사진을 도 2 내지 도 4에 각각 나타내었다. 도 2 내지 도 4에 나타낸 것과 같이, 실시예 1 및 2의 경우 표면간 전도 네트워크가 유지되고 있으나, 비교예 1의 경우에는 크랙이 발생하여 입자간 접촉 불량이 발생되는 문제가 있음을 알 수 있다.
상기 실시예 1 내지 12 및 비교예 1 내지 11의 방전용량, 1회 충방전 효율 및 50회 수명 효율 특성을 측정하여 그 결과를 하기 표 1에 나타내었다.
방전용량(mAh/g) 1회 충방전 효율(%) 50회 수명 효율(%)
실시예 1 159 98 91
실시예 2 151 96 85
실시예 3 138 91 72
실시예 4 158 97.5 93
실시예 5 157 98 90
실시예 6 154 97.3 89
실시예 7 265 83 88
실시예 8 1046 78 68
실시예 9 153 87 91
실시예 10 355 95 91
실시예 11 357 96 93
실시예 12 - 90% 80%
비교예 1 158 97.5 73
비교예 2 147 94 60
비교예 3 114 86 35
비교예 4 158 98 78
비교예 5 152 96.5 69
비교예 6 251 78 45
비교예 7 1028 57 32
비교예 8 151 82 78
비교예 9 354 94 79
비교예 10 356 93 84
비교예 11 - 82 68
상기 표 1에 나타낸 것과 같이, 실시예 1 내지 12의 경우 표면에 코팅된 나노튜브 또는 나노섬유에 의해 전도도가 낮은 양극 또는 음극 활물질의 전자전도 경로가 확립되어 비교예 2 내지 5 및 9와 같이 카본 블랙을 슬러리상에 첨가한 극판보다 높은 방전용량을 보여주고 있다.
또한 수명 진행시 발생하는 활물질의 팽창에 의해 활물질 간극이 벌어질 경우, 비교예 1, 6 내지 8 및 10과 같이 카본 블랙으로 코팅한 경우에는 나노 비드의 정전기적 응집체로 이루어진 전자전도 네트워크가 그 형태 유지가 어렵고 쉽게 전도경로가 끊어질 수 있어 수명 효율이 좋지 않음을 알 수 있다.
그러나 실시예 1 내지 12와 같이 나노 섬유 또는 나노 튜브로 코팅된 경우에는 활물질 간 이어진 섬유(또는 튜브)가 활물질 입자 간격이 벌어져도 양 입자간 경로가 그대로 유지되어서 전자전도 네트워크가 그대로 유지되게 된다. 이러한 특성으로 인해 극판 내 전자전도가 전지의 수명이 진행되어도 저항 증가를 억제하게 되어 수명 효율이 향상됨을 알 수 있다.
상술한 바와 같이, 본 발명의 활물질은 섬유형 또는 튜브형 탄소 도전재를 포함하는 도전성 쉘을 포함하여, 전도성이 향상되어 방전용량이 증가되고 또한 충방전 사이클 진행시 입자간 경로를 유지시켜 수명 효율도 향상시킬 수 있다.

Claims (23)

  1. 활성 물질; 및
    상기 활성 물질 표면에 부착된 섬유형 또는 튜브형 탄소 도전재
    를 포함하고,
    상기 활성 물질은 Si, Si 산화물, Sn, Sn 산화물, 틴 합금 복합체(composite tin alloys), 리튬 금속 질화물 및 하기 화학식 1의 리튬 금속 산화물로 이루어진 군에서 선택되는 것인 리튬 이차 전지용 음극 활물질.
    [화학식 1]
    LixMyVzO2+d
    (상기 식에서, 0.1 ≤ x ≤ 2.5, 0 < y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이고, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이다)
  2. 제1항에 있어서,
    상기 섬유형 또는 튜브형 탄소 도전재는 탄소 나노 섬유 또는 탄소 나노 튜브인 리튬 이차 전지용 음극 활물질.
  3. 제1항에 있어서,
    상기 도전재의 함량은 전체 활물질 중량에 대하여 0.05 내지 20 중량%인 리튬 이차 전지용 음극 활물질.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 수용성 폴리머가 부착된 활성 물질을 섬유형 또는 튜브형 탄소 도전재 액에 첨가하여 혼합물을 제조하는 단계;
    상기 혼합물의 pH를 조절하는 단계;
    pH가 조절된 혼합물을 열처리하는 단계
    를 포함하고,
    상기 활성 물질은 Si, Si 산화물, Sn, Sn 산화물, 틴 합금 복합체(composite tin alloys), 리튬 금속 질화물 및 하기 화학식 1의 리튬 금속 산화물로 이루어진 군에서 선택되는 것인 리튬 이차 전지용 음극 활물질의 제조방법.
    [화학식 1]
    LixMyVzO2+d
    (상기 식에서, 0.1 ≤ x ≤ 2.5, 0 < y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이고, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소이다)
  11. 제10항에 있어서,
    상기 섬유형 또는 튜브형 탄소 도전재는 탄소 나노 섬유 또는 탄소 나노 튜브인 리튬 이차 전지용 음극 활물질의 제조방법.
  12. 제10항에 있어서,
    상기 섬유형 또는 튜브형 탄소 도전재와 활성 물질의 혼합 비율은 0.05 내지 20 중량% : 99.95 내지 80 중량%인 리튬 이차 전지용 음극 활물질의 제조방법.
  13. 제10항에 있어서,
    상기 pH는 3 내지 4로 조절하는 것인 리튬 이차 전지용 음극 활물질의 제조방법.
  14. 제10항에 있어서,
    상기 열처리 단계는 300 내지 450℃에서 실시하는 것인 리튬 이차 전지용 음극 활물질의 제조방법.
  15. 제10항에 있어서,
    상기 열처리하는 단계 이후, 얻어진 생성물 및 탄소 도전재를 혼합하여 2차 혼합물을 제조하는 단계;
    상기 2차 혼합물의 pH를 조절하는 단계;
    pH가 조절된 2차 혼합물을 열처리하는 단계를 더욱 포함하는 것인 리튬 이차 전지용 음극 활물질의 제조방법.
  16. 제15항에 있어서,
    상기 pH는 3 내지 4로 조절하는 것인 리튬 이차 전지용 음극 활물질의 제조방법.
  17. 제15항에 있어서,
    상기 열처리 단계는 300 내지 450℃에서 실시하는 것인 리튬 이차 전지용 음극 활물질의 제조방법.
  18. 제15항에 있어서,
    상기 탄소 도전재는 탄소나노 섬유, 탄소 나노 튜브, 카본 블랙, 케첸 블랙, 아세틸렌 블랙 및 활성 탄소로 이루어진 군에서 선택되는 것인 리튬 이차 전지용 음극 활물질의 제조방법.
  19. 양극;
    음극; 및
    전해액을 포함하는 리튬 이차 전지로서,
    상기 음극은
    제1항 내지 제3항 또는 제10항 내지 제18항 중 어느 한 항에 따른 음극 활물질
    을 포함하는 것인 리튬 이차 전지.
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
KR1020050115824A 2005-11-30 2005-11-30 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 KR100796687B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050115824A KR100796687B1 (ko) 2005-11-30 2005-11-30 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020050115824A KR100796687B1 (ko) 2005-11-30 2005-11-30 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US11/607,817 US8105716B2 (en) 2005-11-30 2006-11-30 Active material for rechargeable lithium battery and rechargeable lithium battery including same
US13/328,910 US8241794B2 (en) 2005-11-30 2011-12-16 Active material for rechargeable lithium battery and rechargeable lithium battery including same

Publications (2)

Publication Number Publication Date
KR20070056765A KR20070056765A (ko) 2007-06-04
KR100796687B1 true KR100796687B1 (ko) 2008-01-21

Family

ID=38354484

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050115824A KR100796687B1 (ko) 2005-11-30 2005-11-30 리튬 이차 전지용 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Country Status (2)

Country Link
US (2) US8105716B2 (ko)
KR (1) KR100796687B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062422A3 (ko) * 2009-11-18 2011-09-09 주식회사 엘지화학 리튬 이차전지용 음극 합제 및 이를 사용한 리튬 이차전지
KR101092337B1 (ko) 2011-07-20 2011-12-09 (주) 라미나 리튬이차전지의 양극 활물질 제조용 올인원 타입 연속식 반응기 및 이를 포함하는 결정분리장치
KR20200111299A (ko) 2019-03-18 2020-09-29 한밭대학교 산학협력단 메조포러스 탄소/리튬티탄 산화물 나노플레이크 (mc/lto-nf)를 포함하는 리튬이차전지용 복합전극

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814816B1 (ko) * 2006-11-27 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
US7981545B2 (en) * 2006-12-28 2011-07-19 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
KR100796664B1 (ko) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR100869796B1 (ko) 2007-04-05 2008-11-21 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를포함하는 리튬 이차 전지
JP4905267B2 (ja) 2007-06-21 2012-03-28 ソニー株式会社 正極合剤および非水電解質電池
JP5218406B2 (ja) * 2007-07-11 2013-06-26 株式会社豊田中央研究所 水系リチウム二次電池
KR100913178B1 (ko) * 2007-11-22 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지
KR101408884B1 (ko) * 2007-11-27 2014-06-19 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
US8147916B2 (en) * 2008-03-07 2012-04-03 Bathium Canada Inc. Process for making electrodes for lithium based electrochemical cells
KR101407650B1 (ko) 2008-04-04 2014-06-13 성균관대학교산학협력단 나노입자 제조방법, 나노입자 및 이를 포함한 전극을구비한 리튬 전지
KR20110051249A (ko) * 2008-08-15 2011-05-17 메사추세츠 인스티튜트 오브 테크놀로지 탄소 기반 나노구조체의 층상 조립체 및 에너지 저장 및 생산 소자에서의 그의 용도
TWI378590B (en) * 2008-10-22 2012-12-01 Lg Chemical Ltd Cathode mix containing having improved efficiency and energy density of electrode
KR101604081B1 (ko) 2009-01-30 2016-03-17 삼성전자주식회사 복합체 음극활물질, 이를 포함하는 음극, 이를 채용한 리튬전지 및 이의 제조 방법
FR2943463B1 (fr) * 2009-03-19 2011-07-01 Arkema France Materiaux composites a base de liants fluores et nanotubes de carbone pour electrodes positives de batteries lithium.
CN102598376A (zh) * 2009-09-04 2012-07-18 G4协同学公司 用于形成发泡的电极结构的方法
CA2771969A1 (en) * 2009-09-22 2011-03-31 G4 Synergetics, Inc. High performance electrodes
US20110070495A1 (en) * 2009-09-23 2011-03-24 Alliance For Sustainable Energy, Llc Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries
WO2011068391A2 (ko) * 2009-12-04 2011-06-09 주식회사 루트제이제이 나노 중공 섬유형 탄소를 포함하는 리튬 이차전지용 양극 활물질 전구체, 활물질 및 그 제조방법
US8540902B2 (en) * 2010-01-13 2013-09-24 CNano Technology Limited Carbon nanotube based pastes
DE102010006076A1 (de) * 2010-01-28 2011-08-18 Süd-Chemie AG, 80333 Elektrode für eine Sekundärlithiumionenbatterie
CN103392252A (zh) * 2011-02-23 2013-11-13 三洋电机株式会社 非水电解质二次电池用电极及其制造方法和非水电解质二次电池
CN102934266B (zh) * 2011-04-13 2016-04-20 Sei株式会社 锂二次电池用电极材料及锂二次电池
KR102111899B1 (ko) * 2011-06-03 2020-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전극의 제조 방법
WO2013011516A1 (en) 2011-07-20 2013-01-24 Vulcan Automotive Industries Ltd Funcionalized carbon nanotube composite for use in lead acid battery
KR101265195B1 (ko) * 2011-07-28 2013-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9065136B2 (en) * 2011-09-14 2015-06-23 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101693296B1 (ko) * 2011-12-23 2017-01-06 삼성에스디아이 주식회사 양극 활물질 및 그 제조 방법과 상기 양극 활물질을 포함하는 리튬 이차 전지
CN103187591B (zh) * 2011-12-28 2015-11-25 清华大学 锂离子电池的制备方法
WO2014034635A1 (ja) * 2012-08-28 2014-03-06 電気化学工業株式会社 リチウムイオン二次電池用電極材、その製造方法及びリチウムイオン二次電池
JP6413766B2 (ja) * 2012-10-05 2018-10-31 株式会社村田製作所 活物質、活物質の製造方法、電極および二次電池
TWI497801B (zh) 2012-12-12 2015-08-21 Ind Tech Res Inst 應用於電池隔離膜之微米或奈米纖維結構或其纖維複合結構
KR101666872B1 (ko) * 2013-04-23 2016-10-17 삼성에스디아이 주식회사 양극 활물질 및 이의 제조 방법, 그리고 상기 양극 활물질을 포함하는 리튬 이차 전지
US9991507B2 (en) 2013-07-26 2018-06-05 Lg Chem, Ltd. Electrode for secondary battery having improved energy density and lithium secondary battery including the same
US10847801B2 (en) * 2013-10-17 2020-11-24 Nippon Chemi-Con Corporation Electroconductive carbon, electrode material containing said carbon, electrode using said electrode material, and power storage device provided with said electrode
JP6450555B2 (ja) * 2013-11-12 2019-01-09 太陽インキ製造株式会社 スラリー組成物、電極、非水電解質二次電池および非水電解質二次電極の製造方法
JP2015118920A (ja) * 2013-11-12 2015-06-25 太陽インキ製造株式会社 スラリー組成物、電極、非水電解質二次電池および非水電解質二次電極の製造方法
KR20160144831A (ko) 2015-06-09 2016-12-19 삼성전자주식회사 음극 활물질 복합체, 상기 음극 활물질 복합체를 포함하는 음극, 상기 음극을 포함하는 리튬 이차전지, 및 상기 음극 활물질 복합체의 제조방법
EP3329532B1 (de) 2016-08-02 2019-06-26 Wacker Chemie AG Lithium-ionen-batterien

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283629A (ja) 1998-03-27 1999-10-15 Japan Storage Battery Co Ltd 有機電解質電池
KR20030013553A (ko) 2001-08-08 2003-02-15 엘지전자 주식회사 탄소나노튜브를 도전재로 이용한 이차전지
KR20030021112A (ko) 2001-09-05 2003-03-12 삼성에스디아이 주식회사 전지용 활물질 및 그의 제조방법
KR20040026207A (ko) 2002-09-23 2004-03-30 삼성에스디아이 주식회사 리튬-설퍼 전지용 양극 활물질 및 그 제조방법
KR20040096203A (ko) 2003-05-07 2004-11-16 한국과학기술연구원 도전성 물질, 금속 산화물 또는 이들의 혼합물로 표면처리된 양극 활물질, 이를 이용한 양극과 리튬전지, 및 그제조방법

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2055305C (en) 1990-11-17 2002-02-19 Naoyuki Sugeno Nonaqueous electrolyte secondary battery
US6174623B1 (en) 1994-03-08 2001-01-16 Valence Technology, Inc. Conductive-polymer-coated electrode particles
US6537701B1 (en) 1998-09-03 2003-03-25 Polyplus Battery Company, Inc. Coated lithium electrodes
JP3582161B2 (ja) 1995-08-11 2004-10-27 ソニー株式会社 正極活物質及びそれを用いた非水電解質二次電池
US5705291A (en) 1996-04-10 1998-01-06 Bell Communications Research, Inc. Rechargeable battery cell having surface-treated lithiated intercalation positive electrode
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6287726B1 (en) 1997-01-10 2001-09-11 Matsushita Electric Industrial Co., L.T.D. Method for producing nickel positive electrode for alkaline storage batteries
JP3205276B2 (ja) 1997-02-14 2001-09-04 古河電池株式会社 アルカリ二次電池用正極活物質の製造法、ペースト式ニッケル極、アルカリ二次電池並びにその製造法
JPH1116566A (ja) 1997-06-20 1999-01-22 Hitachi Ltd 電 池
JP3923157B2 (ja) 1997-12-11 2007-05-30 松下電器産業株式会社 アルカリ蓄電池
JPH11185758A (ja) 1997-12-24 1999-07-09 Aichi Steel Works Ltd 非水二次電池用正極材料
JPH11307116A (ja) 1998-04-23 1999-11-05 Sanyo Electric Co Ltd アルカリ蓄電池用カドミウム負極
JP4252641B2 (ja) 1998-06-15 2009-04-08 パナソニック株式会社 アルカリ蓄電池用正極および正極活物質
EP1901373A1 (en) 1998-11-30 2008-03-19 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries
CA2268346A1 (fr) 1999-04-07 2000-10-07 Hydro-Quebec Composite traitement au lipo3
US6485858B1 (en) * 1999-08-23 2002-11-26 Catalytic Materials Graphite nanofiber catalyst systems for use in fuel cell electrodes
JP4177529B2 (ja) 1999-08-30 2008-11-05 松下電器産業株式会社 非水電解質二次電池用負極、および非水電解質二次電池
KR100350535B1 (ko) * 1999-12-10 2002-08-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
JP4938919B2 (ja) 2000-01-14 2012-05-23 ソニー株式会社 二次電池
JP2001202958A (ja) 2000-01-17 2001-07-27 Mitsubishi Materials Corp 酸化銀−炭素複合材料及び酸化銀2次電池用の正極活物質及び酸化銀−炭素複合材料の製造方法
JP2001266886A (ja) 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd アルカリ蓄電池用非焼結式正極およびアルカリ蓄電池
KR100416140B1 (ko) 2001-09-27 2004-01-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그 제조 방법
KR100776912B1 (ko) * 2003-06-25 2007-11-15 주식회사 엘지화학 리튬 이차 전지용 고용량 부극재
JP3643108B2 (ja) 2003-07-23 2005-04-27 三井金属鉱業株式会社 非水電解液二次電池用負極及び非水電解液二次電池
KR100595896B1 (ko) 2003-07-29 2006-07-03 강원대학교산학협력단 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
JP4401984B2 (ja) 2004-03-08 2010-01-20 三星エスディアイ株式会社 リチウム二次電池用負極活物質、リチウム二次電池用負極活物質、およびリチウム二次電池
KR100728160B1 (ko) * 2005-11-30 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함