WO2015070455A1 - 一种自适应多速率的编码速率调整方法和设备 - Google Patents

一种自适应多速率的编码速率调整方法和设备 Download PDF

Info

Publication number
WO2015070455A1
WO2015070455A1 PCT/CN2013/087318 CN2013087318W WO2015070455A1 WO 2015070455 A1 WO2015070455 A1 WO 2015070455A1 CN 2013087318 W CN2013087318 W CN 2013087318W WO 2015070455 A1 WO2015070455 A1 WO 2015070455A1
Authority
WO
WIPO (PCT)
Prior art keywords
sector
coding rate
terminal
base station
merged cell
Prior art date
Application number
PCT/CN2013/087318
Other languages
English (en)
French (fr)
Inventor
叶斌
蔡昌听
耿海建
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380002967.7A priority Critical patent/CN103828425B/zh
Priority to PCT/CN2013/087318 priority patent/WO2015070455A1/zh
Publication of WO2015070455A1 publication Critical patent/WO2015070455A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures

Definitions

  • the present invention relates to the field of communications, and in particular, to an adaptive multi-rate (AMR) coding rate adjustment method and device.
  • AMR adaptive multi-rate
  • GSM Global System for Mobile communication
  • cell merging refers to frequency binning of multiple logical cells (usually referred to as neighboring cells) to be combined into one logical cell, so that the frequency of GSM is used.
  • the number is greatly reduced and the coverage remains the same, which increases spectral efficiency.
  • the multi-cell merging networking mode the number of terminal cell reselection and cell handover is also reduced, and in particular, the continuity coverage performance in a high-speed mobile environment can be improved.
  • the data payloads sent by the downlinks of the sectors of the combined cell are required to be consistent, otherwise a very serious co-channel interference is introduced.
  • the frequency point combination may be performed to be combined into one cell; for example, in the schematic diagram of the merged cell shown in FIG. 1B, The data transmitted by the downlink of the cell is inconsistent. If the three cells are combined by frequency, the same-frequency interference will be introduced. Therefore, frequency-merging is not recommended.
  • AMR coding is an encoding technique, which mainly adjusts the up/down speech coding mode according to the change of the uplink/downlink signal quality of the GSM air interface, thereby achieving an optimal balance of voice quality and system capacity.
  • AMR coding can be divided into narrowband AMR (Narrow Band AMR, NBAMR) and wideband AMR (WBAMR).
  • full rate AMR in NBAMR supports 8 coding rates, half rate AMR support. 6 types of merging cells at the same frequency point (that is, each sector in the merging cell includes at least one of the same frequency points). If the terminal uses AMR voice service, each sector in the merging cell will be terminated according to the end.
  • the uplink quality of different sectors in the merged cell may be affected by factors such as the distance between the terminal and the sectors in the merged cell, and obstacles. In this case, the fans in the merged cell may be different.
  • the area may determine different coding rates. As shown in Figure 2, if each sector transmits different decision rates to the terminal, it will cause co-channel interference. Summary of the invention
  • the embodiment of the invention provides a method and a device for adjusting the coding rate of the adaptive multi-rate AMR, so that the uplink rates of the sectors of the combined cell are consistent, and the same-frequency interference is avoided.
  • a base station controller including:
  • a receiving module configured to receive report information sent by at least one sector in the merged cell, where the report information includes a state parameter of the terminal in each sector in the at least one sector;
  • a first processing module configured to determine, according to the report information sent by the at least one sector received by the receiving module, a coding rate of the terminal in each sector of the merged cell;
  • a second processing module configured to determine, according to a coding rate of the terminal in each sector of the merged cell, a coding rate as a final coding rate of the terminal;
  • a sending module configured to send, to the sectors of the merged cell, a final encoding rate determined by the second processing module.
  • the first processing module is specifically configured to: Determining, by the at least one sector, an encoding rate of the terminal in each sector of the at least one sector as the status parameter reported by each sector in the at least one sector; and
  • the coding rate in the sector in the sector in which the information is not transmitted is locally saved on the unsent 4
  • the first processing module is specifically configured to: Determining, for the at least one sector, a coding rate of the terminal in each sector of the at least one sector by filtering the state parameter reported by each sector in the at least one sector Coding rate; and,
  • the coding rate in the sector in the sector in which the information is not transmitted is locally saved on the unsent 4
  • the first processing module determines After the coding rate of the terminal in each sector of the combined cell, the terminal is further configured to:
  • the first processing module is specifically configured to:
  • the receiving module After the receiving module receives the report information of any sector in the merged cell, the pre-configured timer is started, and when the timer expires, the report is determined according to all the report information received by the receiving module. Decoding the coding rate of the terminal in each sector of the combined cell; or
  • the receiving module After receiving the report information of any sector in the merged cell, the receiving module starts a pre-configured counter, and when the counter count result reaches a set threshold, according to all received by the receiving module The information is reported, and the coding rate of the terminal in each sector of the merged cell is determined.
  • the second processing module is specifically configured to: select, according to the determined coding rate of the terminal in each sector of the merged cell, a maximum coding The rate is used as the final coding rate of the terminal.
  • the sending module is specifically configured to:
  • the final coding rate is carried in the data frame and sent to each sector of the merged cell; otherwise, through a preset
  • the downlink subframe transmits the final coding rate to each sector of the merged cell.
  • the sending module sends the final coding rate to After the sectors of the merging cell, the receiving module is further configured to:
  • the uplink user plane frame message carries indication information indicating a quality status of an uplink channel of the terminal determined by the sector ;
  • the base station controller provided by the embodiment of the present invention performs a second decision on the coding rate of each sector of the merged cell, determines a coding rate as the final coding rate of the terminal, and sends the code to the sectors of the merged cell. Therefore, the uplink rates of the sectors of the merged cell are consistent, which are all determined final coding rates, and avoids co-channel interference.
  • another base station controller including:
  • a transceiver configured to receive report information sent by at least one sector in the merged cell, where the report information includes status parameters of the terminal in each sector of the at least one sector;
  • a processor configured to determine, according to the report information sent by the at least one sector received by the transceiver, a coding rate of the terminal in each sector of the merged cell; and according to the terminal in the And determining, by using a coding rate in each sector of the cell, a coding rate as a final coding rate of the terminal;
  • the transceiver is further configured to send a final coding rate determined by the second processing module to each sector of the merged cell.
  • the processor is specifically configured to:
  • the coding rate in the sector in the sector in which the information is not transmitted is locally saved on the unsent 4
  • the processor is specifically configured to: Determining, by the at least one sector, an encoding rate of the terminal in each sector of the at least one sector as a coding process for filtering the status parameter reported by each sector in the at least one sector Rate; and,
  • the coding rate in the sector in the sector in which the information is not transmitted is locally saved on the unsent 4
  • the processor determines that the terminal is currently located After the coding rate in each sector of the merged cell, it is also used to:
  • the processor is specifically used to: After the transceiver receives the report information of any sector in the merged cell, the pre-configured timer is started, and when the timer expires, the terminal is determined according to all the report information received by the transceiver. The coding rate in each sector of the merged cell; or
  • the transceiver After receiving the report information of any sector in the merged cell, the transceiver starts a pre-configured counter, and when the counter count result reaches the set threshold, according to all the top information received by the transceiver And determining, by the terminal, a coding rate in each sector of the merged cell.
  • the processor is specifically configured to:
  • the maximum coding rate is selected as the final coding rate of the terminal.
  • the transceiver is specifically configured to:
  • the final coding rate is carried in the data frame and sent to each sector of the merged cell; otherwise, through a preset
  • the downlink subframe transmits the final coding rate to each sector of the merged cell.
  • the first possible implementation of the second aspect, the second possible implementation of the second aspect, the third possible implementation of the second aspect, and the fourth possible aspect of the second aspect The implementation manner, the fifth possible implementation manner of the second aspect, or the sixth possible implementation manner of the second aspect, in a seventh possible implementation manner,
  • the method further includes: receiving an uplink user plane frame sent by at least one sector in the merged cell, where the uplink user plane frame 4 carries The indication information used to indicate the quality status of the uplink channel of the terminal determined by the sector; the processor is further configured to:: receive all the information received from the transceiver according to the indication information carried in the uplink user plane frame message Determining the quality of the uplink channel of the terminal in the uplink user plane frame message The best uplink user plane frame message, and the uplink data reported by the terminal included in the uplink user plane frame message is decoded.
  • the base station controller provided by the embodiment of the present invention performs a second decision on the coding rate of each sector of the merged cell, determines a coding rate as the final coding rate of the terminal, and sends the code to the sectors of the merged cell. Therefore, the uplink rates of the sectors of the merged cell are consistent, which are all determined final coding rates, and avoids co-channel interference.
  • a base station is provided, where the base station is a base station to which any sector in the merged cell belongs, and the base station to which the any sector belongs includes:
  • a reporting module configured to send, to the base station controller, the reporting information, where the reporting information includes a status parameter of the terminal in any one of the sectors;
  • a receiving module configured to receive a final coding rate sent by the base station controller, where the final coding rate is determined by the base station controller according to the received report information
  • a sending module configured to send, to the terminal, the final coding rate to the base station to which the other sectors except the any one of the sectors in the merged cell belong.
  • the upper module is specifically configured to:
  • the upper module is specifically configured to:
  • the receiving module is specifically configured to: Determining, by the base station controller, the same data frame sent to each sector of the merged cell, and acquiring the final coding rate from the data frame; or And receiving, at a preset downlink subframe for transmitting the final coding rate, the final coding rate sent by the base station controller to each sector of the merged cell.
  • the sending module is specifically used to:
  • the receiving module When the receiving module receives the final encoding rate sent by the base station controller, start a pre-configured timer, and send the final encoding rate to the terminal when the timer expires, where the timing
  • the timing set by the device is the difference between the maximum value of the link delay of each sector of the combined cell and its own link delay.
  • the receiving module is further configured to: receive uplink data sent by the terminal, and generate a corresponding uplink user plane frame packet according to the uplink data, where the uplink data is data generated by the terminal by using the final coding rate. ;
  • the sending module is further configured to: send the uplink user plane frame message to the base station controller, where the uplink user plane frame message carries the terminal determined by the base station to which the sector belongs An indication of the quality status of the upstream channel.
  • another base station is provided, where the base station is a base station to which any sector in the merged cell belongs, and the base station to which the any sector belongs includes:
  • a transceiver configured to send report information to the base station controller, where the report information includes a status parameter of the terminal in any one of the sectors; and receive a final coding rate sent by the base station controller, where The final coding rate is determined by the base station controller according to the received report information; and, at the same time as the base station to which the sector other than the any sector belongs, to the terminal The final encoding rate is sent.
  • the processor is specifically configured to:
  • the transceiver is specifically configured to:
  • the transceiver is specifically configured to:
  • the processor is specifically used to:
  • the rate is the difference between the maximum value of the link delay of each sector of the combined cell and its own link delay.
  • the transceiver After transmitting the final coding rate to the terminal, the transceiver is further configured to: receive uplink data sent by the terminal;
  • the processor is further configured to: generate, according to the uplink data, a corresponding uplink user plane frame message, where the uplink data is data generated by the terminal by using the final coding rate; and triggering the transceiver to send to the base station controller
  • the uplink user plane frame message carries indication information indicating a quality status of the uplink channel of the terminal determined by the base station to which the sector belongs.
  • the fifth aspect provides a method for adjusting an encoding rate of an adaptive multi-rate AMR, including: receiving, by a terminal, information reported by at least one sector in a combined cell, where the reporting information includes a terminal in each of the at least one sector State parameters within the sector;
  • a coding rate as a final coding rate of the terminal according to an encoding rate of the terminal in each sector of the combined cell
  • the state parameter is an encoding rate of the terminal in each sector of the at least one sector
  • the according to the at least one sector And determining, by the sent information, the coding rate of the terminal in each sector of the merged cell, specifically:
  • the coding rate in each sector in the sector in which the information is transmitted is the coding rate previously determined for the terminal by each sector in the sector in which the upper information is not transmitted.
  • the status parameter is an uplink measurement result of the terminal in each of the at least one sector
  • the coding rate in the sector in the sector in which the information is not transmitted is locally saved on the unsent 4
  • Each sector in the sector of the information is the coding rate determined by the terminal.
  • the method further includes:
  • the first possible implementation manner of the fifth aspect, the second possible implementation manner of the fifth aspect, or the third possible implementation manner of the fifth aspect, in a fourth possible implementation manner And determining, according to the report information sent by the at least one sector, a coding rate of the terminal in each sector of the merged cell, specifically:
  • the pre-configured timer After receiving the report information of any sector in the merged cell, the pre-configured timer is started, and when the timer expires, determining, according to all the received report information, that the terminal is in the merged cell The coding rate within each sector; or,
  • the pre-configured counter After receiving the report information of any sector in the merged cell, the pre-configured counter is started, and when the counter result reaches the set threshold, the terminal is determined according to all the received report information.
  • the maximum coding rate is selected as the final coding rate of the terminal.
  • the sending the final coding rate to each sector of the merged cell specifically: determining When there is a data frame sent to each sector of the merged cell, the final coding rate is carried in the data frame and sent to each sector of the merged cell; otherwise, the preset downlink is passed. a frame, the final encoding rate is sent to each sector of the merged cell.
  • the sending the final coding rate to the After merging the sectors of the cell further includes:
  • the uplink user plane frame message carries indication information indicating a quality status of an uplink channel of the terminal determined by the sector ;
  • a method for adjusting an encoding rate of an adaptive multi-rate AMR including: transmitting, by a base station to which any sector in a merging cell belongs, reporting information to a base station controller, where the reporting information includes the terminal State parameters within a sector;
  • the base station receives, by the base station to which the any sector belongs, a final coding rate sent by the base station controller, where the final coding rate is determined by the base station controller according to the received report information; and, where the any sector belongs
  • the base station transmits the final coding rate to the terminal at the same time as the base station to which the sector other than the any sector belongs in the merged cell.
  • the base station to which the any sector belongs sends to the base station controller
  • the reported information specifically includes:
  • the information is sent to the base station controller.
  • the base station to which the any sector belongs to the base station controller Send the information, including:
  • the base station to which the any sector belongs sends the report information to the base station controller according to the set reporting period;
  • the base station to which the any sector belongs When receiving the query request sent by the base station controller, the base station to which the any sector belongs sends the report information to the base station controller.
  • the base station to which the any sector belongs The final coding rate sent by the base station controller specifically includes:
  • the base station to which the any sector belongs receives the final coding rate sent by the base station controller to each sector of the merged cell on a preset downlink subframe for transmitting the final coding rate.
  • the first possible implementation manner of the sixth aspect, the second possible implementation manner of the sixth aspect, or the third possible implementation manner of the sixth aspect, in a fourth possible implementation manner The base station to which the any one of the sectors belongs and the base station to which the other sectors except the one of the sectors in the merged cell belong to send the final coding rate to the terminal at the same time, which specifically includes:
  • the base station to which the any sector belongs determines that the transmission time of the final coding rate is sent to the terminal according to a pre-configured buffer time and a downlink subframe in which the base station controller sends the final coding rate, and according to Sending, by the determined sending time, the final encoding rate to the terminal, where the buffering time is not less than a maximum value of a link delay of each sector of the combined cell; or
  • the base station starts a pre-configured timer, and when the timer expires, sends the final coding rate to the terminal, where the timer is set.
  • the fixed timing is the difference between the maximum value of the link delay of each sector of the combined cell and its own link delay.
  • the base station to which the any sector belongs is sent to the terminal at the same time as the base station to which the sector other than the any sector belongs in the merged cell. After the final encoding rate, the method further includes:
  • the base station to which the any sector belongs receives the uplink data sent by the terminal, and generates a corresponding uplink user plane frame message according to the uplink data, where the uplink data is generated by the terminal by using the final coding rate.
  • Data and,
  • the base station to which the any sector belongs sends the uplink user plane frame message to the base station controller, where the uplink user plane frame message carries the terminal determined by the base station to which the any sector belongs.
  • the coding rate sent to the terminal at the same time is the final coding rate determined by the base station controller after the second decision, so that the uplink of each sector of the combined cell is performed.
  • the encoding rate is the same, avoiding co-channel interference.
  • 1A is a schematic diagram of a first merged cell in the background art
  • 1B is a schematic diagram of a second merged cell in the background art
  • FIG. 2 is a schematic diagram of a coding rate determined by a terminal in a merging cell in the background of the present invention
  • FIG. 3 is a schematic diagram of a method for adjusting an AMR coding rate according to an embodiment of the present invention
  • FIG. 4 is a flowchart of delivering a final coding rate determined according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the aggregation of uplink frames in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another method for adjusting an encoding rate of an AMR according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of interaction between each sector and a base station controller in a method for adjusting an encoding rate of an AMR according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a base station controller according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another base station controller according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another base station according to an embodiment of the present invention. detailed description
  • each sector may determine a different coding rate. If the downlink transmission of different deterministic rates to the terminal is performed, the intra-channel interference may be caused.
  • a method and an apparatus for adjusting an encoding rate of an adaptive multi-rate AMR are described in detail below with reference to the accompanying drawings.
  • an embodiment of the present invention provides a method for adjusting an encoding rate of an AMR, including the following steps:
  • S31 Receive report information sent by at least one sector in the merged cell, where the report information includes A state parameter within each sector of the at least one sector of the terminal.
  • the status parameter may be a coding rate of the terminal in each sector of the at least one sector, and may also be an uplink measurement result of the terminal in each sector of the at least one sector.
  • the specific process of determining the coding rate for each terminal in the merging cell is as follows.
  • the uplink measurement result includes, but is not limited to, at least one of the following parameter information: a carrier-to-interference ratio, a signal-to-noise ratio, and a bit error rate measured by the sector.
  • receiving the report information sent by the at least one sector in the merged cell determining, according to the uplink information sent by the at least one sector, a coding rate of each sector of the merged cell, and according to the The terminal determines a coding rate as the final coding rate of the terminal in the coding rate in each sector of the combined cell; and transmits the determined final coding rate to each sector of the combined cell. Since the coding rate of the terminal in each sector of the combined cell is secondarily determined, a coding rate is determined as the final coding rate of the terminal, and is sent to each sector in the combined cell, so that each of the combined cells The uplink rate of the sectors remains the same, which is the determined final coding rate, avoiding co-channel interference.
  • the performing entity of the foregoing step may be a base station controller, where the base station controller may control at least one base station, and further may control a cell of the at least one base station, where the cell of the base station refers to the base station management and control.
  • a cell or a cell associated with the base station.
  • the execution entity may also be other network side devices, as long as the network side device can implement the above steps S31 to S34.
  • step S32 according to different state parameters included in the report information, the coding rate of the terminal in each sector of the merged cell is determined, which specifically includes the following two implementation manners: Mode 1, if the state parameter is the coding rate of the terminal in each sector of the at least one sector, determining that the coding rate of the terminal in each sector of the merged cell is specifically:
  • the code rate in each sector in the sector in which the report information is not sent is locally saved before the sectors in the sector in which the information is not transmitted.
  • the encoding rate determined for the terminal at a time is determined that the code rate in each sector in the sector in which the report information is not sent is locally saved before the sectors in the sector in which the information is not transmitted.
  • determining a coding rate of the terminal in the sector is a received status parameter reported by the sector (ie, the received code reported by the sector) And, for the sector in the merged cell that does not send the upper information, determine that the encoding rate of the terminal in the sector is the encoding rate of the previous previous storage of the sector locally.
  • Mode 2 If the status parameter is an uplink measurement result of the terminal in each sector of the at least one sector, determining that the coding rate of the terminal in each sector of the merged cell is specifically:
  • the code rate in each sector of the sector in which the report information is not sent is locally saved in the sector in the sector where the information is not transmitted.
  • the encoding rate previously determined for the terminal.
  • determining a coding rate of the terminal in the sector is a status parameter reported to the received sector (ie, the received sector is reported. Uplink measurement result) a coding rate obtained by performing filtering processing; and, for a sector in the merged cell that does not transmit the upper information, determining that the coding rate of the terminal in the sector is locally saved, the sector is the terminal Corresponding coding rate (that is, the coding rate obtained by filtering the uplink measurement result of the previous 4 ⁇ of the sector).
  • step S32 after determining the coding rate of the terminal in each sector of the merged cell, the method further includes:
  • the coding rate determined according to the report information is replaced with the coding rate corresponding to the sector that is saved by itself; for the sector that does not send the report information, keep itself The encoding rate corresponding to the saved sector.
  • step S32 determining, according to the report information sent by the at least one sector, a coding rate of the terminal in each sector of the merged cell, specifically including the following two manners: After the reporting information of any sector in the cell is merged, the pre-configured timer is started, and when the timer expires, the coding rate of the terminal in each sector of the combined cell is determined according to all the received reporting information. ;
  • the sector that has received the report information before the timer expires determining that the encoding rate of the terminal in the sector is the encoding rate determined according to the reporting information of the sector; and, before the timer expires
  • the sector that has not received the reported information determines that the encoding rate of the terminal in the sector is the encoding rate corresponding to the locally saved sector.
  • Manner 2 After receiving the report information of any sector in the merged cell, start a pre-configured counter, and when the counter count result reaches the set threshold, determine, according to all the received report information, that the terminal is The coding rate within each sector of the merged cell.
  • the encoding rate of the terminal in the sector is the encoding rate determined according to the reporting information of the sector; For a sector that does not receive the information on the counter before the counter count reaches a preset number, it is determined that the encoding rate of the terminal in the sector is the encoding rate corresponding to the locally saved sector.
  • the foregoing only describes the preferred implementation manner of determining the coding rate of the terminal in each sector of the merged cell according to the report information sent by the at least one sector in step S32, and determining the terminal in the merged cell by using any preferred implementation manner.
  • Encoding rate of each sector within; but in the embodiment of the present invention It is not limited to the above manner, and other methods may be used. For example, after receiving the report information of one sector in the merged cell, the coding rate of each sector in the merged cell is determined according to the report information. and many more.
  • a coding rate is determined as the final coding rate of the terminal according to the coding rate of the terminal in the sector of the merged cell, which specifically includes:
  • the maximum coding rate is selected as the final coding rate of the terminal.
  • the maximum coding rate is selected as the final coding rate of the terminal from the determined coding rate in the sector of the merged cell, so that the uplink coding rate of the combined cell is maximized. Gain.
  • the manner of determining the final coding rate according to the coding rate of the terminal in each sector of the merged cell in the embodiment of the present invention is not limited to the foregoing preferred manner, and other manners may also be adopted, such as determining that the terminal is in the merge.
  • the second largest coding rate is selected as the final coding rate of the terminal; for example, the average of the coding rates of the terminals in each sector of the combined cell is used as the final of the terminal. Coding rate, and so on.
  • step S34 in order to ensure that the air interface of each sector in the merged cell can receive the final coding rate at the same time, preferably, the final coding rate determined in step S33 is sent to the merge in the same subframe.
  • the final coding rate determined in step S33 is sent to the merge in the same subframe.
  • step S34 the final coding rate determined in step S33 may be sent to each sector of the combined cell at different times.
  • the embodiment of the present invention does not limit the transmission time, as long as the final coding to be determined is guaranteed.
  • the rate is sent to each sector of the merged cell.
  • step S34 the final coding rate determined in step S33 is sent to each sector of the merged cell in the same subframe, specifically:
  • the final coding rate is carried in the data frame and sent to each sector of the merged cell; otherwise, by using a preset downlink subframe, The final encoding rate is sent to each sector of the merged cell. If the final coding rate determined by the data frame is sent to each sector of the merged cell, since the in-band frame data has completed downlink synchronization, the air interface of each sector can receive the final coding rate at the same time, and will not Because of the difference in the transmission delay of the Abis interface link of each sector, the coding rates sent by the sectors at the same time are inconsistent.
  • the Abis interface is defined as a communication interface between two base stations of the base station subsystem, a Base Station Controller (BSC) and a Base Transceiver Station (BTS).
  • the air interface of each sector can receive the final coding rate at the same time; the pre-determination is specified in the protocol.
  • a downlink subframe for transmitting the final coding rate is the next downlink subframe of the current subframe.
  • the downlink subframe of the final coding rate (also referred to as the secondary decision rate), that is, a certain downlink subframe is used to transmit the determined final coding rate, and is determined by sending the downlink subframe to each sector of the combined cell.
  • the final encoding rate is used to transmit the determined final coding rate, and is determined by sending the downlink subframe to each sector of the combined cell.
  • the base station controller After the base station controller obtains the second decision rate, it is determined whether there is a frame sent in the downlink, and the method includes: if the judgment result is yes, the base station controller inserts the second decision rate into the frame and sends; if the judgment result is no, the base station controls The secondary decision rate is inserted into a custom frame (a custom downlink subframe for transmitting the determined final coding rate) and transmitted.
  • the determined secondary decision rate is sent to each sector of the merged cell, so that the air interfaces of the sectors of the merged cell can be
  • the second decision rate is received at the same time (i.e., the air interface time k1 in the figure).
  • the method provided by the embodiment of the present invention further includes The following steps:
  • the uplink user plane frame message carries indication information indicating a quality status of the uplink channel of the terminal determined by the sector
  • the uplink user plane frame message Determining, according to the indication information carried in the uplink user plane frame message sent by the at least one sector, the uplink user plane frame message with the best uplink channel quality of the terminal from all received uplink user plane frame messages And decoding the data reported by the terminal included in the uplink user plane frame message.
  • the final coding rate of the terminal in each sector of the merged cell is determined according to the determined coding rate of the terminal in each sector of the merged cell (if the maximum coding rate is selected as the The final coding rate of the terminal, so that the terminal always accesses at the same allowed rate in each sector of the combined cell, so that the quality of the uplink channel of the terminal in each sector of the combined cell may be different, which requires
  • the uplink user plane frame message sent by each sector to the base station controller carries indication information indicating the quality status of the uplink channel of the terminal determined by each sector of the merged cell, so that the base station controller receives the received
  • the quality information of the uplink channel is combined, and the code may be referred to the uplink frame quality combining diagram shown in FIG.
  • the uplink frame quality of the sector 1 is good, the uplink frame quality of the sector 2 is poor, and the uplink frame of the sector 3 is The quality is too poor for the decoding to fail.
  • the base station controller selects the uplink frame with the best uplink frame quality from the above three sectors, that is, the sector.
  • the upper frame of 1 decodes the upstream frame of sector 1.
  • an embodiment of the present invention further provides a method for adjusting a coding rate of an AMR, where the method includes the following steps:
  • the base station to which any sector in the merging cell belongs sends the report information to the base station controller, where the report information includes a status parameter of the terminal in the any sector.
  • the status parameter is a coding rate of the terminal in the sector, or the status parameter is an uplink measurement result of the terminal in the sector.
  • the base station to which the any sector belongs receives the final coding rate sent by the base station controller, where the most The final coding rate is determined by the base station controller based on the received report information.
  • the base station to which the any sector belongs receives the final coding rate sent by the base station controller to the sectors in the merged area on the same subframe. Since the link delays of the sectors in the combined cell may be different, the timing at which each sector receives the final coding rate transmitted by the base station controller may be different.
  • the base station to which the any sector belongs and the base station to which the sector other than the sector belongs in the merged cell send the final coding rate to the terminal at the same time.
  • the timings of receiving the final coding rate sent by the base station controller may be different for each sector in the merging cell, in order to ensure that the terminal receives the coding rate sent by the base station to which each sector belongs at the same time,
  • the base station to which each sector belongs transmits the final coding rate to the terminal at the same time.
  • the base station to which any sector in the merged cell belongs sends the report information to the base station controller, receives the final coding rate sent by the base station controller, and the other fans except the sector in the merged cell.
  • the base station to which the area belongs transmits the final coding rate to the terminal at the same time.
  • the coding rate sent to the terminal at the same time is the final coding rate determined by the base station controller after the second decision, so that the uplink coding rate of each sector of the merged cell is the same, avoiding Co-channel interference.
  • step S61 the sending, by the base station to which the any sector belongs, to the base station controller includes:
  • the report information is sent to the base station controller.
  • the coding rate determined by the base station to which any sector belongs is determined by the base station to which the terminal belongs to the base station controller only when the base station to which the sector belongs is changed for the terminal, thereby saving the coding rate.
  • the base station to which the any sector belongs may send the report information to the base station controller in other manners, such as periodic reporting, etc., and the present invention does not apply to any sector.
  • the base station to which the genus belongs is limited to the manner in which the base station controller sends the reported information.
  • step S61 the base station to which the any sector belongs sends the report information to the base station controller, including :
  • the base station to which the any sector belongs sends a report message to the base station controller according to the set reporting period;
  • the base station to which the any sector belongs When receiving the query request sent by the base station controller, the base station to which the any sector belongs sends the report information to the base station controller.
  • the base station to which the any sector belongs may send the report information to the base station controller in other manners, and the present invention does not send the information to the base station controller to the base station to which the any sector belongs.
  • the method is limited.
  • step S62 the base station to which the any sector belongs receives the final coding rate sent by the base station controller, and specifically includes:
  • the base station to which the any sector belongs receives the same data frame sent by the base station controller to each sector of the merged cell, and obtains the final coding rate from the data frame. For details, refer to the foregoing manner A, which is not described here;
  • the base station to which the any sector belongs belongs to the pre-set downlink subframe for transmitting the final coding rate, and receives the final coding rate sent by the base station controller to each sector of the merged cell.
  • the base station controller For details, refer to the foregoing manner B, where No longer.
  • step S63 the base station to which the sector belongs is sent to the terminal at the same time as the base station to which the sector other than the sector belongs, at the same time, specifically including the following Two methods:
  • the base station to which the any sector belongs determines the transmission time of sending the final coding rate to the terminal according to the pre-configured buffer time and the downlink subframe in which the base station controller sends the final coding rate, and the terminal is sent to the terminal according to the determined transmission time.
  • the final coding rate is sent, where the pre-configured buffering time is not less than the maximum value of the link delay of each sector of the combined cell.
  • the pre-configured buffering time is a maximum value of a link delay of each sector of the combined cell.
  • the pre-configured buffering time may be configured by the base station controller for each sector of the combined cell, or may be configured by other network side devices that can obtain the link delay of each sector of the combined cell.
  • Each sector configuration of the merged cell may be configured by the base station controller for each sector of the combined cell, or may be configured by other network side devices that can obtain the link delay of each sector of the combined cell.
  • the base station controller receives the link delay reported by the base station to which each sector belongs, and determines the maximum link delay from the link delay reported by the base station to which the sector belongs, according to the maximum chain.
  • the path delay determine the buffer time, and notify each sector.
  • Method 2 When receiving the final coding rate sent by the base station controller, the base station to which the any sector belongs receives a pre-configured timer, and when the timer expires, sends a final coding rate to the terminal, where the timer is set.
  • the fixed timing is the difference between the maximum value of the link delay of each sector of the combined cell and its own link delay.
  • the base station controller receives the link delay reported by the base station to which each sector belongs in real time, and determines the maximum value of the link delay from the link delay reported by the base station to which the sector belongs, and the maximum The link delay is notified to each sector of the merged cell; further, the base station to which the sector of the merged cell belongs is based on its own link delay and the received link delay of each sector of the merged cell. The maximum value, the difference between the maximum value and its own link delay is determined;
  • the base station controller receives the link delay reported by the base station to which each sector belongs in real time, and notifies the sectors of the merged cell of the link delay reported by the base station to which the sector belongs; and further, each fan of the merged cell
  • the base station to which the area belongs determines the maximum link delay of each sector of the combined cell and its own link delay according to its own link delay and the link delay of each sector of the combined cell. Difference.
  • the base station to which the any sector belongs may use any one of the foregoing methods to send the final coding rate to the terminal at the same time as the base station to which the other sectors in the combined cell belong.
  • the embodiment of the present invention is not limited to the foregoing preferred method, as long as the base station to which the sector belongs and the base station to which the other sectors in the merged cell belong are at the same time, and the final coding rate is sent to the terminal. The methods are all applicable to the present invention.
  • the method provided by the embodiment of the present invention further includes: receiving, by the base station to which the any sector belongs, the uplink data sent by the terminal, and generating the corresponding uplink user plane frame packet according to the received uplink data.
  • the uplink data is data generated by the terminal using the final coding rate;
  • the base station to which the any sector belongs sends an uplink user plane frame message to the base station controller, where the uplink user plane frame message carries the quality status of the uplink channel of the terminal determined by the base station to which the any sector belongs. Instructions.
  • each sector and the base station controller in the method for adjusting the coding rate of the AMR is as shown in FIG. 7, and includes:
  • the sectors of the merging cell are delivered to the terminal according to the same uplink rate that the system initially configures for each sector of the merging cell, that is, each sector of the merging cell delivers a pre-configured and identical initial rate to the terminal. ;
  • Each sector of the combined cell reports to the base station controller the uplink measurement result of the terminal in the merged cell or the coding rate (ie, the decision rate) determined by the terminal itself.
  • the sectors of the combined cell may report the uplink measurement result to the base station controller according to the set period, or
  • the base station controller reports the coding rate determined by the terminal.
  • each sector of the combined cell may report to the base station controller that the terminal determines that the coding rate determined by the terminal is different from the coding rate determined by the terminal for the previous time.
  • the encoding rate may be used to reduce the traffic of the Abis interface.
  • the base station controller After receiving the uplink of any sector, the base station controller updates the coding rate of each sector of the merged cell in the merged cell and starts the timing. After the timing reaches the set threshold, the base station controller Start to make a second decision on the encoding rate corresponding to all sectors saved by itself, that is, press Max (terminal)
  • the encoding rate at sector 1, the encoding rate of the terminal at sector 2, ..., the encoding rate of the terminal at sector n) yields a second decision rate (i.e., the final encoding rate).
  • the reporting value of the sector saved in the base station controller is the previous reported value.
  • the base station controller further needs to filter the measurement result to obtain a coding rate determined by the sector for the terminal (see section 3.3.1 of the 3GPP 45009 protocol for details). .
  • the base station controller After obtaining the second decision rate, the base station controller notifies the secondary decision rate to each sector of the merged cell through the data frame, and since the in-band frame data has completed downlink synchronization, each sector of the merged cell
  • the air interface can receive the above-mentioned secondary decision rate at the same time, and does not cause the coding rate issued at the same time to be inconsistent due to the delay difference of the Abis link transmission.
  • the base station controller needs to insert a custom frame in the DTX state, and notify the second decision rate through the custom frame. Combine the sectors of the cell.
  • the air interface of each sector of the merged cell receives the second arbitration rate sent by the base station controller at the same time.
  • the sectors of the merged cell send the received secondary decision rate to the terminal at the time of the Code Mode Request (CMR), thereby completing the adjustment of the uplink coding rate of the merged cell.
  • CMR Code Mode Request
  • the present invention further provides a base station controller.
  • the base station controller includes:
  • the receiving module 81 is configured to receive report information sent by at least one sector in the merged cell, where the report information includes a status parameter of the terminal in each sector in the at least one sector;
  • the status parameter is an encoding rate of the terminal in each sector in the at least one sector, or the status parameter is an uplink measurement result of the terminal in each sector in the at least one sector.
  • the uplink measurement result of the terminal in any sector includes but is not limited to at least one of the following parameter information: a carrier-to-interference ratio, a signal-to-noise ratio, and a bit error rate measured by the sector.
  • the first processing module 82 is configured to determine, according to the uplink information sent by the at least one sector received by the receiving module 81, a coding rate of the terminal in each sector of the merged cell;
  • a second processing module 83 configured to determine, according to a coding rate of the terminal in each sector of the merged cell, a coding rate as a final coding rate of the terminal;
  • the sending module 84 is configured to send the final encoding rate determined by the second processing module 83 to each sector of the merged cell.
  • the base station controller provided by the embodiment of the present invention performs a second decision on the coding rate of each sector in the merged cell, determines a coding rate as the final coding rate of the terminal, and sends the code to the sectors of the merged cell. Therefore, the uplink rates of the sectors of the merged cell are consistent, which are all determined final coding rates, and avoids co-channel interference.
  • the first processing module 82 determines the coding rate of each sector of the merged cell according to the status parameter included in the report information, and specifically includes the following two implementation manners:
  • the first processing module 82 is specifically configured to:
  • the code rate in each sector in the sector in which the report information is not sent is locally saved before the sectors in the sector in which the information is not transmitted.
  • the encoding rate determined for the terminal at a time is determined that the code rate in each sector in the sector in which the report information is not sent is locally saved before the sectors in the sector in which the information is not transmitted.
  • determining a coding rate of the terminal in the sector is a received status parameter reported by the sector (ie, the received code reported by the sector) And, for the sector in the merged cell that does not send the upper information, determine that the encoding rate of the terminal in the sector is the encoding rate of the previous previous storage of the sector locally.
  • the first processing module 82 is specifically configured to: if the status parameter is an uplink measurement result of the terminal in each of the at least one sector, the first processing module 82 is specifically configured to:
  • the coding rate of each sector in the sector in which the report information is not sent is locally saved before the sector in the sector in which the information is not transmitted.
  • the encoding rate determined for the terminal at a time is determined that the coding rate of each sector in the sector in which the report information is not sent is locally saved before the sector in the sector in which the information is not transmitted.
  • determining a coding rate of the terminal in the sector is a status parameter reported to the received sector (ie, the received sector is reported. Uplink measurement result) a coding rate obtained by performing filtering processing; and, for a sector in the merged cell that does not transmit the upper information, determining that the coding rate of the terminal in the sector is locally saved, the sector is the terminal Corresponding coding rate (that is, the coding rate obtained by filtering the uplink measurement result of the previous 4 ⁇ of the sector).
  • the uplink measurement result reported by the sector is filtered to obtain the coding rate of the terminal in the sector.
  • the specific process refer to the 3GPP 15009 protocol.
  • the first processing module 82 is further configured to:
  • the first processing module 82 replaces the coding rate determined by the report information with the coding rate corresponding to the sector that is saved by itself; for the sector that does not send the report information. In other words, the first processing module 82 maintains the encoding rate corresponding to the sector saved by the base station controller.
  • the first processing module 82 determines the coding rate of the terminal in each sector of the merged cell according to the report information sent by the at least one sector, and specifically includes the following two methods:
  • the pre-configured timer After receiving the report information of any sector in the merged cell, the pre-configured timer is started, and when the timer expires, according to all the received report information, the fan of the terminal in the merged cell is determined.
  • the terminal is determined.
  • the encoding rate in the sector is the encoding rate determined according to the reporting information of the sector; and, for the sector that has not received the reporting information before the timer expires, determining the encoding rate of the terminal in the sector The encoding rate corresponding to the sector saved locally.
  • the pre-configured counter After receiving the report information of any sector in the merged cell, the pre-configured counter is started, and when the count result of the counter reaches the set threshold, according to all the received report information, it is determined that the terminal is in the The coding rate within each sector of the merged cell.
  • the encoding rate of the terminal in the sector is the encoding rate determined according to the reporting information of the sector; For a sector that does not receive the information on the counter before the counter count reaches a preset number, it is determined that the encoding rate of the terminal in the sector is the encoding rate corresponding to the locally saved sector.
  • the foregoing description only illustrates a preferred implementation manner in which the first processing module 82 determines the coding rate of the terminal in each sector of the merged cell according to the report information sent by the at least one sector, and the first processing module 82 may adopt any preferred implementation.
  • the method determines the coding rate of the terminal in each sector of the merged cell.
  • the embodiment of the present invention is not limited to the foregoing manner, and the first processing module 82 may also adopt other manners, such as receiving a fan in the merged cell.
  • the encoding rate of the terminal in each sector of the combined cell is determined according to the reporting information, and the like.
  • the second processing module 83 is specifically configured to:
  • the maximum coding rate is selected as the final coding rate of the terminal.
  • the second processing module 83 selects the maximum coding rate as the final coding rate of the terminal from the determined coding rate of the terminal in each sector of the merged cell, thereby making the merged cell
  • the upstream coding rate gets the maximum gain.
  • the manner in which the second processing module 83 determines the final coding rate according to the coding rate of the terminal in each sector of the merged cell in the embodiment of the present invention is not limited to the foregoing preferred manner, and may also adopt other manners, such as from the determined manner.
  • the terminal selects the next largest coding rate as the final coding rate of the terminal in the coding rate in each sector of the merged cell; for example, the terminal in the merged cell
  • the average of the coding rates within each sector is taken as the final coding rate of the terminal, and so on.
  • the sending module 84 is specifically configured to: determine the final coding of the second processing module 83 in the same subframe. The rate is sent to each sector within the merged cell.
  • the sending module 84 may also send the final encoding rate determined by the second processing module 83 to the sectors of the merged cell at different times.
  • the embodiment of the present invention does not send the sending module 84 to each sector of the merged cell.
  • the transmission timing of the final coding rate is limited as long as it is guaranteed to transmit the determined final coding rate to each sector of the combined cell.
  • the sending module 84 sends the final encoding rate determined by the second processing module 83 to each sector of the merged cell in the same subframe, which specifically includes:
  • the final coding rate is carried in the data frame and sent to each sector of the merged cell; otherwise, by using a preset downlink subframe, The final encoding rate is sent to each sector of the merged cell.
  • the sending module 84 sends the final encoding rate to each sector of the merged cell through the data frame, since the in-band frame data has completed downlink synchronization, the air interface of each sector of the merged cell can receive the final encoding rate at the same time.
  • the coding rate delivered by each sector at the same time is inconsistent due to the difference in transmission delay of the Abis interface link of each sector of the merging cell.
  • the Abis interface is defined as a communication interface between two base stations of the base station subsystem, a Base Station Controller (BSC) and a Base Transceiver Station (BTS).
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • the air interface of each sector of the merged cell can receive the final downlink subframe at the same time, or A downlink subframe specified in the protocol for transmitting the final coding rate.
  • the downlink subframe used for transmitting the final coding rate is the next downlink subframe of the current subframe.
  • the downlink when the downlink is in the Discontinuous Transmission (DTX) state, in order to deliver the determined final coding rate to each sector of the combined cell as soon as possible, it needs to be inserted in the DTX state for transmission.
  • Coding rate also known as secondary decision rate
  • the downlink subframe that is, a certain downlink subframe is used to transmit the determined final coding rate, and the determined final coding rate is sent to each sector of the merged cell through the downlink subframe.
  • the receiving module 81 is further configured to:
  • an uplink user plane frame message carries indication information indicating a quality status of the uplink channel of the terminal determined by the sector;
  • the base station controller determines the final coding rate of the terminal in each sector of the merged cell according to the determined coding rate of the terminal in each sector of the merged cell (if the maximum coding rate is selected) As the final coding rate of the terminal, the terminal always accesses at the same allowed rate in each sector of the combined cell, so that the quality of the uplink channel of the terminal in each sector of the combined cell may be different, which is
  • the uplink user plane frame message sent by the sector to the base station controller needs to carry indication information indicating the quality status of the uplink channel of the terminal determined by each sector of the merged cell, so that the base station controller receives the The quality information data of the uplink channel to be decoded is decoded.
  • the embodiment of the present invention further provides a base station, where the base station is a base station to which any sector of the merged cell belongs, and as shown in FIG. 9, the base station to which the any sector belongs includes:
  • the reporting module 91 is configured to send, to the base station controller, the report information, where the report information includes a status parameter of the terminal in the any sector; specifically, the status parameter is a coding rate of the terminal in the any sector, or The status parameter is an uplink measurement result of the terminal in any of the sectors.
  • the receiving module 92 is configured to receive a final encoding rate sent by the base station controller, where the final encoding rate is determined by the base station controller according to the received reporting information;
  • the receiving module 92 receives the sector controllers in the same subframe to the sectors of the merged cell.
  • the sending module 93 is configured to send, to the terminal, the final coding rate received by the receiving module 92 at the same time as the base station to which the sector other than the sector belongs.
  • the timing of the final coding rate sent by the base station controller may be different, and the coding rate sent by the base station to which the sector of the merged cell belongs is received by the terminal at the same time.
  • the transmitting module 93 of the base station to which each sector of the merged cell belongs transmits the final encoding rate to the terminal at the same time.
  • the base station to which any sector of the merged cell according to the embodiment of the present invention belongs sends the report information to the base station controller, receives the final coding rate sent by the base station controller, and the other sectors except the sector in the merged cell.
  • the base station to which the area belongs transmits the final coding rate to the terminal at the same time.
  • the coding rate sent to the terminal at the same time is the final coding rate determined by the base station controller after the second decision, so that the uplink coding rates of the sectors of the merged cell are the same. , avoiding co-channel interference.
  • the reporting module 91 is specifically configured to:
  • the report information is sent to the base station controller.
  • the coding rate determined by the base station to which any sector belongs is determined by the base station to which the terminal belongs to the base station controller only when the base station to which the sector belongs is changed for the terminal, thereby saving the coding rate.
  • the reporting module 91 may send the reporting information to the base station controller in other manners, such as periodic reporting, etc., and the present invention does not limit the manner in which the reporting module 91 sends the uplink information to the base station controller.
  • the upper module 91 is specifically configured to: The reporting information is sent to the base station controller according to the set reporting period; or, when the receiving module 92 receives the query request sent by the base station controller, the reporting information is sent to the base station controller.
  • the reporting module 91 may send the reporting information to the base station controller in other manners.
  • the present invention does not limit the manner in which the reporting module 91 sends the reporting information to the base station controller.
  • the receiving module 92 is specifically configured to:
  • the final coding rate sent by the base station controller to each sector of the merging cell is received.
  • the foregoing mode B which is not described here.
  • the sending module 93 sends the final coding rate to the terminal at the same time as the base station to which the sector other than the sector belongs in the merged cell, and specifically includes the following two methods: 1. According to the pre-configuration The buffering time and the downlink subframe in which the base station controller sends the final coding rate, determine the transmission time of transmitting the final coding rate to the terminal, and send the final coding rate to the terminal according to the determined transmission time, where the pre-configured buffering time is not The maximum value of the link delay of each sector smaller than the combined cell.
  • the pre-configured buffering time is a maximum value of a link delay of each sector of the combined cell.
  • the pre-configured buffering time may be configured by the base station controller for each sector of the combined cell, or may be configured by other network side devices that can obtain the link delay of each sector of the combined cell.
  • Each sector configuration of the merged cell may be configured by the base station controller for each sector of the combined cell, or may be configured by other network side devices that can obtain the link delay of each sector of the combined cell.
  • the base station controller receives the link delay reported by the base station to which each sector belongs, and determines the maximum link delay from the link delay reported by the base station to which the sector belongs, according to the maximum chain.
  • the path delay determine the buffer time, and notify each sector.
  • the receiving module 92 receives the final encoding rate sent by the base station controller, the pre-configured timer is started, and when the timer expires, the final encoding rate is sent to the terminal, where the timer is set by the timer.
  • the base station controller receives the link delay reported by the base station to which the sector of the merged cell belongs, and determines the link delay from the link delay reported by the base station to which the sector belongs to the merged cell.
  • the maximum value, and the maximum link delay is notified to each sector of the merged cell; further, each sector of the merged cell is based on its own link delay and the received sectors of the merged cell
  • the maximum value of the link delay is determined by the difference between the maximum value and the link delay of the link;
  • the base station controller receives, in real time, the link delay reported by the base station to which the sector of the merged cell belongs, and notifies the sectors of the merged cell with the link delay reported by the base station to which the sector belongs to the merged cell; Further, the base station to which the sector of the merged cell belongs determines the maximum link delay of each sector of the merged cell according to the link delay of the link and the link delay of each sector of the merged cell. The difference from the link delay of itself.
  • the sending module 93 may use any one of the foregoing methods to send a final encoding rate to the terminal at the same time as the base station to which the sector other than the sector belongs.
  • the embodiment of the present invention is not limited to the foregoing preferred method, as long as the method for transmitting the final coding rate to the terminal at the same time by the transmitting module 93 and the base station to which the sector other than the any sector belongs in the merged cell is guaranteed. Both are applicable to the present invention.
  • the receiving module 92 is further configured to: receive the uplink data sent by the terminal, and generate a corresponding uplink user plane frame packet according to the received uplink data, the uplink data. Data generated for the terminal using the final encoding rate;
  • the sending module 93 is further configured to: send, to the base station controller, an uplink user plane frame message generated by the receiving module 92, where the uplink user plane frame message carries an uplink channel for indicating a terminal determined by the base station to which the any sector belongs. Instructions for the quality status.
  • the structure and processing manner of the base station controller provided by the embodiment of the present invention are described below in conjunction with the preferred hardware structure.
  • the base station controller includes a transceiver 101, and at least one processor 102 coupled to the transceiver 101, wherein:
  • the transceiver 101 is configured to receive report information sent by at least one sector in the merged cell, where the report information includes a status parameter of the terminal in each sector of the at least one sector;
  • the processor 102 is configured to determine, according to the report information sent by the at least one sector, a coding rate of the terminal in each sector of the merged cell, and determine a coding rate according to the coding rate of the terminal in each sector of the merged cell.
  • the coding rate is used as the final coding rate of the terminal;
  • the transceiver 101 is further configured to transmit the final encoding rate determined by the processor 102 to each sector of the merged cell.
  • the base station controller provided by the embodiment of the present invention performs a second decision on the coding rate of the terminal in each sector of the merged cell, determines a coding rate as the final coding rate of the terminal, and sends the code to the sectors of the merged cell. Therefore, the uplink rates of the sectors of the merged cell are consistent, which are all determined final coding rates, and avoids co-channel interference.
  • the processor 102 determines the coding rate of each sector in the merged cell according to the status parameter included in the report information, and specifically includes the following two implementation manners:
  • the processor 102 is specifically configured to:
  • the coding rate of each sector in the sector in which the report information is not sent is the locally saved sector in the sector in which the information is not transmitted.
  • the encoding rate determined for the terminal is the locally saved sector in the sector in which the information is not transmitted.
  • determining a coding rate of the terminal in the sector is a received status parameter reported by the sector (ie, the received code reported by the sector) Rate); and, for the sector in the merged cell that does not send the upper information, determine that the terminal is in the sector
  • the encoding rate in the area is the encoding rate of the previous 4 ⁇ of the sector saved locally.
  • the processor 102 is specifically configured to:
  • the coding rate of each sector in the sector in which the report information is not sent is locally saved before the sector in the sector in which the information is not transmitted.
  • the encoding rate determined for the terminal at a time is determined that the coding rate of each sector in the sector in which the report information is not sent is locally saved before the sector in the sector in which the information is not transmitted.
  • determining a coding rate of the terminal in the sector is a status parameter reported to the received sector (ie, the received sector is reported. Uplink measurement result) a coding rate obtained by performing filtering processing; and, for a sector in the merged cell that does not transmit the upper information, determining that the coding rate of the terminal in the sector is locally saved, the sector is the terminal Corresponding coding rate (that is, the coding rate obtained by filtering the uplink measurement result of the previous 4 ⁇ of the sector).
  • the uplink measurement result reported by the sector is filtered to obtain the coding rate of the terminal in the sector.
  • the specific process refer to the 3GPP 15009 protocol.
  • the uplink measurement result includes, but is not limited to, at least one of the following parameter information: a carrier-to-interference ratio, a signal-to-noise ratio, a bit error rate, and the like measured by the sector.
  • the processor 102 is further configured to:
  • the processor 102 replaces the coding rate determined by the report information with the coding rate corresponding to the sector that is saved by itself; for the sector that does not send the report information
  • the processor 102 maintains a coding rate corresponding to the sector saved by the base station controller.
  • the processor 102 determines the coding rate of the terminal in each sector of the merged cell according to the report information sent by the at least one sector, and specifically includes the following two methods: 1. Received at the transceiver 101. After the reporting information of any sector in the merging cell is started, the pre-configured timer is started, and when the timer expires, according to all the received reporting information, the encoding of the terminal in each sector of the merging cell is determined. rate;
  • the sector that has received the report information before the timer expires determining that the encoding rate of the terminal in the sector is the encoding rate determined according to the reporting information of the sector; and, before the timer expires
  • the sector that has not received the reported information determines that the encoding rate of the terminal in the sector is the encoding rate corresponding to the locally saved sector.
  • the transceiver 101 After the transceiver 101 receives the report information of any sector in the merged cell, the pre-configured counter is started, and when the counter count result reaches the set threshold, according to all the received information, The coding rate of the terminal in each sector of the combined cell is determined.
  • the encoding rate of the terminal in the sector is the encoding rate determined according to the reporting information of the sector; A sector in which the above information is not received before the counter is counted to a preset number, and the encoding rate of the terminal in the sector is determined to be a locally stored encoding rate corresponding to the sector.
  • the processor 102 determines the coding rate of the terminal in each sector of the merged cell according to the report information sent by the at least one sector.
  • the processor 102 may determine that the terminal is in any preferred implementation manner.
  • the encoding rate in each sector of the merging cell is not limited to the foregoing manner, and the processor 102 may also adopt other methods, such as after receiving the reporting information of one sector in the merging cell, That is, the coding rate of the terminal in each sector of the merged cell is determined according to the report information, and so on.
  • the processor 102 determines, according to the coding rate of the terminal in each sector of the merged cell, a coding rate as the final coding rate of the terminal, specifically for: determining the terminal from the terminal. Among the coding rates in the sectors of the combined cell, the maximum coding rate is selected as the final coding rate of the terminal. In the preferred mode, the processor 102 selects the maximum coding rate as the final coding rate of the terminal from the determined coding rate of the terminal in each sector of the merged cell, so that the uplink coding of the combined cell is performed. The rate gets the maximum gain.
  • the manner in which the processor 102 determines the final coding rate according to the coding rate of the terminal in each sector of the merged cell in the embodiment of the present invention is not limited to the above preferred manner, and other manners may also be adopted, such as from determining the terminal.
  • the second largest coding rate is selected as the final coding rate of the terminal; for example, the average of the coding rates of the terminals in the sectors of the merging cell is used as the terminal The final encoding rate, and so on.
  • the transceiver 101 is specifically configured to: send the final coding rate determined by the processor 102 to the same subframe. Each sector of the merged cell.
  • the transceiver 101 may also send the final coding rate determined by the processor 102 to the sectors of the merged cell at different times. In the embodiment of the present invention, the transceiver 101 does not send the final coding to each sector of the merged cell. The transmission timing of the rate is limited as long as it is ensured that the determined final coding rate is transmitted to each sector of the combined cell.
  • the transceiver 101 sends the final coding rate determined by the processor 102 to each sector of the merged cell in the same sub-frame.
  • the final coding rate is carried in the data frame and sent to each sector of the merged cell; otherwise, by using a preset downlink subframe, The final encoding rate is sent to each sector of the merged cell.
  • the air interface of each sector of the merged cell can receive the final coding rate at the same time.
  • the coding rates delivered by the sectors of the merged cell at the same time are inconsistent due to the difference in the transmission delay of the Abis interface link of each sector of the merged cell.
  • the Abis interface is defined as the communication interface between the two functional entities BSC and BTS of the base station subsystem.
  • the final coding rate is sent to the merged small The sectors of the area, so that the air interfaces of the sectors of the merged cell can receive the final downlink subframe at the same time, or can be the downlink subframe specified in the protocol for transmitting the final coding rate.
  • the downlink subframe used for transmitting the final coding rate is the next downlink subframe of the current subframe.
  • the DTX state when the DTX state is enabled in the downlink, in order to deliver the determined final coding rate to each sector in the merged cell as soon as possible, it is necessary to insert the final coding rate (also referred to as two) in the DTX state.
  • the downlink subframe of the secondary decision rate that is, a certain downlink subframe is used to transmit the determined final coding rate, and the determined final coding rate is transmitted to each sector in the combined cell through the downlink subframe.
  • the transceiver 101 After the transceiver 101 sends the final coding rate to the sectors of the merging cell, the transceiver 101 is further configured to: receive an uplink user plane frame message sent by at least one sector in the merging cell, where the uplink user plane frame The message carries indication information indicating a quality status of an uplink channel of the terminal determined by the sector;
  • the processor 102 is further configured to: determine, according to the indication information carried in the uplink user plane frame message sent by the at least one sector, the uplink channel quality of the terminal from all received uplink user plane frame messages.
  • the uplink user plane frame message and decodes the data reported by the terminal included in the uplink user plane frame message.
  • the base station controller determines the final coding rate of the terminal in each sector of the merged cell according to the determined coding rate of the terminal in each sector of the merged cell (if the maximum coding rate is selected) As the final coding rate of the terminal, the terminal always accesses at the same allowed rate in each sector of the combined cell, so that the quality of the uplink channel of the terminal in each sector of the combined cell may be different, which is
  • the uplink user plane frame message sent by the sector to the base station controller needs to carry indication information indicating the quality status of the uplink channel of the terminal determined by each sector of the merged cell, so that the base station controller receives the The quality information data of the uplink channel to be decoded is decoded.
  • Any sector of the merged cell provided by the embodiment of the present invention is combined with a preferred hardware structure.
  • the structure and processing method of the associated base station will be described.
  • the base station to which any of the sectors belong includes a transceiver 111, and at least one processor 112 coupled to the transceiver 111, wherein:
  • the transceiver 111 is configured to send, to the base station controller, the report information, where the report information includes a status parameter of the terminal in the any sector; and receive a final coding rate sent by the base station controller, where the final coding rate is received by the base station controller according to the And determining, by the reported message, and sending the received final coding rate to the terminal at the same time as the base station to which the sector other than the sector belongs in the merged cell.
  • the transceiver 111 receives the final coding rate sent by the base station controller to the sectors in the merged cell on the same subframe. Since the link delays of the sectors in the combined cell are likely to be different, the timing at which the transceiver 111 of the base station to which the sector belongs receives the final coding rate transmitted by the base station controller may be different.
  • the time at which the base station to which the sector belongs to the eNB may receive the final coding rate sent by the base station controller may be different.
  • the merging cell is within the merging cell.
  • the transceiver 111 of the base station to which each sector belongs transmits the final coding rate to the terminal at the same time.
  • the base station to which any sector of the merged cell according to the embodiment of the present invention belongs sends the report information to the base station controller, receives the final coding rate sent by the base station controller, and the other sectors except the sector in the merged cell.
  • the base station to which the area belongs transmits the final coding rate to the terminal at the same time.
  • the coding rate sent to the terminal at the same time is the final coding rate determined by the base station controller after the second decision, so that the uplink coding rates of the sectors of the merged cell are the same. , avoiding co-channel interference.
  • the processor 112 is specifically configured to:
  • the trigger transceiver 111 sends the report information to the base station controller.
  • the trigger transceiver 111 reports to the base station controller the coding rate determined by the sector for the terminal, thereby saving resources;
  • the transceiver 111 may send the report information to the base station controller in other manners, such as periodic reporting, etc., and the present invention does not limit the manner in which the transceiver 111 sends the uplink information to the base station controller.
  • the transceiver 111 is specifically configured to:
  • the report information is sent to the base station controller.
  • the transceiver 111 may send the report information to the base station controller in other manners.
  • the present invention does not limit the manner in which the transceiver 111 sends the report information to the base station controller.
  • the transceiver 111 is specifically configured to:
  • the final coding rate sent by the base station controller to each sector of the merging cell is received.
  • the foregoing mode B which is not described here.
  • the processor 112 specifically includes The following two treatment methods:
  • the base station controller determines the transmission time of sending the final coding rate to the terminal, and trigger the transceiver 111 to send the final to the terminal according to the transmission time determined by the processor 112.
  • the coding rate where the pre-configured buffering time is not less than the maximum value of the link delay of each sector of the combined cell.
  • the pre-configured buffering time is the most link delay of each sector of the combined cell. Great value.
  • the pre-configured buffering time may be configured by the base station controller for each sector of the combined cell, or may be configured by other network side devices that can obtain the link delay of each sector of the combined cell.
  • Each sector configuration of the merged cell may be configured by the base station controller for each sector of the combined cell, or may be configured by other network side devices that can obtain the link delay of each sector of the combined cell.
  • the base station controller receives the link delay reported by the base station to which the sector of the merged cell belongs, and determines the maximum link from the link delay reported by the base station to which the sector belongs to the merged cell. The delay, based on the maximum link delay, determines the buffer time and notifies each sector.
  • the transceiver 111 When the transceiver 111 receives the final coding rate sent by the base station controller, the pre-configured timer is started. When the timer expires, the trigger transceiver 111 sends a final coding rate to the terminal, where the timer is set.
  • the timing is the difference between the maximum value of the link delay of each sector of the combined cell and its own link delay.
  • the base station controller receives the link delay reported by the base station to which the sector of the merged cell belongs, and determines the link delay from the link delay reported by the base station to which the sector belongs to the merged cell. a maximum value, and notifying the sector of the maximum link delay; further, each sector of the merged cell according to its own link delay and the received link of each sector in the merged cell The maximum value of the delay, determining the difference between the maximum value and its own link delay;
  • the base station controller receives, in real time, the link delay reported by the base station to which the sector of the merged cell belongs, and notifies the sectors of the merged cell with the link delay reported by the base station to which the sector belongs to the merged cell; Further, the base station to which the sector of the merged cell belongs determines the maximum link delay of each sector of the merged cell according to the link delay of the link and the link delay of each sector of the merged cell. The difference from the link delay of itself.
  • the transceiver 111 may use any one of the foregoing methods to send a final coding rate to the terminal at the same time as the base station to which the sector other than the sector belongs.
  • the embodiment of the present invention is not limited to the above preferred method, as long as the method for transmitting the final coding rate to the terminal at the same time as the transceiver 111 and the base station to which the sector other than the any sector belongs in the merged cell is guaranteed. Both are applicable to the present invention.
  • the transceiver 111 is further configured to: receive uplink data sent by the terminal;
  • the processor 112 is further configured to: generate, according to the received uplink data, a corresponding uplink user plane frame message, where the uplink data is data generated by the terminal using a final coding rate; and the trigger transceiver 111 sends the uplink user plane to the base station controller.
  • a frame message where the uplink user plane frame message carries indication information indicating a quality status of an uplink channel of the terminal determined by the base station to which the sector belongs.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in a block or blocks of a flow or a flow and/or a block diagram of a flowchart Step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种自适应多速率AMR的编码速率调整方法和设备,实现了合并小区中各扇区的上行速率保持一致。方法包括:接收合并小区内的至少一个扇区发送的上报信息;根据该至少一个扇区发送的上报信息,确定终端在合并小区的各扇区内的编码速率;根据终端在合并小区的各扇区内的编码速率,确定一个编码速率作为终端的最终编码速率;将确定的最终编码速率发送给合并小区的各扇区。由于对终端在合并小区的各扇区的编码速率进行了二次判决,确定出一个编码速率作为终端的最终编码速率,并发送给该合并小区的各扇区,从而使合并小区的各扇区的上行速率保持一致,避免了同频干扰。

Description

一种自适应多速率的编码速率调整方法和设备 技术领域
本发明涉及通信领域, 特别涉及一种自适应多速率 ( Adaptive Multiple Rate, AMR ) 的编码速率调整方法和设备。 背景技术
全球移动通信系统 ( Global System for Mobile communication, GSM ) 中, 小区合并是指将多个逻辑小区 (通常指相邻的小区) 进行频点合并, 从而合 并为一个逻辑小区, 使得 GSM使用的频点数量大大减少, 而覆盖范围保持不 变, 从而提高了频谱效率。 通过采用多小区合并的组网方式, 同时也减少了 终端小区重选和小区切换的次数, 尤其能够提高高速移动环境下的连续性覆 盖性能。
频点合并后, 要求该合并小区的各扇区下行发送的数据净荷保持一致, 否则会引入非常严重的同频干扰。 例如, 图 1A所示的合并小区示意图中, 由 于三个小区下行发送的数据一致, 可以进行频点合并, 从而合并为一个小区; 又如,图 1B所示的合并小区示意图中,由于三个小区下行发送的数据不一致, 如果将该三个小区进行频点合并, 则将引入同频干扰, 因此, 不建议进行频 点合并。
AMR编码是一种编码技术, 其主要是根据 GSM空中接口的上 /下行信号 质量的变化情况, 不断调整上 /下行语音编码模式, 从而达到语音质量和系统 容量的最优平衡。根据编码采样率的不同, AMR编码可分为窄带 AMR( Narrow Band AMR, NBAMR )和宽带 AMR ( Wide Band AMR, WBAMR ), 其中, NBAMR中的全速率 AMR支持 8种编码速率, 半速率 AMR支持 6种编码速 在同一频点的合并小区 (即合并小区内的各扇区包含至少一个相同的频 点)内, 若终端使用 AMR语音业务, 则该合并小区内的各扇区会分别根据终 端的上行质量, 进行速率判决, 得到相应的编码速率, 并通知给该终端。 终 端在合并小区内不同扇区的上行质量会受该终端与该合并小区内各扇区之间 的距离、 障碍物等因素影响, 可能会存在差异, 这种情况下, 该合并小区内 各扇区可能会确定出不同的编码速率, 参见图 2所示, 如果各扇区下行发送 不同的判决速率给终端, 会引起同频干扰。 发明内容
本发明实施例提供了一种自适应多速率 AMR 的编码速率调整方法和设 备, 实现了合并小区的各扇区的上行速率保持一致, 避免了同频干扰。
第一方面, 提供了一种基站控制器, 包括:
接收模块, 用于接收合并小区内的至少一个扇区发送的上报信息, 所述 上报信息包含终端在所述至少一个扇区中各扇区内的状态参数;
第一处理模块, 用于根据所述接收模块接收的至少一个扇区发送的上报 信息, 确定所述终端在所述合并小区的各扇区内的编码速率;
第二处理模块, 用于根据所述终端在所述合并小区的各扇区内的编码速 率, 确定一个编码速率作为所述终端的最终编码速率;
发送模块, 用于将所述第二处理模块确定的最终编码速率发送给所述合 并小区的各扇区。
结合第一方面, 在第一种可能的实现方式中, 若所述状态参数为所述终 端在所述至少一个扇区中各扇区内的编码速率, 则第一处理模块具体用于: 对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为所述至少一个扇区中各扇区上报的所述状态参数; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率。
结合第一方面, 在第二种可能的实现方式中, 若所述状态参数为终端在 所述至少一个扇区中各扇区内的上行测量结果, 则第一处理模块具体用于: 对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为对所述至少一个扇区中各扇区上报的所述状态参数进行滤波处 理得到的编码速率; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率。
结合第一方面、 第一方面的第一种可能的实现方式、 或第一方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 所述第一处理模块在确定 所述终端在所述合并小区的各扇区内的编码速率之后, 还用于:
根据确定出的所述终端在所述至少一个扇区中各扇区内的编码速率, 更 新本地保存的所述至少一个扇区中各扇区对应的编码速率。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 或第一方面的第三种可能的实现方式, 在第四种可能的实 现方式中, 所述第一处理模块具体用于:
在所述接收模块接收到所述合并小区内任一扇区的上报信息后, 启动预 先配置的定时器, 并在定时器超时时, 根据所述接收模块接收到的所有上报 信息, 确定出所述终端在所述合并小区的各扇区内的编码速率; 或者,
在所述接收模块接收到所述合并小区内任一扇区的上报信息后, 启动预 先配置的计数器, 并在计数器的计数结果达到设定门限值时, 根据所述接收 模块接收到的所有上报信息, 确定所述终端在所述合并小区的各扇区内的编 码速率。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 第一方面的第三种可能的实现方式、 或第一方面的第四种 可能的实现方式, 在第五种可能的实现方式中, 所述第二处理模块具体用于: 从确定出的所述终端在所述合并小区的各扇区内的编码速率中, 选择最 大的编码速率作为所述终端的最终编码速率。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四种可 能的实现方式、 或第一方面的第五种可能的实现方式, 在第六种可能的实现 方式中, 所述发送模块具体用于:
在确定下行存在向所述合并小区的各扇区发送的数据帧时, 将所述最终 编码速率携带在所述数据帧中发送给所述合并小区的各扇区; 否则, 通过预 先设定的下行子帧, 将所述最终编码速率发送给所述合并小区的各扇区。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二种 可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四种可 能的实现方式、 第一方面的第五种可能的实现方式、 或第一方面的第六种可 能的实现方式, 在第七种可能的实现方式中, 所述发送模块将所述最终编码 速率发送给所述合并小区的各扇区之后, 所述接收模块还用于:
接收所述合并小区内至少一个扇区发送的上行用户面帧报文, 所述上行 用户面帧报文中携带用于表示所述扇区确定的所述终端的上行信道的质量状 况的指示信息;
根据所述上行用户面帧报文中携带的指示信息, 从接收到的所有所述上 行用户面帧报文中, 确定出所述终端的上行信道的质量最好的上行用户面帧 码处理。
本发明实施例提供的基站控制器对终端当前在合并小区的各扇区的编码 速率进行了二次判决, 确定出一个编码速率作为终端的最终编码速率, 并发 送给合并小区的各扇区, 从而使合并小区的各扇区的上行速率保持一致, 均 为确定出的最终编码速率, 避免了同频干扰。
第二方面, 提供了另一种基站控制器, 包括:
收发器, 用于接收合并小区内的至少一个扇区发送的上报信息, 所述上 报信息包含终端在所述至少一个扇区中各扇区内的状态参数;
处理器, 用于根据收发器接收的至少一个扇区发送的上报信息, 确定所 述终端在所述合并小区的各扇区内的编码速率; 以及根据所述终端在所述合 并小区的各扇区内的编码速率, 确定一个编码速率作为所述终端的最终编码 速率;
收发器, 还用于将所述第二处理模块确定的最终编码速率发送给所述合 并小区的各扇区。
结合第二方面, 在第一种可能的实现方式中, 若所述状态参数为所述终 端在所述至少一个扇区中各扇区内的编码速率, 则处理器具体用于:
对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为所述至少一个扇区中各扇区上报的所述状态参数; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率。
结合第二方面, 在第二种可能的实现方式中, 若所述状态参数为所述终 端在所述至少一个扇区中的各扇区内的上行测量结果, 则处理器具体用于: 对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为对所述至少一个扇区中各扇区上报的所述状态参数进行滤波处 理得到的编码速率; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率
结合第二方面、 第二方面的第一种可能的实现方式、 或第二方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 处理器在确定所述终端当 前在所述合并小区的各扇区内的编码速率之后, 还用于:
根据确定出的所述终端在所述至少一个扇区中各扇区内的编码速率, 更 新本地保存的所述至少一个扇区中各扇区对应的编码速率。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二种 可能的实现方式、 或第一方面的第三种可能的实现方式, 在第四种可能的实 现方式中, 处理器具体用于: 在收发器接收到所述合并小区内任一扇区的上报信息后, 启动预先配置 的定时器, 并在定时器超时时, 根据收发器接收到的所有上报信息, 确定出 所述终端在所述合并小区的各扇区内的编码速率; 或者,
在收发器接收到所述合并小区内任一扇区的上报信息后, 启动预先配置 的计数器, 并在计数器的计数结果达到设定门限值时, 根据收发器接收到的 所有上 4艮信息, 确定所述终端在所述合并小区的各扇区内的编码速率。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二种 可能的实现方式、 第二方面的第三种可能的实现方式、 或第二方面的第四种 可能的实现方式, 在第五种可能的实现方式中, 处理器具体用于:
从确定出的所述终端在所述合并小区的各扇区内的编码速率中, 选择最 大的编码速率作为所述终端的最终编码速率。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二种 可能的实现方式、 第二方面的第三种可能的实现方式、 第二方面的第四种可 能的实现方式、 或第二方面的第五种可能的实现方式, 在第六种可能的实现 方式中, 收发器具体用于:
在确定下行存在向所述合并小区的各扇区发送的数据帧时, 将所述最终 编码速率携带在所述数据帧中发送给所述合并小区的各扇区; 否则, 通过预 先设定的下行子帧, 将所述最终编码速率发送给所述合并小区的各扇区。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二种 可能的实现方式、 第二方面的第三种可能的实现方式、 第二方面的第四种可 能的实现方式、 第二方面的第五种可能的实现方式、 或第二方面的第六种可 能的实现方式, 在第七种可能的实现方式中,
收发器将所述最终编码速率发送给所述各扇区之后, 还用于: 接收所述 合并小区内至少一个扇区发送的上行用户面帧 4艮文, 该上行用户面帧 4艮文中 携带用于表示所述扇区确定的所述终端的上行信道的质量状况的指示信息; 处理器还用于: 根据所述上行用户面帧报文中携带的指示信息, 从收发 器接收到的所有所述上行用户面帧报文中, 确定出所述终端的上行信道的质 量最好的上行用户面帧报文, 并对所述上行用户面帧报文中包含的所述终端 上报的上行数据进行解码处理。
本发明实施例提供的基站控制器对终端当前在合并小区的各扇区的编码 速率进行了二次判决, 确定出一个编码速率作为终端的最终编码速率, 并发 送给合并小区的各扇区, 从而使合并小区的各扇区的上行速率保持一致, 均 为确定出的最终编码速率, 避免了同频干扰。
第三方面, 提供了一种基站, 该基站为合并小区内任一扇区所属的基站, 所述任一扇区所属的基站包括:
上报模块, 用于向基站控制器发送上报信息, 所述上报信息包含终端在 所述任一扇区内的状态参数;
接收模块, 用于接收所述基站控制器发送的最终编码速率, 所述最终编 码速率是所述基站控制器根据接收到的上报信息确定的; 以及,
发送模块, 用于与所述合并小区内除所述任一扇区之外的其他扇区所属 的基站在同一时刻向所述终端发送所述最终编码速率。
结合第三方面, 在第一种可能的实现方式中, 若所述状态参数为所述终 端在所述任一扇区内的编码速率, 所述上 4艮模块具体用于:
若当前为所述终端确定的编码速率与前一次为所述终端确定的编码速率 不同, 则向所述基站控制器发送所述上报信息。
结合第三方面, 在第二种可能的实现方式中, 若所述状态参数为所述终 端在所述任一扇区内的上行测量结果, 所述上 4艮模块具体用于:
按照设定的上报周期内, 向所述基站控制器发送所述上报信息; 或, 在所述接收模块接收到所述基站控制器发送的查询请求时, 向所述基站 控制器发送所述上 信息。
结合第三方面、 第三方面的第一种可能的实现方式、 或第三方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 所述接收模块具体用于: 接收所述基站控制器向所述合并小区的各扇区发送的同一数据帧, 并从 所述数据帧中获取所述最终编码速率; 或者, 在预先设定的用于传输所述最终编码速率的下行子帧上, 接收所述基站 控制器向所述合并小区的各扇区发送的所述最终编码速率。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第二种 可能的实现方式、 或第三方面的第三种可能的实现方式, 在第四种可能的实 现方式中, 发送模块具体用于:
根据预先配置的緩冲时间以及所述基站控制器发送所述最终编码速率的 下行子帧, 确定向所述终端发送所述最终编码速率的发送时间, 并按照确定 的发送时间向所述终端发送所述最终编码速率, 其中, 所述緩冲时间不小于 所述合并小区的各扇区的链路时延的最大值; 或者,
在所述接收模块接收到所述基站控制器发送的所述最终编码速率时, 启 动预先配置的定时器, 在定时器超时时, 向所述终端发送所述最终编码速率, 其中, 所述定时器设定的定时时间为所述合并小区的各扇区的链路时延的最 大值与自身的链路时延的差值。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第二种 可能的实现方式、 第三方面的第三种可能的实现方式、 或第三方面的第四种 可能的实现方式, 在第五种可能的实现方式中, 在所述发送模块向所述终端 发送所述最终编码速率之后,
所述接收模块还用于: 接收所述终端发送的上行数据, 并根据所述上行 数据生成对应的上行用户面帧报文, 所述上行数据为所述终端采用所述最终 编码速率生成的数据;
所述发送模块还用于: 向所述基站控制器发送所述上行用户面帧报文, 所述上行用户面帧报文中携带用于表示所述扇区所属的基站确定的所述终端 的上行信道的质量状况的指示信息。
第四方面, 提供了另一种基站, 该基站为合并小区内任一扇区所属的基 站, 所述任一扇区所属的基站包括:
收发器, 用于向基站控制器发送上报信息, 所述上报信息包含终端在所 述任一扇区内的状态参数; 接收所述基站控制器发送的最终编码速率, 所述 最终编码速率是所述基站控制器根据接收到的上报信息确定的; 以及, 与所 述合并小区内除所述任一扇区之外的其他扇区所属的基站在同一时刻, 向所 述终端发送所述最终编码速率。
结合第四方面, 在第一种可能的实现方式中, 若所述状态参数为所述终 端在所述任一扇区内的编码速率, 所述处理器具体用于:
若当前为所述终端确定的编码速率与前一次为所述终端确定的编码速率 不同, 则向所述基站控制器发送所述上报信息。
结合第四方面, 在第二种可能的实现方式中, 若所述状态参数为所述终 端在所述任一扇区内的上行测量结果, 收发器具体用于:
按照设定的上报周期内, 向所述基站控制器发送所述上报信息; 或, 在接收到所述基站控制器发送的查询请求时, 向该基站控制器发送所述 上报信息。
结合第四方面、 第四方面的第一种可能的实现方式、 或第四方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 收发器具体用于:
接收所述基站控制器向所述合并小区的各扇区发送的同一数据帧, 并从 所述数据帧中获取所述最终编码速率; 或者,
在预先设定的用于传输所述最终编码速率的下行子帧上, 接收所述基站 控制器向所述合并小区的各扇区发送的所述最终编码速率。
结合第四方面、 第四方面的第一种可能的实现方式、 第四方面的第二种 可能的实现方式、 或第四方面的第三种可能的实现方式, 在第四种可能的实 现方式中, 处理器具体用于:
根据预先配置的緩冲时间以及所述基站控制器发送所述最终编码速率的 下行子帧, 确定向所述终端发送所述最终编码速率的发送时间, 并触发收发 器按照处理器确定的发送时间向所述终端发送所述最终编码速率, 其中, 所 述緩冲时间不小于所述合并小区的各扇区的链路时延的最大值; 或者,
在收发器接收到所述基站控制器发送的所述最终编码速率时, 启动预先 配置的定时器, 在定时器超时时, 触发收发器向所述终端发送所述最终编码 速率, 其中, 所述定时器设定的定时时间为所述合并小区的各扇区的链路时 延的最大值与自身的链路时延的差值。
结合第四方面、 第四方面的第一种可能的实现方式、 第四方面的第二种 可能的实现方式、 第四方面的第三种可能的实现方式、 或第四方面的第四种 可能的实现方式, 在第五种可能的实现方式中,
收发器在向所述终端发送所述最终编码速率之后还用于: 接收所述终端 发送的上行数据;
处理器还用于: 根据所述上行数据生成对应的上行用户面帧报文, 所述 上行数据为所述终端采用所述最终编码速率生成的数据; 以及触发收发器向 所述基站控制器发送所述上行用户面帧报文, 所述上行用户面帧报文中携带 用于表示所述扇区所属的基站确定的所述终端的上行信道的质量状况的指示 信息。
第五方面, 提供了一种自适应多速率 AMR的编码速率调整方法, 包括: 接收合并小区内的至少一个扇区发送的上报信息, 所述上报信息包含终 端在所述至少一个扇区中各扇区内的状态参数;
根据所述至少一个扇区发送的上报信息, 确定所述终端在所述合并小区 的各扇区内的编码速率;
根据所述终端在所述合并小区的各扇区内的编码速率, 确定一个编码速 率作为所述终端的最终编码速率; 以及
将所述确定的最终编码速率发送给所述合并小区的各扇区。
结合第五方面, 在第一种可能的实现方式中, 若所述状态参数为所述终 端在所述至少一个扇区中各扇区内的编码速率, 则所述根据所述至少一个扇 区发送的上 4艮信息, 确定所述终端在所述合并小区的各扇区内的编码速率, 具体包括:
对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为所述至少一个扇区中各扇区上报的所述状态参数; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率。
结合第五方面, 在第二种可能的实现方式中, 若所述状态参数为所述终 端在所述至少一个扇区中的各扇区内的上行测量结果, 则所述根据所述至少 一个扇区发送的上 4艮信息, 确定所述终端在所述合并小区的各扇区内的编码 速率, 具体包括:
对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为对所述至少一个扇区中各扇区上报的所述状态参数进行滤波处 理得到的编码速率; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区为所述终端确定出的编码速率。
结合第五方面、 第五方面的第一种可能的实现方式、 或第五方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 在所述确定所述终端在所 述合并小区的各扇区内的编码速率之后, 还包括:
根据确定出的所述终端在所述至少一个扇区中各扇区内的编码速率, 更 新本地保存的所述至少一个扇区中各扇区对应的编码速率。
结合第五方面、 第五方面的第一种可能的实现方式、 第五方面的第二种 可能的实现方式、 或第五方面的第三种可能的实现方式, 在第四种可能的实 现方式中, 所述根据所述至少一个扇区发送的上报信息, 确定所述终端在所 述合并小区的各扇区内的编码速率, 具体包括:
在接收到所述合并小区内任一扇区的上报信息后, 启动预先配置的定时 器, 并在定时器超时时, 根据接收到的所有上报信息, 确定出所述终端在所 述合并小区的各扇区内的编码速率; 或者,
在接收到所述合并小区内任一扇区的上报信息后, 启动预先配置的计数 器, 并在计数器的计数结果达到设定门限值时, 根据接收到的所有上报信息, 确定所述终端在所述合并小区的各扇区内的编码速率。 结合第五方面、 第五方面的第一种可能的实现方式、 第五方面的第二种 可能的实现方式、 第五方面的第三种可能的实现方式、 或第五方面的第四种 可能的实现方式, 在第五种可能的实现方式中, 所述根据所述终端在所述各 扇区为所述终端确定出的编码速率, 确定一个编码速率作为所述终端的最终 编码速率, 具体包括:
从确定出的所述终端在所述合并小区的各扇区内的编码速率中, 选择最 大的编码速率作为所述终端的最终编码速率。
结合第五方面、 第五方面的第一种可能的实现方式、 第五方面的第二种 可能的实现方式、 第五方面的第三种可能的实现方式、 第五方面的第四种可 能的实现方式、 或第五方面的第五种可能的实现方式, 在第六种可能的实现 方式中, 所述将所述最终编码速率发送给所述合并小区的各扇区, 具体包括: 在确定下行存在向所述合并小区的各扇区发送的数据帧时, 将所述最终 编码速率携带在所述数据帧中发送给所述合并小区的各扇区; 否则, 通过预 先设定的下行子帧, 将所述最终编码速率发送给所述合并小区的各扇区。
结合第五方面、 第五方面的第一种可能的实现方式、 第五方面的第二种 可能的实现方式、 第五方面的第三种可能的实现方式、 第五方面的第四种可 能的实现方式、 第五方面的第五种可能的实现方式、 或第五方面的第六种可 能的实现方式, 在第七种可能的实现方式中, 所述将所述最终编码速率发送 给所述合并小区的各扇区之后, 所述方法还包括:
接收所述合并小区内至少一个扇区发送的上行用户面帧报文, 所述上行 用户面帧报文中携带用于表示所述扇区确定的所述终端的上行信道的质量状 况的指示信息;
根据所述上行用户面帧报文中携带的指示信息, 从接收到的所有所述上 行用户面帧报文中, 确定出所述终端的上行信道的质量最好的上行用户面帧 码处理。
本发明实施例中, 由于对终端当前在该合并小区的各扇区的编码速率进 行了二次判决, 确定出一个编码速率作为终端的最终编码速率, 并发送给该 合并小区的各扇区, 从而使合并小区的各扇区的上行速率保持一致, 均为确 定出的最终编码速率, 避免了同频干扰。
第六方面,提供了另一种自适应多速率 AMR的编码速率调整方法,包括: 合并小区内任一扇区所属的基站向基站控制器发送上报信息, 所述上报 信息包含终端在所述任一扇区内的状态参数;
所述任一扇区所属的基站接收所述基站控制器发送的最终编码速率, 所 述最终编码速率是所述基站控制器根据接收到的上报信息确定的; 以及, 所述任一扇区所属的基站与所述合并小区内除所述任一扇区之外的其他 扇区所属的基站在同一时刻, 向所述终端发送所述最终编码速率。
结合第六方面, 在第一种可能的实现方式中, 若所述状态参数为所述终 端在所述任一扇区内的编码速率, 所述任一扇区所属的基站向基站控制器发 送上报信息具体包括:
若所述任一扇区所属的基站当前为所述终端确定的编码速率与前一次为 所述终端确定的编码速率不同, 则向所述基站控制器发送所述上 4艮信息。
结合第六方面, 在第二种可能的实现方式中, 若所述状态参数为所述终 端在所述任一扇区内的上行测量结果, 所述任一扇区所属的基站向基站控制 器发送上 信息, 具体包括:
所述任一扇区所属的基站按照设定的上报周期内, 向所述基站控制器发 送所述上报信息; 或者,
所述任一扇区所属的基站在接收到所述基站控制器发送的查询请求时, 向所述基站控制器发送所述上报信息。
结合第六方面、 第六方面的第一种可能的实现方式、 或第六方面的第二 种可能的实现方式, 在第三种可能的实现方式中, 所述任一扇区所属的基站 接收所述基站控制器发送的最终编码速率, 具体包括:
所述任一扇区所属的基站接收所述基站控制器向所述合并小区的各扇区 发送的同一数据帧, 并从所述数据帧中获取所述最终编码速率; 或者, 所述任一扇区所属的基站在预先设定的用于传输所述最终编码速率的下 行子帧上, 接收所述基站控制器向所述合并小区的各扇区发送的所述最终编 码速率。
结合第六方面、 第六方面的第一种可能的实现方式、 第六方面的第二种 可能的实现方式、 或第六方面的第三种可能的实现方式, 在第四种可能的实 现方式中, 所述任一扇区所属的基站与所述合并小区内除所述任一扇区之外 的其他扇区所属的基站在同一时刻向所述终端发送所述最终编码速率, 具体 包括:
所述任一扇区所属的基站根据预先配置的緩冲时间以及所述基站控制器 发送所述最终编码速率的下行子帧, 确定向所述终端发送所述最终编码速率 的发送时间, 并按照确定的发送时间向所述终端发送所述最终编码速率, 其 中, 所述緩冲时间不小于所述合并小区的各扇区的链路时延的最大值; 或者, 所述任一扇区所属的基站在接收到所述基站控制器发送的所述最终编码 速率时, 启动预先配置的定时器, 在定时器超时时, 向所述终端发送所述最 终编码速率, 其中, 所述定时器设定的定时时间为所述合并小区的各扇区的 链路时延的最大值与自身的链路时延的差值。
结合第六方面、 第六方面的第一种可能的实现方式、 第六方面的第二种 可能的实现方式、 第六方面的第三种可能的实现方式、 或第六方面的第四种 可能的实现方式, 在第五种可能的实现方式中, 所述任一扇区所属的基站与 合并小区内除所述任一扇区之外的其他扇区所属的基站在同一时刻, 向终端 发送所述最终编码速率之后, 该方法还包括:
所述任一扇区所属的基站接收所述终端发送的上行数据, 并根据所述上 行数据生成对应的上行用户面帧报文, 所述上行数据为所述终端采用所述最 终编码速率生成的数据; 以及,
所述任一扇区所属的基站向基站控制器发送所述上行用户面帧报文, 该 上行用户面帧报文中携带用于表示所述任一扇区所属的基站确定的所述终端 的上行信道的质量状况的指示信息。 本发明实施例中, 由于合并小区的各扇区在同一时刻, 向终端下发的编 码速率均为基站控制器经过二次判决确定出的最终编码速率, 从而使得合并 小区的各扇区的上行编码速率相同, 避免了同频干扰。 附图说明
图 1A为背景技术中第一种合并小区示意图;
图 1B为背景技术中第二种合并小区示意图;
图 2为背景技术中合并小区内的各扇区为终端判决出的编码速率示意图; 图 3为本发明实施例中一种 AMR的编码速率调整方法示意图;
图 4为本发明实施例中下发确定出的最终编码速率的流程图;
图 5为本发明实施例中上行帧质量合并示意图;
图 6为本发明实施例中另一种 AMR的编码速率调整方法示意图; 图 7为本发明实施例中 AMR的编码速率的调整方法中各扇区与基站控制 器之间的交互示意图;
图 8为本发明实施例提供的一种基站控制器的示意图;
图 9为本发明实施例提供的一种基站的示意图;
图 10为本发明实施例提供的另一种基站控制器的示意图;
图 11为本发明实施例提供的另一种基站的示意图。 具体实施方式
为了解决在同一频点的合并小区内, 各扇区可能会确定得到不同的编码 速率, 如果各扇区下行发送不同的确定速率给终端, 会引起同频干扰的问题, 本发明实施例提供了一种自适应多速率 AMR的编码速率调整方法和设备,下 面结合附图对本发明实施例进行详细说明。
参见图 3所示, 本发明实施例提供了一种 AMR的编码速率调整方法, 包 括以下步骤:
S31、 接收合并小区内的至少一个扇区发送的上报信息, 该上报信息包含 终端在该至少一个扇区中各扇区内的状态参数。
具体的, 该状态参数可以为终端在该至少一个扇区中各扇区内的编码速 率, 还可以为终端在该至少一个扇区中各扇区内的上行测量结果。
在实施中, 合并小区内的各扇区为终端确定编码速率的具体过程参见
3GPP 45009协议。
其中, 上行测量结果包括但不限于下列参数信息中至少一种: 该扇区测 量出的载干比、 信噪比、 及误码率等。
532、 根据该至少一个扇区发送的上 4艮信息, 确定终端在该合并小区的各 扇区内的编码速率;
533、 根据终端在该合并小区的各扇区内的编码速率, 确定一个编码速率 作为该终端的最终编码速率;
534、 将确定出的最终编码速率发送给该合并小区内的各扇区。
本发明实施例中, 接收合并小区内的至少一个扇区发送的上报信息; 根 据该至少一个扇区发送的上 ^艮信息, 确定终端在该合并小区的各扇区的编码 速率, 并根据该终端在该合并小区的各扇区内的编码速率中, 确定一个编码 速率作为终端的最终编码速率; 以及, 将确定出的最终编码速率发送给该合 并小区的各扇区。 由于对终端在该合并小区的各扇区的编码速率进行了二次 判决, 确定出一个编码速率作为终端的最终编码速率, 并发送给该合并小区 内的各扇区, 从而使合并小区的各扇区的上行速率保持一致, 均为确定出的 最终编码速率, 避免了同频干扰。
本发明实施例中, 上述步骤的执行主体可以是基站控制器, 该基站控制 器可以控制至少一个基站, 进而可以控制该至少一个基站的小区, 其中, 基 站的小区是指该基站管理和控制的小区(或称为与该基站相关的小区)。 当然, 执行主体也可以为其他网络侧设备, 只要该网络侧设备能够实现上述步骤 S31~步骤 S34即可。
在实施中, 步骤 S32 中, 根据上报信息中包含的状态参数不同, 确定终 端在合并小区的各扇区内的编码速率, 具体包括以下两种实现方式: 方式 1、若状态参数为终端在该至少一个扇区中各扇区内的编码速率, 则 确定终端在合并小区的各扇区内的编码速率具体为:
对于该至少一个扇区, 确定该终端在该至少一个扇区中各扇区内的编码 速率为该至少一个扇区中各扇区上报的状态参数; 以及,
对于合并小区内未发送上报信息的扇区, 确定终端在该未发送上报信息 的扇区中各扇区内的编码速率为本地保存的该未发送上 4艮信息的扇区中各扇 区前一次为终端确定出的编码速率。
具体的, 对于合并小区内发送了上 4艮信息的扇区, 确定该终端在该扇区 内的编码速率为接收到的该扇区上报的状态参数(即接收到的该扇区上报的 编码速率); 以及, 对于合并小区内未发送上 4艮信息的扇区, 确定终端在该扇 区内的编码速率为本地保存的该扇区前一次上 4艮的编码速率。
方式 2、 若状态参数为终端在该至少一个扇区中各扇区内的上行测量结 果, 则确定终端在合并小区的各扇区内的编码速率具体为:
对于上述至少一个扇区, 确定该终端在该至少一个扇区中各扇区内的编 码速率为对该至少一个扇区中各扇区上报的状态参数进行滤波处理得到的编 码速率; 以及,
对于合并小区内未发送上报信息的扇区, 确定该终端在该未发送上报信 息的扇区中各扇区内的编码速率为本地保存的该未发送上 4艮信息的扇区中各 扇区前一次为终端确定出的编码速率。
具体的, 对于合并小区内发送了上 4艮信息的扇区, 确定该终端在该扇区 内的编码速率为对接收到的该扇区上报的状态参数(即接收到的该扇区上报 的上行测量结果)进行滤波处理得到的编码速率; 以及, 对于合并小区内未 发送上 4艮信息的扇区, 确定该终端在该扇区内的编码速率为本地保存的该扇 区前一次为终端对应的编码速率 (即对该扇区前一次上 4艮的上行测量结果进 行滤波处理得到的编码速率)。
其中, 对扇区上报的上行测量结果进行滤波得到终端在该扇区内的编码 速率, 具体过程参见 3GPP 15009协议。 基于上述两种方式, 步骤 S32 中, 确定终端在该合并小区的各扇区内的 编码速率后, 还包括:
根据确定出的终端在该至少一个扇区中各扇区内的编码速率, 更新本地 保存的该至少一个扇区中各扇区对应的编码速率。
具体的, 对于发送了上报信息的扇区来说, 将根据该上报信息确定出的 编码速率替换掉自身保存的该扇区对应的编码速率; 对于未发送上报信息的 扇区来说, 保持自身保存的该扇区对应的编码速率。
基于上述任一实施例, 步骤 S32 中, 根据该至少一个扇区发送的上报信 息, 确定终端在该合并小区的各扇区内的编码速率, 具体包括以下两种方式: 方式一、 在接收到合并小区内任一扇区的上报信息后, 启动预先配置的 定时器, 并在定时器超时时, 根据接收到的所有上报信息, 确定出该终端在 该合并小区的各扇区内的编码速率;
具体的, 对于在定时器超时之前接收到了其上报信息的扇区, 确定终端 在该扇区内的编码速率为根据该扇区的上报信息确定出的编码速率; 以及, 对于在定时器超时之前未接收到其上报信息的扇区, 确定终端在该扇区内的 编码速率为本地保存的该扇区对应的编码速率。
方式二、 在接收到合并小区内任一扇区的上报信息后, 启动预先配置的 计数器, 并在计数器的计数结果达到设定门限值时, 根据接收到的所有上报 信息, 确定出终端在该合并小区的各扇区内的编码速率。
具体的, 对于在计数器的计数结果达到预设的数目之前接收到了其上报 信息的扇区, 确定终端在该扇区内的编码速率为根据该扇区的上报信息确定 出的编码速率; 以及, 对于在计数器的计数结果达到预设的数目之前未接收 到其上 4艮信息的扇区, 确定终端在该扇区内的编码速率为本地保存的该扇区 对应的编码速率。
以上仅说明了步骤 S32 中根据该至少一个扇区发送的上报信息, 确定终 端在该合并小区的各扇区内的编码速率的优选实现方式, 可以采用任一优选 实现方式确定终端在该合并小区内的各扇区的编码速率; 但本发明实施例并 不限于采用上述方式, 也可以采用其他方式, 如在接收到该合并小区中的一 个扇区的上报信息后, 即根据该上报信息确定出终端在该合并小区内的各扇 区的编码速率, 等等。
基于上述任一实施例, 步骤 S33 中, 优选的, 根据终端在该合并小区的 各扇区内的编码速率, 确定一个编码速率作为该终端的最终编码速率, 具体 包括:
从确定出的该终端在该合并小区的各扇区内的编码速率中, 选择最大的 编码速率作为该终端的最终编码速率。
该优选方式中, 由于从确定出的该终端在该合并小区的各扇区内的编码 速率中, 选择最大的编码速率作为该终端的最终编码速率, 从而使该合并小 区的上行编码速率得到最大增益。
当然, 本发明实施例中根据终端在该合并小区的各扇区内的编码速率确 定最终编码速率的方式并不限于上述优选方式, 也可以采用其他方式, 如从 确定出的该终端在该合并小区的各扇区内的编码速率中, 选择次大的编码速 率作为该终端的最终编码速率; 又如, 将终端在该合并小区的各扇区内的编 码速率的平均值作为该终端的最终编码速率, 等等。
步骤 S34 中, 为了保证该合并小区内的各扇区的空口可以在同一时刻接 收到该最终编码速率, 优选的, 在同一子帧上, 将步骤 S33 中确定出的最终 编码速率发送给该合并小区的各扇区。
当然, 步骤 S34中, 也可以在不同时刻, 将步骤 S33中确定出的最终编 码速率发送给该合并小区的各扇区, 本发明实施例不对发送时刻进行限定, 只要保证将确定出的最终编码速率发送给该合并小区的各扇区即可。
基于上述优选的方式, 步骤 S34中, 在同一子帧上, 将步骤 S33中确定 出的最终编码速率发送给合并小区的各扇区, 具体为:
在确定下行存在需要向该合并小区的各扇区发送的数据帧时, 将最终编 码速率携带在该数据帧中发送给合并小区的各扇区; 否则, 通过预先设定的 下行子帧, 将最终编码速率发送给合并小区的各扇区。 若通过数据帧将确定出的最终编码速率发送给合并小区的各扇区, 由于 带内帧数据已经完成了下行同步, 因此, 各扇区的空口可以在同一时刻接收 到最终编码速率, 不会因为各扇区的 Abis接口链路传输时延的差异而导致同 一时刻各扇区下发的编码速率不一致。 其中, Abis接口定义为基站子系统的 两个功能实体基站控制器( Base Station Controller, BSC )和基站收发信台( Base Transceiver Station, BTS )之间的通信接口。
若通过预先设定的下行子帧, 将确定出的最终编码速率发送给合并小区 的各扇区, 从而保证各扇区的空口可以在同一时刻接收到最终编码速率; 预 可以是协议中规定的用于传输该最终编码速率的下行子帧。 优选的, 该用于 传输最终编码速率的下行子帧为当前子帧的下一个下行子帧。
需要说明的是, 当下行开启不连续发送 ( Discontinuous Transmission, DTX )状态时, 为了尽快向合并小区内的各扇区下发确定出的最终编码速率, 需要在 DTX状态下, 插入用于传输该最终编码速率 (也称为二次判决速率) 的下行子帧, 即自定义某一个下行子帧用于传输确定出的最终编码速率, 并 通过该下行子帧向合并小区的各扇区发送确定出的最终编码速率。
下面结合具体实施例对本发明实施例中在同一子帧上将确定出的最终编 码速率 (也称为二次判决速率)发送给合并小区的各扇区的流程进行详细说 明, 具体参见图 4所示, 包括:
基站控制器得到二次判决速率后, 判断下行是否有帧发出, 具体包括: 若判断结果为是, 则基站控制器将二次判决速率插入该帧并发送; 若判断结果为否, 则基站控制器将二次判决速率插入自定义帧 (自定义 的用于传输确定出的最终编码速率的下行子帧) 并发送。
从图 4所示的流程图中可以看出, 由于基站控制器在同一子帧上, 将确 定出的二次判决速率发送给合并小区的各扇区, 使得合并小区的各扇区的空 口可以在同一时刻 (即图中的空口时刻 kl )接收到该二次判决速率。
基于上述任一实施例, 步骤 S34之后, 本发明实施例提供的方法还包括 如下步骤:
接收合并小区内至少一个扇区发送的上行用户面帧 ^艮文, 该上行用户面 帧报文中携带用于表示该扇区确定的终端的上行信道的质量状况的指示信 息; 以及
根据该至少一个扇区发送的上行用户面帧报文中携带的指示信息, 从接 收到的所有上行用户面帧报文中, 确定出该终端的上行信道质量最好的上行 用户面帧报文, 并对该上行用户面帧报文中包含的终端上报的数据进行解码 处理。
本发明实施例中, 由于根据确定出的终端在该合并小区的各扇区内的编 码速率, 确定终端在该合并小区的各扇区内的最终编码速率 (如选择其中最 大的编码速率作为该终端的最终编码速率), 因此终端在该合并小区的各扇区 内始终按照相同的允许速率接入, 使得终端在该合并小区的各扇区的上行信 道的质量可能存在差异, 这就需要在各扇区向基站控制器发送的上行用户面 帧报文中携带用于表示该合并小区的各扇区确定的该终端的上行信道的质量 状况的指示信息, 以使基站控制器对接收到的上行信道的质量信息进行合并, 码, 具体可参见图 5所示的上行帧质量合并示意图, 图中扇区 1的上行帧质 量好, 扇区 2的上行帧质量差, 扇区 3的上行帧质量太差以致译码失败, 基 站控制器从上述三个扇区中挑选出上行帧质量最好的上行帧, 即扇区 1 的上 行帧, 并对扇区 1的上行帧进行解码。
基于上述实施例, 参见图 6所示, 本发明实施例还提供了一种 AMR的编 码速率调整方法, 该方法包括如下步骤:
561、 合并小区内任一扇区所属的基站向基站控制器发送上报信息, 该上 报信息包含终端在该任一扇区内的状态参数;
具体的, 该状态参数为终端在扇区内的编码速率, 或者, 该状态参数为 终端在扇区内的上行测量结果。
562、 该任一扇区所属的基站接收基站控制器发送的最终编码速率, 该最 终编码速率是基站控制器根据接收到的上报信息确定的。
优选的, 该任一扇区所属的基站接收基站控制器在同一子帧上向合并小 区内的各扇区发送的最终编码速率。 由于该合并小区内的各扇区的链路时延 有可能不同, 而导致各扇区接收到基站控制器发送的最终编码速率的时刻有 可能不同。
S63、 该任一扇区所属的基站与合并小区内除该任一扇区之外的其他扇区 所属的基站在同一时刻, 向终端发送该最终编码速率。
本步骤中, 由于该合并小区内的各扇区接收到基站控制器发送的最终编 码速率的时刻有可能不同, 为了尽量保证终端在同一时刻接收到各扇区所属 的基站下发的编码速率, 各扇区所属的基站在同一时刻, 向终端发送该最终 编码速率。
本发明实施例中, 合并小区内任一扇区所属的基站向基站控制器发送上 报信息, 接收基站控制器发送的最终编码速率, 以及与合并小区内除该任一 扇区之外的其他扇区所属的基站在同一时刻, 向终端发送该最终编码速率。 由于合并小区的各扇区在同一时刻, 向终端下发的编码速率均为基站控制器 经过二次判决确定出的最终编码速率, 从而使得合并小区的各扇区的上行编 码速率相同, 避免了同频干扰。
在实施中, 若状态参数为终端在该任一扇区内的编码速率, 作为一种优 选的实现方式, 步骤 S61 中, 该任一扇区所属的基站向基站控制器发送上报 信息具体包括:
若该任一扇区所属的基站当前为终端确定出的编码速率与前一次为该终 端确定出的编码速率不同时, 则向基站控制器发送上报信息。
该方式下, 由于仅在该任一扇区所属的基站为终端确定出的编码速率发 生变化时才向基站控制器上报该任一扇区所属的基站为终端确定出的编码速 率, 从而节省了资源;
当然除了上述优选的实现方式, 该任一扇区所属的基站向基站控制器发 送上报信息也可以采用其他方式, 如周期上报等, 本发明不对该任一扇区所 属的基站向基站控制器发送上报信息的方式进行限定。
在实施中, 若状态参数为终端在该任一扇区内的上行测量结果, 作为一 种优选的实现方式, 步骤 S61 中, 该任一扇区所属的基站向基站控制器发送 上报信息具体包括:
该任一扇区所属的基站按照设定的上报周期内, 向基站控制器发送上报 信息; 或者,
该任一扇区所属的基站在接收到基站控制器发送的查询请求时, 向基站 控制器发送上报信息。
当然除了上述优选的实现方式, 该任一扇区所属的基站向基站控制器发 送上报信息也可以采用其他方式, 本发明不对该任一扇区所属的基站向基站 控制器发送上 ^艮信息的方式进行限定。
在实施中, 步骤 S62 中, 该任一扇区所属的基站接收基站控制器发送的 最终编码速率, 具体包括:
该任一扇区所属的基站接收基站控制器向合并小区的各扇区发送的同一 数据帧, 并从该数据帧中获取到最终编码速率, 具体参见上述方式 A, 此处 不再赘述;
或者,
该任一扇区所属的基站在预先设定的用于传输最终编码速率的下行子帧 上, 接收基站控制器向合并小区的各扇区发送的最终编码速率, 具体参见上 述方式 B , 此处不再赘述。
在实施中, 步骤 S63 中, 该任一扇区所属的基站与该合并小区内除该任 一扇区之外的其他扇区所属的基站在同一时刻, 向终端发送最终编码速率, 具体包括以下两种方法:
方法一、 该任一扇区所属的基站根据预先配置的緩冲时间以及基站控制 器发送最终编码速率的下行子帧, 确定向终端发送最终编码速率的发送时间, 并按照确定的发送时间向终端发送最终编码速率, 其中, 预先配置的緩冲时 间不小于该合并小区的各扇区的链路时延的最大值。 优选的, 该预先配置的緩冲时间为该合并小区的各扇区的链路时延的最 大值。
该方法下, 预先配置的緩冲时间可以是基站控制器为该合并小区的各扇 区配置的, 也可以由其他能够获取到该合并小区的各扇区的链路时延的网络 侧设备为该合并小区的各扇区配置。
具体的, 基站控制器实时接收各扇区所属的基站上报的链路时延, 并从 各扇区所属的基站上报的链路时延中确定出最大的链路时延, 根据该最大的 链路时延, 确定緩冲时间, 并通知给各扇区。
方法二、 该任一扇区所属的基站在接收到基站控制器发送的最终编码速 率时, 启动预先配置的定时器, 在定时器超时时, 向终端发送最终编码速率, 其中, 该定时器设定的定时时间为该合并小区的各扇区的链路时延的最大值 与自身的链路时延的差值。
具体的, 基站控制器实时接收各扇区所属的基站上报的链路时延, 并从 各扇区所属的基站上报的链路时延中确定出链路时延的最大值, 并将该最大 的链路时延通知给该合并小区的各扇区; 进一步, 该合并小区的各扇区所属 的基站根据自身的链路时延以及接收到的该合并小区的各扇区的链路时延的 最大值, 确定出该最大值与自身的链路时延的差值;
或者,
基站控制器实时接收各扇区所属的基站上报的链路时延, 并将各扇区所 属的基站上报的链路时延通知给该合并小区的各扇区; 进一步, 该合并小区 的各扇区所属的基站根据自身的链路时延以及该合并小区的各扇区的链路时 延, 确定出该合并小区的各扇区的链路时延的最大值与自身的链路时延的差 值。
本发明实施例中, 该任一扇区所属的基站可以采用上述任一方法与该合 并小区内的其他扇区所属的基站在同一时刻, 向终端发送最终编码速率。 当 然, 本发明实施例也不限于上述优选方法, 只要保证扇区所属的基站与该合 并小区内的其他扇区所属的基站在同一时刻, 向终端发送最终编码速率的方 法都适用于本发明。
基于上述实施例, 步骤 S63之后, 本发明实施例提供的方法还包括: 该任一扇区所属的基站接收终端发送的上行数据, 并根据接收到的上行 数据生成对应的上行用户面帧报文, 该上行数据为终端采用最终编码速率生 成的数据; 以及,
该任一扇区所属的基站向基站控制器发送上行用户面帧报文, 该上行用 户面帧报文中携带用于表示该任一扇区所属的基站确定的该终端的上行信道 的质量状况的指示信息。
下面结合一个具体实施例从本发明实施例的 AMR 的编码速率的调整方 法中各扇区与基站控制器之间的交互进行说明。
具体地, AMR的编码速率的调整方法中各扇区与基站控制器之间的交互 参见图 7所示, 包括:
1、 合并小区的各扇区按照系统为该合并小区的各扇区初始配置的相同的 上行速率分别下发给终端, 即该合并小区的各扇区向终端下发预先配置且相 同的初始速率;
2、 该合并小区的各扇区向基站控制器上报终端在该合并小区的各扇区的 上行测量结果或上 ·^艮自身为终端确定出的编码速率 (即判决速率)。
其中, 该合并小区的各扇区可以按照设定的周期向基站控制器上报上行 测量结果, 或者,
若该合并小区的各扇区当前为终端确定出的编码速率与前一次为该终端 确定出的编码速率不相同, 则向基站控制器上报为终端确定出的编码速率。
优选的, 为了减少 Abis接口流量, 该合并小区的各扇区可以在确定为终 端确定出的编码速率与前一次为该终端确定出的编码速率不相同时, 向基站 控制器上报为终端确定出的编码速率。
3、 基站控制器收到任一扇区的上 ^艮后, 更新自身保存的终端在该合并小 区的各扇区的编码速率并启动定时, 在定时达到设定门限值后, 基站控制器 开始对自身保存的所有扇区对应的编码速率进行二次判决, 即按 Max (终端 在扇区 1的编码速率, 终端在扇区 2的编码速率, ..., 终端在扇区 n的编码 速率)得到二次判决速率(即最终编码速率)。
本步骤中, 对于本次没有上报值的扇区, 基站控制器中保存的该扇区的 上报值为其前一次的上报值。
本步骤中, 如果扇区的上报值为上行测量结果, 则基站控制器还需要将 该测量结果进行滤波得到该扇区为终端确定出的编码速率(详见 3GPP 45009 协议的 3.3.1章节)。
4、 基站控制器在得到二次判决速率后, 通过数据帧将该二次判决速率通 知给该合并小区的各扇区, 由于带内帧数据已经完成下行同步, 所以该合并 小区的各扇区的空口可以在同一时刻收到上述二次判决速率, 而不会因为 Abis链路传输时延差导致同一时刻下发的编码速率不一致。
本步骤中, 若基站控制器的下行开启了 DTX状态, 为了尽快下发二次判 决速率, 基站控制器需要在 DTX状态下插入自定义帧, 并通过自定义帧将二 次判决速率通知给该合并小区的各扇区。
5、 合并小区的各扇区的空口在同一时刻接收到基站控制器下发的二次判 决速率。
6、 合并小区的各扇区分别在编码模式请求(Code Mode Request, CMR ) 时刻将接收到的二次判决速率下发给终端, 从而完成本次合并小区上行编码 速率的调整。
基于同一发明构思, 本发明还提供了一种基站控制器, 参见图 8所示, 该基站控制器包括:
接收模块 81 , 用于接收合并小区内的至少一个扇区发送的上报信息, 该 上报信息包含终端在该至少一个扇区中各扇区内的状态参数;
具体的, 该状态参数为终端在该至少一个扇区中的各扇区内的编码速率, 或者该状态参数为终端在该至少一个扇区中的各扇区内的上行测量结果。
终端在任一扇区内上行测量结果包括但不限于下列参数信息中至少一 种: 该扇区测量出的载干比、 信噪比、 及误码率等。 第一处理模块 82,用于根据接收模块 81接收的该至少一个扇区发送的上 艮信息, 确定终端在该合并小区的各扇区内的编码速率;
第二处理模块 83 , 用于根据终端在该合并小区的各扇区内的编码速率, 确定一个编码速率作为该终端的最终编码速率;
发送模块 84 ,用于将第二处理模块 83所确定的最终编码速率发送给该合 并小区的各扇区。
本发明实施例提供的基站控制器对终端在合并小区内的各扇区的编码速 率进行了二次判决, 确定出一个编码速率作为终端的最终编码速率, 并发送 给合并小区的各扇区, 从而使合并小区的各扇区的上行速率保持一致, 均为 确定出的最终编码速率, 避免了同频干扰。
在实施中, 根据上报信息中包含的状态参数不同, 第一处理模块 82确定 终端在合并小区的各扇区的编码速率, 具体包括以下两种实现方式:
一、 若状态参数为终端在该至少一个扇区中的各扇区内的编码速率, 则 第一处理模块 82具体用于:
对于该至少一个扇区, 确定该终端在该至少一个扇区中的各扇区内的编 码速率为该至少一个扇区中的各扇区上报的状态参数; 以及,
对于合并小区内未发送上报信息的扇区, 确定终端在该未发送上报信息 的扇区中各扇区内的编码速率为本地保存的该未发送上 4艮信息的扇区中各扇 区前一次为终端确定出的编码速率。
具体的, 对于合并小区内发送了上 4艮信息的扇区, 确定该终端在该扇区 内的编码速率为接收到的该扇区上报的状态参数(即接收到的该扇区上报的 编码速率); 以及, 对于合并小区内未发送上 4艮信息的扇区, 确定终端在该扇 区内的编码速率为本地保存的该扇区前一次上 4艮的编码速率。
二、 若状态参数为终端在该至少一个扇区中的各扇区内的上行测量结果, 则第一处理模块 82具体用于:
对于该至少一个扇区, 确定该终端在该至少一个扇区中各扇区的编码速 率为对该至少一个扇区中各扇区上报的状态参数进行滤波处理得到的编码速 率; 以及,
对于合并小区内未发送上报信息的扇区, 确定该终端在该未发送上报信 息的扇区中各扇区的编码速率为本地保存的该未发送上 4艮信息的扇区中各扇 区前一次为终端确定出的编码速率。
具体的, 对于合并小区内发送了上 4艮信息的扇区, 确定该终端在该扇区 内的编码速率为对接收到的该扇区上报的状态参数(即接收到的该扇区上报 的上行测量结果)进行滤波处理得到的编码速率; 以及, 对于合并小区内未 发送上 4艮信息的扇区, 确定该终端在该扇区内的编码速率为本地保存的该扇 区前一次为终端对应的编码速率 (即对该扇区前一次上 4艮的上行测量结果进 行滤波处理得到的编码速率)。
其中, 对扇区上报的上行测量结果进行滤波, 得到终端在该扇区内的编 码速率, 具体过程参见 3GPP 15009协议。
基于上述两种方式, 第一处理模块 82在确定终端在合并小区的各扇区内 的编码速率之后, 还用于:
根据确定出的终端在该至少一个扇区中各扇区内的编码速率, 更新本地 保存的该至少一个扇区中各扇区对应的编码速率。
具体的, 对于发送了上报信息的扇区来说, 第一处理模块 82将根据该上 报信息确定出的编码速率替换掉自身保存的该扇区对应的编码速率; 对于未 发送上报信息的扇区来说, 第一处理模块 82保持本基站控制器保存的该扇区 对应的编码速率。
基于上述任一实施例, 第一处理模块 82根据该至少一个扇区发送的上报 信息, 确定终端在该合并小区的各扇区内的编码速率, 具体包括以下两种方 式:
一、 在接收到合并小区内任一扇区的上报信息后, 启动预先配置的定时 器, 并在定时器超时时, 根据接收到的所有上报信息, 确定出该终端在该合 并小区的各扇区内的编码速率;
具体的, 对于在定时器超时之前接收到了其上报信息的扇区, 确定终端 在该扇区内的编码速率为根据该扇区的上报信息确定出的编码速率; 以及, 对于在定时器超时之前未接收到其上报信息的扇区, 确定终端在该扇区内的 编码速率为本地保存的该扇区对应的编码速率。
二、 在接收到合并小区内任一扇区的上报信息后, 启动预先配置的计数 器, 并在计数器的计数结果达到设定门限值时, 根据接收到的所有上报信息, 确定出终端在该合并小区的各扇区内的编码速率。
具体的, 对于在计数器的计数结果达到预设的数目之前接收到了其上报 信息的扇区, 确定终端在该扇区内的编码速率为根据该扇区的上报信息确定 出的编码速率; 以及, 对于在计数器的计数结果达到预设的数目之前未接收 到其上 4艮信息的扇区, 确定终端在该扇区内的编码速率为本地保存的该扇区 对应的编码速率。
以上仅说明了第一处理模块 82根据该至少一个扇区发送的上报信息, 确 定终端在该合并小区的各扇区内的编码速率的优选实现方式, 第一处理模块 82 可以采用任一优选实现方式确定终端在该合并小区的各扇区内的编码速 率; 但本发明实施例并不限于采用上述方式, 第一处理模块 82也可以采用其 他方式, 如在接收到该合并小区中的一个扇区的上报信息后, 即根据该上报 信息确定出终端在该合并小区的各扇区内的编码速率, 等等。
基于上述任一实施例, 优选的, 第二处理模块 83具体用于:
从确定出的该终端在该合并小区的各扇区内的编码速率中, 选择最大的 编码速率作为该终端的最终编码速率。
该优选方式中, 由于第二处理模块 83从确定出的该终端在该合并小区的 各扇区内的编码速率中, 选择最大的编码速率作为该终端的最终编码速率, 从而使该合并小区的上行编码速率得到最大增益。
当然, 本发明实施例第二处理模块 83根据终端在该合并小区的各扇区内 的编码速率确定最终编码速率的方式并不限于上述优选方式, 也可以采用其 他方式, 如从确定出的该终端在该合并小区的各扇区内的编码速率中, 选择 次大的编码速率作为该终端的最终编码速率; 又如, 将终端在该合并小区的 各扇区内的编码速率的平均值作为该终端的最终编码速率, 等等。 为了保证该合并小区内的各扇区的空口可以在同一时刻接收到该最终编 码速率, 优选的, 发送模块 84具体用于: 在同一子帧上, 将第二处理模块 83 确定出的最终编码速率发送给该合并小区内的各扇区。
当然, 发送模块 84也可以在不同时刻, 将第二处理模块 83确定出的最 终编码速率发送给该合并小区的各扇区, 本发明实施例不对发送模块 84向该 合并小区的各扇区发送最终编码速率的发送时刻进行限定, 只要保证将确定 出的最终编码速率发送给该合并小区的各扇区即可。
基于上述优选的方式, 发送模块 84在同一子帧上, 将第二处理模块 83 确定出的最终编码速率发送给合并小区的各扇区, 具体包括:
在确定下行存在需要向该合并小区的各扇区发送的数据帧时, 将最终编 码速率携带在该数据帧中发送给合并小区的各扇区; 否则, 通过预先设定的 下行子帧, 将最终编码速率发送给合并小区的各扇区。
若发送模块 84通过数据帧将最终编码速率发送给合并小区的各扇区, 由 于带内帧数据已经完成了下行同步, 因此, 合并小区的各扇区的空口可以在 同一时刻接收到最终编码速率, 不会因为合并小区的各扇区的 Abis接口链路 传输时延的差异而导致同一时刻各扇区下发的编码速率不一致。 其中, Abis 接口定义为基站子系统的两个功能实体基站控制器 ( Base Station Controller, BSC )和基站收发信台 (Base Transceiver Station, BTS )之间的通信接口。
若发送模块 84通过预先设定的下行子帧, 将最终编码速率发送给合并小 区的各扇区, 从而保证合并小区的各扇区的空口可以在同一时刻接收到最终 下行子帧, 也可以是协议中规定的用于传输该最终编码速率的下行子帧。 优 选的, 该用于传输最终编码速率的下行子帧为当前子帧的下一个下行子帧。
需要说明的是, 当下行开启不连续发送 ( Discontinuous Transmission, DTX )状态时, 为了尽快向合并小区的各扇区下发确定出的最终编码速率, 需要在 DTX状态下, 插入用于传输该最终编码速率(也称为二次判决速率) 的下行子帧, 即自定义某一个下行子帧用于传输确定出的最终编码速率, 并 通过该下行子帧向合并小区的各扇区发送确定出的最终编码速率。
基于上述任一实施例, 发送模块 84将最终编码速率发送给合并小区的各 扇区之后, 接收模块 81还用于:
接收合并小区内至少一个扇区发送的上行用户面帧 ^艮文, 该上行用户面 帧报文中携带用于表示该扇区确定的终端的上行信道的质量状况的指示信 息; 以及根据该至少一个扇区发送的上行用户面帧报文中携带的指示信息, 从接收到的所有上行用户面帧报文中, 确定出该终端的上行信道质量最好的 上行用户面帧报文, 并对该上行用户面帧报文中包含的终端上报的数据进行 解码处理。
本发明实施例提供的基站控制器根据确定出的终端在该合并小区的各扇 区内的编码速率, 确定终端在该合并小区的各扇区内的最终编码速率 (如选 择其中最大的编码速率作为该终端的最终编码速率), 因此终端在该合并小区 的各扇区内始终按照相同的允许速率接入, 使得终端在该合并小区的各扇区 的上行信道的质量可能存在差异, 这就需要在各扇区向基站控制器发送的上 行用户面帧报文中携带用于表示该合并小区的各扇区确定的该终端的上行信 道的质量状况的指示信息, 以使基站控制器对接收到的上行信道的质量信息 数据进行解码。
基于上述实施例, 本发明实施例还提供了一种基站, 该基站为合并小区 的任一扇区所属的基站, 参见图 9所示, 该任一扇区所属的基站包括:
上报模块 91 , 用于向基站控制器发送上报信息, 该上报信息包含终端在 该任一扇区内的状态参数; 具体的, 该状态参数为终端在该任一扇区内的编 码速率, 或者, 该状态参数为终端在该任一扇区内的上行测量结果。
接收模块 92, 用于接收基站控制器发送的最终编码速率, 该最终编码速 率是基站控制器根据接收到的上报信息确定的;
优选的, 接收模块 92接收基站控制器在同一子帧上向合并小区的各扇区 发送的最终编码速率。 由于该合并小区的各扇区的链路时延有可能不同, 而 导致该合并小区的各扇区的基站的接收模块 92接收到基站控制器发送的最终 编码速率的时刻有可能不同。
发送模块 93 , 用于与合并小区内除该任一扇区之外的其他扇区所属的基 站在同一时刻, 向终端发送接收模块 92接收到的最终编码速率。
由于该合并小区的各扇区接收到基站控制器发送的最终编码速率的时刻 有可能不同, 为了尽量保证终端在同一时刻接收到该合并小区的各扇区所属 的基站下发的编码速率, 该合并小区的各扇区所属的基站的发送模块 93在同 一时刻, 向终端发送该最终编码速率。
本发明实施例提供的合并小区的任一扇区所属的基站向基站控制器发送 上报信息, 接收基站控制器发送的最终编码速率, 以及与合并小区内除该任 一扇区之外的其他扇区所属的基站在同一时刻, 向终端发送该最终编码速率。 由于合并小区的各扇区所属的基站在同一时刻, 向终端下发的编码速率均为 基站控制器经过二次判决确定出的最终编码速率, 从而使得合并小区的各扇 区的上行编码速率相同, 避免了同频干扰。
在实施中, 若状态参数为终端在该任一扇区内的编码速率, 作为一种优 选的实现方式, 上报模块 91具体用于:
若当前为终端确定出的编码速率与前一次为该终端确定出的编码速率不 同时, 则向基站控制器发送上报信息。
该方式下, 由于仅在该任一扇区所属的基站为终端确定出的编码速率发 生变化时才向基站控制器上报该任一扇区所属的基站为终端确定出的编码速 率, 从而节省了资源;
当然除了上述优选的实现方式, 上报模块 91向基站控制器发送上报信息 也可以采用其他方式, 如周期上报等, 本发明不对上报模块 91向基站控制器 发送上 4艮信息的方式进行限定。
在实施中, 若状态参数为终端在该任一扇区内的上行测量结果, 作为一 种优选的实现方式, 上 4艮模块 91具体用于: 按照设定的上报周期内, 向基站控制器发送上报信息; 或, 在接收模块 92接收到基站控制器发送的查询请求时, 向基站控制器发送 上报信息。
当然除了上述优选的实现方式, 上报模块 91向基站控制器发送上报信息 也可以采用其他方式, 本发明不对上报模块 91向基站控制器发送上报信息的 方式进行限定。
在实施中, 接收模块 92具体用于:
接收基站控制器向合并小区内的各扇区发送的同一数据帧, 并从该数据 帧中获取到最终编码速率, 具体参见上述方式 A, 此处不再赘述;
或者,
在预先设定的用于传输最终编码速率的下行子帧上, 接收基站控制器向 合并小区的各扇区发送的最终编码速率, 具体参见上述方式 B , 此处不再赘 述。
在实施中, 发送模块 93与该合并小区内除该任一扇区之外的其他扇区所 属的基站在同一时刻, 向终端发送最终编码速率, 具体包括以下两种方法: 一、 根据预先配置的緩冲时间以及基站控制器发送最终编码速率的下行 子帧, 确定向终端发送最终编码速率的发送时间, 并按照确定的发送时间向 终端发送最终编码速率, 其中, 预先配置的緩冲时间不小于该合并小区的各 扇区的链路时延的最大值。
优选的, 该预先配置的緩冲时间为该合并小区的各扇区的链路时延的最 大值。
该方法下, 预先配置的緩冲时间可以是基站控制器为该合并小区的各扇 区配置的, 也可以由其他能够获取到该合并小区的各扇区的链路时延的网络 侧设备为该合并小区的各扇区配置。
具体的, 基站控制器实时接收各扇区所属的基站上报的链路时延, 并从 各扇区所属的基站上报的链路时延中确定出最大的链路时延, 根据该最大的 链路时延, 确定緩冲时间, 并通知给各扇区。 二、 在接收模块 92接收到基站控制器发送的最终编码速率时, 启动预先 配置的定时器, 在定时器超时时, 向终端发送最终编码速率, 其中, 该定时 器设定的定时时间为该合并小区的各扇区的链路时延的最大值与自身的链路 时延的差值。
具体的, 基站控制器实时接收该合并小区的各扇区所属的基站上报的链 路时延, 并从该合并小区的各扇区所属的基站上报的链路时延中确定出链路 时延的最大值, 并将该最大的链路时延通知给该合并小区各扇区; 进一步, 该合并小区的各扇区根据自身的链路时延以及接收到的该合并小区的各扇区 的链路时延的最大值, 确定出该最大值与自身的链路时延的差值;
或者,
基站控制器实时接收该合并小区的各扇区所属的基站上报的链路时延, 并将该合并小区的各扇区所属的基站上报的链路时延通知给该合并小区的各 扇区; 进一步, 该合并小区的各扇区所属的基站根据自身的链路时延以及该 合并小区的各扇区的链路时延, 确定出该合并小区的各扇区的链路时延的最 大值与自身的链路时延的差值。
本发明实施例中, 发送模块 93可以采用上述任一方法与该合并小区内除 该任一扇区之外的其他扇区所属的基站在同一时刻, 向终端发送最终编码速 率。 当然, 本发明实施例也不限于上述优选方法, 只要保证发送模块 93与该 合并小区内除该任一扇区之外的其他扇区所属的基站在同一时刻, 向终端发 送最终编码速率的方法都适用于本发明。
基于上述实施例, 发送模块 93向终端发送最终编码速率之后, 接收模块 92还用于: 接收终端发送的上行数据, 并根据接收到的上行数 据生成对应的上行用户面帧报文, 该上行数据为终端采用最终编码速率生成 的数据;
发送模块 93还用于: 向基站控制器发送接收模块 92生成的上行用户面 帧报文, 该上行用户面帧报文中携带用于表示该任一扇区所属的基站确定的 终端的上行信道的质量状况的指示信息。 下面结合优选的硬件结构, 对本发明实施例提供的基站控制器的结构、 处理方式进行说明。
参见图 10所示, 该基站控制器包括收发器 101、 以及与该收发器 101连 接的至少一个处理器 102, 其中:
收发器 101 , 用于接收合并小区内的至少一个扇区发送的上报信息, 该上 报信息包含终端在至少一个扇区中每个扇区内的状态参数;
处理器 102, 用于根据该至少一个扇区发送的上报信息, 确定终端在该合 并小区的各扇区内的编码速率; 以及根据终端在该合并小区的各扇区内的编 码速率, 确定一个编码速率作为该终端的最终编码速率;
收发器 101 ,还用于将处理器 102所确定的最终编码速率发送给该合并小 区的各扇区。
本发明实施例提供的基站控制器对终端在合并小区的各扇区内的编码速 率进行了二次判决, 确定出一个编码速率作为终端的最终编码速率, 并发送 给合并小区的各扇区, 从而使合并小区的各扇区的上行速率保持一致, 均为 确定出的最终编码速率, 避免了同频干扰。
在实施中, 根据上报信息中包含的状态参数不同, 处理器 102确定终端 在合并小区内的各扇区的编码速率, 具体包括以下两种实现方式:
一、 若状态参数为终端在该至少一个扇区中各扇区内的编码速率, 则处 理器 102具体用于:
对于该至少一个扇区, 确定该终端在该至少一个扇区中各扇区内的编码 速率为该至少一个扇区中各扇区上报的状态参数; 以及,
对于合并小区内未发送上报信息的扇区, 确定终端在该未发送上报信息 的扇区中各扇区的编码速率为本地保存的该未发送上 4艮信息的扇区中各扇区 前一次为终端确定出的编码速率。
具体的, 对于合并小区内发送了上 4艮信息的扇区, 确定该终端在该扇区 内的编码速率为接收到的该扇区上报的状态参数(即接收到的该扇区上报的 编码速率); 以及, 对于合并小区内未发送上 4艮信息的扇区, 确定终端在该扇 区内的编码速率为本地保存的该扇区前一次上 4艮的编码速率。
二、 若状态参数为终端在该至少一个扇区中的各扇区内的上行测量结果, 则处理器 102具体用于:
对于该至少一个扇区, 确定该终端在该至少一个扇区中各扇区的编码速 率为对该至少一个扇区中各扇区上报的状态参数进行滤波处理得到的编码速 率; 以及,
对于合并小区内未发送上报信息的扇区, 确定该终端在该未发送上报信 息的扇区中各扇区的编码速率为本地保存的该未发送上 4艮信息的扇区中各扇 区前一次为终端确定出的编码速率。
具体的, 对于合并小区内发送了上 4艮信息的扇区, 确定该终端在该扇区 内的编码速率为对接收到的该扇区上报的状态参数(即接收到的该扇区上报 的上行测量结果)进行滤波处理得到的编码速率; 以及, 对于合并小区内未 发送上 4艮信息的扇区, 确定该终端在该扇区内的编码速率为本地保存的该扇 区前一次为终端对应的编码速率 (即对该扇区前一次上 4艮的上行测量结果进 行滤波处理得到的编码速率)。
其中, 对扇区上报的上行测量结果进行滤波, 得到终端在该扇区的编码 速率, 具体过程参见 3GPP 15009协议。
本发明实施例中, 上行测量结果包括但不限于下列参数信息中至少一种: 该扇区测量出的载干比、 信噪比、 及误码率等。
基于上述两种方式, 处理器 102在确定终端在合并小区的各扇区内的编 码速率之后, 还用于:
根据确定出的终端在该至少一个扇区中各扇区内的编码速率, 更新本地 保存的该至少一个扇区中各扇区对应的编码速率。
具体的, 对于发送了上报信息的扇区来说, 处理器 102将根据该上报信 息确定出的编码速率替换掉自身保存的该扇区对应的编码速率; 对于未发送 上报信息的扇区来说, 处理器 102保持本基站控制器保存的该扇区对应的编 码速率。 基于上述任一实施例, 处理器 102根据该至少一个扇区发送的上报信息, 确定终端在该合并小区的各扇区内的编码速率, 具体包括以下两种方式: 一、 在收发器 101接收到合并小区内任一扇区的上报信息后, 启动预先 配置的定时器, 并在定时器超时时, 根据接收到的所有上报信息, 确定出该 终端在该合并小区的各扇区内的编码速率;
具体的, 对于在定时器超时之前接收到了其上报信息的扇区, 确定终端 在该扇区内的编码速率为根据该扇区的上报信息确定出的编码速率; 以及, 对于在定时器超时之前未接收到其上报信息的扇区, 确定终端在该扇区内的 编码速率为本地保存的该扇区对应的编码速率。
二、 在收发器 101接收到合并小区内任一扇区的上报信息后, 启动预先 配置的计数器, 并在计数器的计数结果达到设定门限值时, 根据接收到的所 有上 4艮信息, 确定出终端在该合并小区的各扇区内的编码速率。
具体的, 对于在计数器的计数结果达到预设的数目之前接收到了其上报 信息的扇区, 确定终端在该扇区的编码速率为根据该扇区的上报信息确定出 的编码速率; 以及, 对于在计数器的计数结果达到预设的数目之前未接收到 其上 4艮信息的扇区, 确定终端在该扇区内的编码速率为本地保存的该扇区对 应的编码速率。
以上仅说明了处理器 102根据该至少一个扇区发送的上报信息, 确定终 端在该合并小区的各扇区内的编码速率的优选实现方式, 处理器 102可以采 用任一优选实现方式确定终端在该合并小区的各扇区内的编码速率; 但本发 明实施例并不限于采用上述方式, 处理器 102也可以采用其他方式, 如在接 收到该合并小区中的一个扇区的上报信息后, 即根据该上报信息确定出终端 在该合并小区的各扇区内的编码速率, 等等。
基于上述任一实施例, 优选的, 处理器 102根据终端在合并小区的各扇 区内的编码速率, 确定一个编码速率作为该终端的最终编码速率, 具体用于: 从确定出的该终端在该合并小区的各扇区内的编码速率中, 选择最大的 编码速率作为该终端的最终编码速率。 该优选方式中, 由于处理器 102从确定出的该终端在该合并小区的各扇 区内的编码速率中, 选择最大的编码速率作为该终端的最终编码速率, 从而 使该合并小区的上行编码速率得到最大增益。
当然, 本发明实施例处理器 102根据终端在该合并小区的各扇区内的编 码速率确定最终编码速率的方式并不限于上述优选方式, 也可以采用其他方 式, 如从确定出的该终端在该合并小区的各扇区内的编码速率中, 选择次大 的编码速率作为该终端的最终编码速率; 又如, 将终端在该合并小区的各扇 区的编码速率的平均值作为该终端的最终编码速率, 等等。
为了保证该合并小区的各扇区的空口可以在同一时刻接收到该最终编码 速率, 优选的, 收发器 101具体用于: 在同一子帧上, 将处理器 102确定出 的最终编码速率发送给该合并小区的各扇区。
当然, 收发器 101也可以在不同时刻, 将处理器 102确定出的最终编码 速率发送给该合并小区的各扇区, 本发明实施例不对收发器 101 向该合并小 区的各扇区发送最终编码速率的发送时刻进行限定, 只要保证将确定出的最 终编码速率发送给该合并小区的各扇区即可。
基于上述优选的方式, 收发器 101在同一子帧上, 将处理器 102确定出 的最终编码速率发送给合并小区的各扇区, 具体包括:
在确定下行存在需要向该合并小区的各扇区发送的数据帧时, 将最终编 码速率携带在该数据帧中发送给合并小区的各扇区; 否则, 通过预先设定的 下行子帧, 将最终编码速率发送给合并小区的各扇区。
若收发器 101 通过数据帧将最终编码速率发送给合并小区的各扇区, 由 于带内帧数据已经完成了下行同步, 因此, 合并小区的各扇区的空口可以在 同一时刻接收到最终编码速率, 不会因为合并小区的各扇区的 Abis接口链路 传输时延的差异而导致同一时刻合并小区的各扇区下发的编码速率不一致。 其中, Abis接口定义为基站子系统的两个功能实体 BSC和 BTS之间的通信接 口。
若收发器 101 通过预先设定的下行子帧, 将最终编码速率发送给合并小 区的各扇区, 从而保证合并小区的各扇区的空口可以在同一时刻接收到最终 下行子帧, 也可以是协议中规定的用于传输该最终编码速率的下行子帧。 优 选的, 该用于传输最终编码速率的下行子帧为当前子帧的下一个下行子帧。
需要说明的是, 当下行开启 DTX状态时, 为了尽快向合并小区内的各扇 区下发确定出的最终编码速率, 需要在 DTX状态下, 插入用于传输该最终编 码速率 (也称为二次判决速率) 的下行子帧, 即自定义某一个下行子帧用于 传输确定出的最终编码速率, 并通过该下行子帧向合并小区内的各扇区发送 确定出的最终编码速率。
基于上述任一实施例, 收发器 101 将最终编码速率发送给合并小区的各 扇区之后, 还用于: 接收合并小区内至少一个扇区发送的上行用户面帧报文, 该上行用户面帧报文中携带用于表示该扇区确定的终端的上行信道的质量状 况的指示信息;
处理器 102还用于: 根据该至少一个扇区发送的上行用户面帧报文中携 带的指示信息, 从接收到的所有上行用户面帧报文中, 确定出该终端的上行 信道质量最好的上行用户面帧报文, 并对该上行用户面帧报文中包含的终端 上报的数据进行解码处理。
本发明实施例提供的基站控制器根据确定出的终端在该合并小区的各扇 区内的编码速率, 确定终端在该合并小区的各扇区内的最终编码速率 (如选 择其中最大的编码速率作为该终端的最终编码速率), 因此终端在该合并小区 的各扇区内始终按照相同的允许速率接入, 使得终端在该合并小区的各扇区 的上行信道的质量可能存在差异, 这就需要在各扇区向基站控制器发送的上 行用户面帧报文中携带用于表示该合并小区的各扇区确定的该终端的上行信 道的质量状况的指示信息, 以使基站控制器对接收到的上行信道的质量信息 数据进行解码。
下面结合优选的硬件结构, 对本发明实施例提供的合并小区的任一扇区 所属的基站的结构、 处理方式进行说明。
参见图 11所示, 该任一扇区所属的基站包括收发器 111、 以及与该收发 器 111连接的至少一个处理器 112, 其中:
收发器 111 , 用于向基站控制器发送上报信息, 该上报信息包含终端在该 任一扇区内的状态参数; 接收基站控制器发送的最终编码速率, 该最终编码 速率是基站控制器根据接收到的上报信息确定的; 以及与合并小区内除该任 一扇区之外的其他扇区所属的基站在同一时刻, 向终端发送接收到的最终编 码速率。
优选的, 收发器 111 接收基站控制器在同一子帧上向合并小区内的各扇 区发送的最终编码速率。 由于该合并小区内的各扇区的链路时延有可能不同, 而导致各扇区所属的基站的收发器 111 接收到基站控制器发送的最终编码速 率的时刻有可能不同。
由于该合并小区内的各扇区所属的基站接收到基站控制器发送的最终编 码速率的时刻有可能不同, 为了尽量保证终端在同一时刻接收到各扇区下发 的编码速率, 该合并小区内的各扇区所属的基站的收发器 111 在同一时刻, 向终端发送该最终编码速率。
本发明实施例提供的合并小区的任一扇区所属的基站向基站控制器发送 上报信息, 接收基站控制器发送的最终编码速率, 以及与合并小区内除该任 一扇区之外的其他扇区所属的基站在同一时刻, 向终端发送该最终编码速率。 由于合并小区的各扇区所属的基站在同一时刻, 向终端下发的编码速率均为 基站控制器经过二次判决确定出的最终编码速率, 从而使得合并小区的各扇 区的上行编码速率相同, 避免了同频干扰。
在实施中, 若状态参数为终端该任一扇区内的编码速率, 作为一种优选 的实现方式, 处理器 112具体用于:
若当前为终端确定出的编码速率与前一次为该终端确定出的编码速率不 同时, 则触发收发器 111向基站控制器发送上报信息。
该方式下, 由于仅在处理器 112 为终端确定出的编码速率发生变化时才 触发收发器 111 向基站控制器上报该扇区为终端确定出的编码速率, 从而节 省了资源;
当然除了上述优选的实现方式, 收发器 111 向基站控制器发送上报信息 也可以采用其他方式, 如周期上报等, 本发明不对收发器 111 向基站控制器 发送上 4艮信息的方式进行限定。
在实施中, 若状态参数为终端在该任一扇区内的上行测量结果, 作为一 种优选的实现方式, 收发器 111具体用于:
按照设定的上报周期内, 向基站控制器发送上报信息; 或,
在接收到基站控制器发送的查询请求时, 向基站控制器发送上报信息。 当然除了上述优选的实现方式, 收发器 111 向基站控制器发送上报信息 也可以采用其他方式, 本发明不对收发器 111 向基站控制器发送上报信息的 方式进行限定。
在实施中, 收发器 111具体用于:
接收基站控制器向合并小区的各扇区发送的同一数据帧, 并从该数据帧 中获取到最终编码速率, 具体参见上述方式 A, 此处不再赘述;
或者,
在预先设定的用于传输最终编码速率的下行子帧上, 接收基站控制器向 合并小区的各扇区发送的最终编码速率, 具体参见上述方式 B , 此处不再赘 述。
在实施中, 为了保证该任一扇区所属的基站与该合并小区内除该任一扇 区之外的其他扇区所属的基站在同一时刻, 向终端发送最终编码速率, 处理 器 112具体包括以下两种处理方法:
一、 根据预先配置的緩冲时间以及基站控制器发送最终编码速率的下行 子帧, 确定向终端发送最终编码速率的发送时间, 并触发收发器 111 按照处 理器 112确定的发送时间向终端发送最终编码速率, 其中, 预先配置的緩冲 时间不小于该合并小区的各扇区的链路时延的最大值。
优选的, 该预先配置的緩冲时间为该合并小区的各扇区的链路时延的最 大值。
该方法下, 预先配置的緩冲时间可以是基站控制器为该合并小区的各扇 区配置的, 也可以由其他能够获取到该合并小区的各扇区的链路时延的网络 侧设备为该合并小区的各扇区配置。
具体的, 基站控制器实时接收该合并小区的各扇区所属的基站上报的链 路时延, 并从该合并小区的各扇区所属的基站上报的链路时延中确定出最大 的链路时延, 根据该最大的链路时延, 确定緩冲时间, 并通知给各扇区。
二、 在收发器 111 接收到基站控制器发送的最终编码速率时, 启动预先 配置的定时器, 在定时器超时时, 触发收发器 111向终端发送最终编码速率, 其中, 该定时器设定的定时时间为该合并小区的各扇区的链路时延的最大值 与自身的链路时延的差值。
具体的, 基站控制器实时接收该合并小区的各扇区所属的基站上报的链 路时延, 并从该合并小区的各扇区所属的基站上报的链路时延中确定出链路 时延的最大值, 并将该最大的链路时延通知给各扇区; 进一步, 该合并小区 的各扇区根据自身的链路时延以及接收到的该合并小区内的各扇区的链路时 延的最大值, 确定出该最大值与自身的链路时延的差值;
或者,
基站控制器实时接收该合并小区的各扇区所属的基站上报的链路时延, 并将该合并小区的各扇区所属的基站上报的链路时延通知给该合并小区的各 扇区; 进一步, 该合并小区的各扇区所属的基站根据自身的链路时延以及该 合并小区的各扇区的链路时延, 确定出该合并小区的各扇区的链路时延的最 大值与自身的链路时延的差值。
本发明实施例中, 收发器 111 可以采用上述任一方法与该合并小区内除 该任一扇区之外的其他扇区所属的基站在同一时刻, 向终端发送最终编码速 率。 当然, 本发明实施例也不限于上述优选方法, 只要保证收发器 111 与该 合并小区内除该任一扇区之外的其他扇区所属的基站在同一时刻, 向终端发 送最终编码速率的方法都适用于本发明。 基于上述实施例, 收发器 111 向终端发送最终编码速率之后还用于: 接 收终端发送的上行数据;
处理器 112还用于: 根据接收到的上行数据生成对应的上行用户面帧报 文, 该上行数据为终端采用最终编码速率生成的数据; 以及触发收发器 111 向基站控制器发送该上行用户面帧报文, 该上行用户面帧报文中携带用于表 示本扇区所属的基站确定的终端的上行信道的质量状况的指示信息。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种基站控制器, 其特征在于, 该基站控制器包括:
接收模块, 用于接收合并小区内的至少一个扇区发送的上报信息, 所述 上报信息包含终端在所述至少一个扇区中各扇区内的状态参数;
第一处理模块, 用于根据所述接收模块接收的至少一个扇区发送的上报 信息, 确定所述终端在所述合并小区的各扇区内的编码速率;
第二处理模块, 用于根据所述终端在所述合并小区的各扇区内的编码速 率, 确定一个编码速率作为所述终端的最终编码速率;
发送模块, 用于将所述第二处理模块确定的最终编码速率发送给所述合 并小区的各扇区。
2、 如权利要求 1所述的基站控制器, 其特征在于, 若所述状态参数为所 述终端在所述至少一个扇区中各扇区内的编码速率, 则所述第一处理模块具 体用于:
对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为所述至少一个扇区中各扇区上报的所述状态参数; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率。
3、 如权利要求 1所述的基站控制器, 其特征在于, 若所述状态参数为所 述终端在所述至少一个扇区中各扇区内的上行测量结果, 则所述第一处理模 块具体用于:
对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为对所述至少一个扇区中各扇区上报的所述状态参数进行滤波处 理得到的编码速率; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率。
4、 如权利要求 1~3任一项所述的基站控制器, 其特征在于, 所述第一处 理模块在确定所述终端在所述合并小区的各扇区内的编码速率之后, 还用于: 根据确定出的所述终端在所述至少一个扇区中各扇区内的编码速率, 更 新本地保存的所述至少一个扇区中各扇区对应的编码速率。
5、 如权利要求 1~4任一项所述的基站控制器, 其特征在于, 所述第一处 理模块具体用于:
在所述接收模块接收到所述合并小区内任一扇区的上报信息后, 启动预 先配置的定时器, 并在定时器超时时, 根据接收到的所有上报信息, 确定出 所述终端在所述合并小区的各扇区内的编码速率; 或者,
在所述接收模块接收到所述合并小区内任一扇区的上报信息后, 启动预 先配置的计数器, 并在计数器的计数结果达到设定门限值时, 根据接收到的 所有上 4艮信息, 确定所述终端在所述合并小区的各扇区内的编码速率。
6、 如权利要求 1~5任一项所述的基站控制器, 其特征在于, 所述第二处 理模块具体用于:
从确定出的所述终端在所述合并小区的各扇区内的编码速率中, 选择最 大的编码速率作为所述终端的最终编码速率。
7、 如权利要求 1~6任一项所述的基站控制器, 其特征在于, 所述发送模 块具体用于:
在确定下行存在向所述合并小区的各扇区发送的数据帧时, 将所述最终 编码速率携带在所述数据帧中发送给所述合并小区的各扇区; 否则, 通过预 先设定的下行子帧, 将所述最终编码速率发送给所述合并小区的各扇区。
8、 如权利要求 1~7任一项所述的基站控制器, 其特征在于, 所述发送模 块将所述最终编码速率发送给所述合并小区的各扇区之后, 所述接收模块还 用于:
接收所述合并小区内至少一个扇区发送的上行用户面帧报文, 所述上行 用户面帧报文中携带用于表示所述扇区确定的所述终端的上行信道的质量状 况的指示信息;
根据所述上行用户面帧报文中携带的指示信息, 从接收到的所有所述上 行用户面帧报文中, 确定出所述终端的上行信道的质量最好的上行用户面帧 码处理。
9、 一种基站, 其特征在于, 该基站为合并小区内任一扇区所属的基站, 所述基站包括:
上报模块, 用于向基站控制器发送上报信息, 所述上报信息包含终端在 所述任一扇区内的状态参数;
接收模块, 用于接收所述基站控制器发送的最终编码速率, 所述最终编 码速率是所述基站控制器根据接收到的上报信息确定的; 以及,
发送模块, 用于与所述合并小区内除所述任一扇区之外的其他扇区所属 的基站在同一时刻向所述终端发送所述最终编码速率。
10、 如权利要求 9所述的基站, 其特征在于, 若所述状态参数为所述终 端在所述任一扇区内的编码速率, 所述上 4艮模块具体用于:
若当前为所述终端确定的编码速率与前一次为所述终端确定的编码速率 不同, 则向所述基站控制器发送所述上报信息。
11、 如权利要求 9所述的基站, 其特征在于, 若所述状态参数为所述终 端在所述任一扇区内的上行测量结果, 所述上 4艮模块具体用于:
按照设定的上报周期内, 向所述基站控制器发送所述上报信息; 或, 在所述接收模块接收到所述基站控制器发送的查询请求时, 向所述基站 控制器发送所述上 信息。
12、 如权利要求 9~11任一项所述的基站, 其特征在于, 所述接收模块具 体用于:
接收所述基站控制器向所述合并小区的各扇区发送的同一数据帧, 并从 所述数据帧中获取所述最终编码速率; 或者,
在预先设定的用于传输所述最终编码速率的下行子帧上, 接收所述基站 控制器向所述合并小区的各扇区发送的所述最终编码速率。
13、 如权利要求 9~12任一项所述的基站, 其特征在于, 所述发送模块具 体用于:
根据预先配置的緩冲时间以及所述基站控制器发送所述最终编码速率的 下行子帧, 确定向所述终端发送所述最终编码速率的发送时间, 并按照确定 的发送时间向所述终端发送所述最终编码速率, 其中, 所述緩冲时间不小于 所述合并小区的各扇区的链路时延的最大值; 或者,
在所述接收模块接收到所述基站控制器发送的所述最终编码速率时, 启 动预先配置的定时器, 在定时器超时时, 向所述终端发送所述最终编码速率, 其中, 所述定时器设定的定时时间为所述合并小区的各扇区的链路时延的最 大值与自身的链路时延的差值。
14、 如权利要求 9~13任一项所述的基站, 其特征在于, 在所述发送模块 向所述终端发送所述最终编码速率之后,
所述接收模块还用于: 接收所述终端发送的上行数据, 并根据所述上行 数据生成对应的上行用户面帧报文, 所述上行数据为所述终端采用所述最终 编码速率生成的数据;
所述发送模块还用于: 向所述基站控制器发送所述上行用户面帧报文, 所述上行用户面帧报文中携带用于表示所述扇区所属的基站确定的所述终端 的上行信道的质量状况的指示信息。
15、 一种自适应多速率 AMR的编码速率调整方法, 其特征在于, 该方法 包括:
接收合并小区内的至少一个扇区发送的上报信息, 所述上报信息包含终 端在所述至少一个扇区中各扇区内的状态参数;
根据所述至少一个扇区发送的上报信息, 确定所述终端在所述合并小区 的各扇区内的编码速率;
根据所述终端在所述合并小区的各扇区内的编码速率, 确定一个编码速 率作为所述终端的最终编码速率; 将所述确定的最终编码速率发送给所述合并小区的各扇区。
16、 如权利要求 15所述的方法, 其特征在于, 若所述状态参数为所述终 端在所述至少一个扇区中各扇区内的编码速率, 则所述根据所述至少一个扇 区发送的上 4艮信息, 确定所述终端在所述合并小区的各扇区内的编码速率, 具体包括:
对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为所述至少一个扇区中各扇区上报的所述状态参数; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区前一次为所述终端确定出的编码速率。
17、 如权利要求 15所述的方法, 其特征在于, 若所述状态参数为所述终 端在所述至少一个扇区中各扇区内的上行测量结果, 则所述根据所述至少一 个扇区发送的上 4艮信息, 确定所述终端在所述合并小区的各扇区内的编码速 率, 具体包括:
对于所述至少一个扇区, 确定所述终端在所述至少一个扇区中各扇区内 的编码速率为对所述至少一个扇区中各扇区上报的所述状态参数进行滤波处 理得到的编码速率; 以及,
对于所述合并小区内未发送上 4艮信息的扇区, 确定所述终端在所述未发 送上 4艮信息的扇区中各扇区内的编码速率为本地保存的所述未发送上 4艮信息 的扇区中各扇区为所述终端确定出的编码速率。
18、 如权利要求 15~17任一所述的方法, 其特征在于, 在所述确定所述 终端在所述合并小区的各扇区内的编码速率之后, 还包括:
根据确定出的所述终端在所述至少一个扇区中各扇区内的编码速率, 更 新本地保存的所述至少一个扇区中各扇区对应的编码速率。
19、 如权利要求 15~18任一项所述的方法, 其特征在于, 所述根据所述 至少一个扇区发送的上 4艮信息, 确定所述终端在所述合并小区的各扇区内的 编码速率, 具体包括: 在接收到所述合并小区内任一扇区的上报信息后, 启动预先配置的定时 器, 并在定时器超时时, 根据接收到的所有上报信息, 确定出所述终端在所 述合并小区的各扇区内的编码速率; 或者,
在接收到所述合并小区内任一扇区的上报信息后, 启动预先配置的计数 器, 并在计数器的计数结果达到设定门限值时, 根据接收到的所有上报信息, 确定所述终端在所述合并小区的各扇区内的编码速率。
20、 如权利要求 15~19任一项所述的方法, 其特征在于, 所述根据所述 终端在所述合并小区的各扇区内的编码速率, 确定一个编码速率作为所述终 端的最终编码速率, 具体包括:
从确定出的所述终端在所述合并小区的各扇区内的编码速率中, 选择最 大的编码速率作为所述终端的最终编码速率。
21、 如权利要求 15~21任一项所述的方法, 其特征在于, 所述将所述最 终编码速率发送给所述合并小区的各扇区, 具体包括:
在确定下行存在向所述合并小区的各扇区发送的数据帧时, 将所述最终 编码速率携带在所述数据帧中发送给所述合并小区的各扇区; 否则, 通过预 先设定的下行子帧, 将所述最终编码速率发送给所述合并小区的各扇区。
22、 如权利要求 15~21任一项所述的方法, 其特征在于, 所述将所述最 终编码速率发送给所述合并小区的各扇区之后, 所述方法还包括:
接收所述合并小区内至少一个扇区发送的上行用户面帧报文, 所述上行 用户面帧报文中携带用于表示所述扇区确定的所述终端的上行信道的质量状 况的指示信息;
根据所述上行用户面帧报文中携带的指示信息, 从接收到的所有所述上 行用户面帧报文中, 确定出所述终端的上行信道的质量最好的上行用户面帧 码处理。
23、 一种自适应多速率 AMR的编码速率调整方法, 其特征在于, 该方法 包括: 合并小区内任一扇区所属的基站向基站控制器发送上报信息, 所述上报 信息包含终端在所述任一扇区内的状态参数;
所述任一扇区所属的基站接收所述基站控制器发送的最终编码速率, 所 述最终编码速率是所述基站控制器根据接收到的上报信息确定的; 以及, 所述任一扇区所属的基站与所述合并小区内除所述任一扇区之外的其他 扇区所属的基站在同一时刻向所述终端发送所述最终编码速率。
24、 如权利要求 23所述的方法, 其特征在于, 若所述状态参数为所述终 端在所述任一扇区内的编码速率, 则所述任一扇区所属的基站向基站控制器 发送上 4艮信息, 具体包括:
若所述任一扇区所属的基站当前为所述终端确定的编码速率与前一次为 所述终端确定的编码速率不同, 则向所述基站控制器发送所述上 4艮信息。
25、 如权利要求 23所述的方法, 其特征在于, 若所述状态参数为所述终 端在所述任一扇区内的上行测量结果, 则所述任一扇区所属的基站向基站控 制器发送上 信息, 具体包括:
所述任一扇区所属的基站按照设定的上报周期内, 向所述基站控制器发 送所述上报信息; 或者,
所述任一扇区所属的基站在接收到所述基站控制器发送的查询请求时, 向所述基站控制器发送所述上报信息。
26、 如权利要求 23~25任一项所述的方法, 其特征在于, 所述任一扇区 所属的基站接收所述基站控制器发送的最终编码速率, 具体包括:
所述任一扇区所属的基站接收所述基站控制器向所述合并小区的各扇区 发送的同一数据帧, 并从所述数据帧中获取所述最终编码速率; 或者,
所述任一扇区所属的基站在预先设定的用于传输所述最终编码速率的下 行子帧上, 接收所述基站控制器向所述合并小区的各扇区发送的所述最终编 码速率。
27、 如权利要求 23~26任一项所述的方法, 其特征在于, 所述任一扇区 所属的基站与所述合并小区内除所述任一扇区之外的其他扇区所属的基站在 同一时刻向所述终端发送所述最终编码速率, 具体包括:
所述任一扇区所属的基站根据预先配置的緩冲时间以及所述基站控制器 发送所述最终编码速率的下行子帧, 确定向所述终端发送所述最终编码速率 的发送时间, 并按照确定的发送时间向所述终端发送所述最终编码速率, 其 中, 所述緩冲时间不小于所述合并小区的各扇区的链路时延的最大值; 或者, 所述任一扇区所属的基站在接收到所述基站控制器发送的所述最终编码 速率时, 启动预先配置的定时器, 在定时器超时时, 向所述终端发送所述最 终编码速率, 其中, 所述定时器设定的定时时间为所述合并小区的各扇区的 链路时延的最大值与自身的链路时延的差值。
28、 如权利要求 23~27任一项所述的方法, 其特征在于, 所述任一扇区 所属的基站与所述合并小区内除所述任一扇区之外的其他扇区所属的基站在 同一时刻向所述终端发送所述最终编码速率之后, 所述方法还包括:
所述任一扇区所属的基站接收所述终端发送的上行数据, 并根据所述上 行数据生成对应的上行用户面帧报文, 所述上行数据为所述终端采用所述最 终编码速率生成的数据; 以及,
所述任一扇区所属的基站所述基站控制器发送所述上行用户面帧报文, 所述上行用户面帧报文中携带用于表示所述任一扇区所属的基站确定的所述 终端的上行信道的质量状况的指示信息。
PCT/CN2013/087318 2013-11-18 2013-11-18 一种自适应多速率的编码速率调整方法和设备 WO2015070455A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002967.7A CN103828425B (zh) 2013-11-18 2013-11-18 一种自适应多速率的编码速率调整方法和设备
PCT/CN2013/087318 WO2015070455A1 (zh) 2013-11-18 2013-11-18 一种自适应多速率的编码速率调整方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087318 WO2015070455A1 (zh) 2013-11-18 2013-11-18 一种自适应多速率的编码速率调整方法和设备

Publications (1)

Publication Number Publication Date
WO2015070455A1 true WO2015070455A1 (zh) 2015-05-21

Family

ID=50761201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087318 WO2015070455A1 (zh) 2013-11-18 2013-11-18 一种自适应多速率的编码速率调整方法和设备

Country Status (2)

Country Link
CN (1) CN103828425B (zh)
WO (1) WO2015070455A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155943B (zh) * 2016-05-13 2022-05-17 华为技术有限公司 用于调整编码速率的方法和装置
CN110505658B (zh) * 2018-05-16 2023-03-31 中国电信股份有限公司 语音速率调整方法、终端以及VoLTE系统
CN112291031B (zh) * 2019-07-24 2022-03-29 上海华为技术有限公司 一种协同调度的方法和相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106420A (zh) * 2006-07-11 2008-01-16 华为技术有限公司 一种实现小区多播业务下行合并的方法
CN101141274A (zh) * 2006-12-21 2008-03-12 中兴通讯股份有限公司 广播组播系统信道的配置方法及节目流的广播方法
CN101400111A (zh) * 2007-09-26 2009-04-01 大唐移动通信设备有限公司 一种小区通信方法、系统及一种无线网络控制器
WO2009067842A1 (fr) * 2007-11-27 2009-06-04 Zte Corporation Système de transmission sens descendant et procédé d'emprunt de ressources spectrales et de ressources de canal à partir de cellules adjacentes
CN101828414A (zh) * 2007-11-27 2010-09-08 中兴通讯股份有限公司 借用邻小区频谱及通道资源的下行传输系统、方法、终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275400C (zh) * 2002-12-31 2006-09-13 中兴通讯股份有限公司 语音自适应多速率的速率调整方法
CN103297978B (zh) * 2012-02-29 2016-09-21 鼎桥通信技术有限公司 一种小区配置方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106420A (zh) * 2006-07-11 2008-01-16 华为技术有限公司 一种实现小区多播业务下行合并的方法
CN101141274A (zh) * 2006-12-21 2008-03-12 中兴通讯股份有限公司 广播组播系统信道的配置方法及节目流的广播方法
CN101400111A (zh) * 2007-09-26 2009-04-01 大唐移动通信设备有限公司 一种小区通信方法、系统及一种无线网络控制器
WO2009067842A1 (fr) * 2007-11-27 2009-06-04 Zte Corporation Système de transmission sens descendant et procédé d'emprunt de ressources spectrales et de ressources de canal à partir de cellules adjacentes
CN101828414A (zh) * 2007-11-27 2010-09-08 中兴通讯股份有限公司 借用邻小区频谱及通道资源的下行传输系统、方法、终端

Also Published As

Publication number Publication date
CN103828425B (zh) 2017-08-18
CN103828425A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
RU2752694C1 (ru) Указание луча для управления мощностью восходящей линии связи
CN111727620B (zh) Rlm和波束监视参数的优化的重新配置
CN107852611B (zh) 对于通过共享频谱的lte的与服务质量相关的增强
US10638440B2 (en) Method for determining measurement gap length and network device
EP2749069B1 (en) Methods providing packet communications including jitter buffer emulation and related network nodes
US20160050698A1 (en) System and Method for Obtaining and Using Device-to-Device Frequency-Related Capability and Configuration Preferences
CN112771961A (zh) 对已配置许可的动态灵活配置
US9813954B2 (en) Method for determining unnecessary handover and base station
RU2608779C1 (ru) Изменение конфигурации или состояния однонаправленного радиоканала
EP2790451B1 (en) Method, equipment and system for adjusting feedback cycle of cqi
WO2019010711A1 (zh) 用于终端能力上报的方法和装置
WO2014190550A1 (zh) 一种通讯方法、基站及用户设备
RU2742016C1 (ru) Определение tbs c несколькими основными графами
RU2742204C1 (ru) Способ управления состоянием доставки данных нисходящей линии связи
WO2013104296A1 (zh) 数据的传输方法及装置
WO2009151355A1 (en) Method and arrangement for performing handover in a wireless communication system
WO2014201695A1 (zh) eMBMS管理方法、多媒体广播组播业务协调实体和基站
US20240106574A1 (en) HARQ RTT Timer Adjustment for Multi-TB Scheduling
WO2009132579A1 (zh) 传输时间间隔的调整方法和装置
WO2015070455A1 (zh) 一种自适应多速率的编码速率调整方法和设备
WO2017143923A1 (zh) 一种实现同步的方法及装置
EP4057546A1 (en) Harq rtt timer adjustment for multi-tb scheduling
WO2016155555A1 (zh) 一种实现gsm和lte系统间干扰处理的方法和装置
WO2014036699A1 (zh) 一种协调调度方法及装置
WO2015139178A1 (zh) Tpc命令传输配置方法、传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897308

Country of ref document: EP

Kind code of ref document: A1