WO2015070218A2 - Waterfroof apertured surfaces or materials using nanoparticle hydrophobic treatments - Google Patents

Waterfroof apertured surfaces or materials using nanoparticle hydrophobic treatments Download PDF

Info

Publication number
WO2015070218A2
WO2015070218A2 PCT/US2014/065021 US2014065021W WO2015070218A2 WO 2015070218 A2 WO2015070218 A2 WO 2015070218A2 US 2014065021 W US2014065021 W US 2014065021W WO 2015070218 A2 WO2015070218 A2 WO 2015070218A2
Authority
WO
WIPO (PCT)
Prior art keywords
apertures
intersecting members
hydrophobic
interweaving
intersecting
Prior art date
Application number
PCT/US2014/065021
Other languages
French (fr)
Other versions
WO2015070218A3 (en
Inventor
Mark D. Shaw
Mathew P. CLANCY
Original Assignee
Shaw Mark D
Clancy Mathew P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaw Mark D, Clancy Mathew P filed Critical Shaw Mark D
Priority to EP19203691.1A priority Critical patent/EP3626874A1/en
Priority to EP14860945.6A priority patent/EP3068248B1/en
Publication of WO2015070218A2 publication Critical patent/WO2015070218A2/en
Publication of WO2015070218A3 publication Critical patent/WO2015070218A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/02Footwear characterised by the material made of fibres or fabrics made therefrom
    • A43B1/04Footwear characterised by the material made of fibres or fabrics made therefrom braided, knotted, knitted or crocheted
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear
    • A43B23/02Uppers; Boot legs
    • A43B23/0205Uppers; Boot legs characterised by the material
    • A43B23/0215Plastics or artificial leather
    • A43B23/022Plastics or artificial leather with waterproof breathable membranes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43CFASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
    • A43C9/00Laces; Laces in general for garments made of textiles, leather, or plastics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/172Coated or impregnated
    • Y10T442/174Including particulate material other than fiber in coating or impregnation

Definitions

  • This application relates generally to the field of waterproofing, and more particularly to the field of waterproofing normally permeable apertured surfaces or materials, and even more particularly to the field of waterproofing materials using nanotechnology coatings or chemical compositions and treatments.
  • hydrophobic is used for surfaces having water contact angels greater than about 120 degrees
  • superhydrophobic is used for surfaces having water contact angles of greater than about 150 degrees.
  • the nanoparticle technology often provides oleophobic and other nonaqueous liquid barriers as well as creating a hydrophobic barrier. Examples of various hydrophobic and superhydrophobic compositions and treatment methodologies are provided in U.S Patent Publication Nos. 2013/0109261, 2012/0009396, 2010/0314575, 2012/0045954, and 2006/0029808, and also in U.S. Patent Nos.
  • the invention comprises a method of providing waterproof apertured materials or surfaces using hydrophobic nanoparticle compositions and treatments, and preferably superhydrophobic compositions and treatments, and the materials or surfaces resulting therefrom, wherein apertures of a size that would normally render the surface or material water-permeable may be provided in the surface or material, and further wherein intrusive or breeching members, such as stitching threads, laces, strings, shoestrings or the like, may pass through a waterproof surface or material without reducing the impermeability to water.
  • the method comprises determining the extent of the hydrophobic field that extends beyond the physical edge of a particular treated material to determine the allowable size of the aperture, such that the extended hydrophobic field present on the material surrounding the aperture will be sufficient to prevent surface wetting and water permeability by fully overlapping the aperture or by presenting a reduced area effective aperture that is small enough to preclude passage of water.
  • the invention embodies a method of manufacturing an apertured waterproof mesh material comprising the steps of interweaving intersecting members to form a mesh material comprising apertures of a size such that said mesh material is not waterproof; treating said intersecting members with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field extending beyond said intersecting members and into each of said apertures such that the effective size of each of said apertures is reduced to a size that precludes passage of water through said apertures; or in other terms a method of manufacturing an apertured waterproof mesh material comprised of intersecting members, the method comprising the steps of treating said intersecting members with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field extending beyond said intersecting members; determining the extent of said hydrophobic field; interweaving intersecting members to form a mesh material having apertures wider than the width of each of said intersecting members, such that said hydrophobic field extends a sufficient distance into said apertures to preclude passage
  • the invention embodies an apertured waterproof mesh material produced by the above methods.
  • the breeching member is first treated with a nanoparticle hydrophobic composition, such that wicking through the breeching member is precluded and the aperture is effectively blocked by the hydrophobic field, thereby maintaining liquid impermeability of the waterproof material.
  • Figure 1 is an illustration of an apertured material composed of intersecting members having been treated to produce a hydrophobic surface and showing the extended hydrophobic field sufficient to maintain liquid impermeability.
  • Figure 2 illustrates a breeching member extending through a waterproof material.
  • the embodiments of the invention disclose a method of manufacturing an apertured mesh material composed of intersecting members defining apertures of sufficient size to be permeable to water, and treating said intersecting members before or after the step of intersecting the members with a nanoparticle hydrophobic, including superhydrophobic, composition that creates a hydrophobic field extending beyond the intersecting members and across and into the apertures, whereby the overlapping or adjacent hydrophobic fields preclude passage of water through said normally permeable apertures.
  • the term “mesh” or “mesh material” shall refer to and include a material, such as a fabric, screen or the like, composed of intersecting elongated members, such as threads, yarns, strings, wires, cables, rods or the like.
  • hydrophobic or superhydrophobic compositions and treatments suitable for this invention shall include but not be limited to the compositions and treatments disclosed in U.S Patent Publication Nos. 2013/0109261, 2012/0009396, 2010/0314575, 2012/0045954, and 2006/0029808, and also in U.S. Patent Nos. 8,007,638, 6,103,379, 6,645,569, 6,743,467, 7,985,451, 8,187,707, 8,202,614, 7,998,554, 7,989,619, 5,042,991, 8,361,176, 8,258,206 and 6,723,378, and also in International Publication No. WO2013/058843.
  • the disclosure of these publications and patents as to the compositions and methods of application are incorporated herein by reference.
  • an apertured mesh material or surface 10 is manufactured by interweaving a plurality of intersecting members 11, such as for example thread members combing to create a fabric.
  • the intersecting members 11, and therefore the apertured mesh material 10 as well, is treated with a nanoparticle hydrophobic composition through either a coating process or an absorption process.
  • intersecting members 11 may be treated with a nanoparticle hydrophobic composition sold under the brand name ULTRA EVER DRY.
  • the intersecting members 11 may be treated prior to the step of intersecting the members 11 to form the mesh material 10, or the intersecting members 11 may be inter woven together first to form the apertured material 10 and then treated.
  • the treatment step does not physically block any portions of or reduce the actual size of the apertures 13.
  • the intersecting members 11 are interwoven to produce apertures 13 of a size that are permeable to water. More preferably, the apertures 13, which are generally square or rectangular in configuration, have width dimensions greater than the cross- sectional widths of the intersecting members 11, i.e., greater than the diameters of generally cylindrical intersecting members 11 for example. Apertures of such size are typically provided in mesh materials 10 that are designed to permit significant flow of air through the mesh material 10.
  • hydrophobic field 12 (taken herein to include superhydrophobic fields as well) that extends beyond the actual physical edges of each of the intersecting members 11.
  • the extent of the extended hydrophobic field 12 must be measured and known, as it is this extent that determines the maximum permissible size for an aperture 13.
  • the combination of the hydrophobic fields 12 associated with the portions of the intersecting members 11 defining an aperture 13 will combine, either because of overlapping or being sufficiently adjacent, to create a hydrophobic barrier either fully across the aperture 13 or sufficiently across the aperture 13 to create an effective aperture 14 sufficiently small in dimensions so as to preclude passage of water through the aperture 13, thereby producing a mesh material that is liquid impermeable.
  • the extent of the hydrophobic field 12 will vary dependent upon the material of composition of the intersecting members 11 and the strength of the particular nanoparticle hydrophobic or superhydrophobic composition chosen.
  • the hydrophobic can be measured for a particular intersecting member 11 can be measured by treating the intersecting member 11 and then varying the size of the interwoven aperture 13 to determine the maximum allowable size for the aperture 13 to remain waterproof.
  • the method thus comprises determining the extent of the hydrophobic field 12 that extends beyond the physical edge of a particular treated intersecting member 11 to determine the allowable maximum size of the aperture 13, such that the extended hydrophobic field 12 extending from the intersecting members 11 surrounding the aperture 13 will be sufficient to prevent surface wetting and water permeability by fully overlapping and extending across the aperture 13 or by extending sufficiently into the aperture 13 to create an effective aperture 14 of reduced area that is inherently small enough to preclude passage of water.
  • an aperture 13 may be present in a waterproof material
  • the material 16 which may be naturally liquid impermeable or treated as discussed or referenced above, the breeching member 15 passing through either a pre-made hole or bore, such as a shoelace, tie or string passing through a pre-cut hole or a grommet in a leather material, or a hole or bore made during construction, such as a stitching thread passing through a fabric.
  • a pre-made hole or bore such as a shoelace, tie or string passing through a pre-cut hole or a grommet in a leather material
  • a hole or bore made during construction such as a stitching thread passing through a fabric.
  • the presence of the breeching member 15 in the aperture 13 may render the material 16 permeable to liquids, especially if the breeching member 15 is composed of a material susceptible to wicking, such as a shoelace or thread.
  • the breeching member 15 is treated with a nanoparticle hydrophobic or superhydrophobic composition that creates a hydrophobic field 12, as shown in Figure 2, such that the combination of the nanoparticle hydrophobic or superhydrophobic treatment and the hydrophobic field 12 preclude passage of liquid through the aperture 13 whether by wicking or capillary effect. More preferably, the material 16 is also treated with the nanoparticle hydrophobic or superhydrophobic composition such that the hydrophobic fields 12 will overlap to better seal the aperture 13.
  • nanoparticle hydrophobic or superhydrophobic treatment and composition have been used herein, it is to be understood that some of the nanoparticle hydrophobic or superhydrophobic treatments and compositions will also render the treated material impermeable to almost all liquids and oils, such that the effect is hydrophobic, liquid-phobic and oleophobic.
  • the allowable presence of apertures in the liquid impermeable material whether the apertures are present due to weaving manufacture, needling, apertures inherent in the material, apertures required for functionality of the object (e.g., a shoe), etc., enables surfaces, materials, coverings, garments or the like to be created, for example, that allow air passage through the material while maintaining impermeability.
  • Such materials can be utilized for normal or protective clothing, shoes, covers, tents, canopies, umbrellas, etc.
  • the invention also provides such materials that may be termed "self-cleaning", in that the material is not susceptible to common liquid stains and is more easily cleaned of solid or particulate matter. Most preferably even the inherently waterproof materials are treated so as to be hydrophobic. It is contemplated that equivalents and substitutions for certain elements set forth above may be obvious to those of skill in the art, and therefore the true scope and definition of the invention is to be as set forth in the following claims.
  • the examples and embodiments described above and in the drawings are not meant to be limiting.

Abstract

A method of manufacturing waterproof apertured materials or surfaces (10) using nanoparticle hydrophobic compositions and treatments, and preferably superhydrophobic compositions and treatments, wherein apertures (13) of a size that would normally render the surface or material (10) water-permeable may be provided in the surface or material (10). The method comprises determining the extent of the hydrophobic field (12) that extends beyond the physical edge of a particular treated intersecting member (11) interwoven to form the material (10) to determine the allowable size of an aperture (13), such that the extended hydrophobic field (12) present on the intersecting members (11) surrounding an aperture (13) will be sufficient to prevent surface wetting and water permeability by fully overlapping the aperture (13) or by presenting a reduced area effective aperture (14) that precludes passage of water.

Description

WATERPROOF APERTURED SURFACES OR MATERIALS USING NANOPARTICLE HYDROPHOBIC TREATMENTS
BACKGROUND OF THE INVENTION
This application relates generally to the field of waterproofing, and more particularly to the field of waterproofing normally permeable apertured surfaces or materials, and even more particularly to the field of waterproofing materials using nanotechnology coatings or chemical compositions and treatments.
Many common materials are not waterproof, either because their material of composition absorbs liquids or because of apertures present in the material that are of sufficient size to allow penetration of water or other liquids. Some materials, such as common woven fabrics for example, are often composed of materials which absorb liquids and which contain apertures as a result of the weaving process. It has long been known to treat such materials with waterproofing materials, such as for example waxes, polymer coatings or PTFE-based SCOTCHGARD brand water repellent. Recently, advances in nanotechnology have produced coatings or solutions which impart extreme hydrophobic properties to the materials to which they are applied by providing specialized nanoparticles in the coatings or solutions. The term hydrophobic is used for surfaces having water contact angels greater than about 120 degrees, and the term superhydrophobic is used for surfaces having water contact angles of greater than about 150 degrees. The nanoparticle technology often provides oleophobic and other nonaqueous liquid barriers as well as creating a hydrophobic barrier. Examples of various hydrophobic and superhydrophobic compositions and treatment methodologies are provided in U.S Patent Publication Nos. 2013/0109261, 2012/0009396, 2010/0314575, 2012/0045954, and 2006/0029808, and also in U.S. Patent Nos. 8,007,638, 6,103,379, 6,645,569, 6,743,467, 7,985,451, 8,187,707, 8,202,614, 7,998,554, 7,989,619, 5,042,991, 8,361,176, 8,258,206 and 6,723,378, and also in International Publication No. WO2013/058843, the disclosures of which are incorporated herein by reference. An example of a commercially available superhydrophobic coating is sold under the brand ULTRA EVER DRY by UltraTech International, Inc.
In materials such as woven fabrics having relatively small apertures between the intersecting threads or yarns, i.e., the apertures are smaller than the widths of the intersecting members, it has proven relatively easy to create waterproof surfaces using known waterproofing technology. Problems will arise however when the apertures are excessively large in relation to the diameters of the threads. Similar problems occur in screens or meshes, or materials that have inherent apertures that are of sufficient size to allow water passage directly or by wicking through the material. Another problem arises due to intrusion of connecting members or the like passing through the material, such as occurs for example with stitching or lacing passed through fabrics or leather.
It is an object of this invention to provide waterproof apertured materials or surfaces composed of intersecting members and a method for waterproofing such apertured materials or surfaces, using nanoparticle hydrophobic coatings or treatments, wherein the apertures defined by intersecting members are of greater width than the individual intersecting members. It is a further object to provide such waterproof materials or surfaces wherein the aperture size is sufficient such that the material or surface only minimally interferes with the passage of air or wind through the material or surface.
It is a further object to provide a method for waterproofing materials or surfaces having intrusive or breeching members passing through the waterproof material or surface, wherein the intrusive members are treated with a nanoparticle hydrophobic coating or treatment.
SUMMARY OF THE INVENTION
The invention comprises a method of providing waterproof apertured materials or surfaces using hydrophobic nanoparticle compositions and treatments, and preferably superhydrophobic compositions and treatments, and the materials or surfaces resulting therefrom, wherein apertures of a size that would normally render the surface or material water-permeable may be provided in the surface or material, and further wherein intrusive or breeching members, such as stitching threads, laces, strings, shoestrings or the like, may pass through a waterproof surface or material without reducing the impermeability to water.
For open or unfilled apertures, the method comprises determining the extent of the hydrophobic field that extends beyond the physical edge of a particular treated material to determine the allowable size of the aperture, such that the extended hydrophobic field present on the material surrounding the aperture will be sufficient to prevent surface wetting and water permeability by fully overlapping the aperture or by presenting a reduced area effective aperture that is small enough to preclude passage of water.
Expressed in other terms, the invention embodies a method of manufacturing an apertured waterproof mesh material comprising the steps of interweaving intersecting members to form a mesh material comprising apertures of a size such that said mesh material is not waterproof; treating said intersecting members with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field extending beyond said intersecting members and into each of said apertures such that the effective size of each of said apertures is reduced to a size that precludes passage of water through said apertures; or in other terms a method of manufacturing an apertured waterproof mesh material comprised of intersecting members, the method comprising the steps of treating said intersecting members with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field extending beyond said intersecting members; determining the extent of said hydrophobic field; interweaving intersecting members to form a mesh material having apertures wider than the width of each of said intersecting members, such that said hydrophobic field extends a sufficient distance into said apertures to preclude passage of water through said apertures; or in other terms a method of manufacturing an apertured waterproof mesh material comprised of intersecting members, the method comprising the steps of treating said intersecting members with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field extending beyond said intersecting members; determining the extent of said hydrophobic field; interweaving intersecting members to form a mesh material having apertures of a size that would be water permeable but for said treating step, whereby said hydrophobic fields extending into each of said apertures precludes passage of water through said aperture. Additionally, it is a method wherein said intersecting members are treated prior to said interweaving step; or wherein said intersecting members are treated after said interweaving step; and/or wherein said step of interweaving intersecting members produces apertures of a size such that said hydrophobic fields of said intersecting members adjacent said apertures extend completely across said apertures; and/or wherein said step of interweaving intersecting members produces apertures of a size such that said hydrophobic fields of said intersecting members adjacent said apertures extend partially into said apertures a sufficient distance to define effective apertures that preclude passage of water through said apertures.
Also, the invention embodies an apertured waterproof mesh material produced by the above methods. For filled apertures extending through waterproof materials that receive breeching members, such as for example apertures produced by stitching or to receive a lace or similar elongated member, the breeching member is first treated with a nanoparticle hydrophobic composition, such that wicking through the breeching member is precluded and the aperture is effectively blocked by the hydrophobic field, thereby maintaining liquid impermeability of the waterproof material.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is an illustration of an apertured material composed of intersecting members having been treated to produce a hydrophobic surface and showing the extended hydrophobic field sufficient to maintain liquid impermeability.
Figure 2 illustrates a breeching member extending through a waterproof material.
DETAILED DESCRIPTION OF THE INVENTION
With reference to the drawings, embodiments of the invention will now be described in detail. In general, the embodiments of the invention disclose a method of manufacturing an apertured mesh material composed of intersecting members defining apertures of sufficient size to be permeable to water, and treating said intersecting members before or after the step of intersecting the members with a nanoparticle hydrophobic, including superhydrophobic, composition that creates a hydrophobic field extending beyond the intersecting members and across and into the apertures, whereby the overlapping or adjacent hydrophobic fields preclude passage of water through said normally permeable apertures. For purposes of this disclosure, the term "mesh" or "mesh material" shall refer to and include a material, such as a fabric, screen or the like, composed of intersecting elongated members, such as threads, yarns, strings, wires, cables, rods or the like.
For purposes of this disclosure, hydrophobic or superhydrophobic compositions and treatments suitable for this invention shall include but not be limited to the compositions and treatments disclosed in U.S Patent Publication Nos. 2013/0109261, 2012/0009396, 2010/0314575, 2012/0045954, and 2006/0029808, and also in U.S. Patent Nos. 8,007,638, 6,103,379, 6,645,569, 6,743,467, 7,985,451, 8,187,707, 8,202,614, 7,998,554, 7,989,619, 5,042,991, 8,361,176, 8,258,206 and 6,723,378, and also in International Publication No. WO2013/058843. The disclosure of these publications and patents as to the compositions and methods of application are incorporated herein by reference.
As shown in Figure 1, an apertured mesh material or surface 10 is manufactured by interweaving a plurality of intersecting members 11, such as for example thread members combing to create a fabric. The intersecting members 11, and therefore the apertured mesh material 10 as well, is treated with a nanoparticle hydrophobic composition through either a coating process or an absorption process. For example, intersecting members 11 may be treated with a nanoparticle hydrophobic composition sold under the brand name ULTRA EVER DRY. The intersecting members 11 may be treated prior to the step of intersecting the members 11 to form the mesh material 10, or the intersecting members 11 may be inter woven together first to form the apertured material 10 and then treated. The treatment step does not physically block any portions of or reduce the actual size of the apertures 13.
The intersecting members 11 are interwoven to produce apertures 13 of a size that are permeable to water. More preferably, the apertures 13, which are generally square or rectangular in configuration, have width dimensions greater than the cross- sectional widths of the intersecting members 11, i.e., greater than the diameters of generally cylindrical intersecting members 11 for example. Apertures of such size are typically provided in mesh materials 10 that are designed to permit significant flow of air through the mesh material 10.
Application of the nanoparticle hydrophobic or superhydrophobic composition to the intersecting members 11 creates a hydrophobic field 12 (taken herein to include superhydrophobic fields as well) that extends beyond the actual physical edges of each of the intersecting members 11. The extent of the extended hydrophobic field 12 must be measured and known, as it is this extent that determines the maximum permissible size for an aperture 13. Properly chosen, the combination of the hydrophobic fields 12 associated with the portions of the intersecting members 11 defining an aperture 13 will combine, either because of overlapping or being sufficiently adjacent, to create a hydrophobic barrier either fully across the aperture 13 or sufficiently across the aperture 13 to create an effective aperture 14 sufficiently small in dimensions so as to preclude passage of water through the aperture 13, thereby producing a mesh material that is liquid impermeable. The extent of the hydrophobic field 12 will vary dependent upon the material of composition of the intersecting members 11 and the strength of the particular nanoparticle hydrophobic or superhydrophobic composition chosen. The hydrophobic can be measured for a particular intersecting member 11 can be measured by treating the intersecting member 11 and then varying the size of the interwoven aperture 13 to determine the maximum allowable size for the aperture 13 to remain waterproof.
In this manner, mesh materials such as fabrics, screens or the like may be manufactured that are water impermeable while still allowing passage of air through the apertures 13. The method thus comprises determining the extent of the hydrophobic field 12 that extends beyond the physical edge of a particular treated intersecting member 11 to determine the allowable maximum size of the aperture 13, such that the extended hydrophobic field 12 extending from the intersecting members 11 surrounding the aperture 13 will be sufficient to prevent surface wetting and water permeability by fully overlapping and extending across the aperture 13 or by extending sufficiently into the aperture 13 to create an effective aperture 14 of reduced area that is inherently small enough to preclude passage of water.
In a second embodiment, an aperture 13 may be present in a waterproof material
16 for the purpose of receiving a breeching or member 15. The material 16 which may be naturally liquid impermeable or treated as discussed or referenced above, the breeching member 15 passing through either a pre-made hole or bore, such as a shoelace, tie or string passing through a pre-cut hole or a grommet in a leather material, or a hole or bore made during construction, such as a stitching thread passing through a fabric. In many instances the presence of the breeching member 15 in the aperture 13 may render the material 16 permeable to liquids, especially if the breeching member 15 is composed of a material susceptible to wicking, such as a shoelace or thread. To maintain liquid impermeability, the breeching member 15 is treated with a nanoparticle hydrophobic or superhydrophobic composition that creates a hydrophobic field 12, as shown in Figure 2, such that the combination of the nanoparticle hydrophobic or superhydrophobic treatment and the hydrophobic field 12 preclude passage of liquid through the aperture 13 whether by wicking or capillary effect. More preferably, the material 16 is also treated with the nanoparticle hydrophobic or superhydrophobic composition such that the hydrophobic fields 12 will overlap to better seal the aperture 13.
While the terms "nanoparticle hydrophobic or superhydrophobic treatment and composition" have been used herein, it is to be understood that some of the nanoparticle hydrophobic or superhydrophobic treatments and compositions will also render the treated material impermeable to almost all liquids and oils, such that the effect is hydrophobic, liquid-phobic and oleophobic. The allowable presence of apertures in the liquid impermeable material, whether the apertures are present due to weaving manufacture, needling, apertures inherent in the material, apertures required for functionality of the object (e.g., a shoe), etc., enables surfaces, materials, coverings, garments or the like to be created, for example, that allow air passage through the material while maintaining impermeability. Such materials can be utilized for normal or protective clothing, shoes, covers, tents, canopies, umbrellas, etc. In addition to providing materials that are not wetted, the invention also provides such materials that may be termed "self-cleaning", in that the material is not susceptible to common liquid stains and is more easily cleaned of solid or particulate matter. Most preferably even the inherently waterproof materials are treated so as to be hydrophobic. It is contemplated that equivalents and substitutions for certain elements set forth above may be obvious to those of skill in the art, and therefore the true scope and definition of the invention is to be as set forth in the following claims. The examples and embodiments described above and in the drawings are not meant to be limiting.

Claims

We claim: 1. A method of manufacturing an apertured waterproof mesh material (10) comprising the steps of:
interweaving intersecting members (11) to form a mesh material (10) comprising apertures (13) of a size such that said mesh material (10) is not waterproof;
treating said intersecting members (11) with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field (12) extending beyond said intersecting members (11) and into each of said apertures (13) such that the effective size (14) of each of said apertures (13) is reduced to a size that precludes passage of water through said apertures (13).
2. The method of claim 1, wherein said intersecting members (11) are treated prior to said interweaving step.
3. The method of claim 1, wherein said intersecting members (11) are treated after said interweaving step.
4. The method of claim 1, wherein said step of interweaving intersecting members (11) produces apertures (13) of a size such that said hydrophobic fields (12) of said intersecting members (11) adjacent said apertures (13) extend completely across said apertures (13).
5. The method of claim 1, wherein said step of interweaving intersecting members (11) produces apertures (13) of a size such that said hydrophobic fields (12) of said intersecting members (11) adjacent said apertures (13) extend partially into said apertures (13) a sufficient distance to define effective apertures (14) that preclude passage of water through said apertures (13).
6. An apertured waterproof mesh material (10) produced by the process of claim 1.
7. A method of manufacturing an apertured waterproof mesh material (10) comprised of intersecting members (11), the method comprising the steps of:
treating said intersecting members (11) with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field (12) extending beyond said intersecting members (11);
determining the extent of said hydrophobic field (12);
interweaving intersecting members (11) to form a mesh material (10) having apertures (13) wider than the width of each of said intersecting members (11), such that said hydrophobic field (12) extends a sufficient distance into said apertures (13) to preclude passage of water through said apertures (13).
8. The method of claim 7, wherein said intersecting members (11) are treated prior to said interweaving step.
9. The method of claim 7, wherein said intersecting members (11) are treated after said interweaving step.
10. The method of claim 7, wherein said step of interweaving intersecting members (11) produces apertures (13) of a size such that said hydrophobic fields (12) of said intersecting members (11) adjacent said apertures (13) extend completely across said apertures (13).
11. The method of claim 7, wherein said step of interweaving intersecting members (11) produces apertures (13) of a size such that said hydrophobic fields (12) of said intersecting members (11) adjacent said apertures (13) extend partially into said apertures (13) a sufficient distance to define effective apertures (14) that preclude passage of water through said apertures (13).
12. An apertured waterproof mesh material (10) produced by the process of claim 7.
13. A method of manufacturing an apertured waterproof mesh material (10) comprised of intersecting members (11), the method comprising the steps of:
treating said intersecting members (11) with a nanoparticle hydrophobic or superhydrophobic composition to create a hydrophobic field (12) extending beyond said intersecting members (11);
determining the extent of said hydrophobic field (12);
interweaving intersecting members (11) to form a mesh material (10) having apertures (13) of a size that would be water permeable but for said treating step, whereby said hydrophobic fields (12) extending into each of said apertures (13) precludes passage of water through said aperture (13).
14. The method of claim 13, wherein said intersecting members (11) are treated prior to said interweaving step.
15. The method of claim 13, wherein said intersecting members (11) are treated after said interweaving step.
16. The method of claim 13, wherein said step of interweaving intersecting members (11) produces apertures (13) of a size such that said hydrophobic fields (12) of said intersecting members (11) adjacent said apertures (13) extend completely across said apertures (13).
17. The method of claim 13, wherein said step of interweaving intersecting members (11) produces apertures (13) of a size such that said hydrophobic fields (12) of said intersecting members (11) adjacent said apertures (13) extend partially into said apertures (13) a sufficient distance to define effective apertures (14) that preclude passage of water through said apertures (13).
18. An apertured waterproof mesh material (10) produced by the process of claim 13.
PCT/US2014/065021 2013-11-11 2014-11-11 Waterfroof apertured surfaces or materials using nanoparticle hydrophobic treatments WO2015070218A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19203691.1A EP3626874A1 (en) 2013-11-11 2014-11-11 Waterproof apertured surfaces or materials using nanoparticle hydrophobic treatments
EP14860945.6A EP3068248B1 (en) 2013-11-11 2014-11-11 Waterfroof apertured surfaces or materials using nanoparticle hydrophobic treatments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361902441P 2013-11-11 2013-11-11
US61/902,441 2013-11-11

Publications (2)

Publication Number Publication Date
WO2015070218A2 true WO2015070218A2 (en) 2015-05-14
WO2015070218A3 WO2015070218A3 (en) 2015-11-05

Family

ID=53042356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/065021 WO2015070218A2 (en) 2013-11-11 2014-11-11 Waterfroof apertured surfaces or materials using nanoparticle hydrophobic treatments

Country Status (3)

Country Link
US (3) US20150133013A1 (en)
EP (2) EP3068248B1 (en)
WO (1) WO2015070218A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180362118A1 (en) * 2015-12-23 2018-12-20 Rheinische Friedrich-Wilhelms Universität Bonn Grid structures for stable gas retention under liquids

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
YU32490A (en) 1989-03-13 1991-10-31 Lonza Ag Hydrophobic layered grinding particles
US6103379A (en) 1994-10-06 2000-08-15 Bar-Ilan University Process for the preparation of microspheres and microspheres made thereby
AUPQ234599A0 (en) 1999-08-20 1999-09-16 Lamb, Robert Norman Hydrophobic material
MXPA03006774A (en) 2001-01-30 2003-10-24 Procter & Gamble Coating compositions for modifying surfaces.
US6493910B1 (en) * 2001-05-18 2002-12-17 Delphi Oracle Corp. Shoelace with enhanced knot retention and method of manufacture
US6723378B2 (en) 2001-10-25 2004-04-20 The Regents Of The University Of California Fibers and fabrics with insulating, water-proofing, and flame-resistant properties
US7862624B2 (en) * 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US7998554B2 (en) * 2004-07-06 2011-08-16 Bridgestone Corporation Hydrophobic surfaces with nanoparticles
GB2416781A (en) * 2004-08-04 2006-02-08 Lightex Ltd Breathable fabric
US20060029808A1 (en) 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
IL165219A (en) * 2004-11-15 2008-12-29 Delta Galil Ind Ltd Moisture-management in hydrophilic fibers
GB0425691D0 (en) * 2004-11-23 2004-12-22 Hepworth David G Improved biocomposite material
DE102004062740A1 (en) * 2004-12-27 2006-07-13 Degussa Ag Process for increasing the water-tightness of textile fabrics, textile fabrics treated in this way and their use
WO2006132694A2 (en) 2005-04-01 2006-12-14 Clemson University Ultrahydrophobic substrates
EP1726609A1 (en) 2005-05-25 2006-11-29 DSM IP Assets B.V. Hydrophobic coating
GB2427868A (en) 2005-07-04 2007-01-10 Samuel Michael Baker Cellulosic products having oleophobic and hydrophobic properties
US7989619B2 (en) 2005-07-14 2011-08-02 Innovative Surface Technoloiges, Inc. Nanotextured surfaces
US8258206B2 (en) 2006-01-30 2012-09-04 Ashland Licensing And Intellectual Property, Llc Hydrophobic coating compositions for drag reduction
US8202614B2 (en) 2006-08-09 2012-06-19 Luna Innovations Incorporated Additive particles having superhydrophobic characteristics and coatings and methods of making and using the same
US8846161B2 (en) * 2006-10-03 2014-09-30 Brigham Young University Hydrophobic coating and method
GB2452568B (en) * 2007-09-10 2010-09-01 Gore W L & Ass Gmbh Fabric and fabric laminate
US8021449B2 (en) 2008-04-18 2011-09-20 Saint-Gobain Abrasives, Inc. Hydrophilic and hydrophobic silane surface modification of abrasive grains
ES2654377T3 (en) 2008-10-07 2018-02-13 Ross Technology Corporation Spill resistant surfaces with hydrophobic and oleophobic boundaries
AT11184U1 (en) * 2008-12-23 2010-06-15 Schaefer Philipp Leather articles, especially shoes and methods of making them
US20100314575A1 (en) 2009-06-16 2010-12-16 Di Gao Anti-icing superhydrophobic coatings
DE102010028662A1 (en) * 2010-05-06 2011-11-10 Leibniz-Institut Für Polymerforschung Dresden E.V. Functionalizing textile fabric useful as surgical product in medicine field, comprises filling pores of mesostructure of textile fabric made of fibers or fiber bundles, with particles exhibiting specific average particle size
US20130109261A1 (en) 2010-07-09 2013-05-02 Luna Innovations Coating systems capable of forming ambiently cured highly durable hydrophobic coatings on substrates
CA2841073C (en) 2011-07-05 2019-08-20 Luna Innovations Incorporated Fluid-resistant textile fabrics and methods
US9354326B2 (en) * 2013-07-02 2016-05-31 Carestream Health, Inc. Liquid resistant digital detector

Also Published As

Publication number Publication date
EP3068248A2 (en) 2016-09-21
EP3068248A4 (en) 2017-08-02
EP3626874A1 (en) 2020-03-25
US20180282913A1 (en) 2018-10-04
US20180237963A1 (en) 2018-08-23
EP3068248B1 (en) 2019-11-27
US20150133013A1 (en) 2015-05-14
WO2015070218A3 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6399880B2 (en) Artificial lawn for antibacterial
DE102012206062B4 (en) SHOE UPPER PART
EP1269874B1 (en) Clothing with ventilation means
DE202004021584U1 (en) Breathable waterproof sole for shoes
EP0405062A1 (en) Waterproof clothing
US20180237963A1 (en) Waterproof Apertured Surfaces or Materials Using Nanoparticle Hydrophobic Treatments
TWI604096B (en) Low-air density high-density fabric
JP2013515875A (en) Barrier clothing
US20150189960A1 (en) Waterproof apertured surfaces or materials using nanoparticle hydrophobic treatments
KR101195657B1 (en) A Environmental fabric using bamboo and the Methode
JP2010259338A (en) Stump-treating sheet and method for treating stump therewith
US1267025A (en) Method of reducing a reinforced resilient material and the article of manufacture produced thereby.
US9783979B2 (en) Weather protection device
DE10311296A1 (en) Container made of water-permeable fabric used in coastal water engineering for constructing dams/dikes comprises a filling opening for washing in earth or sand
DE19503405C1 (en) Waterproof shoe
DE102016200230A1 (en) dryer
KR102090264B1 (en) Non-woven fabric manufacturing method using web improved in water permeability, wicking property and tensile strength and nonwoven fabric thereof
EP1252387A1 (en) Textile surface
KR102605308B1 (en) Insect-proof net made of composite multi-filament yarn with high strength and low melting and its manufacturing method
RU2714520C1 (en) Water-repellent synthetic fabric
DE202010011217U1 (en) Mosquitoes protective clothing
KR20120140440A (en) The cover to have a vapor permeability and waterproof facility
DE202006007724U1 (en) Electrostatic discharge shoe e.g. brogue, for use in area of manufacturing sensitive electronic component, has electrically conductive section at inside of shank such that section points out to electrically conductive base arrangement
CA2440135A1 (en) Moisture barrier fabric and methods of making same
KR20220068072A (en) hairband

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860945

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014860945

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860945

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860945

Country of ref document: EP

Kind code of ref document: A2