WO2015068679A1 - コンクリート瓦およびその成形材料 - Google Patents

コンクリート瓦およびその成形材料 Download PDF

Info

Publication number
WO2015068679A1
WO2015068679A1 PCT/JP2014/079179 JP2014079179W WO2015068679A1 WO 2015068679 A1 WO2015068679 A1 WO 2015068679A1 JP 2014079179 W JP2014079179 W JP 2014079179W WO 2015068679 A1 WO2015068679 A1 WO 2015068679A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
tile
molding material
concrete
alkali
Prior art date
Application number
PCT/JP2014/079179
Other languages
English (en)
French (fr)
Inventor
今川彰
稲田真也
岩崎嘉宏
羽田三郎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53041456&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015068679(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to BR112016009843-9A priority Critical patent/BR112016009843B1/pt
Priority to MX2016005701A priority patent/MX2016005701A/es
Priority to EP14860813.6A priority patent/EP3067178A4/en
Priority to JP2015546638A priority patent/JP6491603B2/ja
Priority to AU2014344915A priority patent/AU2014344915B2/en
Publication of WO2015068679A1 publication Critical patent/WO2015068679A1/ja
Priority to US15/141,232 priority patent/US10851545B2/en
Priority to AU2018204490A priority patent/AU2018204490B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D1/00Roof covering by making use of tiles, slates, shingles, or other small roofing elements
    • E04D1/12Roofing elements shaped as plain tiles or shingles, i.e. with flat outer surface
    • E04D1/16Roofing elements shaped as plain tiles or shingles, i.e. with flat outer surface of ceramics, glass or concrete, with or without reinforcement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/24Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like
    • E04D3/26Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like of concrete or ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/14Apparatus or processes for treating or working the shaped or preshaped articles for dividing shaped articles by cutting
    • B28B11/16Apparatus or processes for treating or working the shaped or preshaped articles for dividing shaped articles by cutting for extrusion or for materials supplied in long webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/12Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein one or more rollers exert pressure on the material
    • B28B3/123Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein one or more rollers exert pressure on the material on material in moulds or on moulding surfaces moving continuously underneath or between the rollers, e.g. on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B5/00Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
    • B28B5/02Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type
    • B28B5/026Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length
    • B28B5/028Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping on conveyors of the endless-belt or chain type the shaped articles being of indefinite length the moulding surfaces being of definite length, e.g. succession of moving pallets, and being continuously fed
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0641Polyvinylalcohols; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D1/00Roof covering by making use of tiles, slates, shingles, or other small roofing elements
    • E04D1/02Grooved or vaulted roofing elements
    • E04D1/04Grooved or vaulted roofing elements of ceramics, glass or concrete, with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00586Roofing materials
    • C04B2111/00594Concrete roof tiles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2023Resistance against alkali-aggregate reaction

Definitions

  • the present invention relates to a concrete roof tile manufactured by an extrusion molding method (roller / slipper method) and a molding material for manufacturing the concrete roof tile.
  • Patent Document 1 is disclosed as a method of manufacturing a lightweight concrete roof by a roller / slipper method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-91080
  • a concrete roof tile is formed by a roller / slipper method in which a tile forming material composed of a mixture of cement, sand and water is first compressed by a roller and then by a slipper on a moving pallet. Manufacturing is described.
  • this document describes that a non-thixotropic silica fume and a dispersant for silica fume are applied to the tile forming material to form a reaction product of non-thixotropic silica fume and lime. ing.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 4-179502 discloses a lightweight concrete flat roof tile formed by laminating a fiber mixed layer formed of mortar mixed with fibers and a mortar layer mixed with no fibers. ing.
  • Patent Document 1 attempts to improve the strength with silica fume, it is difficult to sufficiently reinforce the strength of the concrete roof with silica fume, which is extremely fine particles.
  • Patent Document 2 a fiber mixed layer in which fibers are mixed is partially provided, but the roof tile in Patent Document 2 still includes a mortar layer in which fibers are not mixed. Therefore, the strength is insufficient. Furthermore, in the two-layer structure of the fiber-mixed layer and the mortar layer, the thickness of the entire roof tile cannot be reduced, and the lightness and thinness are inferior.
  • the inventors of the present invention have intensively studied to achieve the above-mentioned object, and as a result, even a concrete roof tile manufactured by a roller / slipper method has a specific alkali-resistant organic fiber as a reinforcing fiber to be contained therein.
  • the concrete tile fiber can be dispersed in a state where the fiber is substantially contained as a fiber-containing granular material, the strength of the concrete tile can be increased and the lightness can be improved.
  • the headline, the present invention has been reached.
  • the first configuration of the present invention is a concrete tile provided with a tile body part
  • the tile main body portion includes an upper surface cured by non-molding, a lower surface cured by mold molding, and a side surface portion, and has a cut end surface on at least one side of the side surface portion.
  • alkali-resistant fibers composed of at least one selected from the group consisting of polyvinyl alcohol fibers, polyethylene fibers, polypropylene fibers, acrylic fibers and aramid fibers exist substantially as fiber-containing granules.
  • the concrete roof tile may have a specific gravity of about 1.5 to 2.2. Moreover, it is preferable that the surface part of a tile main-body part does not have the convex part derived from a fiber containing granule substantially.
  • the alkali-resistant fiber may have an average fiber diameter of 1 to 200 ⁇ m.
  • the aspect ratio of the alkali resistant fiber may be 50 to 1000.
  • the alkali-resistant fiber may be a polyvinyl alcohol fiber in particular.
  • the concrete roof tile pass the EN490 standard in a roof tile bending test performed according to EN491: 2011.
  • the ball is not substantially divided and broken by a falling ball test conducted with reference to JIS A 1408.
  • the second configuration of the present invention is a molding material for producing the concrete roof tile.
  • the molding material contains at least cement, fine aggregate, alkali-resistant fiber, and water, and has a water-cement ratio (W / C) of 20 to 50% by mass.
  • the alkali-resistant fiber is a polyvinyl alcohol fiber. And composed of at least one selected from the group consisting of polyethylene fiber, polypropylene fiber, acrylic fiber and aramid fiber, and the proportion of the alkali-resistant fiber in the solid content is 0.1 to 2% by mass, and is resistant to alkali.
  • the molding material may further contain a functional aggregate.
  • the aspect ratio of the alkali-resistant fiber may be about 50 to 1000.
  • the average fiber diameter may be about 1 to 200 ⁇ m.
  • the third configuration of the present invention is an alkali resistant fiber used for manufacturing the concrete roof tile, that is, a polyvinyl alcohol fiber, a polyethylene fiber, a polypropylene fiber, an acrylic fiber, and the like for manufacturing the concrete roof tile.
  • alkali-resistant fibers composed of at least one selected from the group consisting of aramid fibers is also included.
  • the fourth configuration of the present invention includes a method for manufacturing a concrete roof tile by a roller / slipper method.
  • the manufacturing method includes supplying a molding material to a hopper of a roller / slipper type extrusion device; A filling step of filling the supplied molding material into a plurality of adjacent pallets from below the hopper; Compressing the filled molding material with rollers and slippers to form a continuous strip on the adjacent pallet; Cutting the strip with a cutting blade and forming individual raw roof tiles on individual pallets; and At least.
  • the manufacturing method may include a molding material preparation step in the molding material supply step, and the preparation step includes substantially alkali-resistant fibers with respect to the mixture containing cement, aggregate, and water.
  • the preparation step may be provided with at least a dispersion step in which it is dispersed in a state where it does not exist as a fiber-containing granule.
  • the alkali roof fiber is dispersed in a specific state to be contained as a whole, thereby achieving high strength and light weight of the concrete roof tile.
  • the concrete roof tile which is lightweight and is excellent in intensity
  • the tile main body portion is a concrete roof tile including a tile main body portion including a tile surface cured by non-molding, a tile back surface cured by mold molding, and a side surface portion.
  • FIG. 1 is a schematic front view for explaining a concrete roof tile according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view for explaining the concrete roof tile.
  • the concrete roof tile has a semi-cylindrical roof tile body 2
  • the roof tile body 2 has an upper surface 3, a lower surface 5, and a cut end surface 1.
  • the upper surface 3 is a tile surface hardened by non-molding, and is compressed and molded by, for example, a molding roller and a slipper.
  • the lower surface 5 is a tile surface hardened by molding, and is molded by a mold called a pallet in the roller / slipper method, for example.
  • the cut end surface 1 formed by being cut when the concrete roof tile is manufactured may have a rough surface shape derived from cutting at least at a part of the cut surface. More specifically, the rough surface shape is a rough surface shape formed by cutting (i.e., being pushed out) the molding material by, for example, a cutting means having a blunt end.
  • the molding material is agglomerated when compressed at the cut surface.
  • the convex part derived from the fiber-containing granule to be described later is not completely integrated with the surrounding molding material, and exists as a cured product having at least a part of voids between the surrounding molding material. Therefore, the rough surface shape and the convex portion derived from the fiber-containing granular material can be distinguished by visual observation.
  • the roof tile main body part contains the alkali-resistant fibers 7 inside in a state in which they are not substantially present as fiber-containing granules.
  • including the alkali-resistant fibers 7 as a whole means a state in which the alkali-resistant fibers are dispersed throughout the thickness direction of the tile main body, and the alkali-resistant fibers are substantially as fiber-containing granules.
  • the fiber-containing granular material having an equivalent circle diameter of 3 mm or more (preferably 5 mm or more, particularly 10 mm or more) is formed on the cut surface. It means a state that cannot be observed.
  • the detailed evaluation method it describes in the Example mentioned later.
  • the cutting means does not necessarily have sharp teeth.
  • the alkali-resistant fibers contained in the roof tile main body are not cut when the molding material is cut off, and may be pulled out from the inside due to the pressure. In such a case, at least a part of the alkali-resistant fiber may be present on the cut surface.
  • the concrete roof tile of the first configuration contains alkali-resistant fibers in the whole dispersed body in a specific dispersion state, and thus has excellent bending strength despite being lightweight, and is a cut piece of 30 mm ⁇ 150 mm. and a bending strength of 6N / mm 2 or more, preferably may be in 6.5 N / mm 2 or more, more preferably it may be 7.5 N / mm 2 or more.
  • the upper limit of the strength is not particularly limited, but is usually 20 N / mm 2 in many cases.
  • bending strength shows the value measured by the method described in the Example mentioned later.
  • the concrete tile can be usefully used as, for example, a lightweight concrete tile.
  • its weight may be 40 kg / m 2 or less (for example, 15 to 38 kg / m 2 ), preferably 37 kg / m 2. It may be m 2 or less (for example, 20 to 36 kg / m 2 ).
  • the weight of the concrete tile represents the weight per unit area of the concrete tile itself, and is essentially a value obtained by obtaining the area and weight per tile and dividing the weight by the area.
  • the concrete tile may have a convex portion derived from the aggregate inside the concrete and a convex portion formed in design, but the surface portion of the tile main body portion 2 (for example, the upper surface 3 and / or the tile main body portion 2).
  • the lower surface 5, preferably the upper surface 3) preferably does not have a convex portion derived from the fiber-containing granular material in which the fibers are gathered into a spherical shape.
  • the surface of the tile body, excluding the cut end face The part may be evaluated.
  • the convex part derived from the fiber-containing granule has a fiber-containing granule having an equivalent circle diameter of 3 mm or more (preferably 5 mm or more, particularly 10 mm or more) in the convex part when the roof tile is cut on the surface including the convex part. It can be confirmed by whether or not it exists.
  • the fiber-containing granule is a cured product that contains fibers, is not completely integrated with the surrounding molding material, and has at least a part of voids between the surrounding molding material,
  • a fiber-containing lump is formed by integrally forming a kneaded material such as cement and aggregate with a fiber lump or fiber aggregate as a core.
  • the equivalent circle diameter is a diameter of a circle having the same area as the projected area of the particles, and may be referred to as a Heywood diameter.
  • the surface portion of the tile main body refers to a portion that is produced as having no protruding portion in design.
  • the alkali-resistant fibers 7 are not entirely present in a specific state, i.e., substantially as fiber-containing granules, in the thickness direction inside the tile main body. It is distributed and included in the state.
  • the alkali-resistant fiber may be randomly dispersed in the thickness direction in the tile main body, or may be dispersed in a state having orientation in a predetermined direction, or may be randomly dispersed and oriented. It may be in a state where coexistence is partially coexisting.
  • the fibers are preferably oriented in the traveling direction of the roller / slipper method.
  • the shape of the roof tile may be any known shape used in the industry, such as S shape, cylindrical shape, semi-cylindrical shape, corrugated shape, F shape, flat shape, J shape, and beaver shake. can do.
  • FIG. 3 is a schematic front view for explaining a concrete roof which is an F-shaped roof.
  • the concrete roof tile includes a substantially square roof tile main body 12 having a cut end surface 11 on at least one side, an overlapping portion 14 provided on the upper surface 13 of the roof tile main body 12, and a lower surface 15 of the roof tile main body 12. And an overlapped portion 16 provided.
  • the cut end surface 11 formed by cutting when manufacturing the concrete roof tile has a rough surface shape derived from the cut on the cut surface.
  • the overlapping portion 14 has a groove for engaging with the overlapped portion 16, and the overlapped portion 16 has a shape in which the groove of the overlapping portion 14 is reversed.
  • the adjacent roof tiles are indicated by dotted lines, but the overlapping portion 14 may be able to overlap the overlapping portion of the adjacent roof tiles substantially without gaps.
  • the state in which the overlapping can be performed substantially without any gap means a state in which the overlapping portion and the overlapped portion are engaged with each other without having a gap of 10 mm or more.
  • the detailed evaluation method it describes in the Example mentioned later.
  • the concrete roof tile according to the first configuration of the present invention is preferably excellent in strength, and preferably passes the EN490 standard in a roof tile bending test conducted according to EN491: 2011.
  • passing the tile bending test means that in a load test performed according to EN491: 2011, the tile strength is 1200 N or more (preferably 1500 N or more, more preferably 1800 N or more) in the case of flat roof tiles.
  • the upper limit in the said tile bending test is not specifically limited, In many cases, it is about 4000N.
  • the numerical value of a tile bending test here shows the value measured by the method described in the Example mentioned later.
  • the concrete roof is excellent in strength, it can be thinned.
  • the thickness of the thinnest portion of the roof body is, for example, about 8 to 100 mm, preferably about 10 to 95 mm, more preferably. It may be about 15 to 90 mm.
  • the concrete roof tiles can maintain strength even when they are thinned, and therefore do not need to have a specific gravity as small as concrete. Therefore, for example, the specific gravity of the concrete roof of the present invention may be about 1.5 to 2.2, preferably about 1.6 to 2.1, and more preferably 1.7 to 2. It may be about 0.0. In addition, specific gravity represents the comparative value of the weight of the same volume when the weight of 1 cubic centimeter of water of 4 degreeC is set to "1".
  • the concrete roof is excellent in toughness, and it is preferable that the concrete roof is not substantially broken and broken by a falling ball test performed with reference to JIS A 1408.
  • the material is not substantially broken and broken is that the roof tile is completely broken and cannot be divided into two or more large pieces (the volume of at least one piece is 20% to 80% of the total volume of the roof tile before destruction).
  • the term “surface fracture due to crack fracture” and “missing small fragments due to surface chipping” are not included in the term “substantially not fractured.”
  • the concrete roof tile can be manufactured by using a predetermined molding material using a roller / slipper method.
  • the manufacturing method includes a molding material, A supply step of supplying to the hopper of the roller / slipper type extrusion device; A filling step of filling the supplied molding material into a plurality of adjacent pallets from below the hopper; Compressing the filled molding material with rollers and slippers to form a continuous strip on the adjacent pallet; Cutting the strip with a cutting blade and forming individual raw roof tiles on individual pallets; and At least.
  • the extrusion apparatus used in the roller / slipper type includes a hopper H for supplying material, a hydraulic cylinder C for extruding the pallet P, and a roller R for extruding the material downward from the hopper H and compressing the pallet. , A slipper S for further compressing the material extruded by the roller R is provided.
  • a molding material M for manufacturing concrete roof tiles is supplied to the hopper H.
  • pallets P... P which are molds in the shape of the back of the roof tile (bottom roof), are arranged in a line, and these pallets move on the table T while sliding.
  • the platform T is provided with guides for moving a series of pallets P ... P on the bottom surface and side surfaces.
  • hydraulic cylinders C are arranged in order to push out the pallets P. The hydraulic cylinder C stops once when it reaches the end of the stroke, and then moves in the direction opposite to the arrow direction to return to the initial position.
  • the hydraulic cylinder C pushes the pallet P toward the downstream with the hopper upstream, by the action in the direction of the arrow, and as the pallet P moves, the molding material M is pushed out from below the hopper H, and the rollers R and R
  • the pallet P is uniformly filled with the slipper S. More specifically, for example, the molding material in the hopper H is filled into the pallet P by its own weight and the rotation of the roller R in the direction of the arrow, and the molding material M filled in the pallet P By leveling with the slipper S, the tile surface (or the tile upper surface) is formed.
  • an extrusion means for example, a paddle for extruding the molding material M in the pallet direction may exist in the hopper H as necessary.
  • the surface of the pallet P, the roller R and / or the slipper S that is in contact with the molding material M may have irregularities derived from the design as appropriate, and this irregularity causes the shape of the tile itself, the overlapping part of the tile, and the non-overlapping The shape of the part and the pattern of the roof tile can be formed.
  • the roof tile has a surface hardened by molding because it is cured and hardened in contact with the pallet P on the lower surface.
  • the upper surface is molded when compressed by the roller R and / or the slipper S, but has a surface hardened by non-molding because it is not molded using a mold.
  • the surface cured by molding tends to be a smooth surface due to the shape of the mold.
  • the pallet P filled with the molding material M is moved to the downstream side of the hopper H by the hydraulic cylinder C as a belt-like body continuously formed on the adjacent pallet. Then, the front and rear ends of the pallet P are cut by the blade B provided on the downstream side, and individual roof tiles are formed on the individual pallets. By further curing these raw roof tiles under predetermined conditions, the raw roof tiles can be cured to obtain roof tiles having a predetermined shape. When cutting with the blade B, a rough surface derived from the cutting is usually formed on the cut end surface of the roof tile.
  • FIG. 4 the manufacturing method of the concrete roof which is another one embodiment of this invention is demonstrated using FIG.
  • a conveyor C instead of the table T shown in FIG. 4, below the hopper H, a conveyor C provided with pallets P.
  • the conveyor C moves toward the downstream with the hopper as an upstream, and the molding material M is extruded along with the movement, and is uniformly filled and compressed on the pallet P using the roller R and the slipper S. More specifically, for example, the molding material in the hopper H is filled into the pallet P by its own weight and rotation of the roller R in the direction of the arrow, and the molding material M extruded to the pallet P The tile surface is formed by leveling with the slipper S.
  • the conveyor can be moved by using various driving means used in the industry. For example, even if the conveyor can be moved by driving means such as a motor. Good. Furthermore, as long as the pallet can be moved, the moving means of the pallet is not particularly limited, and even a moving means other than the moving means illustrated here can be used.
  • a molding material for producing a concrete roof according to another configuration of the present invention contains at least cement, aggregate, alkali-resistant fiber, and water, and has a water-cement ratio (W / C) of 20 to 20% by mass. It may be about 50%, preferably 20 to 45% (for example, 35 to 45%), more preferably 20 to 40% (for example, 35 to 40%). Further, in this molding material, the alkali-resistant fiber is not substantially present as a fiber-containing granule in the molding material.
  • the alkali-resistant fiber when the alkali-resistant fiber is not substantially present as a fiber-containing granule in the molding material, when a roof tile produced from the molding material is cut at random locations, the equivalent circle diameter of 3 mm or more is obtained at the cut surface. It is possible to confirm that the fiber-containing granule having (preferably 5 mm or more, particularly 10 mm or more) cannot be observed on the cut surface. In addition, about the detailed evaluation method, it describes in the Example mentioned later.
  • the ratio of the alkali-resistant fiber to the solid content of the molding material may be about 0.1 to 2% by mass, preferably 0.3 to 1.8% from the viewpoint of suppressing the formation of the fiber-containing granule. It may be about mass%, more preferably about 0.5 to 1.6 mass%.
  • the alkali-resistant fiber used in the present invention is excellent in kneadability, and can be mixed into the entire roof tile as a molded article, from which polyvinyl alcohol (hereinafter sometimes referred to as PVA) fiber, polyolefin fiber (polyethylene fiber) Polypropylene fibers, etc.), ultrahigh molecular weight polyethylene fibers, polyamide fibers (polyamide 6, polyamide 6,6, polyamide 6,10 etc.), and aramid fibers (particularly para-aramid fibers) at least selected from the group consisting of acrylic fibers It is a kind of alkali-resistant organic fiber. Such fibers are useful for producing the aforementioned concrete roof tiles.
  • PVA fibers are particularly preferable from the viewpoint that they can be advantageously used from the viewpoint of being able to be manufactured at low cost while having concrete reinforcing properties, and are excellent in adhesiveness to cement.
  • the alkali-resistant fiber may have an aspect ratio of 50 to 1000. Furthermore, the alkali-resistant fiber preferably has an aspect ratio of about 70 to 900, more preferably about 100 to 800, from the viewpoint of imparting a predetermined strength to the roof tile.
  • the aspect ratio means the ratio (L / D) between the fiber length (L) and the fiber diameter (D).
  • the alkali-resistant fiber can increase the strength of the entire roof when the fiber strength is high.
  • the fiber strength may be, for example, 8 cN / dtex or more, and preferably 9 cN / dtex or more. It may be 10 cN / dtex or more.
  • the upper limit of the fiber strength can be appropriately set according to the fiber and is not particularly limited, but the upper limit of the fiber strength may be about 30 cN / dtex. In addition, fiber strength shows the value measured by the method described in the Example mentioned later.
  • the alkali-resistant fibers mixed with the molding material have an average fiber diameter of about 1 to 200 ⁇ m from the viewpoint of suppressing the formation of fiber-containing granules and increasing the miscibility of the fibers and the strength of the molded product.
  • it may be about 2 to 150 ⁇ m, more preferably about 5 to 100 ⁇ m.
  • Such fibers can be used as appropriate by those skilled in the art as long as the formation of fiber-containing granules in the molding material is suppressed, but they can be used as shortcut fibers formed by cutting fiber bundles.
  • Shortcut fibers tend to form fiber aggregates due to a fiber cutting process, a compression process into a fiber veil, and the like.
  • the fiber veil may be coarsely defibrated in advance with a bale opener or the like, but fiber aggregates often exist even after the coarse defibration.
  • the fiber aggregate When the fiber aggregate is present in the molding material, the fiber aggregate may be covered with water-containing cement and aggregate, and water or cement may not enter the fiber aggregate. In such a case, the fiber-containing granule centering on the fiber aggregate is formed not only in the molding material but also on the concrete roof tile itself.
  • a fiber dispersion step which will be described later, may be performed as necessary when preparing the concrete tile forming material.
  • cement examples include Portland cement such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, medium-heated Portland cement, alumina cement, blast furnace cement, silica cement, and fly ash cement. Or two or more types may be used in combination.
  • Portland cement such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, medium-heated Portland cement, alumina cement, blast furnace cement, silica cement, and fly ash cement. Or two or more types may be used in combination.
  • the fine aggregate used in the production of the concrete roof may be a fine aggregate having a particle size of 5 mm or less, such as sand having a particle size of 5 mm or less; silica stone, fly ash, blast furnace slag, volcanic ash-based shirasu And fine aggregates obtained by pulverizing or granulating inorganic materials such as various sludges and rock minerals. These fine aggregates may be used alone or in combination of two or more. Examples of the sands include sands such as river sand, mountain sand, sea sand, crushed sand, quartz sand, slag, glass sand, iron sand, ash sand, calcium carbonate, and artificial sand.
  • sands such as river sand, mountain sand, sea sand, crushed sand, quartz sand, slag, glass sand, iron sand, ash sand, calcium carbonate, and artificial sand.
  • lightweight aggregates natural lightweight aggregates such as volcanic gravel, expanded slag, and charcoal, and artificial lightweight aggregates such as foamed pearlite, foamed perlite, foamed black stone, vermiculite, and shirasu balloon may be blended.
  • natural lightweight aggregates such as volcanic gravel, expanded slag, and charcoal
  • artificial lightweight aggregates such as foamed pearlite, foamed perlite, foamed black stone, vermiculite, and shirasu balloon may be blended.
  • the concrete roof of the present invention can maintain strength even when it is thinned, it is possible to reduce the weight while reducing the amount of lightweight aggregate that is easily pulverized during the manufacturing process. Therefore, the ratio of the lightweight aggregate in the aggregate can be reduced to 10% or less, preferably 5% or less.
  • a functional aggregate may be added.
  • the functional aggregate includes colored aggregate, hard aggregate, elastic aggregate, aggregate having a specific shape, etc., for example, layered silicate (for example, mica, talc, etc.). , Kaolin), alumina, silica and the like.
  • the ratio of the functional aggregate to the fine aggregate can be appropriately set according to each type.
  • the mass ratio of the fine aggregate to the functional aggregate is (fine aggregate) / (Functional aggregate) may be about 99/1 to 70/30, preferably about 98/2 to 75/25, more preferably about 97/3 to 80/20. May be.
  • the layered silicate may have a flake diameter of, for example, about 10 to 800 ⁇ m, preferably about 20 to 700 ⁇ m.
  • the main components of mica which is a kind of layered silicate, are SiO 2 , Al 2 O 3 , K 2 O, and crystal water.
  • Preferable mica includes mascobite (white mica), flocovite (gold mica), and the like.
  • the weight average flake diameter of the layered silicate may be, for example, about 50 to 800 ⁇ m, and preferably 100 to 700 ⁇ m.
  • the weight average flake diameter was determined by classifying the layered silicate using a standard sieve having various openings, plotting the result on a Rosen-Rammlar diagram, and measuring 50 weight of the layered silicate used for the measurement. Find the opening through which% passes, and indicate the value of ⁇ 2 times the square opening (the length of the diagonal of the square).
  • the ratio of the functional aggregate (particularly the layered silicate) and the alkali-resistant fiber can be appropriately set depending on the type of the aggregate.
  • Concrete tile molding materials can be mixed with fibers under a small water-cement ratio (W / C).
  • W / C water-cement ratio
  • the state after kneading lacks fluidity, so even if the fibers are mixed, they are mixed uniformly in the molding material, thereby increasing the strength of the molded product. It was impossible to increase. Further, even when an admixture is used, the fluidity is inferior to that of mortar or concrete obtained for ordinary casting, and it is difficult to uniformly mix fibers.
  • the concrete roof molding material is appropriately mixed with various admixtures as necessary, for example, AE agent, fluidizing agent, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, thickener, water retention agent. , Water repellent, swelling agent, curing accelerator, setting retarder, polymer emulsion [acrylic emulsion, ethylene-vinyl acetate emulsion, or SBR (styrene butadiene rubber) emulsion] may be mixed. These admixtures may be used alone or in combination of two or more.
  • the polymer emulsion not only strengthens the brittleness of the roof tile but also can strengthen the adhesive force between the molding materials. Furthermore, by combining the polymer emulsion, not only can the water permeability of the roof tile be improved, but also excessive drying can be suppressed.
  • Concrete tile molding by mixing the above-mentioned cement, aggregate, alkali resistant fiber, water, etc. within a range that can prevent the alkali resistant fiber from substantially existing as a fiber-containing granule in the molding material. Material can be obtained.
  • At least a dispersion step in which the alkali-resistant fiber is substantially not present as a fiber-containing granule in a mixture containing cement, aggregate, and water is provided. It may be.
  • the mixture only needs to contain at least cement, aggregate, and water, and may contain all or a part of each of the cement, aggregate, and water to be used. It may be. For example, for each of cement, aggregate, and water, if some of them are included, the remainder may be mixed during and / or after the dispersion process of the alkali resistant fibers.
  • cement, aggregate, and water may be mixed.
  • cement and aggregate may be mixed in a dry manner, and then water may be added and kneaded.
  • dispersion step it is possible to disperse the fibers by various methods as long as the alkali-resistant fibers can be dispersed in the molding material in a state where they are not substantially present as fiber-containing granules. .
  • Alkali resistant fiber in order to improve the dispersibility of the fiber, for example, (i) Alkali resistant fiber may be supplied in a fixed amount, (ii) Alkali resistant fiber in an unraveled state may be charged, (iii) A mixer or kneader with high stirring performance may be used when mixing the alkali-resistant fiber fiber. These (i) to (iii) may be performed alone or in combination of two or more.
  • the fiber aggregate When unraveling the alkali-resistant fiber, for example, the fiber aggregate can be unraveled by a predetermined dissociation means or the like to a smaller fiber aggregate unit to the extent that generation of the fiber-containing granule in the molding material can be suppressed.
  • the fiber aggregate when the fiber aggregate is unraveled, it is preferable that the fiber is fibrillated and the fiber is not pulverized from the viewpoint of maintaining the fiber strength.
  • the fiber agglomerates can usually be unwound by various methods under a dry process.
  • fiber agglomerates fiber veil, coarse fiber fiber defibrated material, shortcut fiber bundles, etc.
  • fiber agglomerates may be unwound by hooking the fibers on a roll having protrusions and passed between opposing rotating gears. It may be solved by a shearing force of a rotating disk having a groove, or by an air blow collision force. You may perform these methods individually or in combination of 2 or more types.
  • the fiber aggregates (such as a lump of shortcut fibers cut to a predetermined length) may be unraveled in a dry manner to separate the fibers, thereby unraveling the fiber aggregates.
  • mixers and kneaders with high stirring performance include double-arm kneader, pressure kneader, Eirich mixer, super mixer, and planetary mixer.
  • a Banbury mixer, a continuous mixer, or a continuous kneader can be used.
  • the concrete roof molding material thus obtained is then supplied to the hopper of the roller / slipper type extrusion device, and the concrete roof can be manufactured by the roller / slipper system.
  • confirmation of a fiber containing granule is performed for 10 tiles selected at random, and if one of them is confirmed as a fiber containing granule, it is treated as having a fiber containing granule.
  • the fiber-containing granule is derived from fiber aggregates or is not integrated with the surrounding molding material and exists as a cured product having a gap between the surrounding molding material, visual confirmation Is possible.
  • the average fiber length was calculated according to JIS L1015 “Testing method for chemical fiber staples (8.5.1)”, and the aspect ratio of the fiber was evaluated based on the ratio to the average fiber diameter.
  • the average fiber diameter one single fiber was randomly taken out one by one, the fiber diameter at the center in the length direction of the fiber was measured using an optical microscope, and the average value measured for a total of 100 fibers was the average fiber The diameter.
  • Example 4 A concrete roof tile was obtained in the same manner as in Example 1 except that the amount of fiber added was 0.5 wt%. Table 1 shows the properties of the tiles obtained.
  • Example 1 A concrete roof was obtained in the same manner as in Example 1 except that no fiber was used. Table 1 shows the properties of the tiles obtained.
  • Example 2 Concrete aggregate was obtained in the same manner as in Example 1 except that 15% by mass of the fine aggregate was replaced with EAS Spheres manufactured by Taiheiyo Cement Co., Ltd., which is a lightweight aggregate, and no fiber was used. Table 1 shows the properties of the tiles obtained.
  • Example 5 A concrete roof tile was obtained in the same manner as in Example 1 except that the fibers were not unraveled in advance. Table 1 shows the properties of the tiles obtained.
  • Comparative Example 3 the amount of added fiber is too large, and the fibers aggregate inside the roof tile to form an aggregate, which is inferior in appearance and in the bending strength test and roof tile bending test of the cut piece. It does not show sufficient strength.
  • Comparative Example 4 because the fiber aspect ratio is too large, the fibers aggregate inside the roof tile to form an aggregate, or the appearance is inferior, and in the bending strength test and the roof tile bending test of the cut pieces. It does not show sufficient strength.
  • Comparative Example 5 since the fiber-containing granule is present, the appearance is inferior, and sufficient strength is not shown in the bending strength test and the tile bending test of the cut piece.
  • the concrete tile of the present invention can be usefully used as various roofing materials, but can also be used as wall tiles, floor tiles and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Finishing Walls (AREA)

Abstract

 押出成型方法によって製造されるコンクリート瓦、およびこのコンクリート瓦を製造するための成形材料を提供する。コンクリート瓦は、少なくとも一辺に切断端面1を有する瓦本体部2を備えている。前記切断端面1は、その製造工程に由来して、その切断表面に粗面形状を有している。前記コンクリート瓦の瓦本体部では、その厚み方向全体にわたって、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維からなる群から選択される少なくとも一種で構成される耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散しており、30mm×150mmの切出片の曲げ強度が6N/mm以上である。

Description

コンクリート瓦およびその成形材料 関連出願
 本願は2013年11月6日出願の特願2013-230576の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、押出成型方法(ローラ/スリッパ方式)によって製造されるコンクリート瓦、およびこのコンクリート瓦を製造するための成形材料に関する。
 ローラ/スリッパ方法によるコンクリート瓦は、コストの面で有利であり、世界的に多用されている。ローラ/スリッパ方法で軽量コンクリート瓦を製造する方法として、例えば特許文献1が開示されている。特許文献1(特開昭61-91080号公報)では、セメント、砂および水の混合物よりなる瓦成形材料を移動パレットでまずローラによって、次いでスリッパによって圧縮するローラ/スリッパ方法によって、コンクリート屋根瓦を製造することが記載されている。
 より詳細には、この文献では、前記瓦成形材料に対して、非チキソトロピーシリカヒュームおよびシリカヒューム用の分散剤を適用し、非チキソトロピーシリカヒュームと石灰との反応生成物を形成することが記載されている。
 また、特許文献2(特開平4-179502号公報)には、繊維を混入させたモルタルによって形成した繊維混入層と、繊維を混入しないモルタル層とを積層してなる軽量コンクリート平板瓦が開示されている。
特開昭61-91080号公報 特開平4-179502号公報
 一般にコンクリート瓦は、屋根瓦として用いられる場合、軽量性が求められる。しかし、その一方で、軽量性を満足するコンクリート瓦では、強度の面で問題がある。特許文献1では、シリカヒュームによる強度改善を図っているものの、きわめて細かい微粒子であるシリカヒュームでは、コンクリート瓦の強度を十分補強することが困難である。
 一方、軽量化と強度を両立するために、特許文献2では繊維が混入された繊維混入層を部分的に設けているが、特許文献2の瓦では、依然として繊維を混入しないモルタル層を含んでいるため、強度の面で不十分である。さらに、繊維混入層とモルタル層との二層構造では、瓦全体の厚みを薄くすることができず、軽量性および薄肉性にも劣る。
 本発明は、繊維が実質的に繊維含有粒状体として存在していない状態で全体に含まれ、強度と軽量性との双方に優れるコンクリート瓦を提供することを目的とする。
 本発明はまた、そのようなコンクリート瓦を形成可能な成形材料を提供することを目的とする。
 本発明はさらにまた、そのような成形材料を用いてコンクリート瓦を製造する製造方法を提供することを目的とする。
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、ローラ/スリッパ方式で製造されたコンクリート瓦であっても、その内部に含ませる補強繊維として特定の耐アルカリ性有機繊維を用いて、繊維が実質的に繊維含有粒状体として存在していない状態で全体に含まれる状態で、コンクリート瓦繊維を分散させることができる場合、コンクリート瓦の強度を高めるとともに軽量性を向上できることを見出し、本発明に至った。
 すなわち、本発明の第1の構成は、瓦本体部を備えるコンクリート瓦であって、
 前記瓦本体部は、非型成形により硬化された上面と、型成形により硬化された下面と、側面部とを備え、前記側面部の少なくとも一辺に切断端面を有しており、前記瓦本体部では、その厚み方向全体にわたって、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維からなる群から選択される少なくとも一種で構成される耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散しており、
 30mm×150mmの切出片の曲げ強度が6N/mm以上であるコンクリート瓦である。
 前記コンクリート瓦は、瓦本体部の比重が1.5~2.2程度であってもよい。また瓦本体部の表面部分が、繊維含有粒状体に由来する凸部を実質的に有していないのが好ましい。
 前記耐アルカリ性繊維は、平均繊維径が1~200μmであってもよい。耐アルカリ性繊維のアスペクト比は50~1000であってもよい。また、耐アルカリ性繊維は、特にポリビニルアルコール系繊維であってもよい。
 前記コンクリート瓦は、EN491:2011に準じて行われる瓦曲げ試験で、EN490規格に合格するのが好ましい。また、JIS A 1408を参考にして行われる落球試験によって、実質的に分断破壊されないのが好ましい。
 本発明の第2の構成は、前記コンクリート瓦を製造するための成形材料である。前記成形材料は、セメント、細骨材、耐アルカリ性繊維、および水を少なくとも含んでおり、水セメント比(W/C)が20~50質量%であり、前記耐アルカリ性繊維は、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維からなる群から選択される少なくとも一種で構成されるとともに、耐アルカリ性繊維の固形分に占める割合が、0.1~2質量%であり、耐アルカリ性繊維が、成形材料中に実質的に繊維含有粒状体として存在していない、コンクリート瓦成形材料である。前記成形材料は、さらに機能性骨材を含んでいてもよい。
 前記耐アルカリ性繊維のアスペクト比は、50~1000程度であってもよい。また、平均繊維径が1~200μm程度であってもよい。
 さらに、本発明の第3の構成は、前記コンクリート瓦を製造するために用いられる耐アルカリ性繊維、すなわち、前記コンクリート瓦を製造するための、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維からなる群から選択される少なくとも一種で構成される耐アルカリ性繊維の使用についても包含する。
 さらにまた、本発明の第4の構成は、コンクリート瓦をローラ/スリッパ方式で製造する方法についても包含する。前記製造方法は、前記成形材料を、ローラ/スリッパ式押出装置のホッパへ供給する供給工程と、
 前記供給された成形材料を、ホッパの下方から、複数の隣接したパレットに対して充填する充填工程と、
 前記充填された成形材料を、ローラおよびスリッパにより圧縮し、前記隣接したパレット上に連続した帯状体を形成する圧縮工程と、
 前記帯状体を切断刃で切断し、個別のパレット上に、個別の生状態の瓦を形成する切断工程と、
を少なくとも備える。
 さらに、前記製造方法は、成形材料の供給工程に、成形材料の準備工程を含んでいてもよく、前記準備工程は、セメント、骨材、および水を含む混合物に対して、耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散される分散工程を少なくとも備えていてもよい。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明によれば、ローラ/スリッパ方式で製造されたコンクリート瓦において、耐アルカリ性繊維を特定の状態で分散させて全体的に含ませることにより、コンクリート瓦の高強度化および軽量化を達成することができる。
 また、本発明では、特定の成形材料を用いることにより、軽量で強度に優れるコンクリート瓦を製造することが可能である。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の参照番号は、同一部分を示す。図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。
本発明の一実施形態に係るコンクリート瓦を説明するための概略正面図である。 図1のコンクリート瓦を説明するための概略断面図である。 本発明の別の実施形態に係るコンクリート瓦を説明するための概略正面図である。 本発明の一実施形態に係るコンクリート瓦を製造する方法を説明するための概念図である。 本発明の別の実施形態に係るコンクリート瓦を製造する方法を説明するための概念図である。
 以下、本発明の実施形態について図を参照しながら説明する。ただし、本発明は、図示の形態に限定されるものではない。
(コンクリート瓦)
 本発明の第1の構成は、前記瓦本体部は、非型成形により硬化された瓦表面と、型成形により硬化された瓦裏面と、側面部とを備える瓦本体部を備えるコンクリート瓦である。
 図1は、本発明の一実施形態に係るコンクリート瓦を説明するための概略正面図であり、図2は、前記コンクリート瓦を説明するための概略断面図である。
 図1に示すように、このコンクリート瓦は、半筒状の瓦本体部2を有し、瓦本体部2は、上面3および下面5と、切断端面1を有している。上面3は、非型成形により硬化された瓦表面であり、例えば、成形ローラおよびスリッパにより圧縮されて成形されている。下面5は、型成形により硬化された瓦表面であり、例えば、ローラ/スリッパ方式においてパレットと称される型により成形されている。
 また、コンクリート瓦を製造する際に切断されて形成された切断端面1は、その切断表面の少なくとも一部に、切断に由来する粗面形状を有していてもよい。
 より詳細には、粗面形状は、成形材料が、例えば鈍端を有する切断手段により切断される(すなわち押し切られる)ことによって形成される粗面形状であり、このような粗面形状は、主として成形材料が切断面において圧縮される際に凝集してできるものである。なお、後述する繊維含有粒状体に由来する凸部は、周りの成形材料と完全には一体化せず、周囲の成形材料との間に少なくとも一部の空隙を有する硬化物として存在しているため、粗面形状と、繊維含有粒状体に由来する凸部とは、目視により、区別することが可能である。
 また、図2に示すように、瓦本体部は、内部に耐アルカリ性繊維7を、実質的に繊維含有粒状体として存在していない状態で全体的に含んでいる。ここで、耐アルカリ性繊維7を全体的に含んでいるとは、瓦本体部の厚み方向全体にわたって、耐アルカリ性繊維が分散している状態をいい、耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態とは、瓦をランダムな箇所で切断した際に、その切断面において、円相当径3mm以上(好ましくは5mm以上、特に10mm以上)を有する繊維含有粒状体がその切断面において観察できない状態を意味している。なお、その詳細な評価方法については、後述する実施例に記載されている。
 なお、パレットに充填された状態の成形材料を、後述するブレードなどの切断手段により押し切る場合、切断手段は必ずしも鋭利な歯を有していなくてもよい。そのため、瓦本体部に含まれた耐アルカリ性繊維は、成形材料の押し切り時に切断されず、その圧力により内部から引き出される場合がある。そのような場合、耐アルカリ性繊維の少なくとも一部は、切断表面に存在していてもよい。
 第1の構成のコンクリート瓦は、耐アルカリ性繊維を特定の分散状態でその本体部全体に含んでいるため、軽量であるにもかかわらず、曲げ強度に優れており、30mm×150mmの切出片の曲げ強度が6N/mm以上であり、好ましくは6.5N/mm以上であってもよく、さらに好ましくは7.5N/mm以上であってもよい。強度の上限は特に限定されないが、通常20N/mmであることが多い。ここで、曲げ強度は、後述する実施例に記載された方法により測定された値を示す。
 また、コンクリート瓦は、例えば、軽量コンクリート瓦として有用に利用することができ、例えば、その重量は40kg/m以下(例えば、15~38kg/m)であってもよく、好ましくは37kg/m以下(例えば、20~36kg/m)であってもよい。
 なお、コンクリート瓦の重量は、コンクリート瓦自体の単位面積当たりに対する重量を表しており、本質的には、瓦1枚当たりの面積および重量を得て、その重量を面積で除した値である。
 コンクリート瓦は、コンクリート内部の骨材に由来する凸部、デザイン上形成される凸部を有していてもよいが、瓦本体部2の表面部分(例えば、瓦本体部2の上面3および/または下面5、好ましくは上面3)は、繊維が球状などに集合した繊維含有粒状体に由来する凸部を有していないのが好ましい。なお、切断端面に形成された粗面形状と明確に区別するために、コンクリート瓦における繊維含有粒状体に由来する凸部の有無を判断する際には、切断端面を除いて、瓦本体の表面部分を評価してもよい。
 繊維含有粒状体に由来する凸部は、当該凸部を含む面で瓦を切断する際に、円相当径3mm以上(好ましくは5mm以上、特に10mm以上)を有する繊維含有粒状体が凸部内に存在するか否かにより確認することができる。ここで、繊維含有粒状体とは、繊維を含有するとともに、周りの成形材料と完全には一体化せず、周囲の成形材料との間に少なくとも一部の空隙を有する硬化物であって、例えば、繊維塊や繊維凝集体などを核としてセメントと骨材などの混練物が一体となって形成した繊維含有塊(fiber‐containing lump)で形成される。また、円相当径とは、粒子の投影面積と同じ面積を持つ円の直径であり、Heywood径と称してもよい。瓦本体の表面部分とは、デザイン上、突出する部分を有しないものとして作製された部分を指す。
 また、図2の断面図に示すように、瓦本体部の内部には、耐アルカリ性繊維7が厚み方向にわたって、全体的に特定の状態、すなわち、実質的に繊維含有粒状体として存在していない状態で分散して含まれている。例えば、耐アルカリ性繊維は、瓦本体部の内部において、繊維が厚み方向においてランダムに分散されてもよいし、所定の方向への配向性を有する状態で分散されてもよいし、ランダム分散と配向性分散とが部分的に共存する状態であってもよい。なお、曲げ補強性を向上する観点から、繊維は、ローラ/スリッパ方式の進行方向に配向しているのが好ましい。
 また、瓦の形状は、S形、筒形、半筒状、波形、F形、平形、J形、ビーバーシェイクなど、当業界において用いられる公知の形状であればよく、用途に応じて適宜選択することができる。
 また、瓦は、瓦の上面において、一方の側縁部に隣接する瓦との重ね合わせ部(または連結部)が形成され、瓦の下面において、他方の側縁部に隣接する瓦との被重ね合わせ部(または被連結部)が形成された瓦であってもよい。
 例えば、図3は、F形瓦であるコンクリート瓦を説明するための概略正面図である。このコンクリート瓦は、少なくとも一辺に切断端面11を有する略方形状の瓦本体部12と、この瓦本体部12の上面13に設けられた重ね合わせ部14と、この瓦本体部12の下面15に設けられた被重ね合わせ部16と、を備えている。また、コンクリート瓦を製造する際に切断されて形成された切断端面11は、その切断表面に、切断に由来する粗面形状を有している。
 重ね合わせ部14は、被重ね合わせ部16と係合するための溝を有しており、被重ね合わせ部16は、前記重ね合わせ部14の溝を逆にした形状を有している。図3では、隣接する瓦を点線で示しているが、重ね合わせ部14は、この隣接する瓦の被重ね合わせ部と、実質的にすきまなく重ね合わせることができてもよい。ここで、実質的にすきまなく重ね合わせることができる状態とは、重ね合わせ部と被重ね合わせ部とが、10mm以上の隙間を有さずに、互いに係合する状態を意味している。なお、その詳細な評価方法については、後述する実施例に記載されている。
 本発明の第1の構成に係るコンクリート瓦は、強度に優れているのが好ましく、EN491:2011に準じて行われる瓦曲げ試験で、EN490規格に合格するのが好ましい。この場合、瓦曲げ試験で合格するとは、EN491:2011に準じて行われる負荷試験において、平板瓦の場合は瓦強度が1200N以上(好ましくは、1500N以上、より好ましくは1800N以上)であることを示す。なお、前記瓦曲げ試験における上限は特に限定されないが、4000N程度であることが多い。なお、ここで瓦曲げ試験の数値は、後述する実施例に記載された方法により測定された値を示す。
 また、コンクリート瓦は、強度に優れているため、薄肉化が可能であり、例えば、瓦本体部における最も薄い部分の厚みが、例えば、8~100mm程度、好ましくは10~95mm程度、より好ましくは15~90mm程度としてもよい。
 また、コンクリート瓦は、薄肉化した場合であっても強度を保持できるため、コンクリートのように小さい比重である必要はない。そのため、例えば、本発明のコンクリート瓦の比重は1.5~2.2程度であってもよく、好ましくは1.6~2.1程度であってもよく、さらに好ましくは1.7~2.0程度であってもよい。なお、比重とは、4℃の水の1立方センチの重さを「1」とした時の同体積の重さの比較値を表したものである。
 また、コンクリート瓦は、靱性に優れているのが好ましく、JIS A 1408を参考にして行われる落球試験によって、実質的に分断破壊されないのが好ましい。ここで実質的に分断破壊されないとは、瓦が完全に破壊されて2つ以上の大きな断片(少なくとも一つの断片の体積は破壊前の瓦全体の体積の20%から80%)に分かれないことを意味しており、亀裂破壊による表面破壊、表面の欠けによる小さな断片の欠損は、「実質的に分断破壊されない」という用語には含まれない。
(コンクリート瓦の製造方法)
 本発明の別の構成に係るコンクリート瓦の製造方法では、コンクリート瓦は、所定の成形材料を、ローラ/スリッパ方式を利用することにより製造でき、具体的には、製造方法は、成形材料を、ローラ/スリッパ式押出装置のホッパへ供給する供給工程と、
 前記供給された成形材料を、ホッパの下方から、複数の隣接したパレットに対して充填する充填工程と、
 前記充填された成形材料を、ローラおよびスリッパにより圧縮し、前記隣接したパレット上に連続した帯状体を形成する圧縮工程と、
 前記帯状体を切断刃で切断し、個別のパレット上に、個別の生状態の瓦を形成する切断工程と、
を少なくとも備えている。
 例えば、図4を利用して、本発明の一実施態様であるコンクリート瓦の製造方法を説明する。ローラ/スリッパ式で用いられる押出装置は、材料を供給するためのホッパH、パレットPを押し出すための油圧シリンダーC、ホッパHから材料を下方へ押し出すとともに、パレットへの圧縮を行うためのローラR、ローラRによって押し出された材料をさらに圧縮するためのスリッパSを備えている。
 図4に示すように、まず、コンクリート瓦を製造するための成形材料MがホッパHに供給される。ホッパHの下方には、瓦裏面(瓦下面)形状の型となるパレットP…Pが列状に並び、これらのパレットは滑りながら台Tの上を移動する。前記台Tは、一連のパレットP…Pを移動させるためのガイドを、底面と側面に備えている。押出装置には、列状に並び、瓦裏面形状の型となるパレットP…Pを押し出すための油圧シリンダーCが配設されている。なお、油圧シリンダーCは、ストロークの終わりに到達すると、一旦停止し、その後初期位置に戻るために、矢印方向とは反対方向へ移動する。
 この油圧シリンダーCは、パレットPを、矢印方向への働きにより、ホッパを上流として下流に向かって押し出し、パレットPの移動に伴って、ホッパHの下方から成形材料Mが押し出され、ローラRおよびスリッパSを用いて均してパレットPに充填される。より詳細には、例えば、ホッパH中の成形材料は、それ自身の重みおよびローラRの矢印方向の回転などによりパレットPへと充填され、パレットPに充填された成形材料Mは、ローラRおよびスリッパSにより均されることによって瓦表面(または瓦上面)が形成される。なお、必要に応じて、ホッパH内には、成形材料Mをパレット方向へ押し出すための押し出し手段(例えば、パドルなど)が存在していてもよい。
 成形材料Mと接触するパレットP、ローラRおよび/またスリッパSの表面には、適宜デザイン由来の凹凸があってもよく、この凹凸によって、瓦自体の形状、瓦の重ね合わせ部および非重ね合わせ部の形状や、瓦の模様などを形成することができる。
 瓦は、下面においてパレットPと接触した状態で養生、硬化するため、型成形により硬化された表面を有している。一方、上面においては、ローラRおよび/またはスリッパSで圧縮する際に成形されるが、型を用いた成形ではないため、非型成形により硬化された表面を有している。型成形により硬化された表面は、型の形状に由来して、平滑な表面となりやすい傾向にある。
 その後、成形材料Mが充填されたパレットPは、隣接したパレット上に連続して形成された帯状体として、油圧シリンダーCでホッパHの下流側に移動する。そして下流側に設けられたブレードBによってこのパレットPの前後端が切断され、個別のパレット上に、個別の生状態の瓦が形成される。これらの生状態の瓦をさらに所定の条件で養生することによって、生状態の瓦を硬化させ、所定の形状を有する瓦を得ることができる。なお、このブレードBによる切断の際、瓦の切断端面では、通常、切断に由来した粗面が形成される。
 さらに、図5を利用して、本発明の別の一実施態様であるコンクリート瓦の製造方法を説明する。この実施態様では、図4に記載された台Tに代えて、ホッパHの下方には、瓦裏面形状の型となるパレットP…Pを列状に備えるコンベアCが配設されている。
 このコンベアCは、ホッパを上流として下流に向かって移動し、その移動に伴って、成形材料Mが押し出され、ローラRおよびスリッパSを用いて均してパレットPに充填・圧縮される。より詳細には、例えば、ホッパH中の成形材料は、それ自身の重みおよびローラRの矢印方向の回転などによりパレットPへと充填され、パレットPに押し出された成形材料Mは、ローラRおよびスリッパSにより均されることによって瓦表面が形成される。
 また、図5には図示していないが、コンベアは、当業界で利用されている各種駆動手段を用いて移動させることができ、例えば、コンベアはモーターなどの駆動手段により移動可能であってもよい。
 さらに、パレットが移動可能である限り、パレットの移動手段としては、特に限定されず、ここに例示した移動手段以外のものであっても使用することが可能である。
(コンクリート瓦の成形材料)
 本発明の別の構成に係るコンクリート瓦を製造するための成形材料は、セメント、骨材、耐アルカリ性繊維、水を少なくとも含んでおり、水セメント比(W/C)が、質量%として20~50%程度であり、好ましくは20~45%(例えば、35~45%)、より好ましくは20~40%(例えば、35~40%)であってもよい。また、この成形材料では、耐アルカリ性繊維が、成形材料中に実質的に繊維含有粒状体として存在していない。ここで、耐アルカリ性繊維が成形材料で実質的に繊維含有粒状体として存在しない場合、この成形材料から製造された瓦をランダムな箇所で切断した際に、その切断面において、円相当径3mm以上(好ましくは5mm以上、特に10mm以上)を有する繊維含有粒状体がその切断面において観察できないことから確認することが可能である。なお、その詳細な評価方法については、後述する実施例に記載されている。
 また、成形材料の固形分に対する耐アルカリ性繊維の割合は、繊維含有粒状体の形成を抑制させる観点から、0.1~2質量%程度であってもよく、好ましくは0.3~1.8質量%程度、より好ましくは0.5~1.6質量%程度であってもよい。
 本発明で用いられる耐アルカリ性繊維は、混練性に優れ、成形体としての瓦全体に繊維を混入できる観点から、ポリビニルアルコール(以下、PVAと称することがある)系繊維、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維、など)、超高分子量ポリエチレン繊維、ポリアミド系繊維(ポリアミド6、ポリアミド6,6、ポリアミド6,10など)、およびアラミド繊維(特にパラアラミド繊維)アクリル繊維からなる群から選択された少なくとも一種の耐アルカリ性有機繊維である。
 このような繊維は、前述したコンクリート瓦を製造するために、有用である。これらのうち、コンクリート補強性を有しつつ、低コストで製造できる観点から有利に使用でき、セメントとの接着性が良好である観点から、特にPVA系繊維が好ましい。
 さらに、繊維含有粒状体の形成を抑制させる観点から、耐アルカリ性繊維は、そのアスペクト比が50~1000であってもよい。さらに、耐アルカリ性繊維は、瓦に対して所定の強度を付与する観点から、そのアスペクト比が70~900程度であるのが好ましく、より好ましくは100~800程度であってもよい。なお、アスペクト比とは、繊維長(L)と繊維径(D)との比(L/D)を意味している。
 耐アルカリ性繊維は、繊維強度が高い方が、瓦全体の強度を高めることが可能であり、繊維強度は、例えば、8cN/dtex以上であってもよく、好ましくは9cN/dtex以上であってもよく、さらに好ましくは10cN/dtex以上であってもよい。繊維強度の上限は、繊維に応じて適宜設定することができ、特に限定されないが、繊維強度の上限は、30cN/dtex程度であってもよい。なお、繊維強度は、後述する実施例に記載された方法により測定された値を示す。
 そして、繊維含有粒状体の形成を抑制させるとともに、繊維の混和性および成形品の強度を高める観点から、成形材料に混和される耐アルカリ性繊維は、平均繊維径1~200μm程度を有していてもよく、好ましくは2~150μm程度、より好ましくは5~100μm程度であってもよい。
 このような繊維は、成形材料中の繊維含有粒状体の形成を抑制させる限り、当業者により適宜使用することが可能であるが、繊維束を切断することにより形成されたショートカットファイバーとして用いられることが多い。ショートカットファイバーは、繊維の切断工程、繊維ベールへの圧縮工程などに起因して、繊維凝集体を形成しやすい。なお、繊維ベールは、ベールオープナーなどによりあらかじめ粗解繊してもよいが、粗解繊後においても、繊維凝集体が存在することが多い。
 繊維凝集体が成形材料中に存在する場合、繊維凝集体の周囲を、水を含んだセメント及び骨材が覆って、繊維凝集体の内部まで水やセメントが入らなくなることがある。このような場合、繊維凝集体を中心とした繊維含有粒状体が、成形材料中だけでなく、コンクリート瓦自体にも形成されてしまう。
 繊維含有粒状体の形成を防ぐ観点から、必要に応じて、コンクリート瓦成形材料を調製する際に、後述する繊維の分散工程を行ってもよい。
 セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメントなどのポルトランドセメント、アルミナセメント、高炉セメント、シリカセメント、フライアッシュセメントが挙げられ、これらのセメントは、単独でまたは二種以上組み合わせて使用してもよい。
 コンクリート瓦を製造する際の細骨材としては、粒径が5mm以下の細骨材であってもよく、例えば、粒径が5mm以下の砂類;珪石、フライアッシュ、高炉スラグ、火山灰系シラス、各種汚泥、岩石鉱物等の無機質材を粉末化又は顆粒状化した細骨材などが挙げられる。これらの細骨材は、単独でまたは二種以上組み合わせて使用してもよい。
 砂類としては、例えば、川砂、山砂、海砂、砕砂、珪砂、鉱滓、ガラス砂、鉄砂、灰砂、炭酸カルシウム、人工砂等の砂類が挙げられる。
 また、軽量骨材として、火山砂利、膨張スラグ、炭殻などの天然軽量骨材、発泡真珠岩、発泡パーライト、発泡黒よう石、バーミキュライト、シラスバルーン等の人工軽量骨材を配合してもよいが、本願発明のコンクリート瓦は、薄肉化した場合であっても強度を保持できるので、製造工程中に粉砕しやすい軽量骨材の量を低減しつつ、軽量化が可能である。したがって、骨材中における軽量骨材の割合は、10%以下、好ましくは5%以下に低減することが可能である。
 また、前記細骨材に加え、機能性骨材を加えてもよい。ここで、機能性骨材とは、有色の骨材、硬質の骨材、弾性を有する骨材、特定の形状を有する骨材などが挙げられ、例えば、層状ケイ酸塩(例えば、マイカ、タルク、カオリン)、アルミナ、シリカなどであってもよい。細骨材に対する機能性骨材の割合は、それぞれの種類に応じて適宜設定することが可能であるが、例えば、細骨材と機能性骨材との質量比は、(細骨材)/(機能性骨材)=99/1~70/30程度であってもよく、好ましくは98/2~75/25程度であってもよく、より好ましくは97/3~80/20程度であってもよい。
 これらのうち、層状ケイ酸塩を加えるのが好ましい。層状ケイ酸塩は、フレーク径が、例えば、10~800μm程度、好ましくは20~700μm程度であってもよい。
 例えば、層状ケイ酸塩の一種であるマイカの主成分はSiO、Al、KO及び結晶水である。好ましいマイカとしては、マスコバイト(白色雲母)、フロコバイト(金色雲母)などが挙げられる。
 層状ケイ酸塩の重量平均フレーク径は、例えば50~800μm程度であってもよく、好ましくは100~700μmであってもよい。なお、重量平均フレーク径は、層状ケイ酸塩を各種の目開きの標準フルイを用いて分級し、その結果をRosin-Rammlar線図にプロットして、測定に供した層状ケイ酸塩の50重量%が通過する目開きを求め、その目開きの√2倍(正方形の対角線の長さ)の値をさす。
 層状ケイ酸塩を耐アルカリ性繊維と組み合わせることにより、互いに補強しあうことによりコンクリート瓦の各種強度的特性を向上させることができる。
 機能性骨材(特に層状ケイ酸塩)と耐アルカリ性繊維との割合は、それぞれの種類に応じて適宜設定することが可能であるが、例えば、機能性骨材と耐アルカリ性繊維との質量比は、(機能性骨材塩)/(耐アルカリ性繊維)=1/1~50/1程度であってもよく、好ましくは2/1~40/1程度であってもよく、より好ましくは3/1~30/1程度であってもよい。
 また、骨材の総量(S)とセメント(C)の質量比は、骨材(S)/セメント(C)比=1/10~5/1程度であってもよく、好ましくは1/8~4/1程度であってもよく、より好ましくは1/6~3/1程度であってもよい。
 コンクリート瓦成形材料は、小さい水セメント比(W/C)のもとで繊維が混入することが可能である。従来小さい水セメント比(W/C)のもとでは、混練後の状態が流動性に欠けるため、繊維をたとえ混和したとしても、成形材料中に均一に混和して、それにより成形品の強度を増加させることは不可能であった。また、たとえ混和剤を用いた場合でも、通常の流し込み成形向けに得られるモルタルやコンクリートよりも流動性は劣るものであり、繊維の均一混和は困難である。
 コンクリート瓦成形材料は、適宜、必要に応じて、各種混和剤、例えば、AE剤、流動化剤、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、増粘剤、保水剤、撥水剤、膨張剤、硬化促進剤、凝結遅延剤、ポリマーエマルジョン[アクリル系エマルジョン、エチレン-酢酸ビニル系エマルジョン、又はSBR(スチレンブタジエンゴム)系エマルジョン]等を混入していてもよい。これらの混和剤は、単独でまたは二種以上組み合わせて使用してもよい。なお、ポリマーエマルジョンは、瓦の脆性を強化するだけでなく、成形材料間の接着力を強化することが可能である。さらに、ポリマーエマルジョンを組み合わせることにより、瓦の透水防止性を向上できるだけでなく、過度の乾燥を抑制することができる。
 耐アルカリ性繊維が、成形材料中に実質的に繊維含有粒状体として存在するのを防ぐことができる範囲で、上述したセメント、骨材、耐アルカリ性繊維、水などを混合することにより、コンクリート瓦成形材料を得ることができる。
 好ましくは、成形材料の準備工程として、セメント、骨材、および水を含む混合物に対して、耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散される分散工程を少なくとも備えていてもよい。
 前記混合物は、少なくともセメント、骨材、および水が含まれていればよく、セメント、骨材、および水のそれぞれについて、使用予定である全量が含まれていてもよいし、一部が含まれていてもよい。例えば、セメント、骨材、および水のそれぞれについて、それらの一部が含まれる場合、残りは、耐アルカリ性繊維の分散工程中、および/または分散工程後に混合させてもよい。
 より好ましくは、前記準備工程では、
 少なくともセメント、骨材、および水を混合して、混合物を調製する混合工程と、
 前記混合物に対して、耐アルカリ性繊維を投入し、前記耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散させる分散工程と、
を少なくとも行ってもよい。
 混合工程は、例えば、少なくともセメント、骨材、および水を混合すればよく、例えば、セメント、骨材を乾式で混合した後、水を添加して混練してもよい。
 また、分散工程では、成形材料中で、耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散することが出来る限り、さまざまな方法により繊維の分散を行うことが可能である。
 分散工程では、繊維の分散性を向上するため、例えば、(i)耐アルカリ性繊維を定量供給してもよく、(ii)解された状態の耐アルカリ性繊維を投入してもよく、(iii)耐アルカリ性繊維維を混合する際に撹拌性能の高いミキサー、ニーダーを用いてもよい。これらの(i)から(iii)は、単独でまたは二種以上組み合わせて行ってもよい。
 耐アルカリ性繊維を定量供給する場合、所定量の範囲で繊維を連続式に投入できる限り特に限定されない。例えば、繊維の投入量及び/又は投入速度を制御しながら供給する装置として、各種定量供給装置(例えば、振動フィーダー、スクリューフィーダー、ベルトフィーダー等)を用いることができる。
 耐アルカリ性繊維を解す場合、例えば、繊維含有粒状体が成形材料に発生するのを抑制できる程度に、繊維凝集体を、より小さな繊維集合体単位まで、所定の解離手段などにより解すことができる。なお、繊維凝集体を解す場合、繊維強度を維持する観点から、繊維のフィブリル化、繊維の粉砕がなされない範囲で行うのが好ましい。
 繊維凝集体は、通常、乾式下において各種方法で解すことができる。例えば、繊維凝集体(繊維ベール、繊維ベールの粗解繊物、ショートカットファイバー束など)は、突起物を有するロールに繊維を引っかけることにより解してもよく、対向する回転ギアの間を通過させて解してもよく、溝を持つ回転ディスクのせん断力により解してもよく、エアブローの衝突力により解してもよい。これらの方法は、単独でまたは二種以上組み合わせて行ってもよい。例えば、繊維凝集体(所定の長さに切断されたショートカットファイバーの塊など)を乾式下で解すことにより繊維同士を引き離し、繊維凝集体を解してもよい。
 耐アルカリ性繊維維を混合する際に撹拌性能の高いミキサー、ニーダーを用いる場合、撹拌性能の高いミキサー、ニーダーとしては、例えば、双腕ニーダー、加圧ニーダー、アイリッヒミキサー、スーパーミキサー、プラネタリーミキサー、バンバリーミキサー、コンティニュアスミキサー、あるいは連続混練機などを使用することができる。
 このようにして得られたコンクリート瓦成形材料は、続いて、ローラ/スリッパ式押出装置のホッパへ供給され、ローラ/スリッパ方式でコンクリート瓦を製造することができる。
 以下、合成例、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これらの実施例に限定されるものではない。
[繊維強度測定方法 (cN/dtex)]
 JIS L1015「化学繊維ステープル試験方法(8.5.1)」に準じて評価した。
[瓦重量の測定方法(kg/m)]
 5枚の瓦につき、それぞれの瓦の上面からの投影面積および重量を測定した。そして、それぞれの面積および重量を合計し、その合計重量を合計面積で除することにより、瓦重量(kg/m)を算出した。
[瓦本体部の外観評価]
(表面部分における繊維含有粒状体に由来する凸部の有無)
 瓦本体部の上面部分において、繊維含有粒状体に由来する凸部の有無を目視により確認する。また、凸部が存在する場合、凸部を含む面で瓦を切断し、円相当径10mm以上を有する繊維含有粒状体が凸部内に存在する場合、繊維含有粒状体由来の凸部であると判断する。判断基準として、円相当径10mm以上の繊維含有粒状体が1つでも存在すると不良(×)、円相当径3mm以上10mm未満の繊維含有粒状体が1つでも存在すると並(△)、繊維含有粒状体が円相当径3mm未満の場合は良(○)とした。なお、凸部の確認は、ランダムに選んだ瓦10枚を対象にして行い、そのうちの1つでも凸部が確認された場合、凸部があるものとして扱う。
(内部における繊維含有粒状体の有無)
 瓦をランダムな箇所で切断した際に、その切断面において、円相当径10mm以上を有する繊維含有粒状体が存在するか否かを目視により確認する。判断基準として、円相当径10mm以上の繊維含有粒状体が1つでも存在すると不良(×)、円相当径3mm以上10mm未満の繊維含有粒状体が1つでも存在すると並(△)、繊維含有粒状体が円相当径3mm未満の場合は良(○)とした。なお、繊維含有粒状体の確認は、ランダムに選んだ瓦10枚を対象にして行い、そのうちの1つでも繊維含有粒状体が確認された場合、繊維含有粒状体があるものとして扱う。なお、繊維含有粒状体は、繊維凝集体に由来するためか、周りの成形材料と一体化せず、周囲の成形材料との間に空隙を有する硬化物として存在しているため、目視による確認が可能である。
(重ね合わせ部における係合状態)
 重ね合わせ部と被重ね合わせ部と重ね合わせ、両者が重なり合う状態を目視により観察する。両者の間に10mm以上の隙間が存在せずに係合する場合、実質的にすきまなく重ね合わせることができるものとして判断する。判断基準として、重ね合わせ部の溝が均一に成形されている場合は良(○)、溝自体は途切れないも溝高さが不均一の場合は並(△)、一部でも溝が形成されない場合は不良(×)とした。なお、係合状態については、ランダムに選んだ瓦10枚の重ね合わせ部を対象にして行い、そのうちの1つでも隙間が確認された場合、隙間があるものとして扱う。
[切り出し片の曲げ強度測定試験]
 瓦より、長さ約150mm、幅約50mmの短冊状切り出し試験片を瓦1枚あたり3体切出した。その後、試験片の測定時の含水率を一定に調整するため、切出した試験片を40℃に調整した乾燥機にて72時間乾燥処理した。曲げ強度の測定方法は、JISA1408に準じて測定した。曲げ強度の測定条件は、島津社製オートグラフAG5000‐Bにて、試験速度(戴荷ヘッドスピード)2mm/分、中央戴荷方式で曲げスパン100mmで測定した。
[瓦の曲げ荷重測定試験]
 EN491:2011に準じ、試験速度(戴荷ヘッドスピード)500N/分にて、瓦曲げ試験を行った。この試験により得られた曲げ荷重値をEN490規格に照らし、合格しているか否かを判定した。
[瓦の落球試験]
 JIS A 1408を参考に、対辺単純支持、スパン200mm、ボール質量1.05kg、落下高さ30cmにて、落球試験を実施した。1水準あたり3枚試験し、1枚でも実質的に分断破壊された場合は不合格とした。ここで実質的に分断破壊されないとは、瓦が完全に破壊されて2つ以上の大きな断片(各断片の体積は破壊前の瓦全体の体積の20%以上)に分かれないことを意味しており、亀裂破壊による表面破壊、表面の欠けによる小さな断片の欠損は、「実質的に分断破壊されない」という用語には含まれない。
[平均繊維径およびアスペクト比の測定方法]
 JIS L1015「化学繊維ステープル試験方法(8.5.1)」に準じて平均繊維長を算出し、平均繊維径との比により繊維のアスペクト比を評価した。なお、平均繊維径については、無作為に単繊維を1本ずつ取り出し、繊維の長さ方向の中央部における繊維径を光学顕微鏡を用いて実測し、合計100本について測定した平均値を平均繊維径とした。
[瓦の比重]
 瓦より、長さ約150mm、幅約50mmの短冊状切り出し試験片を瓦1枚あたり3体切出し、各々の寸法を測定することで、各テストピースの体積を算出した。その後、各切り出し片を100℃乾燥機内で24時間乾燥した後、各質量を別途測定した。その後、以下式により、各切り出し片の比重を算出後、平均値を算出し、瓦の比重とした。
比重(g/cm)=切り出し片質量(g)/切り出し片体積(タテ×ヨコ×高さ)(cm
[実施例1~3]
 100L容量のプラネタリーミキサーを用いて、普通ポルトランドセメント(33.3質量部)、細骨材S1として海砂(63.2質量部),機能性骨材S2としてマイカ(重量平均フレーク径:300μm、2.5質量部)を配合し、1分間ドライブレンドした後、水を添加し、1分間混練し、水セメント比(W/C)=38質量%、骨材(S)/セメント(C)比=2/1のセメント系混合物を得た。その後、この混合物に対し、対向して配設された回転ギアの間を通過させて解した表1に示す繊維をそれぞれ表1に示す割合で投入して2分間混練し、コンクリート瓦成形材料を得た。
 この成形材料を、ローラ/スリッパ式押出装置のホッパに投入し、平瓦用の金属性パレット上に材料を押出し、次いで、その材料をスリッパで圧縮して、パレットに成形材料を充てんした。次いで、切断刃でパレットの前後端を切断し、寸法422mm×333mm×約10mmの平瓦を製造した。これらの瓦を養生槽に移し、50℃、RH100%で18時間硬化させ、硬化後瓦を金属性パレットから取り出し、20℃RH85%中で29日さらに養生を実施した。得られた瓦の性質を、表1に示す。
[実施例4]
 繊維の添加量を0.5wt%にする以外は、実施例1と同様にしてコンクリート瓦を得た。得られた瓦の性質を、表1に示す。
[比較例1]
 繊維を用いない以外は、実施例1と同様にしてコンクリート瓦を得た。得られた瓦の性質を、表1に示す。
[比較例2]
 骨材として、細骨材の15質量%を、軽量骨材である太平洋セメント(株)製イースフィアーズに置換し、繊維を用いない以外は、実施例1と同様にしてコンクリート瓦を得た。得られた瓦の性質を、表1に示す。
[比較例3~4]
 繊維の種類および添加量を表1に示すように変更する以外は、実施例1と同様にしてコンクリート瓦を得た。得られた瓦の性質を、表1に示す。
[比較例5]
 繊維を予め解さない以外は、実施例1と同様にしてコンクリート瓦を得た。得られた瓦の性質を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4は、いずれも繊維が実質的に繊維含有粒状体として存在していない状態で分散しており、外観に優れるとともに、切断片の曲げ強度試験、瓦曲げ試験、落球試験のいずれにおいても、瓦として十分な性質を示している。またこのような高い強度を有しつつ、瓦の軽量化についても達成できる。
 一方、比較例1では、繊維を有していないため、切断片の曲げ強度試験、瓦曲げ試験、落球試験のいずれにおいても、不十分である。
 比較例2では、軽量骨材を用いて、軽量化を達成しているものの、繊維を有していないため、切断片の曲げ強度試験、瓦曲げ試験、落球試験のいずれにおいても、不十分である。
 比較例3では、繊維の添加量が多すぎるために、瓦内部において繊維が凝集し、集合体を形成してしまうためか、外観性に劣るとともに、切断片の曲げ強度試験および瓦曲げ試験で十分な強度を示していない。
 比較例4では、繊維のアスペクト比が大きすぎるために、瓦内部において繊維が凝集し、集合体を形成してしまうためか、外観性に劣るとともに、切断片の曲げ強度試験および瓦曲げ試験で十分な強度を示していない。
 比較例5では、繊維含有粒状体が存在しているため、外観性に劣るとともに、切断片の曲げ強度試験および瓦曲げ試験で十分な強度を示していない。
 本発明のコンクリート瓦は、各種屋根材として有用に用いることができるが、壁面タイル、床面タイルなどとして、利用することも可能である。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。
 したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。

Claims (14)

  1.  瓦本体部を備えるコンクリート瓦であって、
     前記瓦本体部は、非型成形により硬化された上面と、型成形により硬化された下面と、側面部とを備え、前記側面部の少なくとも一辺に切断端面を有しており、
     前記瓦本体部では、その厚み方向全体にわたって、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維からなる群から選択される少なくとも一種で構成される耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散しており、
     30mm×150mmの切出片の曲げ強度が6N/mm以上であるコンクリート瓦。
  2.  請求項1に記載のコンクリート瓦において、瓦本体部の表面部分が、繊維含有粒状体に由来する凸部を実質的に有していないコンクリート瓦。
  3.  請求項1または2に記載のコンクリート瓦において、瓦本体部の比重が1.5~2.2であるコンクリート瓦。
  4.  請求項1から3のいずれか一項に記載のコンクリート瓦において、耐アルカリ性繊維の平均繊維径が1~200μmであるとともに、アスペクト比が50~1000であるコンクリート瓦。
  5.  請求項1から4のいずれか一項に記載のコンクリート瓦において、耐アルカリ性繊維が、ポリビニルアルコール系繊維であるコンクリート瓦。
  6.  請求項1から5のいずれか一項に記載のコンクリート瓦において、EN491:2011に準じて行われる瓦曲げ試験でEN490規格に合格するコンクリート瓦。
  7.  請求項1から6のいずれか一項に記載のコンクリート瓦において、JIS A 1408を参考にして行われる落球試験によって、実質的に分断破壊されないコンクリート瓦。
  8.  請求項1から7のいずれか一項に記載されたコンクリート瓦を製造するための成形材料であって、セメント、細骨材、耐アルカリ性繊維、および水を少なくとも含んでおり、水セメント比(W/C)が20~50質量%であり、前記耐アルカリ性繊維は、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維からなる群から選択される少なくとも一種で構成されるとともに、耐アルカリ性繊維の固形分に占める割合が、0.1~2質量%であり、耐アルカリ性繊維が、成形材料中に実質的に繊維含有粒状体として存在していない、コンクリート瓦成形材料。
  9.  請求項8に記載のコンクリート瓦成形材料において、耐アルカリ性繊維のアスペクト比が50~1000であるコンクリート瓦成形材料。
  10.  請求項8または9のいずれか一項に記載のコンクリート瓦成形材料において、耐アルカリ性繊維の平均繊維径が1~200μmであるコンクリート瓦成形材料。
  11.  請求項8から10のいずれか一項に記載のコンクリート瓦成形材料において、さらに機能性骨材を含んでいるコンクリート瓦成形材料。
  12.  請求項1から7のいずれか一項に記載されたコンクリート瓦を製造するための、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維およびアラミド繊維からなる群から選択される少なくとも一種で構成される耐アルカリ性繊維の使用。
  13.  コンクリート瓦をローラ/スリッパ方式で製造する方法であって、
     請求項8から11のいずれか一項に記載された成形材料を、ローラ/スリッパ式押出装置のホッパへ供給する供給工程と、
     前記供給された成形材料を、ホッパの下方から、複数の隣接したパレットに対して充填する充填工程と、
     前記充填された成形材料を、ローラおよびスリッパにより圧縮し、前記隣接したパレット上に連続した帯状体を形成する圧縮工程と、
     前記帯状体を切断刃で切断し、個別のパレット上に、個別の生状態の瓦を形成する切断工程と、
    を少なくとも備えるコンクリート瓦の製造方法。
  14.  請求項13に記載された製造方法において、成形材料の供給工程が、成形材料の準備工程を含み、前記準備工程が、
     セメント、骨材、および水を含む混合物に対して、耐アルカリ性繊維が実質的に繊維含有粒状体として存在していない状態で分散される分散工程を少なくとも備えるコンクリート瓦の製造方法。
PCT/JP2014/079179 2013-11-06 2014-11-04 コンクリート瓦およびその成形材料 WO2015068679A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112016009843-9A BR112016009843B1 (pt) 2013-11-06 2014-11-04 Telha de concreto, material de moldagem de telha de concreto, uso de fibras resistentes a álcali para fabricar a telha de concreto, e método de fabricar uma telha de concreto
MX2016005701A MX2016005701A (es) 2013-11-06 2014-11-04 Loseta de concreto y material de moldeo para la misma.
EP14860813.6A EP3067178A4 (en) 2013-11-06 2014-11-04 Concrete tile and molding material for same
JP2015546638A JP6491603B2 (ja) 2013-11-06 2014-11-04 コンクリート瓦およびその成形材料
AU2014344915A AU2014344915B2 (en) 2013-11-06 2014-11-04 Concrete tile and molding material for same
US15/141,232 US10851545B2 (en) 2013-11-06 2016-04-28 Concrete tile and molding material for same
AU2018204490A AU2018204490B2 (en) 2013-11-06 2018-06-21 Concrete tile and molding material for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013230576 2013-11-06
JP2013-230576 2013-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/141,232 Continuation US10851545B2 (en) 2013-11-06 2016-04-28 Concrete tile and molding material for same

Publications (1)

Publication Number Publication Date
WO2015068679A1 true WO2015068679A1 (ja) 2015-05-14

Family

ID=53041456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079179 WO2015068679A1 (ja) 2013-11-06 2014-11-04 コンクリート瓦およびその成形材料

Country Status (7)

Country Link
US (1) US10851545B2 (ja)
EP (1) EP3067178A4 (ja)
JP (1) JP6491603B2 (ja)
AU (2) AU2014344915B2 (ja)
BR (1) BR112016009843B1 (ja)
MX (1) MX2016005701A (ja)
WO (1) WO2015068679A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015113328A1 (de) * 2015-08-12 2017-02-16 Monier Roofing Gmbh Verfahren zur Herstellung eines Dachsteins mit einer Wassersperre und Dachstein mit angeformter Wassersperre

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191080A (ja) 1984-08-24 1986-05-09 マルレイ テイ−レ アクチエンゲゼルシヤフト 軽量コンクリ−ト屋根瓦
JPH01242446A (ja) * 1988-03-24 1989-09-27 Sekisui Chem Co Ltd ビニロン繊維補強セメント瓦
JPH0284303A (ja) * 1988-06-11 1990-03-26 Redland Roof Tiles Ltd コンクリート建築製品の製造方法
JPH04179502A (ja) 1990-11-15 1992-06-26 Asahi Chem Ind Co Ltd 軽量コンクリート平板瓦及びその製造方法
JPH05318433A (ja) * 1992-05-19 1993-12-03 Kubota Corp セメント瓦の製造装置
JPH05318434A (ja) * 1992-05-26 1993-12-03 Kubota Corp セメント瓦の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2163421B (en) 1984-08-24 1988-06-22 Marley Lightweight concrete roof tiles
CA1300918C (en) 1987-06-12 1992-05-19 Masataka Kamitani Cement tile reinforced with fibers and a method for the production of the same
GB2302839B (en) * 1995-07-05 1997-09-10 Redland Technology Ltd Improvements in the manufacture of roof tiles
JP2002361620A (ja) * 2001-06-07 2002-12-18 Kubota Corp 屋根瓦の製造方法
JP6445400B2 (ja) 2015-06-24 2018-12-26 株式会社クラレ モルタルコンクリート補強用ポリビニルアルコール繊維、およびそれを含むモルタルコンクリート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191080A (ja) 1984-08-24 1986-05-09 マルレイ テイ−レ アクチエンゲゼルシヤフト 軽量コンクリ−ト屋根瓦
JPH01242446A (ja) * 1988-03-24 1989-09-27 Sekisui Chem Co Ltd ビニロン繊維補強セメント瓦
JPH0284303A (ja) * 1988-06-11 1990-03-26 Redland Roof Tiles Ltd コンクリート建築製品の製造方法
JPH04179502A (ja) 1990-11-15 1992-06-26 Asahi Chem Ind Co Ltd 軽量コンクリート平板瓦及びその製造方法
JPH05318433A (ja) * 1992-05-19 1993-12-03 Kubota Corp セメント瓦の製造装置
JPH05318434A (ja) * 1992-05-26 1993-12-03 Kubota Corp セメント瓦の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3067178A4

Also Published As

Publication number Publication date
AU2018204490A1 (en) 2018-07-12
EP3067178A1 (en) 2016-09-14
EP3067178A4 (en) 2017-08-09
BR112016009843A2 (ja) 2017-08-01
AU2014344915B2 (en) 2018-03-22
AU2018204490B2 (en) 2018-12-06
JP6491603B2 (ja) 2019-03-27
AU2014344915A1 (en) 2016-05-19
US20160237686A1 (en) 2016-08-18
JPWO2015068679A1 (ja) 2017-03-09
US10851545B2 (en) 2020-12-01
BR112016009843B1 (pt) 2022-09-13
MX2016005701A (es) 2016-08-12

Similar Documents

Publication Publication Date Title
RU2544355C2 (ru) Способ производства наноцемента и наноцемент
US5622556A (en) Lightweight, low water content cementitious compositions and methods of their production and use
CN101376579A (zh) 石粉干粉砂浆
CN104086131B (zh) 将建筑垃圾与石灰石粉复合制得的道路铺筑材料及其制备方法
KR20100014244A (ko) 건조 상태에서 섬유를 프리믹스 및 첨가하는 방법
JP2020112021A (ja) 繊維含有瓦、ならびに繊維含有瓦を製造するための成形材料およびその製造方法
EP3129201B1 (en) Process for the preparation of masonry composite materials
JP6607774B2 (ja) セメント補強用耐アルカリ性有機繊維
JP6491603B2 (ja) コンクリート瓦およびその成形材料
CN104671720B (zh) 使用建筑垃圾和煤矸石制造的道路填筑材料及其制备方法
JP2014195957A (ja) 繊維補強水硬性無機質成型体の製造方法
JPH11246254A (ja) ガラス繊維強化コンクリート成形品製造用混合物並びに成形品製造方法及び装置
AU2017339076B2 (en) Methods for producing fiber cement products with fiber cement waste
RU2547532C1 (ru) Сухая смесь для приготовления неавтоклавного газобетона (варианты)
CN108793843A (zh) 一种高性能再生混凝土胎膜板及其施工方法
CN104761216B (zh) 一种用建筑垃圾复合电炉渣的道路铺筑材料及其制备方法
EP4168611B1 (en) Polymer fibers for concrete reinforcement
US8435342B2 (en) Concrete composition
RU2735004C1 (ru) Способ производства сухих строительных смесей
JP2018108915A (ja) 水硬性成形体およびその製造方法
MX2012014406A (es) Diseño de formulas en mezclas de concreto convencionales y especiales, para la optimizacion de empaquetamiento de particulas que conforman la mezcla de concreto, para la mejora de propiedades mecanicas.
JP2005336054A (ja) 複合石膏ボード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546638

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014860813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/005701

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201603198

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016009843

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014344915

Country of ref document: AU

Date of ref document: 20141104

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016009843

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160502