RU2735004C1 - Способ производства сухих строительных смесей - Google Patents

Способ производства сухих строительных смесей Download PDF

Info

Publication number
RU2735004C1
RU2735004C1 RU2019107311A RU2019107311A RU2735004C1 RU 2735004 C1 RU2735004 C1 RU 2735004C1 RU 2019107311 A RU2019107311 A RU 2019107311A RU 2019107311 A RU2019107311 A RU 2019107311A RU 2735004 C1 RU2735004 C1 RU 2735004C1
Authority
RU
Russia
Prior art keywords
cement
mixture
mixtures
production
cnt
Prior art date
Application number
RU2019107311A
Other languages
English (en)
Inventor
Евгений Евгеньевич КРИВЦОВ
Алексей Михайлович Голик
Original Assignee
Общество с ограниченной ответственностью "ЦЕНТР РЕСТАВРАЦИИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ЦЕНТР РЕСТАВРАЦИИ" filed Critical Общество с ограниченной ответственностью "ЦЕНТР РЕСТАВРАЦИИ"
Priority to RU2019107311A priority Critical patent/RU2735004C1/ru
Application granted granted Critical
Publication of RU2735004C1 publication Critical patent/RU2735004C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements

Abstract

Изобретение относится к производству строительных материалов, конкретнее к производству сухих строительных смесей методом совместной механоактивации цемента и доломита, с последующей модификацией сухих строительных смесей углеродными наноструктурами. Задачей настоящего изобретения является сокращение количества химических добавок при сохранении нормируемых показателей физико-химических свойств и улучшении удобоукладываемости смеси. Данная задача решается за счет способа производства сухих строительных смесей, включающего совместную механоактивацию цемента или материалов на его основе с добавкой доломита 30% при помощи дезинтегратора Хинта с последующей модификацией углеродными нанотрубками в многокамерном смесителе-дозаторе, работающем по принципу «из меньшего в большее», оптимальное содержание которых составляет 0, 005%, при этом перемешивание углеродных нанотрубок с цементом происходит в 4 этапа: 0.005 г УНТ на 100 г цемента, 100 г цемента с УНТ на 1 кг цемента, 1 кг цемента с УНТ на 10 кг цемента, 10 кг цемента с УНТ на 100 кг цемента, полученная смесь как суперконцентрат используется для приготовления основной смеси: 100 кг цемента с УНТ смешивются с 2000 кг сухой строительной смеси в основном смесителе, далее вновь полученная смесь проходит механоактивацию в дезинтеграторе Хинта, где осуществляется ее измельчение и гомогенизация. Техническим результатом данного способа смешения УНТ с основным компонентом сухих строительных смесей - цементом - удалось достичь использования микроскопических (0.005%) количеств УНТ в составе ССС. Тем самым удалось добиться снижения производственной себестоимости получаемой смеси. Более того, благодаря повышению прочности, более быстрому твердению материалов появляется возможность сократить их расход, что является дополнительным фактором снижения производственной себестоимости смесей. 5 табл., 6 ил.

Description

Изобретение относится к производству строительных материалов, конкретнее к производству сухих строительных смесей методом совместной механоактивации цемента и доломита, с последующей модификацией сухих строительных смесей углеродными наноструктурами.
Известен традиционный способ производства сухих строительных смесей (ССС) методом обычного перемешивания компонентов. Недостаток этого метода в том, что для получения нормируемых показателей требуется избыточное количество вяжущих и регулируемых компонентов, что негативно сказывается на себестоимости ССС, а так-же увеличивается водотвердое соотношение, что напрямую влияет на прочность и адгезию смесей.
Известна универсальная сухая цементная композиция включающая портландцемент, песок, известняковую или доломитовую муку, поливинил ацетат и метиловый эфир целлюлозы, дополнительно содержит суперпластификатор на основе натриевых солей продукта конденсации производных ароматического ряда или меламина, винную кислоту, конденсированный микрокремнезем и регулятор твердения, выбранный из группы: сульфаты, или хлориды, или карбонаты, или формиаты, или нитриты, или нитраты щелочных или щелочноземельных металлов, или лигносульфонаты технические модифицированные, смола нейтрализованная воздухововлекающая (СНВ), нитр илотриметилфосфоновая кислота или их смеси при массовом соотношении компонентов: портландцемент : песок : суперпластификатор : известняковая или доломитовая мука : метиловый эфир целлюлозы : конденсированный микрокремнезем : поливинилацетат : регулятор твердения : винная кислота, равном 10-70, 1,0-85, 0,05-1,5, 0,5-85, 0,01-2,5, 0,25-3,5, 0,01-5,0, 0,0001-0,9, 0,01-1. (Патент на изобретение №2181705, 27.04.2002)
Известен способ приготовления смеси для производства композиционного ячеистого бетона, включающем подачу в смеситель компонентов состава и их перемешивание для получения однородной массы, введение в полученный состав сухой порообразующей смеси и последующее совместное перемешивание, в полученный состав дополнительно вводят цеолитовую добавку, приготовленную путем предварительного перемешивания одно- или многослойных нанотрубок в воде посредством атомайзера в распыленном виде с последующим их перемешиванием с цеолитом в смесителе циклического действия, а также вводят предварительно приготовленную сухую порообразующую смесь, состоящую из сухого пенообразователя, алюминиевой пудры ПАП-2 и алюминиевой пудры ПАП-1, после чего в общий смеситель подают компоненты сухой смеси при следующем соотношении, кг: цемент 600, зола-унос ТЭЦ 400, микрокремнезем МКУ 50, суперпластификатор С-3 9, олеат натрия 3, глюконат натрия 1,5, адимент СТ-22, биоцидная добавка Ластонокс 2, фибра 1,5, полимерная добавка 5, указанная сухая порообразующая смесь 20, указанная цеолитовая добавка, содержащая одно- или многослойные нанотрубки, 50, после чего полученный в результате совместного перемешивания общий состав подвергают ударной механоактивации на УДА-установках. Технический результат - получение однородной сухой смеси, снижение объемного веса, повышение прочности и морозостойкости неавтоклавного ячеистого бетона, полученного из заявленной сухой смеси. (Патентнаизобретение№2543847, 10.03.2015).
Вышеуказанные патенты лишь отчасти показывают возможности использования доломита и углеродных нанотрубок для получения строительных смесей и из уровня техники неизвестны аналогичные способы получения сухих строительных смесей.
Техническая проблема заключается в том, что в современных решениях, для получения сухих строительных смесей надлежащего качества, используются различные химические добавки и вяжущие и заявителю неизвестны иные технические решения, позволяющие получать сухую строительную смесь аналогичным способом.
Задачей настоящего изобретения является максимально возможное исключение различных химических добавок и вяжущих из процесса создания сухой строительной смеси при сохранении нормируемых показателей и улучшение удобоукладываемости.
Данная задача решается за счет способа производства сухих строительных смесей, включающий совместную механоактивацию цемента или материалов на его основе, с добавкой доломита 30% при помощи дезинтегратора Хинта, с последующей модификацией углеродными нанотрудками в многокамерном смесителе - дозаторе, работающем по принципу «из меньшего в большее», оптимальное содержание которых составляет 0, 005%, , при этом перемешивание углеродных нанотрубок с цементом происходите 4 этапа: 0.005 гУНТ на 100 г цемента., 100 г цемента с УНТ на 1 кг цемента, 1 кг цемента с УНТ на 10 кг цемента, 10 кг цемента с УНТ на 100 кг цемента, полученная смесь, как суперконцентрат, используется для приготовления основной смеси, 100 кг цемента с УНТ смешиваются с 2000 кг сухой строительной смеси в основном смесителе, далее, вновь полученная смесь проходит механо-активацию в дезинтеграторе Хинта, где осуществляется ее измельчение и гомогенизация.
Известно, что основные свойства портландцемента, в том числе, активность, скорость твердения определяются не только химическим и минералогическим составом клинкера, формой и размерами кристаллов алита и белита, наличием тех или иных добавок, но, в большой степени, тонкостью помола продукта, его гранулометрическим составом и формой частичек порошка [Лепилин, А.Б., Коренюгина Н.В., Векслер М.В. Селективная дезинтеграторная активация портландцемента // Строительные материалы, 2007, №7]. Повышение прочности портландцемента в первые сроки твердения в значительной степени обуславливается именно тонкостью помола. Домолотый, механо-активированный цемент обеспечивает получение более прочных бетонных изделий, строительных смесей на цементно-песчаной основе, что открывает широкие возможности снижения расхода портландцемента при их производстве при нормируемых показателях прочности.
В результате введения при домоле цемента 30% доломита, водопотребность такого цемента несколько ниже водопотребности бездобавочного цемента, что еще более положительно сказывается на его прочности (В сухих строительных смесях все добавки считаются от количества цемента. Соответственной процент доломита так же считается от цемента). Присутствие в гидратирующемся цементе частиц карбонатной добавки практически не влияет на скорость гидратации силикатов кальция (алита и белита). Она не взаимодействуете гидратными новообразованиями, не срастается с их кристаллогидратами, снижая прочность твердеющей массы, но при гидратации алюминатов и алюмоферритов кальция карбонаты образуют с ними фазу карбоалюминатов 3СаО-•Al2O3-СаСО3-11H2O и 3CaO-Al2O3-MgCO3- 11H2O, кристаллизующихся в виде гексагональных пластин, хорошо срастающихся между собой и с частицами карбонатного наполнителя, повышая прочность цементного камня и ускоряя гидратацию алюмоферритной фазы клинкера.
Свойства минеральных вяжущих строительных материалов зависят от коагуляционно-кристаллизационных процессов структурообразования. Как закономерности образования микро- и макроструктуры, так и способы управления этими процессами в композициях «дисперсная фаза - жидкая среда» достаточно сложны. Использование нанодисперсных модификаторов - углеродных нанотрубок - обеспечивает направленное регулирование процессов образования кристаллогидратов и формирование фибриллярной микроструктуры микронного размера, что является дополнительным фактором повышения физико-механических характеристик строительных вяжущих материалов.
На основании работ лаборатории компании была произведена серия испытаний для определения оптимального состава смесей. Базовым компонентом рецептуры сухих строительных смесей является цемент. Размер зерна цемента, скорость его твердения и набор а прочности, формирующаяся кристалло-гидратная структура определяют физико-механические и эксплуатационные свойства материалов, поэтому объектами исследования по определению эффективности механо-активации, влиянию углеродных нанотрубок на структуру цементного камня служил как «чистый» цемент, так и материалы на его основе.
Эффективность измельчения оценивали по результатам дисперсионного анализа. Размер и форму образующихся частиц оценивали как методом просева через стандартный набор сит, так и при анализе снимков, полученных со сколов методом электронной микроскопии (Фиг. 1 Гистограммы распределения частиц по размерам: 1 - исходная цементно-песчаная смесь (фрикционный состав), 2 - Результаты измерений дисперсности зерен наномодифицированного клеевого состава в сколе (средний диаметр 0.386 мкм.).
Влияние домола и модифицирующее действие углеродных нанотрубок (УНТ) на свойства получаемых материалов оценивали по их трещиностойкости и прочностным характеристикам. Результаты испытаний приведены в таблицах 1, 2.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Структурные изменения анализировали методом электронной микроскопии (Фиг 2,).
Фиг. 2. Структура цементного камня: исходный цемент (1) и домолотый с доломитом, модифицированный углеродными нанотрубками (2). Концентрация УНТ 0.005%.
Фиг. 3. Структура клеевого материала на цементно-песчаной основе: исходного (1) и домолотого с добавкой доломита, модифицированного углеродными нанотрубками (2). Концентрация УНТ 0.005%.
На Фиг. 4 приведена сравнительная кинетика набора прочности немодифицированного (образец 1) и модифицированного, механо-активированного (образец 2) клеевого матер нала на основе цемента. Видно, что максимальная прочность образца 1 достигается через 21 день, а в случае образца 2 - через 7 дней, причем прочность его в 1.5 раза выше. Следовательно, использование модифицированного, материала на строительных объектах позволит заметно сократить время на последующие по технологическому процессу операции.
Достигнутые в результате механо-активации и модификации характеристики ССС сохраняются в течение длительного времени. Смесь хранилась в стандартной упаковке (трехслойный мешок 25 кг с ПЭТ вкладышем), в отапливаемом помещении со средней температурой 20-250С. По истечении 5 мес.характеристики материалов не изменились. Так, прочность на сжатие клеевой смеси остались на уровне исходной (Таблица 3).
Figure 00000005
Figure 00000006
Таким образом, совместная механо-активация и модификация строительных вяжущих материалов УНТ увеличивает их прочность и активность.
Оптимальное содержание УНТ в составе материалов составляет 0,005%. Основная проблема, с которой сталкиваются разработчики наноструктурированных материалов, - это обеспечение равномерного распределения наноразмерных добавок в объеме материала. В настоящем проекте эта задача решалась путем использования многокамерного смесителя - дозатора работающего по принципу «из меньшего в большее» (Фиг. 5.).
Перемешивание УНТ с цементом происходитв 4 этапа:
1.0.005 г УНТ на 100 г цемента.
2. 100 г цемента с УНТ на 1 кг цемента.
3. 1 кг цемента с УНТ на 10 кг цемента
4. 10 кг цемента с УНТ на 100 кг цемента.
Полученная смесь, как суперконцентрат, используется для приготовления основной смеси. 100 кг цемента с УНТ смешиваются с 2000 кг смеси в основном смесителе. Далее, вновь полученная смесь проходит механо-активацию в дезинтеграторе, где осуществляется ее измельчение и гомогенизация. Доказательством однородного распределения нанотрубок в объеме материала является снимок, иллюстрирующий равномерный рост кристаллов цемента (Фиг. 6). Формирование наблюдаемой на снимке структуры возможно только при однородном распределении нанотрубок в объеме материала.
Время перемешивания в смесителе от 15 до 30 минут в зависимости от назначения материала.
Техническим результатом данного способа смешения УНТ с основным компонентом сухих строительных смесей - цементом - удалось достичь использования микроскопических (0.005%) количеств УНТ в составе ССС, без использования дополнительных химических добавок и связующих. Тем самым удалось добиться снижения производственной себестоимости получаемой смеси. Более того, благодаря повышению прочности, более быстрому твердению материалов появляется возможность сократить их расход, что является дополнительным фактором снижения производственной себестоимости смесей. Таким образом, при использовании углеродных нанотрубок в составе ССС получен удобный в применении, функциональный и относительно недорогой материал. Улучшение удобоукладываемости происходит за счет двух основных факторов - это измельченный доломит имеющий карбонатную основу и соответственно придающий материалу пластичность и гомогенизация основных компонентов смеси, что естественно тоже увеличивает эффект удобоукладываемости.
Производство строительных смесей данной серии базируется на двух основных принципах, последовательно дополняющих друг друга - механо-активация базовых компонентов смесей и последующая их модификация углеродными наноструктурами. Сочетание двух факторов, определяющих структуру и свойства конечного продукта, позволило максимально использовать возможности компонентов, составляющих строительные смеси.
Результаты, полученные после применения механо-активации базовых компонентов смесей, отличались практически по всем показателям от смесей, приготовленных при простом перемешивании. Увеличились на 10-15% значения прочность на сжатие и на изгиб, адгезионная прочность. Также при увеличении прочностных характеристик уменьшился такой важный показатель для ССС, как воздухопроницаемость. Уменьшение общего объема пор в плотной структуре цементной матрицы резко снизило скорость диффузии влаги. Результаты испытаний приведены в таблице 4.
Figure 00000007
Процесс изготовления смесей Изготовление сухих смесей высокого качества - достаточно сложный процесс, требующий специального оборудования и тщательного соблюдения технологического регламента. Можно выделить два направления повышения качества ССС на цементно-полимерной основе
- повышение тонкости помола цемента совместно с доломитовым наполнителем;
- использование наномодифицирующих добавок.
Предложенная технология основана на введение в состав оборудования для производства сухих строительных смесей дезинтегратора Хинта, для совместного домола цемента и доломита, перед введением его в состав ССС.
Дезинтегратор включает в себя два диска с рядами пальцев-бил, где диски работают по принципу встречного вращения. Сырье по загрузочной воронке направляется к центру рабочего диска, и в результате многократных ударов пальцев-бил, перемалывается и выводится в приемный бункер.
Многочисленные исследования показали, что измельчение цемента совместно с доломитом - действенный способ увеличения его прочности и скор ости набора прочности. Разрушение (измельчение) материала методом свободного удара заключается в воздействии на обрабатываемый материал механических ударных элементов (бил) движущихся с высокой окружной скоростью. Этот способ разрушения материалов позволяет достигать гранулометрии повышенной монодисперсности.
Для материала измельченного по методу свободного ударахарактерна осколочная форма частиц, большое количество сколов, трещин и других положительных дефектов, обеспечивающих условия, когда дезинтегрированные смеси с образовавшейся новой высокоразвитой контактной поверхностью, легче вступают в твердофазные реакции с другими материалами. Причем скорость протекания этих реакций, в большинстве случаев, тем быстрее и полнее, чем больше поверхность участвующего в процессе вещества.
Для тонкого помола цемента и доломита в производстве сухих смесей предпочтительней использование агрегатов измельчения по методу свободного удара (оборудование - измельчители-дезинтеграторы). Увеличение удельной поверхности методом свободного удара как инертных, так и вяжущих компонентов растворной смеси обуславливает увеличение их активности (реакционной способности), и как следствие получение растворов, имеющих повышенную прочность, особенно в первые сутки твердения. Соотношение основных фракций цементных зерен после дезинтеграторного измельчения (Vmax=160 м/с) и помола в шаровой вибрационной мельнице показано в табл. 5.
Figure 00000008
Нанотрубки и фуллерены рассматриваются как центры направленной кристаллизации, что приводит к изменению кристаллического строения вяжущего вещества. Фуллероидные наночастицы, располагаясь на поверхностях фрагментов наполнителя в поляризованном состоянии, направленно воздействуют на процесс образования кристаллогидратов, формируя при этом фибрилярные микроструктуры уже многомикронного порядка. Прямым следствием является изменение физико-механических характеристик полученного строительного материала в сторону его упрочнения. Оптимизируя концентрацию фуллероидов в водном коллоиде, удается добиться увеличения прочности на сжатие для полномасштабных тестовых образцов на 12-16% относительно контрольных серий.
Дополнительным преимуществом данной технологии является высокая удобоукладываемость.
Данная технология пригодна для производства всех групп ремонтных, реставрационных и строительных сухих смесей, включая сухую смесь неавтоклавного газобетона на основе цементных вяжущих.

Claims (1)

  1. Способ производства сухих строительных смесей, включающий совместную механоактивацию цемента или материалов на его основе с добавкой доломита 30% при помощи дезинтегратора Хинта с последующей модификацией углеродными нанотрубками в многокамерном смесителе-дозаторе, работающем по принципу «из меньшего в большее», оптимальное содержание которых составляет 0,005%, при этом перемешивание углеродных нанотрубок с цементом происходит в 4 этапа: 0.005 г УНТ на 100 г цемента, 100 г цемента с УНТ на 1 кг цемента, 1 кг цемента с УНТ на 10 кг цемента, 10 кг цемента с УНТ на 100 кг цемента, полученная смесь как суперконцентрат используется для приготовления основной смеси: 100 кг цемента с УНТ смешиваются с 2000 кг сухой строительной смеси в основном смесителе, далее вновь полученная смесь проходит механоактивацию в дезинтеграторе Хинта, где осуществляется ее измельчение и гомогенизация.
RU2019107311A 2019-03-14 2019-03-14 Способ производства сухих строительных смесей RU2735004C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019107311A RU2735004C1 (ru) 2019-03-14 2019-03-14 Способ производства сухих строительных смесей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019107311A RU2735004C1 (ru) 2019-03-14 2019-03-14 Способ производства сухих строительных смесей

Publications (1)

Publication Number Publication Date
RU2735004C1 true RU2735004C1 (ru) 2020-10-27

Family

ID=72949129

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019107311A RU2735004C1 (ru) 2019-03-14 2019-03-14 Способ производства сухих строительных смесей

Country Status (1)

Country Link
RU (1) RU2735004C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2233254C2 (ru) * 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2655187C1 (ru) * 2017-04-12 2018-05-25 Открытое акционерное общество "Завод Магнетон" Радиопоглощающий композиционный материал строительного назначения и способ его получения

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2233254C2 (ru) * 2000-10-26 2004-07-27 Закрытое акционерное общество "Астрин-Холдинг" Композиция для получения строительных материалов
RU2655187C1 (ru) * 2017-04-12 2018-05-25 Открытое акционерное общество "Завод Магнетон" Радиопоглощающий композиционный материал строительного назначения и способ его получения

Similar Documents

Publication Publication Date Title
EP2978724B1 (en) Retrieving aggregates and powdery mineral material from demolition waste
RU2544355C2 (ru) Способ производства наноцемента и наноцемент
Mikhailova et al. Effect of dolomite limestone powder on the compressive strength of concrete
KR0183536B1 (ko) 규산질 회분을 포함하는 고내구성의 시멘트 제품
CA2566139C (en) Processing system for manufacturing of composite cementitious materials with reduced carbon dioxide emissions
CN109020456A (zh) 一种机制砂干混砂浆及其制备方法
US20090158962A1 (en) Binder admixture, kaolin product and their manufacture
CN1701047A (zh) 飞灰的处理方法
El-Feky et al. Effect of nano silica addition on enhancing the performance of cement composites reinforced with nano cellulose fibers.
KR20150086257A (ko) 플라이 애시 처리 공정 및 이를 위한 로터리 밀
Justnes et al. Mechanism for performance of energetically modified cement versus corresponding blended cement
CN107459311A (zh) 一种利废抗折增韧的湿磨浆状掺合料的制备方法
CN1596232A (zh) 用于在水硬水泥中分散掺加料的颗粒添加剂
CN107117856A (zh) 具有纳米增强作用的纯粉剂透水混凝土增强剂及其使用方法
RU2735004C1 (ru) Способ производства сухих строительных смесей
JP3215516B2 (ja) 水硬性組成物及び該組成物を用いてコンクリートパイルを製造する方法
RU2554981C1 (ru) Алюмосиликатное кислотостойкое вяжущее и способ его получения
Gunduz et al. Use of rice husk ash as strength-enhancing additive in lightweight cementitious composite mortars
RU2656270C1 (ru) Цемент низкой водопотребности и способ его получения
CN115073086A (zh) 一种废弃新拌混凝土再生的改性混凝土及其制备方法
Korjakins et al. Utilisation of borosilicate glass waste as a micro-filler for concrete
RU2474544C1 (ru) Способ приготовления наномодификатора из отходов промышленности для бетонной смеси
CN113788640B (zh) 一种脂肪族减水剂残留聚合物的处理方法
JP3814860B2 (ja) 非焼成骨材の製造方法
Xu et al. Effect of nano-silica sol dosage on the properties of 3D-printed concrete

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210315