WO2015068362A1 - Vehicular air-conditioning device - Google Patents

Vehicular air-conditioning device Download PDF

Info

Publication number
WO2015068362A1
WO2015068362A1 PCT/JP2014/005491 JP2014005491W WO2015068362A1 WO 2015068362 A1 WO2015068362 A1 WO 2015068362A1 JP 2014005491 W JP2014005491 W JP 2014005491W WO 2015068362 A1 WO2015068362 A1 WO 2015068362A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning
vehicle
blower
mode
Prior art date
Application number
PCT/JP2014/005491
Other languages
French (fr)
Japanese (ja)
Inventor
樋口 輝一
義治 遠藤
一志 好則
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015068362A1 publication Critical patent/WO2015068362A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0085Smell or pollution preventing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct

Definitions

  • the present disclosure relates to a vehicle air conditioner including a heat pump cycle for exchanging heat of air blown into a vehicle interior with a refrigerant.
  • the heat pump cycle includes an indoor condenser and an indoor evaporator as an indoor heat exchanger for heating or cooling air, a refrigerant circuit in a cooling mode in which air is cooled by the indoor evaporator, The refrigerant circuit in the heating mode in which air is heated by the cooler can be switched.
  • the cooling mode and the heating mode are automatically selected and switched from the outside air temperature, the set temperature, the amount of solar radiation, the in-vehicle temperature, the air conditioner switch state, and the like.
  • Patent Document 2 describes a vehicle air conditioner provided with a discharge hole that discharges air containing a strange odor and bad odor stagnating in a ventilation passage to the outside of the passenger compartment and a damper that opens and closes the discharge hole. ing.
  • the cooling mode may be switched to the heating mode due to changes in the surrounding environment, occupant operations, and the like.
  • the cooling mode air is cooled below the dew point temperature by the indoor evaporator (indoor heat exchanger), and condensed water is generated on the surface of the indoor evaporator.
  • the heating mode since the air is not cooled by the indoor evaporator, no condensed water is generated on the surface of the indoor evaporator. Therefore, when the cooling mode is switched to the heating mode, the condensed water on the surface of the indoor evaporator is evaporated and blown toward the vehicle interior.
  • an object of the present disclosure is to provide a vehicle air conditioner that can suppress an occupant from feeling uncomfortable due to an odor generated by evaporation of condensed water on the surface of an indoor evaporator. .
  • the vehicle air conditioner of the present disclosure is a vehicle air conditioner configured to be able to perform pre-air conditioning that starts air conditioning in the passenger compartment before a passenger gets into the vehicle.
  • a vehicle air conditioner includes a blower that generates air to be blown into a vehicle interior, an indoor heat exchanger that exchanges heat between the refrigerant and the air, a refrigerant circuit in a cooling mode that cools the air with the indoor heat exchanger, and the room
  • a heat pump cycle having a refrigerant circuit switching unit that switches between a non-cooling mode refrigerant circuit that does not cool the air in the heat exchanger, and a blower control unit that controls the operation of the blower.
  • the blower control unit When the previous air conditioning operation is finished in the cooling mode and the pre-air conditioning is executed in the non-cooling mode, the blower control unit performs the post-air conditioning blow control for operating the blower and blowing air to the indoor heat exchanger. This is carried out until the condensed water on the surface of the indoor heat exchanger evaporates by a predetermined amount.
  • the “cooling mode” in the present disclosure is an operation mode in which air is cooled by the indoor heat exchanger, in this “cooling mode”, the air cooled by the indoor heat exchanger is heated into the vehicle interior.
  • the operation mode etc. which blows out are also included.
  • the “non-cooling mode” in the present disclosure is an operation mode in which air is not cooled by the indoor heat exchanger
  • the “non-cooling mode” includes an operation mode in which air is heated and blown into the vehicle interior, The operation mode etc. which blow off into a vehicle interior, without cooling and heating are also included.
  • FIG. 1 is an overall configuration diagram of a vehicle air conditioner according to an embodiment. It is a block diagram which shows the electric control part of the vehicle air conditioner in one Embodiment. It is a flowchart which shows the air-conditioning control process of the vehicle air conditioner in one Embodiment. It is a control characteristic figure used by the operation mode decision process of the air conditioner for vehicles in one embodiment. It is a flowchart which shows the ventilation control process after an air conditioning of the vehicle air conditioner in one Embodiment. It is a characteristic view used by the air-conditioning ventilation control process of the vehicle air conditioner in one embodiment. It is a characteristic view used by the air-conditioning ventilation control process of the vehicle air conditioner in one embodiment. It is a characteristic view used by the air-conditioning ventilation control process of the vehicle air conditioner in one embodiment.
  • the vehicle air conditioner 1 of this embodiment is applied to an electric vehicle or a hybrid vehicle.
  • An electric vehicle obtains driving force for traveling from a traveling electric motor.
  • An electric vehicle travels by charging electric power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery, which is a power storage unit, and supplying electric power stored in the battery to the electric motor for traveling when the vehicle is traveling.
  • an external power source commercial power source
  • Hybrid vehicles obtain driving force for traveling from both the internal combustion engine (engine) and the traveling electric motor.
  • the hybrid vehicle of this embodiment is configured as a plug-in hybrid vehicle that can charge the battery with electric power supplied from an external power source (commercial power source) when the vehicle is stopped.
  • the plug-in hybrid vehicle charges the battery from an external power source when the vehicle stops before the vehicle starts running, so that the remaining amount of charge in the battery becomes equal to or greater than a predetermined reference running residual amount as at the start of driving.
  • the vehicle travels mainly by the driving force of the traveling electric motor.
  • the HV traveling mode in which traveling is performed mainly by the driving force of the engine is set.
  • the EV travel mode is a travel mode in which the vehicle travels mainly by the driving force output from the travel electric motor.
  • the engine is operated to travel.
  • Assist the electric motor that is, this is a traveling mode in which the traveling driving force (motor driving force) output from the traveling electric motor is greater than the traveling driving force (internal combustion engine driving force) output from the engine.
  • the HV travel mode is a travel mode in which the vehicle travels mainly by the driving force output from the engine.
  • the travel electric motor is operated to assist the engine. That is, this is a traveling mode in which the internal combustion engine driving force is greater than the motor driving force.
  • the fuel consumption of the engine can be suppressed and the vehicle fuel consumption can be improved with respect to a normal vehicle that obtains the driving force for vehicle travel only from the engine.
  • the electric power (electric energy) stored in the battery is supplied to various electric components of the vehicle air conditioner 1, thereby The air conditioner 1 is operated.
  • the vehicle air conditioner 1 of the present embodiment can perform pre-air conditioning that performs air conditioning of the passenger compartment before the occupant gets into the vehicle, in addition to normal air conditioning that performs air conditioning of the passenger compartment when the vehicle is traveling.
  • pre-air conditioning can be performed not only with the electric power stored in the battery B but also with electric power supplied from an external power source.
  • the vehicle air conditioner 1 includes a heat pump cycle (vapor compression refrigeration cycle) 10, an indoor air conditioning unit 30, and an air conditioning control device 50.
  • the heat pump cycle 10 is a temperature adjusting unit that adjusts the temperature of air blown into the vehicle interior.
  • the indoor air conditioning unit 30 blows out the air whose temperature has been adjusted by the heat pump cycle 10 into the vehicle interior.
  • the air conditioning control device 50 controls the operation of various electric components of the vehicle air conditioning device 1.
  • the heat pump cycle 10 is configured to be switchable between a heating mode refrigerant circuit that heats the air to heat the vehicle interior and a cooling mode refrigerant circuit that cools the air to cool the vehicle interior.
  • the refrigerant flow in the heating mode is indicated by a white arrow
  • the refrigerant flow in the cooling mode is indicated by a black arrow.
  • the heat pump cycle 10 includes a compressor 11, an indoor condenser 13, an indoor evaporator 18, a heating fixed throttle 14, a cooling fixed throttle 17, an on-off valve 15a, and a three-way valve 20.
  • the compressor 11 compresses and discharges the refrigerant.
  • the indoor condenser 13 and the indoor evaporator 18 are indoor heat exchangers that heat or cool the air.
  • the heating fixed throttle 14 and the cooling fixed throttle 17, the heating fixed throttle 14 and the cooling fixed throttle 17 are decompressors that decompress and expand the refrigerant.
  • the on-off valve 15a and the three-way valve 20 are refrigerant circuit switching units.
  • an HFC refrigerant (specifically, R134a) is adopted as the refrigerant.
  • the heat pump cycle 10 constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • An HFO refrigerant (for example, R1234yf) or the like may be employed as the refrigerant.
  • Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is disposed inside a vehicle hood outside the passenger compartment, and sucks refrigerant in the heat pump cycle 10 and compresses and discharges it.
  • a fixed displacement type compression mechanism 11a having a fixed discharge capacity is used as an electric motor 11b. It is comprised as an electric compressor which drives.
  • various types of compression mechanisms such as a scroll type compression mechanism and a vane type compression mechanism can be adopted as the fixed capacity type compression mechanism 11a.
  • the electric motor 11b is an AC motor whose operation (number of rotations) is controlled by an AC voltage output from the inverter 61. Further, the inverter 61 outputs an AC voltage having a frequency corresponding to the control signal output from the air conditioning control device 50. And the refrigerant
  • the refrigerant inlet of the indoor condenser 13 is connected to the discharge port of the compressor 11.
  • the indoor condenser 13 is disposed in a casing 31 that forms an air passage for air to be blown into the vehicle interior in the indoor air conditioning unit 30, and heats the air by exchanging heat between the refrigerant circulating in the interior and the air. It is a heat exchanger for heating.
  • the refrigerant inlet of the outdoor heat exchanger 16 is connected to the refrigerant outlet of the indoor condenser 13 via a heating fixed throttle 14 that depressurizes the refrigerant in the heating mode.
  • a heating fixed throttle 14 As the heating fixed throttle 14, an orifice, a capillary tube or the like can be adopted.
  • a variable throttle mechanism such as an electric expansion valve with a fully open function may be employed without being limited to a fixed throttle.
  • a bypass passage 15 is provided that guides the refrigerant flowing out of the indoor condenser 13 to the refrigerant inlet of the outdoor heat exchanger 16 by bypassing the heating fixed throttle 14.
  • An opening / closing valve 15 a for opening and closing the bypass passage 15 is disposed in the bypass passage 15.
  • the on-off valve 15a constitutes a refrigerant circuit switching unit that switches between the refrigerant circuit in the cooling mode and the refrigerant circuit in the heating mode, and is an electromagnetic valve whose operation is controlled by a control signal output from the air conditioning control device 50. is there. Specifically, the on-off valve 15a of the present embodiment opens during the cooling mode and closes during the heating mode.
  • the outdoor heat exchanger 16 is disposed in the vehicle bonnet, and exchanges heat between the refrigerant downstream of the indoor condenser 13 that circulates inside and the outdoor air (outside air) blown from the blower fan 16a.
  • the blower fan 16 a is an electric blower in which the rotation speed (blowing capacity) is controlled by a control voltage output from the air conditioning control device 50.
  • a three-way valve 20 is connected to the refrigerant outlet of the outdoor heat exchanger 16.
  • the three-way valve 20 constitutes a refrigerant circuit switching unit that switches the refrigerant circuit in each operation mode described above together with the on-off valve 15a.
  • the three-way valve 20 is an electric three-way valve whose operation is controlled by a control signal output from the air conditioning controller 50.
  • the three-way valve 20 of the present embodiment switches to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the cooling fixed throttle 17 in the cooling mode.
  • the three-way valve 20 switches to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the refrigerant inlet of the accumulator 19 connected to the suction port of the compressor 11.
  • the basic configuration of the cooling fixed throttle 17 is the same as that of the heating fixed throttle 14.
  • the refrigerant inlet of the indoor evaporator 18 is connected to the outlet of the cooling fixed throttle 17.
  • the indoor evaporator 18 is disposed in the casing 31 of the indoor air-conditioning unit 30 upstream of the air flow of the indoor condenser 13, and cools the air by exchanging heat between the refrigerant circulating in the interior and the air. It is a heat exchanger (indoor heat exchanger).
  • the inlet of the accumulator 19 is connected to the refrigerant outlet of the indoor evaporator 18.
  • the accumulator 19 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess refrigerant in the cycle.
  • the suction port of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 19.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 includes a casing 31 that forms an outer shell thereof, a blower 32 housed in the casing 31, the indoor evaporator 18, the indoor condenser 13, and an air mix door 34.
  • the casing 31 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength, and forms an air passage for air to be blown into the vehicle interior.
  • An inside / outside air switching device 33 as an inside / outside air switching unit for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed at the most upstream part of the air flow of the casing 31. .
  • the inside / outside air switching device 33 adjusts the opening area of the inside air introduction port through which the inside air is introduced into the casing 31 and the outside air introduction port through which the outside air is introduced, by the inside / outside air switching door, and the air volume between the inside air volume and the outside air volume. Change the ratio continuously.
  • the inside / outside air switching door is driven by an electric actuator 62 for the inside / outside air switching door, and the operation of the electric actuator 62 is controlled by a control signal output from the air conditioning controller 50.
  • a blower 32 that blows air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed downstream of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 50.
  • the indoor evaporator 18 and the indoor condenser 13 are arranged in the order of the indoor evaporator 18 and the indoor condenser 13 with respect to the air flow, downstream of the air flow of the blower 32. In other words, the indoor evaporator 18 is arranged upstream of the air flow with respect to the indoor condenser 13.
  • an air mix door 34 that adjusts the air volume ratio between the air volume that passes through the indoor condenser 13 and the air volume that does not pass through the indoor condenser 13 in the air after passing through the indoor evaporator 18 is disposed.
  • the air mix door 34 is driven by an electric actuator 63 for driving the air mix door, and the operation of the electric actuator 63 is controlled by a control signal output from the air conditioning control device 50.
  • 37b, 37c are provided.
  • a defroster opening hole 37a that blows conditioned air toward the inner surface of the vehicle front window glass
  • a face opening hole 37b that blows conditioned air toward the upper body of the passenger in the vehicle interior
  • the foot opening hole 37c which blows off air-conditioning wind toward a passenger
  • the air flow downstream of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c is a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. (Both not shown).
  • the cooling mode by adjusting the opening degree of the air mix door 34, the warm air reheated by the indoor condenser 13 out of the air cooled by the indoor evaporator 18 and the cold air bypassing the indoor condenser.
  • the air volume ratio is adjusted.
  • the temperature of the mixed air obtained by mixing the hot air and the cold air, that is, the air blown into the vehicle interior is adjusted.
  • the air mix door 34 may be displaced to a position where the total air volume after passing through the indoor evaporator 18 bypasses the indoor condenser 13.
  • Defroster door 38a for adjusting the opening area of defroster opening hole 37a and face door 38b for adjusting the opening area of face opening hole 37b are arranged upstream of the air flow of defroster opening hole 37a, face opening hole 37b and foot opening hole 37c, respectively.
  • a foot door 38c for adjusting the opening area of the foot opening hole 37c is disposed.
  • the defroster door 38a, the face door 38b, and the foot door 38c constitute an outlet mode switching unit that switches the outlet mode.
  • the defroster door 38a, the face door 38b, and the foot door 38c are connected to the electric actuator 64 for driving the outlet mode door via a link mechanism or the like. It is connected and rotated in conjunction with it.
  • the operation of the electric actuator 64 is also controlled by a control signal output from the air conditioning controller 50.
  • the outlet mode switched by the outlet mode switching unit includes a face mode, a bi-level mode, a foot mode, and a foot defroster mode.
  • face mode the face air outlet is fully opened and air is blown out from the face air outlet toward the upper body of the passenger in the passenger compartment.
  • bi-level mode both the face air outlet and the foot air outlet are opened, and air is blown out toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode the foot air outlet is fully opened and the defroster air outlet is opened by a small opening, and air is mainly blown out from the foot air outlet.
  • foot defroster mode the foot outlet and the defroster outlet are opened to the same extent, and air is blown out from both the foot outlet and the defroster outlet.
  • defroster mode in which the occupant manually operates the blowing mode changeover switch provided on the operation panel so that the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the vehicle front window glass.
  • the air conditioning control device 50 shown in FIG. 2 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the on / off valve 15a and the three-way valve 20 constituting the inverter for the compressor 11, the refrigerant circuit switching unit connected to the output side thereof. The operation of various air conditioning components such as the blower fan 16a, the blower 32, and the various electric actuators 62 to 64 described above is controlled.
  • the inside air sensor 51 is an inside air temperature detector that detects a passenger compartment temperature (inside air temperature) Tr.
  • the outside air sensor 52 is an outside air temperature detector that detects a passenger compartment outside temperature (outside air temperature) Tam.
  • the solar radiation sensor 53 is a solar radiation amount detector that detects the solar radiation amount Ts irradiated into the vehicle interior.
  • the discharge temperature sensor 54 detects the discharge refrigerant temperature Td of the refrigerant discharged from the compressor 11.
  • the discharge pressure sensor 55 detects the discharge refrigerant pressure Pd of the refrigerant discharged from the compressor 11.
  • the evaporator temperature sensor 56 detects the refrigerant evaporation temperature (evaporator temperature) Te in the indoor evaporator 18.
  • the outdoor heat exchanger temperature sensor 57 detects the outdoor temperature Tout of the outdoor heat exchanger 16.
  • the discharge refrigerant pressure Pd of the present embodiment is a high-pressure side refrigerant pressure of a cycle from the refrigerant discharge port of the compressor 11 to the inlet of the cooling fixed throttle 17 in the cooling mode, and in the heating mode, the refrigerant discharge port of the compressor 11 in the heating mode. It becomes the high-pressure side refrigerant pressure of the cycle from the inlet to the fixed throttle 17 for heating.
  • the evaporator temperature sensor 56 of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18.
  • a temperature detector that detects the temperature of other parts of the indoor evaporator 18 may be adopted, or a temperature detector that directly detects the temperature of the refrigerant itself that flows through the indoor evaporator 18. It may be adopted.
  • various air conditioning operation switches provided on an operation panel disposed near the instrument panel in the front part of the passenger compartment.
  • various air conditioning operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, an auto switch for setting or canceling the automatic control of the vehicle air conditioner 1, and an operation mode switching for switching the operation mode.
  • an economy switch or the like which is an energy saving requesting section that requests
  • the air conditioning control device 50 includes a transmission / reception unit that transmits / receives control signals to / from a wireless terminal 70 (specifically, a remote controller) or a mobile communication device (specifically, a mobile phone or a smartphone) carried by a passenger. 50a.
  • a wireless terminal 70 specifically, a remote controller
  • a mobile communication device specifically, a mobile phone or a smartphone
  • the operation panel 60 and the wireless terminal 70 each require pre-air-conditioning operation such as a pre-air-conditioning start switch for starting the pre-air-conditioning operation and a timer setting switch for starting the pre-air-conditioning operation at a predetermined time.
  • pre-air-conditioning operation such as a pre-air-conditioning start switch for starting the pre-air-conditioning operation and a timer setting switch for starting the pre-air-conditioning operation at a predetermined time.
  • a request section is provided.
  • the air conditioning control device 50 is integrally configured with a control unit that controls various air conditioning components connected to the output side thereof.
  • the configuration (hardware and software) that controls the operation of each air conditioning component device constitutes a control unit that controls the operation of each air conditioning component device.
  • operation of the air blower 32 among the air-conditioning control apparatuses 50 comprises the air blower control part 50b.
  • the configuration (hardware and software) for controlling the operation of the electric actuator 62 for the inside / outside air switching door in the air conditioning control device 50 constitutes the inside / outside air switching control unit 50c.
  • the inside / outside air switching control unit 50c, the inside / outside air switching device 33, and the electric actuator 62 for the inside / outside air switching door constitute an inside / outside air switching unit that switches the air introduced into the blower 32 between the inside air and the outside air.
  • S1 it is determined whether or not the vehicle air conditioner 1 is to be operated. That is, whether the auto switch is turned on (ON) while the operation switch of the operation panel 60 is turned on, whether the pre air conditioning start switch is turned on (ON), or the pre-air conditioning operation is performed according to the timer setting. Determine whether to start. And when it determines with operating the vehicle air conditioner 1, it progresses to S2.
  • initialization such as initialization of a flag, a timer, and initial alignment of the stepping motor constituting the electric actuator described above is performed.
  • this initialization some of the flags and calculation values that are stored when the previous operation of the vehicle air conditioner 1 is completed or when the vehicle system is stopped may be maintained.
  • the operation signal of the operation panel 60 is read, and the process proceeds to S4.
  • the vehicle environmental state signal used for air conditioning control that is, the detection signals of the above-mentioned air conditioning control sensor groups 51 to 57, etc. are read, and the process proceeds to S5.
  • the target blowing temperature TAO of the vehicle cabin blowing air is calculated.
  • the target blowing temperature TAO is a value that is determined in order to quickly bring the inside air temperature Tr close to the occupant's desired target temperature Tset, and is calculated by the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C (F1)
  • Tset is a target temperature in the passenger compartment set by the passenger compartment temperature setting switch. Tr is the passenger compartment temperature (inside air temperature) detected by the inside air sensor 51. Tam is the passenger compartment outside temperature (outside air temperature) detected by the outside air sensor 52.
  • Ts is the amount of solar radiation detected by the solar radiation sensor 53.
  • Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • the target blowing temperature TAO can also be expressed as an index indicating the air conditioning heat load required for the vehicle air conditioner 1 in order to keep the passenger compartment at a desired temperature.
  • the target blowing temperature TAO calculated by the above formula F1 is a control target value that can be used in both the cooling mode and the heating mode. However, in the heating mode, correction may be performed so as to be a value slightly lower than the target blowing temperature TAO calculated by the formula F1 in order to suppress power consumption.
  • the operation mode of the heat pump cycle 10 is determined.
  • S6 on the basis of the outside air temperature Tam detected by the outside air sensor 52 and the target outlet temperature TAO calculated in S5, a control map stored in advance in the ROM of the air conditioning control device 50 is referred to and the operation mode is set. To decide.
  • FIG. An example of the control map is shown in FIG.
  • the cooling mode is determined.
  • the heating mode is determined, and the outside air temperature Tam and the target When the blowing temperature TAO is equivalent, the ventilation mode is determined.
  • the ventilation mode is an operation mode in which the blower 32 operates in a state where the heat pump cycle 10 is stopped. Therefore, in ventilation mode, only ventilation is performed without cooling or heating the air.
  • control states of various air conditioning components connected to the output side of the air conditioning controller 50 are determined.
  • a target air blowing amount of air blown by the blower 32 that is, a blower motor voltage (blower level) to be applied to the electric motor of the blower 32 is determined.
  • the blower motor voltage is set near the maximum value in the extremely low temperature range ( ⁇ 30 ° C. or lower in the present embodiment) and the extremely high temperature range (80 ° C. or higher in the present embodiment) of the target blowing temperature TAO. Bring the air volume close to the maximum value.
  • the blower motor voltage is decreased as the target blowing temperature TAO increases from the extremely low temperature range toward the intermediate temperature range (10 ° C. to 40 ° C. in this embodiment). Further, as the target blowing temperature TAO decreases from the extremely high temperature range toward the intermediate temperature range, the blower motor voltage is decreased and the air volume of the blower 32 is decreased.
  • the blower motor voltage is set near the minimum value, and the air volume of the blower 32 is brought close to the minimum value.
  • the control signal output to the suction port mode that is, the electric actuator 62 for driving the inside / outside air switching door is determined.
  • This suction port mode is also determined with reference to a control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO.
  • the outside air mode for introducing outside air is basically given priority, but the inside air mode for introducing inside air is selected when the target blowing temperature TAO is in a very low temperature range and high cooling performance is desired.
  • a control signal to be output to the electric outlet 63 for driving the outlet mode that is, the outlet mode door is determined.
  • This air outlet mode is also determined based on the target air temperature TAO with reference to a control map stored in the air conditioning controller 50 in advance.
  • the outlet mode is sequentially switched to the face mode, the bi-level mode, and the foot mode as the target outlet temperature TAO increases from the low temperature region to the high temperature region.
  • the face mode is mainly used in summer when the target blowout temperature TAO tends to be in the low temperature range. In spring and autumn when the target blowout temperature TAO tends to be in the middle temperature range, it is mainly in the bi-level mode. Foot mode is selected.
  • a humidity detector that detects the relative humidity in the vicinity of the vehicle window glass may be provided.
  • the foot defroster mode or the defroster mode is set. You may make it select.
  • an opening degree of the air mix door 34 that is, a control signal output to the electric actuator 63 for driving the air mix door is determined.
  • the air mix door 34 in the heating mode, is displaced so that the total air volume after passing through the indoor evaporator 18 flows into the indoor condenser 13.
  • the air mix door 34 is displaced so that the temperature TAV of the air blown into the room approaches the target blowing temperature TAO.
  • a value calculated from the evaporator temperature Te and the discharge refrigerant temperature Td is used as the air temperature TAV.
  • An air temperature detector that detects the temperature of the air blown into the passenger compartment may be provided, and the value detected thereby may be used as the air temperature TAV.
  • the refrigerant discharge capacity of the compressor 11, that is, the rotational speed of the compressor 11 is determined.
  • the refrigerant evaporation temperature (evaporator temperature) Te in the indoor evaporator 18 is referred to with reference to a control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO determined in S5.
  • the target temperature TEO target evaporator outlet temperature
  • a deviation En (TEO-Te) between the target evaporator blowing temperature TEO and the blowing air temperature Te is calculated.
  • Membership functions and rules previously stored in the air-conditioning control device 50 using the deviation change rate Edot (En- (En-1)) obtained by subtracting the previously calculated deviation En-1 from the previously calculated deviation En Based on the fuzzy inference based on the above, the rotational speed change amount ⁇ f_C with respect to the previous compressor rotational speed fCn ⁇ 1 is obtained.
  • the target high pressure PDO of the discharge side refrigerant pressure (high pressure side refrigerant pressure) Pd is determined by referring to the control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO determined in S5. decide.
  • a deviation Pn (PDO ⁇ Pd) between the target high pressure PDO and the discharge side refrigerant pressure Pd is calculated.
  • Pdot Pdot
  • the operating state of the refrigerant circuit switching unit that is, the operating state of the on-off valve 15a and the three-way valve 20 is determined.
  • the on-off valve 15a of the present embodiment opens during the cooling mode and closes during the heating mode.
  • the three-way valve 20 is switched to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the cooling fixed throttle 17 in the cooling mode, and is connected to the refrigerant outlet of the outdoor heat exchanger 16 and the suction port of the compressor 11 in the heating mode. It switches to the refrigerant circuit which connects the refrigerant inlet of the connected accumulator 19.
  • control signals are sent from the air conditioning control device 50 to the various air conditioning components 11, 61, 15a, 20, 16a, 32, 62 to 64 so that the control states determined in S7 to S12 described above are obtained. And a control voltage is output.
  • it waits for control period (tau), and if progress of control period (tau) is determined, it will return to S3.
  • the vehicle air conditioner 1 Since the vehicle air conditioner 1 according to the present embodiment performs the control process as described above, it operates as follows according to the operation mode.
  • the refrigerant circuit of the heat pump cycle 10 includes the compressor 11, the indoor condenser 13, the heating fixed throttle 14, the outdoor heat exchanger 16 (, as shown by the white arrows in FIG.
  • the three-way valve 20), the accumulator 19, and the compressor 11 are switched to the refrigerant circuit in which the refrigerant circulates in this order. That is, a refrigeration cycle is configured in which the indoor condenser 13 functions as a radiator and the outdoor heat exchanger 16 functions as an evaporator.
  • the refrigerant compressed by the compressor 11 dissipates heat to the air blown from the blower 32 by the indoor condenser 13. Thereby, the air which passes the indoor condenser 13 is heated, and a vehicle interior is heated.
  • the refrigerant that has flowed out of the indoor condenser 13 is decompressed by the heating fixed throttle 14 and flows into the outdoor heat exchanger 16.
  • the refrigerant that has flowed into the outdoor heat exchanger 16 absorbs heat from the air outside the vehicle blown from the blower fan 16a and evaporates.
  • the refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the accumulator 19 through the three-way valve 20.
  • the gas-phase refrigerant separated from the gas and liquid by the accumulator 19 is sucked into the compressor 11 and compressed again.
  • the refrigerant circuit of the heat pump cycle 10 includes the compressor 11, the indoor condenser 13 (and the bypass passage 15), the outdoor heat exchanger 16 (, as shown by the black arrows in FIG.
  • the refrigerant circuit in which the refrigerant circulates is switched in the order of the three-way valve 20), the cooling fixed throttle 17, the indoor evaporator 18, the accumulator 19, and the compressor 11. That is, a refrigeration cycle is configured in which the indoor condenser 13 and the outdoor heat exchanger 16 function as a radiator that radiates heat to the refrigerant, and the indoor evaporator 18 functions as an evaporator that evaporates the refrigerant.
  • the high-pressure and high-temperature refrigerant compressed by the compressor 11 exchanges heat with a part of the air after passing through the indoor evaporator 18 in the indoor condenser 13 and a part of the air. Is heated. Furthermore, the refrigerant that has flowed out of the indoor evaporator 18 flows into the outdoor heat exchanger 16 through the bypass passage 15, and radiates heat by exchanging heat with the outside air blown from the blower fan 16 a in the outdoor heat exchanger 16.
  • the refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the cooling fixed throttle 17 through the three-way valve 20 and is decompressed and expanded by the cooling fixed throttle 17.
  • the low-pressure refrigerant decompressed by the cooling fixed throttle 17 flows into the indoor evaporator 18, absorbs heat from the air blown from the blower 32, and evaporates.
  • the air passing through the indoor evaporator 18 is cooled by the endothermic action of the refrigerant.
  • the indoor evaporator 18 As described above, a part of the air cooled by the indoor evaporator 18 is heated by the indoor condenser 13 so that the air blown into the vehicle interior is adjusted so as to approach the target blowing temperature TAO. The vehicle interior is cooled. Further, the refrigerant that has flowed out of the indoor evaporator 18 flows into the accumulator 19. The gas-phase refrigerant separated from the gas and liquid by the accumulator 19 is sucked into the compressor 11 and compressed again.
  • (C) Ventilation mode In the ventilation mode, the blower 32 operates with the heat pump cycle 10 stopped. That is, since the compressor 11 is stopped and the refrigerant does not circulate, the air blown from the blower 32 is not cooled by the indoor evaporator 18 and the indoor condenser 13. Therefore, the inside air or the outside air introduced into the casing 31 through the inside / outside air switching device 33 is blown into the vehicle interior at the same temperature.
  • the vehicle air conditioner 1 of the present embodiment operates as described above, and can perform cooling, heating, and ventilation in the passenger compartment.
  • the heating mode and the ventilation mode the air is not cooled by the indoor evaporator 18. Therefore, the heating mode and the ventilation mode can be expressed as a non-cooling mode.
  • the cooling mode air is cooled by the indoor evaporator 18. Therefore, the cooling mode can be expressed as a cooling mode.
  • the control process shown in the flowchart of FIG. 5 is started when the vehicle air conditioner 1 stops and the air conditioning operation ends.
  • the case where the vehicle air conditioner 1 stops and the air conditioning operation ends is, for example, a case where the ignition switch of the vehicle is switched from on to off.
  • each control of FIG. 5 comprises the various function implementation
  • the current operation mode (heating mode, cooling mode or ventilation mode) of the vehicle air conditioner 1 and the water retention amount w of the indoor evaporator 18 are stored, and the air conditioning operation is terminated. Specifically, the vehicle air conditioner 1 is stopped by stopping the compressor 11 and the blower 32.
  • the water retention amount w of the indoor evaporator 18 is calculated by the following mathematical formula F2.
  • w min ((w1-w2) ⁇ t1, w3) (F2)
  • w1 is the amount of water generated per unit time on the surface of the indoor evaporator 18 in the cooling mode.
  • the water content w1 is calculated using the map shown in FIG. 6 based on the temperature (suction air temperature) and humidity (suction air humidity) of the air that the indoor evaporator 18 sucks.
  • the amount of water w1 generated per unit time in the indoor evaporator 18 increases as the intake air temperature and the intake air humidity increase.
  • w2 is the amount of water that can be contained in the air blown from the indoor evaporator 18 in the cooling mode.
  • the water content w2 is calculated using the map shown in FIG. 7 based on the target evaporator outlet temperature TEO.
  • the amount of water w2 that can be contained in the air blown from the indoor evaporator 18 increases as the target evaporator blowing temperature TEO increases.
  • t1 is the operating time of the cooling mode.
  • t1 in the cooling mode a value of a timer that is started when the cooling mode is started is used.
  • t1 0.
  • w3 is the maximum water retention amount of the indoor evaporator 18.
  • the water flows down from the indoor evaporator 18 and is discharged from the drain water discharge port formed at the bottom of the casing 31 to the outside of the vehicle.
  • min ((w1-w2) ⁇ t1, w3) means the smaller value of (w1-w2) ⁇ t1 and (w1-w2) ⁇ w3.
  • S21 it is determined whether or not to start the pre-air conditioning operation. For example, when the pre-air conditioning start switch is turned on (ON) or when the pre-air conditioning operation start time set by the timer setting switch is reached, it is determined that the pre-air conditioning operation is started. When the predetermined time before the pre-air conditioning operation start time set by the timer setting switch is reached, it may be determined that the pre-air conditioning operation is started.
  • S22 it is determined whether or not the operation mode when the previous air conditioning operation is ended is the cooling mode. If it is determined that the operation mode when the previous air conditioning operation is ended is the cooling mode, it is determined that condensed water is attached to the indoor evaporator 18, and the process proceeds to S23. If it is determined that the operation mode when the previous air conditioning operation is not the cooling mode, it is determined that condensed water is not attached to the indoor evaporator 18, and the process proceeds to S27 to start the pre-air conditioning operation.
  • S23 it is determined whether or not the pre-air-conditioning operation mode is the heating mode or the ventilation mode. If it is determined that the pre-air-conditioning operation mode is the heating mode or the ventilation mode, the process proceeds to S24 and the pre-air-conditioning operation mode is performed. When it is determined that is not in the heating mode or the ventilation mode, the process proceeds to S27 and the pre-air conditioning operation is started.
  • the operation mode of pre-air conditioning is set by a setting switch provided on the operation panel 60 and the wireless terminal 70, for example.
  • the pre-air-conditioning operation mode may be determined, for example, by the same determination process as in S6 described above.
  • air conditioning control is performed after air conditioning. Specifically, the air blower 32 is operated by setting the suction port mode to the outside air mode. Thereby, since air is blown into the indoor evaporator 18, the water adhering to the indoor evaporator 18 evaporates and the water retention amount w decreases.
  • the current water retention amount w is calculated. Specifically, the evaporation amount ⁇ w (water reduction amount) from the indoor evaporator 18 is subtracted from the previously calculated water retention amount.
  • the evaporation amount ⁇ w from the indoor evaporator 18 is calculated by the following mathematical formula F3.
  • ⁇ w w4 ⁇ w5 ⁇ t2 (F3)
  • w4 is a dimensionless amount that represents the relationship between the amount of air blown from the blower 32 and the amount of evaporation from the indoor evaporator 18.
  • the dimensionless amount w4 is calculated using the map shown in FIG. 8 based on the amount of air blown from the blower 32.
  • the dimensionless amount w4 related to the evaporation amount increases as the amount of air blown from the blower 32 increases.
  • w5 is the amount of evaporation from the indoor evaporator 18 per unit time.
  • the evaporation amount w5 is calculated using the map shown in FIG. 9 based on the intake air temperature and the intake air humidity of the indoor evaporator 18.
  • the amount of evaporation w5 from the indoor evaporator 18 per unit time increases as the intake air temperature and the intake air humidity increase.
  • t2 is the time elapsed since the previous evaporation amount ⁇ w was calculated.
  • the time t2 that has elapsed since the previous evaporation amount ⁇ w was calculated the value of a timer that is started when the previous evaporation amount ⁇ w was calculated is used.
  • S26 it is determined whether or not the current water retention amount w calculated in S25 is zero. If it is determined that the current water retention amount w is not 0, the process returns to S23, and if it is determined that the current water retention amount w is 0, the process proceeds to S27.
  • the air conditioning control after air conditioning (S24) is terminated and the pre-air conditioning operation is started.
  • the pre-air conditioning operation is performed by executing the control process shown in the flowchart of FIG.
  • the pre-air conditioning operation mode is the heating mode or the cooling mode
  • the inside air mode is selected as the suction port mode in order to increase the air conditioning efficiency.
  • the vehicle air conditioner 1 of this embodiment operates as described above, and can evaporate the condensed water on the surface of the indoor evaporator 18 to dry the surface of the indoor evaporator 18.
  • the blower 32 when the previous air conditioning operation is finished in the cooling mode (cooling mode) and the pre-air conditioning is executed in the heating mode or the ventilation mode (non-cooling mode), the blower 32 is used.
  • the air-conditioning air supply control (S24) for operating the air to blow to the indoor evaporator 18 is performed before the pre-air-conditioning.
  • the post-air conditioning air blow control (S24) is performed until the condensed water on the surface of the indoor evaporator 18 evaporates by a predetermined amount.
  • the air conditioning post-air conditioning control (S24) is performed. Therefore, the frequency of performing post-air conditioning blow control (S24) can be reduced compared to the configuration in which post-air conditioning blow control (S24) is performed regardless of the previous air conditioning operation and pre-air conditioning operation modes. Therefore, power consumption can be reduced and the life of the blower 32 can be extended.
  • the pre-air conditioning is executed immediately after the post-air conditioning air blow control (S24) is finished. According to this, since the time for executing the pre-air-conditioning can be ensured as long as possible, the air-conditioning comfort of the passenger who gets into the vehicle interior can be as much as possible.
  • the suction port mode is set to the outside air mode. That is, the air introduced into the blower 32 is switched to the outside air.
  • the condensed water on the surface of the indoor evaporator 18 can be effectively evaporated. Further, since the outside air can be introduced to ventilate the interior of the vehicle, the condensate on the surface of the interior evaporator 18 can be prevented from evaporating and the odor generated can be prevented from being trapped in the interior of the vehicle, thereby further suppressing the passenger from feeling uncomfortable. it can.
  • the time for performing post-air conditioning air blow control (S24) is determined based on the air volume and the outside air temperature. According to this, the time for performing the air conditioning control after the air conditioning can be appropriately determined according to the evaporation amount ⁇ w from the indoor evaporator 18.
  • the time for performing the post-air conditioning air blow control (S23) is determined based on the water retention amount w of the indoor evaporator 18 when the cooling mode is being performed. To do. Thereby, the excess and deficiency of the time which performs ventilation control after an air conditioning can be suppressed.
  • the above-described embodiment can be variously modified as follows, for example.
  • the electric compressor is adopted as the compressor 11
  • the format of the compressor 11 is not limited to this.
  • the compressor 11 that obtains driving force from the engine via a belt and an electromagnetic clutch may be employed.
  • a heating heat exchanger for heating air using engine cooling water as a heat source may be provided as an air heater.
  • an air heating PTC heater for heating air may be provided.
  • a water heating PTC heater for heating a heat medium such as cooling water may be provided.
  • the air-heated PTC heater and the water-heated PTC heater are electric heaters that have a PTC element (positive characteristic thermistor) and generate heat when electric power is supplied to the PTC element.
  • a heating heat exchanger (heater core) is required to heat the air by heat exchange between the cooling water (heat medium) heated by the water heating PTC heater and the air.
  • the heat pump cycle 10 configured to be able to switch the refrigerant circuit in the heating mode and the cooling mode has been described.
  • the present invention is applicable to a vehicle air conditioner including a heat pump cycle configured to be able to switch at least between a cooling mode refrigerant circuit and a non-cooling mode refrigerant circuit.
  • the refrigerant circuit in the cooling mode is a refrigerant circuit that cools air by the indoor evaporator 18.
  • the cooling mode includes an operation mode in which the air cooled by the indoor evaporator 18 is heated and blown into the passenger compartment.
  • the refrigerant circuit in the non-cooling mode is a refrigerant circuit that does not cool the air with the indoor evaporator 18.
  • the non-cooling mode includes an operation mode in which air is heated and blown out into the vehicle interior, and an operation mode in which air is blown out into the vehicle interior without being cooled or heated.
  • the battery B when the battery B is charged with the power supplied from the external power source, or when the charging of the battery B is completed with the external power source, it may be determined that no passenger is present in the vehicle interior.
  • a seat switch for detecting whether or not an occupant is seated may be provided in the seat, and it may be determined whether or not an occupant is present in the vehicle interior according to the detection result of the seat switch.
  • the water retention amount w of the indoor evaporator 18 is the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, the target evaporator outlet temperature TEO, the operating time of the cooling mode, And it is calculated based on the maximum water retention amount w3 of the indoor evaporator 18.
  • the calculation method of the water retention amount w is not limited to this.
  • the water retention amount w of the indoor evaporator 18 can be calculated by various methods.
  • the water retention amount w of the indoor evaporator 18 is the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, the amount of air blown from the blower 32, the target evaporator outlet temperature TEO, the operating time of the cooling mode, Further, it may be calculated based on at least one of the maximum water retention amount w3 of the indoor evaporator 18.
  • the evaporation amount ⁇ w from the indoor evaporator 18 is the amount of air blown from the blower 32, the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, and the previous evaporation amount ⁇ w. Is calculated based on the time elapsed since the calculation of.
  • the calculation method of the evaporation amount ⁇ w is not limited to this.
  • the evaporation amount ⁇ w from the indoor evaporator 18 can be calculated by various methods.
  • the evaporation amount ⁇ w from the indoor evaporator 18 has elapsed since the calculation of the amount of air blown from the blower 32, the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, and the previous evaporation amount ⁇ w. It may be calculated based on at least one of the times.
  • the air when no occupant is present in the vehicle interior, the air is blown to the indoor evaporator 18 to evaporate water adhering to the indoor evaporator 18.
  • the air attached to the indoor evaporator 18 may be evaporated by blowing air to the indoor evaporator 18. In that case, if the air outlet mode is set to the foot mode and the amount of air blown from the blower 32 is conserved so that the water adhering to the indoor evaporator 18 is slowly evaporated, the occupant may feel uncomfortable due to a strange odor or bad odor. Can be suppressed.
  • the heat pump cycle 10 may be configured to be switchable to a refrigerant circuit during a dehumidifying heating operation in which the air that has been cooled and dehumidified is reheated to dehumidify and heat the vehicle interior.
  • the flow of the refrigerant at the time of switching to the refrigerant circuit during the dehumidifying heating operation is indicated by the hatched arrows.
  • the on-off valve 15a is closed during the dehumidifying heating operation.
  • the three-way valve 20 switches to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the cooling fixed throttle 17.
  • the refrigerant circuit of the heat pump cycle 10 is connected to the compressor 11, the indoor condenser 13, the heating fixed throttle 14, the outdoor heat exchanger 16 (and the three-way valve 20) as shown by the hatched arrows in FIG. ),
  • the cooling fixed throttle 17, the indoor evaporator 18, the accumulator 19, and the compressor 11 are switched to the refrigerant circuit in which the refrigerant circulates in this order. That is, a refrigeration cycle is configured in which the indoor condenser 13 and the outdoor heat exchanger 16 function as a radiator that radiates heat to the refrigerant, and the indoor evaporator 18 functions as an evaporator that evaporates the refrigerant.
  • the high-pressure and high-temperature refrigerant compressed by the compressor 11 exchanges heat with a part of the air that has passed through the indoor evaporator 18 in the indoor condenser 13, so The part is heated. Further, the refrigerant flowing out of the indoor evaporator 18 is decompressed by the heating fixed throttle 14 and flows into the outdoor heat exchanger 16. The refrigerant flowing into the outdoor heat exchanger 16 exchanges heat with the outside air blown from the blower fan 16a to radiate heat.
  • the refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the cooling fixed throttle 17 through the three-way valve 20 and is decompressed and expanded by the cooling fixed throttle 17.
  • the low-pressure refrigerant decompressed by the cooling fixed throttle 17 flows into the indoor evaporator 18, absorbs heat from the air blown from the blower 32, and evaporates. Due to the endothermic action of the refrigerant, the air passing through the indoor evaporator 18 is cooled and dehumidified. The subsequent operation is the same as in the cooling mode.
  • the air cooled in the indoor evaporator 18 is heated by the indoor condenser 13 and blown out into the vehicle interior in the same manner as in the cooling mode, thereby performing dehumidifying heating in the vehicle interior. Can do.
  • the on-off valve 15a is closed in the dehumidifying and heating mode, the pressure and temperature of the refrigerant flowing into the outdoor heat exchanger 16 can be lowered than in the cooling mode.
  • the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 16 can be reduced, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 16 can be reduced.
  • coolant in the indoor condenser 12 can be increased, and the heating capability of the air in the indoor condenser 12 can be improved rather than the cooling mode.
  • the dehumidifying and heating mode dry air dehumidified by the indoor evaporator 18 is blown out into the passenger compartment, so that the vehicle window glass can be prevented from being fogged.
  • pre-air conditioning since pre-air conditioning is performed before a passenger gets into the passenger compartment, it is not necessary to prevent fogging of the vehicle window glass in the pre-air conditioning. Therefore, in the pre-air conditioning, it is not necessary to execute the dehumidifying heating mode for the purpose of preventing the vehicle window glass from being fogged.
  • the post-air conditioning air blow control (S23) is performed.
  • the air conditioning control after air conditioning (S23) is not limited to the case where the cooling mode is finished, but may be a situation where a certain amount of condensed water is generated on the surface of the indoor evaporator 18.
  • the cooling mode is changed to the non-cooling mode immediately before the end of the cooling mode, it can be estimated that a certain amount of condensed water is generated on the surface of the indoor evaporator 18, and thus the cooling mode ends. It may be determined that
  • the time for performing the post-air conditioning air blow control (S23) is determined based on the water retention amount w of the indoor evaporator 18 when the cooling mode is being performed. However, based on the amount of condensed water generated on the surface of the indoor evaporator 18, the time for performing the air-conditioning blow control (S23) and the air flow of the blower may be set. For example, when there is a lot of condensed water and the time until the pre-air conditioning is short, control for maximizing the air volume of the blower is performed.

Abstract

This vehicular air-conditioning device comprises: a heat pump cycle (10) including a blower (32) that generates air to be blown into the vehicle interior, an indoor heat exchanger (18) that causes heat exchange between a refrigerant and air, and a refrigerant circuit switching unit (15a, 20) that switches between a refrigerant circuit for a cooling mode in which air is cooled with the indoor heat exchanger (18) and a refrigerant circuit for a non-cooling mode in which air is not cooled with the indoor heat exchanger (18); and a blower control unit (50b) that controls the operation of the blower (32). In cases where the previous air-conditioning operation ended in the cooling mode and a pre-air-conditioning is to be executed in the non-cooling mode, the blower control unit (50b) executes a blowing-after-air-conditioning control (S24), in which the blower (32) is actuated to blow air to the indoor heat exchanger (18), before the pre-air-conditioning until a predetermined amount of condensed water on the surface of the indoor heat exchanger (18) evaporates.

Description

車両用空調装置Air conditioner for vehicles 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年11月6日に出願された日本特許出願2013-229955号を基にしている。 This application is based on Japanese Patent Application No. 2013-229955 filed on November 6, 2013, the disclosure of which is incorporated into this application by reference.
 本開示は、車室内へ送風される空気を冷媒と熱交換させるヒートポンプサイクルを備える車両用空調装置に関する。 The present disclosure relates to a vehicle air conditioner including a heat pump cycle for exchanging heat of air blown into a vehicle interior with a refrigerant.
 従来、この種の車両用空調装置が特許文献1に記載されている。この従来技術では、ヒートポンプサイクルは、空気を加熱あるいは冷却する室内熱交換器として室内凝縮器と室内蒸発器とを有し、室内蒸発器で空気の冷却を行う冷房モードにおける冷媒回路と、室内凝縮器で空気の加熱を行う暖房モードにおける冷媒回路とを切替可能に構成されている。 Conventionally, this type of vehicle air conditioner is described in Patent Document 1. In this prior art, the heat pump cycle includes an indoor condenser and an indoor evaporator as an indoor heat exchanger for heating or cooling air, a refrigerant circuit in a cooling mode in which air is cooled by the indoor evaporator, The refrigerant circuit in the heating mode in which air is heated by the cooler can be switched.
 そして、冷房モードと暖房モードとが、外気温度、設定温度、日射量、車内温度、エアコンスイッチ状態などから自動的に選択されて切り替えられるようになっている。 And, the cooling mode and the heating mode are automatically selected and switched from the outside air temperature, the set temperature, the amount of solar radiation, the in-vehicle temperature, the air conditioner switch state, and the like.
 従来、特許文献2には、通風流路内に滞留する異臭、悪臭を含んだ空気を車室外に排出する排出孔と、排出孔を開閉するダンパとが設けられた車両用空調装置が記載されている。 Conventionally, Patent Document 2 describes a vehicle air conditioner provided with a discharge hole that discharges air containing a strange odor and bad odor stagnating in a ventilation passage to the outside of the passenger compartment and a damper that opens and closes the discharge hole. ing.
特許第3538845号公報Japanese Patent No. 3538845 特開平5-69741号公報JP-A-5-69741
 上記特許文献1の従来技術では、例えば主に春秋の中間期では、周囲環境の変化や乗員の操作等によって冷房モードから暖房モードに切り替わることがある。 In the prior art disclosed in Patent Document 1, for example, mainly in the middle of spring and autumn, the cooling mode may be switched to the heating mode due to changes in the surrounding environment, occupant operations, and the like.
 冷房モードでは、室内蒸発器(室内熱交換器)で空気が露点温度以下に冷却されて室内蒸発器の表面に凝縮水が発生する。暖房モードでは、室内蒸発器で空気が冷却されないので室内蒸発器の表面に凝縮水が発生しない。そのため、冷房モードから暖房モードに切り替わると、室内蒸発器の表面の凝縮水が蒸発して車室内へ向けて送風されることとなる。 In the cooling mode, air is cooled below the dew point temperature by the indoor evaporator (indoor heat exchanger), and condensed water is generated on the surface of the indoor evaporator. In the heating mode, since the air is not cooled by the indoor evaporator, no condensed water is generated on the surface of the indoor evaporator. Therefore, when the cooling mode is switched to the heating mode, the condensed water on the surface of the indoor evaporator is evaporated and blown toward the vehicle interior.
 そして、室内蒸発器の表面の凝縮水が完全に蒸発するとき、凝縮水に溶け込んだカビや微粒子等が蒸気に混ざって車室内に吹き出されることとなるので、異臭、悪臭が発生して乗員が不快に感じてしまうという恐れがある。 When the condensed water on the surface of the indoor evaporator completely evaporates, mold and fine particles dissolved in the condensed water are mixed with the steam and blown out into the passenger compartment. May feel uncomfortable.
 上記特許文献1の従来技術に上記特許文献2の従来技術を適用した場合、異臭、悪臭を含んだ空気を排出孔から車室外に排出できるので、乗員の不快感を軽減できる。しかしながら、この構成によると、車両用空調装置の構造が複雑化してしまうとともに、体格が大型化して車両への搭載性が悪化してしまうという恐れがある。 When the conventional technique of Patent Document 2 is applied to the conventional technique of Patent Document 1, air containing a bad odor and bad odor can be discharged out of the passenger compartment through the discharge hole, so that passenger discomfort can be reduced. However, according to this configuration, the structure of the vehicle air conditioner is complicated, and the physique is increased in size, so that the mountability on the vehicle may be deteriorated.
 本開示は上記点に鑑みて、室内蒸発器の表面の凝縮水が蒸発して発生する臭いによって乗員が不快に感じることを抑制することが可能な車両用空調装置を提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a vehicle air conditioner that can suppress an occupant from feeling uncomfortable due to an odor generated by evaporation of condensed water on the surface of an indoor evaporator. .
 本開示の車両用空調装置は、乗員が車両に乗り込む前に車室内の空調を開始するプレ空調を実行可能に構成された車両用空調装置である。 The vehicle air conditioner of the present disclosure is a vehicle air conditioner configured to be able to perform pre-air conditioning that starts air conditioning in the passenger compartment before a passenger gets into the vehicle.
 車両用空調装置は、車室内へ送風される空気を発生させる送風機と、冷媒と空気とを熱交換させる室内熱交換器と、室内熱交換器にて空気を冷却する冷却モードの冷媒回路と室内熱交換器にて空気を冷却しない非冷却モードの冷媒回路とを切り替える冷媒回路切替部とを有するヒートポンプサイクルと、送風機の作動を制御する送風機制御部とを備える。 A vehicle air conditioner includes a blower that generates air to be blown into a vehicle interior, an indoor heat exchanger that exchanges heat between the refrigerant and the air, a refrigerant circuit in a cooling mode that cools the air with the indoor heat exchanger, and the room A heat pump cycle having a refrigerant circuit switching unit that switches between a non-cooling mode refrigerant circuit that does not cool the air in the heat exchanger, and a blower control unit that controls the operation of the blower.
 送風機制御部は、前回の空調運転が冷却モードで終了しており、かつプレ空調を非冷却モードで実行する場合、送風機を作動させて室内熱交換器に送風する空調後送風制御をプレ空調の前に室内熱交換器の表面の凝縮水が所定量だけ蒸発するまで実施する。 When the previous air conditioning operation is finished in the cooling mode and the pre-air conditioning is executed in the non-cooling mode, the blower control unit performs the post-air conditioning blow control for operating the blower and blowing air to the indoor heat exchanger. This is carried out until the condensed water on the surface of the indoor heat exchanger evaporates by a predetermined amount.
 これによると、プレ空調を実行する場合、すなわち車室内に乗員が不在である確率が高い場合に室内熱交換器の表面の凝縮水を蒸発させるので、室内熱交換器の表面の凝縮水が蒸発して臭いが発生しても乗員が不快に感じることを抑制できる。 According to this, when pre-air conditioning is executed, that is, when there is a high probability that no occupant is present in the passenger compartment, the condensed water on the surface of the indoor heat exchanger is evaporated, so the condensed water on the surface of the indoor heat exchanger is evaporated. Thus, it is possible to suppress the passenger from feeling uncomfortable even if the odor is generated.
 本開示における「冷却モード」は、室内熱交換器にて空気を冷却する運転モードであるから、この「冷却モード」には、室内熱交換器にて冷却された空気を加熱して車室内へ吹き出す運転モード等も含まれる。 Since the “cooling mode” in the present disclosure is an operation mode in which air is cooled by the indoor heat exchanger, in this “cooling mode”, the air cooled by the indoor heat exchanger is heated into the vehicle interior. The operation mode etc. which blows out are also included.
 本開示における「非冷却モード」は、室内熱交換器にて空気を冷却しない運転モードであるから、この「非冷却モード」には、空気を加熱して車室内へ吹き出す運転モードや、空気を冷却も加熱もせずに車室内へ吹き出す運転モード等も含まれる。 Since the “non-cooling mode” in the present disclosure is an operation mode in which air is not cooled by the indoor heat exchanger, the “non-cooling mode” includes an operation mode in which air is heated and blown into the vehicle interior, The operation mode etc. which blow off into a vehicle interior, without cooling and heating are also included.
一実施形態における車両用空調装置の全体構成図である。1 is an overall configuration diagram of a vehicle air conditioner according to an embodiment. 一実施形態における車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the vehicle air conditioner in one Embodiment. 一実施形態における車両用空調装置の空調制御処理を示すフローチャートである。It is a flowchart which shows the air-conditioning control process of the vehicle air conditioner in one Embodiment. 一実施形態における車両用空調装置の運転モード決定処理で用いられる制御特性図である。It is a control characteristic figure used by the operation mode decision process of the air conditioner for vehicles in one embodiment. 一実施形態における車両用空調装置の空調後送風制御処理を示すフローチャートである。It is a flowchart which shows the ventilation control process after an air conditioning of the vehicle air conditioner in one Embodiment. 一実施形態における車両用空調装置の空調後送風制御処理で用いられる特性図である。It is a characteristic view used by the air-conditioning ventilation control process of the vehicle air conditioner in one embodiment. 一実施形態における車両用空調装置の空調後送風制御処理で用いられる特性図である。It is a characteristic view used by the air-conditioning ventilation control process of the vehicle air conditioner in one embodiment. 一実施形態における車両用空調装置の空調後送風制御処理で用いられる特性図である。It is a characteristic view used by the air-conditioning ventilation control process of the vehicle air conditioner in one embodiment. 一実施形態における車両用空調装置の空調後送風制御処理で用いられる特性図である。It is a characteristic view used by the air-conditioning ventilation control process of the vehicle air conditioner in one embodiment. 他の実施形態における車両用空調装置の全体構成図であり、除湿暖房モードを示している。It is a whole block diagram of the vehicle air conditioner in other embodiment, and has shown dehumidification heating mode.
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
 以下、図1~図7により、本開示の一実施形態を説明する。本実施形態の車両用空調装置1は、電気自動車またはハイブリッド車両に適用されている。
Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
(First embodiment)
Hereinafter, an embodiment of the present disclosure will be described with reference to FIGS. The vehicle air conditioner 1 of this embodiment is applied to an electric vehicle or a hybrid vehicle.
 電気自動車は、車両走行用の駆動力を走行用電動モータから得る。電気自動車では、車両停止時に外部電源(商用電源)から供給される電力を蓄電部であるバッテリに充電し、車両走行時にバッテリに蓄えられた電力を走行用電動モータへ供給することによって走行する。 An electric vehicle obtains driving force for traveling from a traveling electric motor. An electric vehicle travels by charging electric power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery, which is a power storage unit, and supplying electric power stored in the battery to the electric motor for traveling when the vehicle is traveling.
 ハイブリッド車両は、内燃機関(エンジン)および走行用電動モータの双方から車両走行用の駆動力を得る。本実施形態のハイブリッド車両は、車両停車時に外部電源(商用電源)から供給された電力をバッテリに充電することのできるプラグインハイブリッド車両として構成されている。 Hybrid vehicles obtain driving force for traveling from both the internal combustion engine (engine) and the traveling electric motor. The hybrid vehicle of this embodiment is configured as a plug-in hybrid vehicle that can charge the battery with electric power supplied from an external power source (commercial power source) when the vehicle is stopped.
 プラグインハイブリッド車両は、車両走行開始前の車両停車時に外部電源からバッテリに充電しておくことによって、走行開始時のようにバッテリの蓄電残量が予め定めた走行用基準残量以上になっているときには、主に走行用電動モータの駆動力によって走行するEV走行モードとなる。一方、車両走行中にバッテリの蓄電残量が走行用基準残量よりも低くなっているときには、主にエンジンの駆動力によって走行するHV走行モードとなる。 The plug-in hybrid vehicle charges the battery from an external power source when the vehicle stops before the vehicle starts running, so that the remaining amount of charge in the battery becomes equal to or greater than a predetermined reference running residual amount as at the start of driving. When the vehicle is in the EV traveling mode, the vehicle travels mainly by the driving force of the traveling electric motor. On the other hand, when the remaining amount of power stored in the battery is lower than the reference remaining amount for traveling while the vehicle is traveling, the HV traveling mode in which traveling is performed mainly by the driving force of the engine is set.
 より詳細には、EV走行モードは、主に走行用電動モータが出力する駆動力によって車両を走行させる走行モードであり、車両走行負荷が高負荷となった際にはエンジンを作動させて走行用電動モータを補助する。つまり、走行用電動モータから出力される走行用の駆動力(モータ駆動力)がエンジンから出力される走行用の駆動力(内燃機関駆動力)よりも大きくなる走行モードである。 More specifically, the EV travel mode is a travel mode in which the vehicle travels mainly by the driving force output from the travel electric motor. When the vehicle travel load becomes high, the engine is operated to travel. Assist the electric motor. That is, this is a traveling mode in which the traveling driving force (motor driving force) output from the traveling electric motor is greater than the traveling driving force (internal combustion engine driving force) output from the engine.
 HV走行モードは、主にエンジンが出力する駆動力によって車両を走行させる走行モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジンを補助する。つまり、内燃機関駆動力がモータ駆動力よりも大きくなる走行モードである。 The HV travel mode is a travel mode in which the vehicle travels mainly by the driving force output from the engine. When the vehicle travel load becomes high, the travel electric motor is operated to assist the engine. That is, this is a traveling mode in which the internal combustion engine driving force is greater than the motor driving force.
 EV走行モードとHV走行モードとを切り替えることによって、車両走行用の駆動力をエンジンのみから得る通常の車両に対してエンジンの燃料消費量を抑制して、車両燃費を向上させることができる。 By switching between the EV travel mode and the HV travel mode, the fuel consumption of the engine can be suppressed and the vehicle fuel consumption can be improved with respect to a normal vehicle that obtains the driving force for vehicle travel only from the engine.
 本実施形態の車両用空調装置1が適用される電気自動車またはハイブリッド車両では、バッテリに蓄えられた電力(電気エネルギ)を車両用空調装置1の各種電動式構成機器へ供給することによって、車両用空調装置1を作動させている。 In the electric vehicle or the hybrid vehicle to which the vehicle air conditioner 1 of the present embodiment is applied, the electric power (electric energy) stored in the battery is supplied to various electric components of the vehicle air conditioner 1, thereby The air conditioner 1 is operated.
 図1、図2を用いて車両用空調装置1の詳細構成を説明する。本実施形態の車両用空調装置1は、車両走行時に車室内の空調を行う通常空調の他に、乗員が車両に乗り込む前に車室内の空調を行うプレ空調を行うことができる。車両用空調装置1では、バッテリB(電池)の充電中に、バッテリBに蓄えられた電力だけでなく外部電源から供給される電力によってプレ空調を行うこともできる。 The detailed configuration of the vehicle air conditioner 1 will be described with reference to FIGS. The vehicle air conditioner 1 of the present embodiment can perform pre-air conditioning that performs air conditioning of the passenger compartment before the occupant gets into the vehicle, in addition to normal air conditioning that performs air conditioning of the passenger compartment when the vehicle is traveling. In the vehicle air conditioner 1, during the charging of the battery B (battery), pre-air conditioning can be performed not only with the electric power stored in the battery B but also with electric power supplied from an external power source.
 車両用空調装置1は、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)10、室内空調ユニット30、および空調制御装置50を備えている。ヒートポンプサイクル10は、車室内へ送風される空気の温度を調整する温度調整部である。室内空調ユニット30は、ヒートポンプサイクル10によって温度調整された空気を車室内へ吹き出す。空調制御装置50は、車両用空調装置1の各種電動式の構成機器の作動を制御する。 The vehicle air conditioner 1 includes a heat pump cycle (vapor compression refrigeration cycle) 10, an indoor air conditioning unit 30, and an air conditioning control device 50. The heat pump cycle 10 is a temperature adjusting unit that adjusts the temperature of air blown into the vehicle interior. The indoor air conditioning unit 30 blows out the air whose temperature has been adjusted by the heat pump cycle 10 into the vehicle interior. The air conditioning control device 50 controls the operation of various electric components of the vehicle air conditioning device 1.
 ヒートポンプサイクル10は、空気を加熱して車室内を暖房する暖房モードの冷媒回路と、空気を冷却して車室内を冷房する冷房モードの冷媒回路とを切替可能に構成されている。 The heat pump cycle 10 is configured to be switchable between a heating mode refrigerant circuit that heats the air to heat the vehicle interior and a cooling mode refrigerant circuit that cools the air to cool the vehicle interior.
 図1では、暖房モードにおける冷媒の流れを白抜き矢印で示し、冷房モードにおける冷媒の流れを黒塗り矢印で示している。 In FIG. 1, the refrigerant flow in the heating mode is indicated by a white arrow, and the refrigerant flow in the cooling mode is indicated by a black arrow.
 ヒートポンプサイクル10は、圧縮機11、室内凝縮器13、室内蒸発器18、暖房用固定絞り14、冷房用固定絞り17、開閉弁15a、および三方弁20を備える。圧縮機11は冷媒を圧縮して吐出する。室内凝縮器13および室内蒸発器18は、空気を加熱あるいは冷却する室内熱交換器である。暖房用固定絞り14および冷房用固定絞り17、暖房用固定絞り14および冷房用固定絞り17は、冷媒を減圧膨張させる減圧器である。開閉弁15aおよび三方弁20は、冷媒回路切替部である。 The heat pump cycle 10 includes a compressor 11, an indoor condenser 13, an indoor evaporator 18, a heating fixed throttle 14, a cooling fixed throttle 17, an on-off valve 15a, and a three-way valve 20. The compressor 11 compresses and discharges the refrigerant. The indoor condenser 13 and the indoor evaporator 18 are indoor heat exchangers that heat or cool the air. The heating fixed throttle 14 and the cooling fixed throttle 17, the heating fixed throttle 14 and the cooling fixed throttle 17 are decompressors that decompress and expand the refrigerant. The on-off valve 15a and the three-way valve 20 are refrigerant circuit switching units.
 ヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用している。ヒートポンプサイクル10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒としてHFO系冷媒(例えば、R1234yf)等を採用してもよい。冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 In the heat pump cycle 10, an HFC refrigerant (specifically, R134a) is adopted as the refrigerant. The heat pump cycle 10 constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. An HFO refrigerant (for example, R1234yf) or the like may be employed as the refrigerant. Refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 圧縮機11は、車室外となる車両ボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された固定容量型圧縮機構11aを電動モータ11bにて駆動する電動圧縮機として構成されている。固定容量型圧縮機構11aとしては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。 The compressor 11 is disposed inside a vehicle hood outside the passenger compartment, and sucks refrigerant in the heat pump cycle 10 and compresses and discharges it. A fixed displacement type compression mechanism 11a having a fixed discharge capacity is used as an electric motor 11b. It is comprised as an electric compressor which drives. Specifically, various types of compression mechanisms such as a scroll type compression mechanism and a vane type compression mechanism can be adopted as the fixed capacity type compression mechanism 11a.
 電動モータ11bは、インバータ61から出力される交流電圧によって、その作動(回転数)が制御される交流モータである。また、インバータ61は、空調制御装置50から出力される制御信号に応じた周波数の交流電圧を出力する。そして、この周波数(回転数)制御によって、圧縮機11の冷媒吐出能力が変更される。従って、電動モータ11bは、圧縮機11の吐出能力変更部を構成している。 The electric motor 11b is an AC motor whose operation (number of rotations) is controlled by an AC voltage output from the inverter 61. Further, the inverter 61 outputs an AC voltage having a frequency corresponding to the control signal output from the air conditioning control device 50. And the refrigerant | coolant discharge capability of the compressor 11 is changed by this frequency (rotation speed) control. Therefore, the electric motor 11 b constitutes a discharge capacity changing unit of the compressor 11.
 圧縮機11の吐出口には、室内凝縮器13の冷媒入口が接続されている。室内凝縮器13は、室内空調ユニット30において車室内へ送風される空気の空気通路を形成するケーシング31内に配置されて、その内部を流通する冷媒と空気とを熱交換させることで空気を加熱する加熱用熱交換器である。 The refrigerant inlet of the indoor condenser 13 is connected to the discharge port of the compressor 11. The indoor condenser 13 is disposed in a casing 31 that forms an air passage for air to be blown into the vehicle interior in the indoor air conditioning unit 30, and heats the air by exchanging heat between the refrigerant circulating in the interior and the air. It is a heat exchanger for heating.
 室内凝縮器13の冷媒出口には、暖房モード時に冷媒を減圧させる暖房用固定絞り14を介して室外熱交換器16の冷媒入口が接続されている。この暖房用固定絞り14としては、オリフィス、キャピラリチューブ等を採用できる。暖房モード時に冷媒を減圧させる機能を発揮できれば、固定絞りに限定されることなく全開機能付き電気式膨張弁等の可変絞り機構を採用してもよい。 The refrigerant inlet of the outdoor heat exchanger 16 is connected to the refrigerant outlet of the indoor condenser 13 via a heating fixed throttle 14 that depressurizes the refrigerant in the heating mode. As the heating fixed throttle 14, an orifice, a capillary tube or the like can be adopted. As long as the function of depressurizing the refrigerant in the heating mode can be exhibited, a variable throttle mechanism such as an electric expansion valve with a fully open function may be employed without being limited to a fixed throttle.
 さらに、本実施形態では、室内凝縮器13から流出した冷媒を、暖房用固定絞り14を迂回させて室外熱交換器16の冷媒入口へ導くバイパス通路15が設けられている。このバイパス通路15には、バイパス通路15を開閉する開閉弁15aが配置されている。 Furthermore, in this embodiment, a bypass passage 15 is provided that guides the refrigerant flowing out of the indoor condenser 13 to the refrigerant inlet of the outdoor heat exchanger 16 by bypassing the heating fixed throttle 14. An opening / closing valve 15 a for opening and closing the bypass passage 15 is disposed in the bypass passage 15.
 開閉弁15aは、冷房モードにおける冷媒回路、および暖房モードにおける冷媒回路を切り替える冷媒回路切替部を構成するもので、空調制御装置50から出力される制御信号によって、その作動が制御される電磁弁である。具体的には、本実施形態の開閉弁15aは、冷房モード時に開き、暖房モード時に閉じる。 The on-off valve 15a constitutes a refrigerant circuit switching unit that switches between the refrigerant circuit in the cooling mode and the refrigerant circuit in the heating mode, and is an electromagnetic valve whose operation is controlled by a control signal output from the air conditioning control device 50. is there. Specifically, the on-off valve 15a of the present embodiment opens during the cooling mode and closes during the heating mode.
 開閉弁15aが開いた状態で冷媒がバイパス通路15を通過する際に生じる圧力損失は、開閉弁15aが閉じた状態で冷媒が暖房用固定絞り14を通過する際に生じる圧力損失に対して極めて小さい。従って、開閉弁15aが開いた状態では、室外熱交換器16から流出した冷媒のほぼ全流量がバイパス通路15を介して室外熱交換器16の冷媒入口へ流れる。 The pressure loss that occurs when the refrigerant passes through the bypass passage 15 with the on-off valve 15a open is extremely high compared to the pressure loss that occurs when the refrigerant passes through the heating fixed throttle 14 with the on-off valve 15a closed. small. Therefore, in a state where the on-off valve 15 a is opened, almost the entire flow rate of the refrigerant flowing out from the outdoor heat exchanger 16 flows to the refrigerant inlet of the outdoor heat exchanger 16 through the bypass passage 15.
 室外熱交換器16は、車両ボンネット内に配置されて、内部を流通する室内凝縮器13下流の冷媒と送風ファン16aから送風された車室外空気(外気)とを熱交換させる。送風ファン16aは、空調制御装置50から出力される制御電圧によって回転数(送風能力)が制御される電動式送風機である。 The outdoor heat exchanger 16 is disposed in the vehicle bonnet, and exchanges heat between the refrigerant downstream of the indoor condenser 13 that circulates inside and the outdoor air (outside air) blown from the blower fan 16a. The blower fan 16 a is an electric blower in which the rotation speed (blowing capacity) is controlled by a control voltage output from the air conditioning control device 50.
 室外熱交換器16の冷媒出口には、三方弁20が接続されている。この三方弁20は、開閉弁15aとともに上述した各運転モードにおける冷媒回路を切り替える冷媒回路切替部を構成している。三方弁20は、空調制御装置50から出力される制御信号によって、その作動が制御される電気式の三方弁である。 A three-way valve 20 is connected to the refrigerant outlet of the outdoor heat exchanger 16. The three-way valve 20 constitutes a refrigerant circuit switching unit that switches the refrigerant circuit in each operation mode described above together with the on-off valve 15a. The three-way valve 20 is an electric three-way valve whose operation is controlled by a control signal output from the air conditioning controller 50.
 具体的には、本実施形態の三方弁20は、冷房モード時には室外熱交換器16の冷媒出口と冷房用固定絞り17とを接続する冷媒回路に切り替える。三方弁20は、暖房モード時には室外熱交換器16の冷媒出口と圧縮機11の吸入口に接続されたアキュムレータ19の冷媒入口とを接続する冷媒回路に切り替える。 Specifically, the three-way valve 20 of the present embodiment switches to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the cooling fixed throttle 17 in the cooling mode. In the heating mode, the three-way valve 20 switches to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the refrigerant inlet of the accumulator 19 connected to the suction port of the compressor 11.
 冷房用固定絞り17の基本的構成は暖房用固定絞り14と同様である。冷房用固定絞り17の出口には、室内蒸発器18の冷媒入口が接続されている。室内蒸発器18は、室内空調ユニット30のケーシング31内のうち、室内凝縮器13の空気流れ上流に配置されて、その内部を流通する冷媒と空気とを熱交換させて空気を冷却する冷却用熱交換器(室内熱交換器)である。 The basic configuration of the cooling fixed throttle 17 is the same as that of the heating fixed throttle 14. The refrigerant inlet of the indoor evaporator 18 is connected to the outlet of the cooling fixed throttle 17. The indoor evaporator 18 is disposed in the casing 31 of the indoor air-conditioning unit 30 upstream of the air flow of the indoor condenser 13, and cools the air by exchanging heat between the refrigerant circulating in the interior and the air. It is a heat exchanger (indoor heat exchanger).
 室内蒸発器18の冷媒出口には、アキュムレータ19の入口が接続されている。アキュムレータ19は、内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータ19の気相冷媒出口には、圧縮機11の吸入口が接続されている。 The inlet of the accumulator 19 is connected to the refrigerant outlet of the indoor evaporator 18. The accumulator 19 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess refrigerant in the cycle. The suction port of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 19.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置される。室内空調ユニット30は、その外殻を形成するケーシング31と、ケーシング31内に収容された送風機32、室内蒸発器18、室内凝縮器13、エアミックスドア34とを備える。 Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior. The indoor air conditioning unit 30 includes a casing 31 that forms an outer shell thereof, a blower 32 housed in the casing 31, the indoor evaporator 18, the indoor condenser 13, and an air mix door 34.
 ケーシング31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されており、その内部に車室内へ送風される空気の空気通路を形成している。このケーシング31の空気流れ最上流部には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替部としての内外気切替装置33が配置されている。 The casing 31 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength, and forms an air passage for air to be blown into the vehicle interior. An inside / outside air switching device 33 as an inside / outside air switching unit for switching and introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is disposed at the most upstream part of the air flow of the casing 31. .
 内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって調整して、内気の風量と外気の風量との風量割合を連続的に変化させる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータ62によって駆動され、この電動アクチュエータ62は、空調制御装置50から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 33 adjusts the opening area of the inside air introduction port through which the inside air is introduced into the casing 31 and the outside air introduction port through which the outside air is introduced, by the inside / outside air switching door, and the air volume between the inside air volume and the outside air volume. Change the ratio continuously. The inside / outside air switching door is driven by an electric actuator 62 for the inside / outside air switching door, and the operation of the electric actuator 62 is controlled by a control signal output from the air conditioning controller 50.
 内外気切替装置33の空気流れ下流には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機(ブロワ)32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置50から出力される制御電圧によって回転数(送風量)が制御される。 A blower 32 that blows air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed downstream of the air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 50.
 送風機32の空気流れ下流には、室内蒸発器18および室内凝縮器13が、空気の流れに対して、室内蒸発器18、室内凝縮器13の順に配置されている。換言すると、室内蒸発器18は、室内凝縮器13に対して、空気流れ上流に配置されている。 The indoor evaporator 18 and the indoor condenser 13 are arranged in the order of the indoor evaporator 18 and the indoor condenser 13 with respect to the air flow, downstream of the air flow of the blower 32. In other words, the indoor evaporator 18 is arranged upstream of the air flow with respect to the indoor condenser 13.
 ケーシング31内には、室内蒸発器18通過後の空気のうち、室内凝縮器13を通過させる風量と室内凝縮器13を通過させない風量との風量割合を調整するエアミックスドア34が配置されている。エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータ63によって駆動され、この電動アクチュエータ63は、空調制御装置50から出力される制御信号によって、その作動が制御される。 In the casing 31, an air mix door 34 that adjusts the air volume ratio between the air volume that passes through the indoor condenser 13 and the air volume that does not pass through the indoor condenser 13 in the air after passing through the indoor evaporator 18 is disposed. . The air mix door 34 is driven by an electric actuator 63 for driving the air mix door, and the operation of the electric actuator 63 is controlled by a control signal output from the air conditioning control device 50.
 ケーシング31の空気流れ最下流部には、室内凝縮器13を通過した空気あるいは室内凝縮器13を迂回させる冷風バイパス通路を通過した空気を、空調対象空間である車室内へ吹き出すための開口穴37a、37b、37cが設けられている。具体的には、開口穴37a、37b、37cとして、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴37b、および乗員の足元に向けて空調風を吹き出すフット開口穴37cが設けられている。 In the most downstream portion of the air flow of the casing 31, an opening hole 37a for blowing out the air that has passed through the indoor condenser 13 or the air that has passed through the cold air bypass passage that bypasses the indoor condenser 13 into the vehicle interior that is the air-conditioning target space. , 37b, 37c are provided. Specifically, as opening holes 37a, 37b, and 37c, a defroster opening hole 37a that blows conditioned air toward the inner surface of the vehicle front window glass, a face opening hole 37b that blows conditioned air toward the upper body of the passenger in the vehicle interior, And the foot opening hole 37c which blows off air-conditioning wind toward a passenger | crew's step is provided.
 これらのデフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ下流は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 The air flow downstream of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c is a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. (Both not shown).
 冷房モード時には、エアミックスドア34の開度が調整されることによって、室内蒸発器18にて冷却された空気のうち室内凝縮器13にて再加熱される温風と室内凝縮器を迂回する冷風との風量割合が調整される。そして、この風量割合の調整によって、温風と冷風とを混合させた混合空気、すなわち車室内へ吹き出される空気の温度が調整される。 In the cooling mode, by adjusting the opening degree of the air mix door 34, the warm air reheated by the indoor condenser 13 out of the air cooled by the indoor evaporator 18 and the cold air bypassing the indoor condenser. The air volume ratio is adjusted. Then, by adjusting the air volume ratio, the temperature of the mixed air obtained by mixing the hot air and the cold air, that is, the air blown into the vehicle interior is adjusted.
 なお、冷房モード時には、室内蒸発器18通過後の空気の全風量を室内凝縮器13を迂回させる位置に、エアミックスドア34を変位させるようにしてもよい。 In the cooling mode, the air mix door 34 may be displaced to a position where the total air volume after passing through the indoor evaporator 18 bypasses the indoor condenser 13.
 デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ上流には、それぞれ、デフロスタ開口穴37aの開口面積を調整するデフロスタドア38a、フェイス開口穴37bの開口面積を調整するフェイスドア38b、フット開口穴37cの開口面積を調整するフットドア38cが配置されている。 Defroster door 38a for adjusting the opening area of defroster opening hole 37a and face door 38b for adjusting the opening area of face opening hole 37b are arranged upstream of the air flow of defroster opening hole 37a, face opening hole 37b and foot opening hole 37c, respectively. A foot door 38c for adjusting the opening area of the foot opening hole 37c is disposed.
 これらのデフロスタドア38a、フェイスドア38bおよびフットドア38cは、吹出口モードを切替える吹出口モード切替部を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータ64に連結されて連動して回転操作される。この電動アクチュエータ64も、空調制御装置50から出力される制御信号によって、その作動が制御される。 The defroster door 38a, the face door 38b, and the foot door 38c constitute an outlet mode switching unit that switches the outlet mode. The defroster door 38a, the face door 38b, and the foot door 38c are connected to the electric actuator 64 for driving the outlet mode door via a link mechanism or the like. It is connected and rotated in conjunction with it. The operation of the electric actuator 64 is also controlled by a control signal output from the air conditioning controller 50.
 吹出口モード切替部によって切り替えられる吹出口モードとしては、フェイスモード、バイレベルモード、フットモード、およびフットデフロスタモードがある。フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す。フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す。フットデフロスタモードは、フット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出す。 The outlet mode switched by the outlet mode switching unit includes a face mode, a bi-level mode, a foot mode, and a foot defroster mode. In the face mode, the face air outlet is fully opened and air is blown out from the face air outlet toward the upper body of the passenger in the passenger compartment. In the bi-level mode, both the face air outlet and the foot air outlet are opened, and air is blown out toward the upper body and the feet of the passengers in the passenger compartment. In the foot mode, the foot air outlet is fully opened and the defroster air outlet is opened by a small opening, and air is mainly blown out from the foot air outlet. In the foot defroster mode, the foot outlet and the defroster outlet are opened to the same extent, and air is blown out from both the foot outlet and the defroster outlet.
 乗員が操作パネルに設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。 It is also possible to set the defroster mode in which the occupant manually operates the blowing mode changeover switch provided on the operation panel so that the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the vehicle front window glass.
 次に、本実施形態の電気制御部について説明する。図2に示す空調制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された圧縮機11用のインバータ、冷媒回路切替部を構成する開閉弁15aおよび三方弁20、送風ファン16a、送風機32、前述した各種電動アクチュエータ62~64といった各種空調用構成機器の作動を制御する。 Next, the electric control unit of this embodiment will be described. The air conditioning control device 50 shown in FIG. 2 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the on / off valve 15a and the three-way valve 20 constituting the inverter for the compressor 11, the refrigerant circuit switching unit connected to the output side thereof. The operation of various air conditioning components such as the blower fan 16a, the blower 32, and the various electric actuators 62 to 64 described above is controlled.
 空調制御装置50の入力側には、内気センサ51、外気センサ52、日射センサ53,吐出温度センサ54、吐出圧力センサ55、蒸発器温度センサ56、室外熱交換器温度センサ57等の空調制御用のセンサ群の検出信号が入力される。内気センサ51は、車室内温度(内気温度)Trを検出する内気温検出器である。外気センサ52は、車室外温度(外気温度)Tamを検出する外気温検出器である。日射センサ53は、車室内へ照射される日射量Tsを検出する日射量検出器である。吐出温度センサ54は、圧縮機11吐出冷媒の吐出冷媒温度Tdを検出する。吐出圧力センサ55は、圧縮機11吐出冷媒の吐出冷媒圧力Pdを検出する。蒸発器温度センサ56は、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Teを検出する。室外熱交換器温度センサ57は、室外熱交換器16の室外器温度Toutを検出する。 On the input side of the air-conditioning control device 50, air-conditioning control for the inside air sensor 51, the outside air sensor 52, the solar radiation sensor 53, the discharge temperature sensor 54, the discharge pressure sensor 55, the evaporator temperature sensor 56, the outdoor heat exchanger temperature sensor 57, and the like. Detection signals of the sensor groups are input. The inside air sensor 51 is an inside air temperature detector that detects a passenger compartment temperature (inside air temperature) Tr. The outside air sensor 52 is an outside air temperature detector that detects a passenger compartment outside temperature (outside air temperature) Tam. The solar radiation sensor 53 is a solar radiation amount detector that detects the solar radiation amount Ts irradiated into the vehicle interior. The discharge temperature sensor 54 detects the discharge refrigerant temperature Td of the refrigerant discharged from the compressor 11. The discharge pressure sensor 55 detects the discharge refrigerant pressure Pd of the refrigerant discharged from the compressor 11. The evaporator temperature sensor 56 detects the refrigerant evaporation temperature (evaporator temperature) Te in the indoor evaporator 18. The outdoor heat exchanger temperature sensor 57 detects the outdoor temperature Tout of the outdoor heat exchanger 16.
 本実施形態の吐出冷媒圧力Pdは、冷房モードでは、圧縮機11の冷媒吐出口から冷房用固定絞り17の入口へ至るサイクルの高圧側冷媒圧力となり、暖房モードでは、圧縮機11の冷媒吐出口から暖房用固定絞り17の入口へ至るサイクルの高圧側冷媒圧力となる。 The discharge refrigerant pressure Pd of the present embodiment is a high-pressure side refrigerant pressure of a cycle from the refrigerant discharge port of the compressor 11 to the inlet of the cooling fixed throttle 17 in the cooling mode, and in the heating mode, the refrigerant discharge port of the compressor 11 in the heating mode. It becomes the high-pressure side refrigerant pressure of the cycle from the inlet to the fixed throttle 17 for heating.
 本実施形態の蒸発器温度センサ56は、具体的には、室内蒸発器18の熱交換フィン温度を検出している。蒸発器温度センサ56として、室内蒸発器18のその他の部位の温度を検出する温度検出器を採用してもよいし、室内蒸発器18を流通する冷媒自体の温度を直接検出する温度検出器を採用してもよい。このことは室外熱交換器温度センサ57についても同様である。 Specifically, the evaporator temperature sensor 56 of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18. As the evaporator temperature sensor 56, a temperature detector that detects the temperature of other parts of the indoor evaporator 18 may be adopted, or a temperature detector that directly detects the temperature of the refrigerant itself that flows through the indoor evaporator 18. It may be adopted. The same applies to the outdoor heat exchanger temperature sensor 57.
 空調制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。この操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車両用空調装置1の自動制御を設定あるいは解除するオートスイッチ、運転モードを切り替える運転モード切替スイッチ、吹出口モードを切り替える吹出モード切替スイッチ、送風機32の風量設定スイッチ、車室内の目標温度Tsetを設定する目標温度設定部としての車室内温度設定スイッチ、空調のために消費されるエネルギの低減を要求する省エネルギ化要求部であるエコノミースイッチ等がある。 On the input side of the air conditioning control device 50, operation signals are input from various air conditioning operation switches provided on an operation panel disposed near the instrument panel in the front part of the passenger compartment. Specifically, various air conditioning operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, an auto switch for setting or canceling the automatic control of the vehicle air conditioner 1, and an operation mode switching for switching the operation mode. Switch, blow-out mode switching switch for switching the blow-out port mode, air volume setting switch for the blower 32, vehicle interior temperature setting switch as a target temperature setting unit for setting the vehicle interior target temperature Tset, reduction of energy consumed for air conditioning There is an economy switch or the like which is an energy saving requesting section that requests
 本実施形態の空調制御装置50は、乗員が携帯する無線端末70(具体的には、リモコン)あるいは移動体通信機器(具体的には、携帯電話、スマートフォン)と制御信号の送受信を行う送受信部50aを有している。 The air conditioning control device 50 according to the present embodiment includes a transmission / reception unit that transmits / receives control signals to / from a wireless terminal 70 (specifically, a remote controller) or a mobile communication device (specifically, a mobile phone or a smartphone) carried by a passenger. 50a.
 操作パネル60および無線端末70には、それぞれプレ空調運転を開始させるプレ空調スタートスイッチ、および予め定めた時刻にプレ空調運転を開始させるためのタイマー設定スイッチといったプレ空調運転の実行を要求するプレ空調要求部が設けられている。 The operation panel 60 and the wireless terminal 70 each require pre-air-conditioning operation such as a pre-air-conditioning start switch for starting the pre-air-conditioning operation and a timer setting switch for starting the pre-air-conditioning operation at a predetermined time. A request section is provided.
 空調制御装置50は、その出力側に接続された各種空調用構成機器を制御する制御部が一体に構成されている。それぞれの空調用構成機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの空調用構成機器の作動を制御する制御部を構成している。 The air conditioning control device 50 is integrally configured with a control unit that controls various air conditioning components connected to the output side thereof. The configuration (hardware and software) that controls the operation of each air conditioning component device constitutes a control unit that controls the operation of each air conditioning component device.
 例えば、本実施形態では、空調制御装置50のうち送風機32の作動を制御する構成が送風機制御部50bを構成している。空調制御装置50のうち内外気切替ドア用の電動アクチュエータ62の作動を制御する構成(ハードウェアおよびソフトウェア)が内外気切替制御部50cを構成している。 For example, in this embodiment, the structure which controls the action | operation of the air blower 32 among the air-conditioning control apparatuses 50 comprises the air blower control part 50b. The configuration (hardware and software) for controlling the operation of the electric actuator 62 for the inside / outside air switching door in the air conditioning control device 50 constitutes the inside / outside air switching control unit 50c.
 内外気切替制御部50c、内外気切替装置33および内外気切替ドア用の電動アクチュエータ62は、送風機32に導入される空気を内気と外気とに切り替える内外気切替部を構成している。 The inside / outside air switching control unit 50c, the inside / outside air switching device 33, and the electric actuator 62 for the inside / outside air switching door constitute an inside / outside air switching unit that switches the air introduced into the blower 32 between the inside air and the outside air.
 次に、上記構成における本実施形態の作動を説明する。図3のフローチャートに示す制御処理は、車両停止時であっても、バッテリBから空調制御装置50に電力が供給されていれば実行される。なお、図3の各制御は、空調制御装置50が有する各種の機能実現部を構成している。 Next, the operation of this embodiment in the above configuration will be described. The control process shown in the flowchart of FIG. 3 is executed if power is supplied from the battery B to the air conditioning control device 50 even when the vehicle is stopped. Note that each control in FIG. 3 constitutes various function realizing units of the air conditioning control device 50.
 まず、S1では、車両用空調装置1を作動させるか否かを判定する。すなわち、操作パネル60の作動スイッチが投入された状態でオートスイッチが投入(ON)されているか否か、プレ空調スタートスイッチが投入(ON)されているか否か、あるいはタイマー設定によってプレ空調運転を開始させるか否かを判定する。そして、車両用空調装置1を作動させると判定された際にS2へ進む。 First, in S1, it is determined whether or not the vehicle air conditioner 1 is to be operated. That is, whether the auto switch is turned on (ON) while the operation switch of the operation panel 60 is turned on, whether the pre air conditioning start switch is turned on (ON), or the pre-air conditioning operation is performed according to the timer setting. Determine whether to start. And when it determines with operating the vehicle air conditioner 1, it progresses to S2.
 S2では、フラグ、タイマー等の初期化、および上述した電動アクチュエータを構成するステッピングモータの初期位置合わせ等のイニシャライズが行われる。なお、このイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置1の作動終了時あるいは車両システムの停止時に記憶された値が維持されるものもある。 In S2, initialization such as initialization of a flag, a timer, and initial alignment of the stepping motor constituting the electric actuator described above is performed. In this initialization, some of the flags and calculation values that are stored when the previous operation of the vehicle air conditioner 1 is completed or when the vehicle system is stopped may be maintained.
 次に、S3では、操作パネル60の操作信号等を読み込んでS4へ進む。S4では、空調制御に用いられる車両環境状態の信号、すなわち上述の空調制御用のセンサ群51~57等の検出信号を読み込んでS5へ進む。 Next, in S3, the operation signal of the operation panel 60 is read, and the process proceeds to S4. In S4, the vehicle environmental state signal used for air conditioning control, that is, the detection signals of the above-mentioned air conditioning control sensor groups 51 to 57, etc. are read, and the process proceeds to S5.
 S5では、車室内吹出空気の目標吹出温度TAOを算出する。目標吹出温度TAOは、内気温Trを速やかに乗員の所望の目標温度Tsetに近づけるために決定される値であって、下記数式F1により算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 Tsetは車室内温度設定スイッチによって設定された車室内の目標温度である。Trは内気センサ51によって検出された車室内温度(内気温)である。Tamは外気センサ52によって検出された車室外温度(外気温)である。Tsは日射センサ53によって検出された日射量である。また、Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
In S5, the target blowing temperature TAO of the vehicle cabin blowing air is calculated. The target blowing temperature TAO is a value that is determined in order to quickly bring the inside air temperature Tr close to the occupant's desired target temperature Tset, and is calculated by the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
Tset is a target temperature in the passenger compartment set by the passenger compartment temperature setting switch. Tr is the passenger compartment temperature (inside air temperature) detected by the inside air sensor 51. Tam is the passenger compartment outside temperature (outside air temperature) detected by the outside air sensor 52. Ts is the amount of solar radiation detected by the solar radiation sensor 53. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 目標吹出温度TAOは、車室内を所望の温度に保つために車両用空調装置1に要求される空調熱負荷を示す指標であると表現することもできる。上記数式F1にて算出された目標吹出温度TAOは、冷房モード時および暖房モード時の双方において用いることのできる制御目標値である。しかしながら、暖房モード時には消費電力の抑制のために上記数式F1にて算出された目標吹出温度TAOよりも若干低い値とする補正を行ってもよい。 The target blowing temperature TAO can also be expressed as an index indicating the air conditioning heat load required for the vehicle air conditioner 1 in order to keep the passenger compartment at a desired temperature. The target blowing temperature TAO calculated by the above formula F1 is a control target value that can be used in both the cooling mode and the heating mode. However, in the heating mode, correction may be performed so as to be a value slightly lower than the target blowing temperature TAO calculated by the formula F1 in order to suppress power consumption.
 S6では、ヒートポンプサイクル10の運転モードが決定される。S6では、外気センサ52によって検出された外気温度Tamと、S5で算出された目標吹出温度TAOとに基づいて、予め空調制御装置50のROM内に記憶された制御マップを参照して、運転モードを決定する。 In S6, the operation mode of the heat pump cycle 10 is determined. In S6, on the basis of the outside air temperature Tam detected by the outside air sensor 52 and the target outlet temperature TAO calculated in S5, a control map stored in advance in the ROM of the air conditioning control device 50 is referred to and the operation mode is set. To decide.
 制御マップの例を図4に示す。この制御マップの例では、外気温度Tamよりも目標吹出温度TAOが低い場合、冷房モードに決定し、外気温度Tamよりも目標吹出温度TAOが高い場合、暖房モードに決定し、外気温度Tamと目標吹出温度TAOとが同等である場合、換気モードに決定する。 An example of the control map is shown in FIG. In this example of the control map, when the target blowing temperature TAO is lower than the outside air temperature Tam, the cooling mode is determined. When the target blowing temperature TAO is higher than the outside air temperature Tam, the heating mode is determined, and the outside air temperature Tam and the target When the blowing temperature TAO is equivalent, the ventilation mode is determined.
 換気モードは、ヒートポンプサイクル10が停止した状態で送風機32が作動する運転モードである。したがって、換気モードでは、空気が冷却されたり加熱されたりすることなく、送風のみが行われる。 The ventilation mode is an operation mode in which the blower 32 operates in a state where the heat pump cycle 10 is stopped. Therefore, in ventilation mode, only ventilation is performed without cooling or heating the air.
 続くS7~S12では、空調制御装置50の出力側に接続された各種空調用構成機器の制御状態が決定される。まず、S7では、送風機32により送風される空気の目標送風量、すなわち送風機32の電動モータに印加するブロワモータ電圧(ブロワレベル)を決定する。 In subsequent S7 to S12, control states of various air conditioning components connected to the output side of the air conditioning controller 50 are determined. First, in S <b> 7, a target air blowing amount of air blown by the blower 32, that is, a blower motor voltage (blower level) to be applied to the electric motor of the blower 32 is determined.
 具体的には、目標吹出温度TAOの極低温域(本実施形態では、-30℃以下)および極高温域(本実施形態では、80℃以上)でブロワモータ電圧を最大値付近として、送風機32の風量を最大値に近づける。 Specifically, the blower motor voltage is set near the maximum value in the extremely low temperature range (−30 ° C. or lower in the present embodiment) and the extremely high temperature range (80 ° C. or higher in the present embodiment) of the target blowing temperature TAO. Bring the air volume close to the maximum value.
 目標吹出温度TAOが極低温域から中間温度域(本実施形態では、10℃~40℃)に向かって上昇するに伴って、ブロワモータ電圧を減少させる。さらに、目標吹出温度TAOが極高温域から中間温度域に向かって低下するに伴って、ブロワモータ電圧を減少させて送風機32の風量を減少させる。 The blower motor voltage is decreased as the target blowing temperature TAO increases from the extremely low temperature range toward the intermediate temperature range (10 ° C. to 40 ° C. in this embodiment). Further, as the target blowing temperature TAO decreases from the extremely high temperature range toward the intermediate temperature range, the blower motor voltage is decreased and the air volume of the blower 32 is decreased.
 目標吹出温度TAOが中間温度域内に入ると、ブロワモータ電圧を最小値付近にして送風機32の風量を最小値に近づける。 When the target blowing temperature TAO enters the intermediate temperature range, the blower motor voltage is set near the minimum value, and the air volume of the blower 32 is brought close to the minimum value.
 次に、図3に示すS8では、吸込口モード、すなわち内外気切替ドア駆動用の電動アクチュエータ62に出力される制御信号を決定する。この吸込口モードも目標吹出温度TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。本実施形態では、基本的に外気を導入する外気モードが優先されるが、目標吹出温度TAOが極低温域となって高い冷房性能を得たい場合等には内気を導入する内気モードが選択される。 Next, in S8 shown in FIG. 3, the control signal output to the suction port mode, that is, the electric actuator 62 for driving the inside / outside air switching door is determined. This suction port mode is also determined with reference to a control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO. In the present embodiment, the outside air mode for introducing outside air is basically given priority, but the inside air mode for introducing inside air is selected when the target blowing temperature TAO is in a very low temperature range and high cooling performance is desired. The
 S9では、吹出口モード、すなわち吹出モードドア駆動用の電動アクチュエータ63に出力される制御信号を決定する。この吹出口モードも目標吹出温度TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。本実施形態では、目標吹出温度TAOが低温域から高温域へと上昇するに伴って吹出口モードをフェイスモード、バイレベルモード、フットモードへと順次切り替える。 In S9, a control signal to be output to the electric outlet 63 for driving the outlet mode, that is, the outlet mode door is determined. This air outlet mode is also determined based on the target air temperature TAO with reference to a control map stored in the air conditioning controller 50 in advance. In the present embodiment, the outlet mode is sequentially switched to the face mode, the bi-level mode, and the foot mode as the target outlet temperature TAO increases from the low temperature region to the high temperature region.
 従って、目標吹出温度TAOが低温域となりやすい夏季は主にフェイスモード、目標吹出温度TAOが中温域となりやすい春秋季は主にバイレベルモード、そして、目標吹出温度TAOが高温域となりやすい冬季は主にフットモードが選択される。 Therefore, in summer when the target blowout temperature TAO tends to be in the low temperature range, the face mode is mainly used. In spring and autumn when the target blowout temperature TAO tends to be in the middle temperature range, it is mainly in the bi-level mode. Foot mode is selected.
 さらに、車両窓ガラス近傍の相対湿度を検出する湿度検出器を設けてもよい。この場合、湿度検出器の検出値から算出される窓ガラス表面の相対湿度RHWに基づいて、窓ガラスに曇りが発生する可能性が高いと判定された場合には、フットデフロスタモードあるいはデフロスタモードを選択するようにしてもよい。 Furthermore, a humidity detector that detects the relative humidity in the vicinity of the vehicle window glass may be provided. In this case, when it is determined that the window glass is likely to be fogged based on the relative humidity RHW of the window glass surface calculated from the detection value of the humidity detector, the foot defroster mode or the defroster mode is set. You may make it select.
 S10では、エアミックスドア34の開度、すなわちエアミックスドア駆動用の電動アクチュエータ63に出力される制御信号を決定する。本実施形態では、暖房モード時には、室内蒸発器18通過後の空気の全風量が室内凝縮器13へ流入するようにエアミックスドア34を変位させる。 In S10, an opening degree of the air mix door 34, that is, a control signal output to the electric actuator 63 for driving the air mix door is determined. In the present embodiment, in the heating mode, the air mix door 34 is displaced so that the total air volume after passing through the indoor evaporator 18 flows into the indoor condenser 13.
 冷房モード時には、室内へ送風される空気の温度TAVが目標吹出温度TAOに近づくようにエアミックスドア34を変位させる。本実施形態では、空気の温度TAVとして、蒸発器温度Teおよび吐出冷媒温度Tdから算出された値を用いている。車室内へ吹き出される空気の温度を検出する空気温度検出器を設け、これによって検出された値を空気温度TAVとしてもよい。 In the cooling mode, the air mix door 34 is displaced so that the temperature TAV of the air blown into the room approaches the target blowing temperature TAO. In the present embodiment, a value calculated from the evaporator temperature Te and the discharge refrigerant temperature Td is used as the air temperature TAV. An air temperature detector that detects the temperature of the air blown into the passenger compartment may be provided, and the value detected thereby may be used as the air temperature TAV.
 S11では、圧縮機11の冷媒吐出能力、すなわち圧縮機11の回転数を決定する。ここで、圧縮機11の基本的な回転数の決定手法を説明する。例えば、冷房モードでは、S5で決定した目標吹出温度TAO等に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Teの目標温度TEO(目標蒸発器吹出温度)を決定する。 In S11, the refrigerant discharge capacity of the compressor 11, that is, the rotational speed of the compressor 11 is determined. Here, a basic method for determining the rotational speed of the compressor 11 will be described. For example, in the cooling mode, the refrigerant evaporation temperature (evaporator temperature) Te in the indoor evaporator 18 is referred to with reference to a control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO determined in S5. The target temperature TEO (target evaporator outlet temperature) is determined.
 そして、この目標蒸発器吹出温度TEOと吹出空気温度Teの偏差En(TEO-Te)を算出する。今回算出された偏差Enから前回算出された偏差En-1を減算した偏差変化率Edot(En-(En-1))とを用いて、予め空調制御装置50に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fCn-1に対する回転数変化量Δf_Cを求める。 Then, a deviation En (TEO-Te) between the target evaporator blowing temperature TEO and the blowing air temperature Te is calculated. Membership functions and rules previously stored in the air-conditioning control device 50 using the deviation change rate Edot (En- (En-1)) obtained by subtracting the previously calculated deviation En-1 from the previously calculated deviation En Based on the fuzzy inference based on the above, the rotational speed change amount Δf_C with respect to the previous compressor rotational speed fCn−1 is obtained.
 暖房モードでは、S5で決定した目標吹出温度TAO等に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、吐出側冷媒圧力(高圧側冷媒圧力)Pdの目標高圧PDOを決定する。 In the heating mode, the target high pressure PDO of the discharge side refrigerant pressure (high pressure side refrigerant pressure) Pd is determined by referring to the control map stored in advance in the air conditioning control device 50 based on the target outlet temperature TAO determined in S5. decide.
 そして、この目標高圧PDOと吐出側冷媒圧力Pdの偏差Pn(PDO-Pd)を算出する。今回算出された偏差Pnから前回算出された偏差Pn-1を減算した偏差変化率Pdot(Pn-(Pn-1))とを用いて、予め空調制御装置50に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fHn-1に対する回転数変化量Δf_Hを求める。 Then, a deviation Pn (PDO−Pd) between the target high pressure PDO and the discharge side refrigerant pressure Pd is calculated. Membership functions and rules previously stored in the air-conditioning control device 50 using a deviation change rate Pdot (Pn− (Pn−1)) obtained by subtracting the previously calculated deviation Pn−1 from the currently calculated deviation Pn. Based on the fuzzy inference based on the above, the rotational speed change amount Δf_H with respect to the previous compressor rotational speed fHn−1 is obtained.
 次に、図3に示すS12では、冷媒回路切替部の作動状態、すなわち開閉弁15aおよび三方弁20の作動状態が決定される。具体的には、前述の如く、本実施形態の開閉弁15aは、冷房モード時に開き、暖房モード時に閉じる。 Next, in S12 shown in FIG. 3, the operating state of the refrigerant circuit switching unit, that is, the operating state of the on-off valve 15a and the three-way valve 20 is determined. Specifically, as described above, the on-off valve 15a of the present embodiment opens during the cooling mode and closes during the heating mode.
 三方弁20は、冷房モード時には室外熱交換器16の冷媒出口と冷房用固定絞り17とを接続する冷媒回路に切り替え、暖房モード時には室外熱交換器16の冷媒出口と圧縮機11の吸入口に接続されたアキュムレータ19の冷媒入口とを接続する冷媒回路に切り替える。 The three-way valve 20 is switched to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the cooling fixed throttle 17 in the cooling mode, and is connected to the refrigerant outlet of the outdoor heat exchanger 16 and the suction port of the compressor 11 in the heating mode. It switches to the refrigerant circuit which connects the refrigerant inlet of the connected accumulator 19.
 S13では、上述のS7~S12で決定された制御状態が得られるように、空調制御装置50より各種空調用構成機器11、61、15a、20、16a、32、62~64に対して制御信号および制御電圧が出力される。続くS14では、制御周期τの間待機し、制御周期τの経過を判定するとS3へ戻る。 In S13, control signals are sent from the air conditioning control device 50 to the various air conditioning components 11, 61, 15a, 20, 16a, 32, 62 to 64 so that the control states determined in S7 to S12 described above are obtained. And a control voltage is output. In continuing S14, it waits for control period (tau), and if progress of control period (tau) is determined, it will return to S3.
 本実施形態の車両用空調装置1は、以上の如く制御処理が実行されるので、運転モードに応じて以下のように作動する。 Since the vehicle air conditioner 1 according to the present embodiment performs the control process as described above, it operates as follows according to the operation mode.
 (a)暖房モード
 暖房モードでは、ヒートポンプサイクル10の冷媒回路が、図1の白抜き矢印で示すように、圧縮機11、室内凝縮器13、暖房用固定絞り14、室外熱交換器16(、三方弁20)、アキュムレータ19、圧縮機11の順に冷媒が循環する冷媒回路に切り替えられる。つまり、室内凝縮器13を放熱器として機能させ、室外熱交換器16を蒸発器として機能させる冷凍サイクルが構成される。
(A) Heating mode In the heating mode, the refrigerant circuit of the heat pump cycle 10 includes the compressor 11, the indoor condenser 13, the heating fixed throttle 14, the outdoor heat exchanger 16 (, as shown by the white arrows in FIG. The three-way valve 20), the accumulator 19, and the compressor 11 are switched to the refrigerant circuit in which the refrigerant circulates in this order. That is, a refrigeration cycle is configured in which the indoor condenser 13 functions as a radiator and the outdoor heat exchanger 16 functions as an evaporator.
 従って、暖房モード時のヒートポンプサイクル10では、圧縮機11にて圧縮された冷媒は、室内凝縮器13にて送風機32から送風された空気に放熱する。これにより、室内凝縮器13を通過する空気が加熱され、車室内の暖房が行われる。また、室内凝縮器13から流出した冷媒は、暖房用固定絞り14にて減圧されて室外熱交換器16へ流入する。 Therefore, in the heat pump cycle 10 in the heating mode, the refrigerant compressed by the compressor 11 dissipates heat to the air blown from the blower 32 by the indoor condenser 13. Thereby, the air which passes the indoor condenser 13 is heated, and a vehicle interior is heated. The refrigerant that has flowed out of the indoor condenser 13 is decompressed by the heating fixed throttle 14 and flows into the outdoor heat exchanger 16.
 室外熱交換器16へ流入した冷媒は、送風ファン16aから送風された車室外空気から吸熱して蒸発する。室外熱交換器16から流出した冷媒は、三方弁20を介してアキュムレータ19へ流入する。アキュムレータ19にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。 The refrigerant that has flowed into the outdoor heat exchanger 16 absorbs heat from the air outside the vehicle blown from the blower fan 16a and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the accumulator 19 through the three-way valve 20. The gas-phase refrigerant separated from the gas and liquid by the accumulator 19 is sucked into the compressor 11 and compressed again.
 (b)冷房モード
 冷房モードでは、ヒートポンプサイクル10の冷媒回路が、図1の黒塗り矢印で示すように、圧縮機11、室内凝縮器13(、バイパス通路15)、室外熱交換器16(、三方弁20)、冷房用固定絞り17、室内蒸発器18、アキュムレータ19、圧縮機11の順に冷媒が循環する冷媒回路に切り替えられる。つまり、室内凝縮器13および室外熱交換器16を冷媒に放熱させる放熱器として機能させ、室内蒸発器18を冷媒を蒸発させる蒸発器として機能させる冷凍サイクルが構成される。
(B) Cooling mode In the cooling mode, the refrigerant circuit of the heat pump cycle 10 includes the compressor 11, the indoor condenser 13 (and the bypass passage 15), the outdoor heat exchanger 16 (, as shown by the black arrows in FIG. The refrigerant circuit in which the refrigerant circulates is switched in the order of the three-way valve 20), the cooling fixed throttle 17, the indoor evaporator 18, the accumulator 19, and the compressor 11. That is, a refrigeration cycle is configured in which the indoor condenser 13 and the outdoor heat exchanger 16 function as a radiator that radiates heat to the refrigerant, and the indoor evaporator 18 functions as an evaporator that evaporates the refrigerant.
 従って、冷房モード時のヒートポンプサイクル10では、圧縮機11にて圧縮された高圧高温冷媒が、室内凝縮器13にて室内蒸発器18通過後の空気の一部と熱交換して空気の一部が加熱される。さらに、室内蒸発器18から流出した冷媒は、バイパス通路15を介して室外熱交換器16へ流入し、室外熱交換器16にて送風ファン16aから送風された外気と熱交換して放熱する。 Therefore, in the heat pump cycle 10 in the cooling mode, the high-pressure and high-temperature refrigerant compressed by the compressor 11 exchanges heat with a part of the air after passing through the indoor evaporator 18 in the indoor condenser 13 and a part of the air. Is heated. Furthermore, the refrigerant that has flowed out of the indoor evaporator 18 flows into the outdoor heat exchanger 16 through the bypass passage 15, and radiates heat by exchanging heat with the outside air blown from the blower fan 16 a in the outdoor heat exchanger 16.
 室外熱交換器16から流出した冷媒は、三方弁20を介して冷房用固定絞り17へ流入し、冷房用固定絞り17にて減圧膨張される。冷房用固定絞り17にて減圧された低圧冷媒は室内蒸発器18へ流入し、送風機32から送風された空気から吸熱して蒸発する。この冷媒の吸熱作用により、室内蒸発器18を通過する空気が冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the cooling fixed throttle 17 through the three-way valve 20 and is decompressed and expanded by the cooling fixed throttle 17. The low-pressure refrigerant decompressed by the cooling fixed throttle 17 flows into the indoor evaporator 18, absorbs heat from the air blown from the blower 32, and evaporates. The air passing through the indoor evaporator 18 is cooled by the endothermic action of the refrigerant.
 そして、前述の如く、室内蒸発器18にて冷却された空気の一部が室内凝縮器13にて加熱されることによって、車室内へ送風される空気が目標吹出温度TAOに近づくように調整され、車室内の冷房が行われる。また、室内蒸発器18から流出した冷媒は、アキュムレータ19へ流入する。アキュムレータ19にて気液分離された気相冷媒は、圧縮機11に吸入されて再び圧縮される。 As described above, a part of the air cooled by the indoor evaporator 18 is heated by the indoor condenser 13 so that the air blown into the vehicle interior is adjusted so as to approach the target blowing temperature TAO. The vehicle interior is cooled. Further, the refrigerant that has flowed out of the indoor evaporator 18 flows into the accumulator 19. The gas-phase refrigerant separated from the gas and liquid by the accumulator 19 is sucked into the compressor 11 and compressed again.
 (c)換気モード
 換気モードでは、ヒートポンプサイクル10が停止した状態で送風機32が作動する。すなわち、圧縮機11が停止して冷媒が循環しないので、送風機32から送風された空気が室内蒸発器18および室内凝縮器13で冷却されない。したがって、内外気切替装置33を通じてケーシング31内に導入された内気または外気がそのままの温度で車室内へ送風される。
(C) Ventilation mode In the ventilation mode, the blower 32 operates with the heat pump cycle 10 stopped. That is, since the compressor 11 is stopped and the refrigerant does not circulate, the air blown from the blower 32 is not cooled by the indoor evaporator 18 and the indoor condenser 13. Therefore, the inside air or the outside air introduced into the casing 31 through the inside / outside air switching device 33 is blown into the vehicle interior at the same temperature.
 本実施形態の車両用空調装置1は、以上の如く作動して、車室内の冷房、暖房および換気を行うことができる。 The vehicle air conditioner 1 of the present embodiment operates as described above, and can perform cooling, heating, and ventilation in the passenger compartment.
 暖房モードおよび換気モードでは、室内蒸発器18で空気が冷却されない。したがって、暖房モードおよび換気モードを非冷却モードと表現できる。冷房モードでは、室内蒸発器18で空気が冷却される。したがって、冷房モードを冷却モードと表現できる。 In the heating mode and the ventilation mode, the air is not cooled by the indoor evaporator 18. Therefore, the heating mode and the ventilation mode can be expressed as a non-cooling mode. In the cooling mode, air is cooled by the indoor evaporator 18. Therefore, the cooling mode can be expressed as a cooling mode.
 図5のフローチャートに示す制御処理は、車両用空調装置1が停止して空調運転が終了する場合に開始される。車両用空調装置1が停止して空調運転が終了する場合とは、例えば、車両のイグニッションスイッチがオンからオフに切り替わった場合のことである。なお、図5の各制御は、空調制御装置50が有する各種の機能実現部を構成している。 The control process shown in the flowchart of FIG. 5 is started when the vehicle air conditioner 1 stops and the air conditioning operation ends. The case where the vehicle air conditioner 1 stops and the air conditioning operation ends is, for example, a case where the ignition switch of the vehicle is switched from on to off. In addition, each control of FIG. 5 comprises the various function implementation | achievement part which the air-conditioning control apparatus 50 has.
 S20では、車両用空調装置1の現在の運転モード(暖房モード、冷房モードまたは換気モード)と、室内蒸発器18の保水量wとを記憶して空調運転を終了させる。具体的には、圧縮機11および送風機32を停止させることによって車両用空調装置1を停止させる。 In S20, the current operation mode (heating mode, cooling mode or ventilation mode) of the vehicle air conditioner 1 and the water retention amount w of the indoor evaporator 18 are stored, and the air conditioning operation is terminated. Specifically, the vehicle air conditioner 1 is stopped by stopping the compressor 11 and the blower 32.
 室内蒸発器18の保水量wは、下記数式F2により算出される。
w=min((w1-w2)×t1,w3)…(F2)
 上記数式F2において、w1は、冷房モード時において室内蒸発器18の表面に単位時間当たりに発生する水分量である。水分量w1は、室内蒸発器18が吸い込む空気の温度(吸込空気温度)および湿度(吸込空気湿度)に基づいて、図6に示すマップを用いて算出される。室内蒸発器18に単位時間当たりに発生する水分量w1は、吸込空気温度および吸込空気湿度が高いほど多くなる。
The water retention amount w of the indoor evaporator 18 is calculated by the following mathematical formula F2.
w = min ((w1-w2) × t1, w3) (F2)
In the above formula F2, w1 is the amount of water generated per unit time on the surface of the indoor evaporator 18 in the cooling mode. The water content w1 is calculated using the map shown in FIG. 6 based on the temperature (suction air temperature) and humidity (suction air humidity) of the air that the indoor evaporator 18 sucks. The amount of water w1 generated per unit time in the indoor evaporator 18 increases as the intake air temperature and the intake air humidity increase.
 上記数式F2において、w2は、冷房モード時において室内蒸発器18から吹き出された空気が含むことのできる水分量である。水分量w2は、目標蒸発器吹出温度TEOに基づいて、図7に示すマップを用いて算出される。室内蒸発器18から吹き出された空気が含むことのできる水分量w2は、目標蒸発器吹出温度TEOが高いほど多くなる。 In the above formula F2, w2 is the amount of water that can be contained in the air blown from the indoor evaporator 18 in the cooling mode. The water content w2 is calculated using the map shown in FIG. 7 based on the target evaporator outlet temperature TEO. The amount of water w2 that can be contained in the air blown from the indoor evaporator 18 increases as the target evaporator blowing temperature TEO increases.
 上記数式F2において、t1は冷房モードの稼動時間である。冷房モードの稼動時間t1は、冷房モードが開始されたときに起動されるタイマーの値が用いられる。現在の運転モードが冷房モードではない場合、t1=0となる。 In the above formula F2, t1 is the operating time of the cooling mode. As the operation time t1 in the cooling mode, a value of a timer that is started when the cooling mode is started is used. When the current operation mode is not the cooling mode, t1 = 0.
 上記数式F2において、w3は、室内蒸発器18の最大保水量である。室内蒸発器18に発生した水分量が最大保水量w3を超えると、水分が室内蒸発器18から流下して、ケーシング31の底部に形成されたドレン水排出口から車外へ排出される。 In the above formula F2, w3 is the maximum water retention amount of the indoor evaporator 18. When the amount of water generated in the indoor evaporator 18 exceeds the maximum water retention amount w3, the water flows down from the indoor evaporator 18 and is discharged from the drain water discharge port formed at the bottom of the casing 31 to the outside of the vehicle.
 上記数式F2において、min((w1-w2)×t1,w3)とは、(w1-w2)×t1および(w1-w2)×w3のうち小さい方の値を意味している。 In the above formula F2, min ((w1-w2) × t1, w3) means the smaller value of (w1-w2) × t1 and (w1-w2) × w3.
 S21では、プレ空調運転を開始するか否かを判定する。例えば、プレ空調スタートスイッチが投入(ON)されている場合、またはタイマー設定スイッチによって設定されたプレ空調運転開始時刻になった場合、プレ空調運転を開始すると判定する。タイマー設定スイッチによって設定されたプレ空調運転開始時刻の所定時間前になった場合、プレ空調運転を開始すると判定してもよい。 In S21, it is determined whether or not to start the pre-air conditioning operation. For example, when the pre-air conditioning start switch is turned on (ON) or when the pre-air conditioning operation start time set by the timer setting switch is reached, it is determined that the pre-air conditioning operation is started. When the predetermined time before the pre-air conditioning operation start time set by the timer setting switch is reached, it may be determined that the pre-air conditioning operation is started.
 プレ空調運転を開始すると判定した場合、S22へ進み、プレ空調運転を開始しないと判定した場合、S21を繰り返す。 If it is determined to start the pre-air conditioning operation, the process proceeds to S22, and if it is determined not to start the pre-air conditioning operation, S21 is repeated.
 S22では、前回の空調運転が終了した時の運転モードが冷房モードであったか否かを判定する。前回の空調運転が終了した時の運転モードが冷房モードであったと判定した場合、室内蒸発器18に凝縮水が付着していると判断してS23へ進む。前回の空調運転が終了した時の運転モードが冷房モードではなかったと判定した場合、室内蒸発器18に凝縮水が付着していないと判断してS27へ進んでプレ空調運転を開始する。 In S22, it is determined whether or not the operation mode when the previous air conditioning operation is ended is the cooling mode. If it is determined that the operation mode when the previous air conditioning operation is ended is the cooling mode, it is determined that condensed water is attached to the indoor evaporator 18, and the process proceeds to S23. If it is determined that the operation mode when the previous air conditioning operation is not the cooling mode, it is determined that condensed water is not attached to the indoor evaporator 18, and the process proceeds to S27 to start the pre-air conditioning operation.
 S23では、プレ空調の運転モードが暖房モードまたは換気モードであるか否かを判定し、プレ空調の運転モードが暖房モードまたは換気モードであると判定した場合、S24へ進み、プレ空調の運転モードが暖房モードまたは換気モードでないと判定した場合、S27へ進んでプレ空調運転を開始する。 In S23, it is determined whether or not the pre-air-conditioning operation mode is the heating mode or the ventilation mode. If it is determined that the pre-air-conditioning operation mode is the heating mode or the ventilation mode, the process proceeds to S24 and the pre-air-conditioning operation mode is performed. When it is determined that is not in the heating mode or the ventilation mode, the process proceeds to S27 and the pre-air conditioning operation is started.
 プレ空調の運転モードは、例えば操作パネル60および無線端末70に設けられた設定スイッチによって設定される。プレ空調の運転モードは、例えば上述したS6と同様の決定処理によって決定されるようになっていてもよい。 The operation mode of pre-air conditioning is set by a setting switch provided on the operation panel 60 and the wireless terminal 70, for example. The pre-air-conditioning operation mode may be determined, for example, by the same determination process as in S6 described above.
 S24では、空調後送風制御を実施する。具体的には、吸込口モードを外気モードにして送風機32を作動させる。これにより、室内蒸発器18に空気が送風されるので、室内蒸発器18に付着した水分が蒸発して保水量wが減少する。 In S24, air conditioning control is performed after air conditioning. Specifically, the air blower 32 is operated by setting the suction port mode to the outside air mode. Thereby, since air is blown into the indoor evaporator 18, the water adhering to the indoor evaporator 18 evaporates and the water retention amount w decreases.
 S25では、現在の保水量wを算出する。具体的には、前回算出した保水量から、室内蒸発器18からの蒸発量Δw(水分の減少量)を減算する。室内蒸発器18からの蒸発量Δwは、下記数式F3により算出される。
Δw=w4×w5×t2…(F3)
 上記数式F3において、w4は、送風機32からの送風量と室内蒸発器18からの蒸発量との関係を表す無次元量である。無次元量w4は、送風機32からの送風量に基づいて、図8に示すマップを用いて算出される。蒸発量に関する無次元量w4は、送風機32からの送風量が多いほど大きくなる。
In S25, the current water retention amount w is calculated. Specifically, the evaporation amount Δw (water reduction amount) from the indoor evaporator 18 is subtracted from the previously calculated water retention amount. The evaporation amount Δw from the indoor evaporator 18 is calculated by the following mathematical formula F3.
Δw = w4 × w5 × t2 (F3)
In Formula F3, w4 is a dimensionless amount that represents the relationship between the amount of air blown from the blower 32 and the amount of evaporation from the indoor evaporator 18. The dimensionless amount w4 is calculated using the map shown in FIG. 8 based on the amount of air blown from the blower 32. The dimensionless amount w4 related to the evaporation amount increases as the amount of air blown from the blower 32 increases.
 上記数式F3において、w5は、単位時間当たりの室内蒸発器18からの蒸発量である。蒸発量w5は、室内蒸発器18の吸込空気温度および吸込空気湿度に基づいて、図9に示すマップを用いて算出される。単位時間当たりの室内蒸発器18からの蒸発量w5は、吸込空気温度および吸込空気湿度が高いほど多くなる。 In the above formula F3, w5 is the amount of evaporation from the indoor evaporator 18 per unit time. The evaporation amount w5 is calculated using the map shown in FIG. 9 based on the intake air temperature and the intake air humidity of the indoor evaporator 18. The amount of evaporation w5 from the indoor evaporator 18 per unit time increases as the intake air temperature and the intake air humidity increase.
 上記数式F3において、t2は、前回蒸発量Δwを算出してから経過した時間である。前回蒸発量Δwを算出してから経過した時間t2は、前回蒸発量Δwが算出されたときに起動されるタイマーの値が用いられる。 In the above formula F3, t2 is the time elapsed since the previous evaporation amount Δw was calculated. As the time t2 that has elapsed since the previous evaporation amount Δw was calculated, the value of a timer that is started when the previous evaporation amount Δw was calculated is used.
 S26では、S25で算出した現在の保水量wが0であるか否かを判定する。現在の保水量wが0でないと判定した場合、S23へ戻り、現在の保水量wが0であると判定した場合、S27へ進む。 In S26, it is determined whether or not the current water retention amount w calculated in S25 is zero. If it is determined that the current water retention amount w is not 0, the process returns to S23, and if it is determined that the current water retention amount w is 0, the process proceeds to S27.
 S27では、空調後送風制御(S24)を終了して、プレ空調運転を開始する。具体的には、図3のフローチャートに示す制御処理を実行してプレ空調運転を実施する。プレ空調の運転モードが暖房モードまたは冷房モードである場合、空調効率を高めるために、吸込口モードは内気モードが選択される。 In S27, the air conditioning control after air conditioning (S24) is terminated and the pre-air conditioning operation is started. Specifically, the pre-air conditioning operation is performed by executing the control process shown in the flowchart of FIG. When the pre-air conditioning operation mode is the heating mode or the cooling mode, the inside air mode is selected as the suction port mode in order to increase the air conditioning efficiency.
 本実施形態の車両用空調装置1は、以上の如く作動して、室内蒸発器18の表面の凝縮水を蒸発させて室内蒸発器18の表面を乾燥させることができる。 The vehicle air conditioner 1 of this embodiment operates as described above, and can evaporate the condensed water on the surface of the indoor evaporator 18 to dry the surface of the indoor evaporator 18.
 本実施形態では、S24で説明したように、前回の空調運転が冷房モード(冷却モード)で終了しており、かつプレ空調を暖房モードまたは換気モード(非冷却モード)で実行する場合、送風機32を作動させて室内蒸発器18に送風する空調後送風制御(S24)をプレ空調の前に実施する。本実施形態では、プレ空調の前に、室内蒸発器18の表面の凝縮水が所定量だけ蒸発するまで空調後送風制御(S24)を実施する。 In the present embodiment, as described in S24, when the previous air conditioning operation is finished in the cooling mode (cooling mode) and the pre-air conditioning is executed in the heating mode or the ventilation mode (non-cooling mode), the blower 32 is used. The air-conditioning air supply control (S24) for operating the air to blow to the indoor evaporator 18 is performed before the pre-air-conditioning. In the present embodiment, before the pre-air conditioning, the post-air conditioning air blow control (S24) is performed until the condensed water on the surface of the indoor evaporator 18 evaporates by a predetermined amount.
 これによると、プレ空調を実行する場合、すなわち車室内に乗員が不在である確率が高い場合に室内蒸発器18の表面の凝縮水を蒸発させるので、室内蒸発器18の表面の凝縮水が蒸発して臭いが発生しても乗員が不快に感じることを抑制できる。 According to this, when pre-air conditioning is executed, that is, when there is a high probability that no occupant is present in the vehicle interior, the condensed water on the surface of the indoor evaporator 18 is evaporated, so the condensed water on the surface of the indoor evaporator 18 evaporates. Thus, it is possible to suppress the passenger from feeling uncomfortable even if the odor is generated.
 また、前回の空調運転が冷房モードで終了し、かつプレ空調を暖房モードまたは換気モードで実行する場合、空調後送風制御(S24)を実施する。従って、前回の空調運転およびプレ空調の運転モードに関わらず空調後送風制御(S24)を実施する構成と比較して空調後送風制御(S24)の実施頻度を低減できる。そのため、消費動力を低減できるとともに、送風機32の寿命を延ばすことができる。 Further, when the previous air conditioning operation is finished in the cooling mode and the pre-air conditioning is executed in the heating mode or the ventilation mode, the air conditioning post-air conditioning control (S24) is performed. Therefore, the frequency of performing post-air conditioning blow control (S24) can be reduced compared to the configuration in which post-air conditioning blow control (S24) is performed regardless of the previous air conditioning operation and pre-air conditioning operation modes. Therefore, power consumption can be reduced and the life of the blower 32 can be extended.
 本実施形態では、S27で説明したように、プレ空調は、空調後送風制御(S24)を終了した後、直ちに実行される。これによると、プレ空調を実行する時間を極力長く確保できるので、車室内に乗り込んだ乗員の空調快適性を極力確保できる。 In the present embodiment, as described in S27, the pre-air conditioning is executed immediately after the post-air conditioning air blow control (S24) is finished. According to this, since the time for executing the pre-air-conditioning can be ensured as long as possible, the air-conditioning comfort of the passenger who gets into the vehicle interior can be as much as possible.
 本実施形態では、空調後送風制御(S24)が実施されている場合、吸込口モードを外気モードにする。すなわち、送風機32に導入される空気を外気に切り替える。 In the present embodiment, when the air-conditioning blow control (S24) is performed, the suction port mode is set to the outside air mode. That is, the air introduced into the blower 32 is switched to the outside air.
 これによると、内気と比較して湿度の低い外気が室内蒸発器18に送風されるので、室内蒸発器18の表面の凝縮水を効果的に蒸発させることができる。また、外気を導入して車室内を換気できるので、室内蒸発器18の表面の凝縮水が蒸発して発生した臭いが車室内にこもることを抑制でき、ひいては乗員が不快に感じることを一層抑制できる。 According to this, since the outside air having a lower humidity than the inside air is blown to the indoor evaporator 18, the condensed water on the surface of the indoor evaporator 18 can be effectively evaporated. Further, since the outside air can be introduced to ventilate the interior of the vehicle, the condensate on the surface of the interior evaporator 18 can be prevented from evaporating and the odor generated can be prevented from being trapped in the interior of the vehicle, thereby further suppressing the passenger from feeling uncomfortable. it can.
 本実施形態では、S25、S26で説明したように、空気の風量および外気の温度に基づいて、空調後送風制御(S24)を実施する時間を決定する。これによると、空調後送風制御を実施する時間を、室内蒸発器18からの蒸発量Δwに応じて適切に決定できる。 In the present embodiment, as described in S25 and S26, the time for performing post-air conditioning air blow control (S24) is determined based on the air volume and the outside air temperature. According to this, the time for performing the air conditioning control after the air conditioning can be appropriately determined according to the evaporation amount Δw from the indoor evaporator 18.
 本実施形態では、S20、S25、S26で説明したように、冷却モードを実施していたときの室内蒸発器18の保水量wに基づいて、空調後送風制御(S23)を実施する時間を決定する。これにより、空調後送風制御を実施する時間の過不足を抑制できる。
(他の実施形態)
 上述の実施形態を例えば以下のように種々変形可能である。
In the present embodiment, as described in S20, S25, and S26, the time for performing the post-air conditioning air blow control (S23) is determined based on the water retention amount w of the indoor evaporator 18 when the cooling mode is being performed. To do. Thereby, the excess and deficiency of the time which performs ventilation control after an air conditioning can be suppressed.
(Other embodiments)
The above-described embodiment can be variously modified as follows, for example.
 (1)上述の実施形態では、圧縮機11として電動圧縮機を採用した例を説明したが、圧縮機11の形式はこれに限定されない。例えば、エンジンを備える車両では、ベルトおよび電磁クラッチ等を介してエンジンから駆動力を得る圧縮機11を採用してもよい。 (1) In the above-described embodiment, the example in which the electric compressor is adopted as the compressor 11 has been described, but the format of the compressor 11 is not limited to this. For example, in a vehicle including an engine, the compressor 11 that obtains driving force from the engine via a belt and an electromagnetic clutch may be employed.
 (2)エンジンを備える車両では、空気の加熱器として、室内凝縮器13に加えて、エンジン冷却水を熱源として空気を加熱する加熱用熱交換器(ヒーターコア)を設けてもよい。 (2) In a vehicle equipped with an engine, in addition to the indoor condenser 13, a heating heat exchanger (heater core) for heating air using engine cooling water as a heat source may be provided as an air heater.
 空気の加熱器として、空気を加熱する空気加熱PTCヒータを設けてもよい。空気の加熱器として、冷却水などの熱媒体を加熱する水加熱PTCヒータを設けてもよい。 As an air heater, an air heating PTC heater for heating air may be provided. As the air heater, a water heating PTC heater for heating a heat medium such as cooling water may be provided.
 空気加熱PTCヒータおよび水加熱PTCヒータは、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力が供給されることによって発熱する電気ヒータである。 The air-heated PTC heater and the water-heated PTC heater are electric heaters that have a PTC element (positive characteristic thermistor) and generate heat when electric power is supplied to the PTC element.
 水加熱PTCヒータを設ける場合、水加熱PTCヒータで加熱された冷却水(熱媒体)と空気とを熱交換させて空気を加熱する加熱用熱交換器(ヒーターコア)が必要である。 When a water heating PTC heater is provided, a heating heat exchanger (heater core) is required to heat the air by heat exchange between the cooling water (heat medium) heated by the water heating PTC heater and the air.
 (3)上述の実施形態では、暖房モードおよび冷房モードの冷媒回路を切替可能に構成されたヒートポンプサイクル10を説明した。しかしながら、少なくとも冷却モードの冷媒回路と非冷却モードの冷媒回路とを切替可能に構成されたヒートポンプサイクルを備える車両用空調装置に適用可能である。 (3) In the above-described embodiment, the heat pump cycle 10 configured to be able to switch the refrigerant circuit in the heating mode and the cooling mode has been described. However, the present invention is applicable to a vehicle air conditioner including a heat pump cycle configured to be able to switch at least between a cooling mode refrigerant circuit and a non-cooling mode refrigerant circuit.
 冷却モードの冷媒回路は、室内蒸発器18で空気を冷却する冷媒回路である。冷却モードには、室内蒸発器18にて冷却された空気を加熱して車室内へ吹き出す運転モード等も含まれる。 The refrigerant circuit in the cooling mode is a refrigerant circuit that cools air by the indoor evaporator 18. The cooling mode includes an operation mode in which the air cooled by the indoor evaporator 18 is heated and blown into the passenger compartment.
 非冷却モードの冷媒回路は、室内蒸発器18で空気を冷却しない冷媒回路である。非冷却モードには、空気を加熱して車室内へ吹き出す運転モードや、空気を冷却も加熱もせずに車室内へ吹き出す運転モード等も含まれる。 The refrigerant circuit in the non-cooling mode is a refrigerant circuit that does not cool the air with the indoor evaporator 18. The non-cooling mode includes an operation mode in which air is heated and blown out into the vehicle interior, and an operation mode in which air is blown out into the vehicle interior without being cooled or heated.
 (4)上述の実施形態において、前回の空調運転が冷房モードで終了しており、暖房モードまたは換気モードでプレ空調を実行する場合において、車室内に乗員が不在であると判定した場合、空調後送風制御(S24)を実施するようにしてもよい。 (4) In the above-described embodiment, when the previous air conditioning operation is finished in the cooling mode and the pre-air conditioning is executed in the heating mode or the ventilation mode, if it is determined that no occupant is present in the passenger compartment, the air conditioning You may make it implement back ventilation control (S24).
 例えば、外部電源から供給された電力をバッテリBに充電している場合、または外部電源でバッテリBの充電が完了した場合、車室内に乗員が不在であると判定するようにすればよい。 For example, when the battery B is charged with the power supplied from the external power source, or when the charging of the battery B is completed with the external power source, it may be determined that no passenger is present in the vehicle interior.
 乗員が着座しているか否かを検出する座席スイッチを座席に設け、座席スイッチの検出結果に応じて車室内に乗員が不在であるか否かを判定するようにしてもよい。 A seat switch for detecting whether or not an occupant is seated may be provided in the seat, and it may be determined whether or not an occupant is present in the vehicle interior according to the detection result of the seat switch.
 (5)上述の実施形態では、室内蒸発器18の保水量wは、室内蒸発器18の吸込空気温度、室内蒸発器18の吸込空気湿度、目標蒸発器吹出温度TEO、冷房モードの稼動時間、および室内蒸発器18の最大保水量w3に基づいて算出される。しかしながら、保水量wの算出方法はこれに限定されるものではない。室内蒸発器18の保水量wは種々の方法で算出可能である。 (5) In the above-described embodiment, the water retention amount w of the indoor evaporator 18 is the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, the target evaporator outlet temperature TEO, the operating time of the cooling mode, And it is calculated based on the maximum water retention amount w3 of the indoor evaporator 18. However, the calculation method of the water retention amount w is not limited to this. The water retention amount w of the indoor evaporator 18 can be calculated by various methods.
 例えば、室内蒸発器18の保水量wは、室内蒸発器18の吸込空気温度、室内蒸発器18の吸込空気湿度、送風機32からの送風量、目標蒸発器吹出温度TEO、冷房モードの稼動時間、および室内蒸発器18の最大保水量w3のうち少なくとも1つに基づいて算出されるようになっていてもよい。 For example, the water retention amount w of the indoor evaporator 18 is the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, the amount of air blown from the blower 32, the target evaporator outlet temperature TEO, the operating time of the cooling mode, Further, it may be calculated based on at least one of the maximum water retention amount w3 of the indoor evaporator 18.
 (6)上述の実施形態では、室内蒸発器18からの蒸発量Δwは、送風機32からの送風量、室内蒸発器18の吸込空気温度、室内蒸発器18の吸込空気湿度、および前回蒸発量Δwを算出してから経過した時間に基づいて算出される。しかしながら、蒸発量Δwの算出方法はこれに限定されるものではない。室内蒸発器18からの蒸発量Δwは種々の方法で算出可能である。 (6) In the above-described embodiment, the evaporation amount Δw from the indoor evaporator 18 is the amount of air blown from the blower 32, the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, and the previous evaporation amount Δw. Is calculated based on the time elapsed since the calculation of. However, the calculation method of the evaporation amount Δw is not limited to this. The evaporation amount Δw from the indoor evaporator 18 can be calculated by various methods.
 例えば、室内蒸発器18からの蒸発量Δwは、送風機32からの送風量、室内蒸発器18の吸込空気温度、室内蒸発器18の吸込空気湿度、および前回蒸発量Δwを算出してから経過した時間のうち少なくとも1つに基づいて算出されるようになっていてもよい。 For example, the evaporation amount Δw from the indoor evaporator 18 has elapsed since the calculation of the amount of air blown from the blower 32, the intake air temperature of the indoor evaporator 18, the intake air humidity of the indoor evaporator 18, and the previous evaporation amount Δw. It may be calculated based on at least one of the times.
 (7)上述の実施形態では、車両のイグニッションスイッチがオンからオフに切り替わった場合、図5のフローチャートに示す制御処理を実行する。しかしながら、車両のイグニッションスイッチがオンのままであっても車両用空調装置1が停止して空調運転が終了した場合に図5のフローチャートに示す制御処理を実行するようになっていてもよい。 (7) In the above-described embodiment, when the ignition switch of the vehicle is switched from on to off, the control process shown in the flowchart of FIG. 5 is executed. However, even if the ignition switch of the vehicle is kept on, the control process shown in the flowchart of FIG. 5 may be executed when the vehicle air conditioner 1 is stopped and the air conditioning operation is finished.
 (8)上述の実施形態では、車室内に乗員が不在である場合、室内蒸発器18に送風して室内蒸発器18に付着した水分を蒸発させる。しかしながら、車室内に乗員が乗車している場合、室内蒸発器18に送風して室内蒸発器18に付着した水分を蒸発させるようにしてもよい。その場合、吹出口モードをフットモードにして送風機32からの送風量を控えめにして室内蒸発器18に付着した水分をゆっくり蒸発させるようにすれば、異臭、悪臭によって乗員が不快に感じてしまうことを抑制できる。 (8) In the above-described embodiment, when no occupant is present in the vehicle interior, the air is blown to the indoor evaporator 18 to evaporate water adhering to the indoor evaporator 18. However, when an occupant is in the passenger compartment, the air attached to the indoor evaporator 18 may be evaporated by blowing air to the indoor evaporator 18. In that case, if the air outlet mode is set to the foot mode and the amount of air blown from the blower 32 is conserved so that the water adhering to the indoor evaporator 18 is slowly evaporated, the occupant may feel uncomfortable due to a strange odor or bad odor. Can be suppressed.
 (9) ヒートポンプサイクル10は、冷却して除湿した空気を再加熱して車室内を除湿暖房する除湿暖房運転時の冷媒回路に切替可能に構成されていてもよい。 (9) The heat pump cycle 10 may be configured to be switchable to a refrigerant circuit during a dehumidifying heating operation in which the air that has been cooled and dehumidified is reheated to dehumidify and heat the vehicle interior.
 図10では、除湿暖房運転時の冷媒回路に切り替えた際の冷媒の流れを斜線ハッチング付き矢印で示している。開閉弁15aは除湿暖房運転時に閉じる。三方弁20は室外熱交換器16の冷媒出口と冷房用固定絞り17とを接続する冷媒回路に切り替える。 In FIG. 10, the flow of the refrigerant at the time of switching to the refrigerant circuit during the dehumidifying heating operation is indicated by the hatched arrows. The on-off valve 15a is closed during the dehumidifying heating operation. The three-way valve 20 switches to a refrigerant circuit that connects the refrigerant outlet of the outdoor heat exchanger 16 and the cooling fixed throttle 17.
 除湿暖房モードでは、ヒートポンプサイクル10の冷媒回路が、図10の斜線ハッチング付き矢印で示すように、圧縮機11、室内凝縮器13、暖房用固定絞り14、室外熱交換器16(、三方弁20)、冷房用固定絞り17、室内蒸発器18、アキュムレータ19、圧縮機11の順に冷媒が循環する冷媒回路に切り替えられる。つまり、室内凝縮器13および室外熱交換器16を冷媒に放熱させる放熱器として機能させ、室内蒸発器18を冷媒を蒸発させる蒸発器として機能させる冷凍サイクルが構成される。 In the dehumidifying heating mode, the refrigerant circuit of the heat pump cycle 10 is connected to the compressor 11, the indoor condenser 13, the heating fixed throttle 14, the outdoor heat exchanger 16 (and the three-way valve 20) as shown by the hatched arrows in FIG. ), The cooling fixed throttle 17, the indoor evaporator 18, the accumulator 19, and the compressor 11 are switched to the refrigerant circuit in which the refrigerant circulates in this order. That is, a refrigeration cycle is configured in which the indoor condenser 13 and the outdoor heat exchanger 16 function as a radiator that radiates heat to the refrigerant, and the indoor evaporator 18 functions as an evaporator that evaporates the refrigerant.
 従って、除湿暖房モード時のヒートポンプサイクル10では、圧縮機11にて圧縮された高圧高温冷媒が、室内凝縮器13にて室内蒸発器18通過後の空気の一部と熱交換して空気の一部が加熱される。さらに、室内蒸発器18から流出した冷媒は、暖房用固定絞り14にて減圧されて室外熱交換器16へ流入する。室外熱交換器16へ流入した冷媒は送風ファン16aから送風された外気と熱交換して放熱する。 Therefore, in the heat pump cycle 10 in the dehumidifying and heating mode, the high-pressure and high-temperature refrigerant compressed by the compressor 11 exchanges heat with a part of the air that has passed through the indoor evaporator 18 in the indoor condenser 13, so The part is heated. Further, the refrigerant flowing out of the indoor evaporator 18 is decompressed by the heating fixed throttle 14 and flows into the outdoor heat exchanger 16. The refrigerant flowing into the outdoor heat exchanger 16 exchanges heat with the outside air blown from the blower fan 16a to radiate heat.
 室外熱交換器16から流出した冷媒は、三方弁20を介して冷房用固定絞り17へ流入し、冷房用固定絞り17にて減圧膨張される。冷房用固定絞り17にて減圧された低圧冷媒は室内蒸発器18へ流入し、送風機32から送風された空気から吸熱して蒸発する。この冷媒の吸熱作用により、室内蒸発器18を通過する空気が冷却されて除湿される。以降の作動は冷房モードと同様である。 The refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the cooling fixed throttle 17 through the three-way valve 20 and is decompressed and expanded by the cooling fixed throttle 17. The low-pressure refrigerant decompressed by the cooling fixed throttle 17 flows into the indoor evaporator 18, absorbs heat from the air blown from the blower 32, and evaporates. Due to the endothermic action of the refrigerant, the air passing through the indoor evaporator 18 is cooled and dehumidified. The subsequent operation is the same as in the cooling mode.
 上記の如く、除湿暖房モードでは、冷房モードと同様に、室内蒸発器18にて冷却された空気を室内凝縮器13にて加熱して車室内へ吹き出すことで、車室内の除湿暖房を行うことができる。この際、除湿暖房モードでは、開閉弁15aを閉じるので、冷房モードよりも室外熱交換器16へ流入する冷媒の圧力および温度を低下させることができる。 As described above, in the dehumidifying heating mode, the air cooled in the indoor evaporator 18 is heated by the indoor condenser 13 and blown out into the vehicle interior in the same manner as in the cooling mode, thereby performing dehumidifying heating in the vehicle interior. Can do. At this time, since the on-off valve 15a is closed in the dehumidifying and heating mode, the pressure and temperature of the refrigerant flowing into the outdoor heat exchanger 16 can be lowered than in the cooling mode.
 従って、室外熱交換器16における冷媒の温度と外気温との温度差を縮小して、室外熱交換器16における冷媒の放熱量を低減できる。これにより、除湿暖房モードでは、室内凝縮器12における冷媒の放熱量を増加させて、冷房モードよりも室内凝縮器12における空気の加熱能力を向上させることができる。 Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 16 can be reduced, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 16 can be reduced. Thereby, in dehumidification heating mode, the thermal radiation amount of the refrigerant | coolant in the indoor condenser 12 can be increased, and the heating capability of the air in the indoor condenser 12 can be improved rather than the cooling mode.
 除湿暖房モードでは、室内蒸発器18で除湿された乾いた空気が車室内に吹き出されるので、車両窓ガラスの曇りを防止することができる。なお、プレ空調は、乗員が車室内に乗り込む前に行われることから、プレ空調では車両窓ガラスの曇りを防止する必要はない。したがって、プレ空調では、車両窓ガラスの曇りを防止することを目的として除湿暖房モードを実行する必要はない。 In the dehumidifying and heating mode, dry air dehumidified by the indoor evaporator 18 is blown out into the passenger compartment, so that the vehicle window glass can be prevented from being fogged. In addition, since pre-air conditioning is performed before a passenger gets into the passenger compartment, it is not necessary to prevent fogging of the vehicle window glass in the pre-air conditioning. Therefore, in the pre-air conditioning, it is not necessary to execute the dehumidifying heating mode for the purpose of preventing the vehicle window glass from being fogged.
 (10)上述の実施形態では、前回の空調運転が冷房モード(冷却モード)で終了しており、かつ車室内に乗員が不在であると判定した場合に、空調後送風制御(S23)を実施する。しかしながら、空調後送風制御(S23)を実施するのは、冷房モードが終了している場合に限らず、一定量の凝縮水が室内蒸発器18の表面に発生している状況であればよい。例えば、冷却モード終了直前に非冷却モードに変更されて終了された場合であっても、一定量の凝縮水が室内蒸発器18の表面に発生していると推定できるため、冷却モードが終了していると判断してもよい。 (10) In the above-described embodiment, when it is determined that the previous air conditioning operation has ended in the cooling mode (cooling mode) and no passenger is present in the passenger compartment, the post-air conditioning air blow control (S23) is performed. To do. However, the air conditioning control after air conditioning (S23) is not limited to the case where the cooling mode is finished, but may be a situation where a certain amount of condensed water is generated on the surface of the indoor evaporator 18. For example, even when the mode is changed to the non-cooling mode immediately before the end of the cooling mode, it can be estimated that a certain amount of condensed water is generated on the surface of the indoor evaporator 18, and thus the cooling mode ends. It may be determined that
 (11)上述の実施形態では、冷却モードを実施していたときの室内蒸発器18の保水量wに基づいて、空調後送風制御(S23)を実施する時間を決定する。しかしながら、室内蒸発器18の表面に発生している凝縮水の量に基づき、空調後送風制御(S23)を実施する時間と送風機の風量を設定してもよい。例えば、凝縮水が多いにもかかわらずプレ空調実施までの時間が短い場合には、送風機の風量を最大にする制御が実施される。 (11) In the above-described embodiment, the time for performing the post-air conditioning air blow control (S23) is determined based on the water retention amount w of the indoor evaporator 18 when the cooling mode is being performed. However, based on the amount of condensed water generated on the surface of the indoor evaporator 18, the time for performing the air-conditioning blow control (S23) and the air flow of the blower may be set. For example, when there is a lot of condensed water and the time until the pre-air conditioning is short, control for maximizing the air volume of the blower is performed.

Claims (5)

  1.  乗員が車両に乗り込む前に車室内の空調を開始するプレ空調を実行可能に構成された車両用空調装置であって、
     前記車室内へ送風される空気を発生させる送風機(32)、
     冷媒と前記空気とを熱交換させる室内熱交換器(18)と、前記室内熱交換器(18)にて前記空気を冷却する冷却モードの冷媒回路および前記室内熱交換器(18)にて前記空気を冷却しない非冷却モードの冷媒回路を切り替える冷媒回路切替部(15a、20)とを有するヒートポンプサイクル(10)、および
     前記送風機(32)の作動を制御する送風機制御部(50b)を備え、
     前記送風機制御部(50b)は、前回の空調運転が前記冷却モードで終了しており、かつ前記プレ空調を前記非冷却モードで実行する場合、前記送風機(32)を作動させて前記室内熱交換器(18)に送風する空調後送風制御(S24)を前記プレ空調の前に前記室内熱交換器(18)の表面の凝縮水が所定量だけ蒸発するまで実施する車両用空調装置。
    A vehicle air conditioner configured to be able to perform pre-air conditioning that starts air conditioning in a passenger compartment before an occupant enters the vehicle,
    A blower (32) for generating air to be blown into the vehicle interior;
    An indoor heat exchanger (18) for exchanging heat between the refrigerant and the air, a cooling mode refrigerant circuit for cooling the air by the indoor heat exchanger (18), and the indoor heat exchanger (18) A heat pump cycle (10) having a refrigerant circuit switching unit (15a, 20) that switches a refrigerant circuit in a non-cooling mode that does not cool the air, and a blower control unit (50b) that controls the operation of the blower (32),
    When the previous air conditioning operation is completed in the cooling mode and the pre-air conditioning is performed in the non-cooling mode, the blower control unit (50b) operates the blower (32) to perform the indoor heat exchange. A vehicle air conditioner that performs post-air-conditioning air blow control (S24) for blowing air to the chamber (18) until a predetermined amount of condensed water on the surface of the indoor heat exchanger (18) evaporates before the pre-air conditioning.
  2.  前記プレ空調は、前記送風機制御部(50b)が前記空調後送風制御(S24)を終了した後、直ちに実行される請求項1に記載の車両用空調装置。 The vehicle air conditioner according to claim 1, wherein the pre-air-conditioning is executed immediately after the blower control unit (50b) finishes the post-air-conditioning blow control (S24).
  3.  前記送風機(32)に導入される空気を内気と外気とに切り替える内外気切替部(33、50c、62)を備え、
     前記内外気切替部(33、50c、62)は、前記空調後送風制御(S24)が実施されている場合、前記送風機(32)に導入される空気を前記外気に切り替える請求項1または2に記載の車両用空調装置。
    An inside / outside air switching unit (33, 50c, 62) for switching the air introduced into the blower (32) between inside air and outside air;
    The said inside / outside air switching unit (33, 50c, 62) switches air introduced into the blower (32) to the outside air when the post-air-conditioning ventilation control (S24) is performed. The vehicle air conditioner described.
  4.  前記送風機制御部(50b)は、前記空気の風量および外気の温度に基づいて、前記空調後送風制御(S24)を実施する時間を決定する請求項1ないし3のいずれか1つに記載の車両用空調装置。 The vehicle according to any one of claims 1 to 3, wherein the blower control unit (50b) determines a time for performing the post-air-conditioning blow control (S24) based on the air volume and the temperature of the outside air. Air conditioner.
  5.  前記送風機制御部(50b)は、前記冷却モードを実施していたときの前記室内熱交換器(18)の表面の凝縮水の量に基づいて、前記空調後送風制御(S24)を実施する時間を決定する請求項1ないし4のいずれか1つに記載の車両用空調装置。 The blower control unit (50b) performs the post-air conditioning blow control (S24) based on the amount of condensed water on the surface of the indoor heat exchanger (18) when the cooling mode is being carried out. The vehicle air conditioner according to any one of claims 1 to 4, wherein the air conditioner is determined.
PCT/JP2014/005491 2013-11-06 2014-10-30 Vehicular air-conditioning device WO2015068362A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-229955 2013-11-06
JP2013229955A JP2015089711A (en) 2013-11-06 2013-11-06 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2015068362A1 true WO2015068362A1 (en) 2015-05-14

Family

ID=53041159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005491 WO2015068362A1 (en) 2013-11-06 2014-10-30 Vehicular air-conditioning device

Country Status (2)

Country Link
JP (1) JP2015089711A (en)
WO (1) WO2015068362A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251216B2 (en) * 2019-03-01 2023-04-04 トヨタ自動車株式会社 Air-conditioning control system, air-conditioning management system, and in-vehicle air-conditioning system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132731A (en) * 1993-11-10 1995-05-23 Nippondenso Co Ltd Air conditioner for vehicle
US5899082A (en) * 1997-09-18 1999-05-04 Stein; Myron Method and apparatus for odor elimination in vehicle air conditioning systems
WO2007117046A1 (en) * 2006-04-08 2007-10-18 Myong Chul Choi A dry device of automobile air-conditioner
JP2011063250A (en) * 2009-09-21 2011-03-31 Denso Corp Vehicular air-conditioner
JP2011068155A (en) * 2009-09-22 2011-04-07 Denso Corp Air conditioner for vehicle
JP2011068156A (en) * 2009-09-22 2011-04-07 Denso Corp Air conditioner for vehicle
JP2011088600A (en) * 2009-10-26 2011-05-06 Denso Corp Air conditioner for vehicle
JP2012076610A (en) * 2010-10-01 2012-04-19 Denso Corp Vehicle air conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132731A (en) * 1993-11-10 1995-05-23 Nippondenso Co Ltd Air conditioner for vehicle
US5899082A (en) * 1997-09-18 1999-05-04 Stein; Myron Method and apparatus for odor elimination in vehicle air conditioning systems
WO2007117046A1 (en) * 2006-04-08 2007-10-18 Myong Chul Choi A dry device of automobile air-conditioner
JP2011063250A (en) * 2009-09-21 2011-03-31 Denso Corp Vehicular air-conditioner
JP2011068155A (en) * 2009-09-22 2011-04-07 Denso Corp Air conditioner for vehicle
JP2011068156A (en) * 2009-09-22 2011-04-07 Denso Corp Air conditioner for vehicle
JP2011088600A (en) * 2009-10-26 2011-05-06 Denso Corp Air conditioner for vehicle
JP2012076610A (en) * 2010-10-01 2012-04-19 Denso Corp Vehicle air conditioning device

Also Published As

Publication number Publication date
JP2015089711A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5920133B2 (en) Air conditioner for vehicles
JP5532029B2 (en) Air conditioner for vehicles
US11525611B2 (en) Refrigeration cycle device for vehicle
JP5516537B2 (en) Air conditioner for vehicles
JP2011073668A (en) Air conditioner for vehicle
JP7275621B2 (en) refrigeration cycle equipment
WO2019194027A1 (en) Battery cooling device
JP2012081870A (en) Vehicle air conditioning device
WO2018221137A1 (en) Vehicular air conditioning device
JP5867166B2 (en) Air conditioner for vehicles
JP5533516B2 (en) Air conditioner for vehicles
JP5360006B2 (en) Air conditioner for vehicles
WO2015068363A1 (en) Vehicular air-conditioning device
JP5895787B2 (en) Air conditioner for vehicles
JP5494595B2 (en) Air conditioner for vehicles
JP5472015B2 (en) Vehicle operation mode input device
JP6024305B2 (en) Air conditioner for vehicles
JP5954059B2 (en) Air conditioner for vehicles
WO2015068362A1 (en) Vehicular air-conditioning device
JP2014054932A (en) Vehicle air conditioner
WO2013183229A1 (en) Automotive air conditioner
JP6729313B2 (en) Vehicle air conditioner
JP2014054933A (en) Vehicle air conditioner
JP2014054931A (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860651

Country of ref document: EP

Kind code of ref document: A1