WO2015067233A1 - Verfahren zur nutzung von biomasse auch für hochtemperaturprozesse und deren anwendung - Google Patents

Verfahren zur nutzung von biomasse auch für hochtemperaturprozesse und deren anwendung Download PDF

Info

Publication number
WO2015067233A1
WO2015067233A1 PCT/DE2014/000563 DE2014000563W WO2015067233A1 WO 2015067233 A1 WO2015067233 A1 WO 2015067233A1 DE 2014000563 W DE2014000563 W DE 2014000563W WO 2015067233 A1 WO2015067233 A1 WO 2015067233A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
flue gas
temperature processes
processes
corrosion
Prior art date
Application number
PCT/DE2014/000563
Other languages
English (en)
French (fr)
Inventor
Wolfgang Harazim
Original Assignee
Rerum Cognito Institut Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rerum Cognito Institut Gmbh filed Critical Rerum Cognito Institut Gmbh
Priority to DE112014005121.7T priority Critical patent/DE112014005121A5/de
Publication of WO2015067233A1 publication Critical patent/WO2015067233A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/48Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/75Application in combination with equipment using fuel having a low calorific value, e.g. low BTU fuel, waste end, syngas, biomass fuel or flare gas

Definitions

  • the invention relates to a method for using biomass for high-temperature processes, which was previously hardly possible by the fuel-related chlorides in the flue gas and the associated corrosion problems.
  • Such a solution is needed primarily in the energy industry for open and closed gas turbine processes, for steam power work processes and in process engineering.
  • Biomass direct-fired gas turbine proposed, leading to the mixing of
  • the flue gas outlet temperature must be high enough to the fresh air eg.
  • the flue gas cools down to about 200 ° C, after which it preheats the biomass by direct contact and dried after the Denox stage in a dryer (eg rotary kiln dryer).
  • the moist flue gases can be used as needed for heating purposes, as a heat sink for a heat pump or to be used for feedwater preheating before they flow into the atmosphere.
  • an optional shredder for a uniform chip size is required. Feed screws feed dryer and combustion chamber.
  • the fresh air fan provides the required combustion air pressure to overcome the flow resistance of each stage.
  • biomass can also be used for high-temperature processes, as sacrificial metal surfaces chemically bind the flue gas chlorides in an upstream corrosion filter. Compared to the expense of heat exchanger replacement of the sacrificial metal surfaces is low.
  • high-temperature alloys such as Nicrofer 6025 HT or ceramic silicon carbide plate heat exchangers
  • working fluid temperatures of more than 1000 ° C can be achieved.
  • the flue gas side critical temperature ranges below 600 ° C are used for air and fuel preheating or drying, with hardly any contact with metallic materials are required.
  • the problem is solved to operate by means of biomass high-temperature processes and to prevent chlorine corrosion.
  • the increased temperature difference between flue gas and working fluid causes a reduction of the required heating surface, which reduces the overall effort with good efficiency. All flue gas pipes (11) are lined from inside, insulated and thus protected.
  • FIG. 1 illustrates the shift of the combustion temperature from approximately 900 ° C. to over 1400 ° C. by the measures of strong air preheating up to approximately 600 ° C. and biomass heating and drying up to approximately 200 ° C.
  • FIG. 2 shows the method of using biomass for high temperature processes in the Denox stage application.
  • optional comminution (5) of the biomass follows Charging the Brömstoffvor Anlagenrs and dryer (7) for forwarding by means of screw conveyors (6) to the combustion chamber (8), in which the processed biomass with strongly preheated fresh air at about 1400 ° C burns.
  • the resulting flue gas stream passes through a cyclone for ash cinder deposition (9), wherein the liquid ash particles are separated and discharged by means of centrifugal and gravitational force.
  • the flue gas flows through sacrificial metal surfaces in the replacement module (13) in order to chemically bind the corrosive constituents in a targeted manner and to intercept further smaller ash particles.
  • the heat exchanger working fluid (14) follows the flue gas cooling to heat the respective working fluid depending on the main process, whether gas turbine or steam power process, overheat or evaporate.
  • the still high residual heat content at outlet temperatures of about 600 ° C is regenerated by the fresh air in the air preheater (15), by the biomass pretreatment in Brennstoffvorebenr and dryer (7) and optionally by the heat extraction or feedwater in the flue gas cooling (20).
  • the removal of the nitrogen oxides from the flue gas takes over a known prior art Denox stage (19).
  • FIG. 3 shows the method for using biomass for high-temperature processes in the application with flue gas recirculation for nitrogen oxide reduction.
  • the process is analogous to that of FIG. 2, but there is no Denox stage between the air preheater (15) and the fuel preheater and dryer (7).
  • the resulting during combustion nitrogen oxides are reduced by recirculation of the flue gases, since the repeated residence time in the high temperature region reduces nitric oxide formation statistically.
  • the combustion air conveyed and compressed by the fresh ventilator (17) passes after the air preheater (15) through the fresh air line (18) to the injector (23), which generates a partial smoke gas flow via the admixing line (22) after the heat exchanger sucks working fluid (14) and this leads back to the combustion chamber (8).
  • the emission limits can be met with moderate effort, especially in smaller power ranges.
  • Fig. 1 temperature diagram of the method for the use of biomass for high-temperature processes
  • FIG. 2 Block diagram of the method for using biomass for high-temperature processes in the application with a Denox stage
  • FIG. 3 block diagram of the method for the use of biomass for high-temperature processes in the application with flue gas recirculation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse, was bisher durch die brennstoffbedingten Chloride im Rauchgas und die damit verbundenen Korrosionsprobleme kaum möglich war. Eine derartige Lösung wird in erster Linie im Bereich der Energiewirtschaft für offene und geschlossene Gasturbinenprozesse, für Dampfkraft-Arbeitsprozesse und in der Verfahrenstechnik benötigt. Sparsamer Umgang mit Energie und effiziente thermische Wandlerprozesse werden immer wichtiger, um dem Klimawandel entgegen zu wirken. Einen Beitrag hierzu leistet Biomasse, die CO2 neutral verbrennt, da die Assimilation der Photosynthese CO2 im gleichen Verhältnis durch Wachstum bindet. Nachteilig sind die in der Zellstruktur enthaltenen Chloride, die bei der Verbrennung mit vergasen und massive Korrosionsschäden an Metallflächen verursachen. Hohe Temperaturen bestimmen aber maßgeblich die Effizienz, deshalb soll Biomasse auch für Hochtemperaturprozesse nutzbar sein. Um Brennraumtemperaturen über 1300°C zu erzielen, müssen Verbrennungsluft und Biomasse mittels Rauchgas entsprechend vorgewärmt werden. Nach der Grobascheabscheidung passiert das Rauchgas einen Korrosionsfilter, indem leicht austauschbare Opfermetallflächen die Chloride weitestgehend chemisch binden und somit nachfolgende Stufen schützen.

Description

Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse und deren Anwendung
Beschreibung
Die Erfindung betrifft ein Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse, was bisher durch die brennstoffbedingten Chloride im Rauchgas und die damit verbundenen Korrosionsprobleme kaum möglich war. Eine derartige Lösung wird in erster Linie im Bereich der Energiewirtschaft für offene und geschlossene Gasturbinenprozesse, für Dampfkraft-Arbeitsprozesse und in der Verfahrenstechnik benötigt.
Der weltweit steigende Energiebedarf erhöht die anthropogenen Belastungen für Klima und Umwelt. Sparsamer Umgang mit Energie und effiziente thermische Wandlerprozesse werden immer wichtiger, um dem Klimawandel entgegen zu wirken. Einen Beitrag hierzu leistet Biomasse, die C02 neutral verbrennt, da die Assimilation der Photosynthese C02 im gleichen Verhältnis durch Wachstum bindet. Deshalb zählt die Biomasse zu den regenerativen Energien. Nachteilig sind die in der Zellstruktur enthaltenen Chloride, die bei der Verbrennung mit vergasen. Ihre Eisenaffinität bewirken massive Korrosionsreaktionen, die zu Verkrustungen an den Kontaktstellen zwischen Rauchgas und Wärmeübertrager führen. Diese schwächen das Material, verschlechtern die Effizienz, die Wirtschaftlichkeit und die Verfügbarkeit der Anlagen. Nach dem Stand der Technik gibt es verschiedene Methoden, um die Chlor-Korrosion zu begrenzen. Dazu gehören Schutzwerkstoffe, Beschichtungen, Brennstoff-Additive, häufiger Bauteilersatz und die Begrenzung der Temperaturbereiche. Die Biomasseverbrennung wurde in DE 694 02 602 T2 und in DE 198 50 376 C2 ohne Berücksichtigung der problematischen Heißgaskorrosion mittels spezieller Luftführung im Verbrennungsprozess gelöst. In DE 600 15 740 T2 wird eine mit
Biomasse direktbefeuerte Gasturbine vorgeschlagen, was zur Vermischung von
BESTÄTIGUNGSKOPIE Rauchgas und Arbeitsfluid führt und somit die Anwendung einschränkt. Die Korrosionsproblematik findet keine Erwähnung.
Hohe Temperaturen bestimmen aber maßgeblich die Effizienz, weswegen es gut wäre, wenn Biomasse auch für Hochtemperaturprozesse trotz Chloride im Rauchgas genutzt werden könnte. Es ist deshalb Aufgabe der Erfindung, ein Verfahren zu entwickeln, welches das ermöglicht.
Die Aufgabe wird erfindungsgemäß im Wesentlichen durch die kennzeichnenden Merkmale der Ansprüche 1 bis 6 gelöst.
Faktoren, die die Wärmeübertragung vom Rauchgas zum jeweiligen Arbeitsfluid bestimmen, sind die Wärme durchgangszahl (k-Zahl), die Heizfläche und die mittlere logarithmische Temperaturdifferenz, welche maßgeblich die Größe der Heizfläche bestimmt. Um Brennraumtemperaturen über 1300°C zu erzielen, müssen Verbrennungsluft und Biomasse mittels Rauchgas entsprechend vorgewärmt werden. Nach der Aschegrobabscheidung durchströmt das Rauchgas einen Korrosionsfilter, indem leicht austauschbare Opfermetallflächen die Chloride weitestgehend chemisch binden und somit nachfolgende Stufen vor Heißgaskorrosion schützen. In Abhängigkeit des Korrosionsgrades verändert sich der Differenzdruck zwischen Korrosionsfilter Ein- und Austritt und zeigt dadurch den Wartungszustand an. Erst dann erfolgt die Wärmeübertragung vom Rauchgas zum Arbeitsfluid im Erhitzer, Überhitzer oder auch im Verdampfer, wobei die Rauchgas-Austrittstemperatur noch hochgenug sein muss, um die Frischluft bspw. mittels keramischen Rekuperator oder Drehregenerator von Umgebungstemperatur auf bspw. 500°C bis 600°C vorzuwärmen. Dabei kühlt sich das Rauchgas bis auf etwa 200°C ab, wonach es nach der Denox-Stufe in einem Trockner (bspw. Drehrohrtrockner) die Biomasse durch Direktkontakt vorwärmt und trocknet. Die feuchten Rauchgase können je nach Bedarf für Heizzwecke, als Wärmesenke für eine Wärmepumpe oder zur Speisewasser- Vorwärmung noch genutzt werden, bevor sie in die Atmosphäre münden. Je nach Art der Biomasse ist optional ein Zerkleinerer für eine gleichmäßige Schnitzelgröße erforderlich. Förderschnecken beschicken Trockner und Brennraum. Der Frischlüfter sorgt für den erforderlichen Brennluftdruck, um die Strömungswiderstände der einzelnen Stufen zu überwinden.
Mit dieser Lösung kann Biomasse auch für Hochtemperaturprozesse genutzt werden, da Opfermetallflächen in einem vorgeschalteten Korrosionsfilter die Rauchgaschloride chemisch binden. Im Vergleich zum Aufwand beim Wärmeübertragerwechsel ist der Austausch der Opfermetallflächen gering. Mit Hochtemperaturlegierungen wie Nicrofer 6025 HT oder mit keramischen Plattenwärmetauscher aus Siliziumcarbid lassen sich Arbeitsfluidtemperaturen von über 1000°C erreichen. Die rauchgasseitigen kritischen Temperaturbereiche unterhalb 600°C werden für die Luft- und Brennstoffvorwärmung bzw. Trocknung genutzt, wobei kaum Kontakte mit metallischen Werkstoffen erforderlich sind. Somit ist die Aufgabe gelöst, auch mittels Biomasse Hochtemperaturprozesse betreiben zu können und die Chlor-Korrosion zu unterbinden. Weiterhin bewirkt die vergrößerte Temperaturdifferenz zwischen Rauchgas und Arbeitsfluid eine Verkleinerung der erforderlichen Heizfläche, was den Gesamtaufwand bei guter Effizienz senkt. Sämtliche Rauchgasleitungen (11) werden von Innen ausgekleidet, isoliert und somit geschützt.
Die Figur 1 verdeutlicht die Verschiebung der Verbrennungstemperatur von ca. 900°C auf über 1400°C durch die Maßnahmen starke Luftvorwärmung bis ca. 600°C und Biomassevonvärmung und Trocknung bis ca. 200°C.
In Figur 2 ist das Verfahren zur Nutzung von Biomasse für Hochtemperaturprozesse in der Anwendung mit einer Denox-Stufe dargestellt. Je nach Schnitzelgröße folgt optional die Zerkleinerung (5) der Biomasse zur Beschickung des Brermstoffvorwärmers und Trockners (7) zur Weiterleitung mittels Förderschnecken (6) zum Brennraum (8), in dem die aufbereitete Biomasse mit stark vorgewärmter Frischluft bei ca. 1400°C verbrennt. Der dabei entstehende Rauchgasstrom passiert einen Zyklon zur Aschegrobabscheidung (9), worin die flüssigen Aschepartikel mittels Flieh- und Schwerkraft getrennt und abgeleitet werden. Im nachfolgenden Korrosionsfilter (12) durchströmt das Rauchgas Opfermetallflächen im Austauschmodul (13), um die korrosiven Bestandteile gezielt chemisch zu binden und um weitere kleinere Aschepartikel abzufangen. Dann erst folgt im Wärmeübertrager Arbeitsfluid (14) die Rauchgaskühlung, um das jeweilige Arbeitsmittel in Abhängigkeit vom Hauptverfahren, ob Gasturbinen- oder Dampfkraftprozess, zu erhitzen, zu überhitzen oder zu verdampfen. Der noch hohe Restwärmeanteil bei Austrittstemperaturen von ca. 600°C wird durch die Frischlufterhitzung im Luftvorwärmer (15), durch die Biomassevorbehandlung im Brennstoffvorwärmer und Trockner (7) und optional durch die Wärmeauskopplung oder Speisewasservorwärmung in der Rauchgaskühlung (20) regeneriert. Die Entfernung der Stickoxide aus dem Rauchgas übernimmt eine nach dem Stand der Technik bekannte Denox-Stufe (19).
In Figur 3 ist das Verfahren zur Nutzung von Biomasse für Hochtemperaturprozesse in der Anwendung mit Rauchgasrückführung zur Stickoxidminderung dargestellt. Das Verfahren verläuft analog dem der Figur 2, jedoch befindet sich zwischen dem Luftvorwärmer (15) und dem Brennstoffvorwärmer und Trockner (7) keine Denox-Stufe. Die bei der Verbrennung entstehenden Stickoxide werden durch Rezirkulation der Rauchgase gemindert, da die nochmalige Verweildauer im Hochtemperaturbereich die Stickoxidbildung statistisch mindert. Die vom Frischlüfter (17) geförderte und verdichtete Brennluft gelangt nach dem Luftvorwärmer (15) durch die Frischluftleitung (18) zum Injektor (23), der einen Teilrauchgasstrom über die Beimischleitung (22) nach dem Wärmeübertrager Arbeitsfluid (14) ansaugt und diesen zum Brennraum (8) zurück führt. Mit dieser Variante lassen sich besonders in kleineren Leistungsbereichen die Emissionsgrenzwerte mit moderatem Aufwand einhalten.
Fig. 1 Temperaturschaubild des Verfahrens zur Nutzung von Biomasse auch für Hochtemperaturprozesse
Fig. 2 Blockschaltbild des Verfahrens zur Nutzung von Biomasse für Hochtemperaturprozesse in der Anwendung mit einer Denox-Stufe
Fig. 3 Blockschaltbild des Verfahrens zur Nutzung von Biomasse für Hochtemperaturprozesse in der Anwendung mit Rauchgasrückführung
Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse und deren Anwendung
Bezugszeichenliste
a Temperaturbereich Luftvorwämung
b Temperaturbereich Rauchgasabkühlung für Luftvorwärmung
c Temperaturbereich Arbeitsfluiderwärmung
d Temperaturbereich Rauchgasabkühlung für Arbeitsfluiderwärmung
e Temperaturbereich Biomassevorwärmung und Trocknung
f Temperaturbereich Rauchgasabkühlung für Biomassevorwärmung und
Trocknung
1 Verbrennungstemperatur Neues Verfahren
2 Bereich der Verbrennungstemperatur-Erhöhung
3 Verbrennungstemperatur Stand der Technik
4 Biomassezuführung
5 Zerkleinerung (optional)
6 Förderschnecken
7 BrennstoffVorwärmer und Trockner
8 Brennraum
9 Aschegrobab Scheidung
10 Ascheabfuhr
11 Rauchgasleitung
12 Korrosionsfilter
13 Opfermetallflächen im Austauschmodul Wärmeübertrager Arbeitsfluid Luftvorwärmer
Frischluftzufuhr
Frischlüfter
Frischluftleitung
Denox-Stufe
Rauchgaskühlung (optional) Rauchgasaustritt
Beimischleitung
Injektor

Claims

Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse und deren Anwendung Patentansprüche
1. Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse, bestehend aus optional Zerkleinerung (5), Brermstoffvorwärmer und Trockner (7), Brennraum (8), Aschegrobabscheidung (9), Korrosionsfilter (12), Wärmeübertrager Arbeitsfluid (14), Luftvorwärmer (15), optional Denox-Stufe (19), optional Injektor (23) mit Beimischleitung (22) und optional Rauchgaskühler (20) dadurch gekennzeichnet, dass die Biomasse bis zur Verbrennung optional die Zerkleinerung (5) durchläuft und mittels Rauchgase aus dem Luftvorwärmer (15) bzw. optional aus der Denox-Stufe (19) im Brennstoffvorwärmer und Trockner (7) vorbehandelt wird, um diese im Brennraum (8) mit der vom Frischlüfter (17) geförderten im Luftvorwärmer (15) hocherhitzten Frischluft bei hohen Temperaturen zu verbrennen, wobei das entstehende Rauchgasvolumen erst nach der Aschegrobabscheidung (9) und dem passieren des Korrosionsfilters (12) im Wärmeübertrager Arbeitsfluid (14) beim durchströmen seine Energie überträgt, bevor der größte Teil der Restwärme im Luftvorwärmer (15) und im Brermstoffvorwärmer und Trockner (7) regeneriert.
2. Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse nach dem Anspruch 1 dadurch gekennzeichnet, dass im Korrosionsfilter (12) Opfermetallflächen im Austauschmodul (13) für die chemische Bindung der korrosiven Bestandteile im Rauchgas zum Schutz nachfolgender Stufen angeboten werden.
3. Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse nach dem Anspruch 1 und 2 dadurch gekennzeichnet, dass die Opfermetallflächen im Austauschmodul (13) ohne größere Betriebsunterbrechung in Abhängigkeit des Verschmutzungsgrades und des Differenzdruckes zwischen Korrosionsfilter (12) Ein- und Austritt durch Vorfertigung gewechselt werden kann.
4. Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse nach dem Anspruch 1 bis 3 dadurch gekennzeichnet, dass die Opfermetallflächen im Austauschmodul (13) aus unedleren Metallen bestehen, die bereitwillig mit den korrosiven Bestandteilen des Rauchgases reagieren, dabei die Kontaktflächen vergrößern und zusätzlich Flugasche filtern.
5. Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse nach dem Anspruch 1 bis 4 dadurch gekennzeichnet, dass neben einer gängigen Denox-Stufe (19) auch die Stickoxidminderung durch Rauchgasrezirkulation erreicht wird, in dem die vom Frischlüfter (17) geförderte und verdichtete Brennluft nach dem Luftvorwärmer (15) durch die Frischluftleitung (18) zum Injektor (23) gelangt, der einen Teilrauchgasstrom über die Beimischleitung (22) nach dem Wärmeübertrager Arbeits fluid (14) ansaugt und diesen zum Brennraum (8) zurückfuhrt.
6. Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse nach dem Anspruch 1 bis 5 dadurch gekennzeichnet, dass optional der hohe Wasserdampfanteil durch die Biomassetrocknung im Rauchgas vom Brennstoffvorwärmer und Trockner (7) kommend im Rauchgaskühler (20) zur optimalen Nutzung des Heizwertes für diverse Heizzwecke kondensiert wird.
PCT/DE2014/000563 2013-11-07 2014-11-06 Verfahren zur nutzung von biomasse auch für hochtemperaturprozesse und deren anwendung WO2015067233A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014005121.7T DE112014005121A5 (de) 2013-11-07 2014-11-06 Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse und deren Anwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310018605 DE102013018605A1 (de) 2013-11-07 2013-11-07 Verfahren zur Nutzung von Biomasse auch für Hochtemperaturprozesse und deren Anwendung
DE102013018605.6 2013-11-07

Publications (1)

Publication Number Publication Date
WO2015067233A1 true WO2015067233A1 (de) 2015-05-14

Family

ID=52449903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/000563 WO2015067233A1 (de) 2013-11-07 2014-11-06 Verfahren zur nutzung von biomasse auch für hochtemperaturprozesse und deren anwendung

Country Status (2)

Country Link
DE (2) DE102013018605A1 (de)
WO (1) WO2015067233A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523677A1 (de) * 1985-03-02 1987-01-08 Kloeckner Humboldt Deutz Ag Verfahren zum verbrennen von schlamm
DE69402602T2 (de) 1993-05-28 1997-07-24 Unical Ag S P A Wärmeerzeuger mit Biomasseverbrennung
DE19850376C2 (de) 1998-11-02 2000-09-28 Univ Stuttgart Vorrichtung zum Verbrennen von Bio- und Feststoffmassen mit primärer Schadstoffminderung - CO, NOx und Staub
US20020088235A1 (en) * 1995-10-03 2002-07-11 Norihisa Miyoshi Heat recovery system and power generation system
DE60015740T2 (de) 1999-04-06 2005-12-08 James Engineering (Turbines) Ltd., Clevedon Biomassenverbrennungskammer für eine gasturbine
CN101561144A (zh) * 2008-08-21 2009-10-21 周开根 垃圾、有机废弃物洁净焚烧的系统及设备
DE102010024803A1 (de) * 2010-06-23 2011-12-29 Mtu Onsite Energy Gmbh Anordnung zur Bereitstellung eines gereinigten Prozessgases

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1869307T3 (da) * 2005-04-12 2010-12-20 Zilkha Biomass Power Llc Integreret biomasseenergisystem
DE102006004221A1 (de) * 2006-01-30 2007-08-09 Gks - Gemeinschaftskraftwerk Schweinfurt Gmbh Vorrichtung und Verfahren zum Abscheiden von Schadstoffen im Rauchgas einer thermischen Anlage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523677A1 (de) * 1985-03-02 1987-01-08 Kloeckner Humboldt Deutz Ag Verfahren zum verbrennen von schlamm
DE69402602T2 (de) 1993-05-28 1997-07-24 Unical Ag S P A Wärmeerzeuger mit Biomasseverbrennung
US20020088235A1 (en) * 1995-10-03 2002-07-11 Norihisa Miyoshi Heat recovery system and power generation system
DE19850376C2 (de) 1998-11-02 2000-09-28 Univ Stuttgart Vorrichtung zum Verbrennen von Bio- und Feststoffmassen mit primärer Schadstoffminderung - CO, NOx und Staub
DE60015740T2 (de) 1999-04-06 2005-12-08 James Engineering (Turbines) Ltd., Clevedon Biomassenverbrennungskammer für eine gasturbine
CN101561144A (zh) * 2008-08-21 2009-10-21 周开根 垃圾、有机废弃物洁净焚烧的系统及设备
DE102010024803A1 (de) * 2010-06-23 2011-12-29 Mtu Onsite Energy Gmbh Anordnung zur Bereitstellung eines gereinigten Prozessgases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOHANN SCHIMPL AND GREGOR WINKLER: "Corrosion, operational experience and process engineering improvements for increasing the availability and operational time of Timelkam biomass power plant", VGB POWERTECH, VGB POWERTECH, ESSEN, DE, vol. 92, no. 4, 1 April 2012 (2012-04-01), pages 65 - 71, XP001574953, ISSN: 1435-3199 *

Also Published As

Publication number Publication date
DE112014005121A5 (de) 2016-08-18
DE102013018605A1 (de) 2015-05-07

Similar Documents

Publication Publication Date Title
CN110036238B (zh) 用于改善锅炉有效度的方法和系统
DE102011050677B4 (de) Vorrichtung und Verfahren zur Herstellung von Zementklinker
DE19718259B4 (de) Verfahren zur Verringerung von Schadstoff-Kreisläufen bei der Herstellung von Zementklinker aus Rohmehl sowie Anlage zur Herstellung von Zementklinker aus schadstoffhaltigem Rohmehl
DE19654043C2 (de) Trockner mit Abgasreinigung mittels thermischer Nachverbrennung
EP2702344B1 (de) Verfahren und vorrichtung zum brennen von klinker
DE102008060774B4 (de) Schrottvorwärmungsprozess und Vorrichtungen in Stahlerzeugungsanlagen
DE102013000424A1 (de) Verfahren und Vorrichtung zum Schutz von Wärmetauscherrohren sowie Keramikbauteil
EP0668982A1 (de) Feuerungslanlage
WO2015189103A1 (de) Abgasbehandlungsvorrichtung und verfahren zur abgasbehandlung
EP3149422A1 (de) Vorrichtung zur herstellung von zementklinker
WO2015067233A1 (de) Verfahren zur nutzung von biomasse auch für hochtemperaturprozesse und deren anwendung
DE1918895A1 (de) Waermetauscher
EP2930426A1 (de) Abgaswärmetauscher und verfahren zur wärmerückgewinnung aus abgasen
DE102019212314A1 (de) Vorrichtung und Verfahren zum Kühlen und/oder Reinigen eines aus einem Konverter austretenden Prozessgases
DE3402063C1 (de) Verfahren und Vorrichtung zur Reinigung von Rauchgasen
DE19812310A1 (de) Verfahren zur Abwärmenutzung bei Kleinfeuerungsanlagen sowie Vorrichtung zur Durchführung des Verfahrens
EP0035783B1 (de) Verfahren und Vorrichtung zur Strom- und Wärmeerzeugung aus Brennstoffen
DE102004050465B3 (de) Verfahren zur Erwärmung und/oder Verdampfung eines Fluids
CH625868A5 (de)
DE671806C (de) Sich drehender Muffelofen
DE102013020815A1 (de) Kontinuierliche Verfahrensanlage für energieeffiziente industrielle Öfen mittels gekoppeltem Dampfkraftprozess und Restsauerstoff-Optimierung
CN103471406A (zh) 金属铜熔炼烟气余热及粉尘的回收利用方法
DE102022105954A1 (de) Vorrichtung und Verfahren zur Herstellung von Zementklinker
DE102014007876A1 (de) Kondensationswärmetauscher für Abgase von keramischen Öfen
EP1862738B1 (de) Verfahren zum Trockenheizen einer Feuerfestabkleidung und Vorrichtungsanordnung zur Durchführung dieses Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014005121

Country of ref document: DE

Ref document number: 1120140051217

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014005121

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833572

Country of ref document: EP

Kind code of ref document: A1