WO2015066476A1 - Signaling extended earfcn and e-utra bands in umts networks - Google Patents

Signaling extended earfcn and e-utra bands in umts networks Download PDF

Info

Publication number
WO2015066476A1
WO2015066476A1 PCT/US2014/063434 US2014063434W WO2015066476A1 WO 2015066476 A1 WO2015066476 A1 WO 2015066476A1 US 2014063434 W US2014063434 W US 2014063434W WO 2015066476 A1 WO2015066476 A1 WO 2015066476A1
Authority
WO
WIPO (PCT)
Prior art keywords
list
utra
utra frequency
priority
frequency
Prior art date
Application number
PCT/US2014/063434
Other languages
French (fr)
Inventor
Michael Zitzmann
Hyung-Nam Choi
Geethika KANKIPATI
Sudeep VAMANAN
Birgit Breining
Bismark OKYERE
Original Assignee
Intel IP Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corporation filed Critical Intel IP Corporation
Priority to CN201480051911.5A priority Critical patent/CN105557051A/en
Priority to EP14856919.7A priority patent/EP3064012B1/en
Priority to ES14856919T priority patent/ES2715699T3/en
Priority to US15/026,788 priority patent/US9867206B2/en
Priority to EP18168131.3A priority patent/EP3367737A1/en
Publication of WO2015066476A1 publication Critical patent/WO2015066476A1/en
Priority to HK16111234.5A priority patent/HK1223222A1/en
Priority to US15/862,181 priority patent/US10075966B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/06Access restriction performed under specific conditions based on traffic conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/02Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration by periodical registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/06Registration at serving network Location Register, VLR or user mobility server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

Embodiments of a user equipment (UE) and Node-B to operate in a wireless communication network using extended evolved absolute radio frequency channel numbers (EARFCN) and evolved Universal Terrestrial Radio Access (E-UTRA) frequency bands are disclosed herein. The UE may comprise transceiver and processing circuitry to receive a multiple frequency band indicators (MFBI) list that includes list elements corresponding to E-UTRA frequency bands on which neighboring LTE cells are operated. The MFBI list corresponds to an entry in the E-UTRA frequency and priority list or the E-UTRA frequency and priority extension list. The number of list elements for E-UTRA frequency and priority information corresponds to a sum of the number of entries in an E-UTRA frequency and priority list and a number of entries in an E-UTRA frequency and priority extension list. Other embodiments are disclosed.

Description

SIGNALING EXTENDED EARFCN AND E-UTRA BANDS IN UMTS
NETWORKS
PRIORITY CLAIM
[0001] This application claims priority to United States Provisional Patent Application Serial No. 61/898,425 filed October 31, 2013, which is incorporated herein by reference in its entirety.
TECHNICAL FIELD [0002] Embodiments pertain to wireless communications. Some embodiments relate to cellular communication networks including long-term evolution (LTE) networks and universal mobile telecommunications system (UMTS) networks. Some embodiments relate to multiple frequency band indicator (MFBI) signaling to support extended value ranges of evolved absolute radio frequency channel numbers (EARFCNs) and evolved Universal Terrestrial Radio Access (E-UTRA) frequency bands in UMTS.
BACKGROUND [0003] Multiple Frequency Band Indicator (MFBI) signaling was introduced recently in 3rd Generation Partnership Project (3 GPP) standards to allow elements of a cell, such as a Node-B or evolved Node-B (eNodeB) to broadcast in more than one band if the absolute frequency of the cell fell into multiple overlapping bands. However, there are ambiguities and signaling inefficiency concerns regarding MFBI support in universal mobile telecommunications system (UMTS) networks. BRIEF DESCRIPTION OF THE DRAWINGS
[0004] FIG. 1 is a functional diagram of a 3GPP network in accordance with some embodiments;
[0005] FIG. 2 illustrates a first relationship between evolved absolute radio frequency channel numbers (EARFCNs) and evolved Universal Terrestrial Radio Access (E-UTRA) frequency bands with Multiple Frequency Band Indicator (MFBI) in accordance with some available systems;
[0006] FIG. 3 illustrates a second relationship between EARFCNs and E-UTRA frequency bands with MFBI in accordance with some available systems;
[0007] FIG. 4 is a block diagram for illustrating superfluous E-UTRA frequency and priority information elements that may be transmitted in some available systems;
[0008] FIG. 5 illustrates a relationship between EARFCNs and E-UTRA frequency bands with MFBI in accordance with some embodiments;
[0009] FIG. 6 is a block diagram to illustrate E-UTRA frequency and priority information elements that may be transmitted in accordance with some embodiments;
[0010] FIG. 7 is a functional diagram of a User Equipment (UE) in accordance with some embodiments;
[0011] FIG. 8 is a functional diagram of a Node-B in accordance with some embodiments; and
[0012] FIG. 9 illustrates the operation of a method for signaling optimization for extended EARFCN and E-UTRA frequency bands in UMTS in accordance with some embodiments.
DETAILED DESCRIPTION
[0013] The following description and the drawings sufficiently illustrate specific embodiments to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Portions and features of some embodiments may be included in, or substituted for, those of other embodiments. Embodiments set forth in the claims encompass all available equivalents of those claims.
[0014] FIG. 1 shows a wireless communication network 100, according to some embodiments described herein. The wireless communication network 100 may include a Node-B 102, and user equipment (UEs) 111 and 112. Node-B 102 and UEs 111 and 112 may operate to wirelessly communicate with each other in the wireless communication network 100. While some embodiments herein are described regarding a Node-B 102 operating in accordance with 3rd Generation Partnership Project (3GPP) Universal Mobile Telecommunications System
(UMTS) systems, other embodiments can be applicable to systems operating in accordance with standards for 3GPP Long Term Evolution (LTE). The term "Node-B" should be understood as a simplification that references the combination of Node-B elements (e.g., radio frequency (RE), physical layer (PHY), and parts of a medium access control layer (MAC) sublayer) and Radio Network Controller (RNC) elements (e.g., parts of a MAC sublayer, RLC, PDCP and Radio Resource Control (RRC)) in accordance with UMTS standards.
[0015] The wireless communication network 100 can include a universal terrestrial radio access network (UTRAN) using 3GPP-UMTS standards operating in time division duplex (TDD) mode, frequency division duplex
(FDD), or dual-mode operation. The wireless communication network 100 can further support an evolved UTRAN (EUTRAN) using 3 GPP LTE standards operating in TDD mode or in FDD mode. Additional examples of wireless communication network 100 include Worldwide Interoperability for Microwave Access (WiMax) networks, 3rd generation (3G) networks, Wi-Fi networks, and other wireless data communication networks.
[0016] Examples of UEs 111 and 112 include cellular telephones (e.g., smartphones), tablets, e-readers (e.g., e-book readers), laptops, desktops, personal computers, servers, personal digital assistants (PDAs), web appliances, set-top boxes (STBs), network routers, network switches, network bridges, parking meters, sensors, and other devices. Some devices (e.g., parking meters) among these example devices may include machine-type communications (MTC) devices. An MTC device may not need user interaction to initiate communication with the network (e.g., the wireless communication network 100).
[0017] The Node-B 102 may operate as a serving Node-B in a geographic area, such as a cell 104 in the wireless communication network 100. FIG. 1 shows the wireless communication network 100 including only one Node-B (e.g., Node-B 102) as an example. The wireless communication network 100, however, may include multiple Node-Bs (e.g., multiple eNodeBs similar to, or identical to, the Node-B 102), or eNodeBs, etc. Each of the multiple Node-Bs may serve a particular cell in the wireless communication network 100 and may or may not neighbor the Node-B 102.
[0018] UEs 111 and 112 may be served by the Node-B 102 in cell 104 (e.g., serving cell 104). UEs 111 and 112 can select cell 104 on which to "camp" to obtain services through the Node-B 102. FIG. 1 shows the wireless
communication network 100 including only two UEs (e.g., UEs 111 and 112) served by the Node-B 102 in the cell 104 as an example. The wireless communication network 100, however, may include more than two UEs served by the Node-B 102. The Node-B 102 and each of the UEs 111 and 112 may operate to communicate with each other using a code division multiple access (CDMA) technique.
[0019] The Node-B 102 can communicate with the UEs 111 and 112 on a downlink connection 114 and the UEs 111 and 112 can communicate with the Node-B 102 on an uplink connection 116. The carrier frequency in the uplink 116 and downlink 114 is designated by the absolute radio frequency channel numbers (ARFCN). The UEs 111 and 112, and the Node-B 102 can also each support 3GPP LTE communication. The Node-B 102 can provide system information block (SIB) 19 (SIB-19) signals (e.g., "E-UTRA frequency and priority info list" information elements described later herein) that the UE 111 or 112 shall use for potential cell reselection to LTE.
[0020] 3 GPP Radio Access Network (RAN) working groups have recently introduced support for extended value ranges of evolved ARFCNs (EARFCNs) and E-UTRA frequency bands for long-term evolution (LTE) networks to support the growing demand for E-UTRA frequency bands. The legacy value range for EARFCNs includes values in the range 0 - 65535, and the legacy value range for E-UTRA operating bands includes values in the range of 1-64. An extended value range for EARFCNs includes values in the range of 65536 to 262143, and an extended value range for E-UTRA operating bands includes values in the range of 65-256, however embodiments should not be understood as being limited to any particular range for EARFCNs or E-UTRA operating bands.
[0021] MFBI signaling allows a Node-B, such as the Node-B 102, to broadcast in more than one band if the absolute frequency of the cell 104 falls into multiple overlapping bands. However, ambiguities and inefficiencies remain in MFBI support in some UMTS systems, at least for extended EARFCN ranges and extended E-UTRA operating band ranges that are signaled in radio resource control (RRC) signaling in SIB- 19.
[0022] For example, according to current RRC specifications, the tabular description given in 3GPP TS 25.331 § 10.3.7.115 of the information element (IE) "E-UTRA frequency and priority info list" references different IEs than the procedural description of that IE specified in 3GPP TS 25.331 §8.6.7.3c. The tabular description specifies that each entry of the IE "Multiple E-UTRA frequency info list" and of the IE "Multiple E-UTRA frequency info extension list," corresponds to an entry in the "E-UTRA frequency and priority" IE. This relationship is shown graphically in FIG. 2. As can be seen in FIG. 2, according to the tabular description no MFBI signaling, from either the legacy 202 or the extended 204 E-UTRA frequency band range C and D, is possible for the extended EARFCN range B. It will be understood that FIG. 2 (as well as FIG. 3, described later herein) depicts only the relevant top level IEs of "E-UTRA frequency and priority," "E-UTRA frequency and priority extension," "Multiple E-UTRA frequency info list," and "Multiple E-UTRA frequency info extension list," and the value ranges for EARFCNs and E-UTRA frequency bands covered by those IEs, and that other fields, values or portions of those IEs can be specified in current and future versions of standards of the 3GPP family of standards.
[0023] On the other hand, the procedural description given in current versions of 3 GPP TS 25.331 §8.6.7.c specifies that:
l>for each occurrence of the IE "E-UTRA frequency and priority": ... 2> if the UE supports multi-band signalling and if the UE does not recognise the EARFCN in the IE "EARFCN" and the IE "Multiple E- UTRA frequency info list" is present:
3> if the IE "Multiple E-UTRA frequency band indicator list" is present and the UE supports at least one of the indicated E-
UTRA bands:
1> if the UEsupports E-UTRA band 65 or higher, for each occurrence of the IE "E-UTRA frequency and priority extension":
...
2> if the UE supports multi-band signalling and if the UE does not recognise the EARFCN in the IE "EARFCN extension" and the IE "Multiple E-UTRA frequency info extension list" is present:
3> if the IE "Multiple E-UTRA frequency band indicator extension list" is present and the UE supports at least one of the indicated E-UTRA bands:
Table 1: 3GPP TS 8.6.7.3c (partial) [0024] The relationship spelled out in Table 1 between EARFCNs and E-UTRA frequency bands with MFBI is shown graphically in FIG. 3. As can be observed upon examination of FIG. 3, no MFBI signaling 302 from the extended range of E-UTRA frequency bands D is done for the legacy EARFCN range A.
Likewise, no MFBI signaling 304 from the legacy range C of E-UTRA frequency bands is done for the extended EARFCN range B. Embodiments provide a signaling relationship, described later herein with respect to FIG. 5, wherein MFBI signaling is provided from the extended range D of E-UTRA frequency bands to both the extended EARFCN range B and the legacy EARFCN range A. Similarly, embodiments provide a signaling relationship, wherein MFBI signaling is provided from the legacy range C of E-UTRA frequency bands to both the extended EARFCN range B and the legacy
EARFCN range A.
[0025] Embodiments also reduce or eliminate the occurrence of superfluous IE signaling. FIG. 4 is a block diagram for illustrating superfluous E-UTRA frequency and priority IEs that may be transmitted in some available systems. The signaling structure in current versions of 3 GPP provide that, if an EARFCN value within the EARFCN extended value range is to be signaled to the UE 111, 112, then the Node-B 102 will indicate this to the UE 111 , 112 by using the legacy maximum value of 65535 in the IE "EARFCN," as shown in example blocks 402, 404, and 406, along with other IEs, including two mandatory default (MD) IEs and five mandatory present (MP) IEs. The UE 111 , 112 will ignore the legacy value in blocks 402, 404, and 406 and the UE 111, 112 instead uses corresponding extension EARFCNs and IEs in blocks 408, 410, and 412.
However, this approach results in wasted signaling to signal the unused IEs. Embodiments reduce or eliminate this superfluous IE signaling according to signaling optimizations described later herein with respect to FIG. 6.
[0026] Embodiments provide a signaling relationship as shown in FIG. 5, wherein MFBI signaling 502, 504 is provided from the extended range D of E- UTRA frequency bands to both the extended EARFCN range B and the legacy EARFCN range A. Similarly, MFBI signaling 506, 508 is provided from the legacy range C of E-UTRA frequency bands to both the extended EARFCN range B and the legacy EARFCN range A. A receiving UE 111 or 112 can then merge received signaling according to criteria discussed later herein.
[0027] FIG. 6 is a block diagram to illustrate E-UTRA frequency and priority information elements that may be transmitted in accordance with some embodiments in order to reduce or eliminate extraneous MFBI signaling as briefly described earlier herein.
[0028] In embodiments, the Node-B 102 will signal an IE "Number of applicable EARFCN." The UE 111 or 112 will then concatenate the IEs "E- UTRA frequency and priority," illustrated in blocks 602 and 604, and "E-UTRA frequency and priority extension," illustrated by blocks 606, 608, and 610 based on the value signaled in IE "Number of applicable EARFCN." In other words, the value signaled in IE "Number of applicable EARFCN" refers to the number of occurrences of IE "E-UTRA frequency and priority," and the value represented by the IE "maxNumEUTRAFreqs" minus the value specified in IE "Number of applicable EARFCN" refers to the maximum number of occurrences of IE "E-UTRA frequency and priority extension." In the example illustrated in FIG. 6, therefore, it will be understood that "Number of applicable EARFCN" equals 2, so that two "E-UTRA frequency and priority" IEs are used, and the IE "maxNumEUTRAFreqs" is at least five, so that three "E-UTRA frequency and priority extension" IEs can be used. [0029] Additionally, the IE "Multiple E-UTRA frequency info extension list" 612 will be considered first in some embodiments to provide values for "E- UTRA frequency and priority" and "E-UTRA frequency and priority extension." Only when a list element in "Multiple E-UTRA frequency info extension list" 612 is set to absent (e.g., list elements 614, 616, 618, and 620) shall a corresponding entry (e.g., list elements 622 and 624) from "Multiple E-UTRA frequency info list" 626 be merged and used for generating an entry in the concatenated "E-UTRA frequency and priority" and "E-UTRA frequency and priority extension" lists. As will be appreciated upon examination of FIG. 6, embodiments described herein will eliminate the need to use reserved values of 65535 for EARFCN and 64 for E-UTRA frequency bands in the legacy IEs to refer to the corresponding extension EARFCN and E-UTRA frequency band IEs. While "Multiple E-UTRA frequency info extension list" is shown as having no legacy information, it will be understood that in some embodiments the "Multiple E-UTRA frequency info extension list" can include legacy information. Similarly, the "Multiple E-UTRA frequency info list" can include extension information in addition to, or instead of, legacy information.
[0030] FIG. 7 shows a block diagram of a UE 700 in accordance with some embodiments, while FIG. 8 shows a block diagram of a Node-B 800 in accordance with some embodiments. It should be noted that in some embodiments, the Node-B 800 may be a stationary non-mobile device. The UE 700 may be a UE 111 or 112 as depicted in FIG. 1, while the Node-B 800 may be a Node-B 102 as depicted in FIG. 1.
[0031] The UE 700 will include transceiver circuitry 702 for transmitting and receiving signals to and from the Node-B 800, other Node-Bs or eNodeBs, other UEs or other devices using one or more antennas 701, while the Node-B 800 will include transceiver circuitry 802 for transmitting and receiving signals to and from the UE 700, other Node-Bs or eNodeBs, other UEs or other devices using one or more antennas 801. The UE 700 also includes processing circuitry 706 and memory 708 arranged to perform the operations described herein, and the Node-B 800 also includes processing circuitry 806 and memory 808 arranged to perform the operations described herein. The processing circuitry 706 and 806 can include PHY, MAC, RRC and/or any other protocol sublayers. [0032] In one embodiment, the UE 700 receives MFBI signaling, as described earlier herein with respect to FIG. 5, that includes an MFBI list. The MFBI list includes elements that correspond to E-UTRA frequency bands on which the neighboring LTE cells are operated. The MFBI list can include either or both of a "Multiple E-UTRA frequency info extension list" defined in accordance with a standard of the 3GPP family of standards, or a "Multiple E-UTRA frequency info list" defined in accordance with a standard of the 3 GPP family of standards. Both lists can be used to signal overlapping E-UTRA frequency bands corresponding to an entry in the "E-UTRA frequency and priority list" IE or the "E-UTRA frequency and priority extension list" IE as described earlier herein with respect to FIG. 5. As described earlier herein, each entry in the "E-UTRA frequency and priority list" and in the "E-UTRA frequency and priority extension list" defines an EARFCN value and a priority value for the respective EARFCN.
[0033] Both or either of the "Multiple E-UTRA frequency info extension list" and the "Multiple E-UTRA frequency info list" can be used to signal E-UTRA frequency bands in both the legacy range of 1-64 as well as in any extended range defined in current or future versions of a standard of the 3GPP family of standards or other family of standards. The UE 700 will then merge the "Multiple E-UTRA frequency info extension list" and the "Multiple E-UTRA frequency info list" as described earlier with reference to FIG. 6 to determine which EARFCN values and priority values should be used for corresponding E- UTRA frequency bands. For example, the UE 700 can select an EARFCN value to be used for the corresponding E-UTRA frequency band from a "Multiple E- UTRA frequency info extension list" element if the "Multiple E-UTRA frequency info extension list" element is not set to a placeholder value indicating that the "Multiple E-UTRA frequency info extension list" element is absent. Otherwise, the UE 700 can select an EARFCN value to be used for the corresponding E-UTRA frequency band from a "Multiple E-UTRA frequency info list" element. However, embodiments can merge the "Multiple E-UTRA frequency info extension list" and the "Multiple E-UTRA frequency info list" according to any other criteria or algorithm. For example, the UE 700 can merge the lists by assigning default higher priority to entries in the "Multiple E-UTRA frequency info list," or the UE 700 or network 100 can assign flexible priorities to each E-UTRA frequency band, among other criteria or algorithms.
[0034] The number of list elements for E-UTRA frequency and priority information is equal to a sum of the number of entries in an "E-UTRA frequency and priority list" plus the number of entries in an "E-UTRA frequency and priority extension list." For example, as described earlier herein, the number of list elements for E-UTRA frequency and priority information can be less than or equal to a value in the IE "maxNumEUTRAFreqs." The number of entries in an "E-UTRA frequency and priority list" is given by the value specified in IE "Number of applicable EARFCN" and the number of entries in the "E-UTRA frequency and priority extension list" can be given by the value in the IE "maxNumEUTRAFreqs," minus the value specified in IE "Number of applicable EARFCN."
[0035] The Node-B 800 can transmit MFBI signaling that is included in the above-described "E-UTRA frequency and priority info list". The antennas 701, 801 may comprise one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals. In some multiple-input multiple-output (MIMO) embodiments, the antennas 701, 801 may be effectively separated to take advantage of spatial diversity and the different channel characteristics that may result.
[0036] Although the UE 700 and Node-B 800 are each illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements, such as processing elements including digital signal processors (DSPs), and/or other hardware elements. For example, some elements may comprise one or more microprocessors, DSPs, field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), radio-frequency integrated circuits (RFICs) and combinations of various hardware and logic circuitry for performing at least the functions described herein. In some embodiments, the functional elements may refer to one or more processes operating on one or more processing elements. [0037] Embodiments may be implemented in one or a combination of hardware, firmware and software. Embodiments may also be implemented as instructions stored on a computer-readable storage device, which may be read and executed by at least one processor to perform the operations described herein. A computer-readable storage device may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer). For example, a computer-readable storage device may include read-only memory (ROM), random-access memory (RAM), magnetic disk storage media, optical storage media, flash-memory devices, and other storage devices and media. Some embodiments may include one or more processors and may be configured with instructions stored on a computer-readable storage device.
[0038] Referring to FIG. 9 a method 900 of supporting multi-band signaling in a network is shown. It is important to note that embodiments of the method 900 may include additional or even fewer operations or processes in comparison to what is illustrated in FIG. 9. In addition, embodiments of the method 900 are not necessarily limited to the chronological order that is shown in FIG. 9. In describing the method 900, reference may be made to FIGs. 1-8, although it is understood that the method 900 may be practiced with any other suitable systems, interfaces and components.
[0039] In addition, while the method 900 and other methods described herein may refer to Node-Bs 102 or UEs 111 and 112 operating in accordance with 3 GPP or other standards, embodiments of those methods are not limited to just those Node-Bs 102 and UEs 111, 112 and may also be practiced on other mobile devices, such as a Wi-Fi access point (AP) or user station (STA). Moreover, the method 900 and other methods described herein may be practiced by wireless devices configured to operate in other suitable types of wireless communication systems, including systems configured to operate according to various IEEE standards such as IEEE 802.11.
[0040] At operation 902, the UE 111 or 112 will receive signaling that includes an "E-UTRA frequency and priority info list" at least somewhat similar to that described earlier herein with respect to FIG. 1-8. For example, the "E-UTRA frequency and priority info list" can include list elements corresponding to overlapping E-UTRA frequency bands on which neighboring LTE cells are operated. As described earlier herein, a total count of list elements for E-UTRA frequency and priority information is representative of a sum of a number of entries in an "E-UTRA frequency and priority list" IE and a number of entries in an "E-UTRA frequency and priority extension list" IE.
[0041] In operation 904, the UE 111 or 112 will connect to a neighboring LTE cell using information in an element of the MFBI list.
[0042] The UE 111 or 112 will determine the overlapping E-UTRA frequency bands corresponding to an entry in the "E-UTRA frequency and priority list" or the "E-UTRA frequency and priority extension list" based on a "Multiple E- UTRA frequency info extension list" and a "Multiple E-UTRA frequency info list" according to merging algorithms described earlier herein.
[0043] It should be noted that the discussion of the method 900 and other discussions herein may refer to SIBs, which may be broadcast messages transmitted by the Node-B 102 that are receivable by UEs operating in a cell. In some embodiments, the SIB may be a SystemInformationBlockTypel9 message of the 3GPP or other standards, which may also be referred to as "SIB-19" or as a "SIB-19" message. The operations and techniques described herein are not limited to SIB-19 messages, however, and may be applied to other types or embodiments of System Information Blocks of 3GPP or other standards. The operations and techniques described herein are also not limited to SIBs, and similar operations and techniques may also be applied to other messages transmitted by the Node-B 102, including paging messages for individual UEs or groups of UEs or other control messages.
[0044] A non-transitory computer-readable storage medium that stores instructions for execution by one or more processors to perform operations supporting multi-band signaling in a network is disclosed herein. The operations may configure the one or more processors to receive, in MFBI signaling, an MFBI list that includes list elements corresponding to E-UTRA frequency bands on which the neighboring LTE cells are operated, wherein a count of list elements for E-UTRA frequency and priority information is representative of a sum of a number of entries in an "E-UTRA frequency and priority list" and a number of entries in an "E-UTRA frequency and priority extension list," wherein each list element of the MFBI list corresponds to an entry in the E- UTRA frequency and priority list or the E-UTRA frequency and priority extension list, and wherein each entry in the E-UTRA frequency and priority list and the E-UTRA frequency and priority extension list defines an EARFCN value and a priority value for the respective EARFCN.
[0045] In some embodiments, mobile devices or other devices described herein may be part of a portable wireless communication device, such as a personal digital assistant (PDA), a laptop or portable computer with wireless
communication capability, a web tablet, a wireless telephone, a smartphone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly. In some embodiments, the mobile device or other device can be a User Equipment (UE) or an Evolved Node-B (eNB) configured to operate in accordance with 3GPP standards. In some embodiments, the mobile device or other device may be configured to operate according to other protocols or standards, including IEEE 802.11 or other IEEE standards. In some embodiments, the mobile device or other device may include one or more of a keyboard, a display, a non-volatile memory port, multiple antennas, a graphics processor, an application processor, speakers, and other mobile device elements. The display may be an LCD screen including a touch screen.
[0046] The Abstract is provided to allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.

Claims

What is claimed is: 1. A User Equipment (UE) supporting multi-band signaling in a network, the UE comprising transceiver and processing circuitry to:
receive, in multiple frequency band indicators (MFBI) signaling, an MFBI list that includes elements that correspond to evolved Universal Terrestrial Radio Access (E-UTRA) frequency bands on which neighboring LTE cells are operated, wherein each element of the MFBI list corresponds to an entry in one of a E-UTRA frequency and priority list and an E-UTRA frequency and priority extension list, and
connect to a neighboring LTE cell using information in an element of the MFBI list.
2. The UE of claim 1 , wherein each entry in the E-UTRA frequency and priority list and the E-UTRA frequency and priority extension list defines an evolved absolute radio frequency channel number (EARFCN) value and a priority value for the respective EARFCN.
3. The UE of claim 1 , wherein the MFBI list includes elements
corresponding to a Multiple E-UTRA frequency info extension list defined in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards.
4. The UE of claim 3, wherein a value corresponding to at least one E- UTRA band is in a range of 65-256.
5. The UE of claim 1 , wherein the MFBI list further includes elements corresponding to a Multiple E-UTRA frequency info list defined in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards.
6. The UE of claim 5, wherein a value corresponding to at least one E- UTRA frequency band is in a range of 1-64.
7. The UE of claim 5, wherein the MFBI list further includes one or more elements corresponding to a Multiple E-UTRA frequency info extension list.
8. The UE of claim 7, wherein the processing circuitry is further to:
select a value to be used for the corresponding E-UTRA frequency band based on a Multiple E-UTRA frequency info extension list element if the Multiple E-UTRA frequency info extension list element is not set to a placeholder value indicating that the Multiple E-UTRA frequency info extension list element is absent and select a value based on a Multiple E-UTRA frequency info list element otherwise.
9. The UE of claim 1 , wherein the MFBI list is received in a Type 19 System Information Block (SIB).
10. A Node-B operating in a universal mobile telecommunications system (UMTS) networks, the Node-B comprising processing circuitry to:
transmit multiple frequency band indicators (MFBI) signaling that includes an MFBI list, wherein the MFBI list includes elements corresponding to evolved Universal Terrestrial Radio Access (E-UTRA) frequency bands on which neighboring LTE cells are operated, and wherein each list element of the MFBI list corresponds to an entry in one of an E-UTRA frequency and priority list and an E-UTRA frequency and priority extension list.
11. The Node-B of claim 10, wherein a total count of elements for E-UTRA frequency and priority equals a sum of a number of entries in the E-UTRA frequency and priority list and a number of entries in the E-UTRA frequency and priority extension list.
12. The Node-B of claim 11 , wherein each entry in the E-UTRA frequency and priority list and the E-UTRA frequency and priority extension list defines an evolved absolute radio frequency channel number (EARFCN) value and a priority value for the respective EARFCN.
13. The Node-B of claim 10, wherein:
the MFBI list includes a Multiple E-UTRA frequency info extension list defined in accordance with a standard of the 3rd Generation Partnership Project (3 GPP) family of standards, and wherein a value corresponding to at least one E- UTRA frequency band is in the range of 65-256.
14. The Node-B of claim 10, wherein the MFBI list includes a Multiple E- UTRA frequency info list defined in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards; and wherein a value corresponding to at least one E-UTRA frequency band is in a range of 1 -64.
15. A non-transitory computer-readable storage medium that stores instructions for execution by one or more processors to perform operations for supporting multi-band signaling in a network, the operations to configure the one or more processors to:
receive, in multiple frequency band indicators (MFBI) signaling, an MFBI list that includes elements that correspond to evolved Universal Terrestrial Radio Access (E-UTRA) frequency bands on which neighboring LTE cells are operated, wherein each element of the MFBI list corresponds to an entry in one of the E-UTRA frequency and priority list and the E-UTRA frequency and priority extension list, and wherein each entry in the E-UTRA frequency and priority list and the E-UTRA frequency and priority extension list defines an evolved absolute radio frequency channel number (EARFCN) value and a priority value for the respective EARFCN.
16. The no n- transitory machine-readable medium of claim 15, wherein the MFBI list includes a Multiple E-UTRA frequency info extension list defined in accordance with a standard of the 3rd Generation Partnership Project (3GPP) family of standards, and wherein a value corresponding to at least one E-UTRA frequency band is in a range of 65-256.
17. The no n- transitory machine-readable medium of claim 16, wherein the MFBI list includes a Multiple E-UTRA frequency info list defined in accordance with a standard of the 3GPP family of standards, and wherein a value corresponding to at least one E-UTRA frequency band is in a range of 1 -64.
18. The non-transitory machine-readable medium of claim 16, wherein the MFBI list includes, in addition to the Multiple E-UTRA frequency info extension list, a Multiple E-UTRA frequency info list defined in accordance with a standard of the 3GPP) family of standards, and wherein a value within the Multiple E-UTRA frequency info list is in the range of 1-64.
19. A method of supporting multi-band signaling in a network, the method comprising:
receiving, multiple frequency band indicators (MFBI) signaling that includes an MFBI list, an MFBI list that includes list elements corresponding to evolved Universal Terrestrial Radio Access (E-UTRA) frequency bands on which neighboring LTE cells are operated, and
connecting to a neighboring LTE cell based on information in a list element of the MFBI list.
20. The method of claim 19, wherein
each element of the MFBI list corresponds to an entry in the E-UTRA frequency and priority list or the E-UTRA frequency and priority extension list, each entry in the E-UTRA frequency and priority list and the E-UTRA frequency and priority extension list defines an evolved absolute radio frequency channel number (EARFCN) value and a priority value for the respective EARFCN, and
the MFBI list includes a Multiple E-UTRA frequency info extension list and a Multiple E-UTRA frequency info list defined in accordance with a standard of the 3rd Generation Partnership Project (3 GPP) family of standards and the method further comprises selecting a value to be used for the corresponding E-UTRA frequency band based on the Multiple E-UTRA frequency info extension list element if the Multiple E-UTRA frequency info extension list element is not set to a placeholder value indicating that the Multiple E-UTRA frequency info extension list element is absent and selecting a value based on the Multiple E-UTRA frequency info list element otherwise.
PCT/US2014/063434 2013-10-31 2014-10-31 Signaling extended earfcn and e-utra bands in umts networks WO2015066476A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480051911.5A CN105557051A (en) 2013-10-31 2014-10-31 Signaling extended EARFCN and E-UTRA bands in UMTS networks
EP14856919.7A EP3064012B1 (en) 2013-10-31 2014-10-31 Signaling extended earfcn and e-utra bands in umts networks
ES14856919T ES2715699T3 (en) 2013-10-31 2014-10-31 Signaling of earfcn and e-utra bands extended in umts networks
US15/026,788 US9867206B2 (en) 2013-10-31 2014-10-31 Signaling extended EARFCN and E-UTRA bands in UMTS networks
EP18168131.3A EP3367737A1 (en) 2013-10-31 2014-10-31 Signaling extended earfcn and e-utra bands in umts networks
HK16111234.5A HK1223222A1 (en) 2013-10-31 2016-09-23 Signaling extended earfcn and e-utra bands in umts networks umts earfcn e-utra
US15/862,181 US10075966B2 (en) 2013-10-31 2018-01-04 Signaling extended EARFCN and E-UTRA bands in UMTS networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361898425P 2013-10-31 2013-10-31
US61/898,425 2013-10-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/026,788 A-371-Of-International US9867206B2 (en) 2013-10-31 2014-10-31 Signaling extended EARFCN and E-UTRA bands in UMTS networks
US15/862,181 Continuation US10075966B2 (en) 2013-10-31 2018-01-04 Signaling extended EARFCN and E-UTRA bands in UMTS networks

Publications (1)

Publication Number Publication Date
WO2015066476A1 true WO2015066476A1 (en) 2015-05-07

Family

ID=52995317

Family Applications (11)

Application Number Title Priority Date Filing Date
PCT/US2014/055835 WO2015065608A1 (en) 2013-10-31 2014-09-16 Systems, methods, and devices for efficient device-to-device channel contention
PCT/US2014/056909 WO2015065619A1 (en) 2013-10-31 2014-09-23 User equipment and mobility management entity and methods for periodic update in cellular networks
PCT/US2014/057895 WO2015065631A1 (en) 2013-10-31 2014-09-26 Synchronization of device to device communication
PCT/US2014/057896 WO2015065632A1 (en) 2013-10-31 2014-09-26 Resource selection in device to device communication
PCT/US2014/061498 WO2015065761A1 (en) 2013-10-31 2014-10-21 Techniques and configurations associated with user equipment-initiated congestion reporting
PCT/US2014/061569 WO2015065768A1 (en) 2013-10-31 2014-10-21 Signaling for inter-cell d2d discovery in an lte network
PCT/US2014/062349 WO2015065881A1 (en) 2013-10-31 2014-10-27 Resource allocation for d2d discovery in an lte network
PCT/US2014/062533 WO2015065947A1 (en) 2013-10-31 2014-10-28 User equipment and evolved node-b and methods for operation in a coverage enhancement mode
PCT/US2014/062811 WO2015066123A1 (en) 2013-10-31 2014-10-29 Wireless local area network (wlan) connectivity option discovery
PCT/US2014/063080 WO2015066281A1 (en) 2013-10-31 2014-10-30 User equipment and methods of bearer operation for carrier aggregation
PCT/US2014/063434 WO2015066476A1 (en) 2013-10-31 2014-10-31 Signaling extended earfcn and e-utra bands in umts networks

Family Applications Before (10)

Application Number Title Priority Date Filing Date
PCT/US2014/055835 WO2015065608A1 (en) 2013-10-31 2014-09-16 Systems, methods, and devices for efficient device-to-device channel contention
PCT/US2014/056909 WO2015065619A1 (en) 2013-10-31 2014-09-23 User equipment and mobility management entity and methods for periodic update in cellular networks
PCT/US2014/057895 WO2015065631A1 (en) 2013-10-31 2014-09-26 Synchronization of device to device communication
PCT/US2014/057896 WO2015065632A1 (en) 2013-10-31 2014-09-26 Resource selection in device to device communication
PCT/US2014/061498 WO2015065761A1 (en) 2013-10-31 2014-10-21 Techniques and configurations associated with user equipment-initiated congestion reporting
PCT/US2014/061569 WO2015065768A1 (en) 2013-10-31 2014-10-21 Signaling for inter-cell d2d discovery in an lte network
PCT/US2014/062349 WO2015065881A1 (en) 2013-10-31 2014-10-27 Resource allocation for d2d discovery in an lte network
PCT/US2014/062533 WO2015065947A1 (en) 2013-10-31 2014-10-28 User equipment and evolved node-b and methods for operation in a coverage enhancement mode
PCT/US2014/062811 WO2015066123A1 (en) 2013-10-31 2014-10-29 Wireless local area network (wlan) connectivity option discovery
PCT/US2014/063080 WO2015066281A1 (en) 2013-10-31 2014-10-30 User equipment and methods of bearer operation for carrier aggregation

Country Status (11)

Country Link
US (26) US9572171B2 (en)
EP (15) EP3064016B1 (en)
JP (4) JP6253788B2 (en)
KR (3) KR101969268B1 (en)
CN (13) CN105580477B (en)
BR (1) BR112016006844A2 (en)
ES (5) ES2708174T3 (en)
FI (1) FI3419317T3 (en)
HK (10) HK1223222A1 (en)
HU (5) HUE042854T2 (en)
WO (11) WO2015065608A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9374151B2 (en) 2013-08-08 2016-06-21 Intel IP Corporation Coverage extension level for coverage limited device
US9554305B2 (en) 2013-09-17 2017-01-24 Intel IP Corporation User equipment, port control protocol server, and methods for signaling device and application feedback
US9674852B2 (en) 2013-10-31 2017-06-06 Intel IP Corporation Radio link failure handling for dual connectivity
WO2018034452A1 (en) * 2016-08-17 2018-02-22 엘지전자 주식회사 Method for transmitting frame in wireless lan system, and wireless terminal using method
WO2018190622A1 (en) * 2017-04-10 2018-10-18 Samsung Electronics Co., Ltd. Method and user equipment (ue) for cell reselection in connected mode thereof
WO2019098533A1 (en) * 2017-11-14 2019-05-23 엘지전자 주식회사 Method by which terminal for supporting dual connectivity between e-utra and nr transmits and receives signal, and terminal for performing same
US10389457B2 (en) 2017-11-03 2019-08-20 Qualcomm Incorporated Techniques for efficient connected mode measurements in a new radio wireless communication system
US10834663B2 (en) 2016-10-06 2020-11-10 At&T Mobility Ii Llc Blind multi-frequency band indicator selection

Families Citing this family (317)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172769A1 (en) * 2012-05-16 2013-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a communications network
JP6122951B2 (en) * 2012-06-15 2017-04-26 ノキア ソリューションズ アンド ネットワークス オサケユキチュア Dynamic control of network selection
US9001736B2 (en) * 2012-12-13 2015-04-07 Sony Corporation Network-controlled terminal-to-terminal direct communication in wireless telecommunication network
US9854495B2 (en) * 2013-01-11 2017-12-26 Lg Electronics Inc. Radio link failure reporting in a system using multiple cells
KR102093485B1 (en) * 2013-02-19 2020-03-25 삼성전자주식회사 Apparatus and method for providing service access control in packet data communication system
US9713124B2 (en) * 2013-07-12 2017-07-18 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
EP3022982B1 (en) * 2013-07-19 2018-10-31 LG Electronics Inc. Method and apparatus for performing random access procedure in wireless communication system
EP3098994B1 (en) * 2013-10-31 2021-01-27 HTC Corporation Method of handling coverage enhancement in wireless communication system
KR101769114B1 (en) * 2013-10-31 2017-08-17 후아웨이 테크놀러지 컴퍼니 리미티드 Sending node and buffer status reporting method
CN105706511B (en) * 2013-10-31 2019-07-12 Lg电子株式会社 The method of the D2D operation executed in a wireless communication system by terminal and the terminal for using this method
GB2519975A (en) * 2013-11-01 2015-05-13 Nec Corp Communication system
CA2929354C (en) 2013-11-01 2024-01-09 Samsung Electronics Co., Ltd. Apparatus and method for allocating resource and transmitting/receiving resource allocation information in communication system supporting device to device scheme
EP3064002B1 (en) * 2013-11-01 2021-02-24 Telefonaktiebolaget LM Ericsson (publ) A radio node and method for selectively providing syncronization information for a device-to-device (d2d) communication
US9924555B2 (en) * 2013-11-06 2018-03-20 Nokia Technologies Oy Method and apparatus for controlling D2D discovery process
JP2015095675A (en) * 2013-11-08 2015-05-18 株式会社Nttドコモ Mobile communication method
US9603127B2 (en) * 2013-11-08 2017-03-21 Lg Electronics Inc. Method and apparatus for allocating resources for performing device-to-device communication in wireless communication system
US9967842B2 (en) * 2013-11-11 2018-05-08 Lg Electronics Inc. Method for detecting synchronization signal for device-to-device (D2D) communication in wireless communication system and apparatus therefor
US10039086B2 (en) * 2013-11-11 2018-07-31 Electronics And Telecommunications Research Institute Communication method and apparatus in network environment where terminal may have dual connectivity to multiple base stations
ES2790682T3 (en) * 2013-11-27 2020-10-28 Lg Electronics Inc Method of scanning resources for direct device-to-device communication in a wireless communication system and apparatus for it
CN105706508A (en) 2013-12-06 2016-06-22 富士通株式会社 Method and apparatus for sending D2D discovery signal, and communications system
US9756678B2 (en) * 2013-12-13 2017-09-05 Sharp Kabushiki Kaisha Systems and methods for multi-connectivity operation
CN109951837B (en) * 2013-12-18 2020-12-11 中兴通讯股份有限公司 Method for information interaction in small cell environment, base station and mobile management entity
US10342035B2 (en) * 2013-12-25 2019-07-02 Lg Electronics Inc. Method for reporting a buffer status and device therefor
US9894699B2 (en) * 2013-12-30 2018-02-13 Nokia Technologies Oy Methods and apparatuses for proximity-based service
US10034197B2 (en) * 2014-01-08 2018-07-24 Nokia Solutions and Netowrks Oy Method and apparatus for performing congestion mitigation and barring
CN104780549A (en) * 2014-01-10 2015-07-15 夏普株式会社 Physical channel configuration method, base station and user equipment
EP3099092B1 (en) * 2014-01-21 2020-01-08 LG Electronics Inc. Method for determining terminal identifier in wireless communication system supporting device-to-device communication and apparatus for same
CN106416411B (en) * 2014-01-22 2019-10-18 三星电子株式会社 Avoided in communication system of the holding equipment to equipment scheme random access send and equipment to equipment send between conflict device and method
US10411838B2 (en) * 2014-01-23 2019-09-10 Qualcomm Incorporated Coverage enhancements with carrier aggregation
WO2015109961A1 (en) * 2014-01-24 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for transmitting d2d synchronization signals
WO2015109528A1 (en) 2014-01-24 2015-07-30 华为技术有限公司 Device and synchronization method thereof in device to device communication
WO2015109569A1 (en) * 2014-01-26 2015-07-30 华为技术有限公司 Resources allocation method and device
US9893855B2 (en) * 2014-01-26 2018-02-13 Lg Electronics Inc. Method for transmitting synchronization signal and synchronization channel in wireless communication system supporting device-to-device communication and apparatus for the same
US10075381B2 (en) * 2014-01-28 2018-09-11 Mediatek Inc. Buffer status report and logical channel prioritization for dual connectivity
CN109951281B (en) * 2014-01-28 2022-04-22 华为技术有限公司 Security key changing method, base station and computer readable storage medium
RU2656339C2 (en) * 2014-01-28 2018-06-05 Хуавей Текнолоджиз Ко., Лтд. Method of configuration of the radio bearer, base station and system
US9763201B2 (en) * 2014-01-28 2017-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Power control method in mixed cellular and D2D network and UE
US9763210B2 (en) * 2014-01-30 2017-09-12 Intel Corporation Evolved node-B and user equipment and methods for operation in a coverage enhancement mode
US10219269B2 (en) 2014-01-30 2019-02-26 Qualcomm Incorporated Mixed size expression peer discovery in WWAN
CN105940747B (en) 2014-01-30 2019-06-11 日本电气株式会社 Machine To Machine (M2M) terminal, base station, method and computer-readable medium
US10587493B2 (en) * 2014-01-30 2020-03-10 Nokia Technologies Oy Device to device discovery resource allocation
JP2015142363A (en) * 2014-01-30 2015-08-03 株式会社Nttドコモ mobile station, re-connection request method, base station and re-connection request processing method
WO2015115573A1 (en) * 2014-01-31 2015-08-06 京セラ株式会社 Communication control method
JP5869013B2 (en) * 2014-01-31 2016-02-24 株式会社Nttドコモ Mobile station and uplink data transmission method
WO2015119753A2 (en) * 2014-02-05 2015-08-13 Utc Fire & Security Americas Corporation, Inc. Uploading data from mobile devices
US9288694B2 (en) * 2014-02-07 2016-03-15 Nokia Solutions And Networks Oy Partial failure handling of bearer mapping in dual connectivity
WO2015120902A1 (en) * 2014-02-14 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Pcrf assisted apn selection
JP2015154243A (en) * 2014-02-14 2015-08-24 ソニー株式会社 Terminal apparatus, program and method
WO2015124186A1 (en) * 2014-02-20 2015-08-27 Nokia Solutions And Networks Oy Configuring physical channel resources for sounding or discovery in a half duplex communication environment
US9635655B2 (en) * 2014-02-24 2017-04-25 Intel Corporation Enhancement to the buffer status report for coordinated uplink grant allocation in dual connectivity in an LTE network
US20170078957A1 (en) * 2014-03-06 2017-03-16 Nokia Technologies Oy Method and apparatus for determining ims connectivity through non-3gpp access networks
TWI612837B (en) * 2014-03-11 2018-01-21 財團法人資訊工業策進會 Direct mode communication system and communication resource scheduling method thereof
CN106105273B (en) * 2014-03-18 2019-08-16 夏普株式会社 Wireless communication system, terminal installation, wireless communications method and integrated circuit
EP3122142A4 (en) 2014-03-20 2017-11-01 Kyocera Corporation User terminal, communications control method, and base station
ES2774961T3 (en) * 2014-03-21 2020-07-23 Alcatel Lucent Dual connectivity network
US9585106B2 (en) * 2014-03-27 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Network-assisted channel selection and power control for mobile devices
EP3125633B1 (en) * 2014-03-28 2021-09-01 LG Electronics Inc. Method for transmitting and receiving signal in wireless communication system supporting device-to-device communication and apparatus therefor
US9877259B2 (en) 2014-03-31 2018-01-23 Huawei Technologies Co., Ltd. Dynamic energy-efficient transmit point (TP) muting for virtual radio access network (V-RAN)
WO2015156634A1 (en) * 2014-04-10 2015-10-15 엘지전자(주) Method and device for performing synchronization between terminals in wireless communication system
WO2015160158A1 (en) * 2014-04-13 2015-10-22 엘지전자(주) Method for managing d2d terminal group in wireless communication system and apparatus for same
KR20160146703A (en) 2014-04-24 2016-12-21 엘지전자 주식회사 Method for transmitting synchronization signal for d2d communication in wireless communication system and apparatus therefor
US20170055265A1 (en) * 2014-05-02 2017-02-23 Sharp Kabushiki Kaisha A mechanism of resource-pool configurations for device-to-device communication
CN107683615B (en) * 2014-05-05 2020-12-22 瑞典爱立信有限公司 Method, apparatus and storage medium for protecting WLCP message exchange between TWAG and UE
CN106233806A (en) * 2014-05-07 2016-12-14 株式会社Ntt都科摩 Mobile station, base station, uplink data amount method for reporting and the resource allocation methods of uplink data
EP2950460A3 (en) * 2014-05-08 2016-02-17 Acer Incorporated A method of forming n-hop synchronous network for d2d communication and devices using the same
WO2015170937A1 (en) * 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Method and apparatus for performing communication by d2d communication terminal
LT3141006T (en) * 2014-05-09 2021-01-25 Deutsche Telekom Ag Improving device to device communication
JP6410844B2 (en) * 2014-05-09 2018-10-24 ドイッチェ テレコム アーゲー Method for improving or enabling radio coverage for a mobile communication network, user equipment adapted to have improved radio coverage, relay user equipment adapted to provide improved radio coverage to the user equipment, System, mobile communication network, program and computer program product for improving or enabling radio coverage for user equipment
EP3141037B1 (en) 2014-05-09 2019-04-24 Telefonaktiebolaget LM Ericsson (publ) Uplink reconfiguration for split bearer in dual connectivity
EP3151621B1 (en) 2014-05-27 2020-10-28 LG Electronics Inc. Method and apparatus for wireless device to device communication
US9591497B2 (en) * 2014-05-30 2017-03-07 Apple Inc. Wireless link quality monitoring
WO2015187068A1 (en) * 2014-06-02 2015-12-10 Telefonaktiebolaget L M Ericsson (Publ) Merging proxy
CN104010300B (en) * 2014-06-09 2018-05-15 宇龙计算机通信科技(深圳)有限公司 Data transmission method
KR101904443B1 (en) * 2014-06-13 2018-10-05 애플 인크. Enhanced prach scheme for power savings, range improvement and improved detection
EP3160201B1 (en) * 2014-06-20 2019-03-27 LG Electronics Inc. Method for determining resource for device-to-device (d2d) communication in wireless communication system and apparatus therefor
CN111954266B (en) * 2014-06-23 2024-04-09 北京三星通信技术研究有限公司 Data distribution method and device for split bearing in double connection
CN106664583B (en) * 2014-06-25 2020-03-03 诺基亚通信公司 Network assisted alternate coverage in a cellular communication network
CN106416405A (en) * 2014-06-27 2017-02-15 夏普株式会社 Resource pool access for device to device communications
US10128936B2 (en) * 2014-07-07 2018-11-13 Lg Electronics Inc. Method and device for transmitting and receiving D2D signal by relay terminal in wireless access system supporting device-to-device communication
CN104080110A (en) * 2014-07-17 2014-10-01 开曼群岛威睿电通股份有限公司 Calling control device and method based on service priority
CN105282783B (en) * 2014-07-22 2020-03-27 中兴通讯股份有限公司 Method, device and system for reporting power headroom report in dual connectivity
JP6639395B2 (en) * 2014-07-29 2020-02-05 シャープ株式会社 Terminal device, communication method, and integrated circuit
CN106489285B (en) * 2014-08-05 2019-11-19 华为技术有限公司 D2D terminal, system and D2D have found method
US10306699B2 (en) * 2014-08-06 2019-05-28 Ntt Docomo, Inc. User equipment and base station
US10225810B2 (en) 2014-08-06 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving synchronization signal in device-to-device communication system
CN106576332B (en) * 2014-08-07 2020-11-17 株式会社Ntt都科摩 User device, base station, and inter-frequency D2D signal monitoring method
EP3195684A1 (en) * 2014-08-08 2017-07-26 Telefonaktiebolaget LM Ericsson (publ) Handling d2d resource grant procedures
WO2016021820A1 (en) * 2014-08-08 2016-02-11 Lg Electronics Inc. Method for processing a packet data convergence protocol re-ordering function at a user equipment in a dual connectivity system and device therefor
CN105338639A (en) * 2014-08-08 2016-02-17 中兴通讯股份有限公司 Method for measuring and reporting device to device (D2D) resource pool and equipment
KR101990478B1 (en) 2014-08-08 2019-06-18 후아웨이 테크놀러지 컴퍼니 리미티드 Method and device for reporting buffer status report
US9788318B2 (en) * 2014-08-18 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Channel capacity on collision based channels
US9225889B1 (en) 2014-08-18 2015-12-29 Entropix, Inc. Photographic image acquisition device and method
US10299235B2 (en) * 2014-09-05 2019-05-21 Lg Electronics Inc. Method for performing communication between devices in wireless communication system and device for performing same
KR102295516B1 (en) 2014-09-15 2021-08-31 후아웨이 테크놀러지 컴퍼니 리미티드 Communication method, communication system and relevant device of wearable device
US9888044B2 (en) 2014-09-15 2018-02-06 Reliance Jio Infocomm Usa, Inc. Extending communication services to a consumption device using a proxy device
WO2016043566A2 (en) * 2014-09-21 2016-03-24 엘지전자 주식회사 D2d relay method of terminal in wireless communication system, and apparatus therefor
WO2016048069A1 (en) 2014-09-24 2016-03-31 엘지전자 주식회사 Method for transmitting d2d signal and terminal therefor
EP3198956B1 (en) * 2014-09-25 2022-04-06 Samsung Electronics Co., Ltd. Synchronization procedure and resource control method and apparatus for communication in d2d system
GB2530566A (en) * 2014-09-26 2016-03-30 Nec Corp Communication system
US9980159B2 (en) * 2014-09-26 2018-05-22 Mediatek Inc. RRC re-establishment on secondary eNodeB for dual connectivity
EP3202210A1 (en) * 2014-10-03 2017-08-09 Telefonaktiebolaget LM Ericsson (publ) Handling physical random access channel transmissions in multi-carrier scenarios
EP3205156B1 (en) * 2014-10-10 2020-05-20 Telefonaktiebolaget LM Ericsson (publ) Signal quality measurement for device-to-device communication
WO2016064196A1 (en) * 2014-10-21 2016-04-28 엘지전자 주식회사 Method for transmitting/receiving d2d signal in wireless communication system and apparatus therefor
WO2016070418A1 (en) * 2014-11-07 2016-05-12 华为技术有限公司 Paging message transmission method, base station, mobility management entity, and user equipment
US9807713B2 (en) * 2014-11-14 2017-10-31 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization in communications networks
WO2016076676A1 (en) * 2014-11-16 2016-05-19 엘지전자 주식회사 Method for reporting information related to d2d performed by terminal in wireless communication system
US10595184B2 (en) * 2014-11-19 2020-03-17 Telefonaktiebolaget Lm Ericsson (Publ) D2D discovery
US20160157254A1 (en) * 2014-11-26 2016-06-02 Samsung Electronics Co., Ltd. Methods and apparatus for control information resource allocation for d2d communications
US10448332B2 (en) * 2014-12-02 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up for D2D communication
CN109195119B (en) * 2014-12-04 2022-03-08 财团法人工业技术研究院 Resource selection method and wireless device
CN107005799B (en) * 2014-12-08 2020-06-30 Lg 电子株式会社 Method for performing device-to-device communication in wireless communication system and device for performing the method
JP6455779B2 (en) * 2014-12-15 2019-01-23 パナソニックIpマネジメント株式会社 Radio base station apparatus, radio communication system, frequency allocation method, and radio resource allocation method
KR102410216B1 (en) 2014-12-18 2022-06-17 엘지전자 주식회사 Method for reconfiguring a pdcp reordering timer in a wireless communication system and device therefor
US9867153B2 (en) * 2014-12-18 2018-01-09 Qualcomm Incorporated Distributed synchronization of IoE devices
EP3041310B1 (en) * 2014-12-23 2018-09-26 HTC Corporation Methods of handling simultaneous communications and related communication devices
TWI556663B (en) * 2014-12-25 2016-11-01 宏達國際電子股份有限公司 Device and method of handling failure in communications with multiple base stations
US10530627B2 (en) * 2015-01-02 2020-01-07 Lg Electronics Inc. Method for performing D2D operation in wireless communication system, and terminal using same
WO2016111222A1 (en) * 2015-01-08 2016-07-14 シャープ株式会社 Terminal apparatus, base station apparatus, wireless communication method, and integrated circuit
US9992806B2 (en) * 2015-01-15 2018-06-05 Intel IP Corporation Public safety discovery and communication using a UE-to-UE relay
US20180020441A1 (en) * 2015-01-25 2018-01-18 Titus Lo Collaborative transmission by mobile devices
EP3048852B1 (en) * 2015-01-26 2018-04-04 ASUSTek Computer Inc. Method and apparatus for improving beam finding in a wireless communication system
US11089648B2 (en) * 2015-01-30 2021-08-10 Kyocera Corporation User terminal for executing dual connectivity
US10555345B2 (en) * 2015-01-30 2020-02-04 Qualcomm Incorporated Random access procedure and broadcast prioritization for machine type communications (MTC)
US20160224973A1 (en) * 2015-02-01 2016-08-04 Apple Inc. User interface for payments
EP3254506B1 (en) * 2015-02-06 2022-09-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and supporting the transmission of signals in communication system supporting device to device scheme
EP3247148B1 (en) * 2015-02-09 2019-05-15 Huawei Technologies Co., Ltd. Rlc data packet offloading method, and base station
WO2016129269A2 (en) * 2015-02-12 2016-08-18 Nec Corporation Method and system for device to device communication
EP4231678A3 (en) 2015-02-23 2023-11-08 Panasonic Intellectual Property Corporation of America Application specific integrated circuit for improved paging procedures for user equipments requiring coverage extension
US20160262001A1 (en) * 2015-03-03 2016-09-08 Samsung Electronics Co., Ltd. Method for managing resource utilization for multi-hop device discovery and device to device communication
WO2016144076A1 (en) 2015-03-06 2016-09-15 Lg Electronics Inc. Method and apparatus for configuring frame structure and frequency hopping for mtc ue in wireless communication system
US20170251465A1 (en) * 2015-03-09 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Reducing reference signals when communicating multiple sub-subframes between a base station and a wireless terminal
WO2016144009A1 (en) * 2015-03-12 2016-09-15 엘지전자 주식회사 Method and terminal for controlling network traffic in wireless communication system
CN106211025B (en) * 2015-03-18 2021-07-09 北京三星通信技术研究有限公司 Method and equipment for establishing relay connection in D2D broadcast communication-based network
US10641901B2 (en) * 2015-03-20 2020-05-05 Qualcomm Incorporated Autonomous satellite automatic gain control
US10397805B2 (en) * 2015-03-25 2019-08-27 Nec Corporation Communication device, communication system, and control method
US10555208B2 (en) * 2015-03-30 2020-02-04 Lg Electronics Inc. Method for performing a buffer status reporting in a wireless communication system and device therefor
KR102492047B1 (en) * 2015-04-01 2023-01-26 삼성전자주식회사 Method and apparatus for handling a priority in device to device communication system
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
US9826563B2 (en) 2015-04-09 2017-11-21 Sharp Kabushiki Kaisha Method and apparatus for sidelink direct discovery resource pool allocation for out-of-coverage wireless terminal
WO2016163644A1 (en) * 2015-04-09 2016-10-13 엘지전자 주식회사 Method and apparatus for performing cell reselection procedures for load distribution
CN107534982A (en) * 2015-04-10 2018-01-02 Lg电子株式会社 The method and apparatus of D2D signals is sent/receives for considering priority in a wireless communication system
WO2016182410A1 (en) 2015-05-14 2016-11-17 엘지전자 (주) Method for transmitting and receiving d2d signal in wireless communication system, and apparatus therefor
US9894702B2 (en) * 2015-05-14 2018-02-13 Intel IP Corporation Performing primary cell functions in a secondary cell
JP6657380B2 (en) * 2015-05-15 2020-03-04 華為技術有限公司Huawei Technologies Co.,Ltd. Information notification method, user terminal, first base station, and second base station
US9980215B2 (en) 2015-05-18 2018-05-22 Samsung Electronics Co., Ltd. System and method for access point selection with evolved packet data gateway
US10128993B2 (en) * 2015-05-29 2018-11-13 Huawei Technologies Co., Ltd. Systems and methods of adaptive frame structure for time division duplex
US10462723B2 (en) 2015-05-29 2019-10-29 Intel IP Corporation Seamless mobility for 5G and LTE systems and devices
US10333678B2 (en) 2015-05-29 2019-06-25 Huawei Technologies Co., Ltd. Systems and methods of adaptive frame structure for time division duplex
WO2016192043A1 (en) * 2015-06-02 2016-12-08 华为技术有限公司 Resource allocation method and apparatus
EP3304993B1 (en) 2015-06-02 2019-03-20 Telefonaktiebolaget LM Ericsson (PUBL) Resource pools for vehicular communications
US10165599B2 (en) * 2015-06-10 2018-12-25 Apple Inc. Random access procedures for link budget constrained wireless devices
CN104980993B (en) 2015-06-19 2017-05-17 广东欧珀移动通信有限公司 Network access method, mobile communication terminal, network server and network access system
US10111113B2 (en) 2015-06-19 2018-10-23 Qualcomm Incorporated Coverage enhancement level determination
EP3318097B1 (en) 2015-07-01 2020-11-11 LG Electronics Inc. Method for transmitting data in dual connectivity and a device therefor
US10278209B2 (en) * 2015-07-17 2019-04-30 Apple Inc. Random access mechanisms for link-budget-limited devices
US10638456B2 (en) * 2015-07-20 2020-04-28 Lg Electronics Inc. Resource allocation method for device-to-device communication in wireless communication system, and apparatus therefor
WO2017018538A1 (en) * 2015-07-30 2017-02-02 京セラ株式会社 Wireless terminal
CN107006046B (en) * 2015-07-31 2021-08-03 华为技术有限公司 Data transmission method and related equipment and system
WO2017023144A1 (en) * 2015-08-06 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for performing inter-carrier d2d communication
AR105638A1 (en) 2015-08-06 2017-10-25 ERICSSON TELEFON AB L M (publ) UPPER LINK HARQ PROCEDURE FOR MTC OPERATION
JP2017038276A (en) * 2015-08-11 2017-02-16 Kddi株式会社 Base station device, communication device, control method, and program
WO2017030338A1 (en) * 2015-08-14 2017-02-23 Lg Electronics Inc. Method and apparatus for delivering time-critical message between devices belonging to different cells in wireless communication system
US9806775B2 (en) * 2015-09-01 2017-10-31 Qualcomm Incorporated Multi-user multiple-input-multiple-output groupings of stations
US9860761B2 (en) 2015-09-01 2018-01-02 Qualcomm Incorporated Multi-user multiple-input-multiple-output grouping metrics
US10687196B2 (en) * 2015-09-15 2020-06-16 Qualcomm Incorporated Frequency determination for device-to-device transmissions and receptions
EP3352508B1 (en) * 2015-09-18 2020-05-20 LG Electronics Inc. Method and user equipment for transmitting uplink signal and prose signal
WO2017050500A1 (en) * 2015-09-25 2017-03-30 Sony Corporation Wireless telecommunications
EP3357288A4 (en) * 2015-10-02 2019-06-26 Intel IP Corporation User equipment (ue) and methods for registration of circuit-switched (cs) services in multi-mode operation
WO2017066932A1 (en) * 2015-10-21 2017-04-27 Panasonic Intellectual Property Corporation Of America User equipment, enodeb and wireless communication method
WO2017075831A1 (en) * 2015-11-06 2017-05-11 华为技术有限公司 Method, apparatus and system for information transmission
US9867226B2 (en) * 2015-12-14 2018-01-09 Qualcomm Incorporated Radio link failure (RLF) failover in a multi-connectivity environment
US10057272B2 (en) * 2015-12-15 2018-08-21 At&T Mobility Ii Llc Universal subscriber identity recognition and data classification
CN108464047B (en) * 2016-01-08 2023-05-23 日本电气株式会社 Wireless station system, wireless terminal and method thereof
WO2017122290A1 (en) * 2016-01-13 2017-07-20 富士通株式会社 Wireless communication device, wireless communication system, and processing method
CN108886808B (en) * 2016-02-05 2022-11-29 瑞典爱立信有限公司 Method and apparatus for random access coverage enhancement
WO2017146781A1 (en) * 2016-02-26 2017-08-31 Intel Corporation User equipment (ue) and method of sidelink communication in fifth generation (5g) new radio (nr) things networks
KR102456331B1 (en) * 2016-04-08 2022-10-19 삼성전자 주식회사 Method and Device for providing circuit switching service in wireless communication system
CN107343291B (en) * 2016-04-28 2021-11-12 中兴通讯股份有限公司 Antenna feeder system detection method, device and base station
EP3453131B1 (en) * 2016-05-04 2023-05-03 Apple Inc. User equipment (ue) and methods for reception of packets on a split radio bearer
CN109076393B (en) * 2016-05-06 2022-08-16 株式会社Ntt都科摩 User terminal and wireless communication method
CN107371247B (en) * 2016-05-13 2019-09-17 电信科学技术研究院 A kind of resource regulating method and equipment
US10508373B2 (en) 2016-05-13 2019-12-17 Nike, Inc. Embroidered article
US10609761B2 (en) 2016-05-18 2020-03-31 Apple Inc. Adaptive signal strength thresholds for peer-to-peer synchronization and data communication
JP6700972B2 (en) * 2016-05-23 2020-05-27 キヤノン株式会社 Communication device, control method, and program
US20170347311A1 (en) * 2016-05-25 2017-11-30 Qualcomm Incorporated Identification and/or profiling of stationary users and mobile users
US10674542B2 (en) * 2016-05-31 2020-06-02 Qualcomm Incorporated RACH combining across multiple attempts
EP3470880B1 (en) * 2016-06-08 2020-08-19 Panasonic Semiconductor Solutions Co., Ltd. Distance-measuring system and distance-measuring method
WO2017214933A1 (en) * 2016-06-16 2017-12-21 华为技术有限公司 Method and apparatus for low-power-consumption terminal to access network
CN115665857A (en) 2016-07-13 2023-01-31 三星电子株式会社 Access control method and apparatus for use in mobile communication
US11405777B2 (en) * 2016-07-15 2022-08-02 Nokia Solutions And Networks Oy Method and apparatus for controlling a ciphering mode
CN107659965B (en) * 2016-07-26 2023-05-05 北京三星通信技术研究有限公司 Resource selection method and equipment
CN107666681B (en) * 2016-07-29 2022-08-26 北京三星通信技术研究有限公司 Method and device for transmitting data
WO2018021803A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Data transmission method and device
WO2018031291A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Enhanced physical random-access channel transmission in new radio standard
US20200107381A1 (en) * 2016-08-10 2020-04-02 Interdigital Patent Holdings, Inc. Methods, apparatus, and systems for power efficient d2d communications for wearable and iot devices
JP6886511B2 (en) * 2016-08-11 2021-06-16 華為技術有限公司Huawei Technologies Co.,Ltd. Data transmission method and equipment
EP3498014B1 (en) * 2016-08-12 2021-10-20 Nokia Technologies Oy Long term evolution (lte) light connection enhancements for long term evolution (lte)-new radio access technology (nr) interworking
KR102606781B1 (en) * 2016-09-02 2023-11-27 삼성전자 주식회사 Method and apparatuss for efficient transmission and reception a data in a wireless communication system
WO2018062786A1 (en) * 2016-09-28 2018-04-05 엘지전자 주식회사 Method and apparatus for controlling srb
US11076442B2 (en) * 2016-09-28 2021-07-27 Lg Electronics Inc. Method and apparatus for controlling SRB
CN107889079B (en) * 2016-09-29 2023-10-31 中兴通讯股份有限公司 Resource use and transmission method and device, terminal and base station
CN107889186B (en) * 2016-09-30 2021-01-12 华为技术有限公司 Access control method, terminal equipment and wireless access network equipment
US10631301B2 (en) 2016-09-30 2020-04-21 Qualcomm Incorporated Positioning reference signal enhancements
US10869329B2 (en) * 2016-09-30 2020-12-15 Huawei Technologies Co., Ltd. Resource request method and system, and device
EP3524014B1 (en) * 2016-10-07 2022-04-13 Sony Group Corporation Dynamic access barring
WO2018074954A1 (en) * 2016-10-18 2018-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Determining module and method performed therein for handling dual connectivity in a communication network
WO2018080376A1 (en) * 2016-10-26 2018-05-03 Telefonaktiebolaget Lm Ericsson (Publ) 5g congestion control
CN106550490B (en) * 2016-10-31 2019-04-26 北京小米移动软件有限公司 A kind for the treatment of method and apparatus of Radio Link Failure
CN109906657B (en) * 2016-11-04 2021-03-09 华为技术有限公司 Resource multiplexing method, terminal and related equipment
US10291451B2 (en) * 2016-11-07 2019-05-14 Qualcomm Incorporated PRACH design for larger cell radius
CN108235281B (en) * 2016-12-12 2023-09-22 京东方科技集团股份有限公司 Application entity creation resource and registration method, communication node equipment and terminal equipment
DE102017203905B4 (en) * 2016-12-22 2022-11-10 Volkswagen Aktiengesellschaft Method for organizing communication between mobile radio network subscriber stations in a mobile radio cell, as well as mobile radio network subscriber station and mobile radio network management unit when using the method according to the invention
EP3566539B1 (en) * 2017-01-06 2021-03-17 Telefonaktiebolaget LM Ericsson (PUBL) Radio network node, wireless device, and methods performed therein for handling connections in a wireless communication network
US11122494B2 (en) * 2017-01-23 2021-09-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Access method, and terminal
CN110226359A (en) * 2017-02-01 2019-09-10 瑞典爱立信有限公司 Method for transmitting random accessing message in non-anchor carrier
US10304343B2 (en) * 2017-02-24 2019-05-28 At&T Mobility Ii Llc Flight plan implementation, generation, and management for aerial devices
EP3603197A4 (en) * 2017-03-20 2020-12-02 Nokia Technologies Oy Radio link management
KR102222830B1 (en) * 2017-03-21 2021-03-04 삼성전자 주식회사 Method and appatarus for supporting discontinuous reception mode of connected mode in mobile communication system
US11337172B2 (en) 2017-03-22 2022-05-17 Lg Electronics Inc. Method for transmitting or receiving sidelink synchronization signal in wireless communication system and apparatus therefor
EP3603168B1 (en) * 2017-03-23 2022-01-05 LG Electronics Inc. Method for transmitting lossless data packet based on quality of service (qos) framework in wireless communication system and a device therefor
CN110771194A (en) * 2017-03-23 2020-02-07 苹果公司 Systems, methods, and apparatus for measurement configuration by a secondary node in an EN-DC
WO2018175249A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Narrowband internet-of-things (nb-iot) enhacements
WO2018174791A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing dual connectivity communication and related network nodes and wireless terminals
CN108924949B (en) 2017-03-24 2021-07-16 华为技术有限公司 Communication method, device and system in wireless network
US10980077B2 (en) * 2017-04-01 2021-04-13 Lg Electronics Inc. Method for performing MCG recovery in dual connectivity in wireless communication system and a device therefor
US10644974B2 (en) 2017-05-04 2020-05-05 At&T Intellectual Property I, L.P. Measurements and radio link monitoring in a wireless communications system
US11032744B2 (en) 2017-05-04 2021-06-08 At&T Intellectual Property I, L.P. Inter-distributed unit beam switch procedure triggered by radio link interruption
EP3622750B1 (en) * 2017-05-10 2022-03-09 Telefonaktiebolaget LM Ericsson (PUBL) Methods and apparatus for handover control in a wireless communication network
WO2018227501A1 (en) * 2017-06-15 2018-12-20 Oppo广东移动通信有限公司 Data transmission method and device
US10511994B2 (en) * 2017-06-15 2019-12-17 Kt Corporation Methods for configuring buffer status report for next-generation mobile communication and apparatuses thereof
JP7199798B2 (en) * 2017-06-15 2023-01-06 シャープ株式会社 TERMINAL DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
US10880737B2 (en) * 2017-06-23 2020-12-29 Motorola Mobility Llc Method and apparatus for refreshing the security keys of a subset of configured radio bearers
KR102460648B1 (en) 2017-06-23 2022-10-31 모토로라 모빌리티 엘엘씨 Method and apparatus for implementing bearer specific changes as part of connection reconfiguration affecting the security keys used
CN109219015B (en) * 2017-07-06 2021-01-22 电信科学技术研究院 Resource selection method and device
US11172409B2 (en) 2017-07-13 2021-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for handover control of affiliated communication modules in a wireless communication network
CN109275187B (en) * 2017-07-17 2021-01-08 维沃移动通信有限公司 Random access method, terminal and computer readable storage medium
WO2019014904A1 (en) * 2017-07-20 2019-01-24 Oppo广东移动通信有限公司 Random access method and terminal device
CN109302745B (en) * 2017-07-25 2020-08-28 大唐移动通信设备有限公司 Frequency domain resource configuration method and base station
US20190045483A1 (en) * 2017-08-07 2019-02-07 Apple Inc. Methods for Device-to-Device Communication and Off Grid Radio Service
CN111034301B (en) 2017-08-11 2023-12-01 三星电子株式会社 Method and apparatus for supporting supplemental uplink frequencies
KR102042042B1 (en) * 2017-09-06 2019-12-03 경희대학교 산학협력단 Method of estimating carrier frequency offset and detecting user equipment information in D2D communication
US10666489B2 (en) * 2017-09-18 2020-05-26 Apple Inc. Synchronization sequence design for device-to-device communication
CN117915373A (en) * 2017-09-20 2024-04-19 诺基亚技术有限公司 Method, apparatus and computer program related to secondary cell group reactivation in a multi-radio access technology-dual connection
EP3461219B1 (en) * 2017-09-20 2023-12-13 HTC Corporation Base station for handling secondary cell group failure
US10985982B2 (en) * 2017-09-27 2021-04-20 Sonos, Inc. Proximal playback devices
WO2019061244A1 (en) * 2017-09-29 2019-04-04 Nokia Shanghai Bell Co., Ltd. Communications method, apparatus and computer program
KR102416552B1 (en) * 2017-09-29 2022-07-04 주식회사 케이엠더블유 TDD Sub-System of Distributed Antenna System using Time Division Duplexing
US10499398B2 (en) 2017-09-29 2019-12-03 At&T Intellectual Property I, L.P. Facilitating mobile device-assisted mobility enhancement to improve user plane interruption time
CN111279763B (en) * 2017-10-27 2022-05-24 Lg电子株式会社 Method for receiving sidelink signal by terminal in wireless communication system supporting sidelink and apparatus therefor
CN111345073A (en) * 2017-11-15 2020-06-26 三菱电机株式会社 Communication system, communication terminal device, and communication node
TWI682673B (en) * 2017-11-16 2020-01-11 財團法人工業技術研究院 User equipment and resource sensing and selection method thereof
WO2019095320A1 (en) * 2017-11-17 2019-05-23 Nokia Shanghai Bell Co., Ltd. Machine type communication physical downlink control channel order
WO2019095322A1 (en) 2017-11-17 2019-05-23 华为技术有限公司 Communication method and apparatus
US10880927B2 (en) * 2017-11-17 2020-12-29 Qualcomm Incorporated Mapping rules between synchronization signal blocks and random access channel resources
CN110022610A (en) 2018-01-10 2019-07-16 维沃移动通信有限公司 A kind of method received and sent messages, terminal device and the network equipment
US11277784B2 (en) * 2018-01-11 2022-03-15 Sony Corporation Wireless communications device and method
EP3739976B1 (en) 2018-02-09 2022-08-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting synchronization signals, and computer storage medium
US11757572B2 (en) * 2018-02-14 2023-09-12 Sharp Kabushiki Kaisha User equipments, base stations and methods for uplink transmission
WO2019169576A1 (en) * 2018-03-07 2019-09-12 Qualcomm Incorporated Coverage enhancement (ce) level and transmit power determination techniques for user equipment (ue) in extended coverage
US10952104B2 (en) * 2018-03-12 2021-03-16 T-Mobile Usa, Inc. Methods and systems for cellular-preferred logic for mobile devices
KR102339529B1 (en) * 2018-04-05 2021-12-14 텔레폰악티에볼라겟엘엠에릭슨(펍) Configuration of radio resources
EP3777288B1 (en) 2018-04-13 2023-10-11 Nokia Technologies Oy Cell grouping for beam management
CN108650696A (en) * 2018-05-03 2018-10-12 南京邮电大学 A kind of wireless sense network cluster head selection method of high energy efficiency
WO2019216577A1 (en) 2018-05-11 2019-11-14 엘지전자 주식회사 Method for transmitting and receiving signal by terminal supporting dual connectivity between e-utra and nr and terminal for performing same method
US11665735B2 (en) * 2018-05-14 2023-05-30 Qualcomm Incorporated Request and response techniques for wireless systems
WO2019224893A1 (en) * 2018-05-21 2019-11-28 株式会社Nttドコモ Communication device
WO2019237364A1 (en) * 2018-06-15 2019-12-19 Oppo广东移动通信有限公司 Method for sequential transfer of data, and network device and terminal device
CN110636612B (en) 2018-06-21 2021-03-23 维沃移动通信有限公司 Resource allocation method, node and storage medium
EP3815419A1 (en) * 2018-06-29 2021-05-05 Koninklijke Philips N.V. Wlan client congestion detection and reporting
US10681559B2 (en) * 2018-06-29 2020-06-09 Verizon Patent And Licensing Inc. Method and system for supporting voice calls in 5G new radio environments
WO2020017872A1 (en) * 2018-07-16 2020-01-23 Samsung Electronics Co., Ltd. Method and system for handling radio link failure in multi-rat dual connectivity system
KR102653862B1 (en) * 2018-07-24 2024-04-03 삼성전자주식회사 Electronic device for displaying indicator regarding network and method thereof
US11191124B2 (en) 2018-07-24 2021-11-30 Samsung Electronics Co., Ltd Electronic device for displaying indicator regarding network and method thereof
CN110798903B (en) * 2018-08-01 2022-05-24 维沃移动通信有限公司 Reconfiguration method and terminal
US11818672B2 (en) 2018-08-10 2023-11-14 Apple Inc. In-device coordination of sidelink over LTE and NR PC5 interfaces
US11050610B2 (en) * 2018-08-14 2021-06-29 FG Innovation Company Limited Reporting master node radio link failure
CN110891291A (en) * 2018-09-07 2020-03-17 华为技术有限公司 Method and apparatus for transmitting and receiving control information
EP3854174B1 (en) * 2018-09-18 2024-01-10 Telefonaktiebolaget LM Ericsson (publ.) Device discovery using sidelink discovery messages
WO2020067975A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Mtc rach report extension
WO2020067813A1 (en) 2018-09-27 2020-04-02 Samsung Electronics Co., Ltd. Apparatus and method for performing dual connectivity in wireless communication system
US10945204B2 (en) * 2018-10-05 2021-03-09 Itron, Inc. Battery power management for a cellular device
CN111050419B (en) * 2018-10-11 2022-03-22 维沃移动通信有限公司 Wireless link recovery method, terminal, secondary base station and storage medium
KR102423126B1 (en) * 2018-10-26 2022-07-21 삼성전자주식회사 Electronic device and control method thereof
CN111132371B (en) * 2018-11-01 2022-03-11 维沃移动通信有限公司 Method for establishing sub-link connection and resource allocation, terminal and network side equipment
US11968704B2 (en) * 2018-11-09 2024-04-23 Lg Electronics Inc. Method and device for carrying out preemption operation in NR V2X
US10952083B2 (en) 2018-11-12 2021-03-16 At&T Intellectual Property I, L.P. Network optimization and control for wireless networks
KR20200073811A (en) 2018-12-14 2020-06-24 삼성전자주식회사 Electronic device supporting secondary node addition and method therefor
CN114727328A (en) * 2018-12-14 2022-07-08 华为技术有限公司 Fault determination method and device
KR102011666B1 (en) 2018-12-28 2019-08-19 주식회사 온페이스 D-to-D system using 5G small cell, and the method therefor
US11882613B2 (en) * 2019-01-21 2024-01-23 Sony Group Corporation Terminal device, infrastructure equipment and methods
US20220110171A1 (en) * 2019-02-14 2022-04-07 Ntt Docomo, Inc. Network node
CN111565425B (en) * 2019-02-14 2021-08-27 华为技术有限公司 Communication method, communication apparatus, and computer-readable storage medium
US10805874B1 (en) 2019-02-25 2020-10-13 Sprint Communications Company L.P. Frequency channel lock in wireless data relays
WO2020198625A1 (en) * 2019-03-27 2020-10-01 Apple Inc. Base station, user equipment and corresponding methods for redirection from gsm edge radio access network (geran) bands to evolved umts terrestrial radio access network (eutran) bands
TWI750619B (en) * 2019-03-28 2021-12-21 南韓商Lg電子股份有限公司 Method of operating transmitting ue in relation to rlf reporting in wireless communication system
CN111757555B (en) * 2019-03-29 2023-01-13 大唐移动通信设备有限公司 Connection processing method and device
CN111867116B (en) * 2019-04-30 2022-07-12 华为技术有限公司 Communication method and device
CN113993106B (en) * 2019-05-14 2024-03-01 上海朗帛通信技术有限公司 Method and apparatus in a node for wireless communication
US11632766B2 (en) * 2019-06-17 2023-04-18 Cypress Semiconductor Corporation Devices, systems and methods for dynamically allocating portions of channels to different communication protocols
US10939359B2 (en) * 2019-06-24 2021-03-02 Nxp B.V. Location-based communication
US10834618B1 (en) * 2019-08-05 2020-11-10 Sprint Communications Company L.P. Wireless communication network access using different functionality splits for different communication services
EP3809655B1 (en) * 2019-10-14 2023-10-04 Volkswagen AG Wireless communication device and corresponding apparatus, method and computer program
EP3809653B1 (en) * 2019-10-14 2022-09-14 Volkswagen AG Wireless communication device and corresponding apparatus, method and computer program
CN112752241B (en) * 2019-10-31 2022-11-11 成都鼎桥通信技术有限公司 Method and device for switching overlay mode of eMTC terminal
EP4059279A1 (en) * 2019-11-15 2022-09-21 Telefonaktiebolaget LM Ericsson (publ) Priority management for d2d communication devices as synchronization source
CN110839227B (en) * 2019-11-25 2022-05-10 重庆邮电大学 D2D resource allocation method and device for densely distributed user groups of cellular system
US10644786B1 (en) * 2019-12-12 2020-05-05 Cabin Management Solutions, Llc. Plug-and-play vehicle communication system and method
US11646826B2 (en) * 2020-01-29 2023-05-09 Qualcomm Incorporated Message repetition configurations for random access procedures
US20210314965A1 (en) * 2020-04-03 2021-10-07 Comcast Cable Communications, Llc Wireless Resource Selection
KR20220018794A (en) * 2020-08-07 2022-02-15 삼성전자주식회사 Electronic device supporting device to device comunication and method thereof
JP7198245B2 (en) * 2020-09-02 2022-12-28 Kddi株式会社 TERMINAL DEVICE, CONTROL METHOD, AND PROGRAM FOR PERFORMING CELL SELECTION ACCORDING TO FREQUENCY BAND PRIORITIES
US20220104064A1 (en) * 2020-09-25 2022-03-31 Verizon Patent And Licensing Inc. Admission and congestion control service
US11595879B2 (en) 2021-02-19 2023-02-28 At&T Intellectual Property I, L.P. Fine grained access barring of aggressive cellular devices
US11889320B2 (en) * 2021-02-25 2024-01-30 David Clark Company Incorporated System and method for hosting and transitioning to a wireless network
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection
US11342973B1 (en) * 2021-10-19 2022-05-24 King Faisal University System and method for maintaining link communications in millimeter wave cellular networks
WO2023150931A1 (en) * 2022-02-09 2023-08-17 Apple Inc. Technologies for non-seamless wireless local area access offload

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013443A1 (en) * 1999-03-16 2003-01-16 Telefonaktiebolaget Lm Ericsson Handover in a shared radio access network environment using subscriber-dependent neighbor cell lists
US20130044690A1 (en) * 2005-07-20 2013-02-21 Interdigital Technology Corporation Method and system for supporting an evolved utran

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685396B2 (en) 1992-11-17 1997-12-03 株式会社クボタ Sample display equipment for vending machines
US6424673B1 (en) * 2000-11-10 2002-07-23 Motorola, Inc. Method and apparatus in a wireless communication system for facilitating detection of, and synchronization with, a predetermined synchronization signal
US20050254469A1 (en) * 2002-04-17 2005-11-17 Shaily Verma Wireless local area network (wlan) as a public land mobile network for wlan/telecommunications system interworking
US7983242B2 (en) 2003-08-18 2011-07-19 Qualcomm, Incorporated Packet data service with circuit-switched call notification
WO2005084128A2 (en) 2004-03-04 2005-09-15 Outsmart Ltd. Integration of packet and cellular telephone networks
JP4394541B2 (en) 2004-08-23 2010-01-06 日本電気株式会社 COMMUNICATION DEVICE, DATA COMMUNICATION METHOD, AND PROGRAM
WO2006056882A1 (en) * 2004-11-29 2006-06-01 Nokia Corporation System, devices and methods using an indication of complementary access availability
US8072948B2 (en) 2005-07-14 2011-12-06 Interdigital Technology Corporation Wireless communication system and method of implementing an evolved system attachment procedure
DE102005050416B3 (en) * 2005-10-19 2007-04-19 Siemens Ag A method for issuing alarm messages to subscriber terminals of a radio communication system
EP2083529A3 (en) * 2005-10-21 2009-08-05 Telefonaktiebolaget LM Ericsson (publ) Measurement reporting in a cellular telecommunications system
CN101305630B (en) * 2005-11-09 2011-11-16 艾利森电话股份有限公司 Selection of radio resource in radio network communication
US8432899B2 (en) 2007-02-22 2013-04-30 Aylus Networks, Inc. Systems and methods for enabling IP signaling in wireless networks
US8565766B2 (en) * 2007-02-05 2013-10-22 Wefi Inc. Dynamic network connection system and method
ES2634685T3 (en) 2006-06-20 2017-09-28 Interdigital Technology Corporation Transfer facilitation in a wireless communication system
CN100411470C (en) 2006-07-31 2008-08-13 华为技术有限公司 Method and system for processing joint position service Gs interface fault
US8159980B2 (en) 2006-10-03 2012-04-17 Nokia Corporation PS network with CS service enabling functionality
EP1936837B1 (en) * 2006-12-20 2009-06-17 NTT DoCoMo Inc. Apparatus for synchronizing a first transmit and receive device to a second transmit and receive device
EP2101509A4 (en) * 2006-12-28 2012-08-29 Fujitsu Ltd Wireless communication system, base station, and random access channel transmission method
KR101248542B1 (en) * 2007-01-10 2013-04-03 닛본 덴끼 가부시끼가이샤 Wireless communication terminal device, access point device, wireless communication system, and information service method and information fetching method in the system
US7873710B2 (en) * 2007-02-06 2011-01-18 5O9, Inc. Contextual data communication platform
US8630281B2 (en) 2007-07-10 2014-01-14 Qualcomm Incorporated Coding methods of communicating identifiers in peer discovery in a peer-to-peer network
EP2028890B1 (en) * 2007-08-12 2019-01-02 LG Electronics Inc. Handover method with link failure recovery, wireless device and base station for implementing such method
US8687565B2 (en) * 2007-09-20 2014-04-01 Lg Electronics Inc. Method of effectively transmitting radio resource allocation request in mobile communication system
CN101141822B (en) * 2007-09-30 2011-05-25 中兴通讯股份有限公司 Gateway selecting method of wireless network
US8948749B2 (en) * 2007-10-12 2015-02-03 Qualcomm Incorporated System and method to facilitate acquisition of access point base stations
CN101426194A (en) * 2007-10-29 2009-05-06 华为技术有限公司 Method, system and network side equipment for registration
WO2009067061A1 (en) * 2007-11-22 2009-05-28 Telefonaktiebolaget L M Ericsson (Publ) A method for registering a mobile terminal in a mobile radio communication system
US20090175324A1 (en) 2008-01-04 2009-07-09 Qualcomm Incorporated Dynamic interference control in a wireless communication network
US8588057B2 (en) 2008-01-18 2013-11-19 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for radio link failure recovery in a telecommunication system
US8644190B2 (en) 2008-01-28 2014-02-04 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for network access discovery and selection
US8213405B2 (en) 2008-02-01 2012-07-03 Qualcomm Incorporated Wireless network synchronization
US20090268635A1 (en) 2008-04-29 2009-10-29 Gallagher Michael D Method and Apparatus for Mapping E-UTRAN Cells at Call Establishment
US8428609B2 (en) * 2008-05-02 2013-04-23 Pine Valley Investments, Inc. System and method for managing communications in cells within a cellular communication system
EP2134126A1 (en) * 2008-05-14 2009-12-16 NEC Corporation Method for controlling the network selection by the home operator of a mobile user equipment capable of operating in mobile networks and fixed-wireless networks
KR20090124788A (en) 2008-05-30 2009-12-03 삼성전자주식회사 Handover method and apparatus in mobile communication network
US9717042B2 (en) * 2008-06-04 2017-07-25 Nokia Solutions And Networks Oy Network discovery and selection
US8077638B2 (en) * 2008-06-26 2011-12-13 Qualcomm Incorporated Methods and apparatus for providing quality of service in a peer to peer network
US8391879B2 (en) * 2008-11-10 2013-03-05 Qualcomm Incorporated Methods and apparatus for supporting distributed scheduling using quality of service information in a peer to peer network
US8644338B2 (en) 2009-01-07 2014-02-04 Qualcomm Incorporated Unbundling packets received in wireless communications
CN102084711A (en) 2009-02-01 2011-06-01 华为技术有限公司 Method and corresponding system for user equipment access, and network access equipment
EP2216965B1 (en) 2009-02-05 2015-08-12 Thomson Licensing Method for managing data transmission between peers according to levels of priority of transmitted and received data and associated management device
CN102334368B (en) 2009-02-24 2016-03-09 诺基亚技术有限公司 For the method and apparatus communicated
US8107883B2 (en) * 2009-03-23 2012-01-31 Nokia Corporation Apparatus and method for interference avoidance in mixed device-to-device and cellular environment
US9351340B2 (en) * 2009-04-08 2016-05-24 Nokia Technologies Oy Apparatus and method for mode selection for device-to-device communications
JP5322006B2 (en) 2009-04-23 2013-10-23 独立行政法人情報通信研究機構 Time allocation method for radio communication, time allocation device, and radio communication system
ATE540498T1 (en) * 2009-04-27 2012-01-15 Ericsson Telefon Ab L M METHOD FOR PERFORMING LAYER 2 PROCESSING USING A DISTRIBUTED MEMORY ARCHITECTURE
WO2010125427A1 (en) 2009-04-30 2010-11-04 Nokia Corporation Method and apparatus for managing device-to-device interference
JP5538544B2 (en) * 2009-08-25 2014-07-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Mobility anchor relocation
CN101998590B (en) * 2009-08-25 2015-05-20 中兴通讯股份有限公司 User reachable realization method and multimode terminal
JP2013505612A (en) 2009-09-21 2013-02-14 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Caching in mobile networks
KR20110038571A (en) 2009-10-08 2011-04-14 한국전자통신연구원 Serving base station for deciding handover failure type in the wireless mobile communication system
US8542636B2 (en) 2010-01-04 2013-09-24 Lili Qiu Vehicular content distribution
EP2524543B1 (en) 2010-01-11 2018-11-07 Nokia Solutions and Networks Oy Network selection mechanisms
US20110199905A1 (en) * 2010-02-12 2011-08-18 Interdigital Patent Holdings, Inc. Access control and congestion control in machine-to-machine communication
CN102158896B (en) * 2010-02-12 2014-01-01 华为技术有限公司 Method and device for treating local link congestion
ES2614610T3 (en) 2010-04-01 2017-06-01 Alcatel Lucent Carrier aggregation optimized for handover
US8780698B2 (en) 2010-04-01 2014-07-15 Lg Electronics Inc. Signal processing method in wireless communication system and device therefor
US20110267948A1 (en) 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
EP3082361B1 (en) 2010-06-10 2018-06-06 Huawei Technologies Co., Ltd. Method, apparatus, and system for selecting public land mobile network
US8359038B2 (en) * 2010-06-15 2013-01-22 Nokia Corporation Channel access for local heterogeneous communication in a cellular network
WO2012008887A1 (en) * 2010-07-13 2012-01-19 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements relating to mobility control information
MX2013000520A (en) * 2010-07-30 2013-04-03 Deutsche Telekom Ag Method and program for cell barring in a cellular network.
JP5698843B2 (en) 2010-08-13 2015-04-08 華為技術有限公司Huawei Technologies Co.,Ltd. Method for providing information, mobile station apparatus, base station apparatus, and communication apparatus
US8837443B2 (en) * 2010-08-13 2014-09-16 Sharp Kabushiki Kaisha Reducing congestion in wireless communication networks
US8838111B2 (en) * 2010-09-09 2014-09-16 Panasonic Intellectual Property Corporation Of America Communication system, communication method, mobile terminal, and base station device
CN102413494B (en) 2010-09-21 2016-06-01 北京三星通信技术研究有限公司 A kind of method detecting Radio Link Failure or handoff failure reason
GB2484117A (en) 2010-09-30 2012-04-04 Fujitsu Ltd Automated network coverage hole detection by systematically modifying a connection reestablishment timer (T311) in a number of UEs
TWI446806B (en) * 2010-10-14 2014-07-21 Wistron Corp Method for pear to pear signal synchronization and the blue tooth device and system using the same
US9560682B2 (en) * 2010-11-05 2017-01-31 Qualcomm Incorporated Methods and apparatus for resource allocations to support peer-to-peer communications in cellular networks
DE102011014323A1 (en) * 2010-12-28 2012-06-28 Beda Oxygentechnik Armaturen Gmbh Multiple secured coupling device for oxygen lances
US10027527B2 (en) 2011-02-08 2018-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for mobility support for caching adaptive HTTP streaming content in cellular networks
JP5285721B2 (en) * 2011-02-08 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ Communication control device and communication control method
JP4965718B1 (en) 2011-02-21 2012-07-04 株式会社エヌ・ティ・ティ・ドコモ Network access control method in mobile device, mobile device, and processor used in mobile device
US9173192B2 (en) 2011-03-17 2015-10-27 Qualcomm Incorporated Target cell selection for multimedia broadcast multicast service continuity
WO2012134138A2 (en) * 2011-03-28 2012-10-04 엘지전자 주식회사 Method for transmitting an uplink signal, method for receiving an uplink signal, user equipment, and base station
US9167447B2 (en) 2011-03-31 2015-10-20 Mediatek Inc. Failure event report for initial connection setup failure
KR101796271B1 (en) 2011-04-27 2017-11-10 주식회사 팬택 Apparatus And Method For Reporting Radio Link Failure
US9265078B2 (en) 2011-05-02 2016-02-16 Lg Electronics Inc. Method for performing device-to-device communication in wireless access system and apparatus therefor
EP2705697B1 (en) 2011-05-06 2017-03-08 Telefonaktiebolaget LM Ericsson (publ) Methods and nodes supporting cell change
US20140094183A1 (en) 2011-05-25 2014-04-03 Broadcom Corportion Resource allocation for d2d communication
US9137804B2 (en) 2011-06-21 2015-09-15 Mediatek Inc. Systems and methods for different TDD configurations in carrier aggregation
US8848638B2 (en) 2011-06-27 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US9949189B2 (en) 2011-07-11 2018-04-17 Interdigital Patent Holdings, Inc. Systems and methods for establishing and maintaining multiple cellular connections and/or interfaces
KR101896001B1 (en) * 2011-07-12 2018-09-06 한국전자통신연구원 Method of mobility management for mobile terminal in a heterogeneous network environment
DE102011052044A1 (en) 2011-07-21 2013-01-24 C. Rob. Hammerstein Gmbh & Co. Kg Fitting for an adjustment of a motor vehicle seat
US8977268B2 (en) 2011-07-21 2015-03-10 Alcatel Lucent Methods and systems for controlling handovers in a co-channel network
EP2740293B1 (en) 2011-08-04 2016-01-20 Telefonaktiebolaget L M Ericsson (publ) Improved handover robustness in cellular radio communications
KR101736877B1 (en) 2011-08-08 2017-05-17 삼성전자주식회사 Apparatas and method for distributing d2d id allocation scheme a noting wireless communication network in a user terminal
WO2013025027A2 (en) 2011-08-12 2013-02-21 Lg Electronics Inc. Method and apparatus for reporting statistic information associated with random access in a wireless communication system
EP2565817A1 (en) 2011-08-30 2013-03-06 Nokia Corporation Method and apparatus for close proximity device discovery
GB2494134B (en) * 2011-08-30 2014-01-15 Renesas Mobile Corp Method and apparatus for allocating device-to-device discovery portion
KR20130027965A (en) * 2011-09-08 2013-03-18 삼성전자주식회사 A method and apparatus for controlling in a near field communication network including a prurality of connections for direct communication between a device and a device
US9775079B2 (en) 2011-09-22 2017-09-26 Panasonic Intellectual Property Corporation Of America Method and apparatus for mobile terminal connection control and management of local accesses
US8848700B2 (en) * 2011-09-30 2014-09-30 Electronics And Telecommunications Research Institute Method for device-to-device communication based on cellular telecommunication system
US8688166B2 (en) 2011-10-17 2014-04-01 Intel Corporation Call establishment in highly congested network environment
KR101855229B1 (en) * 2011-10-27 2018-05-10 삼성전자주식회사 Method for performing synchronization between devices
GB2496153B (en) 2011-11-02 2014-07-02 Broadcom Corp Device-to-device communications
KR101953216B1 (en) 2011-11-11 2019-02-28 삼성전자주식회사 Method and apparatus for transmiting system information in mobile communucation system
US10271293B2 (en) * 2011-11-18 2019-04-23 Apple Inc. Group formation within a synchronized hierarchy of peer-to-peer devices
US9237485B2 (en) * 2011-11-18 2016-01-12 Qualcomm Incorporated Deferred measurement control reading of system information block (SIB) messages
WO2013077684A1 (en) 2011-11-24 2013-05-30 엘지전자 주식회사 Method for performing device-to-device communication in wireless access system and apparatus for same
US9991998B2 (en) * 2011-11-25 2018-06-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Ratio resource sharing and contention scheme for device-to-device communication in white space spectrum bands
US9083627B2 (en) 2011-12-20 2015-07-14 Cisco Technology, Inc. Assisted traffic engineering for minimalistic connected object networks
CN103188742B (en) * 2011-12-29 2015-11-25 华为技术有限公司 Communication handover method, subscriber equipment and base station
WO2013104413A1 (en) 2012-01-10 2013-07-18 Nokia Siemens Networks Oy Providing a radio bearer on a plurality of component carriers
GB2498395B (en) 2012-01-16 2014-10-08 Broadcom Corp A method and apparatus for modifying one or more cell reselection parameters
US9049698B2 (en) 2012-01-18 2015-06-02 Mediatek Inc. Method of enhanced connection recovery and cell selection
GB2498571A (en) 2012-01-20 2013-07-24 Intellectual Ventures Holding 81 Llc Base station able to communicate with a second device type on a narrow subset frequency band contained within a first main band
GB2498575A (en) * 2012-01-20 2013-07-24 Renesas Mobile Corp Device-to-device discovery resource allocation for multiple cells in a device-to-device discovery area
US9161322B2 (en) * 2012-01-25 2015-10-13 Ofinno Technologies, Llc Configuring base station and wireless device carrier groups
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
CN103327568B (en) * 2012-03-21 2016-12-14 中国移动通信集团公司 Resource allocation message sending method, method for discovering equipment and relevant device
KR102096258B1 (en) * 2012-03-21 2020-05-27 삼성전자 주식회사 Granular network access control and methods therof
EP2645783A1 (en) * 2012-03-30 2013-10-02 British Telecommunications Public Limited Company Access point detection
US20130267203A1 (en) * 2012-04-05 2013-10-10 Zu Qiang Sending plmn id at a shared wifi access
US20130265985A1 (en) * 2012-04-10 2013-10-10 Motorola Mobility, Inc. Wireless communication device, communication system and method for establishing data connectivity between a wireless communicaiton device and a first access network
KR101763094B1 (en) * 2012-04-11 2017-07-28 인텔 코포레이션 Operator-assisted device-to-device(d2d) discovery
KR102036778B1 (en) 2012-04-20 2019-10-25 엘지전자 주식회사 Method and device for transmitting d2d data in wireless communication system
WO2013160727A1 (en) * 2012-04-24 2013-10-31 Sony Mobile Communications Ab Network controlled extended access barring for multi - service user devices
CN103379617B (en) * 2012-04-26 2016-08-10 华为技术有限公司 A kind of subscriber equipment is to the communication means of subscriber equipment and subscriber equipment
US9516588B2 (en) * 2012-05-11 2016-12-06 Lg Electronics Inc. Method of selecting a cell in a wireless communication system and apparatus therefor
CN109982378A (en) * 2012-05-21 2019-07-05 三星电子株式会社 Method and apparatus for transmitting and receiving data in mobile communication system
EP2667678A2 (en) * 2012-05-21 2013-11-27 ZTE Corporation Co-existence support for 3GPP device and fixed device bearer transport over fixed broadband access network
JP5896829B2 (en) * 2012-05-22 2016-03-30 株式会社Nttドコモ Network access control method, mobile device and processor
CN107249197B (en) * 2012-06-04 2019-12-13 电信科学技术研究院 Method, system and equipment for reporting buffer status
TWI469718B (en) * 2012-07-09 2015-01-11 Aopen Inc Electronic device and wire fixing mechanism thereof
EP3547788B1 (en) * 2012-07-20 2020-09-16 LG Electronics Inc. Method and apparatus for transmitting device-to-device related message in wireless communication system
WO2014031989A1 (en) * 2012-08-23 2014-02-27 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
US8811363B2 (en) * 2012-09-11 2014-08-19 Wavemax Corp. Next generation network services for 3G/4G mobile data offload in a network of shared protected/locked Wi-Fi access points
CN104782185A (en) * 2012-09-13 2015-07-15 Lg电子株式会社 Operating method for acquiring system information in wireless communication system, and apparatus for supporting same
CN103686754B (en) 2012-09-17 2019-04-23 中兴通讯股份有限公司 A kind of band spreading capability reporting and the method and apparatus issued
US10142962B2 (en) 2012-10-05 2018-11-27 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (MTC) devices
CN102883451B (en) * 2012-10-12 2015-04-15 南京邮电大学 Cross layer design method of up resources of shared system by terminal direction connection technology
US9485710B2 (en) * 2012-11-06 2016-11-01 Lg Electronics Inc. Method for controlling access in wireless communication system and apparatus for supporting same
US9264930B2 (en) * 2012-11-07 2016-02-16 Qualcomm Incorporated Buffer status reporting and logical channel prioritization in multiflow operation
MX344890B (en) 2012-11-13 2017-01-10 Huawei Tech Co Ltd Method, base station and user equipment for transmitting data.
EP2925067B1 (en) * 2012-12-31 2018-02-28 Huawei Technologies Co., Ltd. Device-to-device communication method, apparatus and system
US20150358838A1 (en) * 2013-01-10 2015-12-10 Na Wei Buffer status reporting for dual connection
US9854495B2 (en) * 2013-01-11 2017-12-26 Lg Electronics Inc. Radio link failure reporting in a system using multiple cells
US9144091B2 (en) 2013-01-17 2015-09-22 Sharp Kabushiki Kaisha Devices for establishing multiple connections
WO2014110813A1 (en) 2013-01-18 2014-07-24 Mediatek Inc. Mechanism of rlf handling in small cell networks
US9986380B2 (en) * 2013-01-25 2018-05-29 Blackberry Limited Proximity and interest determination by a wireless device
WO2014119888A1 (en) * 2013-01-31 2014-08-07 Lg Electronics Inc. Method and apparatus for performing synchronization in wireless communication system
US9313730B2 (en) * 2013-02-15 2016-04-12 Blackberry Limited Public land mobile network (“PLMN”) discovery communications in a wireless network
US9955408B2 (en) 2013-02-22 2018-04-24 Samsung Electronics Co., Ltd. Network-assisted multi-cell device discovery protocol for device-to-device communications
WO2014142505A1 (en) * 2013-03-11 2014-09-18 엘지전자 주식회사 Method for receiving synchronization information for direct communication between user equipment and apparatus for same
US10219206B2 (en) * 2013-03-22 2019-02-26 Qualcomm Incorporated Selecting a network node based on precedence of network policies
WO2014165832A1 (en) * 2013-04-04 2014-10-09 Interdigital Patent Holdings, Inc. Methods for 3gpp wlan interworking for improved wlan usage through offload
US9735942B2 (en) 2013-04-05 2017-08-15 Qualcomm Incorporated Physical broadcast channel (PBCH) coverage enhancements for machine type communications (MTC)
ES2819205T3 (en) 2013-04-05 2021-04-15 Nokia Solutions & Networks Oy Avoid key mismatch in security treatment for multi-frequency band
WO2014182010A1 (en) 2013-05-06 2014-11-13 Lg Electronics Inc. Method and apparatus for controlling traffic steering in wireless communication system
US9526044B2 (en) 2013-05-08 2016-12-20 Lg Electronics Inc. Method of configuring dual connectivity to UE in heterogeneous cell deployment
US9332473B2 (en) 2013-05-09 2016-05-03 Sharp Kabushiki Kaisha Systems and methods for re-establishing a connection
KR20140136365A (en) * 2013-05-20 2014-11-28 삼성전자주식회사 Method and apparatus for selecting wlan efficiently
CN103313406B (en) * 2013-05-31 2016-01-20 西安电子科技大学 The Signalling exchange of X2 interface is adopted to complete the method for different districts D2D communication
CN103338497B (en) * 2013-06-14 2016-06-01 北京交通大学 Autonomous device discover method in a kind of D2D communication system
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
US20160135103A1 (en) 2013-07-17 2016-05-12 Lg Electronics Inc Method and apparatus for performing handover procedure for dual connectivity in wireless communication system
US9374151B2 (en) 2013-08-08 2016-06-21 Intel IP Corporation Coverage extension level for coverage limited device
US9648514B2 (en) 2013-08-09 2017-05-09 Blackberry Limited Method and system for protocol layer enhancements in data offload over small cells
CN105612804A (en) * 2013-08-09 2016-05-25 诺基亚通信公司 Use of packet status report from secondary base station to master base station in wireless network
US9414430B2 (en) * 2013-08-16 2016-08-09 Qualcomm, Incorporated Techniques for managing radio link failure recovery for a user equipment connected to a WWAN and a WLAN
US9258747B2 (en) 2013-09-17 2016-02-09 Intel IP Corporation User equipment and methods for fast handover failure recovery in 3GPP LTE network
CN105580456B (en) * 2013-09-27 2020-06-05 诺基亚技术有限公司 Method and apparatus for wireless device synchronization
EP2854460B1 (en) * 2013-09-27 2017-04-05 Sun Patent Trust Power control and power headroom reporting for dual connectivity
US9756531B2 (en) * 2013-09-30 2017-09-05 Lg Electronics Inc. Method for determining radio resource control configuration in a wireless communication system supporting dual connectivity and apparatus thereof
EP3059881B1 (en) 2013-10-20 2020-04-15 LG Electronics Inc. Method for detecting discovery signal for device-to-device communication in wireless communication system, and device for same
EP2863681B1 (en) 2013-10-21 2017-08-23 HTC Corporation Method of handling handover for dual connectivity communication device and communication device thereof
US9572171B2 (en) 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
CN110267306B (en) 2013-10-31 2022-11-04 日本电气株式会社 Radio communication system, base station apparatus, radio terminal, and communication control method
WO2015063963A1 (en) 2013-10-31 2015-05-07 日本電気株式会社 Wireless communication system, base station device, and wireless terminal
KR102102254B1 (en) * 2014-01-15 2020-04-20 삼성전자주식회사 Apparatus and method for congestion detection of wireless network in a communication system
US10506455B2 (en) 2014-01-16 2019-12-10 Nokia Solutions And Networks Oy Obtaining additional supported bands of neighbor cells via automatic neighbor relation (ANR)
EP3515135B1 (en) 2014-01-29 2021-03-10 Interdigital Patent Holdings, Inc. Resource selection for device to device discovery or communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013443A1 (en) * 1999-03-16 2003-01-16 Telefonaktiebolaget Lm Ericsson Handover in a shared radio access network environment using subscriber-dependent neighbor cell lists
US20130044690A1 (en) * 2005-07-20 2013-02-21 Interdigital Technology Corporation Method and system for supporting an evolved utran

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"On MFBI and EARFCN extension", GP-130569, 3GPP TSG GERAN#59, 26 August 2013 (2013-08-26), SOFIA, BULGARIA, XP050715662, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_geran/tsg_geran/GERAN_59_Sofia/Docs/ GP-130569.zip> *
CHRISTIAN BERGLJUNG: "LS on signalling of multiple frequency band indicators : prioritization of frequency bands supported", R2-122009, 3GPP TSG RAN WG2 MEETING #78, 21 May 2012 (2012-05-21), PRAGUE, CZECH REPUBLIC, XP050607715, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg2_r12/TSGR2_78/LSin/R2-122009.zip> *
WOONHEE HWANG: "DRAFT] LS on KeNB* generation in case of MFBI", R2-131153, 3GPP TSG RAN WG2 MEETING #81BIS, April 2013 (2013-04-01), CHICAGO, USA, XP050699361, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg2_r12/TSGR2_81bis/Docs/R2-131153.zip> *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9374151B2 (en) 2013-08-08 2016-06-21 Intel IP Corporation Coverage extension level for coverage limited device
US10305574B2 (en) 2013-08-08 2019-05-28 Intel IP Corporation Coverage extension level for coverage limited device
US9554305B2 (en) 2013-09-17 2017-01-24 Intel IP Corporation User equipment, port control protocol server, and methods for signaling device and application feedback
US9867206B2 (en) 2013-10-31 2018-01-09 Intel IP Corporation Signaling extended EARFCN and E-UTRA bands in UMTS networks
US10015807B2 (en) 2013-10-31 2018-07-03 Intel IP Corporation Radio link failure handling for dual connectivity
US9674852B2 (en) 2013-10-31 2017-06-06 Intel IP Corporation Radio link failure handling for dual connectivity
US9992781B2 (en) 2013-10-31 2018-06-05 Intel IP Corporation Signaling for inter-cell D2D discovery in an LTE network
US9999063B2 (en) 2013-10-31 2018-06-12 Intel IP Corporation Resource allocation for D2D discovery in an LTE network
US10009911B2 (en) 2013-10-31 2018-06-26 Intel IP Corporation User equipment and mobility management entity and methods for periodic update in cellular networks
US10015805B2 (en) 2013-10-31 2018-07-03 Intel IP Corporation User equipment and methods of bearer operation for carrier aggregation
US10512095B2 (en) 2013-10-31 2019-12-17 Intel IP Corporation User equipment and methods of bearer operation for carrier aggregation
US10075966B2 (en) 2013-10-31 2018-09-11 Intel IP Corporation Signaling extended EARFCN and E-UTRA bands in UMTS networks
US9826539B2 (en) 2013-10-31 2017-11-21 Intel IP Corporation Resource allocation for D2D discovery in an LTE network
US10136447B2 (en) 2013-10-31 2018-11-20 Intel IP Corporation Signaling for inter-cell D2D discovery in an LTE network
US10251187B2 (en) 2013-10-31 2019-04-02 Intel IP Corporation Resource allocation for D2D discovery in an LTE network
US11706793B2 (en) 2013-10-31 2023-07-18 Apple Inc. User equipment and methods of bearer operation for carrier aggregation
WO2018034452A1 (en) * 2016-08-17 2018-02-22 엘지전자 주식회사 Method for transmitting frame in wireless lan system, and wireless terminal using method
US10834663B2 (en) 2016-10-06 2020-11-10 At&T Mobility Ii Llc Blind multi-frequency band indicator selection
WO2018190622A1 (en) * 2017-04-10 2018-10-18 Samsung Electronics Co., Ltd. Method and user equipment (ue) for cell reselection in connected mode thereof
US10462681B2 (en) 2017-04-10 2019-10-29 Samsung Electronics Co., Ltd. Method and user equipment (UE) for cell reselection in connected mode thereof
US10389457B2 (en) 2017-11-03 2019-08-20 Qualcomm Incorporated Techniques for efficient connected mode measurements in a new radio wireless communication system
US10660098B2 (en) 2017-11-14 2020-05-19 Lg Electronics Inc. Method for transmitting and receiving signal by terminal supporting dual-connectivity between E-UTRA and NR and terminal performing the method
US11363598B2 (en) 2017-11-14 2022-06-14 Lg Electronics Inc. Method for transmitting and receiving signal by terminal supporting dual-connectivity between E-UTRA and NR and terminal performing the method
WO2019098533A1 (en) * 2017-11-14 2019-05-23 엘지전자 주식회사 Method by which terminal for supporting dual connectivity between e-utra and nr transmits and receives signal, and terminal for performing same

Also Published As

Publication number Publication date
JP2016531533A (en) 2016-10-06
EP3063992B1 (en) 2020-09-09
WO2015065947A1 (en) 2015-05-07
EP3064012A4 (en) 2017-06-14
HUE041804T2 (en) 2019-05-28
US20220279526A1 (en) 2022-09-01
EP3064012A1 (en) 2016-09-07
US9674852B2 (en) 2017-06-06
US20150117241A1 (en) 2015-04-30
US10251187B2 (en) 2019-04-02
US9992781B2 (en) 2018-06-05
US20230309137A1 (en) 2023-09-28
KR20160048952A (en) 2016-05-04
US10015805B2 (en) 2018-07-03
EP3064016A4 (en) 2017-06-07
ES2684747T3 (en) 2018-10-04
EP3063980B1 (en) 2019-11-20
KR20180036804A (en) 2018-04-09
CN105556994B (en) 2019-04-05
ES2690385T3 (en) 2018-11-20
EP3346740B1 (en) 2021-03-24
HK1223223A1 (en) 2017-07-21
EP3367737A1 (en) 2018-08-29
EP3063992A4 (en) 2017-07-19
CN111885675A (en) 2020-11-03
EP3064003A1 (en) 2016-09-07
US10015807B2 (en) 2018-07-03
US10779297B2 (en) 2020-09-15
KR20160039235A (en) 2016-04-08
BR112016006844A2 (en) 2017-08-01
EP3063882A1 (en) 2016-09-07
EP3064007B1 (en) 2018-06-20
US10142999B2 (en) 2018-11-27
HUE039962T2 (en) 2019-02-28
EP3419317A1 (en) 2018-12-26
CN105580464A (en) 2016-05-11
US9572171B2 (en) 2017-02-14
CN107645748B (en) 2021-06-18
US11706793B2 (en) 2023-07-18
US20180035441A1 (en) 2018-02-01
US10136447B2 (en) 2018-11-20
EP3064007A1 (en) 2016-09-07
EP3063982B1 (en) 2018-08-15
EP3063992B8 (en) 2021-01-20
EP3063982A4 (en) 2017-04-19
JP2018067937A (en) 2018-04-26
EP3064016B1 (en) 2018-10-31
US20160255602A1 (en) 2016-09-01
US10009911B2 (en) 2018-06-26
CN105594140A (en) 2016-05-18
EP3346740A1 (en) 2018-07-11
EP3758410A1 (en) 2020-12-30
ES2708174T3 (en) 2019-04-09
EP3419317B1 (en) 2023-05-31
US20150117332A1 (en) 2015-04-30
CN105594266B (en) 2019-06-18
WO2015065881A1 (en) 2015-05-07
HK1223478A1 (en) 2017-07-28
HK1223222A1 (en) 2017-07-21
EP3064013A1 (en) 2016-09-07
FI3419317T3 (en) 2023-07-12
US10849137B2 (en) 2020-11-24
CN105557052B (en) 2019-06-28
JP2016536828A (en) 2016-11-24
HUE040201T2 (en) 2019-02-28
CN105684529A (en) 2016-06-15
HUE040192T2 (en) 2019-02-28
US20200396748A1 (en) 2020-12-17
EP3063992A1 (en) 2016-09-07
US10075966B2 (en) 2018-09-11
US20160227496A1 (en) 2016-08-04
WO2015065632A1 (en) 2015-05-07
HK1224480A1 (en) 2017-08-18
EP3063980A1 (en) 2016-09-07
US11357018B2 (en) 2022-06-07
US9867206B2 (en) 2018-01-09
EP3064013A4 (en) 2017-04-05
CN108601085A (en) 2018-09-28
CN105594140B (en) 2018-12-04
CN105580477B (en) 2019-04-16
JP2017200210A (en) 2017-11-02
CN105684529B (en) 2019-06-21
WO2015065761A1 (en) 2015-05-07
HK1223225A1 (en) 2017-07-21
CN105580417A (en) 2016-05-11
US9832782B2 (en) 2017-11-28
US10375705B2 (en) 2019-08-06
CN105580477A (en) 2016-05-11
HK1223764A1 (en) 2017-08-04
US9826539B2 (en) 2017-11-21
KR101855018B1 (en) 2018-05-04
US20180317237A1 (en) 2018-11-01
US20190364575A1 (en) 2019-11-28
CN105556994A (en) 2016-05-04
CN105594266A (en) 2016-05-18
EP3064012B1 (en) 2019-02-20
EP3064001A1 (en) 2016-09-07
WO2015065768A1 (en) 2015-05-07
US20150117187A1 (en) 2015-04-30
US20150117425A1 (en) 2015-04-30
US20190306868A1 (en) 2019-10-03
JP6253788B2 (en) 2017-12-27
CN105580464B (en) 2019-07-09
CN105557051A (en) 2016-05-04
US20160255615A1 (en) 2016-09-01
EP3063883B1 (en) 2018-06-27
HUE042854T2 (en) 2019-07-29
US20170273095A1 (en) 2017-09-21
HK1223477A1 (en) 2017-07-28
EP3063980A4 (en) 2017-07-19
WO2015065631A1 (en) 2015-05-07
US20180020459A1 (en) 2018-01-18
EP3063883A1 (en) 2016-09-07
JP6437596B2 (en) 2018-12-12
ES2684085T3 (en) 2018-10-01
WO2015066123A1 (en) 2015-05-07
WO2015065608A1 (en) 2015-05-07
US20160234847A1 (en) 2016-08-11
US20160234855A1 (en) 2016-08-11
HK1258335A1 (en) 2019-11-08
EP3063882B1 (en) 2021-06-02
CN107645748A (en) 2018-01-30
EP3063883A4 (en) 2017-04-26
EP3064001A4 (en) 2017-09-20
WO2015065619A1 (en) 2015-05-07
WO2015066281A1 (en) 2015-05-07
US10397935B2 (en) 2019-08-27
HK1224482A1 (en) 2017-08-18
CN105580417B (en) 2019-04-23
CN105580440A (en) 2016-05-11
US20180199352A1 (en) 2018-07-12
US9999063B2 (en) 2018-06-12
EP3064003A4 (en) 2017-07-19
CN111885675B (en) 2023-08-04
KR101969268B1 (en) 2019-04-15
HK1223749A1 (en) 2017-08-04
US20150117183A1 (en) 2015-04-30
EP3064016A1 (en) 2016-09-07
EP3064007A4 (en) 2017-06-07
US20160219541A1 (en) 2016-07-28
US20180227932A1 (en) 2018-08-09
EP3063882A4 (en) 2017-04-05
US10512095B2 (en) 2019-12-17
US20180288778A1 (en) 2018-10-04
CN105557052A (en) 2016-05-04
US20150119015A1 (en) 2015-04-30
US20160227580A1 (en) 2016-08-04
JP6162330B2 (en) 2017-07-12
US20160255640A1 (en) 2016-09-01
EP3063982A1 (en) 2016-09-07
ES2715699T3 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
US10075966B2 (en) Signaling extended EARFCN and E-UTRA bands in UMTS networks
EP2962485B1 (en) Wireless local area network (wlan) traffic offloading
US20190379469A1 (en) Network symbol display in dual connectivity regions
US20160014667A1 (en) Apparatus, system and method of cellular network communications corresponding to a non-cellular network
US11240769B2 (en) System information for narrowband
CN107734581B (en) Handover on spectrum release for licensed shared access
US11553456B2 (en) RAN area ID configuration
US10165553B2 (en) Device and method of handling communication operations in a licensed frequency band and an unlicensed frequency band
WO2014110777A1 (en) Information exchange for cellular non-cellular interworking
KR102246506B1 (en) SC-MCCH segment scheduling for FeMTC and eNB-IoT
EP3257183B1 (en) Cellular and wlan aggregation
EP3447990B1 (en) Information transmission method and device
US9014712B2 (en) Selecting among spectrums within cells of a wireless communication network
CN111096010A (en) User device and base station device
CN110036573B (en) System information delivery
EP3226613B1 (en) Device and method of handling handover for different types of terminals
US10257757B2 (en) Device and method of handling connection transfer
EP3202187B1 (en) Transmission of wlan access parameters for a group of wlan ap
EP2706784A2 (en) Apparatuses and methods for switching data traffic between heterogeneous networks
US11683675B2 (en) User equipment, base station apparatus, and core network apparatus
CN109417737B (en) Method for transmitting data, access network equipment, terminal equipment and readable storage medium
CA2958300C (en) Increased carrier monitoring

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051911.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856919

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014856919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856919

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15026788

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE