WO2019061244A1 - Communications method, apparatus and computer program - Google Patents

Communications method, apparatus and computer program Download PDF

Info

Publication number
WO2019061244A1
WO2019061244A1 PCT/CN2017/104241 CN2017104241W WO2019061244A1 WO 2019061244 A1 WO2019061244 A1 WO 2019061244A1 CN 2017104241 W CN2017104241 W CN 2017104241W WO 2019061244 A1 WO2019061244 A1 WO 2019061244A1
Authority
WO
WIPO (PCT)
Prior art keywords
grant
free
resource pool
slot
uplink transmission
Prior art date
Application number
PCT/CN2017/104241
Other languages
French (fr)
Inventor
Yuantao Zhang
Yanji Zhang
Yi Zhang
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201780095428.0A priority Critical patent/CN111183689B/en
Priority to PCT/CN2017/104241 priority patent/WO2019061244A1/en
Publication of WO2019061244A1 publication Critical patent/WO2019061244A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • This disclosure relates to communications, and more particularly to a method, apparatus and computer program in a wireless communication system. More particularly the present invention relates to transmission patterns in a wireless communication system.
  • a communication system can be seen as a facility that enables communication between two or more devices such as user terminals, machine-like terminals, base stations and/or other nodes by providing communication channels for carrying information between the communicating devices.
  • a communication system can be provided for example by means of a communication network and one or more compatible communication devices.
  • the communication may comprise, for example, communication of data for carrying data for voice, electronic mail (email) , text message, multimedia and/or content data communications and so on.
  • Non-limiting examples of services provided include two-way or multi-way calls, data communication or multimedia services and access to a data network system, such as the Internet.
  • wireless systems include public land mobile networks (PLMN) , satellite based communication systems and different wireless local networks, for example wireless local area networks (WLAN) .
  • PLMN public land mobile networks
  • WLAN wireless local area networks
  • a local area wireless networking technology allowing devices to connect to a data network is known by the tradename WiFi (or Wi-Fi) .
  • WiFi is often used synonymously with WLAN.
  • the wireless systems can be divided into cells, and are therefore often referred to as cellular systems.
  • a base station provides at least one cell.
  • a user can access a communication system by means of an appropriate communication device or terminal capable of communicating with a base station.
  • nodes like base stations are often referred to as access points.
  • a communication device of a user is often referred to as user equipment (UE) .
  • UE user equipment
  • a communication device is provided with an appropriate signal receiving and transmitting apparatus for enabling communications, for example enabling communications with the base station and/or communications directly with other user devices.
  • the communication device can communicate on appropriate channels, e.g. listen to a channel on which a station, for example a base station of a cell, transmits.
  • a communication system and associated devices typically operate in accordance with a given standard or specification which sets out what the various entities associated with the system are permitted to do and how that should be achieved. Communication protocols and/or parameters which shall be used for the connection are also typically defined.
  • standardised radio access technologies include GSM (Global System for Mobile) , EDGE (Enhanced Data for GSM Evolution) Radio Access Networks (GERAN) , Universal Terrestrial Radio Access Networks (UTRAN) and evolved UTRAN (E-UTRAN) .
  • GSM Global System for Mobile
  • EDGE Enhanced Data for GSM Evolution) Radio Access Networks
  • UTRAN Universal Terrestrial Radio Access Networks
  • E-UTRAN evolved UTRAN
  • An example communication system architecture is the long-term evolution (LTE) of the Universal Mobile Telecommunications System (UMTS) radio-access technology.
  • the LTE is standardized by the third Generation Partnership Project (3GPP) .
  • the LTE employs the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access and a further
  • 5G may also be referred to as a New Radio (NR) network. Standardization of 5G or New Radio networks is an on-going study item.
  • a method comprising: receiving, at a user equipment; uplink transmission configuration information; and using the configuration information, by the user equipment, to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.
  • the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  • the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  • the user equipment determines a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  • the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
  • a number of grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
  • the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the user equipment.
  • using the configuration information comprises using a rule at the user equipment.
  • the method is for use in 5G ultra reliable low latency communications.
  • a method comprising: determining uplink transmission configuration information, the configuration information comprising a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment; and sending the configuration information to the one or more user equipment.
  • the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  • the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  • the method comprises providing to the one or more user equipment information of a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  • the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
  • a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
  • the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the one or more user equipment.
  • the method is for use in 5G ultra reliable low latency communications.
  • a computer program comprising program code means adapted to perform the method of the first aspect when the program is run on a data processing apparatus.
  • a computer program comprising program code means adapted to perform the method of the second aspect when the program is run on a data processing apparatus.
  • an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: receive, at the apparatus; uplink transmission configuration information; and use the configuration information to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the apparatus in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other apparatus.
  • the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  • the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  • the apparatus is configured to determine a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  • the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
  • a number of grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
  • the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the apparatus.
  • using the configuration information comprises using a rule at the apparatus.
  • the apparatus is configured for use in 5G ultra reliable low latency communications.
  • the apparatus comprises a user equipment.
  • an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: determine uplink transmission configuration information, the configuration information comprising a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment; and send the configuration information to the one or more user equipment.
  • the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  • the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  • the apparatus is configured to provide to the one or more user equipment information of a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  • the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
  • a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
  • the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the one or more user equipment.
  • the apparatus is configured for use in 5G ultra reliable low latency communications.
  • the apparatus comprises a network entity.
  • the apparatus comprises a base station.
  • Figure 1 shows a schematic example of a wireless communication system where the invention may be implemented
  • Figure 2 shows an example of a communication device
  • Figure 3 shows an example of a control apparatus
  • Figures 4A to 4C show example resource pool patterns
  • Figure 5 shows and example resource pool pattern
  • Figure 6 is a flow chart of a method according to an example
  • Figure 7 is a flow chart of a method according to an example.
  • a wireless communication devices for example, user equipment (UE) or MTC devices 102, 104, 105 are provided wireless access via at least one base station or similar wireless transmitting and/or receiving wireless infrastructure node or point.
  • a node can be, for example, a base station or an eNodeB (eNB) , or in a 5G system a Next Generation NodeB (gNB) , or other wireless infrastructure node.
  • eNB eNodeB
  • gNB Next Generation NodeB
  • Base stations are typically controlled by at least one appropriate controller apparatus, so as to enable operation thereof and management of mobile communication devices in communication with the base stations.
  • the controller apparatus may be located in a radio access network (e.g.
  • wireless communication system 100 or in a core network (CN) (not shown) and may be implemented as one central apparatus or its functionality may be distributed over several apparatus.
  • the controller apparatus may be part of the base station and/or provided by a separate entity such as a Radio Network Controller.
  • control apparatus 108 and 109 are shown to control the respective macro level base stations 106 and 107.
  • the control apparatus may additionally or alternatively be provided in a radio network controller.
  • Other examples of radio access system comprise those provided by base stations of systems that are based on technologies such as 5G or new radio, wireless local area network (WLAN) and/or WiMax (Worldwide Interoperability for Microwave Access) .
  • a base station can provide coverage for an entire cell or similar radio service area.
  • base stations 106 and 107 are shown as connected to a wider communications network 113 via gateway 112.
  • a further gateway function may be provided to connect to another network.
  • the smaller base stations 116, 118 and 120 may also be connected to the network 113, for example by a separate gateway function and/or via the controllers of the macro level stations.
  • the base stations 116, 118 and 120 may be pico or femto level base stations or the like. In the example, stations 116 and 118 are connected via a gateway 111 whilst station 120 connects via the controller apparatus 108. In some embodiments, the smaller stations may not be provided.
  • a possible wireless communication device will now be described in more detail with reference to Figure 2 showing a schematic, partially sectioned view of a communication device 200.
  • a communication device is often referred to as user equipment (UE) or terminal.
  • An appropriate mobile communication device may be provided by any device capable of sending and receiving radio signals.
  • Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, or any combinations of these or the like.
  • MS mobile station
  • PDA personal data assistant
  • a mobile communication device may provide, for example, communication of data for carrying communications such as voice, electronic mail (email) , text message, multimedia and so on. Users may thus be offered and provided numerous services via their communication devices. Non-limiting examples of these services comprise two-way or multi-way calls, data communication or multimedia services or simply an access to a data communications network system, such as the Internet. Users may also be provided broadcast or multicast data. Non-limiting examples of the content comprise downloads, television and radio programs, videos, advertisements, various alerts and other information.
  • a wireless communication device may be for example a mobile device, that is, a device not fixed to a particular location, or it may be a stationary device.
  • the wireless device may need human interaction for communication, or may not need human interaction for communication.
  • the terms UE or “user” are used to refer to any type of wireless communication device.
  • the wireless device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate apparatus for transmitting radio signals.
  • transceiver apparatus is designated schematically by block 206.
  • the transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement.
  • the antenna arrangement may be arranged internally or externally to the wireless device.
  • a wireless device is typically provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications with access systems and other communication devices.
  • the data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204.
  • the user may control the operation of the wireless device by means of a suitable user interface such as key pad 205, voice commands, touch sensitive screen or pad, combinations thereof or the like.
  • a display 208, a speaker and a microphone can be also provided.
  • a wireless communication device may comprise appropriate connectors (either wired or wireless) to other devices and/or for connecting external accessories, for example hands-free equipment, thereto.
  • the communication devices 102, 104, 105 may access the communication system based on various access techniques.
  • Figure 3 shows an example of a control apparatus for a communication system, for example to be coupled to and/or for controlling a station of an access system, such as a RAN node, e.g. a base station, gNB, a central unit of a cloud architecture or a node of a core network such as an MME or S-GW, a scheduling entity such as a spectrum management entity, or a server or host.
  • the control apparatus may be integrated with or external to a node or module of a core network or RAN.
  • base stations comprise a separate control apparatus unit or module.
  • the control apparatus can be another network element such as a radio network controller or a spectrum controller.
  • each base station may have such a control apparatus as well as a control apparatus being provided in a radio network controller.
  • the control apparatus 300 can be arranged to provide control on communications in the service area of the system.
  • the control apparatus 300 comprises at least one memory 301, at least one data processing unit 302, 303 and an input/output interface 304. Via the interface the control apparatus can be coupled to a receiver and a transmitter of the base station.
  • the receiver and/or the transmitter may be implemented as a radio front end or a remote radio head.
  • the control apparatus 300 or processor 201 can be configured to execute an appropriate software code to provide the control functions.
  • the present disclosure is related to 5G (NR) transmissions. More particularly, the present disclosure is associated with uplink (UL) grant-free transmissions for 5G Ultra-Reliable Low Latency Communications (URLLC) .
  • UL uplink
  • URLLC Ultra-Reliable Low Latency Communications
  • grant-free transmission can achieve lower latency and lower signalling overhead than grant-based transmission since the UE does not need to send a scheduling request and wait for UL grant before the data transmission. It has been accepted by NR to meet the stringent delay requirement in URLLC. NR discussions have also discussed enabling frequency hopping in repeated transmissions for diversity gain and so as to improve reliability.
  • the present inventors have identified that there may be problems that need to be overcome in introducing frequency hopping in association with grant-free UL transmissions. These identified problems include:
  • the base station shall control the amount of resources reserved for grant-free hopping transmission. However, a same diversity order may be needed regardless of whether there are a limited number or a high number of grant-free UEs.
  • ⁇ Support should be provided such that different UEs that are sharing the same resources may be configured with a different number of repetitions.
  • ⁇ Support should be provided such that different UEs that are sharing the same resources may be configured with different transmission periodicities.
  • the demodulation reference signal should be different for the camping UEs, such that the BS can estimate the channel for each UE and decode the data signal using an advanced receiver.
  • ⁇ Support should be provided to enable L1 reconfiguration of hopping transmission with a small signalling overhead.
  • a base station configures a resource pool (RP) hopping pattern to one or more UEs.
  • RP resource pool
  • uplink transmission configuration information is sent to, and received at, a UE. From this received configuration information the UE will know or can determine the available (grant-free) RPs that can be selected in each slot.
  • a user equipment can use the configuration information to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment
  • the RP pattern starts from slot 0 (i.e. a first slot) in system frame number (SFN) 0.
  • SFN system frame number
  • the RP pattern is the same in each group of X slots.
  • the RP pattern has a total of N RPs, and there are M RPs existing every other (P1-1) slots.
  • P1 represents the periodicity of the configured grant-free uplink transmission slots or occasions. In an example, for each RP the periodicity is P2.
  • the UE selects one RP (from the available RPs) to start the grant-free transmission.
  • the grant free transmission may therefore be based on the configured RP in slot 0 (a first slot) .
  • the grant free transmission may be further based on a slot index and a demodulation reference signal (DMRS) sequence ID.
  • DMRS demodulation reference signal
  • a user equipment can determine a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  • the demodulation reference signal parameter may comprise one of demodulation reference signal sequence ID and a demodulation reference signal pattern.
  • a configuration of RP patterns may include:
  • the UE is informed of or the UE can determine:
  • ⁇ N i.e., a total number of grant-free RPs in the RP pattern.
  • N X/P1.
  • the RPs may be indexed from 0 to N-1, with frequency in increasing order.
  • ⁇ M i.e., a number of RPs in each time slot that has RPs.
  • M X/P2.
  • the value N might be predefined.
  • the configuration information comprises information of a configured resource pool for a first slot (i.e. slot 0) , a periodicity of grant-free uplink transmission slots (or “occasions” ) , and a periodicity of each grant-free resource pool.
  • the configuration information may comprise information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  • a group of UEs may be configured with a same RP pattern, regardless of whether they are configured with the same or a different number of repetitions, and/or the same or different transmission periodicities.
  • a single rule is defined (specified) for all the UEs.
  • the rule determines the RP in each configured grant-free transmission occasion.
  • the rule may be based on the configured RP in slot 0, the slot index and the DMRS sequence ID and/or DMRS pattern.
  • the RP pattern could be modified by reconfiguring P1 and P2 in the DCI (downlink control information) .
  • the DCI might also reconfigure the camping RP in slot 0. Based on this, the UE may decide the camping RP and also hopping pattern following the same rule described above.
  • hopping is enabled by selecting a different RP in a different slot in a configured RP pattern.
  • the RP pattern has, in total, N RPs.
  • a low M value may be associated with cases where there is a limited number of grant-free URLLC UEs in a cell, and therefore a lower amount of resources could be reserved for grant-free UL.
  • a high or higher M value may be beneficial when the number of grant-free UEs becomes higher, in which case a BS can allocate more resources to accommodate those UEs with a low collision rate.
  • Figures 4A to 4C show example resource pool patterns.
  • Each of Figures 4A to to 4C represent a message frame 402.
  • the frame 402, in this example, comprises eight slots or subframes, shown at 404 to 418.
  • a first RP (RP0) is represented by the blocks with right-sloping hatching.
  • a second RP (RP1) is represented by the blocks with left-sloping hatching.
  • a third RP (RP2) is represented by the blocks with vertical hatching.
  • a fourth RP (RP3) is represented by the blocks with cross-hatching.
  • Each RP has a different frequency.
  • the frequency increases down the Figure, such that f (RP3) >f (RP2) >f (RP1) >f (RP0) .
  • There is also a frequency offset between each RP represented by double-headed arrows 420, 422 and 424.
  • first slot 404 comprises RP0 and RP1
  • N represents the number of RPs
  • M represents a number of RPs that are in each slot
  • X represents the number of available slots for containing the RP pattern
  • P1 indicates the periodicity of grant-free transmission occasion
  • P2 represents the periodicity of each grant-free resource pool. That is “P” defines periodicity.
  • a group of UEs may be configured with a same RP pattern. This may be regardless of whether they are configured with the same/different number of repetitions, and/or the same/different transmission periodicities. This enables BS controlled hopping. It may also enable orthogonal DMRS (demodulation reference signal) distribution in each RP in each grant-free transmission occasion or slot among the camped UEs.
  • orthogonal DMRS demodulation reference signal
  • a specific UE is configured with a RP in slot 0. All the UEs follow a single rule (i.e. each UE follows the same rule) to determine the RP for grant-free transmission.
  • a single rule i.e. each UE follows the same rule
  • a UE is configured with a RP #k in slot 0, then the RP#k in each of the slot ⁇ 0, 0+X, 0+2X, ...... ⁇ is available for grant-free transmission;
  • ⁇ DMRS_ID is the configured DMRS sequence ID
  • ⁇ b is the slot index
  • ⁇ RP_slot0 is the camping RP in slot 0;
  • ⁇ M is the number of RPs in each slot.
  • ⁇ N is the total number of RPs.
  • a number of grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use (i.e. M ⁇ N) .
  • FIG. 5 A further example is shown in Figure 5.
  • a first UE (UE1) is configured with RP0 in slot 0, DMRS sequence ID 0. Accordingly, following the above described rule, the determined hopping pattern for UE1 is ⁇ RP0, RP2, RP1, RP3 ⁇ .
  • a second UE (UE2) is configured with RP1 in slot 0, and DMRS sequence ID 0. Accordingly, the determined hopping pattern for UE2 is ⁇ RP1, RP3, RP0, RP2 ⁇ .
  • UE1 starts TB transmission in RP1 in slot 6, as shown at 530.
  • UE1 ends TB transmission in RP3 in slot 7, as shown at 532.
  • UE2 starts TB transmission in RP3 in slot 9, as shown at 534.
  • UE2 ends TB transmission in RP1 in slot 12, as shown at 536.
  • UE1 and UE2 are configured with 2 and 4 repetitions respectively. That is the configuration information may comprise information of a number of repetitions of the RP hopping pattern to be carried out by the user equipment.
  • the configuration information may comprise information of a number of repetitions of the RP hopping pattern to be carried out by the user equipment.
  • UE1 starts grant-free transmission from slot 6, it uses RP1 to start the transmission, and UE1 then repeats the TB in slot 7 in RP3.
  • UE2 starts the transmission from RP3 in slot 9 and ends at RP1 in slot 12. Therefore, different UEs can be configured with different transmission periodicity but configured with the same RP pattern, and UEs with the same DMRS will always camp on different RPs in each slot.
  • the UE can use a rule to determine an RP to be used for grant-free 5G URLLC transmissions, rather than a hopping pattern being pre-configured or specified to the UE.
  • This overcomes or at least mitigates a potential drawback of explicitly configuring a hopping pattern, which is that since a UE might start grant-free transmission at any time, and different UEs may start from different RP, all the N RPs will exist in every slot, which might incur resource wastage when a UE number is low.
  • Figure 6 is a flow chart showing a method viewed from the perspective of a user equipment.
  • the method comprises receiving, at a user equipment; uplink transmission configuration information.
  • the method comprises using the configuration information, by the user equipment, to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.
  • Figure 7 is a flow chart showing a method viewed from the perspective of a network node, such as a base station.
  • the method comprises determining uplink transmission configuration information.
  • the configuration information comprises a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.
  • the method comprises sending the configuration information to the one or more user equipment.
  • the disclosed hopping configuration is, in examples, scalable to enable efficient resource utilization for cases where there are a limited number of UEs with sporadic traffic, and also when there is a higher number of grant-free UEs.
  • the disclosed hopping configuration in examples, fulfils a balance between the amount of reserved grant-free resources, which ordinarily cannot be used for grant-based transmission (therefore if not used is then wasted) , and archived diversity gains and low collision rate. Examples of the proposal avoid, as much as possible, that two (or more) UEs collide during repeated transmissions.
  • the DMRS is different for the camping UEs, such that the BS can estimate the channel for each UE and decode the data signal using advanced receiver. Furthermore, the configuration supports the case where different UEs that are sharing the same resources are configured with a different number of repetitions.
  • the various embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects of the invention may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto. While various aspects of the invention may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the embodiments of this invention may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware.
  • Computer software or program also called program product, including software routines, applets and/or macros, may be stored in any apparatus-readable data storage medium and they comprise program instructions to perform particular tasks.
  • a computer program product may comprise one or more computer-executable components which, when the program is run, are configured to carry out embodiments.
  • the one or more computer-executable components may be at least one software code or portions of it.
  • any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions.
  • the software may be stored on such physical media as memory chips, or memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD.
  • the physical media is a non-transitory media.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the data processors may be of any type suitable to the local technical environment, and may comprise one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , FPGA, gate level circuits and processors based on multi core processor architecture, as non-limiting examples.
  • Embodiments of the inventions may be practiced in various components such as integrated circuit modules.
  • the design of integrated circuits is by and large a highly automated process.
  • Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.

Abstract

There is disclosed a method comprising: receiving, at a user equipment; uplink transmission configuration information. The uplink transmission configuration information is used, by the user equipment, to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.

Description

COMMUNICATIONS METHOD, APPARATUS AND COMPUTER PROGRAM Field
This disclosure relates to communications, and more particularly to a method, apparatus and computer program in a wireless communication system. More particularly the present invention relates to transmission patterns in a wireless communication system.
Background
A communication system can be seen as a facility that enables communication between two or more devices such as user terminals, machine-like terminals, base stations and/or other nodes by providing communication channels for carrying information between the communicating devices. A communication system can be provided for example by means of a communication network and one or more compatible communication devices. The communication may comprise, for example, communication of data for carrying data for voice, electronic mail (email) , text message, multimedia and/or content data communications and so on. Non-limiting examples of services provided include two-way or multi-way calls, data communication or multimedia services and access to a data network system, such as the Internet.
In a wireless system at least a part of communications occurs over wireless interfaces. Examples of wireless systems include public land mobile networks (PLMN) , satellite based communication systems and different wireless local networks, for example wireless local area networks (WLAN) . A local area wireless networking technology allowing devices to connect to a data network is known by the tradename WiFi (or Wi-Fi) . WiFi is often used synonymously with WLAN. The wireless systems can be divided into cells, and are therefore often referred to as cellular systems. A base station provides at least one cell.
A user can access a communication system by means of an appropriate communication device or terminal capable of communicating with a base station. Hence nodes like base stations are often referred to as access points. A communication device of a user is often referred to as user equipment (UE) . A  communication device is provided with an appropriate signal receiving and transmitting apparatus for enabling communications, for example enabling communications with the base station and/or communications directly with other user devices. The communication device can communicate on appropriate channels, e.g. listen to a channel on which a station, for example a base station of a cell, transmits.
A communication system and associated devices typically operate in accordance with a given standard or specification which sets out what the various entities associated with the system are permitted to do and how that should be achieved. Communication protocols and/or parameters which shall be used for the connection are also typically defined. Non-limiting examples of standardised radio access technologies include GSM (Global System for Mobile) , EDGE (Enhanced Data for GSM Evolution) Radio Access Networks (GERAN) , Universal Terrestrial Radio Access Networks (UTRAN) and evolved UTRAN (E-UTRAN) . An example communication system architecture is the long-term evolution (LTE) of the Universal Mobile Telecommunications System (UMTS) radio-access technology. The LTE is standardized by the third Generation Partnership Project (3GPP) . The LTE employs the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access and a further development thereof which is sometimes referred to as LTE Advanced (LTE-A) .
Since introduction of fourth generation (4G) services increasing interest has been paid to the next, or fifth generation (5G) standard. 5G may also be referred to as a New Radio (NR) network. Standardization of 5G or New Radio networks is an on-going study item.
Statement of invention
According to a first aspect there is provided a method comprising: receiving, at a user equipment; uplink transmission configuration information; and using the configuration information, by the user equipment, to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.
According to an example, the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
According to an example, the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
According to an example, the user equipment determines a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
According to an example, the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
According to an example, a number of grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
According to an example, the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the user equipment.
According to an example, using the configuration information comprises using a rule at the user equipment.
According to an example, the method is for use in 5G ultra reliable low latency communications.
According to a second aspect there is provided a method comprising: determining uplink transmission configuration information, the configuration information comprising a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using  uplink resources shared with at least one other user equipment; and sending the configuration information to the one or more user equipment.
According to an example, the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
According to an example, the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
According to an example, the method comprises providing to the one or more user equipment information of a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
According to an example, the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
According to an example, a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
According to an example, the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the one or more user equipment.
According to an example, the method is for use in 5G ultra reliable low latency communications.
According to a third aspect there is provided a computer program comprising program code means adapted to perform the method of the first aspect when the program is run on a data processing apparatus.
According to a fourth aspect there is provided a computer program comprising program code means adapted to perform the method of the second aspect when the program is run on a data processing apparatus.
According to a fifth aspect there is provided an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: receive, at the apparatus; uplink transmission configuration information; and use the configuration information to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the apparatus in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other apparatus.
According to an example, the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
According to an example, the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
According to an example, the apparatus is configured to determine a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
According to an example, the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
According to an example, a number of grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
According to an example, the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the apparatus.
According to an example using the configuration information comprises using a rule at the apparatus.
According to an example, the apparatus is configured for use in 5G ultra reliable low latency communications.
According to an example, the apparatus comprises a user equipment.
According to a sixth aspect there is provided an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: determine uplink transmission configuration information, the configuration information comprising a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment; and send the configuration information to the one or more user equipment.
According to an example, the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
According to an example, the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
According to an example, the apparatus is configured to provide to the one or more user equipment information of a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
According to an example, the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
According to an example, a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
According to an example, the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the one or more user equipment.
According to an example, the apparatus is configured for use in 5G ultra reliable low latency communications.
According to an example the apparatus comprises a network entity.
According to an example the apparatus comprises a base station.
Brief description of Figures
The invention will now be described in further detail, by way of example only, with reference to the following examples and accompanying drawings, in which:
Figure 1 shows a schematic example of a wireless communication system where the invention may be implemented;
Figure 2 shows an example of a communication device;
Figure 3 shows an example of a control apparatus;
Figures 4A to 4C show example resource pool patterns;
Figure 5 shows and example resource pool pattern;
Figure 6 is a flow chart of a method according to an example;
Figure 7 is a flow chart of a method according to an example.
Detailed description
Before explaining in detail the examples, certain general principles of a wireless communication system and mobile communication devices are briefly explained with reference to Figures 1 to 2 to assist in understanding the technology underlying the described examples.
In a wireless communication system 100, such as that shown in Figure 1, a wireless communication devices, for example, user equipment (UE) or  MTC devices  102, 104, 105 are provided wireless access via at least one base station or similar wireless transmitting and/or receiving wireless infrastructure node or point. Such a node can be, for example, a base station or an eNodeB (eNB) , or in a 5G system a  Next Generation NodeB (gNB) , or other wireless infrastructure node. These nodes will be generally referred to as base stations. Base stations are typically controlled by at least one appropriate controller apparatus, so as to enable operation thereof and management of mobile communication devices in communication with the base stations. The controller apparatus may be located in a radio access network (e.g. wireless communication system 100) or in a core network (CN) (not shown) and may be implemented as one central apparatus or its functionality may be distributed over several apparatus. The controller apparatus may be part of the base station and/or provided by a separate entity such as a Radio Network Controller. In Figure 1  control apparatus  108 and 109 are shown to control the respective macro  level base stations  106 and 107. In some systems, the control apparatus may additionally or alternatively be provided in a radio network controller. Other examples of radio access system comprise those provided by base stations of systems that are based on technologies such as 5G or new radio, wireless local area network (WLAN) and/or WiMax (Worldwide Interoperability for Microwave Access) . A base station can provide coverage for an entire cell or similar radio service area.
In Figure 1  base stations  106 and 107 are shown as connected to a wider communications network 113 via gateway 112. A further gateway function may be provided to connect to another network.
The  smaller base stations  116, 118 and 120 may also be connected to the network 113, for example by a separate gateway function and/or via the controllers of the macro level stations. The  base stations  116, 118 and 120 may be pico or femto level base stations or the like. In the example,  stations  116 and 118 are connected via a gateway 111 whilst station 120 connects via the controller apparatus 108. In some embodiments, the smaller stations may not be provided.
A possible wireless communication device will now be described in more detail with reference to Figure 2 showing a schematic, partially sectioned view of a communication device 200. Such a communication device is often referred to as user equipment (UE) or terminal. An appropriate mobile communication device may be provided by any device capable of sending and receiving radio signals. Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, or any  combinations of these or the like. A mobile communication device may provide, for example, communication of data for carrying communications such as voice, electronic mail (email) , text message, multimedia and so on. Users may thus be offered and provided numerous services via their communication devices. Non-limiting examples of these services comprise two-way or multi-way calls, data communication or multimedia services or simply an access to a data communications network system, such as the Internet. Users may also be provided broadcast or multicast data. Non-limiting examples of the content comprise downloads, television and radio programs, videos, advertisements, various alerts and other information.
A wireless communication device may be for example a mobile device, that is, a device not fixed to a particular location, or it may be a stationary device. The wireless device may need human interaction for communication, or may not need human interaction for communication. In the present teachings the terms UE or “user” are used to refer to any type of wireless communication device.
The wireless device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate apparatus for transmitting radio signals. In Figure 2 transceiver apparatus is designated schematically by block 206. The transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement. The antenna arrangement may be arranged internally or externally to the wireless device.
A wireless device is typically provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications with access systems and other communication devices. The data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204. The user may control the operation of the wireless device by means of a suitable user interface such as key pad 205, voice commands, touch sensitive screen or pad, combinations thereof or the like. A display 208, a speaker and a microphone can be also provided. Furthermore, a wireless communication device may comprise appropriate connectors (either wired or wireless) to other devices and/or for connecting external accessories, for example  hands-free equipment, thereto. The  communication devices  102, 104, 105 may access the communication system based on various access techniques.
Figure 3 shows an example of a control apparatus for a communication system, for example to be coupled to and/or for controlling a station of an access system, such as a RAN node, e.g. a base station, gNB, a central unit of a cloud architecture or a node of a core network such as an MME or S-GW, a scheduling entity such as a spectrum management entity, or a server or host. The control apparatus may be integrated with or external to a node or module of a core network or RAN. In some embodiments, base stations comprise a separate control apparatus unit or module. In other embodiments, the control apparatus can be another network element such as a radio network controller or a spectrum controller. In some embodiments, each base station may have such a control apparatus as well as a control apparatus being provided in a radio network controller. The control apparatus 300 can be arranged to provide control on communications in the service area of the system. The control apparatus 300 comprises at least one memory 301, at least one  data processing unit  302, 303 and an input/output interface 304. Via the interface the control apparatus can be coupled to a receiver and a transmitter of the base station. The receiver and/or the transmitter may be implemented as a radio front end or a remote radio head. For example the control apparatus 300 or processor 201 can be configured to execute an appropriate software code to provide the control functions.
As will now be explained in more detail, the present disclosure is related to 5G (NR) transmissions. More particularly, the present disclosure is associated with uplink (UL) grant-free transmissions for 5G Ultra-Reliable Low Latency Communications (URLLC) . Generally speaking, grant-free transmission can achieve lower latency and lower signalling overhead than grant-based transmission since the UE does not need to send a scheduling request and wait for UL grant before the data transmission. It has been accepted by NR to meet the stringent delay requirement in URLLC. NR discussions have also discussed enabling frequency hopping in repeated transmissions for diversity gain and so as to improve reliability.
The present inventors have identified that there may be problems that need to be overcome in introducing frequency hopping in association with grant-free UL transmissions. These identified problems include:
· The base station (BS) shall control the amount of resources reserved for grant-free hopping transmission. However, a same diversity order may be  needed regardless of whether there are a limited number or a high number of grant-free UEs.
· Support should be provided such that different UEs that are sharing the same resources may be configured with a different number of repetitions.
· Support should be provided such that different UEs that are sharing the same resources may be configured with different transmission periodicities.
· During the hopping, it should be avoided as much as possible that two (or more) UEs collide during the repeated transmission.
· Even if there is collision in one transmission (or repetition) , the demodulation reference signal (DMRS) should be different for the camping UEs, such that the BS can estimate the channel for each UE and decode the data signal using an advanced receiver.
· Support should be provided to enable L1 reconfiguration of hopping transmission with a small signalling overhead.
In order to try and meet these requirements, and as discussed in more detail below, it is proposed that instead of configuring a hopping pattern, a base station configures a resource pool (RP) hopping pattern to one or more UEs. It will be noted that other terminologies can be used instead of “resource pool” , such as “resource unit” , or “resource” . Accordingly uplink transmission configuration information is sent to, and received at, a UE. From this received configuration information the UE will know or can determine the available (grant-free) RPs that can be selected in each slot. In other words a user equipment can use the configuration information to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment In an example the RP pattern starts from slot 0 (i.e. a first slot) in system frame number (SFN) 0. In an example the RP pattern is the same in each group of X slots. In an example the RP pattern has a total of N RPs, and there are M RPs existing every other (P1-1) slots. P1 represents the periodicity of the configured grant-free uplink transmission slots or occasions. In an example, for each RP the periodicity is P2.
By way of example, when data is ready for transmission in slot m, the UE selects one RP (from the available RPs) to start the grant-free transmission. The grant free transmission may therefore be based on the configured RP in slot 0 (a first  slot) . The grant free transmission may be further based on a slot index and a demodulation reference signal (DMRS) sequence ID. Accordingly it may be considered that a user equipment can determine a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter. The demodulation reference signal parameter may comprise one of demodulation reference signal sequence ID and a demodulation reference signal pattern. Thus, hopping may effectively be enabled by camping on different RPs on different grant-free transmission occasions.
A configuration of RP patterns may include:
· X (number of slots) and a time period that the resource pool defines
· Frequency bandwidth (BW) of the 1st RP and a frequency offset;
· P1 (the periodicity of grant-free transmission slots or occasions)
· P2 (the periodicity of each grant-free resource pool)
From the configuration, the UE is informed of or the UE can determine:
· N, i.e., a total number of grant-free RPs in the RP pattern. In some examples N=X/P1. The RPs may be indexed from 0 to N-1, with frequency in increasing order.
· M, i.e., a number of RPs in each time slot that has RPs. In some examples M=X/P2.
In another embodiment, the value N might be predefined.
Because of the above relation of the parameters, in another embodiment the base station configures the value N, instead of X, and X is deduced from X= NxP1.
Thus, it may be considered that the configuration information comprises information of a configured resource pool for a first slot (i.e. slot 0) , a periodicity of grant-free uplink transmission slots (or “occasions” ) , and a periodicity of each grant-free resource pool. The configuration information may comprise information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
To fulfil these requirements, a group of UEs may be configured with a same RP pattern, regardless of whether they are configured with the same or a different  number of repetitions, and/or the same or different transmission periodicities. In an example, a single rule is defined (specified) for all the UEs. The rule determines the RP in each configured grant-free transmission occasion. The rule may be based on the configured RP in slot 0, the slot index and the DMRS sequence ID and/or DMRS pattern.
In an example, if layer L1 (physical or PHY layer) modification of grant-free configurations is enabled (i.e., type 3 grant-free transmission) , the RP pattern could be modified by reconfiguring P1 and P2 in the DCI (downlink control information) . The DCI might also reconfigure the camping RP in slot 0. Based on this, the UE may decide the camping RP and also hopping pattern following the same rule described above.
Therefore in examples hopping is enabled by selecting a different RP in a different slot in a configured RP pattern. The RP pattern has, in total, N RPs. There are M RPs in each slot that have RP (s) , M<=N. A low M value may be associated with cases where there is a limited number of grant-free URLLC UEs in a cell, and therefore a lower amount of resources could be reserved for grant-free UL. A high or higher M value may be beneficial when the number of grant-free UEs becomes higher, in which case a BS can allocate more resources to accommodate those UEs with a low collision rate.
Figures 4A to 4C show example resource pool patterns. Each of Figures 4A to to 4C represent a message frame 402. The frame 402, in this example, comprises eight slots or subframes, shown at 404 to 418. In these Figures a first RP (RP0) is represented by the blocks with right-sloping hatching. A second RP (RP1) is represented by the blocks with left-sloping hatching. A third RP (RP2) is represented by the blocks with vertical hatching. A fourth RP (RP3) is represented by the blocks with cross-hatching. Each RP has a different frequency. In the example of Figures 4A to 4C the frequency increases down the Figure, such that f (RP3) >f (RP2) >f (RP1) >f (RP0) . There is also a frequency offset between each RP, represented by double-headed  arrows  420, 422 and 424.
In the example of Figure 4A there is one RP per slot. That is RP0 is in first slot 404, RP1 is in second slot 406, RP2 is in third slot 408, RP3 is in fourth slot 410. This then repeats such that RP0 is in fifth slot 412, RP1 is in sixth slot 414, RP2 is in seventh slot 416 and RP 3 is in eighth slot 418. In Figure 4A P1=1 (i.e. indicating that the periodicity of the grant-free transmission slot/occasion is 1) . In Figure 4A P2=4  (i.e. representing that the periodicity of each grant-free resource is 4) . X=4 (i.e. representing that the time period of the RP pattern is 4, and accordingly that in this example there are four slots available for the RP pattern) .
In the example of Figure 4B there are two RPs per slot. That is first slot 404 comprises RP0 and RP1, and second slot 406 comprises RP2 and RP3. This pattern is then repeated across the frame 402. Therefore in the example of Figure 4B P1=1, P2=2, and X=4.
In the example of Figure 4C there are four RPs per slot. That is slot 1 404 comprises RP0, RP1, RP2 and RP3. This pattern is then repeated across each of the other slots. Therefore in this example P1=1, P2=1, and X=4.
The table below summarises the RP pattern of the examples in Figures 4A to 4C.
Figure PCTCN2017104241-appb-000001
Table 1: RP pattern configuration
As described above, in this Table “N” represents the number of RPs, “M” represents a number of RPs that are in each slot, “X” represents the number of available slots for containing the RP pattern, “P1” indicates the periodicity of grant-free transmission occasion, and “P2” represents the periodicity of each grant-free resource pool. That is “P” defines periodicity.
In some examples, a group of UEs may be configured with a same RP pattern. This may be regardless of whether they are configured with the same/different number of repetitions, and/or the same/different transmission periodicities. This enables BS controlled hopping. It may also enable orthogonal DMRS (demodulation reference signal) distribution in each RP in each grant-free transmission occasion or slot among the camped UEs.
For example a specific UE is configured with a RP in slot 0. All the UEs follow a single rule (i.e. each UE follows the same rule) to determine the RP for grant-free transmission. As one example,
· A UE is configured with a RP #k in slot 0, then the RP#k in each of the slot {0, 0+X, 0+2X, ......} is available for grant-free transmission;
· The RP in slot {b, b+X, b+2X, ......} , 0<b<X, is defined as
If Mod (b, 4) <2, (DMRS_ID +b*M+ RP_slot0) mod N
Else (DMRS_ID +b*M+ RP_slot0) mod N +1
Where
· DMRS_ID is the configured DMRS sequence ID;
· b is the slot index;
· RP_slot0 is the camping RP in slot 0;
· M is the number of RPs in each slot.
· N is the total number of RPs.
· In some examples a number of grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use (i.e. M<N) .
A further example is shown in Figure 5. In this example RP pattern 2 from Table 1 above is used. That is, N = 4, M = 2, X = 4, P1 = 1 and P2 = 2. A first UE (UE1) is configured with RP0 in slot 0, DMRS sequence ID 0. Accordingly, following the above described rule, the determined hopping pattern for UE1 is {RP0, RP2, RP1, RP3} . A second UE (UE2) is configured with RP1 in slot 0, and DMRS sequence ID 0. Accordingly, the determined hopping pattern for UE2 is {RP1, RP3, RP0, RP2} . Therefore, following the rule, UEs that are allocated with a same DMRS sequence ID and in a different RP will always camp on different RPs in each slot, so there is no DMRS collision. Referring to Figure 5, UE1 starts TB transmission in RP1 in slot 6, as shown at 530. UE1 ends TB transmission in RP3 in slot 7, as shown at 532. UE2 starts TB transmission in RP3 in slot 9, as shown at 534. UE2 ends TB transmission in RP1 in slot 12, as shown at 536.
In the example of the preceding paragraph, UE1 and UE2 are configured with 2 and 4 repetitions respectively. That is the configuration information may comprise information of a number of repetitions of the RP hopping pattern to be carried out by the user equipment. When UE1 starts grant-free transmission from slot 6, it uses RP1 to start the transmission, and UE1 then repeats the TB in slot 7 in RP3. UE2  starts the transmission from RP3 in slot 9 and ends at RP1 in slot 12. Therefore, different UEs can be configured with different transmission periodicity but configured with the same RP pattern, and UEs with the same DMRS will always camp on different RPs in each slot.
Thus it can be seen that the UE (s) can use a rule to determine an RP to be used for grant-free 5G URLLC transmissions, rather than a hopping pattern being pre-configured or specified to the UE. This overcomes or at least mitigates a potential drawback of explicitly configuring a hopping pattern, which is that since a UE might start grant-free transmission at any time, and different UEs may start from different RP, all the N RPs will exist in every slot, which might incur resource wastage when a UE number is low.
Figure 6 is a flow chart showing a method viewed from the perspective of a user equipment.
At S1, the method comprises receiving, at a user equipment; uplink transmission configuration information.
At S2, the method comprises using the configuration information, by the user equipment, to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.
Figure 7 is a flow chart showing a method viewed from the perspective of a network node, such as a base station.
At S1, the method comprises determining uplink transmission configuration information. The configuration information comprises a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.
At S2, the method comprises sending the configuration information to the one or more user equipment.
The disclosed hopping configuration is, in examples, scalable to enable efficient resource utilization for cases where there are a limited number of UEs with sporadic traffic, and also when there is a higher number of grant-free UEs. The disclosed hopping configuration, in examples, fulfils a balance between the amount  of reserved grant-free resources, which ordinarily cannot be used for grant-based transmission (therefore if not used is then wasted) , and archived diversity gains and low collision rate. Examples of the proposal avoid, as much as possible, that two (or more) UEs collide during repeated transmissions. According to the disclosed configuration, even where there is collision in one transmission (repetition) , the DMRS is different for the camping UEs, such that the BS can estimate the channel for each UE and decode the data signal using advanced receiver. Furthermore, the configuration supports the case where different UEs that are sharing the same resources are configured with a different number of repetitions.
In general, the various embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects of the invention may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto. While various aspects of the invention may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The embodiments of this invention may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware. Computer software or program, also called program product, including software routines, applets and/or macros, may be stored in any apparatus-readable data storage medium and they comprise program instructions to perform particular tasks. A computer program product may comprise one or more computer-executable components which, when the program is run, are configured to carry out embodiments. The one or more computer-executable components may be at least one software code or portions of it.
Further in this regard it should be noted that any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions. The software may be stored on such physical media as memory chips, or  memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD. The physical media is a non-transitory media.
The memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. The data processors may be of any type suitable to the local technical environment, and may comprise one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , FPGA, gate level circuits and processors based on multi core processor architecture, as non-limiting examples.
Embodiments of the inventions may be practiced in various components such as integrated circuit modules. The design of integrated circuits is by and large a highly automated process. Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.
The foregoing description has provided by way of non-limiting examples a full and informative description of the exemplary embodiment of this invention. However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of this invention will still fall within the scope of this invention as defined in the appended claims. Indeed there is a further embodiment comprising a combination of one or more embodiments with any of the other embodiments previously discussed.

Claims (29)

  1. A method comprising:
    receiving, at a user equipment; uplink transmission configuration information; and
    using the configuration information, by the user equipment, to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the user equipment in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment.
  2. A method according to claim 1, wherein the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  3. A method according to claim 1 or claim 2, wherein the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  4. A method according to any of claims 1 to 3, wherein the user equipment determines a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  5. A method according to claim 4, wherein the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
  6. A method according to any of claims 1 to 5, wherein a number of grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
  7. A method according to any of claims 1 to 6, wherein the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the user equipment.
  8. A method according to any of claims 1 to 7, wherein using the configuration information comprises using a rule at the user equipment.
  9. A method according to any of claims 1 to 8, for use in 5G ultra reliable low latency communications.
  10. A method comprising:
    determining uplink transmission configuration information, the configuration information comprising a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment; and
    sending the configuration information to the one or more user equipment.
  11. A method according to claim 10, wherein the configuration information comprises information of a configured resource pool for a first slot, a periodicity of  the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  12. A method according to claim 10 or claim 11, wherein the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  13. A method according to any of claims 10 to 12, comprising providing to the one or more user equipment information of a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  14. A method according to claim 13, wherein the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
  15. A method according to any of claims 10 to 14, wherein a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots is less than a total number of grant-free resource pools in use.
  16. A method according to any of claims 10 to 15, wherein the configuration information comprises information of a number of repetitions of the hopping pattern to be carried out by the one or more user equipment.
  17. A method according to any of claims 10 to 16, for use in 5G ultra reliable low latency communications.
  18. A computer program comprising program code means adapted to perform the method of any of claims 1 to 9 when the program is run on a data processing apparatus.
  19. A computer program comprising program code means adapted to perform the method of any of claims 10 to 17 when the program is run on a data processing apparatus.
  20. An apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to:
    receive, at the apparatus; uplink transmission configuration information; and
    use the configuration information to determine a resource pool hopping pattern for selecting a grant-free resource pool for grant-free uplink transmission by the apparatus in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other apparatus.
  21. An apparatus according to claim 20, wherein the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  22. An apparatus according to claim 20 or claim 21, wherein the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  23. An apparatus according to any of claims 20 to 22, wherein the apparatus is configured to determine a camping resource pool in each configured grant-free uplink transmission slot based on a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  24. An apparatus according to claim 23, wherein the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
  25. An apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to:
    determine uplink transmission configuration information, the configuration information comprising a resource pool hopping pattern for use by one or more user equipment for determining a grant-free resource pool for grant-free uplink transmission in one or more configured grant-free uplink transmission slots, using uplink resources shared with at least one other user equipment; and
    send the configuration information to the one or more user equipment.
  26. An apparatus according to claim 25, wherein the configuration information comprises information of a configured resource pool for a first slot, a periodicity of the grant-free uplink transmission slots, and a periodicity of each grant-free resource pool.
  27. An apparatus according to claim 25 or claim 26, wherein the configuration information comprises information of a time period of the resource pool hopping pattern, and/or a total number of the grant-free resource pools in use, and/or information of a number of the grant-free resource pools that are available in each slot of the configured grant-free uplink transmission slots.
  28. An apparatus according to any of claims 25 to 27, the apparatus configured to provide to the one or more user equipment information of a configured grant-free resource pool in a first slot, a slot index and a demodulation reference signal parameter.
  29. An apparatus according to claim 28, wherein the demodulation reference signal parameter comprises one of demodulation reference signal sequence ID and demodulation reference signal pattern.
PCT/CN2017/104241 2017-09-29 2017-09-29 Communications method, apparatus and computer program WO2019061244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780095428.0A CN111183689B (en) 2017-09-29 2017-09-29 Communication method and device
PCT/CN2017/104241 WO2019061244A1 (en) 2017-09-29 2017-09-29 Communications method, apparatus and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104241 WO2019061244A1 (en) 2017-09-29 2017-09-29 Communications method, apparatus and computer program

Publications (1)

Publication Number Publication Date
WO2019061244A1 true WO2019061244A1 (en) 2019-04-04

Family

ID=65902275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104241 WO2019061244A1 (en) 2017-09-29 2017-09-29 Communications method, apparatus and computer program

Country Status (2)

Country Link
CN (1) CN111183689B (en)
WO (1) WO2019061244A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065881A1 (en) * 2013-10-31 2015-05-07 Intel IP Corporation Resource allocation for d2d discovery in an lte network
WO2016192048A1 (en) * 2015-06-03 2016-12-08 华为技术有限公司 Method and device for configuration of frequency domain resources
US20170013466A1 (en) * 2014-03-31 2017-01-12 Fujitsu Limited Signal retransmission apparatus and method and communication system
CN106537836A (en) * 2014-08-07 2017-03-22 Lg电子株式会社 Method for determining transmission resource block pool of terminal in D2D communication, and apparatus therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2715948A1 (en) * 2011-06-02 2014-04-09 Broadcom Corporation Frequency hopping in license-exempt/shared bands

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015065881A1 (en) * 2013-10-31 2015-05-07 Intel IP Corporation Resource allocation for d2d discovery in an lte network
US20170013466A1 (en) * 2014-03-31 2017-01-12 Fujitsu Limited Signal retransmission apparatus and method and communication system
CN106537836A (en) * 2014-08-07 2017-03-22 Lg电子株式会社 Method for determining transmission resource block pool of terminal in D2D communication, and apparatus therefor
WO2016192048A1 (en) * 2015-06-03 2016-12-08 华为技术有限公司 Method and device for configuration of frequency domain resources

Also Published As

Publication number Publication date
CN111183689A (en) 2020-05-19
CN111183689B (en) 2023-04-04

Similar Documents

Publication Publication Date Title
CN107409313B (en) Discovery signal transmission method and device and communication system
AU2018443844B2 (en) Control channel structure design to support V2X traffic
WO2017000307A1 (en) Method, apparatus and system
US20220312459A1 (en) Enhanced Configured Grants
US20230164775A1 (en) Method, apparatus and computer program
CN113498207A (en) System and method for simultaneous UL cancellation and UL CI monitoring
US20230261837A1 (en) Apparatus, methods, and computer programs related to positioning reference signals
CN106416400B (en) Method and apparatus for wireless communication and corresponding computer readable storage medium
WO2019138150A1 (en) Method, apparatus and computer program
US20220304042A1 (en) Enhanced Configured Grants
US11882429B2 (en) Uplink resource determination apparatus, method and computer program
CN111183689B (en) Communication method and device
CN111903159B (en) Method, apparatus and computer readable storage medium for communication
CN115380492A (en) Ultra-reliable low latency communication (URLLC) scheme selection
US11374727B2 (en) Methods and apparatus for configuring TDD operation of a narrowband internet of things communications system
WO2019047021A1 (en) Method, apparatus and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927054

Country of ref document: EP

Kind code of ref document: A1