WO2019047021A1 - Method, apparatus and computer program - Google Patents

Method, apparatus and computer program Download PDF

Info

Publication number
WO2019047021A1
WO2019047021A1 PCT/CN2017/100561 CN2017100561W WO2019047021A1 WO 2019047021 A1 WO2019047021 A1 WO 2019047021A1 CN 2017100561 W CN2017100561 W CN 2017100561W WO 2019047021 A1 WO2019047021 A1 WO 2019047021A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
size
transmit
scrambling
message
Prior art date
Application number
PCT/CN2017/100561
Other languages
French (fr)
Inventor
Srinivasan Selvaganapathy
Haitao Li
Haijing LIU
Original Assignee
Nokia Solutions And Networks Oy
Nokia Shanghai Bell Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Solutions And Networks Oy, Nokia Shanghai Bell Co., Ltd. filed Critical Nokia Solutions And Networks Oy
Priority to CN201780096241.2A priority Critical patent/CN111279771B/en
Priority to PCT/CN2017/100561 priority patent/WO2019047021A1/en
Publication of WO2019047021A1 publication Critical patent/WO2019047021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling

Definitions

  • This disclosure relates to communications, and more particularly to a method, apparatus and computer program in a wireless communication system. More particularly the present invention relates to transmission of data on an access channel.
  • a communication system can be seen as a facility that enables communication between two or more devices such as user terminals, machine-like terminals, base stations and/or other nodes by providing communication channels for carrying information between the communicating devices.
  • a communication system can be provided for example by means of a communication network and one or more compatible communication devices.
  • the communication may comprise, for example, communication of data for carrying data for voice, electronic mail (email) , text message, multimedia and/or content data communications and so on.
  • Non-limiting examples of services provided include two-way or multi-way calls, data communication or multimedia services and access to a data network system, such as the Internet.
  • wireless systems include public land mobile networks (PLMN) , satellite based communication systems and different wireless local networks, for example wireless local area networks (WLAN) .
  • PLMN public land mobile networks
  • WLAN wireless local area networks
  • a local area wireless networking technology allowing devices to connect to a data network is known by the tradename WiFi (or Wi-Fi) .
  • WiFi is often used synonymously with WLAN.
  • the wireless systems can be divided into cells, and are therefore often referred to as cellular systems.
  • a base station provides at least one cell.
  • a user can access a communication system by means of an appropriate communication device or terminal capable of communicating with a base station.
  • nodes like base stations are often referred to as access points.
  • a communication device of a user is often referred to as user equipment (UE) .
  • UE user equipment
  • a communication device is provided with an appropriate signal receiving and transmitting apparatus for enabling communications, for example enabling communications with the base station and/or communications directly with other user devices.
  • the communication device can communicate on appropriate channels, e.g. listen to a channel on which a station, for example a base station of a cell, transmits.
  • a communication system and associated devices typically operate in accordance with a given standard or specification which sets out what the various entities associated with the system are permitted to do and how that should be achieved. Communication protocols and/or parameters which shall be used for the connection are also typically defined.
  • standardised radio access technologies include GSM (Global System for Mobile) , EDGE (Enhanced Data for GSM Evolution) Radio Access Networks (GERAN) , Universal Terrestrial Radio Access Networks (UTRAN) and evolved UTRAN (E-UTRAN) .
  • GSM Global System for Mobile
  • EDGE Enhanced Data for GSM Evolution) Radio Access Networks
  • UTRAN Universal Terrestrial Radio Access Networks
  • E-UTRAN evolved UTRAN
  • An example communication system architecture is the long-term evolution (LTE) of the Universal Mobile Telecommunications System (UMTS) radio-access technology.
  • the LTE is standardized by the third Generation Partnership Project (3GPP) .
  • the LTE employs the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access and a further
  • 5G may also be referred to as a New Radio (NR) network. Standardization of 5G or New Radio networks is an on-going study item.
  • a method comprising: arranging a random access preamble message at an apparatus to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message; and sending the random access channel preamble message from the apparatus to a base station.
  • the method comprises using a binary sequence for the indication of a size of data that the apparatus wants to transmit.
  • the method comprises arranging scrambling symbols within the preamble message to provide the indication of a size of data that the apparatus wants to transmit.
  • the arranging scrambling symbols within the preamble message is carried out in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
  • an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the apparatus wants to transmit.
  • symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the apparatus wants to transmit.
  • a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the apparatus wants to transmit.
  • each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
  • the preamble message also provides information of a priority of the data that the apparatus wants to transmit.
  • the method comprises transmitting the data in the subsequent connection request message.
  • the random access channel comprises a narrowband physical random access channel.
  • connection request message comprises a narrowband radio resource control connection message.
  • connection request message comprises a Msg3 message.
  • the apparatus comprises a user equipment.
  • the base station comprises an eNB.
  • a method comprising: receiving at an apparatus from a user equipment a random access preamble message, wherein the preamble message is arranged to comprise an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
  • a binary sequence indicates a size of data that the user equipment wants to transmit.
  • scrambling symbols within the preamble message provide the indication of a size of data that the user equipment wants to transmit.
  • scrambling symbols within the preamble message are arranged in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
  • an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the user equipment wants to transmit.
  • symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the user equipment wants to transmit.
  • a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the user equipment wants to transmit.
  • each cell or a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
  • the preamble message also provides information of a priority of the data that the user equipment wants to transmit.
  • the method comprises receiving the data in the subsequent connection request message.
  • the random access channel comprises a narrowband physical random access channel.
  • connection request message comprises a narrowband radio resource control connection message.
  • connection request message comprises a Msg3 message.
  • the apparatus comprises a base station.
  • the base station comprises an eNB.
  • a computer program comprising program code means adapted to perform the steps of the first aspect when the program is run on a data processing apparatus.
  • a computer program comprising program code means adapted to perform the steps of any of the second aspect when the program is run on a data processing apparatus.
  • an apparatus configured to carry out the method of the first aspect.
  • an apparatus configured to carry out the method of the second aspect.
  • an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: arrange a random access preamble message to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message; and send the random access channel preamble message from the apparatus to a base station.
  • the apparatus is configured to use a binary sequence for the indication of a size of data that the apparatus wants to transmit.
  • the apparatus is configured to arrange scrambling symbols within the preamble message to provide the indication of a size of data that the apparatus wants to transmit.
  • the apparatus is configured to arrange scrambling symbols within the preamble message in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
  • an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the apparatus wants to transmit.
  • symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the apparatus wants to transmit.
  • a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the apparatus wants to transmit.
  • each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
  • the preamble message also provides information of a priority of the data that the apparatus wants to transmit.
  • the apparatus is configured to transmit the data in the subsequent connection request message.
  • the random access channel comprises a narrowband physical random access channel.
  • connection request message comprises a narrowband radio resource control connection message.
  • connection request message comprises a Msg3 message.
  • the apparatus comprises a user equipment.
  • the base station comprises an eNB.
  • an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: receive from a user equipment a random access preamble message, the preamble message arranged to comprise an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
  • the apparatus is configured to determine a size of data that the user equipment wants to transmit from a binary sequence that indicates a size of data that the user equipment wants to transmit.
  • scrambling symbols within the preamble message provide the indication of a size of data that the user equipment wants to transmit.
  • scrambling symbols within the preamble message are arranged in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
  • an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the user equipment wants to transmit.
  • symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the user equipment wants to transmit.
  • a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the user equipment wants to transmit.
  • each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
  • the apparatus is configured to obtain from the preamble message information of a priority of the data that the user equipment wants to transmit.
  • the apparatus is configured to receive the data in the subsequent connection request message.
  • the random access channel comprises a narrowband physical random access channel.
  • connection request message comprises a narrowband radio resource control connection message.
  • connection request message comprises a Msg3 message.
  • the apparatus comprises a base station.
  • the base station comprises an eNB.
  • Figure 1 shows a schematic example of a wireless communication system where the invention may be implemented
  • Figure 2 shows an example of a communication device
  • Figure 3 shows an example of a control apparatus
  • Figure 4 schematically shows a portion of a random access procedure
  • Figure 5 schematically shows scrambling codes according to an example
  • Figure 6 is a flow chart of a method according to an example
  • Figure 7 schematically shows scrambling codes according to an example
  • Figure 8 is a flow chart of a method according to an example
  • Figure 9 is a flow chart of a method according to an example.
  • a wireless communication devices for example, user equipment (UE) or MTC devices 102, 104, 105 are provided wireless access via at least one base station or similar wireless transmitting and/or receiving wireless infrastructure node or point.
  • a node can be, for example, a base station or an eNodeB (eNB) , or in a 5G system a Next Generation NodeB (gNB) , or other wireless infrastructure node.
  • eNB eNodeB
  • gNB Next Generation NodeB
  • Base stations are typically controlled by at least one appropriate controller apparatus, so as to enable operation thereof and management of mobile communication devices in communication with the base stations.
  • the controller apparatus may be located in a radio access network (e.g.
  • wireless communication system 100 or in a core network (CN) (not shown) and may be implemented as one central apparatus or its functionality may be distributed over several apparatus.
  • the controller apparatus may be part of the base station and/or provided by a separate entity such as a Radio Network Controller.
  • control apparatus 108 and 109 are shown to control the respective macro level base stations 106 and 107.
  • the control apparatus may additionally or alternatively be provided in a radio network controller.
  • Other examples of radio access system comprise those provided by base stations of systems that are based on technologies such as 5G or new radio, wireless local area network (WLAN) and/or WiMax (Worldwide Interoperability for Microwave Access) .
  • a base station can provide coverage for an entire cell or similar radio service area.
  • base stations 106 and 107 are shown as connected to a wider communications network 113 via gateway 112.
  • a further gateway function may be provided to connect to another network.
  • the smaller base stations 116, 118 and 120 may also be connected to the network 113, for example by a separate gateway function and/or via the controllers of the macro level stations.
  • the base stations 116, 118 and 120 may be pico or femto level base stations or the like. In the example, stations 116 and 118 are connected via a gateway 111 whilst station 120 connects via the controller apparatus 108. In some embodiments, the smaller stations may not be provided.
  • a possible wireless communication device will now be described in more detail with reference to Figure 2 showing a schematic, partially sectioned view of a communication device 200.
  • a communication device is often referred to as user equipment (UE) or terminal.
  • An appropriate mobile communication device may be provided by any device capable of sending and receiving radio signals.
  • Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, or any combinations of these or the like.
  • MS mobile station
  • PDA personal data assistant
  • a mobile communication device may provide, for example, communication of data for carrying communications such as voice, electronic mail (email) , text message, multimedia and so on. Users may thus be offered and provided numerous services via their communication devices. Non-limiting examples of these services comprise two-way or multi-way calls, data communication or multimedia services or simply an access to a data communications network system, such as the Internet. Users may also be provided broadcast or multicast data. Non-limiting examples of the content comprise downloads, television and radio programs, videos, advertisements, various alerts and other information.
  • a wireless communication device may be for example a mobile device, that is, a device not fixed to a particular location, or it may be a stationary device.
  • the wireless device may need human interaction for communication, or may not need human interaction for communication.
  • the terms UE or “user” are used to refer to any type of wireless communication device.
  • the wireless device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate apparatus for transmitting radio signals.
  • transceiver apparatus is designated schematically by block 206.
  • the transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement.
  • the antenna arrangement may be arranged internally or externally to the wireless device.
  • a wireless device is typically provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications with access systems and other communication devices.
  • the data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204.
  • the user may control the operation of the wireless device by means of a suitable user interface such as key pad 205, voice commands, touch sensitive screen or pad, combinations thereof or the like.
  • a display 208, a speaker and a microphone can be also provided.
  • a wireless communication device may comprise appropriate connectors (either wired or wireless) to other devices and/or for connecting external accessories, for example hands-free equipment, thereto.
  • the communication devices 102, 104, 105 may access the communication system based on various access techniques.
  • Figure 3 shows an example of a control apparatus for a communication system, for example to be coupled to and/or for controlling a station of an access system, such as a RAN node, e.g. a base station, gNB, a central unit of a cloud architecture or a node of a core network such as an MME or S-GW, a scheduling entity such as a spectrum management entity, or a server or host.
  • the control apparatus may be integrated with or external to a node or module of a core network or RAN.
  • base stations comprise a separate control apparatus unit or module.
  • the control apparatus can be another network element such as a radio network controller or a spectrum controller.
  • each base station may have such a control apparatus as well as a control apparatus being provided in a radio network controller.
  • the control apparatus 300 can be arranged to provide control on communications in the service area of the system.
  • the control apparatus 300 comprises at least one memory 301, at least one data processing unit 302, 303 and an input/output interface 304. Via the interface the control apparatus can be coupled to a receiver and a transmitter of the base station.
  • the receiver and/or the transmitter may be implemented as a radio front end or a remote radio head.
  • the control apparatus 300 or processor 201 can be configured to execute an appropriate software code to provide the control functions.
  • loT Internet of Things
  • the loT comprises inter-working of connected devices including, but not limited to, user equipment, vehicles, domestic appliances etc.
  • Narrowband loT (NB-loT) is a radio technology standard for enabling loT devices to communicate using a cellular network. Enhancements to NB-loT are ongoing.
  • a random access procedure is typically used for communication between a device (e.g. loT device) and a base station.
  • Figure 4 schematically shows a portion of a random access procedure between a device 400 and a base station 402.
  • a random access preamble is sent from the device 400 to the base station 402.
  • This random access preamble may be termed “Msg1” .
  • a random access response is sent from the base station 402 to the device 400.
  • This random access response may be termed “Msg2” .
  • connection request is sent from the device 400 to the base station 402.
  • This may be an RRC (Radio Resource Control) connection request for narrowband access (RRCConnectionRequest-NB) .
  • RRC Radio Resource Control
  • RRCConnectionRequest-NB narrowband access
  • early data transmission for small packets may reduce signalling overhead associated with setting up the RRC connection for the small data transmission.
  • the size which defines “small packets” or “small data” may vary.
  • a small packet may correspond to a single application layer packet in the range of 20 to 50 bytes.
  • the small packet may be a report from an loT device. It is proposed that these small packets for early data transmission could be comprised in the above mentioned Msg3 transmission.
  • this application proposes modifications to the NPRACH (narrowband physical random access channel) and also the RACH (random access channel) procedure to allow resource efficient small data transmission in Msg3 (or connection request message) .
  • a scrambling sequence is used in Msg1 to identify a size of data that is to be sent in Msg3.
  • the eNB reserves dedicated NPRACH resources for transmission of the preambles from the UE which will send small data in Msg3.
  • the eNB detects a preamble from the dedicated NPRACH resource, it identifies that the UE needs to transmit small data and assigns the uplink resources for transmission of that data. Otherwise the eNB allocates fixed resources for transmission of Msg3 of a size 88 bits.
  • NPRACH resource pool for this purpose. Dividing the NPRACH resources statically into multiple groups without knowing the traffic load of small data of each size may be resource inefficient, and may also lead to more collisions for legacy Msg3 transmissions.
  • Msg3 + data means that Msg3 and data are transmitted at the same time.
  • the NPRACH Preamble consists of transmission of 4 symbol group. Each group contains 5 symbols and 1 CP (cyclic prefix) .
  • the transmission uses subcarrier spacing of 3.75 KHz. 4 transmissions within a single preamble are frequency hopped with a fixed frequency offset with respect to an earlier symbol group. All the symbols are transmitted without any additional modulation, and with fixed power.
  • the NPRACH detection and timing estimation is based on detection of the tone after removing the cyclic prefix and estimation of time of arrival based on correlation.
  • the timing estimation across different symbol groups is used to determine the final value of the time of arrival.
  • This application proposes to send a binary sequence which maps to a range of small data packet sizes when the preamble is sent for transmission of Msg3+Data.
  • This approach avoids separate NPRACH resources in the time/frequency domain for Msg3+Data transmission purposes.
  • the same resources of 3GPP Rel-13 NPRACH can be shared between legacy RACH access and RACH access for Msg3+data transmission, along with additional indication of required message size.
  • the method may differ dependent on whether the NPRACH transmission uses cell-specific scrambling.
  • scrambling of symbols within the symbol group of NPRACH may be used to identify the RACH Access for small data transmission, with specific message size range.
  • the scrambling may also indicate the priority of the data transmission. In one example, only the last symbol group transmission of NPRACH preamble is scrambled, using a scrambling code sequence which can be mapped to a specific message size range. Alternatively, the symbols of all symbol groups may be scrambled using a scrambling code sequence which can be mapped to a specific message size range.
  • cell-specific scrambling is used for the NPRACH transmission
  • only the first N-1 symbol group transmissions are scrambled using the cell-specific scrambling, with the last symbol group scrambling based on message size.
  • only one scrambling code per cell needs to be allocated.
  • each cell is allocated with a set of scrambling codes for NPRACH scrambling, where each code represents a different message size.
  • the same NPRACH resources assigned for RACH Access to 3GPP Rel-13 UE can be reused.
  • the eNB estimates the timing advance based on all symbol groups except the last symbol group. Once the initial timing is estimated based on these symbol groups, blind detection of scrambling code may be attempted on the last symbol group. In such examples the eNB can avoid correlation against different timings as the timing advance is estimated using earlier symbol groups.
  • the eNB can identify the scrambling sequence by correlating with different possible scrambling sequences first, followed by timing estimation using the scrambling sequence detected with high or highest correlation.
  • Figure 5 shows a modified NPRACH preamble, shown generally at 502.
  • the long binary scrambling code is of length 15 bits in this example. This comprises scrambling code part 1 504, scrambling code part 2 506, and scrambling code part 3 508.
  • the first bit in each code part represents the cyclic prefix.
  • a short scrambling code is shown at 510.
  • the short scrambling code 510 comprises a message size indicator. That is the short scrambling code 510 is operable to provide an indication to a base station of small data to be transmitted along with Msg3 data.
  • the long binary scrambling code is encoded over the symbols of first 3 symbol group (i.e. 502, 504 and 506) contents.
  • a scrambling code value is assigned to each symbol.
  • the code is uniquely assigned to each cell for NPRACH purposes.
  • the scrambling of the last symbol group 510 is based on the message size to be transmitted. Depending on the number of orthogonal codes possible, different sizes can be indicated over the last symbol group 510.
  • scrambling codes 1 to 4 are generated. In some embodiments these are generated from a mother scrambling code.
  • the mother scrambling code sequence is used to identify the RACH Access for small data transmission with a size or size range. Depending on the number of mother scrambling codes available or possible, different sizes can be indicated.
  • Figure 7 schematically shows scrambling in accordance with the method of Figure 6.
  • Figure 7 shows four scrambling code sequences 704, namely scrambling code-1 shown at 704, scrambling code-2 shown at 706, scrambling code-3 shown at 708, and scrambling code-4 shown at 710.
  • the mother scrambling codes may be newly defined scrambling codes.
  • the mother scrambling codes which are used to identify the RACH Access for small data transmission with specific message size range, may be newly defined and different from the normal NPRACH cell specific scrambling codes.
  • Figure 8 is a flow chart of an example method viewed from the perspective of an apparatus, for example a user equipment.
  • the apparatus arranges a random access preamble message to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message.
  • the apparatus sends the random access channel preamble message from the apparatus to a base station.
  • Figure 9 is a flow chart of an example method viewed from the perspective of an apparatus, such as a base station.
  • the apparatus receives from a user equipment a random access preamble message.
  • the preamble message comprises an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
  • the various embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects of the invention may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the invention is not limited thereto. While various aspects of the invention may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the embodiments of this invention may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware.
  • Computer software or program also called program product, including software routines, applets and/or macros, may be stored in any apparatus-readable data storage medium and they comprise program instructions to perform particular tasks.
  • a computer program product may comprise one or more computer-executable components which, when the program is run, are configured to carry out embodiments.
  • the one or more computer-executable components may be at least one software code or portions of it.
  • any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions.
  • the software may be stored on such physical media as memory chips, or memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD.
  • the physical media is a non-transitory media.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
  • the data processors may be of any type suitable to the local technical environment, and may comprise one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , FPGA, gate level circuits and processors based on multi core processor architecture, as non-limiting examples.
  • Embodiments of the inventions may be practiced in various components such as integrated circuit modules.
  • the design of integrated circuits is by and large a highly automated process.
  • Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.

Abstract

A method comprising: arranging a random access preamble message at an apparatus to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message; and sending the random access channel preamble message from the apparatus to a base station.

Description

METHOD, APPARATUS AND COMPUTER PROGRAM Field
This disclosure relates to communications, and more particularly to a method, apparatus and computer program in a wireless communication system. More particularly the present invention relates to transmission of data on an access channel.
Background
A communication system can be seen as a facility that enables communication between two or more devices such as user terminals, machine-like terminals, base stations and/or other nodes by providing communication channels for carrying information between the communicating devices. A communication system can be provided for example by means of a communication network and one or more compatible communication devices. The communication may comprise, for example, communication of data for carrying data for voice, electronic mail (email) , text message, multimedia and/or content data communications and so on. Non-limiting examples of services provided include two-way or multi-way calls, data communication or multimedia services and access to a data network system, such as the Internet.
In a wireless system at least a part of communications occurs over wireless interfaces. Examples of wireless systems include public land mobile networks (PLMN) , satellite based communication systems and different wireless local networks, for example wireless local area networks (WLAN) . A local area wireless networking technology allowing devices to connect to a data network is known by the tradename WiFi (or Wi-Fi) . WiFi is often used synonymously with WLAN. The wireless systems can be divided into cells, and are therefore often referred to as cellular systems. A base station provides at least one cell.
A user can access a communication system by means of an appropriate communication device or terminal capable of communicating with a base station. Hence nodes like base stations are often referred to as access points. A communication device of a user is often referred to as user equipment (UE) . A  communication device is provided with an appropriate signal receiving and transmitting apparatus for enabling communications, for example enabling communications with the base station and/or communications directly with other user devices. The communication device can communicate on appropriate channels, e.g. listen to a channel on which a station, for example a base station of a cell, transmits.
A communication system and associated devices typically operate in accordance with a given standard or specification which sets out what the various entities associated with the system are permitted to do and how that should be achieved. Communication protocols and/or parameters which shall be used for the connection are also typically defined. Non-limiting examples of standardised radio access technologies include GSM (Global System for Mobile) , EDGE (Enhanced Data for GSM Evolution) Radio Access Networks (GERAN) , Universal Terrestrial Radio Access Networks (UTRAN) and evolved UTRAN (E-UTRAN) . An example communication system architecture is the long-term evolution (LTE) of the Universal Mobile Telecommunications System (UMTS) radio-access technology. The LTE is standardized by the third Generation Partnership Project (3GPP) . The LTE employs the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access and a further development thereof which is sometimes referred to as LTE Advanced (LTE-A) .
Since introduction of fourth generation (4G) services increasing interest has been paid to the next, or fifth generation (5G) standard. 5G may also be referred to as a New Radio (NR) network. Standardization of 5G or New Radio networks is an on-going study item.
Statement of invention
According to a first aspect there is provided a method comprising: arranging a random access preamble message at an apparatus to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message; and sending the random access channel preamble message from the apparatus to a base station.
According to some embodiments, the method comprises using a binary sequence for the indication of a size of data that the apparatus wants to transmit.
According to some embodiments, the method comprises arranging scrambling symbols within the preamble message to provide the indication of a size of data that the apparatus wants to transmit.
According to some embodiments, the arranging scrambling symbols within the preamble message is carried out in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
According to some embodiments, an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the apparatus wants to transmit.
According to some embodiments, symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the apparatus wants to transmit.
According to some embodiments, a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the apparatus wants to transmit.
According to some embodiments, each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
According to some embodiments, the preamble message also provides information of a priority of the data that the apparatus wants to transmit.
According to some embodiments, the method comprises transmitting the data in the subsequent connection request message.
According to some embodiments the random access channel comprises a narrowband physical random access channel.
According to some embodiments the connection request message comprises a narrowband radio resource control connection message.
According to some embodiments the connection request message comprises a Msg3 message.
According to some embodiments the apparatus comprises a user equipment.
According to some embodiments the base station comprises an eNB.
According to a second aspect there is provided a method comprising: receiving at an apparatus from a user equipment a random access preamble message, wherein the preamble message is arranged to comprise an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
According to some embodiments, a binary sequence indicates a size of data that the user equipment wants to transmit.
According to some embodiments, scrambling symbols within the preamble message provide the indication of a size of data that the user equipment wants to transmit.
According to some embodiments, scrambling symbols within the preamble message are arranged in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
According to some embodiments, an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the user equipment wants to transmit.
According to some embodiments, symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the user equipment wants to transmit.
According to some embodiments, a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the user equipment wants to transmit.
According to some embodiments, each cell or a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
According to some embodiments, the preamble message also provides information of a priority of the data that the user equipment wants to transmit.
According to some embodiments, the method comprises receiving the data in the subsequent connection request message.
According to some embodiments the random access channel comprises a narrowband physical random access channel.
According to some embodiments the connection request message comprises a narrowband radio resource control connection message.
According to some embodiments the connection request message comprises a Msg3 message.
According to some embodiments the apparatus comprises a base station.
According to some embodiments the base station comprises an eNB.
According to a third aspect there is provided a computer program comprising program code means adapted to perform the steps of the first aspect when the program is run on a data processing apparatus.
According to a fourth aspect there is provided a computer program comprising program code means adapted to perform the steps of any of the second aspect when the program is run on a data processing apparatus.
According to a fifth aspect there is provided an apparatus configured to carry out the method of the first aspect.
According to a sixth aspect there is provided an apparatus configured to carry out the method of the second aspect.
According to a seventh aspect there is provided an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: arrange a random access preamble message to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message; and send the random access channel preamble message from the apparatus to a base station.
According to some embodiments, the apparatus is configured to use a binary sequence for the indication of a size of data that the apparatus wants to transmit.
According to some embodiments, the apparatus is configured to arrange scrambling symbols within the preamble message to provide the indication of a size of data that the apparatus wants to transmit.
According to some embodiments, the apparatus is configured to arrange scrambling symbols within the preamble message in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
According to some embodiments, an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the apparatus wants to transmit.
According to some embodiments, symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the apparatus wants to transmit.
According to some embodiments, a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the apparatus wants to transmit.
According to some embodiments, each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
According to some embodiments, the preamble message also provides information of a priority of the data that the apparatus wants to transmit.
According to some embodiments, the apparatus is configured to transmit the data in the subsequent connection request message.
According to some embodiments the random access channel comprises a narrowband physical random access channel.
According to some embodiments the connection request message comprises a narrowband radio resource control connection message.
According to some embodiments the connection request message comprises a Msg3 message.
According to some embodiments the apparatus comprises a user equipment.
According to some embodiments the base station comprises an eNB.
According to an eighth aspect there is provided an apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to: receive from a user equipment a random access preamble message, the preamble message arranged to comprise an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
According to some embodiments, the apparatus is configured to determine a size of data that the user equipment wants to transmit from a binary sequence that indicates a size of data that the user equipment wants to transmit.
According to some embodiments, scrambling symbols within the preamble message provide the indication of a size of data that the user equipment wants to transmit.
According to some embodiments, scrambling symbols within the preamble message are arranged in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
According to some embodiments, an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the user equipment wants to transmit.
According to some embodiments, symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the user equipment wants to transmit.
According to some embodiments, a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the user equipment wants to transmit.
According to some embodiments, each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
According to some embodiments, the apparatus is configured to obtain from the preamble message information of a priority of the data that the user equipment wants to transmit.
According to some embodiments, the apparatus is configured to receive the data in the subsequent connection request message.
According to some embodiments the random access channel comprises a narrowband physical random access channel.
According to some embodiments the connection request message comprises a narrowband radio resource control connection message.
According to some embodiments the connection request message comprises a Msg3 message.
According to some embodiments the apparatus comprises a base station.
According to some embodiments the base station comprises an eNB.
Brief description of Figures
The invention will now be described in further detail, by way of example only, with reference to the following examples and accompanying drawings, in which:
Figure 1 shows a schematic example of a wireless communication system where the invention may be implemented;
Figure 2 shows an example of a communication device;
Figure 3 shows an example of a control apparatus;
Figure 4 schematically shows a portion of a random access procedure;
Figure 5 schematically shows scrambling codes according to an example;
Figure 6; is a flow chart of a method according to an example
Figure 7 schematically shows scrambling codes according to an example;
Figure 8 is a flow chart of a method according to an example
Figure 9 is a flow chart of a method according to an example.
Detailed description
Before explaining in detail the examples, certain general principles of a wireless communication system and mobile communication devices are briefly explained with reference to Figures 1 to 2 to assist in understanding the technology underlying the described examples.
In a wireless communication system 100, such as that shown in Figure 1, a wireless communication devices, for example, user equipment (UE) or  MTC devices  102, 104, 105 are provided wireless access via at least one base station or similar wireless transmitting and/or receiving wireless infrastructure node or point. Such a node can be, for example, a base station or an eNodeB (eNB) , or in a 5G system a Next Generation NodeB (gNB) , or other wireless infrastructure node. These nodes will be generally referred to as base stations. Base stations are typically controlled by at least one appropriate controller apparatus, so as to enable operation thereof and management of mobile communication devices in communication with the base stations. The controller apparatus may be located in a radio access network (e.g. wireless communication system 100) or in a core network (CN) (not shown) and may be implemented as one central apparatus or its functionality may be distributed over several apparatus. The controller apparatus may be part of the base station and/or provided by a separate entity such as a Radio Network Controller. In Figure 1  control apparatus  108 and 109 are shown to control the respective macro  level base stations  106 and 107. In some systems, the control apparatus may additionally or alternatively be provided in a radio network controller. Other examples of radio access system comprise those provided by base stations of systems that are based on technologies such as 5G or new radio, wireless local area network (WLAN) and/or WiMax (Worldwide Interoperability for Microwave Access) . A base station can provide coverage for an entire cell or similar radio service area.
In Figure 1  base stations  106 and 107 are shown as connected to a wider communications network 113 via gateway 112. A further gateway function may be provided to connect to another network.
The  smaller base stations  116, 118 and 120 may also be connected to the network 113, for example by a separate gateway function and/or via the controllers of the macro level stations. The  base stations  116, 118 and 120 may be pico or femto level base stations or the like. In the example,  stations  116 and 118 are connected via a gateway 111 whilst station 120 connects via the controller apparatus 108. In some embodiments, the smaller stations may not be provided.
A possible wireless communication device will now be described in more detail with reference to Figure 2 showing a schematic, partially sectioned view of a communication device 200. Such a communication device is often referred to as user equipment (UE) or terminal. An appropriate mobile communication device may be provided by any device capable of sending and receiving radio signals. Non-limiting examples comprise a mobile station (MS) or mobile device such as a mobile phone or what is known as a ’smart phone’ , a computer provided with a wireless interface card or other wireless interface facility (e.g., USB dongle) , personal data assistant (PDA) or a tablet provided with wireless communication capabilities, or any combinations of these or the like. A mobile communication device may provide, for example, communication of data for carrying communications such as voice, electronic mail (email) , text message, multimedia and so on. Users may thus be offered and provided numerous services via their communication devices. Non-limiting examples of these services comprise two-way or multi-way calls, data communication or multimedia services or simply an access to a data communications network system, such as the Internet. Users may also be provided broadcast or multicast data. Non-limiting examples of the content comprise downloads, television and radio programs, videos, advertisements, various alerts and other information.
A wireless communication device may be for example a mobile device, that is, a device not fixed to a particular location, or it may be a stationary device. The wireless device may need human interaction for communication, or may not need human interaction for communication. In the present teachings the terms UE or “user” are used to refer to any type of wireless communication device.
The wireless device 200 may receive signals over an air or radio interface 207 via appropriate apparatus for receiving and may transmit signals via appropriate apparatus for transmitting radio signals. In Figure 2 transceiver apparatus is designated schematically by block 206. The transceiver apparatus 206 may be provided for example by means of a radio part and associated antenna arrangement. The antenna arrangement may be arranged internally or externally to the wireless device.
A wireless device is typically provided with at least one data processing entity 201, at least one memory 202 and other possible components 203 for use in software and hardware aided execution of tasks it is designed to perform, including control of access to and communications with access systems and other communication devices. The data processing, storage and other relevant control apparatus can be provided on an appropriate circuit board and/or in chipsets. This feature is denoted by reference 204. The user may control the operation of the wireless device by means of a suitable user interface such as key pad 205, voice commands, touch sensitive screen or pad, combinations thereof or the like. A display 208, a speaker and a microphone can be also provided. Furthermore, a wireless communication device may comprise appropriate connectors (either wired or wireless) to other devices and/or for connecting external accessories, for example hands-free equipment, thereto. The  communication devices  102, 104, 105 may access the communication system based on various access techniques.
Figure 3 shows an example of a control apparatus for a communication system, for example to be coupled to and/or for controlling a station of an access system, such as a RAN node, e.g. a base station, gNB, a central unit of a cloud architecture or a node of a core network such as an MME or S-GW, a scheduling entity such as a spectrum management entity, or a server or host. The control apparatus may be integrated with or external to a node or module of a core network or RAN. In some embodiments, base stations comprise a separate control apparatus unit or module. In other embodiments, the control apparatus can be another network element such as a radio network controller or a spectrum controller. In some embodiments, each base station may have such a control apparatus as well as a control apparatus being provided in a radio network controller. The control apparatus 300 can be arranged to provide control on communications in the service area of the system. The control apparatus 300 comprises at least one memory 301, at least one  data processing unit  302, 303 and an input/output interface 304. Via the interface the control apparatus can be coupled to a receiver and a transmitter of the base station. The receiver and/or the transmitter may be implemented as a radio front end or a remote radio head. For example the control apparatus 300 or processor 201 can be configured to execute an appropriate software code to provide the control functions.
Internet of Things (loT) is known. The loT comprises inter-working of connected devices including, but not limited to, user equipment, vehicles, domestic appliances etc. Narrowband loT (NB-loT) is a radio technology standard for enabling loT devices to communicate using a cellular network. Enhancements to NB-loT are ongoing.
A random access procedure is typically used for communication between a device (e.g. loT device) and a base station. Figure 4 schematically shows a portion of a random access procedure between a device 400 and a base station 402.
At S1 a random access preamble is sent from the device 400 to the base station 402. This random access preamble may be termed “Msg1” .
At S2 a random access response is sent from the base station 402 to the device 400. This random access response may be termed “Msg2” .
At S3 a connection request is sent from the device 400 to the base station 402. This may be an RRC (Radio Resource Control) connection request for narrowband access (RRCConnectionRequest-NB) . This connection request may be termed “Msg3” .
As identified by the present inventors, early data transmission for small packets may reduce signalling overhead associated with setting up the RRC connection for the small data transmission. The size which defines “small packets” or “small data” may vary. In some examples a small packet may correspond to a single application layer packet in the range of 20 to 50 bytes. The small packet may be a report from an loT device. It is proposed that these small packets for early data transmission could be comprised in the above mentioned Msg3 transmission. As will be discussed in more detail below, this application proposes modifications to the NPRACH (narrowband physical random access channel) and also the RACH (random access channel) procedure to allow resource efficient small data transmission in Msg3 (or connection request message) .
By way of summary, and with reference to the example shown in Figure 4, in some embodiments a scrambling sequence is used in Msg1 to identify a size of data that is to be sent in Msg3.
In order to support small data transmission on Msg3, the eNB reserves dedicated NPRACH resources for transmission of the preambles from the UE which will send small data in Msg3. When the eNB detects a preamble from the dedicated NPRACH resource, it identifies that the UE needs to transmit small data and assigns the uplink resources for transmission of that data. Otherwise the eNB allocates fixed resources for transmission of Msg3 of a size 88 bits.
If different sizes of small data transmission above 88 bits needs to be supported, it may require an additional dedicated NPRACH resource pool for this purpose. Dividing the NPRACH resources statically into multiple groups without knowing the traffic load of small data of each size may be resource inefficient, and may also lead to more collisions for legacy Msg3 transmissions.
This application proposes a mechanism where the same NPRACH Preamble resources can be used for both Msg3 transmission and Msg3 + data transmissions. In this context Msg3 + data means that Msg3 and data are transmitted at the same time.
As per 3GPP Rel-13 specifications, the NPRACH Preamble consists of transmission of 4 symbol group. Each group contains 5 symbols and 1 CP (cyclic prefix) . The transmission uses subcarrier spacing of 3.75 KHz. 4 transmissions within a single preamble are frequency hopped with a fixed frequency offset with respect to an earlier symbol group. All the symbols are transmitted without any additional modulation, and with fixed power.
The NPRACH detection and timing estimation is based on detection of the tone after removing the cyclic prefix and estimation of time of arrival based on correlation. The timing estimation across different symbol groups is used to determine the final value of the time of arrival.
This application proposes to send a binary sequence which maps to a range of small data packet sizes when the preamble is sent for transmission of Msg3+Data. This approach avoids separate NPRACH resources in the time/frequency domain for Msg3+Data transmission purposes. The same resources of 3GPP Rel-13 NPRACH can be shared between legacy RACH access and RACH access for Msg3+data transmission, along with additional indication of required message size.
According to some embodiments, the method may differ dependent on whether the NPRACH transmission uses cell-specific scrambling.
(1) Cell-specific scrambling is not used for the NPRACH transmission
Where cell-specific scrambling is not used for the NPRACH transmission, scrambling of symbols within the symbol group of NPRACH may be used to identify the RACH Access for small data transmission, with specific message size range. The scrambling may also indicate the priority of the data transmission. In one example, only the last symbol group transmission of NPRACH preamble is scrambled, using a scrambling code sequence which can be mapped to a specific message size range. Alternatively, the symbols of all symbol groups may be scrambled using a scrambling code sequence which can be mapped to a specific message size range.
(2) Cell-specific scrambling is used for the NPRACH transmission
Where cell-specific scrambling is used for the NPRACH transmission, according to some embodiments only the first N-1 symbol group transmissions are scrambled using the cell-specific scrambling, with the last symbol group scrambling based on message size. In this case, according to some examples only one scrambling code per cell needs to be allocated. Alternatively, each cell is allocated with a set of scrambling codes for NPRACH scrambling, where each code represents a different message size.
For both (1) and (2) described above, the same NPRACH resources assigned for RACH Access to 3GPP Rel-13 UE can be reused.
For (1) , in some embodiments the eNB estimates the timing advance based on all symbol groups except the last symbol group. Once the initial timing is estimated based on these symbol groups, blind detection of scrambling code may be attempted on the last symbol group. In such examples the eNB can avoid correlation against different timings as the timing advance is estimated using earlier symbol groups.
For (2) , the eNB can identify the scrambling sequence by correlating with different possible scrambling sequences first, followed by timing estimation using the scrambling sequence detected with high or highest correlation.
An example will now be described with respect to Figure 5 which demonstrates one example of scrambling the NPRACH with two different scrambling sequences. Figure 5 shows a modified NPRACH preamble, shown generally at 502.  The long binary scrambling code is of length 15 bits in this example. This comprises scrambling code part 1 504, scrambling code part 2 506, and scrambling code part 3 508. The first bit in each code part represents the cyclic prefix. A short scrambling code is shown at 510. In this example, the short scrambling code 510 comprises a message size indicator. That is the short scrambling code 510 is operable to provide an indication to a base station of small data to be transmitted along with Msg3 data.
In this example the long binary scrambling code is encoded over the symbols of first 3 symbol group (i.e. 502, 504 and 506) contents. A scrambling code value is assigned to each symbol. In this example the code is uniquely assigned to each cell for NPRACH purposes. The scrambling of the last symbol group 510 is based on the message size to be transmitted. Depending on the number of orthogonal codes possible, different sizes can be indicated over the last symbol group 510.
An example will now be described with respect to Figures 6 and 7. This example relates to the example “ (2) Cell-specific scrambling is used for the NPRACH transmission” described above.
At S1, scrambling codes 1 to 4 (e.g. analogous to scrambling  codes  504, 506, 508, 510 of Figure 5) are generated. In some embodiments these are generated from a mother scrambling code.
Some options for the format of the scrambling code are listed below at (a) to (c) .
(a) Binary mother scrambling code of length 20 can be used for the symbols within 4 symbol groups. Assuming the length-20 code is c0, c1, ..., c19, we have scrambling code 1 = c0, c1, c2, c3, c4; scrambling code 2 = c5, c6, c7, c8, c9; scrambling code 3 = c10, c11, c12, c13, c14; and scrambling code 4 = c15, c16, c17, c18, c19.
(b) Binary mother scrambling code of length 5 can be used for the symbols in each symbol groups. Assuming the length-5 code is c0, c1, ... , c4, we have scrambling code 1 = scrambling code 2 = scrambling code 3 = scrambling code 4 =c0, c1, c2, c3, c4 i.e. the scrambling code is the same in each group.
(c) Binary mother scrambling code of length 4 can be used for 4 symbol groups. Assuming the length 4 code is c0, c1, c2, c3, we have scrambling code 1 =c0, c0, c0, c0, c0; scrambling code 2 = c1, c1, c1, c1, c1; scrambling code 3 = c2, c2, c2, c2, c2; and scrambling code 4 = c3, c3, c3, c3, c3.
Then, as shown at S2, the mother scrambling code sequence is used to identify the RACH Access for small data transmission with a size or size range. Depending on the number of mother scrambling codes available or possible, different sizes can be indicated.
Figure 7 schematically shows scrambling in accordance with the method of Figure 6. Figure 7 shows four scrambling code sequences 704, namely scrambling code-1 shown at 704, scrambling code-2 shown at 706, scrambling code-3 shown at 708, and scrambling code-4 shown at 710.
Where NPRACH transmission is not scrambled using cell specific scrambling (i.e. (1) described above) , the mother scrambling codes may be newly defined scrambling codes.
Where NPRACH transmission is scrambled using cell specific scrambling is provided (i.e. (2) described above) , the mother scrambling codes, which are used to identify the RACH Access for small data transmission with specific message size range, may be newly defined and different from the normal NPRACH cell specific scrambling codes.
Figure 8 is a flow chart of an example method viewed from the perspective of an apparatus, for example a user equipment.
At S1, the apparatus arranges a random access preamble message to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message.
At S2 the apparatus sends the random access channel preamble message from the apparatus to a base station.
Figure 9 is a flow chart of an example method viewed from the perspective of an apparatus, such as a base station.
At S1 the apparatus receives from a user equipment a random access preamble message. The preamble message comprises an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
In general, the various embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects of the invention may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller,  microprocessor or other computing device, although the invention is not limited thereto. While various aspects of the invention may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The embodiments of this invention may be implemented by computer software executable by a data processor of the mobile device, such as in the processor entity, or by hardware, or by a combination of software and hardware. Computer software or program, also called program product, including software routines, applets and/or macros, may be stored in any apparatus-readable data storage medium and they comprise program instructions to perform particular tasks. A computer program product may comprise one or more computer-executable components which, when the program is run, are configured to carry out embodiments. The one or more computer-executable components may be at least one software code or portions of it.
Further in this regard it should be noted that any blocks of the logic flow as in the Figures may represent program steps, or interconnected logic circuits, blocks and functions, or a combination of program steps and logic circuits, blocks and functions. The software may be stored on such physical media as memory chips, or memory blocks implemented within the processor, magnetic media such as hard disk or floppy disks, and optical media such as for example DVD and the data variants thereof, CD. The physical media is a non-transitory media.
The memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. The data processors may be of any type suitable to the local technical environment, and may comprise one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) , application specific integrated circuits (ASIC) , FPGA, gate level circuits and processors based on multi core processor architecture, as non-limiting examples.
Embodiments of the inventions may be practiced in various components such as integrated circuit modules. The design of integrated circuits is by and large a highly automated process. Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.
The foregoing description has provided by way of non-limiting examples a full and informative description of the exemplary embodiment of this invention. However, various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of this invention will still fall within the scope of this invention as defined in the appended claims. Indeed there is a further embodiment comprising a combination of one or more embodiments with any of the other embodiments previously discussed.

Claims (28)

  1. A method comprising:
    arranging a random access preamble message at an apparatus to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message; and
    sending the random access channel preamble message from the apparatus to a base station.
  2. A method according to claim 1, comprising using a binary sequence for the indication of a size of data that the apparatus wants to transmit.
  3. A method according to claim 1 or claim 2, comprising arranging scrambling symbols within the preamble message to provide the indication of a size of data that the apparatus wants to transmit.
  4. A method according to claim 3, wherein the arranging scrambling symbols within the preamble message is carried out in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
  5. A method according to claim 3 or claim 4, wherein an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the apparatus wants to transmit.
  6. A method according to claim 3 or claim 4, wherein symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the apparatus wants to transmit.
  7. A method according to claim 3 or claim 4, wherein a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the apparatus wants to transmit.
  8. A method according to claim 3 or claim 4, wherein each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
  9. A method according to any of claims 1 to 8, wherein the preamble message also provides information of a priority of the data that the apparatus wants to transmit.
  10. A method according to any of claims 1 to 9, comprising transmitting the data in the subsequent connection request message.
  11. A method comprising:
    receiving at an apparatus from a user equipment a random access preamble message,
    wherein the preamble message is arranged to comprise an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
  12. A method according to claim 11, wherein a binary sequence indicates a size of data that the user equipment wants to transmit.
  13. A method according to claim 11 or claim 12, wherein scrambling symbols within the preamble message provide the indication of a size of data that the user equipment wants to transmit.
  14. A method according to claim 13, wherein scrambling symbols within the preamble message are arranged in a manner dependent on whether cell-specific scrambling is used for transmissions on the random access channel.
  15. A method according to claim 13 or claim 14, wherein an arrangement of a last symbol group of the preamble message is mapped to a size range of the size of data that the user equipment wants to transmit.
  16. A method according to claim 13 or claim 14, wherein symbols of all symbol groups of the preamble message are scrambled using a scrambling code sequence which is mapped to a size range of the size of data that the user equipment wants to transmit.
  17. A method according to claim 13 or claim 14, wherein a first N-1 symbol groups of the preamble are scrambled using cell-specific scrambling, the last symbol group of the preamble message providing the indication of a size of data that the user equipment wants to transmit.
  18. A method according to claim 13 or claim 14, wherein each cell of a plurality of cells is allocated with a set of scrambling codes for random access channel scrambling, each code being representative of a different message size.
  19. A method according to any of claims 11 to 18, wherein the preamble message also provides information of a priority of the data that the user equipment wants to transmit.
  20. A method according to any of claims 11 to 19, comprising receiving the data in the subsequent connection request message.
  21. A computer program comprising program code means adapted to perform the steps of any of claims 1 to 10 when the program is run on a data processing apparatus.
  22. A computer program comprising program code means adapted to perform the steps of any of claims 11 to 20 when the program is run on a data processing apparatus.
  23. An apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to:
    arrange a random access preamble message to comprise an indication of a size of data that the apparatus wants to transmit in a subsequent connection request message; and
    send the random access channel preamble message from the apparatus to a base station.
  24. An apparatus according to claim 23, the apparatus configured to use a binary sequence for the indication of a size of data that the apparatus wants to transmit.
  25. An apparatus according to claim 23 or claim 24, the apparatus configured to arrange scrambling symbols within the preamble message to provide the indication of a size of data that the apparatus wants to transmit.
  26. An apparatus comprising at least one processor, and at least one memory including computer program code, wherein the at least one memory and the computer program code are configured, with the at least one processor, to:
    receive from a user equipment a random access preamble message,
    the preamble message arranged to comprise an indication of a size of data that the user equipment wants to transmit in a subsequent connection request message.
  27. An apparatus according to claim 26, the apparatus is configured to determine a size of data that the user equipment wants to transmit from a binary sequence that indicates a size of data that the user equipment wants to transmit.
  28. An apparatus according to claim 26 or claim 27, wherein scrambling symbols within the preamble message provide the indication of a size of data that the user equipment wants to transmit.
PCT/CN2017/100561 2017-09-05 2017-09-05 Method, apparatus and computer program WO2019047021A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780096241.2A CN111279771B (en) 2017-09-05 2017-09-05 Method and apparatus for communication
PCT/CN2017/100561 WO2019047021A1 (en) 2017-09-05 2017-09-05 Method, apparatus and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100561 WO2019047021A1 (en) 2017-09-05 2017-09-05 Method, apparatus and computer program

Publications (1)

Publication Number Publication Date
WO2019047021A1 true WO2019047021A1 (en) 2019-03-14

Family

ID=65633462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100561 WO2019047021A1 (en) 2017-09-05 2017-09-05 Method, apparatus and computer program

Country Status (2)

Country Link
CN (1) CN111279771B (en)
WO (1) WO2019047021A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120254890A1 (en) * 2011-04-01 2012-10-04 Renesas Mobile Corporation Small Data Transmission For Detached Mobile Devices
CN104469953A (en) * 2014-11-17 2015-03-25 大唐移动通信设备有限公司 Method and device for transmitting user data through auxiliary carrier
CN105636207A (en) * 2014-10-28 2016-06-01 电信科学技术研究院 Method and equipment for transmitting uplink data
US20170099660A1 (en) * 2015-10-01 2017-04-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting uplink data

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867574B2 (en) * 2010-06-02 2014-10-21 Qualcomm Incorporated Format of VHT-SIG-B and service fields in IEEE 802.11AC
KR101594382B1 (en) * 2012-09-26 2016-02-26 엘지전자 주식회사 Method and apparatus for sub-channel selective access in wireless lan system
CN104468030B (en) * 2014-08-26 2018-06-05 上海华为技术有限公司 A kind of data transmission method, user equipment and base station
WO2016140402A1 (en) * 2015-02-08 2016-09-09 엘지전자(주) Method for data transmission and reception in wireless communication system and device for same
WO2016137366A1 (en) * 2015-02-24 2016-09-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for resolving preamble collisions
CN106302285B (en) * 2015-05-27 2019-06-04 中国科学院上海高等研究院 A kind of physical frame communication means of wireless digital multimedia broadcast system
NZ741942A (en) * 2015-10-29 2023-10-27 Sharp Kk Terminal device, base station device, communication method, and integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120254890A1 (en) * 2011-04-01 2012-10-04 Renesas Mobile Corporation Small Data Transmission For Detached Mobile Devices
CN105636207A (en) * 2014-10-28 2016-06-01 电信科学技术研究院 Method and equipment for transmitting uplink data
CN104469953A (en) * 2014-11-17 2015-03-25 大唐移动通信设备有限公司 Method and device for transmitting user data through auxiliary carrier
US20170099660A1 (en) * 2015-10-01 2017-04-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting uplink data

Also Published As

Publication number Publication date
CN111279771A (en) 2020-06-12
CN111279771B (en) 2023-07-25

Similar Documents

Publication Publication Date Title
JP6577013B2 (en) User equipment, base station, method performed by user equipment, and method performed by base station
EP3210417B1 (en) Method and apparatus to acquire system information
JP2019515600A (en) RESOURCE DETERMINATION METHOD, RELATED DEVICE AND SYSTEM
CN111294787A (en) User Equipment (UE) positioning method and device
WO2019048483A1 (en) Synchronization signal block indication for wireless networks
WO2016015235A1 (en) Handover method, handover apparatus and handover system
WO2020088362A1 (en) Method and apparatus for transmitting indication information
EP3592051B1 (en) System information transmission methods and terminal
US10278206B2 (en) Method for scheduling radio resource in unlicensed spectrum and base station using thereof
US20230164775A1 (en) Method, apparatus and computer program
US11082902B2 (en) Method and apparatus for enabling a user equipment to use cells having different frequencies
EP3534661B1 (en) Internet of vehicles transmission resource acquisition method and terminal
US20180007528A1 (en) Method, apparatus and system
CN112584544B (en) Random access procedure
CN111279771B (en) Method and apparatus for communication
EP3790304B1 (en) Method for sending information, base station and computer-readable storage medium
CN110830402B (en) Method and device for sending and detecting synchronous broadcast information
CN114175777A (en) Communication method, apparatus and computer readable medium thereof
CN111183689B (en) Communication method and device
WO2022126637A1 (en) Resource determination method, and terminal device and network device
US11374727B2 (en) Methods and apparatus for configuring TDD operation of a narrowband internet of things communications system
EP3661300A1 (en) Method and apparatus for transmitting system information
CN116456364A (en) Configuration method and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924736

Country of ref document: EP

Kind code of ref document: A1