WO2015064877A1 - Composition for filament of three-dimensional printer - Google Patents

Composition for filament of three-dimensional printer Download PDF

Info

Publication number
WO2015064877A1
WO2015064877A1 PCT/KR2014/004684 KR2014004684W WO2015064877A1 WO 2015064877 A1 WO2015064877 A1 WO 2015064877A1 KR 2014004684 W KR2014004684 W KR 2014004684W WO 2015064877 A1 WO2015064877 A1 WO 2015064877A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional printer
filament
thermoplastic polyester
composition
polyester elastomer
Prior art date
Application number
PCT/KR2014/004684
Other languages
French (fr)
Korean (ko)
Inventor
이성율
Original Assignee
화인케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 화인케미칼 주식회사 filed Critical 화인케미칼 주식회사
Publication of WO2015064877A1 publication Critical patent/WO2015064877A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/10Extrusion moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/266Means for allowing relative movements between the apparatus parts, e.g. for twisting the extruded article or for moving the die along a surface to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2888Feeding the extrusion material to the extruder in solid form, e.g. powder or granules in band or in strip form, e.g. rubber strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]

Definitions

  • the technology disclosed herein relates to a composition for a three-dimensional printer filament, and more particularly to a composition for a three-dimensional printer filament having a high solidification rate and excellent sliding characteristics when producing a solid article through three-dimensional printing.
  • 3D (3-Dimension, 3D) printer is a equipment to produce three-dimensional shape by stacking layers with fine thickness by spraying ink of special material sequentially. 3D printing is spreading in various fields. In addition to the automotive field, which is made up of many parts, many manufacturers use them to make various models of medical human body models and household products such as toothbrushes and shavers.
  • the most widely used material for 3D printing is photopolymer, a photocurable polymer material that hardens when light is received. This accounts for 56% of the total market.
  • the next most popular material is a solid thermoplastic that is free to melt and harden, accounting for 40% of the market, and metal powder is expected to grow in the future.
  • the form of the dual thermoplastic material may have a filament, particle or powder form.
  • the filament type 3D printing is faster than other types in terms of speed, so the productivity is high and the diffusion speed is high.
  • Existing filament materials include polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), high density polyethylene (HDPE), polycarbonate (PC), and the like.
  • PLA polylactic acid
  • ABS acrylonitrile butadiene styrene
  • HDPE high density polyethylene
  • PC polycarbonate
  • the melting point is moderately high, so the solidification speed after printing is high, so even if the printing speed is fast, the deformation and deformation are good, and the dimensional and shape stability is good.
  • the melting point is moderately low, easy extrusion and high production efficiency during filament production.
  • the melting point is too high, it can be an unnecessary cost increase, because it consumes a lot of power to melt the filament and the parts inside the printer must be made of a material that can withstand high heat.
  • the above four kinds of materials meet the above conditions, all of which are high hardness materials of hardness Shore D50 or more, and cannot satisfy the requirements of 3D printing materials requiring low hardness and soft texture.
  • high hardness materials of hardness Shore D50 or more are high hardness materials of hardness Shore D50 or more, and cannot satisfy the requirements of 3D printing materials requiring low hardness and soft texture.
  • models for infants, school models, shoes and toys can be made more realistic when 3D printed with soft, low-hard materials. Therefore, the development of new materials is required.
  • the differential scanning calorimetry (DSC) thermal analysis includes a polymer substrate containing a thermoplastic polyester elastomer (TPEE) having a melting point peak temperature of 130 to 180 °C, the melt index of the polymer substrate (190) C, 2.16 kg) is provided a composition for three-dimensional printer filament 1 to 30g / 10 minutes.
  • TPEE thermoplastic polyester elastomer
  • a three-dimensional printer filament produced by extruding a composition comprising a polymer substrate containing a thermoplastic polyester elastomer, the polymer substrate has a hardness of Shore A 90 or less, melt index (190 °C, 2.16 kg) is provided with a three-dimensional printer filament having 1 to 30 g / 10 minutes and a melt index (150 ° C., 10 kg) of 3.0 g / 10 minutes or less.
  • a method for manufacturing a three-dimensional printer filament comprising: supplying a three-dimensional printer filament to a print head; Ejecting a melt of the three-dimensional printer filament heated from the print head; Solidifying the melt to form a printed layer; And stacking the printed layers in multiple layers to form a solid article.
  • FIG. 1 shows a typical filament type three-dimensional printing system.
  • FIG. 1 shows a typical filament type three-dimensional printing system.
  • the three-dimensional printing system of Figure 1 is an example of a model called LulzBot TAZ by Aleph Objects.
  • the bottom plate 110 moves in the Y-axis
  • the print head 120 moves in the X-axis and Z-axis, and further builds a predetermined shape by discharging the filament 130. It is done in such a way.
  • the filament 130 is supplied from the reel 140 on the right side and is supplied through the induction pipe 150.
  • the supply amount is controlled by the force and speed of the traction device included in the print head 120, and a hot melt adhesive gun (gun)
  • the melted filaments are extruded in a manner similar to) to form a printed layer on the bottom plate 110 and continue stacking these printed layers to form the article 160.
  • the principle of the induction pipe 150 is to serve as a passage for smoothly supplying the filament 130 to the print head 120 moving left and right up and down, if there is no induction pipe 150, the filament 130 is bent in the middle It cannot be fed vertically (always in a constant direction) to the print head 120, so that constant speed metering will be difficult.
  • the filament 130 having a diameter of about 1.75 mm passes through the filament 130 without shaking, so that the inner diameter of the guide tube 150 is less than about 2.0 mm so that the play is not large.
  • the filament 130 passing through the induction pipe 150 will also generally be a hard and smooth material.
  • thermoplastic polyester elastomer TPEE
  • composition for a three-dimensional printer filament comprising a polymer substrate containing a thermoplastic polyester elastomer having a melting point peak temperature of 130 to 180 ° C. during thermal analysis by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the MI (190 ° C., 2.16 kg) of the composition, in which various additional components are mixed, is 1 to 30 g / 10 minutes, and the hardness is Shore A 90 or less.
  • thermoplastic polyester elastomer is an elastomer in which crystalline hard segments formed from aromatic dicarboxylic acids and aliphatic diols and soft soft segments formed from polyalkylene oxides are randomly arranged.
  • the aromatic dicarboxylic acid constituting the polyester of the hard segment is widely used as the conventional aromatic dicarboxylic acid, and is not particularly limited, but the main aromatic dicarboxylic acid is terephthalic acid or naphthalenedica It is preferable that it is a leric acid.
  • alicyclic dicarboxylic acids such as aromatic dicarboxylic acid, such as diphenyl dicarboxylic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid, cyclohexanedicarboxylic acid, and tetrahydrophthalic anhydride, are mentioned.
  • aliphatic dicarboxylic acids such as acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecane diacid, dimer acid, hydrogenated dimer acid, and the like. These are used in the range which does not significantly reduce melting
  • thermoplastic polyester elastomer of the present invention as the aliphatic or alicyclic diols constituting the polyester of the hard segment, general aliphatic or alicyclic diols are widely used, and are not particularly limited, but mainly alkylene having 2 to 8 carbon atoms It is preferable that they are glycols. Specifically, ethylene glycol, 1, 3-propylene glycol, 1, 4- butanediol, 1, 6- hexanediol, 1, 4- cyclohexane dimethanol, etc. are mentioned. Most preferred are 1,4-butanediol and 1,4-cyclohexanedimethanol.
  • butylene terephthalate units or butylene naphthalate units is preferable at the point of a physical property, moldability, and cost performance.
  • the aromatic polyester suitable as polyester which comprises a hard segment in the thermoplastic polyester elastomer of this invention can be obtained easily according to a conventional polyester manufacturing method. Moreover, it is preferable that such polyester has the number average molecular weights 10000-40000.
  • the aliphatic polycarbonate which comprises the soft segment in the thermoplastic polyester elastomer of this invention mainly consists of a C2-C12 aliphatic diol residue and a carbonate bond.
  • these aliphatic diol residues for example, ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8 And residues such as -octanediol.
  • an aliphatic diol residue having 5 to 12 carbon atoms is preferable in view of flexibility and low temperature characteristics
  • the melting point is low (for example, 70 ° C. or lower) and the glass transition temperature is low.
  • aliphatic polycarbonate diols composed of 1,6-hexanediol moieties used to form soft segments of thermoplastic polyester elastomers have a low glass transition temperature of around -60 ° C and a melting point of about 50 ° C, which is why It becomes good thing.
  • the aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of the aliphatic polycarbonate diol, for example, 3-methyl-1,5-pentanediol has a slightly higher glass transition point compared to the original aliphatic polycarbonate diol, but a lower melting point. Or it becomes an amorphous and corresponds to the aliphatic polycarbonate diol which is favorable in low temperature characteristic.
  • aliphatic polycarbonate diols composed of 1,9-nonanediol and 2-methyl-1,8-octanediol have good low temperature characteristics because the melting point is about 30 ° C. and the glass transition temperature is sufficiently low around ⁇ 70 ° C. It corresponds to aliphatic polycarbonate diol.
  • the aliphatic polycarbonate diol is not necessarily composed of only the polycarbonate component but may be a copolymer of a small amount of other glycol, dicarboxylic acid, ester compound, ether compound, or the like.
  • a copolymerization component For example, dicarboxylic acid, such as glycol, dimer acid, hydrogenated dimer acid, such as dimerdiol, hydrogenated dimerdiol, and these modified bodies, aliphatic, aromatic, or alicyclic dicarboxylic acid, Polyalkylene glycol or oligoalkylene glycol, such as polyester or oligoester consisting of glycol, polyester or oligoester consisting of epsilon -caprolactone, polytetramethylene glycol, polyoxyethylene glycol, etc.
  • the copolymerization component can be used to such an extent that the effect of the aliphatic polycarbonate segment is not substantially lost. Specifically, it is 40 parts by weight or less, preferably 30 parts by weight or less, and more preferably 20 parts by weight or less based on 100 parts by weight of the aliphatic polycarbonate segment. When there is too much copolymerization quantity, it becomes inferior to the heat aging resistance and water resistance of the obtained thermoplastic polyester elastomer.
  • thermoplastic polyester elastomer of the present invention is a soft segment only to the extent that the effects of the invention are not lost.
  • polyalkylene glycols such as polyethylene glycol, polyoxytetramethylene glycol, polycaprolactone, polybutylene adipate, etc.
  • Copolymerization components such as polyester, may be introduce
  • the thermoplastic polyester elastomer has a melt index (MI) as measured by ASTM D1238 (190 ° C., 2.16 kg) of 0.01 to 30 g / 10 minutes, or 0.01 to 20 g / 10 minutes, or 0.1 to 10 g / 10 minutes, or 0.1 to 5.0 g / 10 minutes, or 0.1 to 3.0 g / 10 minutes, or 0.1 to 1.0 g / 10 minutes, or 0.3 to 0.6 g / 10 minutes, or 1 to 30 g / 10 minutes have.
  • MI melt index
  • thermoplastic polyester elastomers include thermoplastic polyester elastomers having a poly (1,4-butylene terephthalate) block and a poly (tetramethylene ether) glycol block. Pont de Nemours & Co. Inc., Wilmington, Delaware, USA, 19898, available as HYTREL).
  • the thermoplastic polyester elastomer may have a poly (ethylene terephthalate) block and a polyalkylene glycol block.
  • the thermoplastic polyester elastomer may have a poly (1,4-butylene terephthalate) block and a polyalkylene glycol block.
  • the TPEE used in the present invention has a high melting point of at least 130 ° C. or higher and a high solidification speed after printing, and excellent dimensional and shape stability.
  • the TPEE used in the present invention has a melting point of 180 ° C. or less, so that the melting point is not very high, so that the extrusion is easy and the productivity is high during filament production.
  • the hardness of the used TPEE may be many grades over Shore A 95, but in these cases, the plasticizer, etc. must be formulated in order to make the hardness low, so there is a fear of migration and the slipperiness of the surface of the product becomes poor. A 95 or less is recommended.
  • TPEE When TPEE is used as the main material of filament material, it is softer than existing high hardness filament materials such as PLA, ABS, HDPE, and PC, and it is also soft and has good heat resistance and oil resistance. In addition, it is possible to secure an additional advantage, such as making a variety of products, such as shoe soles, parts and prefabricated toys can be easily adhered by an adhesive.
  • thermoplastic polyester elastomer may include various additional components to improve physical properties.
  • the additional component may be at least one selected from the group consisting of wax, plasticizer, thermoplastic elastomer (TPE), ethylene copolymer, and olefin random copolymer (ORC).
  • the additional component may include 1 to 25 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer.
  • the wax may include paraffin wax, microcrystalline wax, polyethylene wax, and the like, and the surface filament of the filament may be improved to allow the filament to easily pass through the guide tube of the printer.
  • the wax may be included in an amount of 1 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. When the amount of the wax exceeds 5 parts by weight, the hardness of the filament is increased, and the flexibility of the filament may be lowered and broken.
  • the plasticizer comprises a propylene glycol polymer (PPG) or polyethylene glycol polymer (PEG) having a number average molecular weight of 200 to 20,000, preferably 200 to 3,500, more preferably 200 to 1,500.
  • PPG propylene glycol polymer
  • PEG polyethylene glycol polymer
  • the addition of the plasticizer has the effect of lowering the hardness of the entire polymer substrate.
  • the plasticizer may be included in an amount of 1 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. If the amount of the plasticizer exceeds 5 parts by weight, the sliding property of the filament surface may be lowered by migration.
  • the thermoplastic elastomer is styrene-butadiene-styrene (SBS), styrene-ethylene-butylene-styrene (SEBS), styrene-isoprene-styrene (SIS), 1,2-polybutadiene, ethylene-propylene-diene (EPDM), and the like. These may be used alone or in combination of two or more.
  • the addition of the thermoplastic elastomer has an effect of reinforcing elasticity than when TPEE alone.
  • the thermoplastic elastomer may be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. When the amount of the thermoplastic elastomer exceeds 20 parts by weight, the slipperiness of the surface of the filament may be degraded.
  • Ethylene copolymers or olefin random copolymers may be mixed to control the price of the entire filament composition.
  • the ethylene copolymer comprises i) ethylene, and ii) C3-C10 alpha monoolefins, C1-C12 alkyl esters of C3-C20 monocarboxylic acids, unsaturated C3-C20 mono or dicarboxylic acids, anhydrides and unsaturated C4-C8 dicarboxylic acids. It may be a copolymer of one or more ethylenically unsaturated monomers selected from the group consisting of vinyl esters of C2-C18 carboxylic acids.
  • ethylene copolymers include ethylene vinyl acetate, (Ethylene Vinylacetate, EVA), ethylene butyl acrylate (Ethylene Butylacrylate, EBA), ethylene methyl acrylate (Ethylene Methylacrylate, EMA), ethylene ethyl acrylate (Ethylene Ethylacrylate, EEA), ethylene methyl methacrylate (Ethylene Methylmethacrylate, EMMA), ethylene butene copolymer (Ethylene Butene Copolymer, EB-Co), ethylene octene copolymer (Ethylene Octene Coplymer, EO-Co), and the like.
  • the olefin random copolymer may be in the form of random polymerization of ethylene or propylene with one or more copolymerizable ⁇ -olefin comonomers, for example, the olefin random copolymer may be a copolymer of ethylene or propylene and octene.
  • the ethylene copolymer or the olefin random copolymer may be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer.
  • the amount of the ethylene copolymer or the olefin random copolymer exceeds 20 parts by weight, solidification of the filament may be delayed after extrusion.
  • the composition may further include an antioxidant or a pigment.
  • the antioxidant may be used, such as sunnoc, butylated hydroxytoluene (BHT), Songnox 1076 (songnox 1076, octadecyl 3,5-di- tert- butyl-4-hydroxyhydrocinnamate), etc., considering the color It is also possible to use a variety of pigments.
  • the antioxidant or the dye may be included 1 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. When the antioxidant or the dye exceeds 5 parts by weight, the filament may be degraded due to a phenomenon such as blooming.
  • the MI (190 ° C., 2.16 kg) of the final composition may be 1 to 30 g / 10 minutes, preferably 1 to 20 g / 10 minutes, more preferably 1 to 10 g / 10 minutes. If the MI (190 °C, 2.16kg) is less than 1.0g / 10 minutes, the filament melting rate is not slow to smooth printing or slow down the printing speed. On the other hand, if the MI (190 °C, 2.16kg) is more than 30g / 10 minutes, the filament melts too fast, it is difficult to maintain a constant discharge amount at a constant speed, the error in printing thickness increases.
  • a three-dimensional printer filament produced by extruding the above-described composition.
  • the filament comprises a polymeric substrate containing a thermoplastic polyester elastomer.
  • the hardness of the polymer substrate is less than Shore A 90.
  • the melt index (190 ° C., 2.16 kg) is 1 to 30 g / 10 minutes
  • the melt index (150 ° C. and 10 kg) is 3.0 g / 10 minutes or less.
  • the melt index (150 ° C., 10 kg) is preferably 0.01 to 2.0 g / 10 minutes, more preferably 0.01 to 1.0 g / 10 minutes or less.
  • the filament has a high solidification rate and excellent sliding properties.
  • Have The thermoplastic polyester elastomer may have a melting point peak temperature of 130 to 180 ° C. in DSC thermal analysis. The melting of the filament in the melting point range is less power consumption and easy extrusion.
  • the three-dimensional printer filament may have a diameter of 1.0 to 2.0mm, preferably 1.5 to 1.8mm. If the diameter of the filament is less than 1mm, it is difficult to produce a print head that pushes out the filament, and the printing speed may be too slow. If the diameter of the filament exceeds 2mm, the solidification speed is slow and the printing line is thick, resulting in poor product accuracy. Since the hardness of the filament is less than Shore A 90, the hardness of Shore A 90 or more can not feel the soft texture, such as rubber does not fit the purpose of the present patent.
  • a method of forming an article through three-dimensional printing using the three-dimensional printer filament described above is provided.
  • the article forming method may proceed to the following process.
  • First, the above-mentioned three-dimensional printer filament is supplied to a print head.
  • the filament may be supplied to the print head through a guide tube.
  • Next, the melt of the three-dimensional printer filament heated from the print head is discharged.
  • the bottom of the printer moves on the Y-axis
  • the print head moves on the X-axis, stacks one layer and then raises one layer on the Z-axis, then moves on the X-axis and Y-axis as above, stacks the next layer, and back on the Z-axis.
  • This printing is going up three-dimensional printing.
  • the melt is then solidified to form a printed layer.
  • the printed layer is then laminated in layers to form a solid article.
  • compositions were prepared by combining the following components, extruded by a single screw extruder having a screw diameter of 30 mm and a screw length of 105 mm, and cooled and wound with a 1.5 m length cooling water tank to make a filament having a diameter of 1.75 mm.
  • Melting points of the polymers were measured using DSC, and Tm was measured by raising the temperature to 10 ° C. per minute according to ASTM D-3418.
  • TPEE-1 Thermoplastic Polyseter elastomer KEYFLEX BT 1030D (LG Chemistry), DSC Melting Point 165 °C, Hardness Shore A 80
  • TPEE-2 Thermoplastic Polyseter elastomer KEYFLEX BT 1035D (LG Chemistry), DSC Melting Point 165 °C, Hardness Shore A 88
  • TPEE-3 Thermoplastic Polyseter elastomer KEYFLEX BT 1045D (LG Chemistry), DSC Melting Point 178 ° C, Hardness Shore A 94, Shore D 45
  • TPEE-4 Thermoplastic Polyseter elastomer KEYFLEX BT 1047D (LG Chemistry), DSC Melting Point 190 °C, Hardness Shore A 98, Shore D 47
  • TPEE-5 Thermoplastic Polyseter elastomer Hytrel 5526 (Dupont), DSC Melting Point 203 ° C, Hardness Shore A 99, Shore D 55
  • ORC-1 Ethylene Octene Random Copolymer, DSC Melting Point 90 ° C, Hardness Shore A 87
  • EVA-1 Ethylene Vinylacetate Copolymer DSC melting point 80 °C (Hardness Shore A 88)
  • SEBS-1 Styrene Ethylene Butylene Styrene, DSC Melting Point 140 °C, Hardness Shore A 86
  • the melt index (MI) of the final composition was measured by ASTM D-1238.
  • the MI (150 ° C., 10 kg) of the final mixture was expressed as A, 1.1-2.0 for B, 2.1-3.0 for C, 3.1-5.0 for D, and 5.1 for E for 1.0 g / 10 min or less. That is, the higher the MI (150 ° C, 10kg), the later the solidification at 150 ° C.
  • MI (180kg 10kg) of final mixture is 20g / 10min or more A, 10g / 10min or more B, 5g / 10min or more C, 1g / 10min or more D, less than 1g / 10min E Marked as.
  • the final composition was extruded to obtain a filament with a diameter of 1.75 mm. It passes through the inside of polypropylene made of polypropylene with an inner diameter of 2.5mm, an outer diameter of 4.5mm and a length of 40cm, and it feels the resistance when it is pulled at a speed of 1cm / sec by hand, in order of decreasing resistance. Graded. In other words, the least resistance is indicated by A, the strongest one by E.
  • compositions of Examples 1 to 6 have a faster melting rate and solidification rate than other compositions of Comparative Examples 1 to 9, and have excellent sliding characteristics, and are suitable for use as a filament of a 3D printer and have low hardness. Therefore, it is possible to produce a variety of shapes that require a soft feel in 3D printing.

Abstract

Provided is a composition for a filament of a three-dimensional printer, comprising a polymer substrate containing a thermoplastic polyester elastomer (TPEE) having a melting point peak temperature of 130 to 180°C during thermal analysis through differential scanning calorimetry (DSC), wherein the melting index of the polymer substrate (190°C, 2.16kg) is 1 to 30 g/10 min.

Description

3차원 프린터 필라멘트용 조성물Composition for 3D Printer Filament
본 명세서에 개시된 기술은 3차원 프린터 필라멘트용 조성물에 관한 것으로서, 보다 상세하게는 3차원 인쇄를 통해 고형 물품 제조시 고화속도가 빠르고 미끄럼 특성이 우수한 3차원 프린터 필라멘트용 조성물에 관한 것이다.The technology disclosed herein relates to a composition for a three-dimensional printer filament, and more particularly to a composition for a three-dimensional printer filament having a high solidification rate and excellent sliding characteristics when producing a solid article through three-dimensional printing.
3D(3-Dimension, 3차원) 프린터는 특수한 소재의 잉크를 순차적으로 분사하여 미세한 두께로 층층이 쌓아 올리면서 입체적인 형상물을 제작하는 장비이다. 3D 프린팅은 다양한 분야에서 사용이 확산되어 가고 있다. 다수의 부품으로 구성된 자동차 분야 외에도 의료용 인체모형이나 칫솔이나 면도기와 같은 가정용 제품 등의 다양한 모형을 만들기 위한 용도로 많은 제조 업체에서 사용하고 있다.3D (3-Dimension, 3D) printer is a equipment to produce three-dimensional shape by stacking layers with fine thickness by spraying ink of special material sequentially. 3D printing is spreading in various fields. In addition to the automotive field, which is made up of many parts, many manufacturers use them to make various models of medical human body models and household products such as toothbrushes and shavers.
현재 3D 프린팅에 가장 많이 쓰이는 소재는 빛을 받으면 굳는 광경화성 고분자 물질 '포토폴리머(photopolymer)'이다. 이는 전체 시장의 56%를 차지한다. 그 다음으로 인기 있는 소재는 녹고 굳는 것이 자유로운 고체 형태의 열가소성 플라스틱으로 시장의 40%를 점유하며 추후 금속 분말도 점차 성장세를 높여갈 것으로 예상된다. 이중 열가소성 플라스틱 소재의 형태는 필라멘트(filament), 입자 또는 분말가루 형태를 가질 수 있다. 필라멘트형(filament type)의 3D 프린팅은 속도면에서 타 유형보다 빨라서 생산성이 높아 확산 속도가 빠르다.Currently, the most widely used material for 3D printing is photopolymer, a photocurable polymer material that hardens when light is received. This accounts for 56% of the total market. The next most popular material is a solid thermoplastic that is free to melt and harden, accounting for 40% of the market, and metal powder is expected to grow in the future. The form of the dual thermoplastic material may have a filament, particle or powder form. The filament type 3D printing is faster than other types in terms of speed, so the productivity is high and the diffusion speed is high.
현존 필라멘트 소재로는 폴리락트산(polylactic acid, PLA), ABS(acrylonitrile butadiene styrene), HDPE(high density polyethylene), 폴리카보네이트(polycarbonate, PC) 등이 쓰여지는데, 그 이유는 다음과 같다. 첫째, 녹는점이 적당히 높아 프린팅 후 고화 속도가 빠르므로 프린팅 속도를 빨리해도 변형이 되지 않고 치수 및 형태 안정성이 좋다. 둘째, 녹는점이 적당히 낮아 필라멘트 제조 시에 압출이 용이하고 생산효율이 높다. 더욱이 녹는점이 너무 높을 경우는 필라멘트를 녹이는 데 전력의 소모가 많고 프린터 내의 부품들이 고열에 견딜 수 있는 재질로 만들어져야 하는 등 불필요한 원가 상승 요인이 된다.Existing filament materials include polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), high density polyethylene (HDPE), polycarbonate (PC), and the like. First, the melting point is moderately high, so the solidification speed after printing is high, so even if the printing speed is fast, the deformation and deformation are good, and the dimensional and shape stability is good. Second, the melting point is moderately low, easy extrusion and high production efficiency during filament production. Moreover, if the melting point is too high, it can be an unnecessary cost increase, because it consumes a lot of power to melt the filament and the parts inside the printer must be made of a material that can withstand high heat.
상기의 각종 조건들에 맞는 소재는 위의 네 가지 정도인데 이들은 모두 경도 Shore D50 이상의 고경도 소재뿐으로서, 저경도의 부드러운 감촉을 요구하는 3D 프린팅 소재로서의 요구사항을 충족할 수가 없다. 예를 들어, 유아용의 모형이나 학교의 공작용 모형, 신발이나 완구용 모형들은 저경도의 부드러운 소재로 3D 프린팅했을 때에 더욱 현실감이 있게 만들어질 수 있다. 따라서 새로운 소재의 개발이 요구된다.The above four kinds of materials meet the above conditions, all of which are high hardness materials of hardness Shore D50 or more, and cannot satisfy the requirements of 3D printing materials requiring low hardness and soft texture. For example, models for infants, school models, shoes and toys can be made more realistic when 3D printed with soft, low-hard materials. Therefore, the development of new materials is required.
본 발명의 일 양태에 따르면, 시차주사열량계(DSC) 열분석시 융점 피크온도가 130 내지 180℃인 열가소성 폴리에스테르 엘라스토머(TPEE)를 함유하는 고분자 기재를 포함하되, 상기 고분자 기재의 용융지수(190℃, 2.16kg)가 1 내지 30g/10분인 3차원 프린터 필라멘트용 조성물이 제공된다.According to an aspect of the present invention, the differential scanning calorimetry (DSC) thermal analysis includes a polymer substrate containing a thermoplastic polyester elastomer (TPEE) having a melting point peak temperature of 130 to 180 ℃, the melt index of the polymer substrate (190) C, 2.16 kg) is provided a composition for three-dimensional printer filament 1 to 30g / 10 minutes.
본 발명의 다른 양태에 따르면, 열가소성 폴리에스테르 엘라스토머를 함유하는 고분자 기재를 포함하는 조성물을 압출하여 제조한 3차원 프린터 필라멘트로서, 상기 고분자 기재의 경도가 Shore A 90 이하이고, 용융지수(190℃, 2.16kg)가 1 내지 30g/10분이며, 용융지수(150℃, 10kg)가 3.0g/10분 이하인 3차원 프린터 필라멘트가 제공된다.According to another aspect of the present invention, a three-dimensional printer filament produced by extruding a composition comprising a polymer substrate containing a thermoplastic polyester elastomer, the polymer substrate has a hardness of Shore A 90 or less, melt index (190 ℃, 2.16 kg) is provided with a three-dimensional printer filament having 1 to 30 g / 10 minutes and a melt index (150 ° C., 10 kg) of 3.0 g / 10 minutes or less.
본 발명의 또 다른 양태에 따르면, 상술한 3차원 프린터 필라멘트를 인쇄 헤드에 공급하는 단계; 상기 인쇄 헤드로부터 가열된 상기 3차원 프린터 필라멘트의 용융물을 토출시키는 단계; 상기 용융물을 고화시켜 인쇄층을 형성하는 단계; 및 상기 인쇄층을 여러 층 적층시켜 고상의 물품을 형성하는 단계를 포함하는 3차원 인쇄에 의한 물품 형성방법이 제공된다.According to still another aspect of the present invention, there is provided a method for manufacturing a three-dimensional printer filament, comprising: supplying a three-dimensional printer filament to a print head; Ejecting a melt of the three-dimensional printer filament heated from the print head; Solidifying the melt to form a printed layer; And stacking the printed layers in multiple layers to form a solid article.
도 1은 전형적인 필라멘트 형의 3차원 인쇄 시스템을 나타낸다. 1 shows a typical filament type three-dimensional printing system.
이하 도면을 참조하여 본 발명을 보다 상세히 설명하고자 한다. 도 1은 전형적인 필라멘트 형의 3차원 인쇄 시스템을 나타낸다. 도 1의 3차원 인쇄 시스템은 Aleph Objects사의 LulzBot TAZ 라는 모델을 예로 든 것이다. 도 1을 참조하면, 3차원 인쇄는 바닥판(110)은 Y축으로 움직이고, 인쇄 헤드(120)가 X축과 Z축으로 움직이면서 필라멘트(130)를 토출하면서 한층 한층 쌓아가며 소정의 형상을 구축하는 방식으로 수행된다. 필라멘트(130)는 오른쪽의 릴(140)로부터 풀려서 유도관(150)을 통하여 공급이 되는데, 인쇄 헤드(120)가 구비하는 견인장치의 힘과 속도에 의해 공급량이 제어되며, 핫멜트 접착제 건(gun)과 유사한 방식으로 녹은 필라멘트가 압출되어 바닥판(110) 상에 인쇄층을 형성하고 이러한 인쇄층을 계속 적층시켜 물품(160)을 형성하게 된다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. 1 shows a typical filament type three-dimensional printing system. The three-dimensional printing system of Figure 1 is an example of a model called LulzBot TAZ by Aleph Objects. Referring to FIG. 1, in the three-dimensional printing, the bottom plate 110 moves in the Y-axis, and the print head 120 moves in the X-axis and Z-axis, and further builds a predetermined shape by discharging the filament 130. It is done in such a way. The filament 130 is supplied from the reel 140 on the right side and is supplied through the induction pipe 150. The supply amount is controlled by the force and speed of the traction device included in the print head 120, and a hot melt adhesive gun (gun) The melted filaments are extruded in a manner similar to) to form a printed layer on the bottom plate 110 and continue stacking these printed layers to form the article 160.
그런데 여기서 유도관(150)의 원리는, 좌우 상하로 움직이는 인쇄 헤드(120)에 원활하게 필라멘트(130)를 공급하는 통로역할을 하는 것인데 유도관(150)이 없다면 중간에 필라멘트(130)가 굽어져서 인쇄 헤드(120)에 수직(항상 일정한 방향)으로 공급이 될 수가 없어서 정속 정량 공급이 어려울 것이다. 여기서 대개 직경 1.75mm 정도인 필라멘트(130)가 통과하여 인쇄 헤드(120) 부분까지 흔들림없이 진입하려면 유도관(150)의 내경이 약 2.0mm 이내가 되어 유격이 크지 않도록 하는 것이 좋다. 또한 유도관(150)을 통과하는 필라멘트(130) 또한 경도가 딱딱하고 매끄러운 재질인 것이 일반적으로 좋을 것이다. By the way, the principle of the induction pipe 150 is to serve as a passage for smoothly supplying the filament 130 to the print head 120 moving left and right up and down, if there is no induction pipe 150, the filament 130 is bent in the middle It cannot be fed vertically (always in a constant direction) to the print head 120, so that constant speed metering will be difficult. In this case, the filament 130 having a diameter of about 1.75 mm passes through the filament 130 without shaking, so that the inner diameter of the guide tube 150 is less than about 2.0 mm so that the play is not large. In addition, the filament 130 passing through the induction pipe 150 will also generally be a hard and smooth material.
하지만 배경기술에서 상술한 바와 같이, 고경도의 고분자들을 3D 프린팅 소재로 사용할 경우 발생하는 문제점이 있다. 상기 문제점을 해결하기 위해 저경도의 각종 고분자를 검토해보면, 저경도의 고분자들은 대부분 녹는점이 높지않고, 요구에 맞는 녹는점을 가지는 고분자는 높은 경도를 가지므로 본 특허의 취지에 맞지 않는다. 따라서 본 발명자는 열가소성 폴리에스테르 엘라스토머(TPEE)를 필수소재로 하여 만든 조성물을 제안한다.However, as described above in the background art, there is a problem that occurs when high hardness polymers are used as the 3D printing material. In order to solve the above problems, various kinds of low hardness polymers are examined, and most of the low hardness polymers do not have a high melting point, and a polymer having a melting point that meets the requirements does not fit the purpose of the present patent. Therefore, the present inventor proposes a composition made of thermoplastic polyester elastomer (TPEE) as an essential material.
본 발명의 일 양태에 따르면, 시차주사열량계(DSC)에 의한 열분석시 융점 피크온도가 130 내지 180℃인 열가소성 폴리에스테르 엘라스토머를 함유하는 고분자 기재를 포함하는 3차원 프린터 필라멘트용 조성물이 제공된다.According to one aspect of the present invention, there is provided a composition for a three-dimensional printer filament comprising a polymer substrate containing a thermoplastic polyester elastomer having a melting point peak temperature of 130 to 180 ° C. during thermal analysis by a differential scanning calorimeter (DSC).
또한 각종 부가 성분이 혼합된 상기 조성물의 MI(190℃, 2.16kg)가 1 내지 30g/10분, 경도가 Shore A 90 이하이다.The MI (190 ° C., 2.16 kg) of the composition, in which various additional components are mixed, is 1 to 30 g / 10 minutes, and the hardness is Shore A 90 or less.
상기 열가소성 폴리에스테르 엘라스토머는 방향족 디카르복실산과 지방족 디올로부터 형성된 결정성 하드 세그먼트와, 폴리알킬렌 옥사이드로부터 형성된 연질 소프트 세그먼트가 랜덤하게 배열된 탄성 중합체이다. The thermoplastic polyester elastomer is an elastomer in which crystalline hard segments formed from aromatic dicarboxylic acids and aliphatic diols and soft soft segments formed from polyalkylene oxides are randomly arranged.
본 발명의 열가소성 폴리에스테르 엘라스토머에 있어서, 하드 세그먼트의 폴리에스테르를 구성하는 방향족 디카르복실산은 통상의 방향족 디카르복실산이 널리 사용되고, 특별히 한정되지 않지만, 주된 방향족 디카르복실산으로는 테레프탈산 또는 나프탈렌디카르복실산인 것이 바람직하다. 그 밖의 산성분으로는, 디페닐디카르복실산, 이소프탈산, 5-나트륨술포이소프탈산 등의 방향족 디카르복실산, 시클로헥산디카르복실산, 테트라히드로무수프탈산 등의 지환족 디카르복실산, 숙신산, 글루타르산, 아디프산, 아젤라인산, 세바신산, 도데칸 2산, 다이머산, 수소첨가 다이머산 등의 지방족 디카르복실산 등을 들 수 있다. 이들은 수지의 융점을 크게 저하시키지 않는 범위에서 사용되고, 그 양은 전체 산성분의 30몰% 미만, 바람직하게는 20몰% 미만이다.In the thermoplastic polyester elastomer of the present invention, the aromatic dicarboxylic acid constituting the polyester of the hard segment is widely used as the conventional aromatic dicarboxylic acid, and is not particularly limited, but the main aromatic dicarboxylic acid is terephthalic acid or naphthalenedica It is preferable that it is a leric acid. As another acid component, alicyclic dicarboxylic acids, such as aromatic dicarboxylic acid, such as diphenyl dicarboxylic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid, cyclohexanedicarboxylic acid, and tetrahydrophthalic anhydride, are mentioned. And aliphatic dicarboxylic acids such as acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecane diacid, dimer acid, hydrogenated dimer acid, and the like. These are used in the range which does not significantly reduce melting | fusing point of resin, and the quantity is less than 30 mol%, Preferably it is less than 20 mol% of all acid components.
또, 본 발명의 열가소성 폴리에스테르 엘라스토머에 있어서, 하드 세그먼트의 폴리에스테르를 구성하는 지방족 또는 지환족 디올은, 일반적인 지방족 또는 지환족 디올이 널리 사용되고, 특별히 한정되지 않지만, 주로 탄소수 2∼8의 알킬렌글리콜류인 것이 바람직하다. 구체적으로는 에틸렌글리콜, 1,3-프로필렌글리콜, 1,4-부탄디올, 1,6-헥산디올, 1,4-시클로헥산디메탄올 등을 들 수 있다. 1,4-부탄디올 및 1,4-시클로헥산디메탄올이 가장 바람직하다.In addition, in the thermoplastic polyester elastomer of the present invention, as the aliphatic or alicyclic diols constituting the polyester of the hard segment, general aliphatic or alicyclic diols are widely used, and are not particularly limited, but mainly alkylene having 2 to 8 carbon atoms It is preferable that they are glycols. Specifically, ethylene glycol, 1, 3-propylene glycol, 1, 4- butanediol, 1, 6- hexanediol, 1, 4- cyclohexane dimethanol, etc. are mentioned. Most preferred are 1,4-butanediol and 1,4-cyclohexanedimethanol.
상기 하드 세그먼트의 폴리에스테르를 구성하는 성분으로는, 부틸렌테레프탈레이트 단위 또는 부틸렌나프탈레이트 단위로 이루어진 것이 물성, 성형성, 비용 퍼포먼스의 점에서 바람직하다.As a component which comprises the polyester of the said hard segment, what consists of butylene terephthalate units or butylene naphthalate units is preferable at the point of a physical property, moldability, and cost performance.
또, 본 발명의 열가소성 폴리에스테르 엘라스토머에서의 하드 세그먼트를 구성하는 폴리에스테르로서 적합한 방향족 폴리에스테르는 통상의 폴리에스테르 제조법에 따라서 용이하게 얻을 수 있다. 또, 이러한 폴리에스테르는, 수평균분자량 10000∼40000을 갖고 있는 것이 바람직하다.Moreover, the aromatic polyester suitable as polyester which comprises a hard segment in the thermoplastic polyester elastomer of this invention can be obtained easily according to a conventional polyester manufacturing method. Moreover, it is preferable that such polyester has the number average molecular weights 10000-40000.
한편, 본 발명의 열가소성 폴리에스테르 엘라스토머에서의 소프트 세그먼트를 구성하는 지방족 폴리카보네이트는, 주로 탄소수 2∼12의 지방족 디올 잔기와 카보네이트 결합으로 이루어진 것이 바람직하다. 이들 지방족 디올 잔기로는, 예를 들어, 에틸렌글리콜, 1,3-프로필렌글리콜, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 1,8-옥탄디올, 2,2-디메틸-1,3-프로판디올, 3-메틸-1,5-펜탄디올, 2,4-디에틸-1,5-펜탄디올, 1,9-노난디올, 2-메틸-1,8-옥탄디올 등의 잔기를 들 수 있다. 특히, 얻어지는 열가소성 폴리에스테르 엘라스토머의 유연성이나 저온 특성의 점에서 탄소수 5∼12의 지방족 디올 잔기가 바람직하다. 이들 성분은 단독으로 사용해도 되고, 필요에 따라 2종 이상을 병용해도 된다. On the other hand, it is preferable that the aliphatic polycarbonate which comprises the soft segment in the thermoplastic polyester elastomer of this invention mainly consists of a C2-C12 aliphatic diol residue and a carbonate bond. As these aliphatic diol residues, for example, ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8 And residues such as -octanediol. In particular, an aliphatic diol residue having 5 to 12 carbon atoms is preferable in view of flexibility and low temperature characteristics of the thermoplastic polyester elastomer obtained. These components may be used independently and may use 2 or more types together as needed.
본 발명에서의 열가소성 폴리에스테르 엘라스토머의 소프트 세그먼트를 구성하는, 저온 특성이 양호한 지방족 폴리카보네이트디올로는, 융점이 낮고(예를 들어, 70℃ 이하), 유리전이온도가 낮은 것이 바람직하다. 일반적으로, 열가소성 폴리에스테르 엘라스토머의 소프트 세그먼트를 형성하는 데 사용되는 1,6-헥산디올 잔기로 이루어진 지방족 폴리카보네이트디올은 유리전이온도가 -60℃ 전후로 낮고, 융점도 50℃ 전후가 되므로 저온 특성이 양호한 것이 된다. 그 밖에도, 상기 지방족 폴리카보네이트디올에, 예를 들어 3-메틸-1,5-펜탄디올을 적당량 공중합하여 얻어지는 지방족 폴리카보네이트디올은 원래의 지방족 폴리카보네이트디올에 대해 유리전이점이 약간 높아지지만 융점이 저하 혹은 비정질이 되므로 저온 특성이 양호한 지방족 폴리카보네이트디올에 상당한다. 또, 예를 들어 1,9-노난디올과 2-메틸-1,8-옥탄디올로 이루어진 지방족 폴리카보네이트디올은 융점이 30℃ 정도, 유리전이온도가 -70℃ 전후로 충분히 낮기 때문에 저온 특성이 양호한 지방족 폴리카보네이트디올에 상당한다.As the aliphatic polycarbonate diol having good low temperature characteristics constituting the soft segment of the thermoplastic polyester elastomer in the present invention, it is preferable that the melting point is low (for example, 70 ° C. or lower) and the glass transition temperature is low. In general, aliphatic polycarbonate diols composed of 1,6-hexanediol moieties used to form soft segments of thermoplastic polyester elastomers have a low glass transition temperature of around -60 ° C and a melting point of about 50 ° C, which is why It becomes good thing. In addition, the aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of the aliphatic polycarbonate diol, for example, 3-methyl-1,5-pentanediol, has a slightly higher glass transition point compared to the original aliphatic polycarbonate diol, but a lower melting point. Or it becomes an amorphous and corresponds to the aliphatic polycarbonate diol which is favorable in low temperature characteristic. Further, for example, aliphatic polycarbonate diols composed of 1,9-nonanediol and 2-methyl-1,8-octanediol have good low temperature characteristics because the melting point is about 30 ° C. and the glass transition temperature is sufficiently low around −70 ° C. It corresponds to aliphatic polycarbonate diol.
상기 지방족 폴리카보네이트디올은 반드시 폴리카보네이트 성분만으로 구성되지는 않고 다른 글리콜, 디카르복실산, 에스테르 화합물이나 에테르 화합물 등을 소량 공중합한 것이어도 된다. 공중합 성분의 예로서, 예를 들어 다이머디올, 수소첨가 다이머디올 및 이들의 변성체 등의 글리콜, 다이머산, 수소첨가 다이머산 등의 디카르복실산, 지방족, 방향족 또는 지환족의 디카르복실산과 글리콜로 이루어진 폴리에스테르 또는 올리고에스테르, ε-카프로락톤 등으로 이루어진 폴리에스테르 또는 올리고에스테르, 폴리테트라메틸렌글리콜, 폴리옥시에틸렌글리콜 등의 폴리알킬렌글리콜 또는 올리고알킬렌글리콜 등을 들 수 있다. 상기 공중합 성분은, 실질적으로 지방족 폴리카보네이트 세그먼트의 효과를 소실시키지 않을 정도로 사용할 수 있다. 구체적으로는 지방족 폴리카보네이트 세그먼트 100 중량부에 대해 40 중량부 이하, 바람직하게는 30 중량부 이하, 보다 바람직하게는 20 중량부 이하이다. 공중합량이 너무 많은 경우, 얻어진 열가소성 폴리에스테르 엘라스토머의 내열노화성, 내수성이 떨어진 것이 된다.The aliphatic polycarbonate diol is not necessarily composed of only the polycarbonate component but may be a copolymer of a small amount of other glycol, dicarboxylic acid, ester compound, ether compound, or the like. As an example of a copolymerization component, For example, dicarboxylic acid, such as glycol, dimer acid, hydrogenated dimer acid, such as dimerdiol, hydrogenated dimerdiol, and these modified bodies, aliphatic, aromatic, or alicyclic dicarboxylic acid, Polyalkylene glycol or oligoalkylene glycol, such as polyester or oligoester consisting of glycol, polyester or oligoester consisting of epsilon -caprolactone, polytetramethylene glycol, polyoxyethylene glycol, etc. are mentioned. The copolymerization component can be used to such an extent that the effect of the aliphatic polycarbonate segment is not substantially lost. Specifically, it is 40 parts by weight or less, preferably 30 parts by weight or less, and more preferably 20 parts by weight or less based on 100 parts by weight of the aliphatic polycarbonate segment. When there is too much copolymerization quantity, it becomes inferior to the heat aging resistance and water resistance of the obtained thermoplastic polyester elastomer.
본 발명의 열가소성 폴리에스테르 엘라스토머는 발명의 효과를 소실시키지 않을 정도에 한하여 소프트 세그먼트로서, 예를 들어 폴리에틸렌글리콜, 폴리옥시테트라메틸렌글리콜 등의 폴리알킬렌글리콜, 폴리카프로락톤, 폴리부틸렌아디페이트 등의 폴리에스테르 등의 공중합 성분이 도입되어 있어도 된다. 공중합 성분의 함유량은 소프트 세그먼트 100 중량부에 대해 통상 40 중량부 이하이고, 바람직하게는 30 중량부 이하, 보다 바람직하게는 20 중량부 이하이다.The thermoplastic polyester elastomer of the present invention is a soft segment only to the extent that the effects of the invention are not lost. For example, polyalkylene glycols such as polyethylene glycol, polyoxytetramethylene glycol, polycaprolactone, polybutylene adipate, etc. Copolymerization components, such as polyester, may be introduce | transduced. Content of a copolymerization component is 40 weight part or less normally with respect to 100 weight part of soft segments, Preferably it is 30 weight part or less, More preferably, it is 20 weight part or less.
본 발명의 열가소성 폴리에스테르 엘라스토머에 있어서, 하드 세그먼트를 구성하는 폴리에스테르와 소프트 세그먼트를 구성하는 지방족 폴리카보네이트 및 공중합체 성분의 질량부의 비는 일반적으로 하드 세그먼트:소프트 세그먼트=30:70∼95:5이고, 바람직하게는 40:60∼90:10, 보다 바람직하게는 45:55∼87:13, 가장 바람직하게는 50:50∼85:15의 범위이다.In the thermoplastic polyester elastomer of the present invention, the ratio of the mass parts of the polyester constituting the hard segment and the aliphatic polycarbonate and the copolymer component constituting the soft segment is generally a hard segment: soft segment = 30: 70 to 95: 5 And preferably 40:60 to 90:10, more preferably 45:55 to 87:13, and most preferably 50:50 to 85:15.
일 실시양태에 있어서, 상기 열가소성 폴리에스테르 엘라스토머는 ASTM D1238(190℃, 2.16kg)에 의해 측정한 용융지수(MI)가 0.01 내지 30g/10분, 또는 0.01 내지 20 g/10분, 또는 0.1 내지 10 g/10분, 또는 0.1 내지 5.0 g/10분, 또는 0.1 내지 3.0 g/10분, 또는 0.1 내지 1.0 g/10분, 또는 0.3 내지 0.6 g/10분, 또는 1 내지 30g/10분일 수 있다.In one embodiment, the thermoplastic polyester elastomer has a melt index (MI) as measured by ASTM D1238 (190 ° C., 2.16 kg) of 0.01 to 30 g / 10 minutes, or 0.01 to 20 g / 10 minutes, or 0.1 to 10 g / 10 minutes, or 0.1 to 5.0 g / 10 minutes, or 0.1 to 3.0 g / 10 minutes, or 0.1 to 1.0 g / 10 minutes, or 0.3 to 0.6 g / 10 minutes, or 1 to 30 g / 10 minutes have.
상기 열가소성 폴리에스테르 엘라스토머의 구체적인 예로, 폴리(1,4-부틸렌 테레프탈레이트) 블록 및 폴리(테트라메틸렌 에테르)글리콜 블록을 갖는 열가소성 폴리에스테르 엘라스토머 (이 아이 듀폰 드 네무르 앤드 코. 인크(E. I. du Pont de Nemours & Co. Inc., 미국 19898 델라웨어주 윌밍톤 소재)로부터 HYTREL로서 입수가능함)를 들 수 있다. 다른 예로 상기 열가소성 폴리에스테르 엘라스토머는 폴리(에틸렌 테레프탈레이트) 블록 및 폴리알킬렌글리콜 블록을 가질 수 있다. 또 다른 예로 상기 열가소성 폴리에스테르 엘라스토머는 폴리(1,4-부틸렌 테레프탈레이트) 블록 및 폴리알킬렌글리콜 블록을 가질 수 있다.Specific examples of the thermoplastic polyester elastomers include thermoplastic polyester elastomers having a poly (1,4-butylene terephthalate) block and a poly (tetramethylene ether) glycol block. Pont de Nemours & Co. Inc., Wilmington, Delaware, USA, 19898, available as HYTREL). As another example, the thermoplastic polyester elastomer may have a poly (ethylene terephthalate) block and a polyalkylene glycol block. As another example, the thermoplastic polyester elastomer may have a poly (1,4-butylene terephthalate) block and a polyalkylene glycol block.
본 발명에 사용되는 TPEE는 적어도 융점이 130℃ 이상으로 융점이 높아 프린팅 후 고화속도가 빠르며, 치수 및 형태 안정성이 우수하다. 또한 본 발명에 사용되는 TPEE는 융점이 180℃ 이하이므로 융점이 크게 높지 않아 필라멘트 제조 시에 압출이 용이하고 생산성이 높다. 또한 사용한 TPEE의 경도는 Shore A 95를 넘는 그레이드도 많이 있을 수 있으나, 이들의 경우 낮은 경도로 만들기 위해 가소제 등을 많이 배합하여야 하므로 마이그레이션(migration)의 염려가 있고 제품 표면의 미끄럼성이 나빠지므로 Shore A 95 이하를 쓰는 것이 좋다.The TPEE used in the present invention has a high melting point of at least 130 ° C. or higher and a high solidification speed after printing, and excellent dimensional and shape stability. In addition, the TPEE used in the present invention has a melting point of 180 ° C. or less, so that the melting point is not very high, so that the extrusion is easy and the productivity is high during filament production. In addition, the hardness of the used TPEE may be many grades over Shore A 95, but in these cases, the plasticizer, etc. must be formulated in order to make the hardness low, so there is a fear of migration and the slipperiness of the surface of the product becomes poor. A 95 or less is recommended.
상기 TPEE를 필라멘트 소재의 주재료로 사용할 경우, 기존 고경도 필라멘트 소재들인 PLA, ABS, HDPE, PC보다 연질이라는 장점 외에도 연질이면서도 내열성 과 내유성이 좋아 기계의 실(seal)이나 자동차 부품 등에도 사용이 가능하고, 접착제에 의한 접착이 용이하여 신발창이나 부품 및 조립식완구등 다양한 제품을 만들 수 있는 등의 부가 장점도 확보할 수 있다.When TPEE is used as the main material of filament material, it is softer than existing high hardness filament materials such as PLA, ABS, HDPE, and PC, and it is also soft and has good heat resistance and oil resistance. In addition, it is possible to secure an additional advantage, such as making a variety of products, such as shoe soles, parts and prefabricated toys can be easily adhered by an adhesive.
또한 상기 열가소성 폴리에스테르 엘라스토머에는 물성 향상을 위해 각종 부가 성분이 포함될 수 있다. 상기 부가 성분은 왁스, 가소제, 열가소성 탄성체(TPE), 에틸렌 공중합체, 및 올레핀 랜덤 공중합체(ORC)로 이루어진 군 중에서 선택되는 1종 이상일 수 있다. 상기 부가 성분은 상기 열가소성 폴리에스테르 엘라스토머 100 중량부에 대해 1 내지 25 중량부 포함될 수 있다.In addition, the thermoplastic polyester elastomer may include various additional components to improve physical properties. The additional component may be at least one selected from the group consisting of wax, plasticizer, thermoplastic elastomer (TPE), ethylene copolymer, and olefin random copolymer (ORC). The additional component may include 1 to 25 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer.
상기 왁스는 파라핀 왁스(paraffin wax), 미세결정질 왁스(microcrystalline wax), 폴리에틸렌 왁스(polyethylene wax) 등이 있을 수 있으며, 필라멘트의 표면 미끄럼성을 좋게 하여 필라멘트가 프린터의 유도관 속을 용이하게 통과할 수 있도록 한다. 상기 왁스는 상기 열가소성 폴리에스테르 엘라스토머 100 중량부에 대해 1 내지 5 중량부 포함될 수 있다. 상기 왁스의 양이 5 중량부를 초과하면 필라멘트의 경도를 상승시키며, 필라멘트의 유연성이 저하되어 부러질 수 있다.The wax may include paraffin wax, microcrystalline wax, polyethylene wax, and the like, and the surface filament of the filament may be improved to allow the filament to easily pass through the guide tube of the printer. To help. The wax may be included in an amount of 1 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. When the amount of the wax exceeds 5 parts by weight, the hardness of the filament is increased, and the flexibility of the filament may be lowered and broken.
상기 가소제는 수평균 분자량이 200 내지 20,000, 바람직하게는 200 내지 3,500, 더욱 바람직하게는 200 내지 1,500의 프로필렌 글리콜 중합체(PPG) 또는 폴리에틸렌 글리콜 중합체(PEG)를 포함한다. 예를 들어, Union Carbide 사로부터 입수한 CARBOWAX 600이나 Emory사로부터 입수한 Grade 916 USP와 같은 글리세린을 들 수 있다. 상기 가소제의 추가에 의하여 전체 고분자 기재의 경도를 낮추는 효과가 있다. 상기 가소제는 상기 열가소성 폴리에스테르 엘라스토머 100 중량부에 대해 1 내지 5 중량부 포함될 수 있다. 상기 가소제의 양이 5 중량부를 초과하면 마이그레이션에 의해 필라멘트 표면의 미끄럼성이 저하될 수 있다.The plasticizer comprises a propylene glycol polymer (PPG) or polyethylene glycol polymer (PEG) having a number average molecular weight of 200 to 20,000, preferably 200 to 3,500, more preferably 200 to 1,500. Examples thereof include glycerin such as CARBOWAX 600 obtained from Union Carbide, and Grade 916 USP obtained from Emory. The addition of the plasticizer has the effect of lowering the hardness of the entire polymer substrate. The plasticizer may be included in an amount of 1 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. If the amount of the plasticizer exceeds 5 parts by weight, the sliding property of the filament surface may be lowered by migration.
상기 열가소성 탄성체는 스티렌-부타디엔-스티렌 (SBS), 스티렌-에틸렌-부틸렌-스티렌(SEBS), 스티렌-이소프렌-스티렌(SIS), 1,2-폴리부타디엔, 에틸렌-프로필렌-디엔(EPDM) 등이 단독 또는 2 가지 이상 조합되어 사용될 수 있다. 상기 열가소성 탄성체의 추가에 의하여 TPEE 단독일 때보다 탄성을 보강하는 효과가 있다. 상기 열가소성 탄성체는 상기 열가소성 폴리에스테르 엘라스토머 100 중량부에 대해 1 내지 20 중량부 포함될 수 있다. 상기 열가소성 탄성체의 양이 20 중량부를 초과하면 필라멘트 표면의 미끄럼성을 떨어뜨릴 수 있다.The thermoplastic elastomer is styrene-butadiene-styrene (SBS), styrene-ethylene-butylene-styrene (SEBS), styrene-isoprene-styrene (SIS), 1,2-polybutadiene, ethylene-propylene-diene (EPDM), and the like. These may be used alone or in combination of two or more. The addition of the thermoplastic elastomer has an effect of reinforcing elasticity than when TPEE alone. The thermoplastic elastomer may be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. When the amount of the thermoplastic elastomer exceeds 20 parts by weight, the slipperiness of the surface of the filament may be degraded.
한편 에틸렌 공중합체나 올레핀 랜덤 공중합체(ORC)는 전체 필라멘트 조성물의 가격 조절을 위해 혼합될 수 있다. 상기 에틸렌 공중합체는 i) 에틸렌, 및 ii) C3-C10 알파 모노올레핀, C3-C20 모노카르복시산의 C1-C12 알킬 에스테르, 불포화 C3-C20 모노 또는 디카르복시산, 불포화 C4-C8 디카르복시산의 무수물 및 포화 C2-C18 카르복시산의 비닐 에스테르로 이루어진 군으로부터 선택되는 1종 이상의 에틸렌성 불포화 단량체의 공중합체일 수 있다. 상기 에틸렌 공중합체의 구체적인 예로서, 에틸렌 비닐아세테이트, (Ethylene Vinylacetate, EVA), 에틸렌 부틸아크릴레이트(Ethylene Butylacrylate, EBA), 에틸렌 메틸아크릴레이트(Ethylene Methylacrylate, EMA), 에틸렌 에틸아크릴레이트(Ethylene Ethylacrylate, EEA), 에틸렌 메틸메타크릴레이트((Ethylene Methylmethacrylate, EMMA), 에틸렌 부텐 공중합체(Ethylene Butene Copolymer, EB-Co), 에틸렌 옥텐 공중합체(Ethylene Octene Coplymer, EO-Co) 등을 들 수 있다. 상기 올레핀 랜덤 공중합체는 에틸렌 또는 프로필렌과 하나 이상의 공중합성 α-올레핀 공단량체가 랜덤하게 중합된 형태일 수 있다. 예를 들어 상기 올레핀 랜덤 공중합체는 에틸렌 또는 프로필렌과 옥텐의 공중합체일 수 있다.Ethylene copolymers or olefin random copolymers (ORC) may be mixed to control the price of the entire filament composition. The ethylene copolymer comprises i) ethylene, and ii) C3-C10 alpha monoolefins, C1-C12 alkyl esters of C3-C20 monocarboxylic acids, unsaturated C3-C20 mono or dicarboxylic acids, anhydrides and unsaturated C4-C8 dicarboxylic acids. It may be a copolymer of one or more ethylenically unsaturated monomers selected from the group consisting of vinyl esters of C2-C18 carboxylic acids. Specific examples of the ethylene copolymers include ethylene vinyl acetate, (Ethylene Vinylacetate, EVA), ethylene butyl acrylate (Ethylene Butylacrylate, EBA), ethylene methyl acrylate (Ethylene Methylacrylate, EMA), ethylene ethyl acrylate (Ethylene Ethylacrylate, EEA), ethylene methyl methacrylate (Ethylene Methylmethacrylate, EMMA), ethylene butene copolymer (Ethylene Butene Copolymer, EB-Co), ethylene octene copolymer (Ethylene Octene Coplymer, EO-Co), and the like. The olefin random copolymer may be in the form of random polymerization of ethylene or propylene with one or more copolymerizable α-olefin comonomers, for example, the olefin random copolymer may be a copolymer of ethylene or propylene and octene.
상기 에틸렌 공중합체나 상기 올레핀 랜덤 공중합체는 상기 열가소성 폴리에스테르 엘라스토머 100 중량부에 대해 1 내지 20 중량부 포함될 수 있다. 상기 에틸렌 공중합체나 상기 올레핀 랜덤 공중합체의 양이 20 중량부를 초과하면 압출 후 필라멘트의 고화가 늦어질 수 있다.The ethylene copolymer or the olefin random copolymer may be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. When the amount of the ethylene copolymer or the olefin random copolymer exceeds 20 parts by weight, solidification of the filament may be delayed after extrusion.
상기 조성물에는 산화방지제 또는 색소가 더 포함될 수 있다. 상기 산화방지제로는 선녹(sonnoc), 비에이치티이(BHT, butylated hydroxytoluene), 송녹스 1076(songnox 1076, octadecyl 3,5-di-tert-butyl-4-hydroxyhydrocinnamate) 등이 사용될 수 있으며, 색상을 고려하여 다양한 안료를 사용하는 것도 가능하다. The composition may further include an antioxidant or a pigment. The antioxidant may be used, such as sunnoc, butylated hydroxytoluene (BHT), Songnox 1076 (songnox 1076, octadecyl 3,5-di- tert- butyl-4-hydroxyhydrocinnamate), etc., considering the color It is also possible to use a variety of pigments.
상기 산화방지제 또는 상기 색소는 상기 열가소성 폴리에스테르 엘라스토머 100 중량부에 대해 1 내지 5 중량부 포함될 수 있다. 상기 산화방지제나 상기 색소가 5 중량부를 초과하면 블루밍(blooming) 등의 현상으로 필라멘트의 품질이 저하될 수 있다.The antioxidant or the dye may be included 1 to 5 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer. When the antioxidant or the dye exceeds 5 parts by weight, the filament may be degraded due to a phenomenon such as blooming.
상기 최종 조성물의 MI(190℃, 2.16kg)는 1 내지 30g/10분, 바람직하게는 1 내지 20g/10분, 더욱 바람직하게는 1 내지 10g/10분일 수 있다. 상기 MI(190℃, 2.16kg)가 1.0g/10분 미만이면 필라멘트의 녹는 속도가 느려 원활한 프린팅이 되지 않거나 인쇄 속도를 늦춰야 한다. 반면, MI(190℃, 2.16kg)가 30g/10분 초과이면 필라멘트가 너무 빨리 녹아 일정 속도에서 일정한 토출량의 유지가 어려워 프린팅 두께에 오차가 많아진다.The MI (190 ° C., 2.16 kg) of the final composition may be 1 to 30 g / 10 minutes, preferably 1 to 20 g / 10 minutes, more preferably 1 to 10 g / 10 minutes. If the MI (190 ℃, 2.16kg) is less than 1.0g / 10 minutes, the filament melting rate is not slow to smooth printing or slow down the printing speed. On the other hand, if the MI (190 ℃, 2.16kg) is more than 30g / 10 minutes, the filament melts too fast, it is difficult to maintain a constant discharge amount at a constant speed, the error in printing thickness increases.
본 발명의 다른 양태에 따르면, 상술한 조성물을 압출하여 제조한 3차원 프린터 필라멘트가 제공된다. 상기 필라멘트는 열가소성 폴리에스테르 엘라스토머를 함유하는 고분자 기재를 포함한다. 상기 고분자 기재의 경도는 Shore A 90 이하이다. 또한 용융지수(190℃, 2.16kg)가 1 내지 30g/10분이며, 용융지수(150℃, 10kg)가 3.0g/10분 이하이다. 상기 용융지수(150℃, 10kg)는 바람직하게는 0.01 내지 2.0g/10분이며, 더욱 바람직하게는 0.01 내지 1.0g/10분 이하이다 그리하여 상기 필라멘트는 고화속도가 빠르면서 미끄럼성이 뛰어난 특성을 가진다. 상기 열가소성 폴리에스테르 엘라스토머는 DSC 열분석시 융점 피크온도가 130 내지 180℃일 수 있다. 상기 녹는점 범위에서 필라멘트를 녹이는 데 전력의 소모가 적을 뿐 아니라 압출이 용이하다.According to another aspect of the present invention, there is provided a three-dimensional printer filament produced by extruding the above-described composition. The filament comprises a polymeric substrate containing a thermoplastic polyester elastomer. The hardness of the polymer substrate is less than Shore A 90. Also, the melt index (190 ° C., 2.16 kg) is 1 to 30 g / 10 minutes, and the melt index (150 ° C. and 10 kg) is 3.0 g / 10 minutes or less. The melt index (150 ° C., 10 kg) is preferably 0.01 to 2.0 g / 10 minutes, more preferably 0.01 to 1.0 g / 10 minutes or less. Thus, the filament has a high solidification rate and excellent sliding properties. Have The thermoplastic polyester elastomer may have a melting point peak temperature of 130 to 180 ° C. in DSC thermal analysis. The melting of the filament in the melting point range is less power consumption and easy extrusion.
상기 3차원 프린터 필라멘트는 직경이 1.0 내지 2.0mm, 바람직하게는 1.5 내지 1.8mm일 수 있다. 상기 필라멘트의 직경이 1mm 미만이면 필라멘트를 밀어 내는 인쇄 헤드의 제작이 어렵고 프린팅 속도도 너무 늦을 수 있고, 2mm를 초과하면 고화속도가 늦고 프린팅선이 굵어져 제품의 정밀도가 떨어진다. 상기 필라멘트의 경도는 Shore A 90 이하로서, 경도 Shore A 90 초과에서는 고무와 같이 부드러운 질감을 느낄 수 없어 본 특허의 취지에 맞지 않는다. The three-dimensional printer filament may have a diameter of 1.0 to 2.0mm, preferably 1.5 to 1.8mm. If the diameter of the filament is less than 1mm, it is difficult to produce a print head that pushes out the filament, and the printing speed may be too slow. If the diameter of the filament exceeds 2mm, the solidification speed is slow and the printing line is thick, resulting in poor product accuracy. Since the hardness of the filament is less than Shore A 90, the hardness of Shore A 90 or more can not feel the soft texture, such as rubber does not fit the purpose of the present patent.
본 발명의 또 다른 양태에 따르면, 상술한 3차원 프린터 필라멘트를 사용한 3차원 인쇄를 통해 물품을 형성하는 방법이 제공된다. 상기 물품 형성방법은 하기의 공정으로 진행될 수 있다. 먼저 상술한 3차원 프린터 필라멘트를 인쇄 헤드에 공급한다. 상기 필라멘트는 유도관을 통해 상기 인쇄 헤드에 공급될 수 있다. 다음 상기 인쇄 헤드로부터 가열된 상기 3차원 프린터 필라멘트의 용융물을 토출시킨다. 프린터의 하판은 Y축으로 움직이고 인쇄 헤드는 X축으로 움직이며 한 층을 쌓고 다시 Z축으로 한 층을 올린뒤 상기와 같이 X축과 Y축으로 움직이며 다음 층을 쌓고 다시 Z축으로 한 층이 올라가며 프린팅하는 방식으로 입체적인 프린팅이 되는 것이다. 다음 상기 용융물을 고화시켜 인쇄층을 형성한다. 이어 상기 인쇄층을 여러 층 적층시켜 고상의 물품을 형성한다.According to another aspect of the present invention, a method of forming an article through three-dimensional printing using the three-dimensional printer filament described above is provided. The article forming method may proceed to the following process. First, the above-mentioned three-dimensional printer filament is supplied to a print head. The filament may be supplied to the print head through a guide tube. Next, the melt of the three-dimensional printer filament heated from the print head is discharged. The bottom of the printer moves on the Y-axis, the print head moves on the X-axis, stacks one layer and then raises one layer on the Z-axis, then moves on the X-axis and Y-axis as above, stacks the next layer, and back on the Z-axis. This printing is going up three-dimensional printing. The melt is then solidified to form a printed layer. The printed layer is then laminated in layers to form a solid article.
이하, 본 발명을 다양한 실시예를 들어 더욱 상세히 설명하고자 하나 본 발명의 기술적 사상이 이하의 실시예들에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to various embodiments, but the technical spirit of the present invention is not limited to the following embodiments.
(실시예)(Example)
하기의 성분들을 배합하여 다양한 조성물을 만들어 스크류 직경 30mm, 스크류 길이 105mm의 단축압출기(Single Screw Extruder)로 압출하여 길이 1.5m의 냉각수조로 냉각하고 권취하여 직경 1.75mm의 필라멘트를 만들었다. Various compositions were prepared by combining the following components, extruded by a single screw extruder having a screw diameter of 30 mm and a screw length of 105 mm, and cooled and wound with a 1.5 m length cooling water tank to make a filament having a diameter of 1.75 mm.
고분자들의 융점을 DSC를 이용하여 측정하였으며, ASTM D-3418에 의해 분당 10℃로 승온하여 Tm을 측정하였다.Melting points of the polymers were measured using DSC, and Tm was measured by raising the temperature to 10 ° C. per minute according to ASTM D-3418.
TPEE-1: 열가소성 폴리에스테르 엘라스토머(Thermoplastic Polyseter elastomer) KEYFLEX BT 1030D (LG화학), DSC 녹는점 165℃, 경도 Shore A 80TPEE-1: Thermoplastic Polyseter elastomer KEYFLEX BT 1030D (LG Chemistry), DSC Melting Point 165 ℃, Hardness Shore A 80
TPEE-2: 열가소성 폴리에스테르 엘라스토머(Thermoplastic Polyseter elastomer) KEYFLEX BT 1035D (LG화학), DSC 녹는점 165℃, 경도 Shore A 88TPEE-2: Thermoplastic Polyseter elastomer KEYFLEX BT 1035D (LG Chemistry), DSC Melting Point 165 ℃, Hardness Shore A 88
TPEE-3: 열가소성 폴리에스테르 엘라스토머(Thermoplastic Polyseter elastomer) KEYFLEX BT 1045D (LG화학), DSC 녹는점 178℃, 경도 Shore A 94, Shore D 45TPEE-3: Thermoplastic Polyseter elastomer KEYFLEX BT 1045D (LG Chemistry), DSC Melting Point 178 ° C, Hardness Shore A 94, Shore D 45
TPEE-4: 열가소성 폴리에스테르 엘라스토머(Thermoplastic Polyseter elastomer) KEYFLEX BT 1047D (LG화학), DSC 녹는점 190℃, 경도 Shore A 98, Shore D 47TPEE-4: Thermoplastic Polyseter elastomer KEYFLEX BT 1047D (LG Chemistry), DSC Melting Point 190 ℃, Hardness Shore A 98, Shore D 47
TPEE-5: 열가소성 폴리에스테르 엘라스토머(Thermoplastic Polyseter elastomer) Hytrel 5526 (Dupont), DSC 녹는점 203℃, 경도 Shore A 99, Shore D 55TPEE-5: Thermoplastic Polyseter elastomer Hytrel 5526 (Dupont), DSC Melting Point 203 ° C, Hardness Shore A 99, Shore D 55
ORC-1: 에틸렌 옥텐 랜덤 공중합체(Ethylene Octene Random Copolymer), DSC 녹는점 90℃, 경도 Shore A 87ORC-1: Ethylene Octene Random Copolymer, DSC Melting Point 90 ° C, Hardness Shore A 87
EVA-1: Ethylene Vinylacetate Copolymer DSC melting point 80℃ (경도 Shore A 88)EVA-1: Ethylene Vinylacetate Copolymer DSC melting point 80 ℃ (Hardness Shore A 88)
SEBS-1: 스티렌 에틸렌 부틸렌 스티렌(Styrene Ethylene Butylene Styrene), DSC 녹는점 140℃, 경도 Shore A 86SEBS-1: Styrene Ethylene Butylene Styrene, DSC Melting Point 140 ℃, Hardness Shore A 86
시험방법Test Methods
1. 고화속도1. High speed
최종 조성물의 용융지수(MI)를 ASTM D-1238에 의해 측정하였다. 최종 혼합물의 MI (150℃, 10kg)이 1.0g/10분 이하를 A, 1.1-2.0을 B, 2.1-3.0을 C, 3.1-5.0를 D, 5.1 이상을 E로 표시하였다. 즉, MI(150℃, 10kg)이 높을수록 150℃에서 고화가 늦다는 것을 나타낸다.The melt index (MI) of the final composition was measured by ASTM D-1238. The MI (150 ° C., 10 kg) of the final mixture was expressed as A, 1.1-2.0 for B, 2.1-3.0 for C, 3.1-5.0 for D, and 5.1 for E for 1.0 g / 10 min or less. That is, the higher the MI (150 ° C, 10kg), the later the solidification at 150 ° C.
2. 용융속도2. Melt rate
최종혼합물의 MI(180℃ 10kg)이 20g/10분 이상을 A, 10g/10분 이상을 B, 5 g/10분 이상을 C, 1g/10분 이상을 D, 1g/10분 미만을 E로 표시하였다. MI(180℃ 10kg)이 낮을수록 용융이 늦어 인쇄 속도가 늦어지거나 불가능해진다.MI (180kg 10kg) of final mixture is 20g / 10min or more A, 10g / 10min or more B, 5g / 10min or more C, 1g / 10min or more D, less than 1g / 10min E Marked as. The lower the MI (180 ° C. 10 kg), the slower the melting, resulting in slower or impossible printing speed.
3. 미끄럼성3. Slipperiness
최종 조성물을 압출하여 직경 1.75mm의 필라멘트를 얻었다. 이를 내경 2.5mm, 외경 4.5mm 및 길이 40cm인 폴리프로필렌제의 대롱 속을 통과시켜 1cm/sec의 속도로 당겼을 때 걸리는 저항을 손으로 느껴 저항이 적은 순서대로 A, B, C, D, E의 등급을 매겼다. 즉 저항이 가장 적은 것을 A, 가장 센 것을 E로 표시하였다.The final composition was extruded to obtain a filament with a diameter of 1.75 mm. It passes through the inside of polypropylene made of polypropylene with an inner diameter of 2.5mm, an outer diameter of 4.5mm and a length of 40cm, and it feels the resistance when it is pulled at a speed of 1cm / sec by hand, in order of decreasing resistance. Graded. In other words, the least resistance is indicated by A, the strongest one by E.
상기 시험결과를 아래 표 1에 나타내었다.The test results are shown in Table 1 below.
표 1
Figure PCTKR2014004684-appb-T000001
Table 1
Figure PCTKR2014004684-appb-T000001
상기 표 1의 결과로부터 실시예 1 내지 6의 조성물은 비교예 1 내지 9의 다른 조성물에 비해 용융속도 및 고화속도가 빠르며, 미끄럼 특성이 우수하여 3D 프린터의 필라멘트로 사용하기에 적합하고 낮은 경도를 가져, 3D 프린팅시 부드러운 감촉을 요구하는 다양한 형상을 제조할 수 있다.From the results of Table 1, the compositions of Examples 1 to 6 have a faster melting rate and solidification rate than other compositions of Comparative Examples 1 to 9, and have excellent sliding characteristics, and are suitable for use as a filament of a 3D printer and have low hardness. Therefore, it is possible to produce a variety of shapes that require a soft feel in 3D printing.
이상에서 본 발명의 실시예들에 대해 상세히 기술하였지만, 해당 기술분야에 있어서 통상의 지식을 가진 사람이라면, 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있음을 이해할 수 있을 것이다.Although the embodiments of the present invention have been described in detail above, those of ordinary skill in the art may be modified and practiced in various ways without departing from the spirit and scope of the present invention. I can understand.

Claims (9)

  1. 시차주사열량계(DSC) 열분석시 융점 피크온도가 130 내지 180℃인 열가소성 폴리에스테르 엘라스토머(TPEE)를 함유하는 고분자 기재를 포함하되,Differential scanning calorimeter (DSC) thermal analysis includes a polymeric substrate containing a thermoplastic polyester elastomer (TPEE) having a melting point peak temperature of 130 to 180 ℃,
    상기 고분자 기재의 용융지수(190℃, 2.16kg)가 1 내지 30g/10분인 3차원 프린터 필라멘트용 조성물.Melt index (190 ℃, 2.16kg) of the polymer substrate is a composition for a three-dimensional printer filament 1 to 30g / 10 minutes.
  2. 제1 항에 있어서,According to claim 1,
    상기 고분자 기재는 왁스, 가소제, 열가소성 탄성체(TPE), 에틸렌 공중합체, 및 올레핀 랜덤 공중합체(ORC)로 이루어진 군 중에서 선택되는 1종 이상의 부가 성분을 더 함유하는 3차원 프린터 필라멘트용 조성물.The polymer substrate further comprises at least one additional component selected from the group consisting of wax, plasticizer, thermoplastic elastomer (TPE), ethylene copolymer, and olefin random copolymer (ORC).
  3. 제2 항에 있어서,The method of claim 2,
    상기 부가 성분은 상기 열가소성 폴리에스테르 엘라스토머 100 중량부에 대해 1 내지 25 중량부 포함된 3차원 프린터 필라멘트용 조성물.The additive component is a composition for a three-dimensional printer filament containing 1 to 25 parts by weight based on 100 parts by weight of the thermoplastic polyester elastomer.
  4. 제1 항에 있어서,According to claim 1,
    상기 열가소성 폴리에스테르 엘라스토머는 폴리(1,4-부틸렌 테레프탈레이트) 블록 및 폴리(테트라메틸렌 에테르)글리콜 블록을 갖는 3차원 프린터 필라멘트용 조성물.The thermoplastic polyester elastomer is a composition for a three-dimensional printer filament having a poly (1, 4- butylene terephthalate) block and a poly (tetramethylene ether) glycol block.
  5. 제1 항에 있어서,According to claim 1,
    상기 고분자 기재의 경도가 Shore A 90 이하인 3차원 프린터 필라멘트용 조성물.Composition for the three-dimensional printer filament is the hardness of the polymer substrate is Shore A 90 or less.
  6. 열가소성 폴리에스테르 엘라스토머를 함유하는 고분자 기재를 포함하는 조성물을 압출하여 제조한 3차원 프린터 필라멘트로서,A three-dimensional printer filament produced by extruding a composition comprising a polymer substrate containing a thermoplastic polyester elastomer,
    상기 고분자 기재의 경도가 Shore A 90 이하이고, 용융지수(190℃, 2.16kg)가 1 내지 30g/10분이며, 용융지수(150℃, 10kg)가 3.0g/10분 이하인 3차원 프린터 필라멘트.The three-dimensional printer filament having a hardness of the polymer substrate of Shore A 90 or less, a melt index (190 ° C., 2.16 kg) of 1 to 30 g / 10 minutes, and a melt index (150 ° C., 10 kg) of 3.0 g / 10 minutes or less.
  7. 제6 항에 있어서,The method of claim 6,
    상기 열가소성 폴리에스테르 엘라스토머는 시차주사열량계(DSC) 열분석시 융점 피크온도가 130 내지 180℃인 3차원 프린터 필라멘트.The thermoplastic polyester elastomer is a three-dimensional printer filament having a melting point peak temperature of 130 to 180 ℃ during differential scanning calorimetry (DSC) thermal analysis.
  8. 제6 항에 있어서,The method of claim 6,
    직경이 1.0 내지 2.0 mm인 3차원 프린터 필라멘트.Three-dimensional printer filaments having a diameter of 1.0 to 2.0 mm.
  9. 제6 항 내지 제8 항 중 어느 한 항에 따른 3차원 프린터 필라멘트를 인쇄 헤드에 공급하는 단계;Supplying a three-dimensional printer filament according to any one of claims 6 to 8 to a print head;
    상기 인쇄 헤드로부터 가열된 상기 3차원 프린터 필라멘트의 용융물을 토출시키는 단계;Ejecting a melt of the three-dimensional printer filament heated from the print head;
    상기 용융물을 고화시켜 인쇄층을 형성하는 단계; 및Solidifying the melt to form a printed layer; And
    상기 인쇄층을 여러 층 적층시켜 고상의 물품을 형성하는 단계를 포함하는 3차원 인쇄에 의한 물품 형성방법.Stacking the printed layers in multiple layers to form a solid article.
PCT/KR2014/004684 2013-11-04 2014-05-26 Composition for filament of three-dimensional printer WO2015064877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0133204 2013-11-04
KR1020130133204A KR101391293B1 (en) 2013-11-04 2013-11-04 Composition for 3d printer filament

Publications (1)

Publication Number Publication Date
WO2015064877A1 true WO2015064877A1 (en) 2015-05-07

Family

ID=50893040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004684 WO2015064877A1 (en) 2013-11-04 2014-05-26 Composition for filament of three-dimensional printer

Country Status (2)

Country Link
KR (1) KR101391293B1 (en)
WO (1) WO2015064877A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190069172A (en) * 2017-12-11 2019-06-19 아주대학교산학협력단 Biomaterial for bioprinting comprising aliphatic polycarbonate and manufacturing method of biostructure using the same
US10899070B2 (en) 2015-05-13 2021-01-26 Mitsubishi Chemical Corporation Filament for material extrusion-type three-dimensional printers, wound body composed of said filament, cartridge containing said filament, and method for producing resin molded article using said filament
WO2021089898A1 (en) * 2019-11-05 2021-05-14 Onate Molina Enrique Antibacterial, insect-repellent, aromatised filament with viricidal properties for 3d printers

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010202A (en) 2014-07-18 2016-01-27 정해영 3d printer with reinforcing material input means
KR101685760B1 (en) * 2014-09-05 2016-12-12 롯데케미칼 주식회사 Biodegradable resin composition having improved paint-abillity and impact streangth for three dimensional printer filament
CN107000319B (en) * 2014-09-05 2019-06-25 安姆希比创新咨询有限公司 The three-dimensional printer molding manufacturing method of filament and crystallinity soft resin formed body
KR101780475B1 (en) * 2014-10-14 2017-09-21 주식회사 셀루메드 Method of 3D Printing by Formation of Filaments
KR101689304B1 (en) 2014-11-19 2016-12-23 퓨처사이버 주식회사 Filament composition for 3d printer
CN104611808B (en) * 2014-11-28 2017-10-13 珠海天威飞马打印耗材有限公司 Shaping silk and preparation method thereof
KR102291563B1 (en) * 2014-12-30 2021-08-19 코오롱플라스틱 주식회사 Composition for 3D Printing and Filament for 3D Printer
CN104629161B (en) * 2015-03-04 2017-06-06 中国科学院福建物质结构研究所 A kind of low melting point 3D printing material and preparation method thereof
CN108495740A (en) 2015-11-17 2018-09-04 泽菲罗斯公司 Increasing material manufacturing material system
KR20180127216A (en) * 2017-05-18 2018-11-28 에스케이케미칼 주식회사 Polymer resin composition, 3d printing filament including the same, and method for producing 3d printer filament
KR101912919B1 (en) * 2017-07-25 2018-10-31 코오롱글로텍주식회사 Composition of 3D printing filament and filament for 3D manfacturing method thereof
KR102291562B1 (en) * 2017-09-28 2021-08-18 코오롱플라스틱 주식회사 Composition for 3D Printing and Filament for 3D Printer
KR102008584B1 (en) * 2017-12-18 2019-08-07 롯데첨단소재(주) Polycarbonate copolymer, thermoplastic resin composition comprising the same and article produced therefrom
KR20190114125A (en) 2018-03-29 2019-10-10 (주)퓨레코 One-stop process for manufacturing highly functional environment-friendly 3D filament and 3D filament using it
KR102099039B1 (en) * 2019-05-10 2020-04-08 박성호 Three dimensional printing apparatus with high output speed

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4562232A (en) * 1984-12-24 1985-12-31 General Electric Company Copolyetherester-dimer ester-block copolymers
KR20060134052A (en) * 2004-02-05 2006-12-27 디에스엠 아이피 어셋츠 비.브이. Block copolyetherester elastomer and preparation thereof
WO2013086577A1 (en) * 2011-12-16 2013-06-20 Erdman Alan The person identified in box 2 has been recorded as applicant for us only and inventor for all designated states
KR20130090233A (en) * 2012-02-03 2013-08-13 엘에스전선 주식회사 Non-crosslinked oil and mud-resistant composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4562232A (en) * 1984-12-24 1985-12-31 General Electric Company Copolyetherester-dimer ester-block copolymers
KR20060134052A (en) * 2004-02-05 2006-12-27 디에스엠 아이피 어셋츠 비.브이. Block copolyetherester elastomer and preparation thereof
WO2013086577A1 (en) * 2011-12-16 2013-06-20 Erdman Alan The person identified in box 2 has been recorded as applicant for us only and inventor for all designated states
KR20130090233A (en) * 2012-02-03 2013-08-13 엘에스전선 주식회사 Non-crosslinked oil and mud-resistant composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10899070B2 (en) 2015-05-13 2021-01-26 Mitsubishi Chemical Corporation Filament for material extrusion-type three-dimensional printers, wound body composed of said filament, cartridge containing said filament, and method for producing resin molded article using said filament
KR20190069172A (en) * 2017-12-11 2019-06-19 아주대학교산학협력단 Biomaterial for bioprinting comprising aliphatic polycarbonate and manufacturing method of biostructure using the same
KR102181642B1 (en) * 2017-12-11 2020-11-23 아주대학교산학협력단 Biomaterial for bioprinting comprising aliphatic polycarbonate and manufacturing method of biostructure using the same
WO2021089898A1 (en) * 2019-11-05 2021-05-14 Onate Molina Enrique Antibacterial, insect-repellent, aromatised filament with viricidal properties for 3d printers

Also Published As

Publication number Publication date
KR101391293B1 (en) 2014-05-02

Similar Documents

Publication Publication Date Title
WO2015064877A1 (en) Composition for filament of three-dimensional printer
WO2015064830A1 (en) Composition for filament of three-dimensional printer
CN109177401B (en) Completely biodegradable blown film, preparation method and application thereof
CN1833004B (en) Scuff resistant compositions comprising ethylene acid copolymers and polyamides
CN100400269C (en) Heat-contractable ployester series film
WO2015080373A1 (en) Powder slush molding composition
CN102286181B (en) Formula of high-liquidity polyvinyl chloride alloy and preparation method
CN109219518A (en) Multilayer film
CN105408416A (en) Thermoplastic rubber composition and molded product using same
KR100728662B1 (en) Environment-friendly interior sheet
JPH11147237A (en) Acrylic film for bonding simultaneously with injection molding
US20230041295A1 (en) Resin sheet having hair-like bodies and molded article thereof
US20210086492A1 (en) 3d printer material
JP2009235187A (en) Metallic resin composition, molded article, and laminated product
JP4253779B2 (en) Polyester block copolymer composition and molded article thereof
JPH0577371A (en) Laminated film
JP2006117916A (en) Non-oriented printing paper
JPH05177777A (en) Multilayered sheet having low temperature high speed moldability and molded container
JP4435707B2 (en) Film for visual marking
CN109777064A (en) A kind of extrusion grade Polycarbonate alloy material and its preparation method and application
KR102044172B1 (en) The method for preparing multi-layer sheet having a reinforced heat resistance and impact resistance
JP4284953B2 (en) Heat-shrinkable polyester film
CN109651715A (en) Macromolecule lower shrinkage MODIFIED PP material and preparation method for lip gloss bottle body
JP2011194702A (en) Laminated film and molding sheet using the same
JP4722250B2 (en) Adhesive tape for marking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857234

Country of ref document: EP

Kind code of ref document: A1