WO2015064367A1 - ユーザ端末及び端末間通信方法 - Google Patents

ユーザ端末及び端末間通信方法 Download PDF

Info

Publication number
WO2015064367A1
WO2015064367A1 PCT/JP2014/077489 JP2014077489W WO2015064367A1 WO 2015064367 A1 WO2015064367 A1 WO 2015064367A1 JP 2014077489 W JP2014077489 W JP 2014077489W WO 2015064367 A1 WO2015064367 A1 WO 2015064367A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
inter
terminal
user terminal
discovery signal
Prior art date
Application number
PCT/JP2014/077489
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
ユンボ ゼン
チュン ジョウ
ユンセン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201480059024.2A priority Critical patent/CN105684476A/zh
Priority to US15/032,720 priority patent/US10009828B2/en
Publication of WO2015064367A1 publication Critical patent/WO2015064367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/244Connectivity information management, e.g. connectivity discovery or connectivity update using a network of reference devices, e.g. beaconing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a user terminal and an inter-terminal communication method in a next-generation mobile communication system in which inter-terminal communication is performed.
  • Non-patent Document 1 In a UMTS (Universal Mobile Telecommunications System) network, LTE (Long Term Evolution) has been specified for the purpose of higher data rate, lower delay, etc. (Non-patent Document 1).
  • LTE and LTE successor systems for example, LTE Advanced, FRA (Future Radio Access), also referred to as 4G
  • wireless communication systems supporting inter-terminal communication D2D: Device-to-Device
  • D2D Device-to-Device
  • user terminals discover (discovery) other user terminals or communicate with other user terminals without going through a radio base station (directly).
  • inter-terminal discovery it is considered to use a plurality of inter-terminal discovery signals (for example, short discovery message, long discovery message, etc.) having different information bit numbers depending on various usage forms.
  • inter-terminal discovery signal having a different number of information bits
  • the inter-terminal discovery signal is modulated by a different modulation scheme (for example, QPSK (Quadrature Phase Shift Keying) or 16QAM (16 Quadrature Amplitude Modulation)).
  • QPSK Quadrature Phase Shift Keying
  • 16QAM 16 Quadrature Amplitude Modulation
  • the inter-terminal discovery signal is mapped to a different number of resource units (for example, 1 PRB (Physical Resource Block) pair or 2 PRB pair).
  • PRB Physical Resource Block
  • the present invention has been made in view of such a point, and in a wireless communication system in which communication between terminals is performed, when a plurality of inter-terminal discovery signals having different numbers of information bits are used, the present invention is based on the inter-terminal discovery signal. It is an object of the present invention to provide a user terminal capable of discovering a user terminal and a communication method between terminals.
  • An inter-terminal communication method is an inter-terminal communication method used in a radio communication system in which an inter-terminal discovery signal is transmitted from a first user terminal to a second user terminal without going through a radio base station.
  • the first user terminal determines a signal format of the inter-terminal discovery signal based on the number of information bits of the inter-terminal discovery signal, and transmits the inter-terminal discovery signal based on the signal format. Transmitting the signal format information indicating the signal format; receiving the signal format information from the first user terminal at the second user terminal; and based on the signal format indicated by the signal format information. And detecting the inter-terminal discovery signal.
  • FIG. 1 is an explanatory diagram of an example of a wireless communication system in which inter-terminal communication (D2D communication) is performed.
  • the radio communication system includes a radio base station (eNB: eNodeB) and user terminals (UE: User Equipment) # 1- # 3 in a cell formed by the radio base station. Composed.
  • eNB eNodeB
  • UE User Equipment
  • # 1- # 3 a cell formed by the radio base station.
  • Each user terminal detects a discovery signal transmitted from another user terminal within the DS transmission period, and discovers (recognizes) the other user terminal.
  • Each user terminal performs uplink communication with a radio base station in uplink resources outside the DS transmission period.
  • inter-terminal discovery in the DS transmission period will be described in detail.
  • inter-terminal discovery it is considered to use a plurality of discovery signals (for example, short discovery message, long discovery message, etc.) having different numbers of information bits depending on various usage forms.
  • a predetermined number of resource units for example, 2 PRB pairs
  • a smaller number of resource units for example, 1 PRB pair
  • the present inventors notify the signal format of the discovery signal so that the discovery signal can be detected and other user terminals can be discovered even when different signal formats are used according to the number of information bits. Inventing this, the present invention has been achieved.
  • FIG. 2 is a conceptual diagram of the inter-terminal communication method according to aspect 1 of the present invention.
  • the user terminal # 1 determines the signal format of the discovery signal based on the number of information bits of the discovery signal (inter-terminal discovery signal). Also, the user terminal # 1 transmits a discovery signal based on the signal format, and transmits signal format information indicating the signal format to the user terminal # 2.
  • the user terminal # 2 receives the signal format information of the discovery signal from the user terminal # 1.
  • the user terminal # 2 detects the discovery signal based on the signal format indicated by the signal format information.
  • the signal format is at least one of the discovery signal modulation method, the discovery signal coding rate, and the number of resource units to which the discovery signal is mapped (allocated).
  • the resource unit is assumed to be a PRB pair composed of 2 PRBs continuous in the time direction, but is not limited thereto.
  • the resource unit may be a PRB, a resource element (RE), or the like.
  • the signal format information indicating the signal format may be notified implicitly using a predetermined signal sequence (aspect 1.1), or a control header (control) that constitutes the discovery signal It may be notified explicitly using (head) (aspect 1.2).
  • the signal sequence used for the notification of the signal format information includes, for example, a primary synchronization signal (PSS: Primary Synchronization Signal), a secondary synchronization signal (SSS), a sounding reference signal (SRS), It is a signal series such as a demodulation reference signal (DM-RS), a signal similar to any of these, a newly defined signal, or the like.
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • SRS sounding reference signal
  • DM-RS demodulation reference signal
  • a plurality of signal sequences included in a sequence set are classified into a plurality of sequence subsets (also referred to as sequence groups (SG)) respectively associated with different signal formats.
  • sequence subsets also referred to as sequence groups (SG)
  • the first sequence subset (SG1) is N / 2 signal sequences.
  • SG2 includes ⁇ S N / 2 + 1 ,... S N ⁇ .
  • the classification of the signal series is not limited to this.
  • each sequence subset may be a cell-specific signal sequence.
  • user terminal # 1 may select the signal sequence of the serving cell from the sequence subset associated with the signal format of the discovery signal.
  • FIG. 3 is an explanatory diagram of association between a sequence subset and a signal format in the inter-terminal communication method according to aspect 1.1.
  • the DS type is a discovery signal type (here, a short type or a long type).
  • the short type indicates a discovery signal with a relatively small number of information bits
  • the long type indicates a discovery signal with a relatively large number of information bits.
  • a sequence subset, a modulation scheme that is a signal format, and a DS type are associated with each other.
  • user terminal # 1 modulates the discovery signal with a modulation scheme associated with the DS type.
  • user terminal # 1 selects a signal sequence from a sequence subset associated with the modulation scheme.
  • User terminal # 1 transmits the discovery signal and the selected signal sequence to user terminal # 2.
  • the user terminal # 1 when transmitting a short type discovery signal, the user terminal # 1 modulates the discovery signal with QPSK associated with the short type, and selects a sequence from the first sequence subset (SG1) associated with QPSK.
  • the user terminal # 1 when transmitting a long type discovery signal, the user terminal # 1 modulates the discovery signal with 16QAM associated with the long type, and selects a signal sequence from the second sequence subset (SG2) associated with 16QAM.
  • the sequence subset, the number of PRB pairs as a signal format, and the DS type are associated.
  • user terminal # 1 maps a discovery signal to the PRB pairs of the number of PRB pairs associated with the DS type.
  • user terminal # 1 selects a signal sequence from a sequence subset associated with the number of PRB pairs.
  • User terminal # 1 transmits the discovery signal and the selected signal sequence to user terminal # 2.
  • the sequence subset, the modulation scheme and the number of PRB pairs, which are signal formats, and the DS type are associated with each other.
  • user terminal # 1 modulates the discovery signal with a modulation scheme associated with the DS type, and maps the discovery signal to the PRB pairs of the number of PRB pairs associated with the DS type.
  • user terminal # 1 selects a signal sequence from a sequence subset associated with the number of PRB pairs.
  • User terminal # 1 transmits the discovery signal and the selected signal sequence to user terminal # 2.
  • the short type 1 (short1) has a smaller number of information bits than the short type 2 (short2)
  • the long type 1 (long1) has a smaller number of information bits than the long type 2 (long2). Good but not limited to this.
  • the coding rate may be associated with the sequence subset.
  • sequence subsets (SG) 2 and 4 with a PRB pair number “2” are associated with a relatively low coding rate
  • sequence subsets (SG) 1 and 3 with a PRB pair number “1” are , May be associated with a relatively high coding rate.
  • 3A to 3C are merely examples, and the modulation scheme, the number of PRB pairs, and the DS type are not limited to those illustrated. Also, in FIGS. 3A-3C, the DS type may not be associated with the sequence subset.
  • FIG. 4 is an explanatory diagram of transmission of a discovery signal and a signal sequence in the inter-terminal communication method according to aspect 1.1.
  • the discovery signal and the signal sequence may be time division multiplexed, or although not shown, may be frequency division multiplexed, and both time division multiplexing and frequency division multiplexing are performed. It may be broken. Time division multiplexing may be performed in units of OFDM symbols or may be performed in units of subframes. Further, frequency division multiplexing may be performed in resource element units or PRB units. An example of time division multiplexing will be described with reference to FIGS. 4A and 4B.
  • the user terminal # 1 may transmit a signal sequence (sequence) and a discovery signal separately (separate transmission).
  • the signal sequence is selected from a sequence subset associated with the signal format of the discovery signal.
  • the signal sequence may be PSS or SSS, a signal sequence such as SRS as a reference signal, or a signal sequence of a newly defined signal. Good.
  • the user terminal # 1 may multiplex and transmit the signal sequence (sequence) and the discovery signal (multiplex transmission).
  • the signal sequence may be a DM-RS signal sequence which is a reference signal, or may be a newly defined signal sequence.
  • the signal sequence selected from the sequence subset associated with the signal format of the discovery signal is transmitted from the user terminal # 1 together with the discovery signal. Therefore, even when a different signal format is applied according to the number of information bits of the discovery signal, the user terminal # 2 can detect the discovery signal from the user terminal # 1 based on the signal sequence, User terminal # 1 can be found. Further, the overhead can be reduced by notifying the signal format implicitly using the signal sequence.
  • the discovery signal includes a control header and a payload.
  • the signal format information indicating the signal format of the discovery signal (payload) is included in the control header.
  • the number of bits in the control header is set based on the number of signal formats. As will be described later, for example, when the signal format is two modulation schemes, the number of bits of the control header is 1 (FIG. 5A). When the signal format is two PRB pair numbers, the number of bits of the control header is 1 (FIG. 5B). When the signal format is a combination of two modulation schemes and two PRB pair numbers, the number of bits of the control header is 2 (FIG. 5C).
  • the number of signal formats, that is, the number of bits of the control header is not limited to that shown in FIG.
  • FIG. 5 is an explanatory diagram of the signal format of the payload indicated by the control header in the inter-terminal communication method according to aspect 1.2.
  • the control header indicates the modulation method of the payload.
  • user terminal # 1 modulates the payload with a modulation scheme determined based on the DS type, and adds a control header indicating the modulation scheme to the payload.
  • the user terminal # 1 transmits a discovery signal including the control header and payload to the user terminal # 2.
  • the user terminal # 1 when transmitting a short type discovery signal, the user terminal # 1 modulates the discovery signal with QPSK and adds a control header “0” indicating the QPSK to the payload.
  • the user terminal # 1 when transmitting a long type discovery signal, the user terminal # 1 modulates the discovery signal with 16QAM and adds a control header “1” indicating 16QAM to the payload.
  • control header indicates the number of PRB pairs to which the payload is mapped.
  • user terminal # 1 maps the PRB pairs of the number of PRB pairs determined based on the DS type, and adds a control header indicating the number of PRB pairs to the payload.
  • the user terminal # 1 transmits a discovery signal including the control header and payload to the user terminal # 2.
  • the control header indicates the modulation method of the payload and the number of PRB pairs to which the payload is mapped.
  • user terminal # 1 modulates the payload with the modulation scheme determined based on the DS type, and maps the payload to the PRB pairs having the number of PRB pairs determined based on the DS type. Also, the user terminal # 1 adds a control header indicating the modulation scheme and the number of PRB pairs to the payload. The user terminal # 1 transmits a discovery signal including the control header and payload to the user terminal # 2.
  • the control header may indicate the payload coding rate in addition to the payload modulation scheme and the number of PRB pairs. For example, when the payload is mapped to a 2PRB pair, the user terminal # 1 encodes the payload at a relatively low coding rate (lower code rate), and a control header indicating the coding rate (in FIG. 5C, “ 01 "or” 11 ”) may be added to the payload.
  • 5A to 5C are merely examples, and the modulation scheme, the number of PRB pairs, and the coding rate are not limited to those illustrated.
  • FIG. 6 is an explanatory diagram of control header mapping in the inter-terminal communication method according to aspect 1.2.
  • the user terminal # 1 may map the control header described above to the same number of resource units (for example, PRBs) in the frequency direction as the payload. For example, when the payload is mapped to 1 PRB in the frequency direction, the user terminal # 1 maps the control header to 1 PRB in the frequency direction. When the payload is mapped to 2PRB in the frequency direction, user terminal # 1 maps the control header to 2PRB in the frequency direction.
  • resource units for example, PRBs
  • the user terminal # 1 maps the above-described control header to a predetermined number (for example, one) of resource units in the frequency direction regardless of the number of resource units in the frequency direction of the payload. May be. In this case, for example, even when the payload is mapped to 2PRB in the frequency direction, the user terminal # 1 maps the control header to 1PRB in the frequency direction.
  • the relationship between the frequency resource unit to which the payload is mapped and the frequency resource unit to which the control header is mapped is defined.
  • the control header may be mapped to a resource unit having a minimum index value in the frequency direction among resource units (for example, 2 PRBs) in the frequency direction to which the payload is mapped.
  • the radio base station determines the signal format of the discovery signal based on the number of information bits of the discovery signal (inter-terminal discovery signal), and the signal Signal format information indicating the format is transmitted (notified).
  • user terminal # 1 transmits a discovery signal based on the signal format indicated by the signal format information from the radio base station.
  • the user terminal # 2 detects the discovery signal from the user terminal # 1 based on the signal format indicated by the signal format information from the radio base station.
  • the signal format information indicating the signal format may be notified implicitly using a predetermined signal sequence (aspect 2.1), or broadcast signals (SIB, PBCH) and RRC signaling may be transmitted. And may be notified explicitly (Aspect 2.2).
  • the radio base station implicitly transmits (reports) the signal format information to the user terminals # 1 and / or # 2 using a predetermined signal sequence.
  • the signal series includes, for example, a channel state information-reference signal (CSI-RS: Channel State Information-Reference Signal) and a demodulation reference signal (DM-RS: Demodulation Reference Signal) between the radio base station and the user terminal.
  • CSI-RS Channel State Information-Reference Signal
  • DM-RS Demodulation Reference Signal
  • Any signal sequence such as a newly defined signal may be used.
  • These signal sequences may be associated with a virtual cell identifier (Virtual cell identifier). Thereby, the signal sequence of a different virtual cell ID can be used for the signal format of the discovery signal according to the change.
  • a plurality of signal sequences included in a sequence set are also referred to as a plurality of sequence subsets (sequence groups (SG)) respectively associated with different signal formats. )are categorized.
  • the radio base station selects a signal sequence from a sequence subset associated with the signal format determined based on the number of information bits of the discovery signal, and transmits the selected signal sequence (see FIG. 3).
  • each sequence subset may be a cell-specific signal sequence.
  • the radio base station may select the signal sequence of the own cell from the sequence subset associated with the signal format of the discovery signal.
  • the discovery signal of user terminal # 1 for 1PRB pair and the discovery signal of user terminal # 2 for 2PRB pair are mapped in the same subframe, user terminals # 1 and # 2
  • the discovery signal may collide partially.
  • a user terminal for one PRB pair tries to use a discovery signal resource with only an odd index or only an even index in order to avoid a partial collision, an unused resource is generated and resource use efficiency deteriorates. To do.
  • the DS transmission period includes a plurality of periods different for each number of PRB pairs to which the discovery signal is mapped.
  • the DS transmission period is configured by a first period in which a discovery signal is mapped to one PRB pair (resource unit) and a second period in which a discovery signal is mapped to a 2PRB pair.
  • the occurrence of a collision in FIG. 8A can be avoided by time-division multiplexing (TDM) of the DS transmission period for each number of PRB pairs to which the discovery signal is mapped.
  • TDM time-division multiplexing
  • positioning with the 1st period in FIG. 8B and a 2nd period is only an illustration, and is not restricted to this.
  • the second period may be provided before the first period.
  • each DS transmission period is divided into a first period and a second period, but is not limited thereto.
  • the first DS transmission period in FIG. 8B may be the first period
  • the subsequent DS transmission period may be the second period.
  • a different transmission period is provided for each number of PRB pairs to which a discovery signal is mapped. For this reason, it is possible to avoid a collision between the plurality of discovery signals due to a plurality of discovery signals mapped to different numbers of PRB pairs.
  • FIG. 9 is a schematic configuration diagram of the radio communication system according to the present embodiment.
  • the radio communication system 1 includes a radio base station 10 that forms a cell C, a user terminal 20, and a core network 30 to which the radio base station 10 is connected. Note that the numbers of the radio base stations 10 and the user terminals 20 are not limited to those shown in FIG.
  • FIG. 10 is an overall configuration diagram of the radio base station 10 according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103 (transmission unit, reception unit), a baseband signal processing unit 104, A call processing unit 105 and a transmission path interface 106 are provided.
  • Each transmission / reception unit 103 converts the downlink signal output from the baseband signal processing unit 104 by precoding for each antenna to a radio frequency.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 101.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input uplink signal.
  • the data is transferred to the core network 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • the DS transmission period information generation unit 301 generates information indicating a plurality of different periods (for example, the first period and the second period in FIG. 8B) for each number of PRB pairs to which the discovery signal is mapped, and the transmission / reception unit 103 (Aspect 3, FIG. 8B).
  • the signal format determination unit 302 determines the signal format of the discovery signal (discovery signal between terminals) (Aspect 2, FIG. 7). Specifically, the signal format determination unit 302 determines the signal format based on the number of information bits of the discovery signal. As described above, the signal format is at least one of the discovery signal modulation scheme, the discovery signal coding rate, and the number of resource units to which the discovery signal is mapped (allocated).
  • the signal format information generation unit 303 generates signal format information indicating the signal format determined by the signal format determination unit 302 (Aspect 2, FIG. 7).
  • the signal format information is, for example, a predetermined signal sequence such as CSI-RS and DM-RS (Aspect 2.1). This signal sequence is classified into a plurality of sequence subsets (also referred to as sequence groups (SG)) respectively associated with different signal formats.
  • the signal format information generation unit 303 selects a signal sequence from a sequence subset associated with the signal format determined by the signal format determination unit 302 (Aspect 2.1, FIG. 3). The signal format information generation unit 303 outputs the selected signal sequence to the transmission / reception unit 103. The signal sequence is transmitted from the transmission / reception unit 103 in the downlink.
  • the signal format information generation unit 303 may generate signal format information (for example, bit information in FIG. 5) indicating the signal format determined by the signal format determination unit 302 and output the signal format information to the transmission / reception unit 103 (aspect) 2.2).
  • the signal format information is transmitted from the transmission / reception unit 103 using a broadcast signal (SIB, PBCH, etc.) and RRC signaling.
  • FIG. 13 is a functional configuration diagram of the user terminal 20 according to the present embodiment.
  • FIG. 13A is a functional configuration diagram of the transmission side of the user terminal 20.
  • the user terminal 20 includes a signal format determination unit (determination unit) 401, a signal format information generation unit 402, an encoding unit 403, a modulation unit 404, and a mapping unit 405.
  • the signal format determination unit 401 and the signal format information generation unit 402 may be omitted.
  • the signal format determination unit 401 determines the signal format of the discovery signal (discovery signal between terminals) (Aspect 1, FIG. 2). Specifically, the signal format determination unit 401 determines the signal format based on the number of information bits of the discovery signal. As described above, the signal format is at least one of the discovery signal modulation scheme, the discovery signal coding rate, and the number of resource units to which the discovery signal is mapped (allocated).
  • the signal format information generation unit 402 generates signal format information indicating the signal format determined by the signal format determination unit 401 (Aspect 1, FIG. 2).
  • the signal format information may be, for example, a predetermined signal sequence such as PSS, SSS, SRS, DM-RS, a signal similar to these, a newly defined signal, etc. (Aspect 1. 1) It may be included in the control header constituting the discovery signal (Aspect 1.2).
  • the signal format information is a predetermined signal sequence (Aspect 1.1)
  • the signal sequence is classified into a plurality of sequence subsets (also referred to as sequence groups (SG)) respectively associated with different signal formats.
  • the signal format information generation unit 402 selects a signal sequence from a sequence subset associated with the signal format determined by the signal format determination unit 401 (FIG. 3).
  • the selected signal sequence is output to the transmission / reception unit 203 and transmitted from the transmission / reception unit 203 using uplink resources.
  • the signal sequence may be transmitted separately from the discovery signal (FIG. 4A), or may be transmitted multiplexed with the discovery signal (FIG. 4B).
  • the signal format information generation unit 402 when the signal format information is included in the control header (mode 1.2), the signal format information generation unit 402 generates a control header indicating the signal format determined by the signal format determination unit 401.
  • the generated control header is output to the transmission / reception unit 203 and transmitted from the transmission / reception unit 203 using uplink resources.
  • the control header may be mapped to the same number of resource units (for example, PRB) in the frequency direction with respect to the payload (FIG. 6A).
  • the control header may be mapped to a predetermined number of resource units in the frequency direction regardless of the number of resource units in the frequency direction of the payload (FIG. 6B).
  • the control header may be copied and mapped based on the number of resource units in the frequency direction of the payload (FIG. 6C).
  • the encoding unit 403 encodes the discovery signal according to the encoding rate determined by the signal format determining unit 401. For example, when the discovery signal is mapped to a plurality of resource units (for example, 2PRB pairs), the encoding unit 403 uses the relatively low coding rate indicated by the signal format determination unit 401 to generate the discovery signal. It may be encoded.
  • the modulation unit 404 modulates the discovery signal according to the modulation scheme determined by the signal format determination unit 401. For example, the modulation unit 404 may modulate a discovery signal (short type, short discovery message) with a small number of information bits using a low-order modulation method (for example, QPSK) indicated by the signal format determination unit 401. Good. Also, the modulation unit 404 may modulate a discovery signal (long type, long discovery message) with a large number of information bits using a higher-order modulation method (for example, 16QAM) indicated by the signal format determination unit 401. Good.
  • a discovery signal short type, short discovery message
  • a low-order modulation method for example, QPSK
  • the modulation unit 404 may modulate a discovery signal (long type, long discovery message) with a large number of information bits using a higher-order modulation method (for example, 16QAM) indicated by the signal format determination unit 401. Good.
  • the mapping unit 405 maps the discovery signal to the resource unit of the resource unit number determined by the signal format determination unit 401.
  • the mapping unit 405 may map a discovery signal having a small number of information bits (short type, short discovery message) to the number of resource units (for example, 1 PRB pair) indicated by the signal format determination unit 401.
  • the mapping unit 405 may map a discovery signal (long type, long discovery message) having a large number of information bits to a larger number of resource units (for example, 2 PRB pairs) than the short type.
  • the signal format determination unit 401 and the signal format information generation unit 402 in FIG. 13A may be omitted in the inter-terminal communication method according to aspect 2.
  • the inter-terminal communication method according to aspect 2 based on the signal format information transmitted from the radio base station 10, encoding by the encoding unit 403, modulation by the modulating unit 404, and mapping by the mapping unit 405 may be performed. .
  • FIG. 13B is a functional configuration diagram of the receiving side of the user terminal 20.
  • the user terminal 20 can have not only a downlink reception function but also an uplink resource reception function.
  • the user terminal 20 includes a signal format information acquisition unit 501, a demapping unit 502, a demodulation unit 503, a decoding unit 504, and an inter-terminal discovery processing unit (detection unit) 505. To do.
  • the signal format information acquisition unit 501 acquires the signal format information received by the transmission / reception unit 203.
  • the signal format information may be transmitted from other user terminals 20 using uplink resources and received by the transmission / reception unit 203 (Aspect 1), or transmitted from the radio base station 10 on the downlink and transmitted / received by the transmission / reception unit 203. It may be received (aspect 2).
  • the signal format information acquisition unit 501 instructs the demapping unit 502, the demodulation unit 503, and the decoding unit 504 for the number of resource units, the modulation scheme, and the coding rate indicated by the signal format information, respectively.
  • the demapping unit 502 demaps the discovery signal based on the number of resource units specified by the signal format information acquisition unit 501.
  • the demodulator 503 demodulates the discovery signal based on the modulation scheme instructed from the signal format information acquisition unit 501.
  • the decoding unit 504 decodes the discovery signal based on the coding rate instructed from the signal format information acquisition unit 501.
  • the inter-terminal discovery processing unit 505 performs inter-terminal discovery processing. Specifically, the inter-terminal discovery processing unit 505 detects the discovery signal decoded by the decoding unit 504, and discovers another user terminal 20 using the discovery signal.
  • signal format information indicating the signal format of the discovery signal is transmitted. Therefore, even when a different signal format is applied depending on the number of information bits of the discovery signal, the user terminal 20 can detect the discovery signal from the other user terminal 20 and can discover the other user terminal 20 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 端末間通信が行われる無線通信システムにおいて、情報ビット数が異なる複数の端末間発見信号が用いられる場合に、端末間発見信号に基づいてユーザ端末を発見可能とすること。本発明の端末間通信方法は、ユーザ端末(#1)が、ディスカバリー信号の情報ビット数に基づいて、前記ディスカバリー信号の信号フォーマットを決定し、前記信号フォーマットに基づいて前記ディスカバリー信号を送信するとともに、前記信号フォーマットを示す信号フォーマット情報を送信する。ユーザ端末(#2)が、ユーザ端末(#1)から、前記信号フォーマット情報を受信し、前記信号フォーマット情報が示す前記信号フォーマットに基づいて、前記ディスカバリー信号を検出する。

Description

ユーザ端末及び端末間通信方法
 本発明は、端末間通信が行われる次世代移動通信システムにおけるユーザ端末及び端末間通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が仕様化されている(非特許文献1)。
 このLTEやLTEの後継システム(例えば、LTEアドバンスト、FRA(Future Radio Access)、4Gなどともいう)では、端末間通信(D2D:Device-to-Device)をサポートする無線通信システムも検討されている。端末間通信では、ユーザ端末同士が、無線基地局を介さずに(直接)、他のユーザ端末を発見(discovery)したり、当該他のユーザ端末と通信を行ったりする。
 端末間通信が行われる無線通信システムでは、各ユーザ端末が、端末間発見信号(discovery signal)を所定周期の送信期間において送信することで、無線基地局を介さずに(直接)、他のユーザ端末を発見する端末間発見(D2D discovery)を行うことが検討されている。
 この端末間発見では、様々な利用形態によって、情報ビット数が異なる複数の端末間発見信号(例えば、short discovery messageやlong discovery messageなど)を用いることが検討されている。情報ビット数が異なる端末間発見信号を用いる場合、当該端末間発見信号を異なる変調方式(例えば、QPSK(Quadrature Phase Shift Keying)や16QAM(16 Quadrature Amplitude Modulation))で変調することが想定される。同様に、当該端末間発見信号を異なる数のリソース単位(例えば、1PRB(Physical Resource Block)ペアや2PRBペア)にマッピングすることも想定される。
 しかしながら、端末間発見信号を異なる変調方式で変調したり、端末間発見信号を異なる数のリソース単位にマッピングしたりする場合、端末間発見信号に基づいてユーザ端末を発見できない恐れがある。
 本発明は、かかる点に鑑みてなされたものであり、端末間通信が行われる無線通信システムにおいて、情報ビット数が異なる複数の端末間発見信号が用いられる場合に、端末間発見信号に基づいてユーザ端末を発見可能なユーザ端末及び端末間通信方法を提供することを目的とする。
 本発明に係る端末間通信方法は、第1ユーザ端末から第2ユーザ端末に対して無線基地局を介さずに端末間発見信号が送信される無線通信システムで用いられる端末間通信方法であって、前記第1ユーザ端末において、前記端末間発見信号の情報ビット数に基づいて、前記端末間発見信号の信号フォーマットを決定する工程と、前記信号フォーマットに基づいて前記端末間発見信号を送信するとともに、前記信号フォーマットを示す信号フォーマット情報を送信する工程と、前記第2ユーザ端末において、前記第1ユーザ端末から、前記信号フォーマット情報を受信する工程と、前記信号フォーマット情報が示す前記信号フォーマットに基づいて、前記端末間発見信号を検出する工程と、を有する。
 本発明によれば、端末間通信が行われる無線通信システムにおいて、情報ビット数が異なる複数の端末間発見信号が用いられる場合に、端末間発見信号に基づいてユーザ端末を発見できる。
端末間通信が行われる無線通信システムの一例の説明図である。 本発明の態様1に係る端末間通信方法の概念図である。 本発明の態様1.1に係る端末間通信方法の説明図である。 本発明の態様1.1に係る端末間通信方法の説明図である。 本発明の態様1.2に係る端末間通信方法の説明図である。 本発明の態様1.2に係る端末間通信方法の説明図である。 本発明の態様2に係る端末間通信方法の概念図である。 本発明の態様3に係る端末間通信方法の説明図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成図である。 本実施の形態に係るユーザ端末の全体構成図である。 本実施の形態に係る無線基地局の機能構成図である。 本実施の形態に係るユーザ端末の機能構成図である。
 図1は、端末間通信(D2D通信)が行われる無線通信システムの一例の説明図である。図1Aに示すように、無線通信システムは、無線基地局(eNB:eNodeB)と、無線基地局によって形成されるセル内のユーザ端末(UE:User Equipment)#1-#3と、を含んで構成される。なお、図1Aにおいて、無線基地局は複数であってもよく、ユーザ端末数も3に限られない。
 図1Aに示す無線通信システムにおいて、無線基地局は、ユーザ端末#1-#3に対して、DS送信期間を示す情報(例えば、サブフレームオフセット、当該DS送信期間の周期、当該DS送信期間のサブフレーム数など)を通知する。なお、当該通知は、例えば、SIB(System Information Block)、RRC(Radio Resource Control)シグナリング、報知チャネル(PBCH:Physical Broadcast Channel)などを用いて行われる。
 ここで、DS送信期間とは、所定周期のディスカバリー信号の送信期間である。例えば、図1Bに示すように、DS送信期間(Uplink resource allocation for D2D discovery、D2D discovery resource)は、上りリソースとして所定周期で配置され、例えば、複数のサブフレームで構成される。
 また、ディスカバリー信号は、ユーザ端末#1-#3間で互いを発見するための端末間発見信号である。ディスカバリー信号は、例えば、104ビットで構成され、DS送信期間を周波数分割(FDM)又は/及び時間分割(TDM)した所定のリソース単位(例えば、少なくとも一つのPRB(Physical Resource Block)ペア)に割り当てられる。
 各ユーザ端末は、無線基地局から通知されたDS送信期間内のリソース単位(例えば、少なくとも一つのPRBペア)において、ディスカバリー信号を送信する。なお、当該リソース単位は、DS送信期間内においてランダムに選択されたリソース単位であってもよいし(Type-1、衝突型)、ユーザ端末毎に無線基地局から指定されたリソース単位であってもよい(Type-2、非衝突型)。
 各ユーザ端末は、DS送信期間内において他のユーザ端末から送信されるディスカバリー信号を検出して、他のユーザ端末を発見(認識)する。なお、各ユーザ端末は、DS送信期間外の上りリソースでは、無線基地局との上り通信を行う。
 図1Bを参照し、DS送信期間における端末間発見(D2D discovery)を詳述する。端末間発見では、様々な利用形態によって、情報ビット数が異なる複数のディスカバリー信号(例えば、short discovery messageやlong discovery messageなど)を用いることが検討されている。
 情報ビット数が異なる複数のディスカバリー信号を固定数のリソース単位(例えば、1PRBペア)で伝送する場合、当該複数のディスカバリー信号に対して、それぞれ異なる変調方式を適用することが好ましい。例えば、情報ビット数が多いタイプ(以下、longタイプという)のディスカバリー信号(long discovery message)を高次の変調方式(例えば、16QAM)で変調し、情報ビット数が少ないタイプ(以下、shortタイプという)のディスカバリー信号(short discovery message)を低次の変調方式(例えば、QPSK)で変調することが望まれる。
 また、情報ビット数が異なる複数のディスカバリー信号を固定の変調方式で変調する場合、当該複数のディスカバリー信号に対して、それぞれ異なる数のリソース単位を割り当てることが好ましい。例えば、上述のlongタイプのディスカバリー信号に対して所定数のリソース単位(例えば、2PRBペア)を割り当て、shortタイプのディスカバリー信号に対してlongタイプよりも少ないリソース単位数(例えば、1PRBペア)を割り当てることが望まれる。
 このように、情報ビット数が異なる複数のディスカバリー信号が用いられる場合、情報ビット数に応じて、変調方式、符号化率、リソース単位数などの信号フォーマットを異ならせることが望まれる。一方で、各ユーザ端末が、情報ビット数に応じて異なる信号フォーマットを用いる場合、ディスカバリー信号を検出できず、他のユーザ端末を発見できない恐れがある。
 そこで、本発明者らは、ディスカバリー信号の信号フォーマットを通知することで、情報ビット数に応じて異なる信号フォーマットを用いる場合にも、ディスカバリー信号を検出可能にし、他のユーザ端末を発見可能とすることを着想し、本発明に至った。
 以下、本発明に係る端末間通信方法を詳細に説明する。
(態様1)
 図2-7を参照し、本発明の態様1に係る端末間通信方法を説明する。図2は、本発明の態様1に係る端末間通信方法の概念図である。図2に示すように、態様1に係る端末間通信方法では、ユーザ端末#1は、ディスカバリー信号(端末間発見信号)の情報ビット数に基づいて、当該ディスカバリー信号の信号フォーマットを決定する。また、ユーザ端末#1は、当該信号フォーマットに基づいてディスカバリー信号を送信するとともに、当該信号フォーマットを示す信号フォーマット情報をユーザ端末#2に送信する。
 また、態様1に係る端末間通信方法では、ユーザ端末#2は、ユーザ端末#1から、ディスカバリー信号の信号フォーマット情報を受信する。ユーザ端末#2は、当該信号フォーマット情報が示す信号フォーマットに基づいて、ディスカバリー信号を検出する。
 ここで、信号フォーマットは、ディスカバリー信号の変調方式と、ディスカバリー信号の符号化率と、ディスカバリー信号がマッピングされる(割り当てられる)リソース単位数との少なくとも一つである。なお、以下では、リソース単位は、時間方向に連続する2PRBで構成されるPRBペアであるものとするが、これに限られない。リソース単位は、PRB、リソースエレメント(RE:Resource Element)などであってもよい。
 また、上記信号フォーマットを示す信号フォーマット情報は、所定の信号系列(sequence)を用いて黙示的(implicitly)に通知されてもよいし(態様1.1)、ディスカバリー信号を構成する制御ヘッダ(control head)を用いて明示的(explicitly)に通知されてもよい(態様1.2)。
(態様1.1)
 図3及び4を参照し、本発明の態様1.1に係る端末間通信方法を説明する。態様1.1に係る端末間通信方法では、ユーザ端末#1は、所定の信号系列(sequence)を用いて、信号フォーマット情報を黙示的にユーザ端末#2に通知する。
 ここで、信号フォーマット情報の通知に用いられる信号系列は、例えば、プライマリ同期信号(PSS:Primary Synchronization Signal)、セカンダリ同期信号(SSS:Secondary Synchronization Signal)、サウンディング参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DM-RS:Demodulation Reference Signal)、これらのいずれかに類似した信号、新たに規定される信号などのいずれかの信号系列である。これらの信号系列はディスカバリー信号のタイミング検出やディスカバリー信号に含まれる情報ビット復調のための通信路推定及び等化などの目的にも用いられる。
 態様1.1に係る端末間通信方法では、系列セットに含まれる複数の信号系列が、異なる信号フォーマットにそれぞれ関連付けられる複数の系列サブセット(系列グループ(SG)ともいう)に分類される。例えば、系列セットがN個の信号系列{S,S,…S}を含み、2つの系列サブセットに分類される場合、第1系列サブセット(SG1)は、N/2個の信号系列{S,S,…SN/2}を含み、第2系列サブセット(SG2)は、{SN/2+1,…S}を含む。なお、信号系列の分類は、これに限られない。
 また、複数の信号系列が分類される系列サブセット数は、信号フォーマット数と等しい。後述するように、例えば、信号フォーマットが2つの変調方式である場合、系列サブセット数も2である(図3A)。また、信号フォーマットが2つのPRBペア数である場合、系列サブセット数も2である(図3B)。また、信号フォーマットが2つの変調方式と2つのPRBペア数との組み合わせである場合、系列サブセット数は4である(図3C)。なお、信号フォーマット数、すなわち、系列サブセット数は、図3に示すものに限られない。
 また、各系列サブセットに含まれる信号系列は、セル固有の信号系列であってもよい。この場合、ユーザ端末#1は、ディスカバリー信号の信号フォーマットに関連付けられる系列サブセットから、在圏セルの信号系列を選択してもよい。
 図3は、態様1.1に係る端末間通信方法における系列サブセット(sequence subset)と信号フォーマットとの関連付けの説明図である。なお、図3において、DSタイプとは、ディスカバリー信号のタイプ(ここでは、shortタイプ又はlongタイプ)である。shortタイプとは、情報ビット数が相対的に少ないディスカバリー信号を示し、longタイプとは、情報ビット数が相対的に多いディスカバリー信号を示す。
 図3Aでは、系列サブセットと、信号フォーマットである変調方式と、DSタイプとが関連付けられる。図3Aにおいて、ユーザ端末#1は、DSタイプに関連付けられる変調方式でディスカバリー信号を変調する。また、ユーザ端末#1は、当該変調方式に関連付けられる系列サブセットから信号系列を選択する。ユーザ端末#1は、ディスカバリー信号と選択された信号系列とをユーザ端末#2に送信する。
 例えば、shortタイプのディスカバリー信号を送信する場合、ユーザ端末#1は、shortタイプに関連付けられるQPSKでディスカバリー信号を変調し、QPSKに関連付けられる第1系列サブセット(SG1)から系列を選択する。一方、longタイプのディスカバリー信号を送信する場合、ユーザ端末#1は、longタイプに関連付けられる16QAMでディスカバリー信号を変調し、16QAMに関連付けられる第2系列サブセット(SG2)から信号系列を選択する。
 また、図3Bでは、系列サブセットと、信号フォーマットであるPRBペア数と、DSタイプとが関連付けられる。図3Bにおいて、ユーザ端末#1は、DSタイプに関連付けられるPRBペア数のPRBペアにディスカバリー信号をマッピングする。また、ユーザ端末#1は、当該PRBペア数に関連付けられる系列サブセットから信号系列を選択する。ユーザ端末#1は、ディスカバリー信号と選択された信号系列とをユーザ端末#2に送信する。
 また、図3Cでは、系列サブセットと、信号フォーマットである変調方式及びPRBペア数と、DSタイプとが関連付けられる。図3Cにおいて、ユーザ端末#1は、DSタイプに関連付けられる変調方式でディスカバリー信号を変調し、当該DSタイプに関連付けられるPRBペア数のPRBペアにディスカバリー信号をマッピングする。また、ユーザ端末#1は、当該PRBペア数に関連付けられる系列サブセットから信号系列を選択する。ユーザ端末#1は、ディスカバリー信号と選択された信号系列とをユーザ端末#2に送信する。なお、図3Cにおいて、shortタイプ1(short1)は、shortタイプ2(short2)よりも情報ビット数が小さく、longタイプ1(long1)は、longタイプ2(long2)よりも情報ビット数が小さくともよいが、これに限られない。
 なお、図示しないが、変調方式及び/又はPRBペア数とDSタイプとに加えて、符号化率が系列サブセットに関連づけられてもよい。例えば、図3Cにおいて、PRBペア数「2」の系列サブセット(SG)2、4は、相対的に低い符号化率に関連づけられ、PRBペア数「1」の系列サブセット(SG)1、3は、相対的に高い符号化率に関連づけられてもよい。また、図3A-図3Cは、例示にすぎず、変調方式、PRBペア数及びDSタイプは、図示するものに限られない。また、図3A-図3Cにおいて、DSタイプは、系列サブセットと関連付けられなくともよい。
 図4を参照し、態様1.1に係る端末間通信方法におけるディスカバリー信号と信号系列との送信について説明する。図4は、態様1.1に係る端末間通信方法におけるディスカバリー信号と信号系列(sequence)との送信の説明図である。図4に示すように、ディスカバリー信号と信号系列とは時分割多重されてもよいし、或いは、図示しないが、周波数分割多重されてもよいし、時分割多重と周波数分割多重との双方が行われてもよい。時分割多重は、OFDMシンボル単位で行われてもよいし、サブフレーム単位で行われてもよい。また、周波数分割多重は、リソースエレメント単位で行われてもよいし、PRB単位で行われてもよい。図4A及び図4Bを参照し、時分割多重の例を説明する。
 図4Aに示すように、ユーザ端末#1は、信号系列(sequence)とディスカバリー信号とを別々に送信してもよい(separate送信)。上述のように、当該信号系列は、ディスカバリー信号の信号フォーマットに関連付けられる系列サブセットから選択される。Separate送信を行う場合、当該信号系列は、PSSやSSSであってもよいし、参照信号であるSRSなどの信号系列であってもよいし、新たに規定される信号の信号系列であってもよい。
 或いは、図4Bに示すように、ユーザ端末#1は、信号系列(sequence)とディスカバリー信号とを多重して送信してもよい(Multiplex送信)。Multiplex送信を行う場合、当該信号系列は、参照信号であるDM-RSの信号系列であってもよいし、新たに規定される信号の信号系列であってもよい。
 態様1.1に係る端末間通信方法によれば、ディスカバリー信号の信号フォーマットに関連付けられる系列サブセットから選択された信号系列が、ディスカバリー信号とともにユーザ端末#1から送信される。このため、ディスカバリー信号の情報ビット数に応じて異なる信号フォーマットが適用される場合であっても、ユーザ端末#2が、当該信号系列に基づいて、ユーザ端末#1からのディスカバリー信号を検出でき、ユーザ端末#1を発見できる。また、信号系列を用いて信号フォーマットを黙示的に通知することにより、オーバヘッドを軽減できる。
(態様1.2)
 図5及び6を参照し、本発明の態様1.2に係る端末間通信方法を説明する。態様1.2に係る端末間通信方法では、ユーザ端末#1は、ディスカバリー信号の制御ヘッダを用いて、信号フォーマット情報を明示的にユーザ端末#2に通知する。
 態様1.2に係る端末間通信方法では、ディスカバリー信号は、制御ヘッダとペイロードとを含んで構成される。ディスカバリー信号(ペイロード)の信号フォーマットを示す信号フォーマット情報は、当該制御ヘッダに含まれる。
 また、制御ヘッダのビット数は、信号フォーマット数に基づいて設定される。後述するように、例えば、信号フォーマットが2つの変調方式である場合、制御ヘッダのビット数は、1である(図5A)。また、信号フォーマットが2つのPRBペア数である場合、制御ヘッダのビット数は、1である(図5B)。また、信号フォーマットが2つの変調方式と2つのPRBペア数との組み合わせである場合、制御ヘッダのビット数は、2である(図5C)。なお、信号フォーマット数、すなわち、制御ヘッダのビット数は、図5に示すものに限られない。
 図5は、態様1.2に係る端末間通信方法における制御ヘッダが示すペイロードの信号フォーマットの説明図である。図5Aでは、制御ヘッダがペイロードの変調方式を示す。図5Aにおいて、ユーザ端末#1は、DSタイプに基づいて決定した変調方式でペイロードを変調し、当該変調方式を示す制御ヘッダをペイロードに付加する。ユーザ端末#1は、当該制御ヘッダとペイロードとを含むディスカバリー信号をユーザ端末#2に送信する。
 例えば、shortタイプのディスカバリー信号を送信する場合、ユーザ端末#1は、QPSKでディスカバリー信号を変調し、当該QPSKを示す制御ヘッダ「0」をペイロードに付加する。一方、longタイプのディスカバリー信号を送信する場合、ユーザ端末#1は、16QAMでディスカバリー信号を変調し、16QAMを示す制御ヘッダ「1」をペイロードに付加する。
 また、図5Bでは、制御ヘッダが、ペイロードがマッピングされるPRBペア数を示す。図5Bにおいて、ユーザ端末#1は、DSタイプに基づいて決定したPRBペア数のPRBペアをマッピングし、当該PRBペア数を示す制御ヘッダをペイロードに付加する。ユーザ端末#1は、当該制御ヘッダとペイロードとを含むディスカバリー信号をユーザ端末#2に送信する。
 また、図5Cでは、制御ヘッダが、ペイロードの変調方式と、ペイロードがマッピングされるPRBペア数とを示す。図5Cにおいて、ユーザ端末#1は、DSタイプに基づいて決定した変調方式でペイロードを変調し、当該DSタイプに基づいて決定したPRBペア数のPRBペアにペイロードをマッピングする。また、ユーザ端末#1は、当該変調方式とPRBペア数とを示す制御ヘッダをペイロードに付加する。ユーザ端末#1は、当該制御ヘッダとペイロードとを含むディスカバリー信号をユーザ端末#2に送信する。
 また、図5Cでは、制御ヘッダが、ペイロードの変調方式とPRBペア数とに加えて、ペイロードの符号化率とを示してもよい。例えば、ペイロードが2PRBペアにマッピングされる場合、ユーザ端末#1は、ペイロードを相対的に低い符号化率(lower code rate)で符号化し、当該符号化率を示す制御ヘッダ(図5Cでは、「01」又は「11」)をペイロードに付加してもよい。
 なお、図5A-図5Cは、例示にすぎず、変調方式、PRBペア数及び符号化率は、図示するものに限られない。
 図6を参照し、態様1.2に係る端末間通信方法における制御ヘッダのマッピングについて説明する。図6は、態様1.2に係る端末間通信方法における制御ヘッダのマッピングの説明図である。
 図6Aに示すように、ユーザ端末#1は、上述の制御ヘッダを、ペイロードと周波数方向に同一数のリソース単位(例えば、PRB)にマッピングしてもよい。例えば、ペイロードが周波数方向に1PRBにマッピングされる場合、ユーザ端末#1は、周波数方向に1PRBに制御ヘッダをマッピングする。また、ペイロードが周波数方向に2PRBにマッピングされる場合、ユーザ端末#1は、周波数方向に2PRBに制御ヘッダをマッピングする。
 図6Aに示す場合、当該制御ヘッダとペイロードとを含むディスカバリー信号を受信するユーザ端末#2は、制御ヘッダがマッピングされる周波数リソース単位数を知らずに、制御ヘッダをブラインド復号することとなる。このため、ユーザ端末#2の処理負荷は増加する恐れがある。
 或いは、図6Bに示すように、ユーザ端末#1は、上述の制御ヘッダを、ペイロードの周波数方向のリソース単位数とは関係なく、周波数方向に所定数(例えば、一つ)のリソース単位にマッピングしてもよい。この場合、例えば、ペイロードが周波数方向に2PRBにマッピングされる場合であっても、ユーザ端末#1は、周波数方向に1PRBに制御ヘッダをマッピングする。
 図6Bに示す場合、ペイロードがマッピングされる周波数リソース単位と制御ヘッダがマッピングされる周波数リソース単位との関係が規定されることが好ましい。例えば、図6Bに示すように、ペイロードがマッピングされる周波数方向のリソース単位(例えば、2PRB)のうち、周波数方向に最小のインデックス値のリソース単位に制御ヘッダがマッピングされてもよい。
 或いは、図6Cに示すように、ユーザ端末#1は、ペイロードの周波数方向のリソース単位数に基づいて複製してマッピングしてもよい。例えば、ユーザ端末#1は、元の制御ヘッダ(Original Control Head)と、元の制御ヘッダを位相回転して複製された制御ヘッダ(Duplicated Control Head)とを周波数方向のリソース単位にマッピングする。例えば、ペイロードが周波数方向に2PRBにマッピングされる場合、ユーザ端末#1は、冗長化された各制御ヘッダを周波数方向に1PRBにマッピングする。
 態様1.2に係る端末間通信方法によれば、ペイロードと当該ペイロードの信号フォーマットを示す制御ヘッダとを含んで構成されるディスカバリー信号がユーザ端末#1から送信される。このため、ディスカバリー信号の情報ビット数に応じて異なる信号フォーマットが適用される場合であっても、ユーザ端末#2が、制御ヘッダに基づいて、ユーザ端末#1からのディスカバリー信号を検出でき、ユーザ端末#1を発見できる。また、制御ヘッダを用いて信号フォーマットを明示的に通知することにより、より多くの信号フォーマットを示すことができる。
(態様2)
 図7を参照し、本発明の態様2に係る端末間通信方法を説明する。態様2に係る端末間通信方法は、ユーザ端末#1ではなく、無線基地局が、信号フォーマット情報を送信する点で、態様1と異なる。以下では、態様1との相違点を中心に説明する。
 図7に示すように、態様2に係る端末間通信方法では、無線基地局は、ディスカバリー信号(端末間発見信号)の情報ビット数に基づいて、当該ディスカバリー信号の信号フォーマットを決定し、当該信号フォーマットを示す信号フォーマット情報を送信(報知)する。
 また、態様2に係る端末間通信方法では、ユーザ端末#1は、無線基地局からの信号フォーマット情報が示す信号フォーマットに基づいて、ディスカバリー信号を送信する。ユーザ端末#2は、無線基地局からの信号フォーマット情報が示す信号フォーマットに基づいて、ユーザ端末#1からのディスカバリー信号を検出する。
 上記信号フォーマットを示す信号フォーマット情報は、所定の信号系列(sequence)を用いて黙示的(implicitly)に通知されてもよいし(態様2.1)、報知信号(SIB、PBCH)やRRCシグナリングを用いて、明示的(explicitly)に通知されてもよい(態様2.2)。
(態様2.1)
 態様2.1に係る端末間通信方法では、無線基地局は、所定の信号系列(sequence)を用いて、信号フォーマット情報を黙示的にユーザ端末#1及び/又は#2に送信(報知)する。当該信号系列は、例えば、無線基地局とユーザ端末との間のチャネル状態情報の測定用参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DM-RS:Demodulation Reference Signal)、新たに規定される信号などのいずれの信号系列であってもよい。これらの信号系列は、仮想セルID(Virtual cell identifier)に関連づけられてもよい。これにより、ディスカバリー信号の信号のフォーマットに、変更に応じて異なる仮想セルIDの信号系列を用いることができる。
 態様2.1に係る端末間通信方法では、態様1.1と同様に、系列セットに含まれる複数の信号系列は、異なる信号フォーマットにそれぞれ関連付けられる複数の系列サブセット(系列グループ(SG)ともいう)に分類される。無線基地局は、ディスカバリー信号の情報ビット数に基づいて決定された信号フォーマットに関連付けられる系列サブセットから、信号系列を選択し、選択した信号系列を送信する(図3参照)。
 なお、各系列サブセットに含まれる信号系列は、セル固有の信号系列であってもよい。この場合、無線基地局は、ディスカバリー信号の信号フォーマットに関連付けられる系列サブセットから、自セルの信号系列を選択してもよい。
 ユーザ端末#1は、無線基地局からの信号系列に関連付けられた信号フォーマットに基づいて、ディスカバリー信号を送信する。ユーザ端末#2は、無線基地局からの信号系列に関連付けられた信号フォーマットに基づいて、ユーザ端末#1からのディスカバリー信号を検出する。
 態様2.1に係る端末間通信方法では、ディスカバリー信号の信号フォーマットに関連付けられる系列サブセットから選択された信号系列が、無線基地局から送信(報知)される。このため、ディスカバリー信号の情報ビット数に応じて異なる信号フォーマットが適用される場合であっても、ユーザ端末#2は、当該信号系列に基づいて、ユーザ端末#1からのディスカバリー信号を検出でき、ユーザ端末#1を発見できる。また、信号系列を用いて信号フォーマットを黙示的に通知することにより、オーバヘッドを軽減できる。
(態様2.2)
 態様2.2に係る端末間通信方法では、無線基地局は、信号フォーマット情報を明示的にユーザ端末#1及び/又は#2に送信(報知)する。例えば、無線基地局は、報知信号(SIBやPBCH)を用いて、信号フォーマット情報を報知してもよいし、RRCシグナリングを用いて、ユーザ端末毎に信号フォーマット情報を通知してもよい。なお、この場合、信号フォーマット情報は、信号フォーマットを示すビット情報であってもよい(図5参照)。
(態様3)
 図8を参照し、本発明の態様3に係る端末間通信方法を説明する。態様3に係る端末間通信方法は、上述の態様1、2に係る端末間通信方法と組み合わせることができる。図8は、態様3に係る端末間通信方法の説明図である。なお、態様3に係る端末間通信方法では、信号フォーマットは、少なくともPRBペア数(リソース単位数)を含むものとする。
 図8Aに示すように、同じサブフレームにおいて、1PRBペア用のユーザ端末#1のディスカバリー信号と、2PRBペア用のユーザ端末#2のディスカバリー信号とがマッピングされる場合、ユーザ端末#1及び#2のディスカバリー信号が部分的に衝突する恐れがある。あるいは、部分的な衝突を避けるために1PRBペア用のユーザ端末が奇数インデックスのみ、または偶数インデックスのみのディスカバリー信号用リソースを用いようとすると、未利用になるリソースが生じてしまいリソース使用効率が劣化する。
 そこで、態様3に係る端末間通信方法では、DS送信期間が、ディスカバリー信号がマッピングされるPRBペア数毎に異なる複数の期間を含む。例えば、図8Bに示すように、DS送信期間が、1PRBペア(リソース単位)にディスカバリー信号がマッピングされる第1期間と、2PRBペアにディスカバリー信号がマッピングされる第2期間とにより構成される。
 図8Bに示すように、DS送信期間をディスカバリー信号がマッピングされるPRBペア数毎に時分割多重(TDM)することにより、図8Aの衝突の発生を回避できる。なお、図8Bにおける第1期間と第2期間との配置は、例示にすぎず、これに限られない。例えば、第2期間が第1期間よりも先に設けられてもよい。
 また、図8Bでは、各DS送信期間が第1期間と第2期間とに分割されるが、これに限られない。図示しないが、図8Bの最初のDS送信期間が第1期間であり、後続のDS送信期間が第2期間であってもよい。このように、第1期間と第2期間とは、時分割されていれば、どのような配置であってもよい。
 また、態様3に係る端末間通信方法では、無線基地局が、1PRBペア用の第1期間と、2PRBペア用の第2期間との割り当てを示す割り当て情報をユーザ端末に通知してもよい。当該割り当て情報は、例えば、SIB、RRCシグナリング、報知チャネルなどを用いて、ユーザ端末に通知されてもよい。或いは、複数のユーザ端末によってクラスタが形成される場合、当該クラスタ内の特定のユーザ端末が、上述の割り当て情報を他のユーザ端末に通知してもよい。
 態様3に係る端末間通信方法では、ディスカバリー信号がマッピングされるPRBペア数毎に異なる送信期間が設けられる。このため、異なる数のPRBペアにマッピングされる複数のディスカバリー信号が混在することに起因して、当該複数のディスカバリー信号間の衝突が発生するのを回避できる。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムについて、詳細に説明する。この無線通信システムでは、上述の態様1-3に係る端末間通信方法が適用される。なお、本実施の形態に係る無線通信システムは、無線基地局とユーザ端末とを含む無線通信システムであってもよいし、無線基地局を含まずに複数のユーザ端末でクラスタが形成される無線通信システムであってもよい。以下では、一例として、無線基地局とユーザ端末を含む無線通信システムについて説明する。
 図9は、本実施の形態に係る無線通信システムの概略構成図である。図9に示すように、無線通信システム1は、セルCを形成する無線基地局10と、ユーザ端末20と、無線基地局10が接続されるコアネットワーク30と、を含んで構成される。なお、無線基地局10、ユーザ端末20の数は図9に示すものに限られない。
 無線基地局10は、所定のカバレッジを有する無線基地局である。なお、無線基地局10は、相対的に広いカバレッジを有するマクロ基地局(eNodeB、マクロ基地局、集約ノード、送信ポイント、送受信ポイント)であってもよいし、局所的なカバレッジを有するスモール基地局(スモール基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、マイクロ基地局、送信ポイント、送受信ポイント)であってもよい。
 ユーザ端末20は、LTE、LTE-A、FRAなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。ユーザ端末20は、無線基地局10と下り/上り通信を行うとともに、他のユーザ端末20と端末間(D2D)通信/検出を行う。
 また、無線通信システム1では、下りリンクの物理チャネルとして、各ユーザ端末20で共有される物理下り共有チャネル(PDSCH:Physical Downlink Shared Channel)と、物理下り制御チャネル(PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced Physical Downlink Control Channel)、物理報知チャネル(PBCH)などが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。PDCCH、EPDCCHにより、下り制御情報(DCI)が伝送される。
 また、無線通信システム1では、上りリンクの物理チャネルとして、各ユーザ端末20で共有される物理上り共有チャネル(PUSCH:Physical Uplink Shared Channel)と、物理上り制御チャネル(PUCCH:Physical Uplink Control Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、無線通信システム1では、上りリンクにおいて、ユーザ端末20間で互いを検出するためのディスカバリー信号(端末間発見信号)が送信される。
 図10及び11を参照し、無線基地局10、ユーザ端末20の全体構成を説明する。図10は、本実施の形態に係る無線基地局10の全体構成図である。図10に示すように、無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103(送信部、受信部)と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにおいて、無線基地局10からユーザ端末20に送信されるユーザデータは、コアネットワーク30に設けられるS-GWから伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理、CP挿入処理などが行われて各送受信部103に転送される。また、下り制御信号(参照信号、同期信号、報知信号などを含む)に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力された下り信号を無線周波数に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介してコアネットワーク30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 図11は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203(送信部、受信部)と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。なお、ユーザ端末20は、1つの受信回路(RF回路)により、受信周波数を切り替えてもよいし、複数の受信回路を有していてもよい。
 下り信号については、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換され、ベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、FFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下り信号に含まれるユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ(Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理、CP挿入処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 次に、図12及び13を参照し、無線基地局10、ユーザ端末20の機能構成を説明する。図12に示す無線基地局10の機能構成は、主に、図10のベースバンド信号処理部104によって構成される。また、図13に示すユーザ端末20の機能構成は、主に、図11のベースバンド信号処理部204によって構成される。
 図12は、本実施の形態に係る無線基地局10の機能構成図である。図12に示すように、無線基地局10は、DS送信期間情報生成部301と、信号フォーマット決定部302と、信号フォーマット情報生成部303とを具備する。なお、上述の態様1及び3に係る端末間通信方法では、信号フォーマット決定部302及び信号フォーマット情報生成部303は、省略されてもよい。
 DS送信期間情報生成部301は、DS送信期間を示す情報(例えば、サブフレームオフセット、当該DS送信期間の周期、当該DS送信期間のサブフレーム数など)を生成し、送受信部103に出力する。当該情報は、例えば、SIB、RRCシグナリング、報知チャネルなどを用いてユーザ端末20に送信される。
 また、DS送信期間情報生成部301は、ディスカバリー信号がマッピングされるPRBペア数毎に異なる複数の期間(例えば、図8Bの第1期間及び第2期間)を示す情報を生成し、送受信部103に出力してもよい(態様3、図8B)。
 信号フォーマット決定部302は、ディスカバリー信号(端末間発見信号)の信号フォーマットを決定する(態様2、図7)。具体的には、信号フォーマット決定部302は、ディスカバリー信号の情報ビット数などに基づいて、信号フォーマットを決定する。上述のように、信号フォーマットは、ディスカバリー信号の変調方式と、ディスカバリー信号の符号化率と、ディスカバリー信号がマッピングされる(割り当てられる)リソース単位数との少なくとも一つである。
 信号フォーマット情報生成部303は、信号フォーマット決定部302によって決定された信号フォーマットを示す信号フォーマット情報を生成する(態様2、図7)。上述のように、信号フォーマット情報は、例えば、CSI-RS、DM-RSなどの所定の信号系列である(態様2.1)。この信号系列は、異なる信号フォーマットにそれぞれ関連付けられる複数の系列サブセット(系列グループ(SG)ともいう)に分類される。
 信号フォーマット情報生成部303は、信号フォーマット決定部302によって決定された信号フォーマットに関連付けられる系列サブセットから、信号系列を選択する(態様2.1、図3)。信号フォーマット情報生成部303は、選択した信号系列を送受信部103に出力する。当該信号系列は、下りリンクで送受信部103から送信される。
 或いは、信号フォーマット情報生成部303は、信号フォーマット決定部302によって決定された信号フォーマットを示す信号フォーマット情報(例えば、図5のビット情報)を生成し、送受信部103に出力してもよい(態様2.2)。当該信号フォーマット情報は、報知信号(SIB、PBCHなど)、RRCシグナリングを用いて、送受信部103から送信される。
 図13は、本実施の形態に係るユーザ端末20の機能構成図である。図13Aは、ユーザ端末20の送信側の機能構成図である。図13Aに示すように、ユーザ端末20は、信号フォーマット決定部(決定部)401と、信号フォーマット情報生成部402と、符号化部403と、変調部404と、マッピング部405と、を具備する。なお、図13Aにおいて、態様2に係る端末間通信方法では、信号フォーマット決定部401及び信号フォーマット情報生成部402は、省略されてもよい。
 信号フォーマット決定部401は、ディスカバリー信号(端末間発見信号)の信号フォーマットを決定する(態様1、図2)。具体的には、信号フォーマット決定部401は、ディスカバリー信号の情報ビット数などに基づいて、信号フォーマットを決定する。上述のように、信号フォーマットは、ディスカバリー信号の変調方式と、ディスカバリー信号の符号化率と、ディスカバリー信号がマッピングされる(割り当てられる)リソース単位数との少なくとも一つである。
 信号フォーマット情報生成部402は、信号フォーマット決定部401によって決定された信号フォーマットを示す信号フォーマット情報を生成する(態様1、図2)。上述のように、信号フォーマット情報は、例えば、PSS、SSS、SRS、DM-RS、これらに類似する信号、新たに規定される信号などの所定の信号系列であってもよいし(態様1.1)、ディスカバリー信号を構成する制御ヘッダに含まれてもよい(態様1.2)。
 信号フォーマット情報が所定の信号系列である場合(態様1.1)、信号系列は、異なる信号フォーマットにそれぞれ関連付けられる複数の系列サブセット(系列グループ(SG)ともいう)に分類される。信号フォーマット情報生成部402は、信号フォーマット決定部401によって決定された信号フォーマットに関連付けられる系列サブセットから、信号系列を選択する(図3)。
 選択された信号系列は、送受信部203に出力され、上りリンクリソースを使用して送受信部203から送信される。なお、当該信号系列は、ディスカバリー信号とは別に送信されてもよいし(図4A)、ディスカバリー信号と多重して送信されてもよい(図4B)。
 一方、信号フォーマット情報が制御ヘッダに含まれる場合(態様1.2)、信号フォーマット情報生成部402は、信号フォーマット決定部401によって決定された信号フォーマットを示す制御ヘッダを生成する。
 生成された制御ヘッダは、送受信部203に出力され、上りリンクリソースを使用して送受信部203から送信される。ここで、制御ヘッダは、ペイロードと周波数方向に同一数のリソース単位(例えば、PRB)にマッピングされてもよい(図6A)。或いは、制御ヘッダは、ペイロードの周波数方向のリソース単位数とは関係なく、周波数方向に所定数のリソース単位にマッピングされてもよい(図6B)。或いは、制御ヘッダは、ペイロードの周波数方向のリソース単位数に基づいて複製してマッピングされてもよい(図6C)。
 符号化部403は、信号フォーマット決定部401によって決定された符号化率に従って、ディスカバリー信号を符号化する。例えば、符号化部403は、ディスカバリー信号が複数のリソース単位(例えば、2PRBペア)にマッピングされる場合、信号フォーマット決定部401によって指示される相対的に低い符号化率を用いて、ディスカバリー信号を符号化してもよい。
 変調部404は、信号フォーマット決定部401によって決定された変調方式に従って、ディスカバリー信号を変調する。例えば、変調部404は、情報ビット数の少ないディスカバリー信号(shortタイプ、short discovery message)を、信号フォーマット決定部401によって指示される低次の変調方式(例えば、QPSK)を用いて変調してもよい。また、変調部404は、情報ビット数が多いディスカバリー信号(longタイプ、long discovery message)を、信号フォーマット決定部401によって指示される高次の変調方式(例えば、16QAM)を用いて変調してもよい。
 マッピング部405は、信号フォーマット決定部401によって決定されたリソース単位数のリソース単位に、ディスカバリー信号をマッピングする。例えば、マッピング部405は、情報ビット数の少ないディスカバリー信号(shortタイプ、short discovery message)を、信号フォーマット決定部401によって指示される数のリソース単位(例えば、1PRBペア)にマッピングしてもよい。また、マッピング部405は、情報ビット数が多いディスカバリー信号(longタイプ、long discovery message)を、shortタイプよりも多い数のリソース単位(例えば、2PRBペア)にマッピングしてもよい。
 上述のように、図13Aの信号フォーマット決定部401、信号フォーマット情報生成部402は、態様2に係る端末間通信方法では省略されてもよい。態様2に係る端末間通信方法では、無線基地局10から送信される信号フォーマット情報に基づいて、符号化部403による符号化、変調部404による変調、マッピング部405によるマッピングが行われてもよい。
 図13Bは、ユーザ端末20の受信側の機能構成図である。端末間通信では、ユーザ端末20は、下りリンクの受信機能だけでなく、上りリンクリソースの受信機能を備えることができる。図13Bに示すように、ユーザ端末20は、信号フォーマット情報取得部501と、デマッピング部502と、復調部503と、復号部504と、端末間発見処理部(検出部)505と、を具備する。
 信号フォーマット情報取得部501は、送受信部203で受信された信号フォーマット情報を取得する。なお、信号フォーマット情報は、他のユーザ端末20から上りリンクリソースで送信され、送受信部203で受信されてもよいし(態様1)、無線基地局10から下りリンクで送信され、送受信部203で受信されてもよい(態様2)。信号フォーマット情報取得部501は、信号フォーマット情報が示すリソース単位数、変調方式及び符号化率は、それぞれ、デマッピング部502、復調部503、復号部504に指示する。
 デマッピング部502は、信号フォーマット情報取得部501から指示されるリソース単位数に基づいて、ディスカバリー信号をデマッピングする。
 復調部503は、信号フォーマット情報取得部501から指示される変調方式に基づいて、ディスカバリー信号を復調する。
 復号部504は、信号フォーマット情報取得部501から指示される符号化率に基づいて、ディスカバリー信号を復号する。
 端末間発見処理部505は、端末間発見処理を行う。具体的には、端末間発見処理部505は、復号部504によって復号されたディスカバリー信号を検出し、当該ディスカバリー信号によって他のユーザ端末20を発見する。
 本実施の形態に係る無線通信システム1によれば、ディスカバリー信号の信号フォーマットを示す信号フォーマット情報が、送信される。このため、ディスカバリー信号の情報ビット数に応じて異なる信号フォーマットが適用される場合にも、ユーザ端末20が、他のユーザ端末20からのディスカバリー信号を検出でき、当該他のユーザ端末20を発見できる。
 以上、上述の実施の形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施の形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2013年10月31日出願の特願2013-227595に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  他のユーザ端末に対して無線基地局を介さずに端末間発見信号を送信するユーザ端末であって、
     前記端末間発見信号の情報ビット数に基づいて、前記端末間発見信号の信号フォーマットを決定する決定部と、
     前記信号フォーマットに基づいて前記端末間発見信号を送信するとともに、前記信号フォーマットを示す信号フォーマット情報を送信する送信部と、
    を具備することを特徴とするユーザ端末。
  2.  系列セットに含まれる複数の信号系列が、異なる信号フォーマットにそれぞれ関連付けられる複数の系列サブセットに分類されており、
     前記信号フォーマット情報は、前記決定部によって決定された信号フォーマットに関連付けられる系列サブセットから選択された信号系列であることを特徴とする請求項1に記載のユーザ端末。
  3.  前記送信部は、前記端末間発見信号と前記選択された信号系列とを、時分割多重又は/及び周波数分割多重して送信することを特徴とする請求項2に記載のユーザ端末。
  4.  前記端末間発見信号は、制御ヘッダとペイロードとを含んで構成され、
     前記信号フォーマット情報は、前記制御ヘッダに含まれることを特徴とする請求項1に記載のユーザ端末。
  5.  前記制御ヘッダは、前記ペイロードと周波数方向に同一数のリソース単位にマッピングされるか、或いは、前記ペイロードの周波数方向のリソース単位数とは関係なく、周波数方向に所定数のリソース単位にマッピングされるか、或いは、前記ペイロードの周波数方向のリソース単位数に基づいて複製してマッピングされることを特徴とする請求項4に記載のユーザ端末。
  6.  前記信号フォーマットは、前記端末間発見信号の変調方式と、前記端末間発見信号の符号化率と、前記端末間発見信号がマッピングされるリソース単位数との少なくとも一つであることを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。
  7.  前記送信部は、所定周期の送信期間において、前記端末間発見信号を送信することを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。
  8.  前記送信期間は、前記端末間発見信号がマッピングされるリソース単位数毎に異なる複数の期間を含み、
     前記送信部は、前記端末間発見信号がマッピングされるリソース単位数用の期間において、該端末間発見信号を送信することを特徴とする請求項7に記載のユーザ端末。
  9.  他のユーザ端末から無線基地局を介さずに端末間発見信号を受信するユーザ端末であって、
     前記他のユーザ端末から、前記端末間発見信号の信号フォーマット情報を受信する受信部と、
     前記信号フォーマット情報が示す信号フォーマットに基づいて、前記端末間発見信号を検出する検出部と、
    を具備することを特徴とするユーザ端末。
  10.  第1ユーザ端末から第2ユーザ端末に対して無線基地局を介さずに端末間発見信号が送信される無線通信システムで用いられる端末間通信方法であって、
     前記第1ユーザ端末において、前記端末間発見信号の情報ビット数に基づいて、前記端末間発見信号の信号フォーマットを決定する工程と、前記信号フォーマットに基づいて前記端末間発見信号を送信するとともに、前記信号フォーマットを示す信号フォーマット情報を送信する工程と、
     前記第2ユーザ端末において、前記第1ユーザ端末から、前記信号フォーマット情報を受信する工程と、前記信号フォーマット情報が示す前記信号フォーマットに基づいて、前記端末間発見信号を検出する工程と、
    を有することを特徴とする端末間通信方法。
     
     
PCT/JP2014/077489 2013-10-31 2014-10-16 ユーザ端末及び端末間通信方法 WO2015064367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480059024.2A CN105684476A (zh) 2013-10-31 2014-10-16 用户终端以及终端间通信方法
US15/032,720 US10009828B2 (en) 2013-10-31 2014-10-16 User terminal and inter-terminal communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013227595A JP6243192B2 (ja) 2013-10-31 2013-10-31 ユーザ端末及び端末間通信方法
JP2013-227595 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064367A1 true WO2015064367A1 (ja) 2015-05-07

Family

ID=53003976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077489 WO2015064367A1 (ja) 2013-10-31 2014-10-16 ユーザ端末及び端末間通信方法

Country Status (4)

Country Link
US (1) US10009828B2 (ja)
JP (1) JP6243192B2 (ja)
CN (1) CN105684476A (ja)
WO (1) WO2015064367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107277762A (zh) * 2016-04-08 2017-10-20 北京信威通信技术股份有限公司 一种v2x半静态调度方式中消息调度的方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219269B2 (en) 2014-01-30 2019-02-26 Qualcomm Incorporated Mixed size expression peer discovery in WWAN
WO2017037511A1 (en) * 2015-09-03 2017-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Coordination of serving access nodes in serving cluster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281048A (ja) * 2001-03-21 2002-09-27 Sony Corp 伝送方法及び伝送装置
JP2012034165A (ja) * 2010-07-30 2012-02-16 Mega Chips Corp 通信装置および通信システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526342B2 (en) * 2011-04-22 2013-09-03 Qualcomm Incorporated Methods and apparatus for adaptive resource multiplexing in a peer-to-peer network
WO2013049959A1 (en) * 2011-10-02 2013-04-11 Renesas Mobile Corporation Signaling for device-to-device wireless communication
US20130114526A1 (en) * 2011-10-14 2013-05-09 Electronics And Telecommunications Research Institute Method for peer discovery using device-to-device link
GB2499247B (en) * 2012-02-10 2014-04-16 Broadcom Corp Method, apparatus and computer program for facilitating secure D2D discovery information
US11496948B2 (en) * 2012-10-19 2022-11-08 Samsung Electronics Co., Ltd. System and method for ad-hoc/network assisted device discovery protocol for device to device communications
CN104871442B (zh) * 2012-12-20 2018-10-23 Lg电子株式会社 用于无线通信系统中的装置至装置的信号传输方法和装置
KR101821027B1 (ko) * 2013-01-16 2018-01-22 인터디지탈 패튼 홀딩스, 인크 발견 신호 생성 및 수신
CN103118417B (zh) * 2013-01-21 2017-10-17 华为技术有限公司 信息传输方法和用户设备
US9706481B2 (en) * 2013-03-15 2017-07-11 Futurewei Technologies, Inc. System and method for time-power frequency hopping for D2D discovery
CN105359583A (zh) * 2013-07-29 2016-02-24 富士通株式会社 信令配置方法、设备到设备发现的方法、装置和通信系统
US9326122B2 (en) * 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
KR102376050B1 (ko) * 2013-10-30 2022-03-21 엘지전자 주식회사 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 제어 정보 송수신 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281048A (ja) * 2001-03-21 2002-09-27 Sony Corp 伝送方法及び伝送装置
JP2012034165A (ja) * 2010-07-30 2012-02-16 Mega Chips Corp 通信装置および通信システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107277762A (zh) * 2016-04-08 2017-10-20 北京信威通信技术股份有限公司 一种v2x半静态调度方式中消息调度的方法及装置

Also Published As

Publication number Publication date
US20160262084A1 (en) 2016-09-08
CN105684476A (zh) 2016-06-15
US10009828B2 (en) 2018-06-26
JP2015089045A (ja) 2015-05-07
JP6243192B2 (ja) 2017-12-06

Similar Documents

Publication Publication Date Title
US9860732B2 (en) User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US20200396726A1 (en) System and Method for Transmitting and Receiving Control Channels
KR102080122B1 (ko) 자원 할당 및 디바이스간 발견 홉핑을 위한 사용자 장비 및 방법
JP5755800B2 (ja) 信号送受信方法及びシステム並びに関連するシグナリング方法
EP3133848B1 (en) User equipment for packet based device-to-device (d2d) discovery in an lte network
WO2017135385A1 (ja) 端末装置、基地局装置および通信方法
WO2017135312A1 (ja) 端末装置および通信方法
JP2017532831A (ja) Mtcデバイス動作のシステム及び方法
US20200313947A1 (en) Method and apparatus for transmitting and receiving multiple data in wireless cooperative communication system
KR20200009662A (ko) 무선 통신 시스템을 위한 하향링크 제어 채널 송수신 방법 및 장치
WO2017135213A1 (ja) 端末装置、基地局装置および通信方法
JP2016536932A (ja) 無線通信における基準信号
CN113424592A (zh) 蜂窝网格网络中的协调波束选择
WO2018052061A1 (ja) 送信装置及び無線通信方法
JP7140129B2 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム
US20220077970A1 (en) Method and device in nodes used for wireless communication
WO2020026450A1 (ja) ユーザ端末
JP6243192B2 (ja) ユーザ端末及び端末間通信方法
CN114503731A (zh) 用于网络协作通信的发送/接收数据的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15032720

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858841

Country of ref document: EP

Kind code of ref document: A1