WO2015064191A1 - Concrete repair material - Google Patents

Concrete repair material Download PDF

Info

Publication number
WO2015064191A1
WO2015064191A1 PCT/JP2014/072246 JP2014072246W WO2015064191A1 WO 2015064191 A1 WO2015064191 A1 WO 2015064191A1 JP 2014072246 W JP2014072246 W JP 2014072246W WO 2015064191 A1 WO2015064191 A1 WO 2015064191A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
cyclodextrin
concrete
acrylate
repair material
Prior art date
Application number
PCT/JP2014/072246
Other languages
French (fr)
Japanese (ja)
Inventor
博美 入江
松本 高志
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201480058642.5A priority Critical patent/CN105658602B/en
Priority to JP2015505747A priority patent/JP5743043B1/en
Publication of WO2015064191A1 publication Critical patent/WO2015064191A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/63Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/483Polyacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a concrete repair material having excellent adhesion to wet concrete.
  • the problem to be solved by the present invention is to provide a concrete repair material having excellent adhesion to not only dry concrete but also wet concrete.
  • the present invention provides a concrete repair material comprising a radical polymerizable resin (A), a radical polymerizable monomer (B), and cyclodextrin and / or a derivative thereof (C). is there.
  • the concrete repair material of the present invention has excellent adhesion to wet concrete (hereinafter referred to as “wet surface adhesion”) as well as adhesion to dry concrete (hereinafter abbreviated as “sex”.).
  • wet surface adhesion adhesion to wet concrete
  • dry surface adhesion adhesion to dry concrete
  • sex adhesion to dry concrete
  • the concrete repair material of the present invention is excellent in mechanical strength such as workability and tensile properties, and has very little odor.
  • the concrete repair material of the present invention contains a radical polymerizable resin (A), a radical polymerizable monomer (B), and cyclodextrin and / or a derivative thereof (C) as essential components.
  • radical polymerizable resin (A) for example, unsaturated polyester, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate, or the like can be used. These resins may be used alone or in combination of two or more.
  • unsaturated polyester for example, those obtained by reacting a dibasic acid containing an ⁇ , ⁇ -unsaturated dibasic acid with a polyhydric alcohol by a conventionally known method can be used.
  • ⁇ , ⁇ -unsaturated dibasic acid for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like can be used. These dibasic acids may be used alone or in combination of two or more.
  • a saturated dibasic acid can be used.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and 2-methyl-1.
  • epoxy (meth) acrylate a bisphenol type epoxy compound or an epoxy compound obtained by mixing a bisphenol type epoxy compound and a novolac type epoxy compound with an unsaturated monobasic acid by a conventionally known method is used. Can be used.
  • the bisphenol type epoxy compound examples include a glycidyl ether type epoxy compound having two or more epoxy groups in one molecule obtained by reaction of epichlorohydrin and bisphenol A or bisphenol F, methyl epichlorohydrin and bisphenol A or bisphenol F, and the like.
  • a dimethyl glycidyl ether type epoxy compound obtained by reacting bisphenol A, an epoxy compound obtained by reacting an alkylene oxide adduct of bisphenol A with epichlorohydrin or methyl epichlorohydrin, and the like can be used. These epoxy compounds may be used alone or in combination of two or more.
  • novolac type epoxy compound for example, an epoxy compound obtained by reacting phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin can be used. These epoxy compounds may be used alone or in combination of two or more.
  • unsaturated monobasic acid examples include (meth) acrylic acid, cinnamic acid, crotonic acid, monomethylmalate, monopropylmalate, monobutenemalate, sorbic acid, mono (2-ethylhexyl) malate, and the like. be able to. These unsaturated monobasic acids may be used alone or in combination of two or more.
  • polyester (meth) acrylate for example, a saturated polyester or an unsaturated polyester having two or more (meth) acryloyl groups in one molecule can be used.
  • the saturated polyester is a condensation reaction of a saturated dibasic acid and a polyhydric alcohol
  • the unsaturated polyester is a condensation reaction of an ⁇ , ⁇ -unsaturated dibasic acid and a polyhydric alcohol. Each of them has a (meth) acryloyl group at the terminal.
  • the saturated dibasic acid, ⁇ , ⁇ -unsaturated dibasic acid and polyhydric alcohol can be the same as those used for the synthesis of the unsaturated polyester.
  • Examples of the method for producing the polyester (meth) acrylate include a method of reacting a saturated polyester or unsaturated polyester with glycidyl (meth) acrylate by a known method.
  • urethane (meth) acrylate having a hydroxyl group for example, those obtained by reacting a polyol, polyisocyanate, a hydroxyl group or a (meth) acrylic compound having an isocyanate group by a conventionally known method can be used.
  • polyether polyol for example, polyether polyol, polycarbonate polyol, polyester polyol, acrylic polyol, caprolactone polyol, polybutadiene polyol, polyisoprene polyol and the like can be used. These polyols may be used alone or in combination of two or more.
  • polyisocyanate examples include aromatic diisocyanates such as phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, xylylene Aliphatic or cycloaliphatic diisocyanates such as diisocyanate and tetramethylxylylene diisocyanate; formalin condensation of xylylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, polyphenylene polymethylene polyisocyanate, methylene diphenyl disissocyanate Body, and aromatic polyisocyanates carbodiimi
  • Examples of the (meth) acrylic compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.
  • (Meth) acrylic acid alkyl esters having the following hydroxyl groups; polyethylene glycol monoacrylate, polypropylene glycol monoacrylate, and the like can be used. These compounds may be used alone or in combination of two or more.
  • Examples of the (meth) acrylic compound having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, and 1,1-bis ((meth)).
  • An acryloyloxymethyl) ethyl isocyanate etc. can be used. These compounds may be used alone or in combination of two or more.
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acryloyl group refers to one or both of methacryloyl group and acryloyl group
  • “Acrylic acid” refers to one or both of methacrylic acid and acrylic acid
  • “(meth) acrylic compound” refers to one or both of an acrylic compound and a methacrylic compound.
  • the number average molecular weight of the radical polymerizable resin (A) is preferably in the range of 500 to 10,000, more preferably in the range of 800 to 5,000, from the viewpoint of further improving the tensile properties and wet surface adhesion. Is more preferable, and the range of 1,000 to 3,000 is even more preferable.
  • the number average molecular weight of the said radical polymerizable resin (A) shows the value measured on condition of the following by the gel permeation chromatography (GPC) method.
  • Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • radical polymerizable monomer (B) examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and hexyl.
  • radical polymerizable monomer (B) it is preferable to use methyl (meth) acrylate and / or a (meth) acrylic monomer having a boiling point of 100 ° C. or higher from the viewpoint that the room temperature drying property can be further improved. Furthermore, it is more preferable to use a (meth) acrylic monomer having a boiling point of 100 ° C. or higher from the viewpoint that the odor during construction can be further improved.
  • the mass ratio [(A) / (B)] between the radical polymerizable resin (A) and the radical polymerizable monomer (B) is 10/90 to 10 from the viewpoint of tensile properties and wet surface adhesion. A range of 90/10 is preferable, and a range of 20/80 to 80/20 is more preferable.
  • the cyclodextrin and / or derivative (C) is an essential component for imparting wet surface adhesion.
  • Examples of the cyclodextrin and / or its derivative (C) include, for example, cyclodextrin; the hydrogen atom of the hydroxyl group of the glucose unit of cyclodextrin such as alkylated cyclodextrin, acetylated cyclodextrin, and hydroxyalkylated cyclodextrin. Those substituted with a group can be used.
  • the cyclodextrin skeleton in cyclodextrin and cyclodextrin derivatives includes ⁇ -cyclodextrin consisting of 6 glucose units, ⁇ -cyclodextrin consisting of 7 glucose units, and ⁇ -cyclodextrin consisting of 8 glucose units.
  • cyclodextrin derivative is used from the viewpoint that compatibility with the radical polymerizable resin (A) and the radical polymerizable monomer (B) can be further improved and wet surface adhesion can be further improved. It is preferable to use an alkylated cyclodextrin.
  • the degree of substitution of other functional groups in the cyclodextrin derivative is 0.3 from the viewpoint of compatibility with the radical polymerizable resin (A) and the radical polymerizable monomer (B) and wet surface adhesion. It is preferably in the range of ⁇ 14 / glucose, more preferably in the range of 0.5 to 8 / glucose.
  • alkylated cyclodextrin for example, methyl- ⁇ -cyclodextrin, methyl- ⁇ -cyclodextrin, methyl- ⁇ -cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
  • acetylated cyclodextrin for example, monoacetyl- ⁇ -cyclodextrin, monoacetyl- ⁇ -cyclodextrin, monoacetyl- ⁇ -cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
  • hydroxyalkylated cyclodextrin for example, hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
  • the content of the said cyclodextrin and / or its derivative (C) compatibility with the said radical polymerizable resin (A) and the said radical polymerizable monomer (B), tensile physical property, and wet surface adhesiveness are more.
  • the content is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass in total of the radical polymerizable resin (A) and the radical polymerizable monomer (B).
  • the range of 0.5 to 10 parts by mass is more preferred, and the range of 1.5 to 8 parts by mass is even more preferred.
  • the concrete repair material used in the present invention contains the radical polymerizable resin (A), the radical polymerizable monomer (B), and the cyclodextrin and / or its derivative (C) as essential components. You may contain another additive as needed.
  • Examples of the other additive include a curing agent, a curing accelerator, a polymerization inhibitor, a pigment, a thixotropic agent, an antioxidant, a solvent, a filler, a reinforcing material, an aggregate, a flame retardant, and petroleum wax. be able to.
  • an organic peroxide is preferably used from the viewpoint of surface dryness at room temperature.
  • a compound, a peroxyketal compound, an alkyl perester compound, a carbonate compound, or the like can be used.
  • These curing agents may be used alone or in combination of two or more. Among these, it is preferable to use a hydroperoxide compound from the viewpoint of storage stability.
  • the amount of the curing agent used is preferably in the range of 0.001 to 10% by mass in the concrete repair material from the viewpoint of curability.
  • the curing accelerator is a substance having an action of decomposing an organic peroxide of the curing agent by a redox reaction and facilitating generation of active radicals.
  • a cobalt organic acid such as cobalt naphthenate and cobalt octylate is used.
  • salts metal soaps such as zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, metal chelates such as vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate; aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-dimethyl-p-toluidine ethylene oxide adduct, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bi (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl)
  • the amount of the curing accelerator used is preferably in the range of 0.001 to 10% by mass in the concrete repair material from the viewpoint of curability.
  • urethane methacrylate (A-1) having a number average molecular weight of 2607.
  • urethane methacrylate (A-2) having a number average molecular weight of 1584.
  • Example 1 30 parts by mass of urethane methacrylate (A-1) obtained in Synthesis Example 1, 70 parts by mass of dicyclopentenyloxyethyl methacrylate, and 1 part by mass of “methyl- ⁇ -cyclodextrin” (manufactured by Junsei Chemical Co., Ltd.) By mixing and stirring, a radical polymerizable resin composition was obtained. Next, 20 parts by mass of the radical polymerizable resin composition was weighed and adjusted to 25 ° C., and then 1 part by mass of cumene hydroperoxide was added to obtain a concrete repair material.
  • Examples 2 to 3 and Comparative Examples 1 to 3 A concrete repair material was obtained in the same manner as in Example 1 except that the type and / or amount of the radical polymerizable resin, radical polymerizable monomer and cyclodextrin and / or derivative thereof were changed as shown in Table 1. It was.
  • Examples 1 to 3 which are concrete repair materials of the present invention are not only dry surface adhesive. It was found that the wet surface dryness was also excellent.
  • Comparative Examples 1 to 3 did not contain cyclodextrin and / or its derivative (C), but wet surface drying was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

The present invention addresses the issue of providing a concrete repair material having excellent adhesion not only to dried concrete but also to wet concrete. The present invention provides a concrete repair material characterized by containing: a radically polymerizable resin (A); a radically polymerizable monomer (B); and a cyclodextrin and/or a derivative thereof (C). This concrete repair material exhibits excellent adhesion not only to dried concrete but also to wet concrete. In addition, this concrete repair material has excellent workability, excellent tensile properties and other mechanical strength, and has very little odor. The amount of cyclodextrin and/or derivative thereof (C) is ideally within the range of 0.1-20 parts by mass relative to 100 parts by mass of the total content of radically polymerizable resin (A) and radically polymerizable monomer (B).

Description

コンクリート補修材Concrete repair material
 本発明は、湿潤したコンクリートに対する接着性に優れるコンクリート補修材に関する。 The present invention relates to a concrete repair material having excellent adhesion to wet concrete.
 コンクリート構造物の補修等の土木建築業界では、笹子トンネル崩落事故などを背景にインフラ補強に対する注目度が高まっている。高度経済成長期以降に建設されたコンクリート構造物は、今後30年間に築50年を経過するため、コンクリート補修の需要は増加傾向にある。 In the civil engineering and building industry, such as repairing concrete structures, the degree of attention to infrastructure reinforcement is increasing against the background of the accident of the fall of the Isogo tunnel. Since concrete structures constructed after the period of high economic growth are 50 years old in the next 30 years, the demand for concrete repairs is increasing.
 現在のコンクリート補修材としては、エポキシ樹脂系補修材や(メタ)アクリル系補修材が大半を占めている(例えば、特許文献1を参照。)。これらのコンクリート補修材は、乾燥したコンクリートに対する接着性は優れているものの、雨により濡れた場合や下水道など多湿な環境で使用された場合には、所望の接着性が得られない問題があった。 As the current concrete repair material, epoxy resin-based repair materials and (meth) acrylic-based repair materials occupy most (for example, see Patent Document 1). Although these concrete repair materials have excellent adhesion to dry concrete, there is a problem that the desired adhesion cannot be obtained when wet in the rain or when used in humid environments such as sewers. .
特開2002-201802号公報JP 2002-201802 A
 本発明が解決しようとする課題は、乾燥したコンクリートのみならず、湿潤したコンクリートに対する接着性に優れるコンクリート補修材を提供することである。 The problem to be solved by the present invention is to provide a concrete repair material having excellent adhesion to not only dry concrete but also wet concrete.
 本発明は、ラジカル重合性樹脂(A)、ラジカル重合性単量体(B)、並びに、シクロデキストリン及び/又はその誘導体(C)を含有することを特徴とするコンクリート補修材を提供するものである。 The present invention provides a concrete repair material comprising a radical polymerizable resin (A), a radical polymerizable monomer (B), and cyclodextrin and / or a derivative thereof (C). is there.
 本発明のコンクリート補修材は、乾燥したコンクリートに対する接着性(以下、「乾燥面接着性」と略記する。)のみならず、湿潤したコンクリートに対しても優れた接着性(以下、「湿潤面接着性」と略記する。)を示すものである。また、本発明のコンクリート補修材は、作業性、引張物性等の機械的強度にも優れ、臭気も非常に少ないものである。 The concrete repair material of the present invention has excellent adhesion to wet concrete (hereinafter referred to as “wet surface adhesion”) as well as adhesion to dry concrete (hereinafter abbreviated as “dry surface adhesion”). Abbreviated as “sex”.). In addition, the concrete repair material of the present invention is excellent in mechanical strength such as workability and tensile properties, and has very little odor.
 本発明のコンクリート補修材は、ラジカル重合性樹脂(A)、ラジカル重合性単量体(B)、並びに、シクロデキストリン及び/又はその誘導体(C)を必須成分として含有するものである。 The concrete repair material of the present invention contains a radical polymerizable resin (A), a radical polymerizable monomer (B), and cyclodextrin and / or a derivative thereof (C) as essential components.
 前記ラジカル重合性樹脂(A)としては、例えば、不飽和ポリエステル、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等を用いることができる。これらの樹脂は単独で用いても2種以上を併用してもよい。 As the radical polymerizable resin (A), for example, unsaturated polyester, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate, or the like can be used. These resins may be used alone or in combination of two or more.
 前記不飽和ポリエステルとしては、例えば、α,β-不飽和二塩基酸を含む二塩基酸と多価アルコールとを従来公知の方法で反応させて得られるものを用いることができる。 As the unsaturated polyester, for example, those obtained by reacting a dibasic acid containing an α, β-unsaturated dibasic acid with a polyhydric alcohol by a conventionally known method can be used.
 前記α,β-不飽和二塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を用いることができる。これらの二塩基酸は単独で用いても2種以上を併用してもよい。 As the α, β-unsaturated dibasic acid, for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like can be used. These dibasic acids may be used alone or in combination of two or more.
 前記α,β-不飽和二塩基酸以外に用いることができる二塩基酸としては、飽和二塩基酸を用いることができ、例えば、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12-ドデカン2酸,2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4’-ビフェニルジカルボン酸、またこれらのジアルキルエステル等を用いることができる。これらの二塩基酸は単独で用いても2種以上を併用してもよい。 As the dibasic acid that can be used in addition to the α, β-unsaturated dibasic acid, a saturated dibasic acid can be used. For example, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, Terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12 -Dodecanedioic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic anhydride, 4,4'-biphenyldicarboxylic acid, and these The dialkyl ester or the like can be used. These dibasic acids may be used alone or in combination of two or more.
 前記多価アルコールとしては、例えば、エチレングリコ-ル、ジエチレングリコ-ル、トリエチレングリコ-ル、ポリエチレングリコ-ル、プロピレングリコ-ル、ジプロピレングリコ-ル、ポリプロピレングリコ-ル、2-メチル-1,3-プロパンジオ-ル、1,3-ブタンジオ-ル、ネオペンチルグリコ-ル、水素化ビスフェノ-ルA、1,4-ブタンジオ-ル、ビスフェノ-ルAのアルキレンオキサイド付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロ-ルプロパン、1,3-プロパンジオ-ル、1,2-シクロヘキサングリコ-ル、1,3-シクロヘキサングリコ-ル、1,4-シクロヘキサングリコ-ル、1,4-シクロヘキサンジメタノ-ル、パラキシレングリコ-ル、ビシクロヘキシル-4,4’-ジオ-ル、2,6-デカリングリコ-ル、2,7-デカリングリコ-ル等を用いることができる。これらの多価アルコールは単独で用いても2種以上を併用してもよい。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and 2-methyl-1. 1,3-propanediol, 1,3-butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, alkylene oxide adduct of bisphenol A, 1,2 , 3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol 1,4-cyclohexanedimethanol, paraxylene glycol, bicyclohexyl-4, '- Geo - le, 2,6-decalin glycolate - le, 2,7-decalin glyco - can be used Le like. These polyhydric alcohols may be used alone or in combination of two or more.
 前記エポキシ(メタ)アクリレートとしては、ビスフェノール型エポキシ化合物又はビスフェノール型エポキシ化合物とノボラック型エポキシ化合物とを混合したエポキシ化合物と、不飽和一塩基酸とを従来公知の方法で反応して得られるものを用いることができる。 As the epoxy (meth) acrylate, a bisphenol type epoxy compound or an epoxy compound obtained by mixing a bisphenol type epoxy compound and a novolac type epoxy compound with an unsaturated monobasic acid by a conventionally known method is used. Can be used.
 前記ビスフェノール型エポキシ化合物としては、例えば、エピクロルヒドリンとビスフェノールA又はビスフェノールFとの反応により得られる1分子中に2個以上のエポキシ基を有するグリシジルエーテル型エポキシ化合物、メチルエピクロルヒドリンとビスフェノールA又はビスフェノールFとを反応させて得られるジメチルグリシジルエーテル型エポキシ化合物、ビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリン又はメチルエピクロルヒドリンとを反応させて得られるエポキ化合物等を用いることができる。これらのエポキシ化合物は単独で用いても2種以上を併用してもよい。 Examples of the bisphenol type epoxy compound include a glycidyl ether type epoxy compound having two or more epoxy groups in one molecule obtained by reaction of epichlorohydrin and bisphenol A or bisphenol F, methyl epichlorohydrin and bisphenol A or bisphenol F, and the like. A dimethyl glycidyl ether type epoxy compound obtained by reacting bisphenol A, an epoxy compound obtained by reacting an alkylene oxide adduct of bisphenol A with epichlorohydrin or methyl epichlorohydrin, and the like can be used. These epoxy compounds may be used alone or in combination of two or more.
 前記ノボラックタイプ型エポキシ化合物としては、例えば、フェノールノボラック又はクレゾールノボラックと、エピクロルヒドリン又はメチルエピクロルヒドリンとを反応させて得られるエポキシ化合物等を用いることができる。これらのエポキシ化合物は単独で用いても2種以上を併用してもよい。 As the novolac type epoxy compound, for example, an epoxy compound obtained by reacting phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin can be used. These epoxy compounds may be used alone or in combination of two or more.
 前記不飽和一塩基酸としては、例えば、(メタ)アクリル酸、桂皮酸、クロトン酸、モノメチルマレート、モノプロピルマレート、モノブテンマレート、ソルビン酸、モノ(2-エチルヘキシル)マレート等を用いることができる。これらの不飽和一塩基酸は単独で用いても2種以上を併用してもよい。 Examples of the unsaturated monobasic acid include (meth) acrylic acid, cinnamic acid, crotonic acid, monomethylmalate, monopropylmalate, monobutenemalate, sorbic acid, mono (2-ethylhexyl) malate, and the like. be able to. These unsaturated monobasic acids may be used alone or in combination of two or more.
 前記ポリエステル(メタ)アクリレートとしては、例えば、1分子中に2個以上の(メタ)アクリロイル基を有する飽和ポリエステル又は不飽和ポリエステルを用いることができる。前記飽和ポリエステルは、飽和二塩基酸と多価アルコールとを縮合反応させたものであり、また、前記不飽和ポリエステルとは、α,β-不飽和二塩基酸と多価アルコールとを縮合反応させたものであり、いずれも末端に(メタ)アクリロイル基を有するものである。 As the polyester (meth) acrylate, for example, a saturated polyester or an unsaturated polyester having two or more (meth) acryloyl groups in one molecule can be used. The saturated polyester is a condensation reaction of a saturated dibasic acid and a polyhydric alcohol, and the unsaturated polyester is a condensation reaction of an α, β-unsaturated dibasic acid and a polyhydric alcohol. Each of them has a (meth) acryloyl group at the terminal.
 前記飽和二塩基酸、α,β-不飽和二塩基酸及び多価アルコールは、前記不飽和ポリエステルの合成に用いるものと同様のものを用いることができる。 The saturated dibasic acid, α, β-unsaturated dibasic acid and polyhydric alcohol can be the same as those used for the synthesis of the unsaturated polyester.
 前記ポリエステル(メタ)アクリレートの製造方法としては、飽和ポリエステル又は不飽和ポリエステルとグリシジル(メタ)アクリレートと公知の方法により反応する方法が挙げられる。 Examples of the method for producing the polyester (meth) acrylate include a method of reacting a saturated polyester or unsaturated polyester with glycidyl (meth) acrylate by a known method.
 前記水酸基を有するウレタン(メタ)アクリレートとしては、例えば、ポリオール、ポリイソシアネート、水酸基又はイソシアネート基を有する(メタ)アクリル化合物を従来公知の方法で反応させて得られるものを用いることができる。 As the urethane (meth) acrylate having a hydroxyl group, for example, those obtained by reacting a polyol, polyisocyanate, a hydroxyl group or a (meth) acrylic compound having an isocyanate group by a conventionally known method can be used.
 前記ポリオールとしては、例えば、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、アクリルポリオール、カプロラクトンポリオール、ポリブタジエンポリオール、ポリイソプレンポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。 As the polyol, for example, polyether polyol, polycarbonate polyol, polyester polyol, acrylic polyol, caprolactone polyol, polybutadiene polyol, polyisoprene polyol and the like can be used. These polyols may be used alone or in combination of two or more.
 前記ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート;、ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族又は脂環式ジイソシアネート;キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、メチレンジフェニルジシソシアネートのホルマリン縮合体、4,4’-ジフェニルメタンジイソシアネートのカルボジイミド変性体等の芳香族系ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。 Examples of the polyisocyanate include aromatic diisocyanates such as phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, xylylene Aliphatic or cycloaliphatic diisocyanates such as diisocyanate and tetramethylxylylene diisocyanate; formalin condensation of xylylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, polyphenylene polymethylene polyisocyanate, methylene diphenyl disissocyanate Body, and aromatic polyisocyanates carbodiimide-modified products such as 4,4'-diphenylmethane diisocyanate can be used. These polyisocyanates may be used alone or in combination of two or more.
 前記水酸基を有する(メタ)アクリル化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸アルキルエステル;ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレートなどを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the (meth) acrylic compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like. (Meth) acrylic acid alkyl esters having the following hydroxyl groups; polyethylene glycol monoacrylate, polypropylene glycol monoacrylate, and the like can be used. These compounds may be used alone or in combination of two or more.
 前記イソシアネート基を有する(メタ)アクリル化合物としては、例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the (meth) acrylic compound having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, and 1,1-bis ((meth)). An acryloyloxymethyl) ethyl isocyanate etc. can be used. These compounds may be used alone or in combination of two or more.
 なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいい、「(メタ)アクリル化合物」とは、アクリル化合物とメタクリル化合物の一方又は両方をいう。 In the present invention, “(meth) acrylate” refers to one or both of methacrylate and acrylate, and “(meth) acryloyl group” refers to one or both of methacryloyl group and acryloyl group. “Acrylic acid” refers to one or both of methacrylic acid and acrylic acid, and “(meth) acrylic compound” refers to one or both of an acrylic compound and a methacrylic compound.
 前記ラジカル重合性樹脂(A)の数平均分子量としては、引張物性及び湿潤面接着性をより一層向上できる点から、500~10,000の範囲であることが好ましく、800~5,000の範囲がより好ましく、1,000~3,000の範囲が更に好ましい。なお、前記ラジカル重合性樹脂(A)の数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定した値を示す。 The number average molecular weight of the radical polymerizable resin (A) is preferably in the range of 500 to 10,000, more preferably in the range of 800 to 5,000, from the viewpoint of further improving the tensile properties and wet surface adhesion. Is more preferable, and the range of 1,000 to 3,000 is even more preferable. In addition, the number average molecular weight of the said radical polymerizable resin (A) shows the value measured on condition of the following by the gel permeation chromatography (GPC) method.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
 前記ラジカル重合性単量体(B)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、デシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、β-エトキシエチル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ポリカプロラクトン(メタ)アクリレート、ジエチレングリコールモノメチルエーテルモノ(メタ)アクリレート、ジプロピレングリコールモノメチルエーテルモノ(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌル(メタ)アクリレート等の(メタ)アクリル単量体;ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の沸点が100℃以上の(メタ)アクリル単量体等を用いることできる。これらの単量体は単独で用いても2種以上を併用してもよい。前記ラジカル重合性単量体(B)としては、常温乾燥性をより一層向上できる点から、メチル(メタ)アクリレート及び/又は沸点が100℃以上の(メタ)アクリル単量体を用いることが好ましく、更に施工時の臭気をより一層向上できる点から、沸点が100℃以上の(メタ)アクリル単量体を用いることがより好ましい。 Examples of the radical polymerizable monomer (B) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and hexyl. (Meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, decyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, β-ethoxyethyl ( (Meth) acrylate, 2-cyanoethyl (meth) acrylate, cyclohexyl (meth) acrylate, diethylaminoethyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, polycaprolactone (meth) acrylate (Meth) acrylic such as relate, diethylene glycol monomethyl ether mono (meth) acrylate, dipropylene glycol monomethyl ether mono (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, tris (2-hydroxyethyl) isocyanur (meth) acrylate Monomer: (Meth) acrylic monomers having a boiling point of 100 ° C. or higher, such as dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, phenoxyethyl (meth) acrylate, and the like can be used. These monomers may be used alone or in combination of two or more. As the radical polymerizable monomer (B), it is preferable to use methyl (meth) acrylate and / or a (meth) acrylic monomer having a boiling point of 100 ° C. or higher from the viewpoint that the room temperature drying property can be further improved. Furthermore, it is more preferable to use a (meth) acrylic monomer having a boiling point of 100 ° C. or higher from the viewpoint that the odor during construction can be further improved.
 前記ラジカル重合性樹脂(A)と前記ラジカル重合性単量体(B)との質量比[(A)/(B)]としては、引張物性及び湿潤面接着性の点から、10/90~90/10の範囲であることが好ましく、20/80~80/20の範囲がより好ましい。 The mass ratio [(A) / (B)] between the radical polymerizable resin (A) and the radical polymerizable monomer (B) is 10/90 to 10 from the viewpoint of tensile properties and wet surface adhesion. A range of 90/10 is preferable, and a range of 20/80 to 80/20 is more preferable.
 前記シクロデキストリン及び/又はその誘導体(C)は、湿潤面接着性を付与する上で必須の成分である。 The cyclodextrin and / or derivative (C) is an essential component for imparting wet surface adhesion.
 前記シクロデキストリン及び/又はその誘導体(C)としては、例えば、シクロデキストリン;アルキル化シクロデキストリン、アセチル化シクロデキストリン、ヒドロキシアルキル化シクロデキストリン等のシクロデキストリンのグルコース単位の水酸基の水素原子を他の官能基で置換したものなどを用いることができる。また、シクロデキストリン及びシクロデキストリン誘導体におけるシクロデキストリン骨格としては、6個のグルコース単位からなるα-シクロデキストリン、7個のグルコース単位からなるβ-シクロデキストリン、8個のグルコース単位からなるγ-シクロデキストリンのいずれも用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。これらの中でも、前記ラジカル重合性樹脂(A)及び前記ラジカル重合性単量体(B)との相溶性をより一層向上でき、湿潤面接着性をより一層向上できる点から、シクロデキストリン誘導体を用いることが好ましく、アルキル化シクロデキストリンを用いることがより好ましい。 Examples of the cyclodextrin and / or its derivative (C) include, for example, cyclodextrin; the hydrogen atom of the hydroxyl group of the glucose unit of cyclodextrin such as alkylated cyclodextrin, acetylated cyclodextrin, and hydroxyalkylated cyclodextrin. Those substituted with a group can be used. The cyclodextrin skeleton in cyclodextrin and cyclodextrin derivatives includes α-cyclodextrin consisting of 6 glucose units, β-cyclodextrin consisting of 7 glucose units, and γ-cyclodextrin consisting of 8 glucose units. Any of these can be used. These compounds may be used alone or in combination of two or more. Among these, a cyclodextrin derivative is used from the viewpoint that compatibility with the radical polymerizable resin (A) and the radical polymerizable monomer (B) can be further improved and wet surface adhesion can be further improved. It is preferable to use an alkylated cyclodextrin.
 前記シクロデキストリン誘導体における他の官能基の置換度としては、前記ラジカル重合性樹脂(A)及び前記ラジカル重合性単量体(B)との相溶性及び湿潤面接着性の点から、0.3~14個/グルコースの範囲であることが好ましく、0.5~8個/グルコースの範囲であることがより好ましい。 The degree of substitution of other functional groups in the cyclodextrin derivative is 0.3 from the viewpoint of compatibility with the radical polymerizable resin (A) and the radical polymerizable monomer (B) and wet surface adhesion. It is preferably in the range of ˜14 / glucose, more preferably in the range of 0.5 to 8 / glucose.
 前記アルキル化シクロデキストリンとしては、例えば、メチル-α-シクロデキストリン、メチル-β-シクロデキストリン、メチル-γ-シクロデキストリン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the alkylated cyclodextrin, for example, methyl-α-cyclodextrin, methyl-β-cyclodextrin, methyl-γ-cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
 前記アセチル化シクロデキストリンとしては、例えば、モノアセチル-α-シクロデキストリン、モノアセチル-β-シクロデキストリン、モノアセチル-γ-シクロデキストリン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the acetylated cyclodextrin, for example, monoacetyl-α-cyclodextrin, monoacetyl-β-cyclodextrin, monoacetyl-γ-cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
 前記ヒドロキシアルキル化シクロデキストリンとしては、例えば、ヒドロキシプロピル-α-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリン、ヒドロキシプロピル-γ-シクロデキストリン等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 As the hydroxyalkylated cyclodextrin, for example, hydroxypropyl-α-cyclodextrin, hydroxypropyl-β-cyclodextrin, hydroxypropyl-γ-cyclodextrin and the like can be used. These compounds may be used alone or in combination of two or more.
 前記シクロデキストリン及び/又はその誘導体(C)の含有量としては、前記ラジカル重合性樹脂(A)及び前記ラジカル重合性単量体(B)との相溶性、引張物性及び湿潤面接着性をより一層向上できる点から、前記ラジカル重合性樹脂(A)及び前記ラジカル重合性単量体(B)の合計100質量部に対して、0.1~20質量部の範囲であることが好ましく、0.5~10質量部の範囲がより好ましく、1.5~8質量部の範囲が更に好ましい。 As content of the said cyclodextrin and / or its derivative (C), compatibility with the said radical polymerizable resin (A) and the said radical polymerizable monomer (B), tensile physical property, and wet surface adhesiveness are more. From the viewpoint of further improvement, the content is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass in total of the radical polymerizable resin (A) and the radical polymerizable monomer (B). The range of 0.5 to 10 parts by mass is more preferred, and the range of 1.5 to 8 parts by mass is even more preferred.
 本発明で用いるコンクリート補修材は、前記ラジカル重合性樹脂(A)、前記ラジカル重合性単量体(B)、並びに、前記シクロデキストリン及び/又はその誘導体(C)を必須成分として含有するが、必要に応じてその他の添加剤を含有してもよい。 The concrete repair material used in the present invention contains the radical polymerizable resin (A), the radical polymerizable monomer (B), and the cyclodextrin and / or its derivative (C) as essential components. You may contain another additive as needed.
 前記その他の添加剤は、例えば、硬化剤、硬化促進剤、重合禁止剤、顔料、チキソ性付与剤、酸化防止剤、溶剤、充填剤、補強材、骨材、難燃剤、石油ワックス等を用いることができる。 Examples of the other additive include a curing agent, a curing accelerator, a polymerization inhibitor, a pigment, a thixotropic agent, an antioxidant, a solvent, a filler, a reinforcing material, an aggregate, a flame retardant, and petroleum wax. be able to.
 前記硬化剤としては、常温での表面乾燥性の点から有機過酸化物を用いることが好ましく、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ジアルキルパーオキサイド化合物、ケトンパーオキサイド化合物、パーオキシケタール化合物、アルキルパーエステル化合物、パーカーボネート化合物等を用いることができる。これらの硬化剤は単独で用いても2種以上を併用してもよい。これらの中でも、保存安定性の点から、ハイドロパーオキサイド化合物を用いることが好ましい。 As the curing agent, an organic peroxide is preferably used from the viewpoint of surface dryness at room temperature. For example, a diacyl peroxide compound, a peroxy ester compound, a hydroperoxide compound, a dialkyl peroxide compound, a ketone peroxide. A compound, a peroxyketal compound, an alkyl perester compound, a carbonate compound, or the like can be used. These curing agents may be used alone or in combination of two or more. Among these, it is preferable to use a hydroperoxide compound from the viewpoint of storage stability.
 前記硬化剤の使用量としては、硬化性の点から、コンクリート補修材中0.001~10質量%の範囲であることが好ましい。 The amount of the curing agent used is preferably in the range of 0.001 to 10% by mass in the concrete repair material from the viewpoint of curability.
 前記硬化促進剤は、前記硬化剤の有機過酸化物をレドックス反応によって分解し、活性ラジカルの発生を容易にする作用のある物質であり、例えば、ナフテン酸コバルト、オクチル酸コバルト等のコバルト有機酸塩、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート;アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-p-トルイジンのエチレンオキサイド付加物、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン;N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド等のアミン化合物などを用いることができる。これらの硬化促進剤は単独で用いても2種以上を併用してもよい。 The curing accelerator is a substance having an action of decomposing an organic peroxide of the curing agent by a redox reaction and facilitating generation of active radicals. For example, a cobalt organic acid such as cobalt naphthenate and cobalt octylate is used. Salts, metal soaps such as zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, metal chelates such as vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate; aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-dimethyl-p-toluidine ethylene oxide adduct, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bi (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, N, N-substituted anilines such as triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline; N, N-substituted-p-toluidine, An amine compound such as 4- (N, N-substituted amino) benzaldehyde can be used. These curing accelerators may be used alone or in combination of two or more.
 前記硬化促進剤の使用量としては、硬化性の点から、コンクリート補修材中0.001~10質量%の範囲であることが好ましい。 The amount of the curing accelerator used is preferably in the range of 0.001 to 10% by mass in the concrete repair material from the viewpoint of curability.
 以下、実施例を用いて、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
[合成例1]ウレタンメタクリレート(A-1)の合成
 温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた四つ口フラスコに、数平均分子量1,400のポリブタジエンジオールを500質量部、トリレンジイソシアネートを114質量部仕込み、窒素気流下80℃で4時間反応させた。イソシアネート基当量が600とほぼ理論値となったのを確認して、50℃まで冷却した。次いで、空気気流下でハイドロキノン0.07質量部、2-ヒドロキシエチルメタクリレートを89質量部を加え、90℃で5時間反応させた。イソシアネート%が0.1%以下となった時点でターシャリーブチルカテコールを0.07質量部加え、数平均分子量;2607のウレタンメタクリレート(A-1)を得た。
[Synthesis Example 1] Synthesis of urethane methacrylate (A-1) Polybutadiene diol having a number average molecular weight of 1,400 in a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet and a reflux condenser. Was added in an amount of 500 parts by mass and 114 parts by mass of tolylene diisocyanate were reacted at 80 ° C. for 4 hours under a nitrogen stream. It was confirmed that the isocyanate group equivalent was 600, which was almost the theoretical value, and then cooled to 50 ° C. Next, 0.07 parts by mass of hydroquinone and 89 parts by mass of 2-hydroxyethyl methacrylate were added under an air stream and reacted at 90 ° C. for 5 hours. When the isocyanate% became 0.1% or less, 0.07 part by mass of tertiary butyl catechol was added to obtain urethane methacrylate (A-1) having a number average molecular weight of 2607.
[合成例2]ウレタンメタクリレート(A-2)の合成
 温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた四つ口フラスコに、数平均分子量1,000のポリプロピレングリコールを500質量部、トリレンジイソシアネートを174質量部仕込み、窒素気流下80℃で4時間反応させた。イソシアネート基当量が600とほぼ理論値となったのを確認して、50℃まで冷却した。次いで、空気気流下でハイドロキノン0.07質量部、2-ヒドロキシエチルメタクリレートを131質量部を加え、90℃で5時間反応させた。イソシアネート%が0.1%以下となった時点でターシャリーブチルカテコールを0.07質量部加え、数平均分子量;1584のウレタンメタクリレート(A-2)を得た。
[Synthesis Example 2] Synthesis of urethane methacrylate (A-2) Polypropylene glycol having a number average molecular weight of 1,000 in a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet and a reflux condenser. Of 500 parts by mass and 174 parts by mass of tolylene diisocyanate were charged and reacted at 80 ° C. for 4 hours under a nitrogen stream. It was confirmed that the isocyanate group equivalent was 600, which was almost the theoretical value, and then cooled to 50 ° C. Next, 0.07 parts by mass of hydroquinone and 131 parts by mass of 2-hydroxyethyl methacrylate were added under an air stream and reacted at 90 ° C. for 5 hours. When the isocyanate percentage became 0.1% or less, 0.07 part by mass of tertiary butylcatechol was added to obtain urethane methacrylate (A-2) having a number average molecular weight of 1584.
[実施例1]
 合成例1で得られたウレタンメタクリレート(A-1)を30質量部、ジシクロペンテニルオキシエチルメタクリレートを70質量部、「メチル-β-シクロデキストリン」(純正化学株式会社製)を1質量部を混合、撹拌してラジカル重合性樹脂組成物を得た。  次いで、前記ラジカル重合性樹脂組成物20質量部を計量し、25℃に調製した後、クメンハイドロパーオキサイドを1質量部添加し、コンクリート補修材を得た。
[Example 1]
30 parts by mass of urethane methacrylate (A-1) obtained in Synthesis Example 1, 70 parts by mass of dicyclopentenyloxyethyl methacrylate, and 1 part by mass of “methyl-β-cyclodextrin” (manufactured by Junsei Chemical Co., Ltd.) By mixing and stirring, a radical polymerizable resin composition was obtained. Next, 20 parts by mass of the radical polymerizable resin composition was weighed and adjusted to 25 ° C., and then 1 part by mass of cumene hydroperoxide was added to obtain a concrete repair material.
[実施例2~3及び比較例1~3]
 用いるラジカル重合性樹脂、ラジカル重合性単量体及びシクロデキストリン及び/又はその誘導体の種類及び/又は量を表1に示す通りに変更した以外は、実施例1と同様にしてコンクリート補修材を得た。
[Examples 2 to 3 and Comparative Examples 1 to 3]
A concrete repair material was obtained in the same manner as in Example 1 except that the type and / or amount of the radical polymerizable resin, radical polymerizable monomer and cyclodextrin and / or derivative thereof were changed as shown in Table 1. It was.
[接着性の評価方法]
 40mm×40mm×80mmのモルタル板2つを向い合せて1mmの隙間を作り、テープで固定した。作製した隙間に実施例及び比較例で得たコンクリート補修材を注入して23℃、湿度50%の環境下で1週間養生した。養生後、JISA6024:2008に準拠して接着性試験を行い、接着強度(MPa)と破壊状態を観察し、乾燥面接着性を評価した。また、前記モルタル板を純粋に24時間浸漬したものを使用し、同様にしてコンクリート補修材を注入し、23℃、湿度50%の環境下で1週間養生した後に、同様に接着強度(MPa)及び破壊状態を観察し、湿潤面乾燥性を評価した。
[Adhesion evaluation method]
Two 40 mm × 40 mm × 80 mm mortar plates were faced to create a 1 mm gap and fixed with tape. The concrete repair materials obtained in the examples and comparative examples were poured into the gaps thus produced and cured for one week in an environment of 23 ° C. and humidity of 50%. After curing, an adhesion test was performed in accordance with JIS A6024: 2008, the adhesive strength (MPa) and the fracture state were observed, and the dry surface adhesion was evaluated. In addition, using a mortar plate soaked purely for 24 hours, injecting a concrete repair material in the same manner and curing for one week in an environment of 23 ° C. and 50% humidity, the adhesive strength (MPa) is similarly applied. And the destruction state was observed and wet surface dryness was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のコンクリート補修材である実施例1~3は、乾燥面接着性のみならず。湿潤面乾燥性にも優れることが分かった。 Examples 1 to 3 which are concrete repair materials of the present invention are not only dry surface adhesive. It was found that the wet surface dryness was also excellent.
 一方、比較例1~3はシクロデキストリン及び/又はその誘導体(C)を含有しない態様であるが、湿潤面乾燥性が不良であった。 On the other hand, Comparative Examples 1 to 3 did not contain cyclodextrin and / or its derivative (C), but wet surface drying was poor.

Claims (3)

  1. ラジカル重合性樹脂(A)、ラジカル重合性単量体(B)、並びに、シクロデキストリン及び/又はその誘導体(C)を含有することを特徴とするコンクリート補修材。 A concrete repair material comprising a radical polymerizable resin (A), a radical polymerizable monomer (B), and cyclodextrin and / or a derivative thereof (C).
  2. 前記シクロデキストリン及び/又はその誘導体(C)の含有量が、前記ラジカル重合性樹脂(A)及び前記ラジカル重合性単量体(B)の合計100質量部に対して、0.1~20質量部の範囲である請求項1記載のコンクリート補修材。 The content of the cyclodextrin and / or its derivative (C) is 0.1 to 20 masses with respect to 100 mass parts in total of the radical polymerizable resin (A) and the radical polymerizable monomer (B). The concrete repair material according to claim 1, which is in the range of a part.
  3. 前記シクロデキストリン及び/又はその誘導体(C)が、アルキル化シクロデキストリンである請求項1記載のコンクリート補修材。 The concrete repair material according to claim 1, wherein the cyclodextrin and / or its derivative (C) is an alkylated cyclodextrin.
PCT/JP2014/072246 2013-10-30 2014-08-26 Concrete repair material WO2015064191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480058642.5A CN105658602B (en) 2013-10-30 2014-08-26 Concrete repairing material
JP2015505747A JP5743043B1 (en) 2013-10-30 2014-08-26 Concrete repair material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-225451 2013-10-30
JP2013225451 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015064191A1 true WO2015064191A1 (en) 2015-05-07

Family

ID=53003806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072246 WO2015064191A1 (en) 2013-10-30 2014-08-26 Concrete repair material

Country Status (4)

Country Link
JP (1) JP5743043B1 (en)
CN (1) CN105658602B (en)
TW (1) TWI652301B (en)
WO (1) WO2015064191A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186433A1 (en) * 2014-06-04 2015-12-10 Dic株式会社 Radically polymerizable composition, concrete repair material, and primer for roads
WO2016171034A1 (en) * 2015-04-22 2016-10-27 Dic株式会社 Radical polymerizable resin composition and primer for civil engineering and construction
CN107500631A (en) * 2017-09-20 2017-12-22 河南省三门峡黄河大桥高速公路建设有限公司 Science of bridge building quick setting and rapid hardening ungauged regions self-compacting concrete and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066363A1 (en) * 2018-09-27 2020-04-02 昭和電工株式会社 Structure repairing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252402A (en) * 1994-03-14 1995-10-03 Sanyo Chem Ind Ltd Aqueous epoxy resin composition
JPH10120764A (en) * 1996-10-15 1998-05-12 Three Bond Co Ltd Epoxy resin grout
JP2000344837A (en) * 1999-04-28 2000-12-12 Rohm & Haas Co Polymer composition
JP2002201802A (en) * 2000-10-24 2002-07-19 Ohbayashi Corp Repair material for injection into concrete body and method of repairing concrete body

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87102845A (en) * 1987-04-22 1988-11-02 马铭锋 Concrete work leak-prevention treatment and repair material and technologies such as roofing
JPH0350146A (en) * 1989-07-17 1991-03-04 Showa Denko Kk Mortar composition
DE4440236A1 (en) * 1994-11-10 1996-05-15 Wacker Chemie Gmbh Redispersible polymer powder composition containing cyclodextrins or cyclodextrin derivatives
JP4152081B2 (en) * 2001-01-23 2008-09-17 電気化学工業株式会社 Injection material and injection construction method using the same
CN1390800A (en) * 2002-07-30 2003-01-15 同济大学 Unsaturated polyester mortar as repair material of concrete and its preparing process
CN1654411A (en) * 2005-01-21 2005-08-17 赵若鹏 Fast repairing concrete material and its use method
CN100355816C (en) * 2005-03-24 2007-12-19 长江水利委员会长江科学院 Mesh subaqueous patching material of interpenetrating polymer of epoxy/polyurethane, preparing process and application
CN100515978C (en) * 2006-03-21 2009-07-22 上海宝冶工程技术有限公司 Resin adhesive agent for repairing oil medium concrete
CN101121812B (en) * 2007-07-27 2010-09-01 华南理工大学 Epoxy resin base fast repairing material and preparation method thereof
CN101613193B (en) * 2008-06-24 2012-07-04 上海天补建筑科技有限公司 Material for repairing building cracks and splicing prefabricated wallboard
CN101724218B (en) * 2009-12-08 2013-03-06 中国铁道科学研究院金属及化学研究所 Unsaturated resin composition as well as preparation method and purpose thereof
CN102503234A (en) * 2011-11-01 2012-06-20 陕西科技大学 Preparation method for modified cyclodextrin water reducer
CN102827567B (en) * 2012-09-13 2013-12-11 中南林业科技大学 Crack repair material for asphalt concrete pavement
CN102942345B (en) * 2012-11-14 2014-03-12 苏州中材非金属矿工业设计研究院有限公司 Waterproof material capable of continuously repairing concrete micro-crack as well as preparation process and construction method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252402A (en) * 1994-03-14 1995-10-03 Sanyo Chem Ind Ltd Aqueous epoxy resin composition
JPH10120764A (en) * 1996-10-15 1998-05-12 Three Bond Co Ltd Epoxy resin grout
JP2000344837A (en) * 1999-04-28 2000-12-12 Rohm & Haas Co Polymer composition
JP2002201802A (en) * 2000-10-24 2002-07-19 Ohbayashi Corp Repair material for injection into concrete body and method of repairing concrete body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186433A1 (en) * 2014-06-04 2015-12-10 Dic株式会社 Radically polymerizable composition, concrete repair material, and primer for roads
JP5867793B1 (en) * 2014-06-04 2016-02-24 Dic株式会社 Radical polymerizable composition, concrete repair material and road primer
WO2016171034A1 (en) * 2015-04-22 2016-10-27 Dic株式会社 Radical polymerizable resin composition and primer for civil engineering and construction
JP6066027B1 (en) * 2015-04-22 2017-01-25 Dic株式会社 Radical polymerizable resin composition and civil engineering primer
CN107500631A (en) * 2017-09-20 2017-12-22 河南省三门峡黄河大桥高速公路建设有限公司 Science of bridge building quick setting and rapid hardening ungauged regions self-compacting concrete and preparation method thereof

Also Published As

Publication number Publication date
CN105658602B (en) 2019-04-05
JP5743043B1 (en) 2015-07-01
JPWO2015064191A1 (en) 2017-03-09
TWI652301B (en) 2019-03-01
TW201518385A (en) 2015-05-16
CN105658602A (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5003853B2 (en) Radical curable resin composition
JP5743043B1 (en) Concrete repair material
JP6394077B2 (en) Radical polymerizable composition, concrete repair material and road primer
WO2019004125A1 (en) Radical polymerizable resin composition and structure-repairing material
JP6281217B2 (en) Radical polymerizable resin composition and civil engineering building material
JP6252019B2 (en) Radical polymerizable resin composition and civil engineering building material
JP2014118451A (en) Radical polymerizable resin composition, primer and floor slab waterproofing structure
JP5867793B1 (en) Radical polymerizable composition, concrete repair material and road primer
JP2015048459A (en) Radically polymerizable resin composition and civil engineering building material
CN112789259A (en) Method for repairing structure
JP5765605B1 (en) Concrete repair material
JP2022048571A (en) Concrete repair material
JP2022042660A (en) Primer for concrete
JP6066027B1 (en) Radical polymerizable resin composition and civil engineering primer
JP5845935B2 (en) Radical polymerizable resin composition
JP6212892B2 (en) Radical curable composition and civil engineering building material
JP5927892B2 (en) Composite covering structure
JP2022042661A (en) Primer for concrete
WO2024135270A1 (en) Radical-polymerizable composition
JP2023005502A (en) primer for concrete
JP2015052079A (en) Evaluation method for curability of radical curable resin composition
JP2014019847A (en) Radical curable resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015505747

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857004

Country of ref document: EP

Kind code of ref document: A1