WO2019004125A1 - Radical polymerizable resin composition and structure-repairing material - Google Patents

Radical polymerizable resin composition and structure-repairing material Download PDF

Info

Publication number
WO2019004125A1
WO2019004125A1 PCT/JP2018/024008 JP2018024008W WO2019004125A1 WO 2019004125 A1 WO2019004125 A1 WO 2019004125A1 JP 2018024008 W JP2018024008 W JP 2018024008W WO 2019004125 A1 WO2019004125 A1 WO 2019004125A1
Authority
WO
WIPO (PCT)
Prior art keywords
radically polymerizable
resin composition
component
polymerizable resin
mass
Prior art date
Application number
PCT/JP2018/024008
Other languages
French (fr)
Japanese (ja)
Inventor
小林 健一
絵梨 畠山
一博 黒木
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201880040512.7A priority Critical patent/CN110799558B/en
Priority to JP2019526887A priority patent/JP7164522B2/en
Publication of WO2019004125A1 publication Critical patent/WO2019004125A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a radically polymerizable resin composition satisfying both the low temperature curing property and the adhesive strength. Furthermore, the present invention relates to a structure restorative material containing the radically polymerizable resin composition suitable for repairing a crack generated due to deterioration of a concrete structure or the like.
  • Patent Documents 1 to 3 Conventionally, methods using synthetic resins such as epoxy resin and acrylic syrup as repair / reinforcement materials due to aged deterioration of concrete structures etc. have been proposed, and improvement of low temperature curing property such as construction in winter is mentioned as one of the problems It is done.
  • Patent Documents 1 to 3 In addition, for concrete structures that are always accompanied by vibrations, such as highway walls and railroad ramps, in order to prevent breakage after fixing and drying the repair material, the crack followability of the hardened material, etc. has been mentioned as an issue.
  • Patent Document 4 discloses a repair / reinforcement agent for a concrete structure using an acrylic / styrene resin as an admixture
  • Patent Document 5 discloses a glass transition temperature of an acrylic resin or the like of -25. It is known to use polymers below ° C. (Patent Documents 4 to 5).
  • JP 2003-002948 A JP 2001-247636 JP 2000-154297 A JP, 2009-019354, A JP 2012-091985 A
  • the present invention has been made in view of the above-mentioned conventional circumstances, and has a low-temperature curing property and a radical polymerizable resin composition which exhibits excellent adhesive strength, and a structure repair using the radical polymerizable resin composition.
  • the purpose is to provide materials.
  • [1] It is characterized by containing (A) radically polymerizable resin, (B) radically polymerizable unsaturated monomer, (C) amine-based curing accelerator and (D) polyfunctional thiol compound. Radically polymerizable resin composition.
  • [2] The radical according to the above [1], wherein the component (A) is at least one selected from vinyl ester resins, unsaturated polyester resins, polyester (meth) acrylate resins and urethane (meth) acrylate resins Polymerizable resin composition.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. ** is Indicates that it is linked to any organic group having at least one mercapto group, a is an integer of 0 to 2.
  • component (D) is at least one selected from a bifunctional to hexafunctional polyfunctional thiol compound.
  • the content of the component (A) is 5 to 95 parts by mass when the total amount of the component (A) and the component (B) is 100 parts by mass, and the content of the component (B) is [5 to 95 parts by mass, the content of the component (C) is 0.01 to 10 parts by mass, and the content of the component (D) is 0.1 to 20 parts by mass]
  • the radically polymerizable resin composition according to any one of [1] to [5].
  • the component (C) is N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2)
  • the radically polymerizable resin composition according to any one of the above [1] to [7], further comprising a metal organic compound as a curing accelerator other than the amine curing accelerator.
  • the content of the component (E) is 0.1 to 10 parts by mass, in the above [11]
  • the component (E) is selected from the group consisting of dibenzoyl peroxide, benzoyl m-methyl benzoyl peroxide, m-toluoyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl peroxybenzoate
  • the radically polymerizable resin composition as described in said [11] or [12] containing at least 1 sort (s).
  • a structure restorative material comprising the radically polymerizable resin composition according to any one of the above [1] to [13] and (F) a filler.
  • a radically polymerizable resin composition that has low-temperature curability and expresses excellent adhesive strength.
  • a structure restorative material containing a radically polymerizable composition having such properties has low temperature curability, so that it can be rapidly cured even in a low temperature environment and has excellent adhesive strength, so it can be rapidly cured. And even in a scene where the shrinkage rate is large, it is difficult to cause breakage after adhesion and drying or peeling of the interface between the repaired portion and the restorative material.
  • the structure restoration material of the present invention a crack portion can be well repaired for a concrete structure which always involves vibration. That is, it is possible to provide a structure restorative material that can exhibit excellent adhesion strength at the time of fixing, and does not cause breakage or the like after the fixing.
  • the radically polymerizable resin composition of the present invention comprises (A) a radically polymerizable resin, (B) a radically polymerizable unsaturated monomer, (C) an amine curing accelerator, and (D) a polyfunctional thiol compound. It is a radically polymerizable resin composition characterized by containing.
  • (A) radically polymerizable resin may be called (A) component
  • (B) radically polymerizable unsaturated monomer may be called (B) component
  • (C) amine-based curing accelerator It may be called C component
  • (D) polyfunctional thiol compound may be called (D) component.
  • the radically polymerizable resin (A) refers to a compound having an ethylenically unsaturated group in the resin and a polymerization reaction proceeds by a radical.
  • the radically polymerizable resin (A) include urethane (meth) acrylate resin, vinyl ester resin, unsaturated polyester resin, polyester (meth) acrylate resin, (meth) acrylate resin and the like, among which radically polymerizable resin composition Urethane (meth) acrylate resin or a vinyl ester resin having toughness is preferred from the viewpoint of the flexibility of the cured product of the above.
  • "(meth) acrylate” means "acrylate or methacrylate”.
  • the urethane (meth) acrylate resin is obtained, for example, by introducing a (meth) acryloyl group to hydroxyl groups or isocyanato groups at both ends of a polyurethane obtained by reacting a polyvalent isocyanate and a polyvalent alcohol. Resin can be used.
  • the polyhydric alcohol compounds described as “polyhydroxy compounds” or “polyhydric alcohols” described in JP-A-2009-292890 and WO 2016/171151 can be used without particular limitation.
  • the polyhydric alcohol is not particularly limited, but, for example, polyester polyol, polyether polyol; Dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, cyclohexane dimethanol; A dihydric alcohol such as an adduct of a dihydric alcohol represented by hydrogenated or non-hydrogenated bisphenol A and the like with propylene oxide or an alkylene oxide represented by ethylene oxide; Examples thereof include trihydric or higher alcohols such as 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane and pentaerythritol.
  • the urethane (meth) acrylate resin is preferably a urethane (meth) acrylate resin containing a polyol structure selected from polyester polyols, polyether polyols, and polyoxyalkylene bisphenol A ethers.
  • a urethane (meth) acrylate resin containing a polyol structure of a polyether polyol is more preferable from the viewpoint of flexibility when a low viscosity radically polymerizable resin composition is obtained and cured.
  • the polyether polyol polyethylene glycol or polypropylene glycol is preferable because preparation of a radically polymerizable resin composition can be facilitated.
  • the weight average molecular weight of the polyether polyol is preferably 500 to 5,000, and more preferably 500 to 3,000. When the weight-average molecular weight is within the above range, a low viscosity and compatibility is obtained when a radically polymerizable resin composition in which a radically polymerizable unsaturated monomer or the like described later is blended with a urethane (meth) acrylate resin is used. It is good.
  • the measuring method of a weight average molecular weight is measured according to an Example.
  • polyvalent isocyanate examples include those described in JP-A-2009-292890 and those described in WO2016 / 171151, and examples thereof include 2,4-tolylene diisocyanate and its isomer, diphenylmethane diisocyanate, Examples thereof include compounds such as hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate and the like.
  • diphenylmethane diisocyanate and isophorone diisocyanate are preferable from the viewpoint of reactivity at the time of synthesizing a resin.
  • a (meth) acryloyl group for example, a method of reacting a hydroxyl group-containing (meth) acrylic compound described in JP-A-2009-292890 with the terminal isocyanate group, or 2- (meth) Examples thereof include methods of reacting isocyanato group-containing (meth) acrylic compounds such as acryloyloxyethyl isocyanate, 2- (meth) acryloyloxypropyl isocyanate, and 1,1-bis (acryloyloxymethyl) ethyl isocyanate.
  • the hydroxyl group-containing (meth) acrylic compound is a monofunctional (meth) acrylic compound, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Acrylate, caprolactone modified hydroxyalkyl (meth) acrylate, hydroxyethyl acrylamide and the like are preferable, and among these, 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) acrylate is more preferable.
  • the weight average molecular weight of the urethane (meth) acrylate resin is preferably 2000 to 22000, more preferably 3000 to 19000, and still more preferably 4000 to 16000.
  • the weight-average molecular weight is within the above range, a low viscosity and compatibility is obtained when a radically polymerizable resin composition in which a radically polymerizable unsaturated monomer or the like described later is blended with a urethane (meth) acrylate resin is used. It is good.
  • the vinyl ester resin is obtained by subjecting all or part of the epoxy group contained in the epoxy compound to an esterification reaction with an unsaturated monobasic acid, and has a radical reactive carbon-carbon double bond in the side chain. doing.
  • unsaturated monobasic acid is (meth) acrylic acid, it is referred to as an epoxy (meth) acrylate resin.
  • the epoxy compound monomers, oligomers and polymers in general having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure thereof are not particularly limited.
  • biphenyl type epoxy resin for example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, tetramethyl bisphenol F type epoxy resin; stilbene type epoxy Resins; novolac epoxy resins such as phenol novolac epoxy resins and cresol novolac epoxy resins; polyfunctional epoxy resins such as triphenolmethane epoxy resins and alkyl-modified triphenolmethane epoxy resins; phenol aralkyl epoxy epoxides having a phenylene skeleton Resin, phenol aralkyl type epoxy resin such as phenol aralkyl type epoxy resin having a biphenylene skeleton; dihydroxy naphthalene type epoxy resin Naphthol type epoxy resin such as epoxy resin obtained by glycidyl etherification of a cis resin, a dimer of dihydroxy naphthalene; tri
  • a well-known thing can be used as said unsaturated monobasic acid.
  • (meth) acrylic acid, crotonic acid, cinnamic acid and the like can be mentioned. Among these, (meth) acrylic acid is preferable.
  • the unsaturated monobasic acid a reaction product of a compound having one hydroxy group and one or more (meth) acryloyl groups with a polybasic acid anhydride may be used.
  • the said polybasic acid anhydride is used in order to increase the molecular weight of the said epoxy resin, and can use a well-known thing.
  • succinic acid glutaric acid, adipic acid, sebacic acid, phthalic acid, fumaric acid, maleic acid, itaconic acid, tetrahydrophthalic acid, hexahydrophthalic acid, dimer acid, ethylene glycol / two molar maleic anhydride adduct, polyethylene Glycol ⁇ 2 mol maleic anhydride adduct, propylene glycol ⁇ 2 mol maleic anhydride adduct, polypropylene glycol ⁇ 2 mol maleic anhydride adduct, dodecanedioic acid, tridecanedioic acid, octadecanedioic acid, 1,16- (6 And anhydrides such as -ethylhexadecane) dicarboxylic acid, 1,12- (6-ethyldodecane) dicarboxylic acid, and a carboxyl group-terminated butadiene-acrylonitrile cop
  • Unsaturated polyester resin those obtained by subjecting a polyhydric alcohol component to an esterification reaction of an unsaturated dibasic acid, and optionally a dibasic acid component containing a saturated dibasic acid can be used.
  • the unsaturated dibasic acid and the saturated dibasic acid include those described in WO 2016/171151, which may be used alone or in combination of two or more.
  • WO 2016/171151 which may be used alone or in combination of two or more.
  • WO2016 / 171151 can be mentioned like the case of urethane (meth) acrylate resin.
  • the unsaturated polyester one modified with a dicyclopentadiene type compound may be used as long as the effects of the present invention are not impaired.
  • a modification method with a dicyclopentadiene type compound for example, after obtaining dicyclopentadiene and a maleic acid addition product, a known method such as a method of introducing a dicyclopentadiene skeleton using this as a monobasic acid is mentioned Be An oxidative polymerization (air curing) group such as an allyl group or a benzyl group can be introduced into the vinyl ester resin or unsaturated polyester resin used in the present invention.
  • the introduction method is not particularly limited, but, for example, addition of a polymer having an oxidative polymerization group, condensation of a compound having a hydroxyl group and an allyl ether group, allyl glycidyl ether, 2,6-diglycidyl phenyl allyl ether, hydroxyl group and allyl ether
  • a method of adding a reaction product of a compound having a group and an acid anhydride may, for example, be mentioned.
  • the oxidative polymerization (air curing) in the present invention means, for example, a crosslink associated with formation and decomposition of peroxide by oxidation of a methylene bond between an ether bond and a double bond, which is found in, for example, allyl ether group. .
  • polyester (meth) acrylate resin for example, polyester obtained by reacting polyvalent carboxylic acid and polyvalent alcohol, specifically, (meth) acrylic acid to hydroxyl groups at both ends of polyethylene terephthalate and the like The resin obtained by reacting can be used.
  • (Meth) acrylate resin for example, a poly (meth) acrylic resin having one or more functional groups selected from a hydroxyl group, an isocyanate group, a carboxy group and an epoxy group, a monomer having the functional group A resin obtained by, for example, reacting a (meth) acrylic acid ester having a hydroxyl group with a functional group of a copolymer with an acrylate) can be used.
  • the radically polymerizable unsaturated monomer (B) used in the present invention is important for reducing the viscosity of the radically polymerizable resin composition and improving hardness, strength, chemical resistance, water resistance and the like.
  • the radically polymerizable unsaturated monomer What has a (meth) acryloyl group or a vinyl group is preferable.
  • Acrylic acid ester, methacrylic acid ester etc. are mentioned as a monomer which has a (meth) acryloyl group
  • a monofunctional monomer and a polyfunctional monomer can be used.
  • Specific examples of monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate and (meth) acrylic Acid t-Butyl, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, stearyl (meth) acrylate, tridecyl (meth) acrylate, phenoxy Ethyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, ethylene glycol monomethyl ether (meth)
  • caprolactone modified hydroxyalkyl (meth) acrylate and caprolactone modified tris (acryloxyalkyl) isocyanurate can also be exemplified.
  • the addition mole number of caprolactone can be exemplified by a monomer having a polycaprolactone (meth) acrylate structure of 1 to 3.
  • caprolactone modified hydroxyethyl (meth) acrylate is preferable.
  • polyfunctional monomer examples include neopentyl glycol di (meth) acrylate, PTMG dimetaacrylate, 1,3-butylene glycol di (meth) acrylate and 1,6-hexane.
  • the monomer having a vinyl group examples include styrene, p-chlorostyrene, vinyl toluene, ⁇ -methylstyrene, dichlorostyrene, divinylbenzene, t-butylstyrene, vinyl acetate, diallyl phthalate, triallyl phthalate, Triallyl isocyanurate vinyl benzyl butyl ether, vinyl benzyl hexyl ether, vinyl benzyl octyl ether, vinyl benzyl (2-ethylhexyl) ether, vinyl benzyl ( ⁇ -methoxymethyl) ether, vinyl benzyl (n-butoxypropyl) ether, vinyl benzyl Cyclohexyl ether, vinyl benzyl ( ⁇ -phenoxyethyl) ether, vinyl benzyl dicyclopentenyl ether, vinyl benzyl dicyclopentenyl oxyethyl ether, vinyl
  • radically polymerizable unsaturated monomer (B) component methyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic Preferred are lauryl acid and styrene.
  • the content of component (A) is preferably 5 to 95% by mass, more preferably 15 to 85% by mass, based on the total amount of components (A) and (B). More preferably, it is 25 to 75% by mass. If the content of the component (A) with respect to the total amount of the components (A) and (B) is within the above range, good workability can be obtained.
  • amine curing accelerator (C) As the amine curing accelerator (C) used in the present invention, known amines can be used without particular limitation, and specifically, aniline, N, N-dimethylaniline, N, N-diethylaniline, p- Toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2) -Hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine , M-toluidine, diethylenetriamine, pyridine, phenylymorpholine, piperidine, N, N,
  • aromatic tertiary amines are preferable from the viewpoint of facilitating curing.
  • N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxypropyl)- p-Toluidine and N, N-bis (2-hydroxyethyl) aniline are preferred.
  • hydroxyl group-containing aromatic tertiary amines are more preferable.
  • N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxypropyl) -p-toluidine, N, N-bis (2-hydroxyethyl) aniline preferable.
  • the content of the amine curing accelerator (C) is preferably 0.01 to 10 parts by mass, more preferably 100 parts by mass in total of the (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer.
  • the amount is preferably 0.05 to 5.0 parts by mass, more preferably 0.1 to 3.0 parts by mass. It is easy to adjust the curability if the content is within the above range.
  • the polyfunctional thiol compound (D) used in the present invention is a compound having a plurality of mercapto groups, and is selected from primary thiol compound (D1), secondary thiol compound (D2) and tertiary thiol compound (D3). Compound. These may be used alone or in combination of two or more. From the viewpoint of storage stability and odor, secondary or tertiary thiol compounds are preferred.
  • “primary thiol compound” refers to a compound having a mercapto group bonded to a primary carbon atom
  • secondary thiol compound has a mercapto group bonded to a secondary carbon atom.
  • the compound or “tertiary thiol compound” refers to a compound having a mercapto group bonded to a tertiary carbon atom.
  • the compound is regarded as a secondary thiol compound (D2).
  • the tertiary thiol compound has at least one of at least one of a mercapto group bonded to a primary carbon atom and a mercapto group bonded to a secondary carbon atom
  • the compound is a tertiary thiol compound (D3).
  • the primary thiol compound (D1), secondary thiol compound (D2) and tertiary thiol compound (D3) used in the present invention are thiol compounds having a plurality of mercapto groups in the compound.
  • the number of mercapto groups in the thiol compound is usually about 2 to 10, and in particular, by using a thiol compound having 2 to 6 mercapto groups, the odor after curing of the resin composition is reduced. be able to.
  • the polyfunctional thiol compound (D) used in the present invention is preferably a compound having a structure represented by the following general formula (Q).
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. * Indicates linking to any organic group having at least one mercapto group.
  • a is an integer of 0 to 2;
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. ** represents linking to any organic group having at least one mercapto group.
  • a is an integer of 0 to 2;
  • an ester of a mercapto group-containing carboxylic acid represented by the following general formula (S) and a polyhydric alcohol Compounds are more preferred. Such a compound is obtained by an esterification reaction of a mercapto group-containing carboxylic acid and a polyhydric alcohol in a known manner.
  • R 3 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms
  • R 4 is an alkyl group having 1 to 10 carbon atoms or the carbon number 6 to 18 aromatic groups
  • a is an integer of 0 to 2
  • the mercapto group-containing carboxylic acid represented by the general formula (S) is a derivative compound of the secondary thiol compound (D2), specifically, 2-mercaptopropionic acid, 3-mercaptobutyric acid, 3-mercapto -3-phenylpropionic acid and the like. Further, when it is a compound derived from the tertiary thiol compound (D3), specifically, 2-mercaptoisobutyric acid, 3-mercapto-3-methylbutyric acid and the like can be mentioned.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, neopentyl glycol, 1,2-propanediol, 1, 3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,2-pentanediol, 1,3-pentanediol, 2,3-pentanediol, 1,4-pentanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,9-nonanediol, tricyclodecanedimethanol, 2,2-bis (2-hydroxyethoxyphenyl) propane, bisphenol A alkyleneoxy Adduct, bisphenol F alkylene oxide adduct, bisphenol S alkylene oxide ad
  • dihydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol and the like from the viewpoint of exhibiting the curing accelerating ability even under easy availability and wet conditions
  • dihydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol and the like from the viewpoint of exhibiting the curing accelerating ability even under easy availability and wet conditions
  • Glycerin trimethylolethane, trimethylolpropane, tris (2-hydroxyethyl) isocyanurate, pentaerythritol, dipentaerythritol, trivalent or higher trivalent compounds such as 2,2-bis (2,3-dihydroxypropyloxyphenyl) propane; Alcohol; polycarbonate diol, dimer acid polyester polyol is preferable, and from the viewpoint of functional group number and vapor pressure, 1,
  • Primary thiol compound (D1) Specific examples of the primary thiol compound (D1) include trimethylolpropane tristhiopropionate, tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, pentaerythritol tetrakis (3-mercaptopropio) And tetraethylene glycol bis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate) and the like.
  • compounds having two or more secondary mercapto groups in the molecule include 1,4-bis (3-mercaptobutyryloxy) butane (manufactured by Showa Denko KK) “Kalens MT (registered trademark) BD1”), pentaerythritol tetrakis (3-mercaptobutyrate) (“Kalens MT (registered trademark) PE1” manufactured by Showa Denko KK), 1,3,5-tris [2- ( 3-mercaptobutyryloxyethyl)]-1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione (“Kalens MT (registered trademark) NR1" manufactured by Showa Denko KK), Trimethylol ethane tris (3-mercaptobutyrate) (“SEMB” manufactured by Showa Denko KK), trimethylolpropane tris (3-mercaptobutyrate) (
  • tertiary thiol compound (D3) Specific examples of the tertiary thiol compound (D3) include phthalic acid di (2-mercaptoisobutyl), ethylene glycol bis (2-mercaptoisobutyrate), propylene glycol bis (2-mercaptoisobutyrate), and diethylene glycol Bis (2-mercaptoisobutyrate), butanediol bis (2-mercaptoisobutyrate), octanediol bis (2-mercaptoisobutyrate), trimethylolethane tris (2-mercaptoisobutyrate), trimethylolpropane Tris (2-mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakis (2-mercaptoisobutyrate), di (3-mercapto-3-methylbutyl) phthalate, Tyrene glycol bis (3-mer
  • the content of the polyfunctional thiol compound (D) is preferably 0.1 to 20 parts by mass, more preferably 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. Is 0.3 to 15 parts by mass.
  • the content is 0.1 parts by mass or more, effects such as low temperature curability and adhesion improvement can be sufficiently exhibited.
  • content is 20 mass parts or less, the intensity
  • the radically polymerizable resin composition of the present invention may contain a curing agent (E).
  • the curing agent (E) used in the present invention is not particularly limited, and known radical polymerization initiators can be used, and it is preferable to use an organic peroxide.
  • the organic peroxide include ketone peroxide, perbenzoate, hydroperoxide, diacyl peroxide, peroxy ketal, hydroperoxide, diallyl peroxide, peroxy ester, peroxy dicarbonate and the like.
  • an azo compound etc. can also be used as a hardening
  • curing agent Specifically, azobisisobutyronitrile, azobis carbonamide etc. are mentioned. These organic peroxides and azo compounds can be used alone or in combination. Among these, dibenzoyl peroxide, benzoyl m-methyl benzoyl peroxide, m-toluoyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl peroxybenzoate from the viewpoint of availability. Is preferred. More preferably, dibenzoyl peroxide, benzoyl m-methyl benzoyl peroxide, and m-tolu oil peroxide are preferable from the viewpoint of being hardly affected by moisture when curing.
  • the compounding amount of the curing agent (E) is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 8 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). Even more preferred is 0.5 to 6 parts by weight.
  • the compounding amount of the curing agent (E) is 0.1 parts by mass or more, desired curability is easily obtained.
  • curing agent (E) is 10 mass parts or less, and sufficient working time is easy to be obtained.
  • the radically polymerizable resin composition of the present invention is a polymerization inhibitor from the viewpoint of suppressing excessive polymerization of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer, and from the viewpoint of controlling the reaction rate. May be included.
  • the polymerization inhibitor include known ones such as hydroquinone, methylhydroquinone, phenothiazine, catechol, 4-tert-butyl catechol and the like.
  • the radical polymerizable resin composition of the present invention may contain a curing accelerator other than the above-mentioned amine curing accelerator.
  • a curing accelerator other than the above-mentioned amine curing accelerator there is no particular limitation on curing accelerators other than amine type, and known metal organic compounds and ⁇ -diketones can be used.
  • metal organic compounds include copper compounds such as copper naphthenate, cobalt compounds such as cobalt octylate, cobalt naphthenate and cobalt hydroxide, zinc compounds such as zinc hexoate, and manganese compounds such as manganese octylate. .
  • cobalt naphthenate, cobalt octylate and copper naphthenate are preferable.
  • the compounding amount of the metal organic compound is preferably 0.1 to 5 parts by mass, preferably 0.3 to 3 parts by mass, with respect to 100 parts by mass in total of the components (A) and (B). Is more preferred.
  • the amount of the metal organic compound is 0.1 parts by mass or more, a desired curing time and a cured state can be easily obtained, and the drying property is improved.
  • the blending amount of the metal organic compound is 5 parts by mass or less, desired pot life and storage stability can be easily obtained.
  • the radically polymerizable resin composition of the present invention may contain a photopolymerization initiator for the purpose of improving the curability.
  • a photoinitiator an optical radical polymerization initiator etc. are mentioned, for example.
  • the radical photopolymerization initiator is used to promote the polymerization of an acrylic resin or monomer having a double bond and to improve the curability.
  • benzoin ether type such as benzoin alkyl ether, benzophenone type, benzophenone type such as benzyl, methyl ortho benzoyl benzoate, benzyl dimethyl ketal, 2, 2-diethoxyacetophenone, 2-hydroxy type Acetophenones such as -2-methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, 1,1-dichloroacetophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, etc.
  • the photopolymerization initiator can be added in a range of 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of (A) radical reactive resin and (B) radically polymerizable unsaturated monomer. .
  • the radically polymerizable resin composition of the present invention may contain a surfactant from the viewpoint of improving compatibility between the resin and water and facilitating curing in a state in which the water is embraced in the resin.
  • surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. These surfactants may be used alone or in combination of two or more. Among these surfactants, one or more selected from anionic surfactants and nonionic surfactants are preferable.
  • anionic surfactants include alkyl sulfate ester salts such as sodium lauryl sulfate and triethanolamine lauryl sulfate; and polyoxyethylene alkyl such as polyoxyethylene lauryl ether sodium sulfate and polyoxyethylene alkyl ether sulfate triethanolamine Ether sulfuric acid ester salts; sulfonic acid salts such as sodium dodecyl benzene sulfonic acid, sodium dodecyl benzene sulfonic acid, sodium alkylnaphthalene sulfonic acid, sodium dialkyl sulfosuccinate; fatty acid salts such as sodium stearate soap, potassium oleate soap, castor oil potassium soap etc Naphthalenesulfonic acid formalin condensates, special polymer systems, etc. may be mentioned. Among these, sulfonates are preferable, sodium dialkyl sulfosuccinate is more preferable, and sodium di
  • nonionic surfactants include polyoxyethylene alkyl ether such as polyoxylauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, etc., polyoxyethylene di-styrenated phenyl ether, poly Polyoxyethylene derivatives such as oxyethylene tribenzyl phenyl ether, polyoxyethylene polyoxypropylene glycol, etc .; Sorbitan fatty acid esters such as polyoxyalkylene alkyl ether, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate; polyoxyethylene Sorbitan monolaurate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate Etc.
  • polyoxyethylene alkyl ether such as polyoxylauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, etc.
  • polyoxyethylene sorbitan fatty acid esters polyoxyethylene sorbitan fatty acid esters; polyoxyethylene sorbit tetraoleate and the like of the polyoxyethylene sorbitol fatty acid esters; glycerol monostearate, glycerine fatty acid esters such as glycerol monooleate.
  • nonionic surfactants polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene alkyl ether are preferable.
  • HLB Hydrophil Balance
  • the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer.
  • the amount is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 7 parts by mass, and still more preferably 0.1 to 5 parts by mass.
  • the radically polymerizable resin composition of the present invention may contain, for example, a wet interface conditioner as an interface regulator in order to improve the permeability to a wet or submerged site to be repaired.
  • a wet interface conditioner include fluorine-based wet interface conditioners and silicone-based wet interface conditioners, and these may be used alone or in combination of two or more.
  • Commercially available products of fluorine-based wet interface conditioners are Megafac® F176, Megafac® R08 (Dainippon Ink and Chemicals, Inc.), PF656, PF6320 (OMNOVA), Troysol.
  • silicone-based wetting and dispersing agents include BYK (R) -322, BYK (R) -377, BYK (R) -UV3570, BYK (R) -330, BYK (R) -302 And BYK (registered trademark) -UV 3500, BYK-306 (manufactured by Bick Chemie Japan Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • Other commercial products of the wet interface conditioner include Perex NBL, Perex OT-P, Perex TR (manufactured by Kao Corporation), and the like.
  • the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer.
  • it is 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • the radically polymerizable resin composition of the present invention may contain a thixotropic agent for the purpose of viscosity adjustment and the like for securing workability on a vertical surface and a ceiling surface.
  • a thixotropic agent for the purpose of viscosity adjustment and the like for securing workability on a vertical surface and a ceiling surface.
  • thixotropic agents inorganic thixotropic agents and organic thixotropic agents can be mentioned, and as organic thixotropic agents, hydrogenated castor oil type, amide type, polyethylene oxide type, vegetable oil polymerized oil type, surface activity Agent systems and complex systems using these in combination, and specific examples thereof include DISPARLON (registered trademark) 6900-20X (Kushimoto Chemical Co., Ltd.) and the like.
  • examples of inorganic thixotropic agents include silica and bentonite, and as hydrophobic ones, Reoroseal (registered trademark) PM-20L (gas phase method silica manufactured by Tokuyama Corporation), Aerosil (registered trademark) AEROSIL R-106 (Nippon Aerosil Co., Ltd.) and the like can be mentioned, and examples of hydrophilic substances include Aerosil (registered trademark) AEROSIL-200 (Nippon Aerosil Co., Ltd.) and the like.
  • BYK registered trademark
  • BYK registered trademark
  • BYK registered trademark
  • -R606 manufactured by Bick Chemie Japan Ltd.
  • hydrophilic calcined silica hydrophilic calcined silica.
  • Those can also be suitably used.
  • the radically polymerizable resin composition of the present invention contains a thixotropic agent, the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. And preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass
  • the radically polymerizable resin composition of the present invention may contain a wetting and dispersing agent for the purpose of high filling at the time of filler mixing, viscosity reduction, sedimentation prevention and the like. These may be used alone or in combination of two or more.
  • Commercial products of the wetting and dispersing agent include BYK-W909, BYK-W985, BYK-W966, BYK-W980, BYK-W969, BYK-W996, BYK-W9010, BYK-W940 and the like.
  • the content thereof is based on 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer.
  • it is 0.1 to 5.0 parts by mass, more preferably 0.3 to 3.0 parts by mass, and still more preferably 0.5 to 2.0 parts by mass.
  • the radically polymerizable resin composition of the present invention may contain a curing retarder for the purpose of adjusting the curing time.
  • the curing retarder includes free radical curing retarder, for example, 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO), 4-hydroxy-2,2,6,6- Examples include TEMPO derivatives such as tetramethylpiperidine 1-oxyl free radical (4H-TEMPO), 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO). Among these, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4H-TEMPO) is preferable in terms of cost and ease of handling.
  • TEMPO free radical curing retarder
  • the amount is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer.
  • the amount is preferably 0.0001 to 10 parts by mass, and more preferably 0.001 to 10 parts by mass.
  • the radically polymerizable resin composition of the present invention may contain an antifoaming agent in order to improve the generation of foam during molding and the foam residue of the molded article.
  • an antifoamer a silicone type antifoamer, a polymer type antifoamer etc. are mentioned.
  • the amount of the antifoaming agent used is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of the (A) radically polymerizable resin and the (B) radically polymerizable unsaturated monomer. More preferably, it is 0.1 to 1 part by mass.
  • the radically polymerizable resin composition of the present invention may contain a coupling agent for the purpose of improving the adhesion to a substrate to be repaired.
  • the coupling agent include known silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like.
  • a silane coupling agent represented by R 5 -Si (OR 6 ) 3 can be mentioned.
  • R 5 include, for example, aminopropyl group, glycidyloxy group, (meth) acryloxy group, N-phenylaminopropyl group, mercapto group, vinyl group and the like, and as R 6 , for example, methyl group And ethyl groups.
  • the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer.
  • it is 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass.
  • the radically polymerizable resin composition of the present invention may use a light stabilizer in order to improve the long-term durability of the molded article.
  • the light stabilizer include ultraviolet light absorbers and hindered amine light stabilizers. These may be used alone or in combination of two or more. Specific examples of the ultraviolet absorber include benzotriazole, triazine, benzophenone, cyanoacrylate and salicylate. Examples of the hindered amine light stabilizer include NH type and NCH 3 type. And N—O alkyl type.
  • the amount of the light stabilizer used is in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. Preferably, it is 0.05 to 2 parts by mass.
  • the radically polymerizable resin composition of the present invention may contain a wax for the purpose of improving surface drying.
  • a wax for the purpose of improving surface drying.
  • paraffin waxes, polar waxes and the like can be used alone or in combination, and known ones having various melting points can be used.
  • Polar waxes include those having a combination of polar and nonpolar groups in the structure.
  • the wax is preferably contained in an amount of 0.05 to 4 parts by mass with respect to 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. More preferably, it is contained in an amount of 0.
  • the radically polymerizable resin composition of the present invention may contain a flame retardant.
  • a flame retardant bromine flame retardants, chlorine flame retardants, phosphorus flame retardants, inorganic flame retardants, intumescent flame retardants, silicone flame retardants and the like can be used alone or in combination, and known flame retardants Can be used.
  • a halogen-based flame retardant such as a bromine-based flame retardant can be used in combination with antimony trioxide for the purpose of further improving the flame retardancy.
  • the addition amount of the flame retardant varies depending on the system and type of the flame retardant, it is 1 to 100 parts by mass with respect to a total of 100 parts by mass of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. It is preferable to contain part.
  • the resin composition of the present invention may contain a plasticizer for the purpose of viscosity adjustment and flexibility adjustment of the cured product.
  • a plasticizer epoxys, polyesters, phthalic acid esters, adipic acid esters, trimellitic acid esters, phosphoric acid esters, citric acid esters, sebacic acid esters, azeline Acid esters, maleic acid esters, benzoic acid esters, etc. can be used alone or in combination, and known ones can be used.
  • the addition amount of the plasticizer varies depending on the type, it is contained in 0.01 to 20 parts by mass with respect to 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. It is preferable to do. More preferably, the content is 0.1 to 10 parts by mass.
  • the total content of the components (A), (B), (C) and (D) in the radically polymerizable resin composition of the present invention is preferably 30 to 100% by mass, more preferably It is 60 to 100% by mass, more preferably 90 to 100% by mass.
  • the radically polymerizable resin composition of the present invention contains (E) a curing agent, the (A) component, the (B) component, the (C) component, and the (C) component in the radically polymerizable resin composition of the present invention
  • the total content of the D) component and the (E) curing agent is preferably 30 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 90 to 100% by mass.
  • the viscosity of the radically polymerizable resin composition of the present invention is preferably 10 to 1000 mPa ⁇ s / 25 ° C. from the viewpoint of ease of injection into cracks of the inorganic structure and ease of mixing into fillers and the like. More preferably, the viscosity is 30 to 500 mPa ⁇ s / 25 ° C., further preferably 50 to 400 mPa ⁇ s / 25 ° C.
  • the method of measuring the viscosity is as described in the examples.
  • the method for producing the radically polymerizable resin composition of the present invention is not particularly limited to the order of mixing of the components, but from the viewpoint of workability for efficiently obtaining a homogeneous mixture, viscosity adjustment as a radically polymerizable composition, etc. From the viewpoint of workability when adjusting the composition to the target physical property range, a part of the component (B) is added and mixed after synthesis of the component (A), and the viscosity of the component (A) is reduced, It is preferable to add and mix the (B) component of and other components.
  • a part of the component (B) is used as a diluent at the time of synthesis of the component (A) to obtain a mixture of the component (A) and the part (B), and then the remaining component (B) and other components are obtained. Is preferably added and mixed.
  • the mixing ratio of the component (A) to the component (B) at the time of lowering the viscosity is not particularly limited, but it is preferably 95: 5 to 20:80, more preferably 85:15 to 30:70 by mass ratio. is there.
  • the viscosity of the mixture of the component (A) and the partial component (B) is preferably 50 to 4000 mPa ⁇ s, more preferably 80 to 3000 mPa ⁇ s, and still more preferably 100 to 2000 mPa ⁇ s.
  • the method of measuring the viscosity is as described in the examples. If the viscosity is adjusted in advance to the above-mentioned range, the remaining components can be mixed uniformly to form the radically polymerizable resin composition of the present invention in a short time.
  • the radically polymerizable resin composition of the present invention can be used as a structure repair material containing the radically polymerizable resin composition.
  • the structure include inorganic structures such as concrete, asphalt concrete, mortar, metal and the like, and wood. Particularly preferably, it can be used as a structural restoration material for slab type tracks such as expressways and railways.
  • the filler (F) is contained in the radically polymerizable resin composition of the present invention , Can be a structural restoration material.
  • the filler (F) is not particularly limited, and examples thereof include inorganic fillers and organic fillers.
  • the inorganic filler cement, quicklime, river gravel, river sand, sea gravel, sea sand, mountain gravel, crushed stone, crushed sand, artificial bone such as calcium carbonate, ceramic, glass waste, etc.
  • silica as a main component
  • Known materials such as wood, talc, zeolite and activated carbon can be used, but from the viewpoint of flowability, material cost saving and material availability, a combination with silica sand, calcium carbonate, talc and fumed silica is preferred.
  • silica sand natural silica sand, square grain silica sand, artificial silica sand etc. can be used.
  • size of silica sand those of about 3 to 8 can be used.
  • calcium carbonate synthetic calcium carbonate, light calcium carbonate and ground calcium carbonate can be used.
  • the average particle size of calcium carbonate is not particularly limited, and those in a generally used range can be used.
  • aluminum hydroxide can be used from a viewpoint of providing a flame retardance.
  • colorants such as titanium oxide and iron oxide and inorganic pigments can be used, and molecular sieves can also be used.
  • the particle size of the inorganic filler is preferably 1 nm to 5000 ⁇ m, and more preferably 10 nm to 3000 ⁇ m. When the particle size of the inorganic filler is in the above range, good workability and physical properties can be obtained.
  • an organic filler such as an amide wax or a water absorbing polymer can also be used.
  • a fiber can also be used as said filler (F).
  • the fibers include glass fibers, carbon fibers, basic magnesium sulfate fibers, vinylon fibers, nylon fibers, aramid fibers, polypropylene fibers, polyester fibers such as acrylic fibers and polyethylene terephthalate fibers, metals such as cellulose fibers and steel fibers Fibers, ceramic fibers such as alumina fibers, natural fibers such as basalt fibers, and the like can be mentioned.
  • fibers are, for example, in the form of a fiber structure selected from plain weave, satin weave, non-woven fabric, mat, roving, chops, flakes, knits, composites, composite structures thereof, etc., biaxial mesh, triaxial mesh
  • the fiber structure may be impregnated with a radically polymerizable composition, and in some cases, it may be prepolymerized to be used as a prepreg.
  • a mesh for example, a biaxial mesh or a triaxial mesh is used.
  • the length of one side (gross) of the square of the biaxial mesh and the length (gross) of one side of the regular triangle of the triaxial mesh are preferably 5 mm or more, and more preferably 10 to 20 mm.
  • a biaxial mesh or a triaxial mesh it is possible to obtain a structural reinforcement material that is lightweight and is excellent in economy, workability, and durability.
  • These fibers are preferably used when reinforcing a structure.
  • the fibers in applications such as structure reinforcement, glass fibers, cellulose fibers and the like, which are excellent in strength and cost, are preferable in that the deterioration state of the substrate can be visually inspected from the outside.
  • carbon fiber is also preferable from the viewpoint of strength and weight reduction.
  • the said filler (F) may be used individually by 1 type, and may use 2 or more types together.
  • the compounding amount thereof is preferably 1 to 700 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B), The amount is more preferably 10 to 600 parts by mass, further preferably 50 to 500 parts by mass.
  • the blending amount is preferably 5 to 400 parts by mass, and 15 to 300 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). It is more preferably part, and still more preferably 30 to 250 parts by mass. If the compounding ratio of the filler is within the above range, curability and workability are good, which is preferable.
  • the method of repairing the structure is not particularly limited, for example, the method of the present invention may be carried out by applying the structure restorative material of the present invention to a restoration site such as concrete, asphalt concrete, mortar, wood, metal, etc., drying and curing. it can.
  • the method of applying the structure restoration material is not particularly limited, but, for example, a coating method by dipping, a coating method by spray, a coating method by roller, a coating method using an instrument such as a brush, brush or spatula, and the like can be applied.
  • the application amount of the structure restoration material is not particularly limited, but is appropriately adjusted in consideration of the size of the restoration portion, the adhesion of the structure restoration material, the strength of the cured product of the structure restoration material, and the like.
  • the drying method after applying a structure restorative material is not particularly limited, a method of natural drying or a method of heating within a range in which the properties of the cured product of the structure restorative material do not deteriorate are used.
  • the structure restoration material of the present invention can be restored by directly injecting it into a cracked part of the structure, and drying and hardening it.
  • a urethane methacrylate resin (UM1) which is a radically polymerizable resin, is synthesized using the following raw materials, and then methyl methacrylate (Mitsubishi Rayon (stock) is used as a radically polymerizable unsaturated monomer (B)
  • Product name: Acrylic ester M was mixed to obtain a mixture of the component (A) and the component (B).
  • urethane methacrylate resin (UM1) The raw material of urethane methacrylate resin (UM1) is shown below.
  • (Polyhydric alcohol) Polypropylene glycol 1 (weight average molecular weight 1000), manufactured by Mitsui Chemicals, Inc., product name: Actocal D-1000
  • Polypropylene glycol 2 weight average molecular weight 2000
  • Actocal D-2000 Polyvalent isocyanate
  • Diphenylmethane diisocyanate hydroxyl group containing (meth) acrylate
  • 2-Hydroxypropyl Methacrylate 2-Hydroxypropyl Methacrylate
  • Synthesis Example 1 In a 3 L four-necked flask equipped with a stirrer, a reflux condenser, a gas inlet tube and a thermometer, 500 g (2.0 mol) of diphenylmethane diisocyanate, Actocol D-1000 (Mitsui Chemical Co., Ltd. polypropylene glycol 1: Weight average molecular weight 1000): 100 g (0.1 mol), Actocol D-2000 (Mitsui Chemical Co., Ltd. polypropylene glycol 2: weight average molecular weight 2000): 1800 g (0.9 mol), and dibutyltin dilaurate: 0.2 g Were reacted at 60.degree. C. for 4 hours with stirring.
  • Actocol D-1000 Mitsubishi Chemical Co., Ltd. polypropylene glycol 1: Weight average molecular weight 1000
  • Actocol D-2000 Mitsubishi Chemical Co., Ltd. polypropylene glycol 2: weight average molecular weight 2000
  • urethane methacrylate resin (UM 1) The weight average molecular weight of the obtained urethane methacrylate resin (UM1) according to the following measurement method was 9055.
  • 1035 g of methyl methacrylate was added to the urethane methacrylate resin (UM1) to obtain a mixture of the component (A) and the component (B).
  • the viscosity at 25 degrees C of the mixture by the following measuring method was 300 mPa * s, and the liquid specific gravity was 1.02.
  • Examples 1 to 17 As a raw material, the mixture obtained in Synthesis Example 1 and, if necessary, the (B) radically polymerizable unsaturated monomer, the following (C) amine-based curing accelerator, (D) polyfunctional thiol compound, (E) The curing agent was used as a raw material of the radically polymerizable resin composition.
  • Comparative Example 1 (D) A radically polymerizable resin composition was obtained in the same manner as in Example 1 except that the polyfunctional thiol compound was not contained.
  • the content of each component of the radically polymerizable resin composition is shown in Table 1.
  • the curability was similarly measured and evaluated. The results are shown in Table 1.
  • the gelation time, the curing temperature and the curing time were evaluated by the evaluation methods shown below.
  • the resin composition is adjusted to 25 ° C., placed in a test tube (outer diameter 18 mm, length 165 mm) to a depth of 100 mm, placed in a thermostatic chamber set at 25 ° C., and the temperature of the resin composition is measured by a thermocouple. did.
  • the time taken for the temperature of the resin composition to reach 25 ° C. to 35 ° C. was measured and used as the gelation time (unit: minute).
  • the minimum cure time the time until the resin composition to reach the maximum exothermic temperature, defines a heating temperature at that time as a curing temperature was measured according to JIS K-6901 -2008. ⁇ Curableness measurement under 10 ° C. environment> Evaluation was performed in the same manner as the 25 ° C. curability except that the temperature of the resin composition and the measurement environmental temperature were set to 10 ° C.
  • the radically polymerizable resin composition of the present invention containing a multifunctional thiol compound is as shown by the gelation time and the minimum curing time even in a 10 ° C. environment at 25 ° C. and a low temperature. It was found that fast curing was obtained. In particular, it was found that in the examples where the total amount of polyfunctional thiol compounds was 0.5 parts by mass or more, the curing rate became faster. Moreover, in the examples of 0.3 parts by mass or more, the chain transfer agent effect shows a tendency to extend the time from gelation time to the minimum curing time, and a rapid curing process is obtained because a mild curing process is obtained. It has been found that the contraction can be alleviated.
  • the radically polymerizable resin composition of Comparative Example 1 which does not contain a polyfunctional thiol compound is slower in curing than the resin composition of Examples 1 to 22, and from the gelation time to the minimum curing time. It turned out that the time of was short.
  • Examples 18 to 34 The mixture of (A) component / (B) component by mass ratio of 65/35 used in Example 1 and the above-mentioned (C) amine curing accelerator, (D) polyfunctional thiol compound, (E) curing agent and The filler (F) described below was used.
  • F Filler (1) Silica sand, manufactured by Takeori Works, product name: Silica sand No. 8 (2) calcium carbonate, Nitto Powder Co., Ltd., product name: S light # 1200, average particle size Diameter: 2.6 ⁇ m
  • ⁇ Adhesive test> The adhesion of the test specimen for adhesion test obtained above was measured in a test environment of temperature 23 ° C. and humidity 50% using an adhesion tester made by Elcometer, measurement range 0 to 7.0 MPa, using a manual method. . The adhesion was measured twice for each of the adhesion test specimens. And the average value of two measurement results was used for evaluation of adhesive force.
  • Comparative example 2 (D) A structure restorative material was obtained in the same manner as in Example 18 except that the polyfunctional thiol compound was not contained. Thereafter, in the same manner as in Example 18, a test sample for adhesion test was produced and an adhesion test was conducted. Further, the curability of Comparative Example 2 was adjusted with a polymerization inhibitor so as to be similar to Example 18 as described above, and the influence of the difference in curability was eliminated by setting the gelation time to 7.0 min. The results are shown in Table 4.
  • ⁇ Bending load test> With respect to the test specimen for bending load test obtained above, in a test environment with a temperature of 23 ° C. and a humidity of 50%, using Tensilon UTC-1T manufactured by ORIENTEC Co., Ltd., the distance between supporting points is 40 mm and the test speed is 1 mm / min The bending load was measured by applying a load to a central surface portion (length 70 mm) of the central portion of the cured structure of the structure-repairing material of the test sample for bending load test. A load was applied until the test specimen for load test broke, and the maximum load before breaking was measured. The measurement of the bending load was performed twice for each of the test specimens for bending load test. And the average value of the measurement result of 2 times was used for evaluation of bending load. The higher the value of the bending load test (N), the better the bending strength of the repaired structure.
  • Comparative example 3 (D) A resin composition for structure repair was obtained in the same manner as in Example 35 except that the polyfunctional thiol compound was not contained.
  • the curability of Comparative Example 3 was adjusted with a polymerization inhibitor so as to be similar to Example 37, and the influence of the difference in curability was eliminated by setting the gelation time to 7.0 min.
  • the test sample for a bending load test of the present invention containing the multifunctional thiol compound of Examples 35 to 41 has high adhesion between the repair material and the mortar board, so that high bending strength is obtained.
  • Comparative Example 3 had lower bending strength as compared with the test specimens for bending load test of Examples 35-41. This is because the test pieces for bending load test of Examples 35 to 41 have better adhesion between the structure restoration material and the cement mortar board as compared with the test pieces for bending load test of Comparative Example 3. It is a thing.
  • the radically polymerizable resin composition and the structure restorative material of the present invention have low temperature curability and have excellent adhesive strength. Since the resin composition can be rapidly cured even in a low temperature environment and has excellent adhesive strength, it is difficult to cause breakage after adhesion / drying or peeling of the interface between the repaired portion and the restorative material. Therefore, by using the structure restoration material of the present invention, the crack portion can be well repaired with respect to a concrete structure that always involves vibration. That is, when adhering, it is possible to develop excellent adhesion strength, and it can be suitably used for repairing cracks in concrete structures and the like.

Abstract

The present invention provides a radical polymerizable resin composition which is curable at low temperature and exhibits superior adhesion strength, and a structure-repairing material using the radical polymerizable resin composition. The present invention pertains to: a radical polymerizable resin composition characterized by containing (A) a radical polymerizable resin, (B) a radical polymerizable unsaturated monomer, (C) an amine curing accelerator, and (D) a polyfunctional thiol compound; and a structure-repairing material using the radical polymerizable resin composition.

Description

ラジカル重合性樹脂組成物及び構造物修復材Radically polymerizable resin composition and structure repair material
 本発明は、低温硬化性と接着強度の両物性を満たすラジカル重合性樹脂組成物に関する。さらには、コンクリート構造物の劣化等により発生したクラックの修復に適した前記ラジカル重合性樹脂組成物を含む構造物修復材に関する。 The present invention relates to a radically polymerizable resin composition satisfying both the low temperature curing property and the adhesive strength. Furthermore, the present invention relates to a structure restorative material containing the radically polymerizable resin composition suitable for repairing a crack generated due to deterioration of a concrete structure or the like.
 従来より、コンクリート構造物の経年劣化等による補修・補強材料としてエポキシ樹脂やアクリルシラップ等の合成樹脂を用いる方法が提案されており、冬季の施工など低温硬化性の改善が課題の一つとして挙げられている。(特許文献1~3)。
 また、高速道路や鉄道等の高欄壁のように、常に振動が伴うコンクリート構造物に対しては、補修材の固着・乾燥後の破断が生じないようにするために硬化物のひび割れ追従性などが課題として挙げられている。このような課題に対して、例えば、特許文献4ではアクリル・スチレン樹脂を混和剤として用いるコンクリート構造物の補修・補強剤が知られ、特許文献5ではアクリル系樹脂等のガラス転移温度が-25℃以下のポリマーを用いることが知られている。
(特許文献4~5)。
Conventionally, methods using synthetic resins such as epoxy resin and acrylic syrup as repair / reinforcement materials due to aged deterioration of concrete structures etc. have been proposed, and improvement of low temperature curing property such as construction in winter is mentioned as one of the problems It is done. (Patent Documents 1 to 3).
In addition, for concrete structures that are always accompanied by vibrations, such as highway walls and railroad ramps, in order to prevent breakage after fixing and drying the repair material, the crack followability of the hardened material, etc. Has been mentioned as an issue. For such problems, for example, Patent Document 4 discloses a repair / reinforcement agent for a concrete structure using an acrylic / styrene resin as an admixture, and Patent Document 5 discloses a glass transition temperature of an acrylic resin or the like of -25. It is known to use polymers below ° C.
(Patent Documents 4 to 5).
特開2003-002948号公報JP 2003-002948 A 特開2001-247636号公報JP 2001-247636 特開2000-154297号公報JP 2000-154297 A 特開2009-019354号公報JP, 2009-019354, A 特開2012-091985号公報JP 2012-091985 A
 しかしながら、上記に記載した特許文献1~5に記載の方法でも、常に振動を伴うようなコンクリート構造物に対して、接着強度が十分ではなく、クラック部分の修復を行うための改善の余地があった。
 本発明は上記従来の実情を鑑みてなされたものであり、低温硬化性を有し、優れた接着強度を発現するラジカル重合性樹脂組成物、該ラジカル重合性樹脂組成物を用いた構造物修復材を提供することを目的とする。
However, even the methods described in Patent Documents 1 to 5 described above have insufficient adhesive strength to concrete structures that always involve vibration, and there is room for improvement for repairing a cracked portion. The
The present invention has been made in view of the above-mentioned conventional circumstances, and has a low-temperature curing property and a radical polymerizable resin composition which exhibits excellent adhesive strength, and a structure repair using the radical polymerizable resin composition. The purpose is to provide materials.
 すなわち、本発明は、下記[1]~[18]を要旨とする。
[1](A)ラジカル重合性樹脂と、(B)ラジカル重合性不飽和単量体と、(C)アミン系硬化促進剤と(D)多官能チオール化合物とを含有することを特徴とするラジカル重合性樹脂組成物。
[2]前記(A)成分が、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂から選ばれる、少なくとも1種である、上記[1]に記載のラジカル重合性樹脂組成物。
[3]前記(D)成分が、下記式(Q)で表される構造を有する化合物である、上記[1]または[2]に記載のラジカル重合性樹脂組成物。
Figure JPOXMLDOC01-appb-C000003

(一般式(Q)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。*は、少なくとも1個のメルカプト基を有する任意の有機基に連結していることを示す。aは0~2の整数である。)
[4]前記(D)成分が、下記一般式(Q-1)で表わされる構造を有する化合物である、上記[1]~[3]のいずれかに記載のラジカル重合性樹脂組成物。
Figure JPOXMLDOC01-appb-C000004

(一般式(Q-1)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。**は、少なくとも1個のメルカプト基を有する任意の有機基に連結していることを示す。aは0~2の整数である。)
[5]前記(D)成分が、2~6官能の多官能チオール化合物から選ばれる少なくとも1種である、上記[1]~[4]のいずれかに記載のラジカル重合性樹脂組成物。
[6]前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記(A)成分の含有量が5~95質量部であり、前記(B)成分の含有量が5~95質量部であり、前記成分(C)の含有量が0.01~10質量部であり、前記成分(D)の含有量が0.1~20質量部である、上記[1]~[5]のいずれかに記載のラジカル重合性樹脂組成物。
[7]前記(C)成分が、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)アニリンからなる群から選択される少なくとも1種を含有する、上記[1]~[6]のいずれかに記載のラジカル重合性樹脂組成物。
[8]さらにアミン系硬化促進剤以外の硬化促進剤として金属有機化合物を含有する、上記[1]~[7]のいずれかに記載のラジカル重合性樹脂組成物。
[9]前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記金属有機化合物の含有量が0.1~5質量部である、上記[8]に記載のラジカル重合性樹脂組成物。
[10]前記金属有機化合物が、コバルト化合物、銅化合物からなる群から選択される少なくとも1種を含有する、上記[8]または[9]に記載のラジカル重合性樹脂組成物。
[11]さらに(E)硬化剤を含有する、上記[1]~[10]のいずれかに記載のラジカル重合性樹脂組成物。
[12]前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記(E)成分の含有量が0.1~10質量部である、上記[11]に記載のラジカル重合性樹脂組成物。
[13]前記(E)成分が、ジベンゾイルパーオキサイド、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシベンゾエートからなる群から選択される少なくとも1種を含有する、上記[11]または[12]に記載のラジカル重合性樹脂組成物。
[14]上記[1]~[13]のいずれかに記載のラジカル重合性樹脂組成物を含有する構造物修復材。
[15]上記[1]~[13]のいずれかに記載のラジカル重合性樹脂組成物及び(F)充填材を含有する構造物修復材。
[16]前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記(F)成分の含有量が1~700質量部である、上記[15]に記載の構造物修復材。
[17]前記(F)成分が、珪砂、炭酸カルシウム、タルク及びヒュームドシリカからなる群から選択される少なくとも1種である、上記[15]または[16]に記載の構造物修復材。
[18]前記構造物修復材が、スラブ式軌道の構造物修復材である、上記[14]~[17]のいずれかに記載の構造物修復材。
That is, the present invention is summarized in the following [1] to [18].
[1] It is characterized by containing (A) radically polymerizable resin, (B) radically polymerizable unsaturated monomer, (C) amine-based curing accelerator and (D) polyfunctional thiol compound. Radically polymerizable resin composition.
[2] The radical according to the above [1], wherein the component (A) is at least one selected from vinyl ester resins, unsaturated polyester resins, polyester (meth) acrylate resins and urethane (meth) acrylate resins Polymerizable resin composition.
[3] The radically polymerizable resin composition according to [1] or [2], wherein the component (D) is a compound having a structure represented by the following formula (Q).
Figure JPOXMLDOC01-appb-C000003

(In the general formula (Q), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. (A) is an integer of 0 to 2).
[4] The radically polymerizable resin composition according to any one of the above [1] to [3], wherein the component (D) is a compound having a structure represented by the following general formula (Q-1).
Figure JPOXMLDOC01-appb-C000004

(In the general formula (Q-1), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. ** is Indicates that it is linked to any organic group having at least one mercapto group, a is an integer of 0 to 2.)
[5] The radically polymerizable resin composition according to any one of the above [1] to [4], wherein the component (D) is at least one selected from a bifunctional to hexafunctional polyfunctional thiol compound.
[6] The content of the component (A) is 5 to 95 parts by mass when the total amount of the component (A) and the component (B) is 100 parts by mass, and the content of the component (B) is [5 to 95 parts by mass, the content of the component (C) is 0.01 to 10 parts by mass, and the content of the component (D) is 0.1 to 20 parts by mass] The radically polymerizable resin composition according to any one of [1] to [5].
[7] The component (C) is N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2) The radical according to any one of the above [1] to [6], which contains at least one selected from the group consisting of -hydroxypropyl) -p-toluidine and N, N-bis (2-hydroxyethyl) aniline Polymerizable resin composition.
[8] The radically polymerizable resin composition according to any one of the above [1] to [7], further comprising a metal organic compound as a curing accelerator other than the amine curing accelerator.
[9] The composition according to the above [8], wherein the content of the metal organic compound is 0.1 to 5 parts by mass, based on 100 parts by mass of the total amount of the components (A) and (B). Radically polymerizable resin composition.
[10] The radically polymerizable resin composition according to the above [8] or [9], wherein the metal organic compound contains at least one selected from the group consisting of cobalt compounds and copper compounds.
[11] The radically polymerizable resin composition according to any one of the above [1] to [10], which further comprises (E) a curing agent.
[12] When the total amount of the component (A) and the component (B) is 100 parts by mass, the content of the component (E) is 0.1 to 10 parts by mass, in the above [11] The radically polymerizable resin composition as described.
[13] The component (E) is selected from the group consisting of dibenzoyl peroxide, benzoyl m-methyl benzoyl peroxide, m-toluoyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl peroxybenzoate The radically polymerizable resin composition as described in said [11] or [12] containing at least 1 sort (s).
[14] A structure restorative material containing the radically polymerizable resin composition according to any one of the above [1] to [13].
[15] A structure restorative material comprising the radically polymerizable resin composition according to any one of the above [1] to [13] and (F) a filler.
[16] The composition according to the above [15], wherein the content of the component (F) is 1 to 700 parts by mass when the total amount of the component (A) and the component (B) is 100 parts by mass. Structural restoration material.
[17] The structure restorative material according to the above [15] or [16], wherein the component (F) is at least one selected from the group consisting of silica sand, calcium carbonate, talc and fumed silica.
[18] The structure restorative material according to any one of the above [14] to [17], wherein the structure restorative material is a slab type track structure restorative material.
 本発明によれば、低温硬化性を有し、かつ優れた接着強度を発現するラジカル重合性樹脂組成物を提供することができる。このような特性を有するラジカル重合性組成物を含む構造物修復材は、低温硬化性を有するため、低温環境下においても速硬化することができ、かつ、優れた接着強度を有するため、速硬化かつ収縮率が大きい場面においても固着・乾燥後の破断や修復箇所と修復材界面の剥離が生じ難い。本発明の構造物修復材を用いると、常に振動を伴うようなコンクリート構造物に対して、クラック部分の修復を良好に行うことができる。すなわち、固着する際に優れた付着強度を発現することができ、且つ固着後の破断等が生じない構造物修復材を提供することができる。 According to the present invention, it is possible to provide a radically polymerizable resin composition that has low-temperature curability and expresses excellent adhesive strength. A structure restorative material containing a radically polymerizable composition having such properties has low temperature curability, so that it can be rapidly cured even in a low temperature environment and has excellent adhesive strength, so it can be rapidly cured. And even in a scene where the shrinkage rate is large, it is difficult to cause breakage after adhesion and drying or peeling of the interface between the repaired portion and the restorative material. By using the structure restoration material of the present invention, a crack portion can be well repaired for a concrete structure which always involves vibration. That is, it is possible to provide a structure restorative material that can exhibit excellent adhesion strength at the time of fixing, and does not cause breakage or the like after the fixing.
本発明の構造物修復材を用いて曲げ荷重試験用試験体を作成するために用いたセメントモルタル板2枚の平面図と横方向断面図を示す模式図である。It is a schematic diagram which shows the top view and transversal direction cross section of two cement mortar boards used in order to produce the test body for a bending load test using the structure repair material of this invention. 本発明の本発明の構造物修復材を用いて得られた曲げ荷重試験用試験体の平面図と横方向断面図を示す模式図である。It is a schematic diagram which shows the top view and horizontal direction sectional drawing of the test body for a bending load test obtained using the structure repair material of this invention of this invention.
[ラジカル重合性樹脂組成物]
 本発明のラジカル重合性樹脂組成物は、(A)ラジカル重合性樹脂と、(B)ラジカル重合性不飽和単量体と、(C)アミン系硬化促進剤と(D)多官能チオール化合物とを含有することを特徴とするラジカル重合性樹脂組成物である。
 なお、(A)ラジカル重合性樹脂を(A)成分ということがあり、(B)ラジカル重合性不飽和単量体を(B)成分ということがあり、(C)アミン系硬化促進剤を(C)成分ということがあり、(D)多官能チオール化合物を(D)成分ということがある。
[Radical Polymerizable Resin Composition]
The radically polymerizable resin composition of the present invention comprises (A) a radically polymerizable resin, (B) a radically polymerizable unsaturated monomer, (C) an amine curing accelerator, and (D) a polyfunctional thiol compound. It is a radically polymerizable resin composition characterized by containing.
In addition, (A) radically polymerizable resin may be called (A) component, (B) radically polymerizable unsaturated monomer may be called (B) component, (C) amine-based curing accelerator ( It may be called C component, and (D) polyfunctional thiol compound may be called (D) component.
<ラジカル重合性樹脂(A)>
 本発明において、ラジカル重合性樹脂(A)は、樹脂中にエチレン性不飽和基を有し、ラジカルによって重合反応が進行する化合物を指す。
 ラジカル重合性樹脂(A)としては、ウレタン(メタ)アクリレート樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、(メタ)アクリレート樹脂等が挙げられ、中でもラジカル重合性樹脂組成物の硬化物の柔軟性の観点からウレタン(メタ)アクリレート樹脂もしくは靭性を有するビニルエステル樹脂が好ましい。なお、本明細書において、「(メタ)アクリレート」とは、「アクリレート又はメタクリレート」を意味する。
<Radical Polymerizable Resin (A)>
In the present invention, the radically polymerizable resin (A) refers to a compound having an ethylenically unsaturated group in the resin and a polymerization reaction proceeds by a radical.
Examples of the radically polymerizable resin (A) include urethane (meth) acrylate resin, vinyl ester resin, unsaturated polyester resin, polyester (meth) acrylate resin, (meth) acrylate resin and the like, among which radically polymerizable resin composition Urethane (meth) acrylate resin or a vinyl ester resin having toughness is preferred from the viewpoint of the flexibility of the cured product of the above. In the present specification, "(meth) acrylate" means "acrylate or methacrylate".
〔ウレタン(メタ)アクリレート樹脂〕
 ウレタン(メタ)アクリレート樹脂としては、例えば、多価イソシアネートと多価アルコールとを反応させて得られるポリウレタンの両末端の水酸基又はイソシアナト基に対して、(メタ)アクリロイル基を導入して得られた樹脂を用いることができる。
 多価アルコールとしては、特開2009-292890号公報、WO2016/171151号公報に記載の「ポリヒドロキシ化合物」又は「多価アルコール類」として記載されている化合物を特に制限なく使用することができる。
 多価アルコールに特に制限はないが、例えば、ポリエステルポリオール、ポリエーテルポリオール;
 エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、シクロヘキサンジメタノール等の2価アルコール;
 水素化又は非水素化ビスフェノールA等に代表される2価アルコールとプロピレンオキシド又はエチレンオキシドに代表されるアルキレンオキサイドとの付加物等の2価アルコール;
 1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3価以上のアルコール等を挙げることができる。
 上記した2価アルコールとアルキレンオキサイドとの付加物としては、例えばポリオキシアルキレンビスフェノールAエーテルが挙げられる。
 これらの中でも、ウレタン(メタ)アクリレート樹脂としては、ポリエステルポリオール、ポリエーテルポリオール、ポリオキシアルキレンビスフェノールAエーテルから選ばれるポリオール構造を含むウレタン(メタ)アクリレート樹脂であることが好ましい。
 中でも低粘度のラジカル重合性樹脂組成物が得られ、硬化させた際の柔軟性の観点から、ポリエーテルポリオールのポリオール構造を含むウレタン(メタ)アクリレート樹脂がより好ましい。ポリエーテルポリオールとしては、ラジカル重合性樹脂組成物の作製が容易にできることから、ポリエチレングリコール又はポリプロピレングリコールが好ましい。
 ポリエーテルポリオールの重量平均分子量は、500~5000が好ましく、500~3000がより好ましい。重量平均分子量が上記範囲内であれば、ウレタン(メタ)アクリレート樹脂に後述するラジカル重合性不飽和単量体等を配合したラジカル重合性樹脂組成物とした場合に、低粘度、かつ相溶性が良好である。重量平均分子量の測定方法は、実施例に準拠して測定される。
[Urethane (Meth) Acrylate Resin]
The urethane (meth) acrylate resin is obtained, for example, by introducing a (meth) acryloyl group to hydroxyl groups or isocyanato groups at both ends of a polyurethane obtained by reacting a polyvalent isocyanate and a polyvalent alcohol. Resin can be used.
As the polyhydric alcohol, compounds described as “polyhydroxy compounds” or “polyhydric alcohols” described in JP-A-2009-292890 and WO 2016/171151 can be used without particular limitation.
The polyhydric alcohol is not particularly limited, but, for example, polyester polyol, polyether polyol;
Dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, cyclohexane dimethanol;
A dihydric alcohol such as an adduct of a dihydric alcohol represented by hydrogenated or non-hydrogenated bisphenol A and the like with propylene oxide or an alkylene oxide represented by ethylene oxide;
Examples thereof include trihydric or higher alcohols such as 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane and pentaerythritol.
Examples of the adduct of the above dihydric alcohol and alkylene oxide include polyoxyalkylene bisphenol A ether.
Among these, the urethane (meth) acrylate resin is preferably a urethane (meth) acrylate resin containing a polyol structure selected from polyester polyols, polyether polyols, and polyoxyalkylene bisphenol A ethers.
Among them, a urethane (meth) acrylate resin containing a polyol structure of a polyether polyol is more preferable from the viewpoint of flexibility when a low viscosity radically polymerizable resin composition is obtained and cured. As the polyether polyol, polyethylene glycol or polypropylene glycol is preferable because preparation of a radically polymerizable resin composition can be facilitated.
The weight average molecular weight of the polyether polyol is preferably 500 to 5,000, and more preferably 500 to 3,000. When the weight-average molecular weight is within the above range, a low viscosity and compatibility is obtained when a radically polymerizable resin composition in which a radically polymerizable unsaturated monomer or the like described later is blended with a urethane (meth) acrylate resin is used. It is good. The measuring method of a weight average molecular weight is measured according to an Example.
 多価イソシアネートとしては、特開2009-292890号公報に記載のものやWO2016/171151号公報に記載のものを挙げることができ、例えば、2,4-トリレンジイソシアネート及びその異性体、ジフェニルメタンジイソシアネート、ヘキサメチレンジシソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート等の化合物を例示することができる。これらの中でも樹脂を合成する際の反応性の観点からジフェニルメタンジイソシアネート、イソホロンジイソシアネートが好ましい。
 (メタ)アクリロイル基を導入する際には、例えば前記末端イソシアナト基に特開2009-292890号公報に記載の水酸基含有(メタ)アクリル化合物を反応させる方法や、前記末端水酸基に2-(メタ)アクリロイルオキシエチルイソシアネート、2-(メタ)アクリロイルオキシプロピルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等のイソシアナト基含有(メタ)アクリル化合物を反応させる方法が挙げられる。この中でも、樹脂を合成する際の反応性の観点から、末端イソシアナト基に水酸基含有(メタ)アクリル化合物を反応させる方法が好ましい。
 ラジカル重合性樹脂組成物の柔軟性、密着性の観点からは、水酸基含有(メタ)アクリル化合物は、単官能(メタ)アクリル化合物である2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート、ヒドロキシエチルアクリルアミド等が好ましく、この中でも2-ヒドロキシエチル(メタ)アクリレート、又は2-ヒドロキシプロピル(メタ)アクリレートがより好ましい。
 ウレタン(メタ)アクリレート樹脂の重量平均分子量としては、好ましくは2000~22000、より好ましくは3000~19000、さらにより好ましくは4000~16000である。重量平均分子量が上記範囲内であれば、ウレタン(メタ)アクリレート樹脂に後述するラジカル重合性不飽和単量体等を配合したラジカル重合性樹脂組成物とした場合に、低粘度、かつ相溶性が良好である。
Examples of the polyvalent isocyanate include those described in JP-A-2009-292890 and those described in WO2016 / 171151, and examples thereof include 2,4-tolylene diisocyanate and its isomer, diphenylmethane diisocyanate, Examples thereof include compounds such as hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate and the like. Among these, diphenylmethane diisocyanate and isophorone diisocyanate are preferable from the viewpoint of reactivity at the time of synthesizing a resin.
In the case of introducing a (meth) acryloyl group, for example, a method of reacting a hydroxyl group-containing (meth) acrylic compound described in JP-A-2009-292890 with the terminal isocyanate group, or 2- (meth) Examples thereof include methods of reacting isocyanato group-containing (meth) acrylic compounds such as acryloyloxyethyl isocyanate, 2- (meth) acryloyloxypropyl isocyanate, and 1,1-bis (acryloyloxymethyl) ethyl isocyanate. Among these, from the viewpoint of reactivity at the time of synthesizing a resin, a method in which a terminal isocyanate group is reacted with a hydroxyl group-containing (meth) acrylic compound is preferable.
From the viewpoint of flexibility and adhesion of the radically polymerizable resin composition, the hydroxyl group-containing (meth) acrylic compound is a monofunctional (meth) acrylic compound, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Acrylate, caprolactone modified hydroxyalkyl (meth) acrylate, hydroxyethyl acrylamide and the like are preferable, and among these, 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) acrylate is more preferable.
The weight average molecular weight of the urethane (meth) acrylate resin is preferably 2000 to 22000, more preferably 3000 to 19000, and still more preferably 4000 to 16000. When the weight-average molecular weight is within the above range, a low viscosity and compatibility is obtained when a radically polymerizable resin composition in which a radically polymerizable unsaturated monomer or the like described later is blended with a urethane (meth) acrylate resin is used. It is good.
 〔ビニルエステル樹脂〕
 ビニルエステル樹脂は、エポキシ化合物に含まれるエポキシ基の全てまたは一部と、不飽和一塩基酸とをエステル化反応させたものであり、側鎖にラジカル反応性の炭素-炭素二重結合を有している。前記不飽和一塩基酸の代表例が(メタ)アクリル酸であるので、エポキシ(メタ)アクリレート樹脂と称する。
 前記エポキシ化合物としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量および分子構造は特に限定されない。例えば、ビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ビニルシクロヘキセンジオキシド等の脂環式ポリエポキシ化合物;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂;ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂;前記エポキシ樹脂とジイソシアネートとを反応して得られるオキサゾリドン環含有エポキシ樹脂が挙げられる。
 前記不飽和一塩基酸としては、公知のものが使用できる。例えば(メタ)アクリル酸、クロトン酸、桂皮酸等を挙げることができる。これらの中でも、(メタ)アクリル酸が好ましい。
 また、前記不飽和一塩基酸としては、一個のヒドロキシ基と一個以上の(メタ)アクリロイル基を有する化合物と、多塩基酸無水物との反応物を使用してもよい。
 前記多塩基酸無水物は、前記エポキシ樹脂の分子量を増大させるために使用するものであり公知のものを使用できる。例えば、コハク酸、グルタル酸、アジピン酸、セバシン酸、フタル酸、フマル酸、マレイン酸、イタコン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ダイマー酸、エチレングリコール・2モル無水マレイン酸付加物、ポリエチレングリコール・2モル無水マレイン酸付加物、プロピレングリコール・2モル無水マレイン酸付加物、ポリプロピレングリコール・2モル無水マレイン酸付加物、ドデカン二酸、トリデカン二酸、オクタデカン二酸、1,16-(6-エチルヘキサデカン)ジカルボン酸、1,12-(6-エチルドデカン)ジカルボン酸、カルボキシル基末端ブタジエン・アクリロニトリル共重合体(商品名Hycar CTBN)等の無水物が挙げられる。
 上記のビニルエステル樹脂の中でも、靱性付与、汎用性、コストの観点からビスフェノールA型エポキシ(メタ)アクリレート樹脂が好ましい。
[Vinyl ester resin]
The vinyl ester resin is obtained by subjecting all or part of the epoxy group contained in the epoxy compound to an esterification reaction with an unsaturated monobasic acid, and has a radical reactive carbon-carbon double bond in the side chain. doing. As a representative example of the unsaturated monobasic acid is (meth) acrylic acid, it is referred to as an epoxy (meth) acrylate resin.
As the epoxy compound, monomers, oligomers and polymers in general having two or more epoxy groups in one molecule can be used, and the molecular weight and molecular structure thereof are not particularly limited. For example, biphenyl type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin, tetramethyl bisphenol F type epoxy resin; stilbene type epoxy Resins; novolac epoxy resins such as phenol novolac epoxy resins and cresol novolac epoxy resins; polyfunctional epoxy resins such as triphenolmethane epoxy resins and alkyl-modified triphenolmethane epoxy resins; phenol aralkyl epoxy epoxides having a phenylene skeleton Resin, phenol aralkyl type epoxy resin such as phenol aralkyl type epoxy resin having a biphenylene skeleton; dihydroxy naphthalene type epoxy resin Naphthol type epoxy resin such as epoxy resin obtained by glycidyl etherification of a cis resin, a dimer of dihydroxy naphthalene; triazine nucleus-containing epoxy resin such as triglycidyl isocyanurate, monoallyl diglycidyl isocyanurate; Alicyclic polyepoxy compounds such as aryl cyclic diepoxy adipate, aryl cyclic diepoxy carboxylate and vinylcyclohexene dioxide; Bridged cyclic hydrocarbon compounds such as dicyclopentadiene modified phenolic epoxy resin modified phenolic epoxy resin A glycidyl ester type epoxy resin obtained by the reaction of a polybasic acid such as a dimer acid with epichlorohydrin; an oxazolide obtained by reacting the epoxy resin with a diisocyanate Ring-containing epoxy resins.
A well-known thing can be used as said unsaturated monobasic acid. For example, (meth) acrylic acid, crotonic acid, cinnamic acid and the like can be mentioned. Among these, (meth) acrylic acid is preferable.
Further, as the unsaturated monobasic acid, a reaction product of a compound having one hydroxy group and one or more (meth) acryloyl groups with a polybasic acid anhydride may be used.
The said polybasic acid anhydride is used in order to increase the molecular weight of the said epoxy resin, and can use a well-known thing. For example, succinic acid, glutaric acid, adipic acid, sebacic acid, phthalic acid, fumaric acid, maleic acid, itaconic acid, tetrahydrophthalic acid, hexahydrophthalic acid, dimer acid, ethylene glycol / two molar maleic anhydride adduct, polyethylene Glycol · 2 mol maleic anhydride adduct, propylene glycol · 2 mol maleic anhydride adduct, polypropylene glycol · 2 mol maleic anhydride adduct, dodecanedioic acid, tridecanedioic acid, octadecanedioic acid, 1,16- (6 And anhydrides such as -ethylhexadecane) dicarboxylic acid, 1,12- (6-ethyldodecane) dicarboxylic acid, and a carboxyl group-terminated butadiene-acrylonitrile copolymer (trade name: Hycar CTBN).
Among the above-mentioned vinyl ester resins, bisphenol A epoxy (meth) acrylate resins are preferable from the viewpoint of toughness imparting, versatility and cost.
 〔不飽和ポリエステル樹脂〕
 不飽和ポリエステル樹脂としては、不飽和二塩基酸、及び必要に応じて飽和二塩基酸を含む二塩基酸成分と、多価アルコール成分とをエステル化反応させて得られたものを用いることができる。
 前記不飽和二塩基酸や前記飽和二塩基酸としては、例えば、WO2016/171151号公報に記載のものなどを挙げることができ、これらは単独でも、2種以上を組み合わせて用いてもよい。
 前記多価アルコールに特に制限はないが、例えば、ウレタン(メタ)アクリレート樹脂の場合と同様、WO2016/171151号公報に記載のものを挙げることができる。
[Unsaturated polyester resin]
As the unsaturated polyester resin, those obtained by subjecting a polyhydric alcohol component to an esterification reaction of an unsaturated dibasic acid, and optionally a dibasic acid component containing a saturated dibasic acid can be used. .
Examples of the unsaturated dibasic acid and the saturated dibasic acid include those described in WO 2016/171151, which may be used alone or in combination of two or more.
Although there is no restriction | limiting in particular in the said polyhydric alcohol, For example, the thing of WO2016 / 171151 can be mentioned like the case of urethane (meth) acrylate resin.
 不飽和ポリエステルは、本発明の効果を損なわない範囲で、ジシクロペンタジエン系化合物により変性したものを用いてもよい。ジシクロペンタジエン系化合物による変性方法については、例えば、ジシクロペンタジエンとマレイン酸付加生成物を得た後、これを一塩基酸として用いてジシクロペンタジエン骨格を導入する方法等の公知の方法が挙げられる。
 本発明で使用するビニルエステル樹脂又は不飽和ポリエステル樹脂には、アリル基またはベンジル基などの酸化重合(空気硬化)基を導入することができる。導入方法に特に制限はないが、例えば、酸化重合基含有ポリマーの添加や、水酸基とアリルエーテル基とを有する化合物の縮合、アリルグリシジルエーテル、2,6-ジグリシジルフェニルアリルエーテルに水酸基とアリルエーテル基を有する化合物と酸無水物との反応物を付加させる方法等が挙げられる。
 なお、本発明での酸化重合(空気硬化)とは、例えばアリルエーテル基などに見られる、エーテル結合と二重結合との間にあるメチレン結合の酸化によるパーオキシドの生成と分解に伴う架橋を指す。
As the unsaturated polyester, one modified with a dicyclopentadiene type compound may be used as long as the effects of the present invention are not impaired. As a modification method with a dicyclopentadiene type compound, for example, after obtaining dicyclopentadiene and a maleic acid addition product, a known method such as a method of introducing a dicyclopentadiene skeleton using this as a monobasic acid is mentioned Be
An oxidative polymerization (air curing) group such as an allyl group or a benzyl group can be introduced into the vinyl ester resin or unsaturated polyester resin used in the present invention. The introduction method is not particularly limited, but, for example, addition of a polymer having an oxidative polymerization group, condensation of a compound having a hydroxyl group and an allyl ether group, allyl glycidyl ether, 2,6-diglycidyl phenyl allyl ether, hydroxyl group and allyl ether A method of adding a reaction product of a compound having a group and an acid anhydride may, for example, be mentioned.
Incidentally, the oxidative polymerization (air curing) in the present invention means, for example, a crosslink associated with formation and decomposition of peroxide by oxidation of a methylene bond between an ether bond and a double bond, which is found in, for example, allyl ether group. .
〔ポリエステル(メタ)アクリレート樹脂〕
 ポリエステル(メタ)アクリレート樹脂としては、例えば、多価カルボン酸と多価アルコールとを反応させて得られるポリエステル、具体的には、ポリエチレンテレフタレート等の両末端の水酸基に対して、(メタ)アクリル酸を反応させて得られた樹脂を用いることができる。
[Polyester (meth) acrylate resin]
As polyester (meth) acrylate resin, for example, polyester obtained by reacting polyvalent carboxylic acid and polyvalent alcohol, specifically, (meth) acrylic acid to hydroxyl groups at both ends of polyethylene terephthalate and the like The resin obtained by reacting can be used.
〔(メタ)アクリレート樹脂〕
 (メタ)アクリレート樹脂としては、例えば、水酸基、イソシアナト基、カルボキシ基及びエポキシ基から選ばれる1種以上の官能基を有するポリ(メタ)アクリル樹脂や、前記官能基を有する単量体と(メタ)アクリレートとの共重合体の官能基に対して、例えば、水酸基を有する(メタ)アクリル酸エステル類を反応させて得られた樹脂を用いることができる。
[(Meth) acrylate resin]
As the (meth) acrylate resin, for example, a poly (meth) acrylic resin having one or more functional groups selected from a hydroxyl group, an isocyanate group, a carboxy group and an epoxy group, a monomer having the functional group A resin obtained by, for example, reacting a (meth) acrylic acid ester having a hydroxyl group with a functional group of a copolymer with an acrylate) can be used.
<ラジカル重合性不飽和単量体(B)>
 本発明で使用するラジカル重合性不飽和単量体(B)は、ラジカル重合性樹脂組成物の粘度を下げ、硬度、強度、耐薬品性、耐水性などを向上させるために重要である。
 前記ラジカル重合性不飽和単量体に特に制限はないが、(メタ)アクリロイル基、又はビニル基を有するものが好ましい。
<Radically polymerizable unsaturated monomer (B)>
The radically polymerizable unsaturated monomer (B) used in the present invention is important for reducing the viscosity of the radically polymerizable resin composition and improving hardness, strength, chemical resistance, water resistance and the like.
Although there is no restriction | limiting in particular in the said radically polymerizable unsaturated monomer, What has a (meth) acryloyl group or a vinyl group is preferable.
 (メタ)アクリロイル基を有する単量体としては、アクリル酸エステル、メタクリル酸エステル等が挙げられ、単官能性単量体及び多官能性単量体を用いることができる。単官能性単量体としては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリデシル、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エチレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールモノエチルエーテル(メタ)アクリレート、エチレングリコールモノブチルエーテル(メタ)アクリレート、エチレングリコールモノヘキシルエーテル(メタ)アクリレート、エチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ジエチレングリコールモノヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノ2-エチルヘキシルエーテル(メタ)アクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、トリシクロデカニルアクリレート、トリシクロデカニルメタアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート等の化合物を例示することができる。
 更にカプロラクトン変性ヒドロキシアルキル(メタ)アクリレート、カプロラクトン変性トリス(アクリロキシアルキル)イソシアヌレート等の化合物も例示することができる。ラジカル重合性樹脂組成物の粘度低減化の観点から、カプロラクトン付加モル数1~5(m=1~5)のポリカプロラクトン(メタ)アクリレート構造を有する単量体を例示することができる。また、カプロラクトンの付加モル数は1~3のポリカプロラクトン(メタ)アクリレート構造を有する単量体を例示することができる。なかでもカプロラクトン変性ヒドロキシエチル(メタ)アクリレートが好ましい。
Acrylic acid ester, methacrylic acid ester etc. are mentioned as a monomer which has a (meth) acryloyl group, A monofunctional monomer and a polyfunctional monomer can be used. Specific examples of monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate and (meth) acrylic Acid t-Butyl, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, stearyl (meth) acrylate, tridecyl (meth) acrylate, phenoxy Ethyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, ethylene glycol monomethyl ether (meth) acrylate, ethylene glycol monoethyl ether (meth) acrylate, ethylene glycol monobutyl ether (meth) acrylate, ethylene glycol monohexyl ether (Meth) acrylate, ethylene glycol mono 2-ethylhexyl ether (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monobutyl ether (meth) acrylate, diethylene glycol monohexyl ether (meth) acrylate And compounds such as diethylene glycol mono 2-ethylhexyl ether (meth) acrylate, dicyclopentenyl acrylate, dicyclopentenyl oxyethyl acrylate, tricyclodecanyl acrylate, tricyclodecanyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, etc. can do.
Furthermore, compounds such as caprolactone modified hydroxyalkyl (meth) acrylate and caprolactone modified tris (acryloxyalkyl) isocyanurate can also be exemplified. From the viewpoint of reducing the viscosity of the radically polymerizable resin composition, monomers having a polycaprolactone (meth) acrylate structure with 1 to 5 (m = 1 to 5) moles of caprolactone added can be exemplified. Further, the addition mole number of caprolactone can be exemplified by a monomer having a polycaprolactone (meth) acrylate structure of 1 to 3. Among them, caprolactone modified hydroxyethyl (meth) acrylate is preferable.
 多官能性単量体としては、具体的には、ネオペンチルグリコ-ルジ(メタ)アクリレ-ト、PTMGのジメタアクリーレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-ヒドロキシ1,3ジメタクリロキシプロパン、2,2-ビス〔4-(メタクリロイルエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシ・ジエトキシ)フェニル〕プロパン、2,2-ビス〔4-(メタクリロキシ・ポリエトキシ)フェニル〕プロパン、テトラエチレングリコールジアクリレート、ビスフェノールAEO変性(n=2)ジアクリレート、イソシアヌル酸EO変性(n=3)ジアクリレート、ペンタエリスリトールジアクリレートモノステアレート等を挙げることができる。 Specific examples of the polyfunctional monomer include neopentyl glycol di (meth) acrylate, PTMG dimetaacrylate, 1,3-butylene glycol di (meth) acrylate and 1,6-hexane. Diol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 2-hydroxy 1,3 dimethacryloxypropane, 2,2-bis [4- (methacryloylethoxy) phenyl] propane, 2,2-bis [4 -(Methacryloxy diethoxy) phenyl] propane, 2,2-bis [4- (methacryloxypolyethoxy) phenyl] propane, tetraethylene glycol diacrylate, bisphenol AEO modified (n = 2) diacrylate, isocyanuric acid EO modified (n = 3) diacrylate, pentaerythritol Mention may be made of acrylate monostearate.
 更に、多官能性単量体として、エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等のアルカンジオールジ-(メタ)アクリレート;
 ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のポリオキシアルキレン-グリコールジ(メタ)アクリレート;
 トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、アリル(メタ)アクリレート、ジアリルフマレート;
 その他の化合物として、トリス(2-ヒドロキシエチル)イソシアヌルアクリレート等を例示することができる。
Furthermore, as polyfunctional monomers, ethylene glycol di (meth) acrylate, 1,2-propylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di Alkanediol di- (meth) acrylates such as meta) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate;
Polyoxyalkylene-glycol di (such as diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate) Meta) acrylate;
Trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol Tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, allyl (meth) acrylate, diallyl fumarate;
Examples of other compounds include tris (2-hydroxyethyl) isocyanuric acrylate and the like.
 ビニル基を有する単量体の具体例としては、スチレン、p-クロロスチレン、ビニルトルエン、α-メチルスチレン、ジクロルスチレン、ジビニルベンゼン、t-ブチルスチレン、酢酸ビニル、ジアリルフタレート、トリアリルフタレート、トリアリルイソシアヌレートビニルベンジルブチルエーテル、ビニルベンジルヘキシルエーテル、ビニルベンジルオクチルエーテル、ビニルベンジル-(2-エチルヘキシル)エーテル、ビニルベンジル(β-メトキシメチル)エーテル、ビニルベンジル(n-ブトキシプロピル)エーテル、ビニルベンジルシクロヘキシルエーテル、ビニルベンジル-(β-フェノキシエチル)エーテル、ビニルベンジルジシクロペンテニルエーテル、ビニルベンジルジシクロペンテニルオキシエチルエーテル、ビニルベンジルジシクロペンテニルメチルエーテル、ジビニルベンジルエーテルを挙げることができる。
 これらは、単独でも、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a vinyl group include styrene, p-chlorostyrene, vinyl toluene, α-methylstyrene, dichlorostyrene, divinylbenzene, t-butylstyrene, vinyl acetate, diallyl phthalate, triallyl phthalate, Triallyl isocyanurate vinyl benzyl butyl ether, vinyl benzyl hexyl ether, vinyl benzyl octyl ether, vinyl benzyl (2-ethylhexyl) ether, vinyl benzyl (β-methoxymethyl) ether, vinyl benzyl (n-butoxypropyl) ether, vinyl benzyl Cyclohexyl ether, vinyl benzyl (β-phenoxyethyl) ether, vinyl benzyl dicyclopentenyl ether, vinyl benzyl dicyclopentenyl oxyethyl ether, vinyl Nji distearate cyclopentenyl methyl ether, and divinyl benzyl ether.
These may be used alone or in combination of two or more.
 上記ラジカル重合性不飽和単量体(B)成分として、コスト、希釈性の観点から、(メタ)アクリル酸メチル、フェノキシエチル(メタ)アクリレート、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、スチレンが好ましい。 From the viewpoint of cost and dilutability, as the above radically polymerizable unsaturated monomer (B) component, methyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic Preferred are lauryl acid and styrene.
 本発明のラジカル重合性樹脂組成物において、(A)成分と(B)成分の合計量に対する(A)成分の含有量は、好ましくは5~95質量%、より好ましくは15~85質量%、さらに好ましくは25~75質量%である。(A)成分と(B)成分の合計量に対する(A)成分の含有量が上記範囲内であれば、良好な作業性を得ることができる。 In the radically polymerizable resin composition of the present invention, the content of component (A) is preferably 5 to 95% by mass, more preferably 15 to 85% by mass, based on the total amount of components (A) and (B). More preferably, it is 25 to 75% by mass. If the content of the component (A) with respect to the total amount of the components (A) and (B) is within the above range, good workability can be obtained.
<アミン系硬化促進剤(C)>
 本発明に用いるアミン系硬化促進剤(C)は、公知のアミン類を特に制限なく用いることができ、具体的には、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(2-ヒドロキシエチル)アニリン、ジエタノールアニリン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルベンジルアミン等のアミン類等を使用できる。中でも硬化を促進させ易い観点から、芳香族3級アミン類が好ましい。具体的には、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)アニリンが好ましい。また、そのなかでも、ヒドロキシル基含有芳香族3級アミンがより好ましい。具体的には、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)アニリンが好ましい。
 
 アミン系硬化促進剤(C)の含有量は(A)ラジカル重合性樹脂及び(B)ラジカル重合性不飽和単量体の合計100質量部に対し、好ましくは0.01~10質量部、より好ましくは0.05~5.0質量部、さらに好ましくは0.1~3.0質量部である。含有量が上記範囲内であると硬化性の調整が容易である。
<Amine-based accelerator (C)>
As the amine curing accelerator (C) used in the present invention, known amines can be used without particular limitation, and specifically, aniline, N, N-dimethylaniline, N, N-diethylaniline, p- Toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2) -Hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine , M-toluidine, diethylenetriamine, pyridine, phenylymorpholine, piperidine, N, N-bis (2-hydroxyethyl) Aniline, diethanol aniline, 2,4,6-tris (dimethylaminomethyl) phenol, N, the N- dimethylbenzylamine amines such like. Among them, aromatic tertiary amines are preferable from the viewpoint of facilitating curing. Specifically, N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxypropyl)- p-Toluidine and N, N-bis (2-hydroxyethyl) aniline are preferred. Among these, hydroxyl group-containing aromatic tertiary amines are more preferable. Specifically, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxypropyl) -p-toluidine, N, N-bis (2-hydroxyethyl) aniline preferable.

The content of the amine curing accelerator (C) is preferably 0.01 to 10 parts by mass, more preferably 100 parts by mass in total of the (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. The amount is preferably 0.05 to 5.0 parts by mass, more preferably 0.1 to 3.0 parts by mass. It is easy to adjust the curability if the content is within the above range.
<多官能チオール化合物(D)>
 本発明に用いる多官能チオール化合物(D)は、メルカプト基を複数個有する化合物であり、1級チオール化合物(D1)、2級チオール化合物(D2)及び3級チオール化合物(D3)のうちから選ばれる化合物である。これらは、1種単独で用いても、2種以上を併用してもよい。保存安定性および臭気の観点からは、2級又は3級のチオール化合物が好ましい。
 ここで、「1級チオール化合物」とは、1級炭素原子に結合するメルカプト基を有する化合物を指し、同様に、「2級チオール化合物」とは、2級炭素原子に結合するメルカプト基を有する化合物、また、「3級チオール化合物」とは、3級炭素原子に結合するメルカプト基を有する化合物を指す。なお、本発明では、2級チオール化合物が、1級炭素原子に結合するメルカプト基を有する場合であっても、該化合物は2級チオール化合物(D2)とみなす。同様に、3級チオール化合物が、1級炭素原子に結合するメルカプト基及び2級炭素原子に結合するメルカプト基の少なくともいずれか1個以上を有する場合も、該化合物は3級チオール化合物(D3)とみなす。
 従って、本発明に用いられる前記1級チオール化合物(D1)、2級チオール化合物(D2)及び3級チオール化合物(D3)は、化合物中にメルカプト基を複数個有するチオール化合物である。チオール化合物中のメルカプト基の数は、通常、2~10程度であり、特に、メルカプト基の数が、2~6個有するチオール化合物を用いることにより、樹脂組成物硬化後の臭気性を低減することができる。
<Multifunctional thiol compound (D)>
The polyfunctional thiol compound (D) used in the present invention is a compound having a plurality of mercapto groups, and is selected from primary thiol compound (D1), secondary thiol compound (D2) and tertiary thiol compound (D3). Compound. These may be used alone or in combination of two or more. From the viewpoint of storage stability and odor, secondary or tertiary thiol compounds are preferred.
Here, “primary thiol compound” refers to a compound having a mercapto group bonded to a primary carbon atom, and similarly, “secondary thiol compound” has a mercapto group bonded to a secondary carbon atom. The compound or “tertiary thiol compound” refers to a compound having a mercapto group bonded to a tertiary carbon atom. In the present invention, even if the secondary thiol compound has a mercapto group bonded to a primary carbon atom, the compound is regarded as a secondary thiol compound (D2). Similarly, when the tertiary thiol compound has at least one of at least one of a mercapto group bonded to a primary carbon atom and a mercapto group bonded to a secondary carbon atom, the compound is a tertiary thiol compound (D3). It is regarded as
Accordingly, the primary thiol compound (D1), secondary thiol compound (D2) and tertiary thiol compound (D3) used in the present invention are thiol compounds having a plurality of mercapto groups in the compound. The number of mercapto groups in the thiol compound is usually about 2 to 10, and in particular, by using a thiol compound having 2 to 6 mercapto groups, the odor after curing of the resin composition is reduced. be able to.
 本発明に用いる多官能チオール化合物(D)は、下記一般式(Q)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005

 上記一般式(Q)において、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。*は、少なくとも1個のメルカプト基を有する任意の有機基に連結していることを示す。aは0~2の整数である。
The polyfunctional thiol compound (D) used in the present invention is preferably a compound having a structure represented by the following general formula (Q).
Figure JPOXMLDOC01-appb-C000005

In the above general formula (Q), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. * Indicates linking to any organic group having at least one mercapto group. a is an integer of 0 to 2;
 上記一般式(Q)で表される多官能チオール化合物(D)の中でも、下記一般式(Q-1)で表わされる構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000006

 上記一般式(Q-1)において、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。**は、少なくとも1個のメルカプト基を有する任意の有機基に連結していることを示す。aは0~2の整数である。
Among the polyfunctional thiol compounds (D) represented by the general formula (Q), those having a structure represented by the following general formula (Q-1) are preferable.
Figure JPOXMLDOC01-appb-C000006

In Formula (Q-1), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. ** represents linking to any organic group having at least one mercapto group. a is an integer of 0 to 2;
 上記一般式(Q)及び一般式(Q-1)で表される多官能チオール化合物(D)の中でも、下記一般式(S)で示されるメルカプト基含有カルボン酸と、多価アルコールとのエステル化合物がより好ましい。このような化合物は、メルカプト基含有カルボン酸と多価アルコールとの公知の方法でのエステル化反応により得られる。 Among the polyfunctional thiol compounds (D) represented by the general formula (Q) and the general formula (Q-1), an ester of a mercapto group-containing carboxylic acid represented by the following general formula (S) and a polyhydric alcohol Compounds are more preferred. Such a compound is obtained by an esterification reaction of a mercapto group-containing carboxylic acid and a polyhydric alcohol in a known manner.
Figure JPOXMLDOC01-appb-C000007

(一般式(S)中、Rは水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基であり、Rは炭素数1~10のアルキル基又は炭素数6~18の芳香族基である。aは0~2の整数である。)
Figure JPOXMLDOC01-appb-C000007

(In the general formula (S), R 3 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms, and R 4 is an alkyl group having 1 to 10 carbon atoms or the carbon number 6 to 18 aromatic groups, a is an integer of 0 to 2)
 前記一般式(S)で表されるメルカプト基含有カルボン酸は、2級チオール化合物(D2)の由来化合物である場合、具体的には、2-メルカプトプロピオン酸、3-メルカプト酪酸、3-メルカプト-3-フェニルプロピオン酸等が挙げられる。
 また、3級チオール化合物(D3)の由来化合物である場合は、具体的には、2-メルカプトイソ酪酸、3-メルカプト-3-メチル酪酸等が挙げられる。
When the mercapto group-containing carboxylic acid represented by the general formula (S) is a derivative compound of the secondary thiol compound (D2), specifically, 2-mercaptopropionic acid, 3-mercaptobutyric acid, 3-mercapto -3-phenylpropionic acid and the like.
Further, when it is a compound derived from the tertiary thiol compound (D3), specifically, 2-mercaptoisobutyric acid, 3-mercapto-3-methylbutyric acid and the like can be mentioned.
 前記多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、2,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、トリシクロデカンジメタノール、2,2-ビス(2-ヒドロキシエトキシフェニル)プロパン、ビスフェノールAアルキレンオキシド付加物、ビスフェノールFアルキレンオキシド付加物、ビスフェノールSアルキレンオキシド付加物、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,2-ヘキサンジオール、1,3-ヘキサンジオール、2,3-ヘキサンジオール、1,4-ヘキサンジオール、2,4-ヘキサンジオール、3,4-ヘキサンジオール、1,5-ヘキサンジオール、2,5-ヘキサンジオール、1,6-ヘキサンジオール、9,9-ビス[4-(2-ヒドロキシエチル)フェニル]フルオレン等の2価のアルコール;グリセリン、ジグリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリス(2-ヒドロキシエチル)イソシアヌレート、ヘキサントリオール、ソルビトール、ペンタエリスリトール、ジペンタエリスリトール、ショ糖、2,2-ビス(2,3-ジヒドロキシプロピルオキシフェニル)プロパン等の3価以上のアルコール;その他、ポリカーボネートジオール、ダイマー酸ポリエステルポリオール等が挙げられる。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, neopentyl glycol, 1,2-propanediol, 1, 3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,2-pentanediol, 1,3-pentanediol, 2,3-pentanediol, 1,4-pentanediol, 1,5 -Pentanediol, 1,6-hexanediol, 1,9-nonanediol, tricyclodecanedimethanol, 2,2-bis (2-hydroxyethoxyphenyl) propane, bisphenol A alkyleneoxy Adduct, bisphenol F alkylene oxide adduct, bisphenol S alkylene oxide adduct, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,2-hexanediol, 1,3-hexanediol, 2,3- Hexanediol, 1,4-Hexanediol, 2,4-Hexanediol, 3,4-Hexanediol, 1,5-Hexanediol, 2,5-Hexanediol, 1,6-Hexanediol, 9,9-bis Dihydric alcohols such as [4- (2-hydroxyethyl) phenyl] fluorene; glycerin, diglycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, tris (2-hydroxyethyl) isocyanurate, hexanetriol, sorbitol , Penta Risuritoru, dipentaerythritol, sucrose, 2,2-bis (2,3-dihydroxy propyloxy phenyl) trivalent or more alcohols such as propane and the like; polycarbonate diol, and dimer acid polyester polyol and the like.
 これらのうち、入手容易性や湿潤条件下でも硬化促進能を発揮させる観点から、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール等の2価のアルコール;グリセリン、トリメチロールエタン、トリメチロールプロパン、トリス(2-ヒドロキシエチル)イソシアヌレート、ペンタエリスリトール、ジペンタエリスリトール、2,2-ビス(2,3-ジヒドロキシプロピルオキシフェニル)プロパン等の3価以上のアルコール;ポリカーボネートジオール、ダイマー酸ポリエステルポリオールが好ましく、官能基数及び蒸気圧の観点から、1,4-ブタンジオール、トリメチロールエタン、トリメチロールプロパン、トリス(2-ヒドロキシエチル)イソシアヌレート、ペンタエリスリトール、ポリカーボネートジオール、ダイマー酸ポリエステルポリオールがより好ましい。 Among them, dihydric alcohols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol and the like from the viewpoint of exhibiting the curing accelerating ability even under easy availability and wet conditions Glycerin, trimethylolethane, trimethylolpropane, tris (2-hydroxyethyl) isocyanurate, pentaerythritol, dipentaerythritol, trivalent or higher trivalent compounds such as 2,2-bis (2,3-dihydroxypropyloxyphenyl) propane; Alcohol; polycarbonate diol, dimer acid polyester polyol is preferable, and from the viewpoint of functional group number and vapor pressure, 1,4-butanediol, trimethylol ethane, trimethylol propane, tris (2-hydroxyethyl) isocyanurate, pentaerythritol Lumpur, polycarbonate diols, dimer acid polyester polyol is more preferred.
〔1級チオール化合物(D1)〕
 1級チオール化合物(D1)としては、具体的には、トリメチロールプロパントリスチオプロピオネート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)等が挙げられる。
 1級チオール化合物(D1)のうち、分子中に1級メルカプト基を2個以上有する化合物の市販品としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学(株)製、製品名:PEMP)、トリメチロールプロパントリスチオプロピオネート(淀化学(株)製、製品名:TMTP)等が好適に用いられる。
[Primary thiol compound (D1)]
Specific examples of the primary thiol compound (D1) include trimethylolpropane tristhiopropionate, tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, pentaerythritol tetrakis (3-mercaptopropio) And tetraethylene glycol bis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate) and the like.
As a commercial item of a compound having two or more primary mercapto groups in the molecule among primary thiol compounds (D1), pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd., product Name: PEMP), trimethylolpropane tristhiopropionate (manufactured by Sakai Chemical Co., Ltd., product name: TMTP), etc. are preferably used.
〔2級チオール化合物(D2)〕
 2級チオール化合物(D2)としては、具体的には、3-メルカプトフタル酸ジ(1-メルカプトエチル)、フタル酸ジ(2-メルカプトプロピル)、フタル酸ジ(3-メルカプトブチル)、エチレングリコールビス(3-メルカプトブチレート)、プロピレングリコールビス(3-メルカプトブチレート)、ジエチレングリコールビス(3-メルカプトブチレート)、ブタンジオールビス(3-メルカプトブチレート)、オクタンジオールビス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、エチレングリコールビス(2-メルカプトプロピオネート)、プロピレングリコールビス(2-メルカプトプロピオネート)、ジエチレングリコールビス(2-メルカプトプロピオネート)、ブタンジオールビス(2-メルカプトプロピオネート)、オクタンジオールビス(2-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、エチレングリコールビス(4-メルカプトバレレート)、ジエチレングリコールビス(4-メルカプトバレレート)、ブタンジオールビス(4-メルカプトバレレート)、オクタンジオールビス(4-メルカプトバレレート)、トリメチロールプロパントリス(4-メルカプトバレレート)、ペンタエリスリトールテトラキス(4-メルカプトバレレート)、ジペンタエリスリトールヘキサキス(4-メルカプトバレレート)、エチレングリコールビス(3-メルカプトバレレート)、プロピレングリコールビス(3-メルカプトバレレート)、ジエチレングリコールビス(3-メルカプトバレレート)、ブタンジオールビス(3-メルカプトバレレート)、オクタンジオールビス(3-メルカプトバレレート)、トリメチロールプロパントリス(3-メルカプトバレレート)、ペンタエリスリトールテトラキス(3-メルカプトバレレート)、ジペンタエリスリトールヘキサキス(3-メルカプトバレレート)、水素化ビスフェノールAビス(3-メルカプトブチレート)、4,4’-(9-フルオレニリデン)ビス(2-フェノキシエチル(3―メルカプトブチレート))、エチレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、プロピレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、ジエチレングリコールビス(3-メルカプト-3-フェニルプロピオネート)、ブタンジオールビス(3-メルカプト-3-フェニルプロピオネート)、オクタンジオールビス(3-メルカプト-3-フェニルプロピオネート)、トリメチロールプロパントリス(3-メルカプト-3-フェニルプロピオネート)、トリス-2-(3-メルカプト-3-フェニルプロピオネート)エチルイソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプト-3-フェニルプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプト-3-フェニルプロピオネート)、1,3,5-トリス[2-(3-メルカプトブチリルオキシエチル)]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等が挙げられる。
[Secondary thiol compound (D2)]
Specifically, as the secondary thiol compound (D2), 3-mercaptophthalic acid di (1-mercaptoethyl), phthalic acid di (2-mercaptopropyl), phthalic acid di (3-mercaptobutyl), ethylene glycol Bis (3-mercaptobutyrate), propylene glycol bis (3-mercaptobutyrate), diethylene glycol bis (3-mercaptobutyrate), butanediol bis (3-mercaptobutyrate), octanediol bis (3-mercaptobutyrate) ), Trimethylolethane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptobutyrate), Tylene glycol bis (2-mercapto propionate), propylene glycol bis (2- mercapto propionate), diethylene glycol bis (2- mercapto propionate), butanediol bis (2-mercapto propionate), octanediol bis (2-Mercaptopropionate), trimethylolpropane tris (2-mercaptopropionate), pentaerythritol tetrakis (2-mercaptopropionate), dipentaerythritol hexakis (2-mercaptopropionate), ethylene glycol Bis (4-mercaptovalerate), diethylene glycol bis (4-mercaptovalerate), butanediol bis (4-mercaptovalerate), octanediol bis (4-mercaptovalerate) Tri) trimethylolpropane tris (4-mercaptovalerate), pentaerythritol tetrakis (4-mercaptovalerate), dipentaerythritol hexakis (4-mercaptovalerate), ethylene glycol bis (3-mercaptovalerate), Propylene glycol bis (3-mercaptovalerate), diethylene glycol bis (3-mercaptovalerate), butanediol bis (3-mercaptovalerate), octanediol bis (3-mercaptovalerate), trimethylolpropane tris (3- 3- Mercaptovalerate), pentaerythritol tetrakis (3-mercaptovalerate), dipentaerythritol hexakis (3-mercaptovalerate), hydrogenated bisphenol A bis (3-mercapto) Butyrate), 4,4 ′-(9-fluorenylidene) bis (2-phenoxyethyl (3-mercaptobutyrate)), ethylene glycol bis (3-mercapto-3-phenylpropionate), propylene glycol bis (3-mercapto) -3-phenylpropionate), diethylene glycol bis (3-mercapto-3-phenylpropionate), butanediol bis (3-mercapto-3-phenylpropionate), octanediol bis (3-mercapto-3-phenylpropionate) ), Trimethylolpropane tris (3-mercapto-3-phenylpropionate), tris-2- (3-mercapto-3-phenylpropionate) ethyl isocyanurate, pentaerythritol tetrakis (3-mercapto-3-phen) ), Dipentaerythritol hexakis (3-mercapto-3-phenyl propionate), 1,3,5-tris [2- (3-mercaptobutyryloxyethyl)]-1,3,5- And triazine-2,4,6 (1H, 3H, 5H) -trione and the like.
 2級チオール化合物(D2)のうち、分子中に2級メルカプト基を2個以上有する化合物の市販品としては、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(昭和電工(株)製「カレンズMT(登録商標)BD1」)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工(株)製「カレンズMT(登録商標)PE1」)、1,3,5-トリス[2-(3-メルカプトブチリルオキシエチル)]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(昭和電工(株)製「カレンズMT(登録商標)NR1」)、トリメチロールエタントリス(3-メルカプトブチレート)(昭和電工(株)製「TEMB」)、トリメチロールプロパントリス(3-メルカプトブチレート)(昭和電工(株)製「TPMB」)等が好適に用いられる。 Among commercially available secondary thiol compounds (D2), compounds having two or more secondary mercapto groups in the molecule include 1,4-bis (3-mercaptobutyryloxy) butane (manufactured by Showa Denko KK) “Kalens MT (registered trademark) BD1”), pentaerythritol tetrakis (3-mercaptobutyrate) (“Kalens MT (registered trademark) PE1” manufactured by Showa Denko KK), 1,3,5-tris [2- ( 3-mercaptobutyryloxyethyl)]-1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione ("Kalens MT (registered trademark) NR1" manufactured by Showa Denko KK), Trimethylol ethane tris (3-mercaptobutyrate) ("SEMB" manufactured by Showa Denko KK), trimethylolpropane tris (3-mercaptobutyrate) (Showa Denko KK) "TPMB") or the like is preferably used.
〔3級チオール化合物(D3)〕
 3級チオール化合物(D3)としては、具体的には、フタル酸ジ(2-メルカプトイソブチル)、エチレングリコールビス(2-メルカプトイソブチレート)、プロピレングリコールビス(2-メルカプトイソブチレート)、ジエチレングリコールビス(2-メルカプトイソブチレート)、ブタンジオールビス(2-メルカプトイソブチレート)、オクタンジオールビス(2-メルカプトイソブチレート)、トリメチロールエタントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、フタル酸ジ(3-メルカプト-3-メチルブチル)、エチレングリコールビス(3-メルカプト-3-メチルブチレート)、プロピレングリコールビス(3-メルカプト-3-メチルブチレート)、ジエチレングリコールビス(3-メルカプト-3-メチルブチレート)、ブタンジオールビス(3-メルカプト-3-メチルブチレート)、オクタンジオールビス(3-メルカプト-3-メチルブチレート)、トリメチロールエタントリス(3-メルカプト-3-メチルブチレート)、トリメチロールプロパントリス(3-メルカプト-3-メチルブチレート)、ペンタエリスリトールテトラキス(3-メルカプト-3-メチルブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプト-3-メチルブチレート)等が挙げられる。
[Third-order thiol compound (D3)]
Specific examples of the tertiary thiol compound (D3) include phthalic acid di (2-mercaptoisobutyl), ethylene glycol bis (2-mercaptoisobutyrate), propylene glycol bis (2-mercaptoisobutyrate), and diethylene glycol Bis (2-mercaptoisobutyrate), butanediol bis (2-mercaptoisobutyrate), octanediol bis (2-mercaptoisobutyrate), trimethylolethane tris (2-mercaptoisobutyrate), trimethylolpropane Tris (2-mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakis (2-mercaptoisobutyrate), di (3-mercapto-3-methylbutyl) phthalate, Tyrene glycol bis (3-mercapto-3-methyl butyrate), propylene glycol bis (3-mercapto-3-methyl butyrate), diethylene glycol bis (3-mercapto-3-methyl butyrate), butanediol bis (3- Mercapto-3-methylbutyrate), octanediol bis (3-mercapto-3-methylbutyrate), trimethylolethane tris (3-mercapto-3-methylbutyrate), trimethylolpropane tris (3-mercapto-3) -Methyl butyrate), pentaerythritol tetrakis (3-mercapto-3-methyl butyrate), dipentaerythritol hexakis (3-mercapto 3-methyl butyrate) and the like.
 多官能チオール化合物(D)の含有量は(A)ラジカル重合性樹脂及び(B)ラジカル重合性不飽和単量体の合計100質量部に対し、好ましくは0.1~20質量部、より好ましくは0.3~15質量部である。含有量が0.1質量部以上であれば、低温硬化性、密着性向上などの効果を十分に発揮することができる。また、含有量が20質量部以下であれば樹脂組成物を硬化させた際の強度を十分に保つことができ、構造物の補修材用途として好適である。 The content of the polyfunctional thiol compound (D) is preferably 0.1 to 20 parts by mass, more preferably 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. Is 0.3 to 15 parts by mass. When the content is 0.1 parts by mass or more, effects such as low temperature curability and adhesion improvement can be sufficiently exhibited. Moreover, if content is 20 mass parts or less, the intensity | strength at the time of curing a resin composition can fully be maintained, and it is suitable as a repair material use of a structure.
<硬化剤(E)>
 本発明のラジカル重合性樹脂組成物は、硬化剤(E)を含んでもよい。本発明で用いられる(E)硬化剤としては特に限定されず、公知のラジカル重合開始剤を使用することができ、有機化過酸化物を用いることが好ましい。
 有機過酸化物の例としては、ケトンパーオキサイド、パーベンゾエート、ハイドロパーオキサイド、ジアシルパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、パーオキシエステル及びパーオキシジカーボネート等が挙げられる。より具体的には、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーベンゾエート、ジベンゾイルパーオキサイド(ベンゾイルパーオキサイドともいう)、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、3-イソプロピルヒドロパーオキサイド、t-ブチルヒドロパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5-トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド等が使用できる。また、硬化剤としてアゾ化合物等も使用でき、具体的にはアゾビスイソブチロニトリル及びアゾビスカルボンアミド等が挙げられる。これら有機過酸化物、アゾ化合物は、単独又は組み合わせて用いることが可能である。また、これらの中でも、入手のし易さの観点から、ジベンゾイルパーオキサイド、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシベンゾエートが好ましい。さらに好ましくは、硬化する際に水分の影響を受け難い観点から、ジベンゾイルパーオキサイド、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイドが好ましい。
<Hardener (E)>
The radically polymerizable resin composition of the present invention may contain a curing agent (E). The curing agent (E) used in the present invention is not particularly limited, and known radical polymerization initiators can be used, and it is preferable to use an organic peroxide.
Examples of the organic peroxide include ketone peroxide, perbenzoate, hydroperoxide, diacyl peroxide, peroxy ketal, hydroperoxide, diallyl peroxide, peroxy ester, peroxy dicarbonate and the like. More specifically, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl perbenzoate, dibenzoyl peroxide (also referred to as benzoyl peroxide), benzoyl m-methyl benzoyl peroxide, m-toluoyl peroxide, dicumyl peroxide Peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl- 2,5-Bis (t-butylperoxy) hexyne-3, 3-isopropylhydroperoxide, t-butylhydroperoxide, dicumyl hydroperoxide, acetylperoxide, bis (4-t-butylcyclohexene) ) Peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyl peroxide, 3,3,5-trimethyl hexanoyl peroxide, lauryl peroxide and the like can be used. Moreover, an azo compound etc. can also be used as a hardening | curing agent, Specifically, azobisisobutyronitrile, azobis carbonamide etc. are mentioned. These organic peroxides and azo compounds can be used alone or in combination. Among these, dibenzoyl peroxide, benzoyl m-methyl benzoyl peroxide, m-toluoyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl peroxybenzoate from the viewpoint of availability. Is preferred. More preferably, dibenzoyl peroxide, benzoyl m-methyl benzoyl peroxide, and m-tolu oil peroxide are preferable from the viewpoint of being hardly affected by moisture when curing.
 硬化剤(E)の配合量は、上記(A)成分と(B)成分の合計100質量部に対して、0.1~10質量部が好ましく、0.3~8質量部がより好ましく、0.5~6質量部がさらにより好ましい。硬化剤(E)の配合量が0.1質量部以上では、所望の硬化性が得られ易い。一方、硬化剤(E)の配合量が10質量部以下であると、経済的に有利であり、十分な作業時間が得られ易い。 The compounding amount of the curing agent (E) is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 8 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). Even more preferred is 0.5 to 6 parts by weight. When the compounding amount of the curing agent (E) is 0.1 parts by mass or more, desired curability is easily obtained. On the other hand, it is economically advantageous that the compounding quantity of a hardening | curing agent (E) is 10 mass parts or less, and sufficient working time is easy to be obtained.
<その他成分>
〔重合禁止剤〕
 本発明のラジカル重合性樹脂組成物は、(A)ラジカル重合性樹脂及び(B)ラジカル重合性不飽和単量体の過度の重合を抑える観点、反応速度をコントロールする観点から、重合禁止剤を含んでもよい。
 重合禁止剤としては、ハイドロキノン、メチルハイドロキノン、フェノチアジン、カテコール、4-tert-ブチルカテコール等の公知のものが挙げられる。
<Other ingredients>
[Polymerization inhibitor]
The radically polymerizable resin composition of the present invention is a polymerization inhibitor from the viewpoint of suppressing excessive polymerization of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer, and from the viewpoint of controlling the reaction rate. May be included.
Examples of the polymerization inhibitor include known ones such as hydroquinone, methylhydroquinone, phenothiazine, catechol, 4-tert-butyl catechol and the like.
〔アミン系以外の硬化促進剤〕
 本発明のラジカル重合性樹脂組成物には、上記したアミン系硬化促進剤以外の硬化促進剤を含有させてもよい。アミン系以外の硬化促進剤としては特に限定はされず、公知の金属有機化合物およびβ-ジケトン類を使用することができる。
 金属有機化合物の例としては、ナフテン酸銅等の銅化合物、オクチル酸コバルト、ナフテン酸コバルト、水酸化コバルト等のコバルト化合物、ヘキソエート亜鉛等の亜鉛化合物、オクチル酸マンガン等のマンガン化合物等が挙げられる。これらの中でも、ナフテン酸コバルト、オクチル酸コバルト、ナフテン酸銅が好ましい。これらの金属有機化合物は、単独又は組み合わせて用いることが可能である。
 β-ジケトン類の例としては、アセチルアセトン、アセト酢酸エチル、α-アセチル-γ-ブチロラクトン、N-ピロジニノアセトアセタミド、N,N-ジメチルアセトアセタミド等が挙げられる。
 前記金属有機化合物の配合量は、上記(A)成分と(B)成分の合計100質量部に対して、0.1~5質量部であることが好ましく、0.3~3質量部であることがより好ましい。金属有機化合物の配合量が0.1質量部以上であると、所望の硬化時間及び硬化状態が得られ易く、乾燥性良好になる。一方、金属有機化合物の配合量が5質量部以下であると、所望の可使時間及び貯蔵安定性が得られ易い。
[Curing accelerators other than amines]
The radical polymerizable resin composition of the present invention may contain a curing accelerator other than the above-mentioned amine curing accelerator. There is no particular limitation on curing accelerators other than amine type, and known metal organic compounds and β-diketones can be used.
Examples of metal organic compounds include copper compounds such as copper naphthenate, cobalt compounds such as cobalt octylate, cobalt naphthenate and cobalt hydroxide, zinc compounds such as zinc hexoate, and manganese compounds such as manganese octylate. . Among these, cobalt naphthenate, cobalt octylate and copper naphthenate are preferable. These metal organic compounds can be used alone or in combination.
Examples of the β-diketones include acetylacetone, ethyl acetoacetate, α-acetyl-γ-butyrolactone, N-pyrrolininoacetoacetamide, N, N-dimethylacetoacetamide and the like.
The compounding amount of the metal organic compound is preferably 0.1 to 5 parts by mass, preferably 0.3 to 3 parts by mass, with respect to 100 parts by mass in total of the components (A) and (B). Is more preferred. When the amount of the metal organic compound is 0.1 parts by mass or more, a desired curing time and a cured state can be easily obtained, and the drying property is improved. On the other hand, when the blending amount of the metal organic compound is 5 parts by mass or less, desired pot life and storage stability can be easily obtained.
〔光重合開始剤〕
 本発明のラジカル重合性樹脂組成物には、硬化性を向上させる目的で光重合開始剤を含むものであっても良い。光重合開始剤としては、例えば、光ラジカル重合開始剤などが挙げられる。
 光ラジカル重合開始剤は、二重結合を有するアクリル樹脂やモノマーの重合を促進させ、硬化性を向上させるために用いられる。
 具体的には、光ラジカル重合開始剤として、ベンゾインアルキルエーテルのようなベンゾインエーテル系、ベンゾフェノン、ベンジル、メチルオルソベンゾイルベンゾエートなどのベンゾフェノン系、ベンジルジメチルケタール、2,2-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、4-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン、1,1-ジクロロアセトフェノンなどのアセトフェノン系、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントンなどのチオキサントン系のものが挙げられる。
 光重合開始剤は、(A)ラジカル反応性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.1~10質量部の範囲で添加することができる。
[Photopolymerization initiator]
The radically polymerizable resin composition of the present invention may contain a photopolymerization initiator for the purpose of improving the curability. As a photoinitiator, an optical radical polymerization initiator etc. are mentioned, for example.
The radical photopolymerization initiator is used to promote the polymerization of an acrylic resin or monomer having a double bond and to improve the curability.
Specifically, as a radical photopolymerization initiator, benzoin ether type such as benzoin alkyl ether, benzophenone type, benzophenone type such as benzyl, methyl ortho benzoyl benzoate, benzyl dimethyl ketal, 2, 2-diethoxyacetophenone, 2-hydroxy type Acetophenones such as -2-methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, 1,1-dichloroacetophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, etc. The thing of a thioxanthone type is mentioned.
The photopolymerization initiator can be added in a range of 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of (A) radical reactive resin and (B) radically polymerizable unsaturated monomer. .
〔界面活性剤〕
 本発明のラジカル重合性樹脂組成物は、樹脂と水とのなじみをよくし、水を樹脂に抱き込んだ状態で硬化しやすくする観点から、界面活性剤を含有してもよい。
 界面活性剤としては、陰イオン性界面活性剤、非イオン性界面活性剤、陽イオン性界面活性剤、及び両性界面活性剤が挙げられる。これらの界面活性剤は、単独でも、2種以上を組み合わせて用いてもよい。
 これらの界面活性剤の中でも陰イオン性界面活性剤、及び非イオン性界面活性剤から選ばれる1種以上が好ましい。
[Surfactant]
The radically polymerizable resin composition of the present invention may contain a surfactant from the viewpoint of improving compatibility between the resin and water and facilitating curing in a state in which the water is embraced in the resin.
Surfactants include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. These surfactants may be used alone or in combination of two or more.
Among these surfactants, one or more selected from anionic surfactants and nonionic surfactants are preferable.
 陰イオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸トリエタノールアミン等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルフォン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等のスルホン酸塩;ステアリン酸ソーダ石鹸、オレイン酸カリ石鹸、ヒマシ油カリ石鹸等の脂肪酸塩;ナフタレンスルフォン酸ホルマリン縮合物、特殊高分子系等が挙げられる。
 これらの中でも、スルホン酸塩が好ましく、ジアルキルスルホコハク酸ナトリウムがより好ましく、ジオクチルスルホコハク酸ナトリウムが更に好ましい。
Examples of anionic surfactants include alkyl sulfate ester salts such as sodium lauryl sulfate and triethanolamine lauryl sulfate; and polyoxyethylene alkyl such as polyoxyethylene lauryl ether sodium sulfate and polyoxyethylene alkyl ether sulfate triethanolamine Ether sulfuric acid ester salts; sulfonic acid salts such as sodium dodecyl benzene sulfonic acid, sodium dodecyl benzene sulfonic acid, sodium alkylnaphthalene sulfonic acid, sodium dialkyl sulfosuccinate; fatty acid salts such as sodium stearate soap, potassium oleate soap, castor oil potassium soap etc Naphthalenesulfonic acid formalin condensates, special polymer systems, etc. may be mentioned.
Among these, sulfonates are preferable, sodium dialkyl sulfosuccinate is more preferable, and sodium dioctyl sulfosuccinate is still more preferable.
 非イオン性界面活性剤として、例えば、ポリオキシラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール等のポリオキシエチレン誘導体;ポリオキシアルキレンアルキルエーテル、ソルビタンモノラウリレート、ソルビタンモノパルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート等のポリオキシエチレンソルビタン脂肪酸エステル;テトラオレイン酸ポリオキシエチレンソルビット等のポリオキシエチレンソルビトール脂肪酸エステル;グリセリンモノステアレート、グリセリンモノオレエート等のグリセリン脂肪酸エステルが挙げられる。 Examples of nonionic surfactants include polyoxyethylene alkyl ether such as polyoxylauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, etc., polyoxyethylene di-styrenated phenyl ether, poly Polyoxyethylene derivatives such as oxyethylene tribenzyl phenyl ether, polyoxyethylene polyoxypropylene glycol, etc .; Sorbitan fatty acid esters such as polyoxyalkylene alkyl ether, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate; polyoxyethylene Sorbitan monolaurate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate Etc. polyoxyethylene sorbitan fatty acid esters; polyoxyethylene sorbit tetraoleate and the like of the polyoxyethylene sorbitol fatty acid esters; glycerol monostearate, glycerine fatty acid esters such as glycerol monooleate.
 これらの非イオン性界面活性剤中では、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、及びポリオキシエチレンアルキルエーテルが好ましい。また、非イオン性界面活性剤のHLB(Hydrophile-Lipophil Balance)は、5~15が好ましく、6~12より好ましい。
 本発明のラジカル重合性樹脂組成物が界面活性剤を含有する場合、その含有量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.05~7質量部、更に好ましくは0.1~5質量部である。
Among these nonionic surfactants, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, and polyoxyethylene alkyl ether are preferable. Further, HLB (Hydrophile-Lipophil Balance) of the nonionic surfactant is preferably 5 to 15, and more preferably 6 to 12.
When the radically polymerizable resin composition of the present invention contains a surfactant, the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. The amount is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 7 parts by mass, and still more preferably 0.1 to 5 parts by mass.
〔界面調整剤〕
 本発明のラジカル重合性樹脂組成物は、例えば、湿潤又は水没した被修復箇所に対する浸透性を向上させるために界面調整剤として、湿潤界面調整剤を含んでいてもよい。
 湿潤界面調整剤としては、フッ素系湿潤界面調整剤及びシリコーン系湿潤界面調整剤等が挙げられ、これらは、単独でも、2種以上を組み合わせて用いてもよい。
 フッ素系の湿潤界面調整剤の市販品としては、メガファック(登録商標)F176、メガファック(登録商標)R08(大日本インキ化学工業(株)製)、PF656、PF6320(OMNOVA社製)、トロイゾルS-366(トロイケミカル(株)製)、フロラードFC430(スリーエム ジャパン(株)製)、ポリシロキサンポリマーKP-341(信越化学工業(株)製)等が挙げられる。
 シリコーン系湿潤分散剤の市販品としては、BYK(登録商標)-322、BYK(登録商標)-377、BYK(登録商標)-UV3570、BYK(登録商標)-330、BYK(登録商標)-302、BYK(登録商標)-UV3500、BYK-306(ビックケミー・ジャパン(株)製)、ポリシロキサンポリマーKP-341(信越化学工業(株)製)等が挙げられる。
 その他湿潤界面調整剤の市販品としては、ペレックスNBL、ペレックスOT-P、ペレックスTR(花王(株)製)等が挙げられる。
 本発明のラジカル重合性樹脂組成物が、界面調整剤を含有する場合、その含有量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~5質量部が好ましい。
[Interface regulator]
The radically polymerizable resin composition of the present invention may contain, for example, a wet interface conditioner as an interface regulator in order to improve the permeability to a wet or submerged site to be repaired.
Examples of the wet interface conditioner include fluorine-based wet interface conditioners and silicone-based wet interface conditioners, and these may be used alone or in combination of two or more.
Commercially available products of fluorine-based wet interface conditioners are Megafac® F176, Megafac® R08 (Dainippon Ink and Chemicals, Inc.), PF656, PF6320 (OMNOVA), Troysol. S-366 (manufactured by Troy Chemical Co., Ltd.), Florard FC 430 (manufactured by 3M Japan Co., Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
Commercial products of silicone-based wetting and dispersing agents include BYK (R) -322, BYK (R) -377, BYK (R) -UV3570, BYK (R) -330, BYK (R) -302 And BYK (registered trademark) -UV 3500, BYK-306 (manufactured by Bick Chemie Japan Ltd.), polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
Other commercial products of the wet interface conditioner include Perex NBL, Perex OT-P, Perex TR (manufactured by Kao Corporation), and the like.
When the radically polymerizable resin composition of the present invention contains a surface conditioner, the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. Preferably, it is 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
〔揺変剤〕
 本発明のラジカル重合性樹脂組成物は、垂直面や天井面での作業性確保のための粘度調整等を目的として揺変剤を含んでもよい。
 揺変剤としては、無機系揺変剤及び有機系揺変剤を挙げることができ、有機系揺変剤としては、水素添加ひまし油系、アマイド系、酸化ポリエチレン系、植物油重合油系、界面活性剤系、及びこれらを併用した複合系が挙げられ、具体的には、DISPARLON(登録商標)6900-20X(楠本化成(株))等が挙げられる。
 また、無機系揺変剤としては、シリカやベントナイト系が挙げられ、疎水性のものとして、レオロシール(登録商標)PM-20L((株)トクヤマ製の気相法シリカ)、アエロジル(登録商標)AEROSIL R-106(日本アエロジル(株))等が挙げられ、親水性のものとして、アエロジル(登録商標)AEROSIL-200(日本アエロジル(株))等が挙げられる。揺変性をより向上させる観点から、親水性の焼成シリカに、揺変性改質剤であるBYK(登録商標)-R605やBYK(登録商標)-R606(ビックケミー・ジャパン(株)製)を添加したものも好適に用いることができる。
 本発明のラジカル重合性樹脂組成物が、揺変剤を含有する場合、その含有量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~5質量部が好ましい
[Modifier]
The radically polymerizable resin composition of the present invention may contain a thixotropic agent for the purpose of viscosity adjustment and the like for securing workability on a vertical surface and a ceiling surface.
As thixotropic agents, inorganic thixotropic agents and organic thixotropic agents can be mentioned, and as organic thixotropic agents, hydrogenated castor oil type, amide type, polyethylene oxide type, vegetable oil polymerized oil type, surface activity Agent systems and complex systems using these in combination, and specific examples thereof include DISPARLON (registered trademark) 6900-20X (Kushimoto Chemical Co., Ltd.) and the like.
Further, examples of inorganic thixotropic agents include silica and bentonite, and as hydrophobic ones, Reoroseal (registered trademark) PM-20L (gas phase method silica manufactured by Tokuyama Corporation), Aerosil (registered trademark) AEROSIL R-106 (Nippon Aerosil Co., Ltd.) and the like can be mentioned, and examples of hydrophilic substances include Aerosil (registered trademark) AEROSIL-200 (Nippon Aerosil Co., Ltd.) and the like. From the viewpoint of further improving thixotropy, BYK (registered trademark) -R605 and BYK (registered trademark) -R606 (manufactured by Bick Chemie Japan Ltd.), which are thixotropic modifiers, were added to hydrophilic calcined silica. Those can also be suitably used.
When the radically polymerizable resin composition of the present invention contains a thixotropic agent, the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. And preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass
〔湿潤分散剤〕
 本発明のラジカル重合性樹脂組成物は、充填剤混合時の高充填、粘度低下、沈降防止等を目的に湿潤分散剤を含んでいても良い。これらは、単独でも、2種類以上を組み合わせて用いても良い。
湿潤分散剤の市販品としては、BYK-W909、BYK-W985、BYK-W966、BYK-W980、BYK-W969、BYK-W996、BYK-W9010、BYK-W940等が挙げられる。
 本発明のラジカル重合性樹脂組成物が、湿潤分散剤を含有する場合、その含有量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは、0.1~5.0質量部、より好ましくは0.3~3.0質量部、さらにより好ましくは0.5~2.0質量部が好ましい。
[Wet dispersant]
The radically polymerizable resin composition of the present invention may contain a wetting and dispersing agent for the purpose of high filling at the time of filler mixing, viscosity reduction, sedimentation prevention and the like. These may be used alone or in combination of two or more.
Commercial products of the wetting and dispersing agent include BYK-W909, BYK-W985, BYK-W966, BYK-W980, BYK-W969, BYK-W996, BYK-W9010, BYK-W940 and the like.
When the radically polymerizable resin composition of the present invention contains a wetting dispersant, the content thereof is based on 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. Preferably, it is 0.1 to 5.0 parts by mass, more preferably 0.3 to 3.0 parts by mass, and still more preferably 0.5 to 2.0 parts by mass.
〔硬化遅延剤〕
 本発明のラジカル重合性樹脂組成物は、硬化時間の調製の目的で、硬化遅延剤を含んでもよい。硬化遅延剤としては、フリーラジカル系硬化遅延剤が挙げられ、例えば、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4H-TEMPO)、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4-Oxo-TEMPO)等のTEMPO誘導体が挙げられる。これらの中でも、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル(4H-TEMPO)がコスト面、扱いやすさの点から好ましい。
 本発明のラジカル重合性樹脂組成物が重合禁止剤、硬化遅延剤を含有する場合、その量は(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは各々0.0001~10質量部であり、より好ましくは各々0.001~10質量部である。
[Curing retarder]
The radically polymerizable resin composition of the present invention may contain a curing retarder for the purpose of adjusting the curing time. The curing retarder includes free radical curing retarder, for example, 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO), 4-hydroxy-2,2,6,6- Examples include TEMPO derivatives such as tetramethylpiperidine 1-oxyl free radical (4H-TEMPO), 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4-Oxo-TEMPO). Among these, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (4H-TEMPO) is preferable in terms of cost and ease of handling.
When the radically polymerizable resin composition of the present invention contains a polymerization inhibitor and a curing retarder, the amount is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. On the other hand, the amount is preferably 0.0001 to 10 parts by mass, and more preferably 0.001 to 10 parts by mass.
〔消泡剤〕
 本発明のラジカル重合性樹脂組成物は、成形時の泡発生、成形品の泡残りを改善する目的で、消泡剤を含んでもよい。消泡剤としては、シリコーン系消泡剤、ポリマー系消泡剤などが挙げられる。
 消泡剤の使用量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、0.01~5質量部の範囲が好ましい。より好ましくは、0.1~1質量部である。
[Defoamer]
The radically polymerizable resin composition of the present invention may contain an antifoaming agent in order to improve the generation of foam during molding and the foam residue of the molded article. As an antifoamer, a silicone type antifoamer, a polymer type antifoamer etc. are mentioned.
The amount of the antifoaming agent used is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of the (A) radically polymerizable resin and the (B) radically polymerizable unsaturated monomer. More preferably, it is 0.1 to 1 part by mass.
〔カップリング剤〕
 本発明のラジカル重合性樹脂組成物は、修復対象物である基材への密着性を向上させること等を目的として、カップリング剤を含んでもよい。カップリング剤としては、公知のシラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。
 このようなカップリング剤としては、例えば、R-Si(OR)で表されるシランカップリング剤を挙げることができる。なお、Rとしては、例えば、アミノプロピル基、グリシジルオキシ基、(メタ)アクリルオキシ基、N-フェニルアミノプロピル基、メルカプト基、ビニル基等が挙げられ、Rとしては、例えば、メチル基、エチル基等が挙げられる。
 本発明のラジカル重合性樹脂組成物がカップリング剤を含有する場合、その含有量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体の合計100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.01~5質量部である。
[Coupling agent]
The radically polymerizable resin composition of the present invention may contain a coupling agent for the purpose of improving the adhesion to a substrate to be repaired. Examples of the coupling agent include known silane coupling agents, titanate coupling agents, aluminum coupling agents, and the like.
As such a coupling agent, for example, a silane coupling agent represented by R 5 -Si (OR 6 ) 3 can be mentioned. Examples of R 5 include, for example, aminopropyl group, glycidyloxy group, (meth) acryloxy group, N-phenylaminopropyl group, mercapto group, vinyl group and the like, and as R 6 , for example, methyl group And ethyl groups.
When the radically polymerizable resin composition of the present invention contains a coupling agent, the content thereof is 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. Preferably, it is 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass.
〔光安定剤〕
 本発明のラジカル重合性樹脂組成物は、成形品の長期耐久性を向上させる目的で、光安定剤を使用してもよい。光安定剤としては、紫外線吸収剤やヒンダードアミン系光安定剤が挙げられる。これらは、単独でも、2種以上を組み合わせて用いてもよい。具体的には、紫外線吸収剤としては、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、シアノアクリレート系、サリシレート系等が挙げられ、ヒンダードアミン系光安定剤としては、N-H型、N-CH型、N-Oアルキル型等が挙げられる。
 光安定剤の使用量は、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.01~5質量部の範囲であることが好ましく、より好ましくは0.05~2質量部である。
[Light stabilizer]
The radically polymerizable resin composition of the present invention may use a light stabilizer in order to improve the long-term durability of the molded article. Examples of the light stabilizer include ultraviolet light absorbers and hindered amine light stabilizers. These may be used alone or in combination of two or more. Specific examples of the ultraviolet absorber include benzotriazole, triazine, benzophenone, cyanoacrylate and salicylate. Examples of the hindered amine light stabilizer include NH type and NCH 3 type. And N—O alkyl type.
The amount of the light stabilizer used is in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. Preferably, it is 0.05 to 2 parts by mass.
〔ワックス〕
 本発明のラジカル重合性樹脂組成物は、表面乾燥性を向上する目的でワックスを含むものであってもよい。ワックスとしては、パラフィンワックス類、極性ワックス類などを単独あるいは併用して用いることができ、各種融点の公知の物を使用できる。
 極性ワックス類としては、構造中に極性基および非極性基を合わせ持つものが挙げられる。具体的には、NPS-8070、NPS-9125(日本精蝋社製)、エマノーン3199、3299(花王社製)、BYK(登録商標)-S740、BYK(登録商標)-S750N、BYK(登録商標)-S760、BYK(登録商標)-S780、BYK(登録商標)-S781、BYK(登録商標)-S782等が挙げられる。
 ワックスは、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.05~4質量部含有することが好ましく、0.1~2.0質量部含有することがより好ましい。
〔wax〕
The radically polymerizable resin composition of the present invention may contain a wax for the purpose of improving surface drying. As the wax, paraffin waxes, polar waxes and the like can be used alone or in combination, and known ones having various melting points can be used.
Polar waxes include those having a combination of polar and nonpolar groups in the structure. Specifically, NPS-8070, NPS-9125 (manufactured by Nippon Seiwa Co., Ltd.), Emmonon 3199, 3299 (manufactured by Kao Corporation), BYK (registered trademark)-S740, BYK (registered trademark)-S750N, BYK (registered trademark) ) -S760, BYK (registered trademark)-S780, BYK (registered trademark)-S781, BYK (registered trademark)-S782 and the like.
The wax is preferably contained in an amount of 0.05 to 4 parts by mass with respect to 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. More preferably, it is contained in an amount of 0.
〔難燃剤〕
 本発明のラジカル重合性樹脂組成物は、難燃剤を含むものであってもよい。難燃剤としては、臭素系難燃剤、塩素系難燃剤、リン系難燃剤、無機系難燃剤、イントメッセント系難燃剤、シリコーン系難燃剤などを単独あるいは併用して用いることができ、公知のものを使用することができる。
 また、臭素系難燃剤などのハロゲン系難燃剤は、難燃性を更に向上する目的で三酸化アンチモンと併用して用いることができる。
 難燃剤の添加量は、難燃剤の系統や種類により異なるが、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、1~100質量部含有することが好ましい。
〔Flame retardants〕
The radically polymerizable resin composition of the present invention may contain a flame retardant. As the flame retardants, bromine flame retardants, chlorine flame retardants, phosphorus flame retardants, inorganic flame retardants, intumescent flame retardants, silicone flame retardants and the like can be used alone or in combination, and known flame retardants Can be used.
In addition, a halogen-based flame retardant such as a bromine-based flame retardant can be used in combination with antimony trioxide for the purpose of further improving the flame retardancy.
Although the addition amount of the flame retardant varies depending on the system and type of the flame retardant, it is 1 to 100 parts by mass with respect to a total of 100 parts by mass of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. It is preferable to contain part.
〔可塑剤〕
 本発明の樹脂組成物は、粘度調整、硬化物の柔軟性調整を目的に、可塑剤を含むものであってもよい。可塑剤としては、エポキシ類、ポリエステル類系、フタル酸エステル類系、アジピン酸エステル類系、トリメリット酸エステル類系、リン酸エステル類系、クエン酸エステル類系、セバシン酸エステル類系、アゼライン酸エステル類系、マレイン酸エステル類系、安息香酸エステル類系等、単独あるいは併用して用いることができ、公知のものを使用することができる。
 可塑剤の添加量は、その種類により異なるが、(A)ラジカル重合性樹脂と(B)ラジカル重合性不飽和単量体との合計100質量部に対して、0.01~20質量部含有することが好ましい。より好ましくは、0.1~10質量部含有することが好ましい。
[Plasticizer]
The resin composition of the present invention may contain a plasticizer for the purpose of viscosity adjustment and flexibility adjustment of the cured product. As a plasticizer, epoxys, polyesters, phthalic acid esters, adipic acid esters, trimellitic acid esters, phosphoric acid esters, citric acid esters, sebacic acid esters, azeline Acid esters, maleic acid esters, benzoic acid esters, etc. can be used alone or in combination, and known ones can be used.
Although the addition amount of the plasticizer varies depending on the type, it is contained in 0.01 to 20 parts by mass with respect to 100 parts by mass in total of (A) radically polymerizable resin and (B) radically polymerizable unsaturated monomer. It is preferable to do. More preferably, the content is 0.1 to 10 parts by mass.
 本発明のラジカル重合性樹脂組成物中における、(A)成分、(B)成分、(C)成分、及び(D)成分の含有量の総量は、好ましくは30~100質量%、より好ましくは60~100質量%、さらに好ましくは90~100質量%である。
 また、本発明のラジカル重合性樹脂組成物が(E)硬化剤を含有する場合、本発明のラジカル重合性樹脂組成物中における、(A)成分、(B)成分、(C)成分、(D)成分及び(E)硬化剤の含有量の総量は、好ましくは30~100質量%、より好ましくは60~100質量%、さらに好ましくは90~100質量%である。
The total content of the components (A), (B), (C) and (D) in the radically polymerizable resin composition of the present invention is preferably 30 to 100% by mass, more preferably It is 60 to 100% by mass, more preferably 90 to 100% by mass.
When the radically polymerizable resin composition of the present invention contains (E) a curing agent, the (A) component, the (B) component, the (C) component, and the (C) component in the radically polymerizable resin composition of the present invention The total content of the D) component and the (E) curing agent is preferably 30 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 90 to 100% by mass.
<ラジカル重合性樹脂組成物の粘度>
 本発明のラジカル重合性樹脂組成物の粘度は、無機構造物のクラックへの注入のしやすさ、充填材等への混合のしやすさの観点から、好ましくは10~1000mPa・s/25℃、より好ましくは30~500mPa・s/25℃、さらに好ましくは50~400mPa・s/25℃である。ここで、粘度の測定方法は、実施例に記載されているとおりである。
<Viscosity of Radically Polymerizable Resin Composition>
The viscosity of the radically polymerizable resin composition of the present invention is preferably 10 to 1000 mPa · s / 25 ° C. from the viewpoint of ease of injection into cracks of the inorganic structure and ease of mixing into fillers and the like. More preferably, the viscosity is 30 to 500 mPa · s / 25 ° C., further preferably 50 to 400 mPa · s / 25 ° C. Here, the method of measuring the viscosity is as described in the examples.
<ラジカル重合性樹脂組成物の製造方法>
 本発明のラジカル重合性樹脂組成物の製造方法は、各成分の混合順序は特に問わないが、効率よく均一混合物を得るための作業性の観点から、またラジカル重合性組成物としての粘度調整など、目標物性範囲に組成物を調整する際の作業性の観点から、(A)成分を合成後に(B)成分の一部を加えて混合し、(A)成分を低粘度化してから、残りの(B)成分とその他成分を加えて混合することが好ましい。あるいは、(A)成分の合成時に希釈剤として(B)成分の一部を使用し、(A)成分と一部(B)成分の混合物を得てから、残りの(B)成分とその他成分を加えて混合することが好ましい。低粘度化の際の(A)成分と一部(B)成分の混合割合は特に限定されないが、好ましくは質量比で95:5~20:80、より好ましくは85:15~30:70である。
 (A)成分と一部(B)成分の混合物の粘度としては、好ましくは50~4000mPa・s、より好ましくは80~3000mPa・s、さらに好ましくは100~2000mPa・sである。粘度の測定方法は、実施例に記載されているとおりである。あらかじめ上記範囲の粘度に調整しておけば、残りの成分を混合して本発明のラジカル重合性樹脂組成物とする際に、短時間で均一に混合することができる。
<Method of producing radically polymerizable resin composition>
The method for producing the radically polymerizable resin composition of the present invention is not particularly limited to the order of mixing of the components, but from the viewpoint of workability for efficiently obtaining a homogeneous mixture, viscosity adjustment as a radically polymerizable composition, etc. From the viewpoint of workability when adjusting the composition to the target physical property range, a part of the component (B) is added and mixed after synthesis of the component (A), and the viscosity of the component (A) is reduced, It is preferable to add and mix the (B) component of and other components. Alternatively, a part of the component (B) is used as a diluent at the time of synthesis of the component (A) to obtain a mixture of the component (A) and the part (B), and then the remaining component (B) and other components are obtained. Is preferably added and mixed. The mixing ratio of the component (A) to the component (B) at the time of lowering the viscosity is not particularly limited, but it is preferably 95: 5 to 20:80, more preferably 85:15 to 30:70 by mass ratio. is there.
The viscosity of the mixture of the component (A) and the partial component (B) is preferably 50 to 4000 mPa · s, more preferably 80 to 3000 mPa · s, and still more preferably 100 to 2000 mPa · s. The method of measuring the viscosity is as described in the examples. If the viscosity is adjusted in advance to the above-mentioned range, the remaining components can be mixed uniformly to form the radically polymerizable resin composition of the present invention in a short time.
[構造物修復材]
 本発明のラジカル重合性樹脂組成物は、該ラジカル重合性樹脂組成物を含む構造物修復材として使用することができる。
 構造物としては、例えば、コンクリート、アスファルトコンクリート、モルタル、金属等の無機構造物や木材が挙げられる。特に好ましくは、高速道路や鉄道等のスラブ式軌道の構造物修復材として使用することができる。
[Structure restoration material]
The radically polymerizable resin composition of the present invention can be used as a structure repair material containing the radically polymerizable resin composition.
Examples of the structure include inorganic structures such as concrete, asphalt concrete, mortar, metal and the like, and wood. Particularly preferably, it can be used as a structural restoration material for slab type tracks such as expressways and railways.
<充填材(F)>
 本発明の構造物修復材は、本発明のラジカル重合性樹脂組成物を構造物修復材として使用することができるが、本発明のラジカル重合性樹脂組成物に充填材(F)を含ませて、構造物修復材とすることができる。充填材(F)としては、特に限定されず、例えば、無機充填材、及び有機充填材を挙げることができる。
 無機充填材としては、セメント、生石灰、川砂利、川砂、海砂利、海砂、山砂利、砕石、砕砂、珪砂等のシリカを主成分とする砂、炭酸カルシウム、セラミック、ガラス屑等の人工骨材、タルク、ゼオライト、活性炭等の公知のものが使用できるが、流動性、材料コスト節減、材料入手の観点から珪砂、炭酸カルシウム、タルク、ヒュームドシリカとの組み合わせが好ましい。珪砂としては、天然珪砂、蛙目珪砂、人造珪砂等を使用できる。珪砂のサイズとしては、3号~8号程度のものを使用できる。炭酸カルシウムとしては、合成炭酸カルシウム、軽質炭酸カルシウム、重質炭酸カルシウムを使用できる。炭酸カルシウムの平均粒子径としては、特に限定されることはなく、一般的に使用される範囲のものを使用できる。また、難燃性を付与する観点から、水酸化アルミニウムを用いることができる。また、着色の観点から、酸化チタンや酸化鉄等の着色剤や無機顔料を用いることもでき、更に、モレキュラーシーブを用いることもできる。無機充填材の粒度は、1nm~5000μmであることが好ましく、10nm~3000μmであることがより好ましい。無機充填材の粒度を上記範囲内とすると、良好な作業性や物性が得られる。
 有機充填材としては、アマイド系ワックス、吸水ポリマー等の有機系充填材を用いることもできる。
<Filler (F)>
Although the structure restorative material of the present invention can use the radically polymerizable resin composition of the present invention as a structure restorative material, the filler (F) is contained in the radically polymerizable resin composition of the present invention , Can be a structural restoration material. The filler (F) is not particularly limited, and examples thereof include inorganic fillers and organic fillers.
As the inorganic filler, cement, quicklime, river gravel, river sand, sea gravel, sea sand, mountain gravel, crushed stone, crushed sand, artificial bone such as calcium carbonate, ceramic, glass waste, etc. containing silica as a main component Known materials such as wood, talc, zeolite and activated carbon can be used, but from the viewpoint of flowability, material cost saving and material availability, a combination with silica sand, calcium carbonate, talc and fumed silica is preferred. As silica sand, natural silica sand, square grain silica sand, artificial silica sand etc. can be used. As the size of silica sand, those of about 3 to 8 can be used. As calcium carbonate, synthetic calcium carbonate, light calcium carbonate and ground calcium carbonate can be used. The average particle size of calcium carbonate is not particularly limited, and those in a generally used range can be used. Moreover, aluminum hydroxide can be used from a viewpoint of providing a flame retardance. Further, from the viewpoint of coloring, colorants such as titanium oxide and iron oxide and inorganic pigments can be used, and molecular sieves can also be used. The particle size of the inorganic filler is preferably 1 nm to 5000 μm, and more preferably 10 nm to 3000 μm. When the particle size of the inorganic filler is in the above range, good workability and physical properties can be obtained.
As the organic filler, an organic filler such as an amide wax or a water absorbing polymer can also be used.
 また、前記充填材(F)として繊維を使用することもできる。繊維の具体例としては、ガラス繊維、カーボン繊維、塩基性硫酸マグネシウム繊維、ビニロン繊維、ナイロン繊維、アラミド繊維、ポリプロピレン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維、セルロース繊維、スチール繊維等の金属繊維、アルミナ繊維等のセラミック繊維、バサルト繊維等の天然繊維等が挙げられる。これらの繊維は、例えば、平織り、朱子織り、不織布、マット、ロービング、チョップ、フレーク、編み物、組み物、およびこれらの複合構造物等から選ばれる繊維構造体、二軸メッシュ、三軸メッシュの形態で使用することが好ましい。例えば、前記繊維構造体にラジカル重合性組成物を含浸し、場合によっては予備重合してプリプレグ化して使用することができる。
 メッシュとしては、例えば、二軸メッシュ、三軸メッシュが使用される。二軸メッシュの正方形の一辺の長さ(目合)及び三軸メッシュの正三角形の一辺の長さ(目合)は、それぞれ5mm以上が好ましく、10~20mmがより好ましい。二軸メッシュ又は三軸メッシュを使用することにより軽量で経済性、施工性、耐久性に優れた構造物補強材料を得ることができる。
 これらの繊維は、構造物を補強したりする場合に使用することが好ましい。
 構造物補強等の用途では、繊維の中でも強度、コストに優れるガラス繊維、セルロース繊維等が、下地の劣化状態を外側から目視で検査できるという点から好ましい。また、強度、軽量化に優れる点から、カーボン繊維も好ましい。前記充填材(F)は、1種単独で用いてもよく、2種以上を併用してもよい。
Moreover, a fiber can also be used as said filler (F). Specific examples of the fibers include glass fibers, carbon fibers, basic magnesium sulfate fibers, vinylon fibers, nylon fibers, aramid fibers, polypropylene fibers, polyester fibers such as acrylic fibers and polyethylene terephthalate fibers, metals such as cellulose fibers and steel fibers Fibers, ceramic fibers such as alumina fibers, natural fibers such as basalt fibers, and the like can be mentioned. These fibers are, for example, in the form of a fiber structure selected from plain weave, satin weave, non-woven fabric, mat, roving, chops, flakes, knits, composites, composite structures thereof, etc., biaxial mesh, triaxial mesh It is preferable to use in For example, the fiber structure may be impregnated with a radically polymerizable composition, and in some cases, it may be prepolymerized to be used as a prepreg.
As a mesh, for example, a biaxial mesh or a triaxial mesh is used. The length of one side (gross) of the square of the biaxial mesh and the length (gross) of one side of the regular triangle of the triaxial mesh are preferably 5 mm or more, and more preferably 10 to 20 mm. By using a biaxial mesh or a triaxial mesh, it is possible to obtain a structural reinforcement material that is lightweight and is excellent in economy, workability, and durability.
These fibers are preferably used when reinforcing a structure.
Among the fibers, in applications such as structure reinforcement, glass fibers, cellulose fibers and the like, which are excellent in strength and cost, are preferable in that the deterioration state of the substrate can be visually inspected from the outside. In addition, carbon fiber is also preferable from the viewpoint of strength and weight reduction. The said filler (F) may be used individually by 1 type, and may use 2 or more types together.
 本発明の構造物修復材が充填材(F)を含有する場合、その配合量は、上記(A)成分と(B)成分の合計100質量部に対して、1~700質量部が好ましく、10~600質量部がより好ましく、50~500質量部がさらに好ましい。充填材(F)として繊維を用いる場合は、その配合量は、(A)成分と(B)成分の合計100質量部に対して、5~400質量部であることが好ましく、15~300質量部であることがより好ましく、30~250質量部であることが更に好ましい。充填材の配合割合が上記範囲内であれば、硬化性や作業性が良く、好ましい。 When the structure restoration material of the present invention contains a filler (F), the compounding amount thereof is preferably 1 to 700 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B), The amount is more preferably 10 to 600 parts by mass, further preferably 50 to 500 parts by mass. When fibers are used as the filler (F), the blending amount is preferably 5 to 400 parts by mass, and 15 to 300 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). It is more preferably part, and still more preferably 30 to 250 parts by mass. If the compounding ratio of the filler is within the above range, curability and workability are good, which is preferable.
 構造物の修復方法は、特に限定されないが、例えば、本発明の構造物修復材を、コンクリート、アスファルトコンクリート、モルタル、木材、金属等の修復箇所に塗布し、乾燥、硬化させることにより行うことができる。構造物修復材の塗布方法は、特に限定されないが、例えば、ディッピングによる塗布方法、スプレーによる塗布方法、ローラーによる塗布方法、ブラシ、刷毛やヘラ等の器具を用いた塗布方法等が適用できる。
 構造物修復材の塗布量は、特に限定されないが、修復箇所の大きさ、構造物修復材の密着性、該構造物修復材の硬化体の強度などを考慮して適宜調整する。
 構造物修復材を塗布した後の乾燥方法は、特に限定されないが、自然乾燥する方法、又は構造物修復材の硬化体の特性が劣化しない範囲で加熱する方法が用いられる。
 また、本発明の構造物修復材を構造物のクラック発生箇所に直接注入し、乾燥、硬化させることにより修復することもできる。
Although the method of repairing the structure is not particularly limited, for example, the method of the present invention may be carried out by applying the structure restorative material of the present invention to a restoration site such as concrete, asphalt concrete, mortar, wood, metal, etc., drying and curing. it can. The method of applying the structure restoration material is not particularly limited, but, for example, a coating method by dipping, a coating method by spray, a coating method by roller, a coating method using an instrument such as a brush, brush or spatula, and the like can be applied.
The application amount of the structure restoration material is not particularly limited, but is appropriately adjusted in consideration of the size of the restoration portion, the adhesion of the structure restoration material, the strength of the cured product of the structure restoration material, and the like.
Although the drying method after applying a structure restorative material is not particularly limited, a method of natural drying or a method of heating within a range in which the properties of the cured product of the structure restorative material do not deteriorate are used.
Alternatively, the structure restoration material of the present invention can be restored by directly injecting it into a cracked part of the structure, and drying and hardening it.
 以下、実施例に基づいて本発明を説明するが、本発明は実施例により制限されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited by the examples.
<合成例>
 後述するとおり、以下の原料を用いて、(A)ラジカル重合性樹脂であるウレタンメタクリレート樹脂(UM1)を合成し、次いで(B)ラジカル重合性不飽和単量体としてメチルメタクリレート(三菱レイヨン(株)製、製品名:アクリルエステルM)を混合して、(A)成分と(B)成分との混合物を得た。
<Composition example>
As described later, a urethane methacrylate resin (UM1), which is a radically polymerizable resin, is synthesized using the following raw materials, and then methyl methacrylate (Mitsubishi Rayon (stock) is used as a radically polymerizable unsaturated monomer (B) Product name: Acrylic ester M) was mixed to obtain a mixture of the component (A) and the component (B).
 ウレタンメタクリレート樹脂(UM1)の原料を以下に示す。
(多価アルコール)
 ポリプロピレングリコール1(重量平均分子量1000)、三井化学(株)製、製品名:アクトコールD-1000
 ポリプロピレングリコール2(重量平均分子量2000)、三井化学(株)製、製品名:アクトコールD-2000
(多価イソシアネート)
 ジフェニルメタンジイソシアネート
(水酸基含有(メタ)アクリレート)
 2-ヒドロキシプロピルメタクリレート
 次に、ウレタンメタクリレート樹脂(UM1)の合成例について具体的に説明する。
The raw material of urethane methacrylate resin (UM1) is shown below.
(Polyhydric alcohol)
Polypropylene glycol 1 (weight average molecular weight 1000), manufactured by Mitsui Chemicals, Inc., product name: Actocal D-1000
Polypropylene glycol 2 (weight average molecular weight 2000), manufactured by Mitsui Chemicals, Inc., product name: Actocal D-2000
(Polyvalent isocyanate)
Diphenylmethane diisocyanate (hydroxyl group containing (meth) acrylate)
2-Hydroxypropyl Methacrylate Next, a synthesis example of the urethane methacrylate resin (UM1) will be specifically described.
(合成例1)
 撹拌器、還流冷却管、気体導入管及び温度計を備えた3Lの4つ口フラスコに、ジフェニルメタンジイソシアネート:500g(2.0mol)、アクトコールD-1000(三井化学(株)製ポリプロピレングリコール1:重量平均分子量1000):100g(0.1mol)、アクトコールD-2000(三井化学(株)製ポリプロピレングリコール2:重量平均分子量2000):1800g(0.9mol)、及びジブチル錫ジラウレート:0.2gを仕込み、60℃で4時間攪拌して反応させた。次いで、その反応物に、2-ヒドロキシプロピルメタクリレート:288g(2.0mol)を2時間かけて滴下しながら撹拌し、滴下終了後5時間撹拌して反応させ、ウレタンメタクリレート樹脂(UM1)を得た。得られたウレタンメタクリレート樹脂(UM1)の下記の測定方法による重量平均分子量は、9055であった。
 次いで、このウレタンメタクリレート樹脂(UM1)にメチルメタクリレート:1035gを添加し、(A)成分と(B)成分との混合物を得た。また、下記の測定方法による混合物の25℃での粘度が300mPa・sであり、液比重が1.02であった。
Synthesis Example 1
In a 3 L four-necked flask equipped with a stirrer, a reflux condenser, a gas inlet tube and a thermometer, 500 g (2.0 mol) of diphenylmethane diisocyanate, Actocol D-1000 (Mitsui Chemical Co., Ltd. polypropylene glycol 1: Weight average molecular weight 1000): 100 g (0.1 mol), Actocol D-2000 (Mitsui Chemical Co., Ltd. polypropylene glycol 2: weight average molecular weight 2000): 1800 g (0.9 mol), and dibutyltin dilaurate: 0.2 g Were reacted at 60.degree. C. for 4 hours with stirring. Subsequently, the reaction product was stirred while adding 2-hydroxypropyl methacrylate: 288 g (2.0 mol) dropwise over 2 hours, and after completion of the dropwise addition, the reaction was stirred for 5 hours to be reacted to obtain a urethane methacrylate resin (UM 1) . The weight average molecular weight of the obtained urethane methacrylate resin (UM1) according to the following measurement method was 9055.
Next, 1035 g of methyl methacrylate was added to the urethane methacrylate resin (UM1) to obtain a mixture of the component (A) and the component (B). Moreover, the viscosity at 25 degrees C of the mixture by the following measuring method was 300 mPa * s, and the liquid specific gravity was 1.02.
<重量平均分子量の測定>
 ゲル・パーミエーション・クロマトグラフィー(昭和電工(株)製Shodex GPC-101)を用いた。重量平均分子量は、下記条件にて常温(23℃)で測定し、ポリスチレン換算にて算出した。
(測定条件)
 カラム:昭和電工(株)製LF-804、2本
 カラム温度:40℃
 試料:被測定物の0.4質量%テトラヒドロフラン溶液
 流量:1ml/分
 溶離液:テトラヒドロフラン
<Measurement of weight average molecular weight>
Gel permeation chromatography (Shodex GPC-101 manufactured by Showa Denko KK) was used. The weight average molecular weight was measured at normal temperature (23 ° C.) under the following conditions, and calculated in terms of polystyrene.
(Measurement condition)
Column: Showa Denko LF-804, 2 columns Column temperature: 40 ° C
Sample: 0.4% by mass solution of the substance to be measured in tetrahydrofuran Flow rate: 1 ml / min Eluent: tetrahydrofuran
<粘度の測定>
 東機産業(株)製RE-85型粘度計、コーンプレート型、コーンロータ1°34’×R24を用いて、25℃環境下の粘度を回転数100rpmにて測定した。
<Measurement of viscosity>
The viscosity under a 25 ° C. environment was measured at a rotational speed of 100 rpm using a Toki Sangyo Co., Ltd. RE-85 viscometer, a cone-plate type, and a cone rotor 1 ° 34 ′ × R24.
<液比重の測定>
 JIS K 7112-1999の附属書2「プラスチック-液状樹脂-水中置換法」に準じて、アルファーミラージュ(株)製電子比重計MD-200Sを用いて、23℃における液比重を測定した。
<Measurement of liquid specific gravity>
The liquid specific gravity at 23 ° C. was measured using an electronic gravimeter MD-200S manufactured by Alpha Mirage Co., Ltd. according to JIS K 7112 -1999 , Annex 2, “Plastic-liquid resin-substitution method in water”.
実施例1~17
 原料として、合成例1で得られた混合物と、必要に応じて前記(B)ラジカル重合性不飽和単量体と、以下の(C)アミン系硬化促進剤、(D)多官能チオール化合物、(E)硬化剤をラジカル重合性樹脂組成物の原料とした。
(C)アミン系硬化促進剤
 N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、和光純薬工業(株)製、製品名:アクセルレーターA
(D)多官能チオール化合物
(1)ペンタエリスリトールテトラキス(3-メルカプトブチレート)、4官能2級チオール、昭和電工(株)製、製品名:カレンズMT PE1
(2)トリメチロールプロパン-トリス(3-メルカプトブチレート)3官能2級チオール、昭和電工(株)製、製品名:TPMB
(3)1,4-ビス(3-メルカプトブチリルオキシ)ブタン、2官能2級チオール、昭和電工(株)製、製品名:カレンズMT BD1
(4)ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、4官能1級チオール、SC有機化学(株)製、製品名:PEMP
(5)トリメチロールプロパントリスチオプロピオネート、3官能1級チオール、淀化学(株)製、製品名:TMTP
(E)硬化剤
 ジベンゾイルパーオキサイド、化薬アクゾ(株)製、製品名:パーカドックスCH-50L
Examples 1 to 17
As a raw material, the mixture obtained in Synthesis Example 1 and, if necessary, the (B) radically polymerizable unsaturated monomer, the following (C) amine-based curing accelerator, (D) polyfunctional thiol compound, (E) The curing agent was used as a raw material of the radically polymerizable resin composition.
(C) Amine curing accelerator N, N-bis (2-hydroxypropyl) -p-toluidine, manufactured by Wako Pure Chemical Industries, Ltd., Product name: Accelerator A
(D) Polyfunctional thiol compound (1) Pentaerythritol tetrakis (3-mercaptobutyrate), tetrafunctional secondary thiol, manufactured by Showa Denko KK, product name: Karenz MT PE1
(2) Trimethylolpropane-tris (3-mercaptobutyrate) trifunctional secondary thiol, manufactured by Showa Denko KK, product name: TPMB
(3) 1,4-bis (3-mercaptobutyryloxy) butane, bifunctional secondary thiol, manufactured by Showa Denko KK, product name: Kalens MT BD 1
(4) Pentaerythritol tetrakis (3-mercaptopropionate), tetrafunctional primary thiol, SC Organic Chemical Co., Ltd. product name: PEMP
(5) Trimethylolpropane tristhiopropionate, trifunctional primary thiol, Sakai Chemical Co., Ltd. product name: TMTP
(E) Hardening agent Dibenzoyl peroxide, Kayaku Akzo Co., Ltd. product name: Percadox CH-50L
 前記(A)成分と(B)成分との混合物に、(B)ラジカル重合性不飽和単量体を添加して、(A)成分/(B)成分の質量比が65/35となるようにして、(A)成分及び(B)成分からなる予備試料を得た。次いで、この予備試料100質量部、すなわち、(A)成分及び(B)成分の合計100質量部に対して、(C)アミン系硬化促進剤、(D)多官能チオール化合物及び(E)硬化剤を、この順に表1~3に示す割合で加えて撹拌し、ラジカル重合性樹脂組成物を得た。このようにして得られたラジカル重合性樹脂組成物について、下記の方法により、硬化性を測定し、評価した。その結果を表1~3に示す。 (B) A radically polymerizable unsaturated monomer is added to the mixture of the (A) component and the (B) component so that the mass ratio of the (A) component / (B) component becomes 65/35. Then, a preliminary sample consisting of the (A) component and the (B) component was obtained. Then, (C) an amine-based curing accelerator, (D) a polyfunctional thiol compound, and (E) curing, per 100 parts by mass of this preliminary sample, that is, 100 parts by mass in total of the components (A) and (B) The agents were added in this order at the ratio shown in Tables 1 to 3 and stirred to obtain a radically polymerizable resin composition. With respect to the radically polymerizable resin composition thus obtained, the curability was measured and evaluated by the following method. The results are shown in Tables 1 to 3.
比較例1
 (D)多官能チオール化合物を含まないこと以外は、実施例1と同様にして、ラジカル重合性樹脂組成物を得た。ラジカル重合性樹脂組成物の各成分の含有量を表1に示した。このようにして得られたラジカル重合性樹脂組成物について、同様にして硬化性を測定し、評価した。その結果を表1に示す。
Comparative Example 1
(D) A radically polymerizable resin composition was obtained in the same manner as in Example 1 except that the polyfunctional thiol compound was not contained. The content of each component of the radically polymerizable resin composition is shown in Table 1. With respect to the radically polymerizable resin composition thus obtained, the curability was similarly measured and evaluated. The results are shown in Table 1.
<25℃環境下での硬化性測定>
 以下に示す評価法により、ゲル化時間、硬化温度、硬化時間の評価を行った。
 樹脂組成物を25℃に調整して試験管(外径18mm、長さ165mm)に深さ100mmまで入れ、25℃に設定した恒温槽に設置し、熱電対により、樹脂組成物の温度を測定した。樹脂組成物の温度が25℃から35℃になるまでにかかる時間を測定し、ゲル化時間(単位:分)とした。
 また、樹脂組成物が最高発熱温度に到達するまでの時間を最小硬化時間、その時の発熱温度を硬化温度として定義し、JIS K-6901-2008に準じて測定した。
<10℃環境下での硬化性測定>
 樹脂組成物の温度および測定環境温度を10℃とする以外は、上記25℃硬化性と同様にして評価を行った。
<Curableness measurement under 25 ° C. environment>
The gelation time, the curing temperature and the curing time were evaluated by the evaluation methods shown below.
The resin composition is adjusted to 25 ° C., placed in a test tube (outer diameter 18 mm, length 165 mm) to a depth of 100 mm, placed in a thermostatic chamber set at 25 ° C., and the temperature of the resin composition is measured by a thermocouple. did. The time taken for the temperature of the resin composition to reach 25 ° C. to 35 ° C. was measured and used as the gelation time (unit: minute).
The minimum cure time the time until the resin composition to reach the maximum exothermic temperature, defines a heating temperature at that time as a curing temperature was measured according to JIS K-6901 -2008.
<Curableness measurement under 10 ° C. environment>
Evaluation was performed in the same manner as the 25 ° C. curability except that the temperature of the resin composition and the measurement environmental temperature were set to 10 ° C.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1~3に示すように、多官能チオール化合物を含有する本発明のラジカル重合性樹脂組成物は、25℃及び低温である10℃環境下においてもゲル化時間及び最小硬化時間で示されるとおり、速硬化性が得られることが分かった。
 特に、多官能チオール化合物の総量が0.5質量部以上の実施例は、硬化速度がより早くなることが分かった。また、0.3質量部以上の実施例では、連鎖移動剤効果発現により、ゲル化時間から最小硬化時間までの時間が延びる傾向を示し、マイルドな硬化プロセスが得られたことにより、急激な硬化収縮を緩和できることが分かった。
 これに対し、多官能チオール化合物を含まない比較例1のラジカル重合性樹脂組成物は、実施例1~22の樹脂組成物と比較して、硬化性が遅く、ゲル化時間から最小硬化時間までの時間が短いことが分かった。
As shown in Tables 1 to 3, the radically polymerizable resin composition of the present invention containing a multifunctional thiol compound is as shown by the gelation time and the minimum curing time even in a 10 ° C. environment at 25 ° C. and a low temperature. It was found that fast curing was obtained.
In particular, it was found that in the examples where the total amount of polyfunctional thiol compounds was 0.5 parts by mass or more, the curing rate became faster. Moreover, in the examples of 0.3 parts by mass or more, the chain transfer agent effect shows a tendency to extend the time from gelation time to the minimum curing time, and a rapid curing process is obtained because a mild curing process is obtained. It has been found that the contraction can be alleviated.
On the other hand, the radically polymerizable resin composition of Comparative Example 1 which does not contain a polyfunctional thiol compound is slower in curing than the resin composition of Examples 1 to 22, and from the gelation time to the minimum curing time. It turned out that the time of was short.
実施例18~34
 実施例1で用いた(A)成分/(B)成分の質量比が65/35の混合物と前述の(C)アミン系硬化促進剤、(D)多官能チオール化合物、(E)硬化剤及び以下に記載する(F)充填材を用いた。
(F)充填材
(1)シリカサンド、(有)竹折砿業所製、製品名:珪砂8号
(2)炭酸カルシウム、日東粉化工業(株)、製品名:Sライト#1200、平均粒子径:2.6μm
Examples 18 to 34
The mixture of (A) component / (B) component by mass ratio of 65/35 used in Example 1 and the above-mentioned (C) amine curing accelerator, (D) polyfunctional thiol compound, (E) curing agent and The filler (F) described below was used.
(F) Filler (1) Silica sand, manufactured by Takeori Works, product name: Silica sand No. 8 (2) calcium carbonate, Nitto Powder Co., Ltd., product name: S light # 1200, average particle size Diameter: 2.6 μm
 実施例1と同様にして、表4~6に示す割合で(A)成分及び(B)成分の合計100質量部に対して、(C)アミン系硬化促進剤、(D)多官能チオール化合物及び(E)硬化剤を、この順に加えて撹拌し、(F)充填材を含まないラジカル重合性樹脂組成物を得た。さらに表4~6に示す割合で(F)充填材を加えて撹拌し、構造物修復材を得た。
 構造物修復材の各成分の含有量を表4~6に示した。
 その後、得られた構造物修復材を用いて、以下に示す方法により接着試験用の試験体を作製した。
 このようにして得られた構造物修復材について、下記の方法により、接着性を測定し、接着性の評価とした。その結果を表4~6に示す。
In the same manner as in Example 1, (C) an amine-based curing accelerator and (D) a multifunctional thiol compound with respect to a total of 100 parts by mass of the (A) component and the (B) component in the proportions shown in Tables 4 to 6 And (E) A hardening | curing agent was added in this order and it stirred, and obtained the radically polymerizable resin composition which does not contain the (F) filler. Further, (F) filler was added at a ratio shown in Tables 4 to 6 and stirred to obtain a structure restorative material.
The contents of each component of the structure restoration material are shown in Tables 4 to 6.
Then, the test body for adhesion tests was produced by the method shown below using the obtained structure restorative material.
The adhesiveness of the structure restorative material thus obtained was measured by the following method to evaluate the adhesiveness. The results are shown in Tables 4 to 6.
<接着試験用試験体の作製方法>
 後述する曲げ荷重試験用試験体の作製方法で用いた長さ×幅×厚み=70mm×70mm×20mmのJIS K 5600セメントモルタル板1枚の上に、上記で得られた構造物修復材を環境温度25℃、湿度50%環境下で3mmの厚みで成型し、上部をフィルムで密閉した状態で硬化させた。その後、同環境下で24時間養生した。次に、表面のフィルムを剥がし、表面を#240サンドペーパーで目荒らし、表面をエアーブローし、アセトン脱脂により洗浄した。その後、接着試験用の直径20mmのドリーをエポキシ接着剤にて固着し、環境温度25℃、湿度50%環境下で接着剤の強度発現のため、5時間固着養生して接着試験用試験体とした。
<Method of preparing test specimen for adhesion test>
The structure restoration material obtained above is environment-friendly on one JIS K 5600 cement mortar board of length × width × thickness = 70 mm × 70 mm × 20 mm used in the method for preparing a test specimen for bending load test described later. It was molded with a thickness of 3 mm under a temperature of 25 ° C. and a 50% humidity environment, and was cured with the upper part sealed with a film. Then, I was cured for 24 hours under the same environment. Next, the film on the surface was peeled off, the surface was roughened with # 240 sandpaper, the surface was air blown and washed by acetone degreasing. After that, a dolly with a diameter of 20 mm for adhesion test is fixed with an epoxy adhesive, and it is fixed for 5 hours to cure the adhesive in an environment temperature of 25 ° C and humidity 50% environment. did.
<接着試験>
 上記で得られた接着試験用試験体について、温度23℃、湿度50%の試験環境で、Elcometer製アドヒージョンテスター、測定範囲0~7.0MPa、手動式を用いて、接着力を測定した。接着力の測定は、接着試験用試験体について2回ずつ行った。そして、2回の測定結果の平均値を、接着力の評価に使用した。
<Adhesive test>
The adhesion of the test specimen for adhesion test obtained above was measured in a test environment of temperature 23 ° C. and humidity 50% using an adhesion tester made by Elcometer, measurement range 0 to 7.0 MPa, using a manual method. . The adhesion was measured twice for each of the adhesion test specimens. And the average value of two measurement results was used for evaluation of adhesive force.
比較例2
 (D)多官能チオール化合物を含まないこと以外は、実施例18と同様にして、構造物修復材を得た。その後、実施例18と同様にして、接着試験用試験体を作製し、接着試験を行った。また、比較例2の硬化性は、上記同様に、実施例18と近似するように重合禁止剤により調整し、ゲル化時間7.0minとすることで硬化性の違いによる影響を無くした。その結果を表4に示す。
Comparative example 2
(D) A structure restorative material was obtained in the same manner as in Example 18 except that the polyfunctional thiol compound was not contained. Thereafter, in the same manner as in Example 18, a test sample for adhesion test was produced and an adhesion test was conducted. Further, the curability of Comparative Example 2 was adjusted with a polymerization inhibitor so as to be similar to Example 18 as described above, and the influence of the difference in curability was eliminated by setting the gelation time to 7.0 min. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表4~6に示すように、実施例18~34の多官能チオール化合物を含有する本発明の接着試験用試験体は、強い接着性が得られることが分かった。
これに対し、比較例2は、実施例18~34の接着試験用試験体と比較して、接着性が低かった。
As shown in Tables 4 to 6, it was found that the adhesion test specimens of the present invention containing the polyfunctional thiol compounds of Examples 18 to 34 can obtain strong adhesiveness.
On the other hand, Comparative Example 2 had lower adhesion as compared with the adhesion test specimens of Examples 18 to 34.
実施例35~41
 実施例1で用いた(A)成分/(B)成分の質量比が65/35の混合物と前述の(C)アミン系硬化促進剤、(D)多官能チオール化合物、(E)硬化剤及び以下に記載する(F)充填材を用いた。
(F)充填材
(1)シリカサンド、(有)竹折砿業所製、製品名:珪砂8号
(2)炭酸カルシウム、日東粉化工業(株)、製品名:Sライト#1200、平均粒子径:2.6μm
Examples 35 to 41
The mixture of (A) component / (B) component by mass ratio of 65/35 used in Example 1 and the above-mentioned (C) amine curing accelerator, (D) polyfunctional thiol compound, (E) curing agent and The filler (F) described below was used.
(F) Filler (1) Silica sand, manufactured by Takeori Works, product name: Silica sand No. 8 (2) calcium carbonate, Nitto Powder Co., Ltd., product name: S light # 1200, average particle size Diameter: 2.6 μm
 実施例1と同様にして、表7に示す割合で(A)成分及び(B)成分の混合物100質量部に対して、(C)アミン系硬化促進剤、(D)多官能チオール化合物及び(E)硬化剤を、この順に表7に示す割合で加えて撹拌し、(F)充填材を含まないラジカル重合性樹脂組成物を得た。さらに表7に示す割合で(F)充填材を加えて撹拌し、構造物修復材を得た。
 構造物修復材の各成分の含有量を表7に示した。
 その後、得られた構造物修復材を用いて、以下に示す方法により曲げ荷重試験用の試験体を作製した。
 このようにして得られた構造物修復材を用いて得られた曲げ荷重試験用の試験体について、下記の方法により、曲げ荷重を測定し、修復した構造物の曲げ強さの評価とした。その結果を表7に示す。
In the same manner as in Example 1, (C) an amine-based curing accelerator, (D) a polyfunctional thiol compound, and (C) based on 100 parts by mass of the mixture of the (A) component and the (B) component in the proportions shown in Table 7 E) A curing agent was added in this order at a ratio shown in Table 7 and stirred to obtain a radically polymerizable resin composition (F) containing no filler. Further, (F) filler was added at a ratio shown in Table 7 and stirred to obtain a structure restorative material.
The content of each component of the structure restorative material is shown in Table 7.
Then, the test body for a bending load test was produced by the method shown below using the obtained structure restorative material.
With respect to the test body for a bending load test obtained using the structure restoration material obtained in this manner, the bending load was measured by the following method, and the bending strength of the restored structure was evaluated. The results are shown in Table 7.
<曲げ荷重試験用試験体の作製方法>
 図1に示すように、長さ×幅×厚み=70mm×70mm×20mmのJIS K 5600セメントモルタル板2枚(A、B)を20mm幅の空間を空けて平面に並べ、#240サンドペーパーで側面(構造物修復材と接触する面)を目荒らし、表面をエアーブローにより洗浄した。得られた長さ×幅×厚み=70mm×20mm×20mmの空間部へ、上記で得られた構造物修復材を環境温度25℃、湿度50%環境下で注入し、上部をフィルムで密閉した状態で硬化させた。その後、同環境下で24時間養生し、図2で示す曲げ荷重試験用試験体を得た。
<Method of preparing test specimen for bending load test>
As shown in FIG. 1, two JIS K 5600 cement mortar boards (A, B) of length × width × thickness = 70 mm × 70 mm × 20 mm are arranged in a plane with a space of 20 mm wide and # 240 sandpaper The side (surface in contact with the structure restoration material) was roughened and the surface was cleaned by air blow. The structure restorative material obtained above was injected into the space of length x width x thickness = 70 mm x 20 mm x 20 mm at an environment temperature of 25 ° C and a humidity of 50%, and the upper part was sealed with a film. It was cured in the state. Thereafter, it was aged for 24 hours under the same environment to obtain a specimen for a bending load test shown in FIG.
<曲げ荷重試験>
 上記で得られた曲げ荷重試験用試験体について、温度23℃、湿度50%の試験環境で、(株)オリエンテック製テンシロンUTC-1Tを用いて、支点間距離40mm、試験速度1mm/minで、曲げ荷重試験用試験体の構造物修復材硬化部分の中心部表面線状部分(長さ70mm)に荷重をかけて曲げ荷重を測定した。荷重試験用試験体が破断するまで荷重をかけ、破断するまでの最大荷重を測定した。曲げ荷重の測定は、曲げ荷重試験用試験体について2回ずつ行った。そして、2回の測定結果の平均値を、曲げ荷重の評価に使用した。曲げ荷重試験(N)の値が高いほど、修復した構造物の曲げ強さが優れていることを示す。
<Bending load test>
With respect to the test specimen for bending load test obtained above, in a test environment with a temperature of 23 ° C. and a humidity of 50%, using Tensilon UTC-1T manufactured by ORIENTEC Co., Ltd., the distance between supporting points is 40 mm and the test speed is 1 mm / min The bending load was measured by applying a load to a central surface portion (length 70 mm) of the central portion of the cured structure of the structure-repairing material of the test sample for bending load test. A load was applied until the test specimen for load test broke, and the maximum load before breaking was measured. The measurement of the bending load was performed twice for each of the test specimens for bending load test. And the average value of the measurement result of 2 times was used for evaluation of bending load. The higher the value of the bending load test (N), the better the bending strength of the repaired structure.
比較例3
 (D)多官能チオール化合物を含まないこと以外は、実施例35と同様にして、構造物修復用樹脂組成物を得た。また、比較例3の硬化性は、実施例37と近似するように重合禁止剤により調整し、ゲル化時間7.0minとすることで硬化性の違いによる影響を無くした。
Comparative example 3
(D) A resin composition for structure repair was obtained in the same manner as in Example 35 except that the polyfunctional thiol compound was not contained. The curability of Comparative Example 3 was adjusted with a polymerization inhibitor so as to be similar to Example 37, and the influence of the difference in curability was eliminated by setting the gelation time to 7.0 min.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表7に示すように、実施例35~41の多官能チオール化合物を含有する本発明の曲げ荷重試験用試験体は、補修材とモルタル板の層間の接着性が優れているため、高い曲げ強さが得られることが分かった。これに対し、比較例3は、実施例35~41の曲げ荷重試験用試験体と比較して、曲げ強さが低かった。これは、実施例35~41の曲げ荷重試験用試験体が、比較例3の曲げ荷重試験用試験体と比較して、構造物修復材とセメントモルタル板との接着性が良好であることによるものである。 As shown in Table 7, the test sample for a bending load test of the present invention containing the multifunctional thiol compound of Examples 35 to 41 has high adhesion between the repair material and the mortar board, so that high bending strength is obtained. Was found to be obtained. On the other hand, Comparative Example 3 had lower bending strength as compared with the test specimens for bending load test of Examples 35-41. This is because the test pieces for bending load test of Examples 35 to 41 have better adhesion between the structure restoration material and the cement mortar board as compared with the test pieces for bending load test of Comparative Example 3. It is a thing.
 なお、前記表1~7において、表中の組成物番号が同じ場合は、同じラジカル重合性樹脂組成物[(A)成分~(E)成分]を用いていることを示している。 In Tables 1 to 7, when the composition numbers in the tables are the same, it indicates that the same radical polymerizable resin composition [(A) component to (E) component] is used.
 本発明のラジカル重合性樹脂組成物及び構造物修復材は、低温硬化性を有し、かつ優れた接着強度を有する。低温環境下においても速硬化することができ、かつ、優れた接着強度を有するため、固着・乾燥後の破断や修復箇所と修復材界面の剥離が生じ難い。従って、本発明の構造物修復材を用いることにより、常に振動を伴うようなコンクリート構造物に対して、クラック部分の修復を良好に行うことができる。すなわち、固着する際に優れた付着強度を発現することができ、コンクリート構造物等のクラックの修復に好適に用いることができる。
 
The radically polymerizable resin composition and the structure restorative material of the present invention have low temperature curability and have excellent adhesive strength. Since the resin composition can be rapidly cured even in a low temperature environment and has excellent adhesive strength, it is difficult to cause breakage after adhesion / drying or peeling of the interface between the repaired portion and the restorative material. Therefore, by using the structure restoration material of the present invention, the crack portion can be well repaired with respect to a concrete structure that always involves vibration. That is, when adhering, it is possible to develop excellent adhesion strength, and it can be suitably used for repairing cracks in concrete structures and the like.

Claims (18)

  1.  (A)ラジカル重合性樹脂と、
     (B)ラジカル重合性不飽和単量体と、
     (C)アミン系硬化促進剤と
     (D)多官能チオール化合物と
    を含有することを特徴とするラジカル重合性樹脂組成物。
    (A) radically polymerizable resin,
    (B) radically polymerizable unsaturated monomer,
    A radically polymerizable resin composition comprising (C) an amine-based curing accelerator and (D) a polyfunctional thiol compound.
  2.  前記(A)成分が、ビニルエステル樹脂、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂から選ばれる、少なくとも1種である、請求項1に記載のラジカル重合性樹脂組成物。 The radically polymerizable resin composition according to claim 1, wherein the component (A) is at least one selected from vinyl ester resins, unsaturated polyester resins, polyester (meth) acrylate resins, and urethane (meth) acrylate resins. object.
  3.  前記(D)成分が、下記一般式(Q)で表される構造を有する化合物である、請求項1または2に記載のラジカル重合性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(Q)中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。*は、少なくとも1個のメルカプト基を有する任意の有機基に連結していることを示す。aは0~2の整数である。)
    The radically polymerizable resin composition according to claim 1 or 2, wherein the component (D) is a compound having a structure represented by the following general formula (Q).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (Q), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. (A) is an integer of 0 to 2).
  4.  前記(D)成分が、下記一般式(Q-1)で表わされる構造を有する化合物である、請求項1~3のいずれかに記載のラジカル重合性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(Q-1)中、R及びRは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、又は炭素数6~18の芳香族基である。**は、少なくとも1個のメルカプト基を有する任意の有機基に連結していることを示す。aは0~2の整数である。)
    The radically polymerizable resin composition according to any one of claims 1 to 3, wherein the component (D) is a compound having a structure represented by the following general formula (Q-1).
    Figure JPOXMLDOC01-appb-C000002

    (In the general formula (Q-1), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aromatic group having 6 to 18 carbon atoms. ** is Indicates that it is linked to any organic group having at least one mercapto group, a is an integer of 0 to 2.)
  5.  前記(D)成分が、2~6官能の多官能チオール化合物から選ばれる少なくとも1種である、請求項1~4のいずれかに記載のラジカル重合性樹脂組成物。 The radically polymerizable resin composition according to any one of claims 1 to 4, wherein the component (D) is at least one selected from a bifunctional to hexafunctional polyfunctional thiol compound.
  6.  前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記(A)成分の含有量が5~95質量部であり、前記(B)成分の含有量が5~95質量部であり、前記成分(C)の含有量が0.01~10質量部であり、前記成分(D)の含有量が0.1~20質量部である、請求項1~5のいずれかに記載のラジカル重合性樹脂組成物。 When the total amount of the component (A) and the component (B) is 100 parts by mass, the content of the component (A) is 5 to 95 parts by mass, and the content of the component (B) is 5 The component (C) is contained in an amount of 0.01 to 10 parts by mass, and the content of the component (D) is contained in an amount of 0.1 to 20 parts by mass. The radically polymerizable resin composition as described in any one of the above.
  7.  前記(C)成分が、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)アニリンからなる群から選択される少なくとも1種を含有する、請求項1~6のいずれかに記載のラジカル重合性樹脂組成物。 The component (C) is N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxypropyl) The radically polymerizable resin composition according to any one of claims 1 to 6, which contains at least one selected from the group consisting of -p-toluidine and N, N-bis (2-hydroxyethyl) aniline.
  8.  さらにアミン系硬化促進剤以外の硬化促進剤として金属有機化合物を含有する、請求項1~7のいずれかに記載のラジカル重合性樹脂組成物。 The radically polymerizable resin composition according to any one of claims 1 to 7, further comprising a metal organic compound as a curing accelerator other than the amine curing accelerator.
  9.  前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記金属有機化合物の含有量が0.1~5質量部である、請求項8に記載のラジカル重合性樹脂組成物。 9. The radically polymerizable compound according to claim 8, wherein the content of the metal organic compound is 0.1 to 5 parts by mass, based on 100 parts by mass of the total amount of the components (A) and (B). Resin composition.
  10.  前記金属有機化合物が、コバルト化合物、銅化合物からなる群から選択される少なくとも1種を含有する、請求項8または9に記載のラジカル重合性樹脂組成物。 The radically polymerizable resin composition according to claim 8 or 9, wherein the metal organic compound contains at least one selected from the group consisting of cobalt compounds and copper compounds.
  11.  さらに(E)硬化剤を含有する、請求項1~10のいずれかに記載のラジカル重合性樹脂組成物。 The radically polymerizable resin composition according to any one of claims 1 to 10, further comprising (E) a curing agent.
  12.  前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記(E)成分の含有量が0.1~10質量部である、請求項11に記載のラジカル重合性樹脂組成物。 The radical polymerization according to claim 11, wherein the content of the component (E) is 0.1 to 10 parts by mass, based on 100 parts by mass of the total amount of the components (A) and (B). Resin composition.
  13.  前記(E)成分が、ジベンゾイルパーオキサイド、ベンゾイルm-メチルベンゾイルパーオキサイド、m-トルオイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシベンゾエートからなる群から選択される少なくとも1種を含有する、請求項11または12に記載のラジカル重合性樹脂組成物。 The component (E) is at least selected from the group consisting of dibenzoyl peroxide, benzoyl m-methyl benzoyl peroxide, m-toluoyl peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, t-butyl peroxybenzoate The radically polymerizable resin composition of Claim 11 or 12 containing 1 type.
  14.  請求項1~13のいずれかに記載のラジカル重合性樹脂組成物を含有する構造物修復材。 A structure restorative comprising the radically polymerizable resin composition according to any one of claims 1 to 13.
  15.  請求項1~13のいずれかに記載のラジカル重合性樹脂組成物及び(F)充填材を含有する構造物修復材。 A structure restorative material comprising the radically polymerizable resin composition according to any one of claims 1 to 13 and (F) a filler.
  16.  前記(A)成分と前記(B)成分の合計量を100質量部としたときに、前記(F)成分の含有量が1~700質量部である、請求項15に記載の構造物修復材。 The structure restorative material according to claim 15, wherein a content of the component (F) is 1 to 700 parts by mass when a total amount of the component (A) and the component (B) is 100 parts by mass. .
  17.  前記(F)成分が、珪砂、炭酸カルシウム、タルク及びヒュームドシリカからなる群から選択される少なくとも1種である、請求項15または16に記載の構造物修復材。 The structure restorative material according to claim 15 or 16, wherein the component (F) is at least one selected from the group consisting of silica sand, calcium carbonate, talc and fumed silica.
  18.  前記構造物修復材が、スラブ式軌道の構造物修復材である、請求項14~17のいずれかに記載の構造物修復材。
     
     
    The structure restorative material according to any one of claims 14 to 17, wherein the structure restorative material is a slab type track structure restorative material.

PCT/JP2018/024008 2017-06-26 2018-06-25 Radical polymerizable resin composition and structure-repairing material WO2019004125A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880040512.7A CN110799558B (en) 2017-06-26 2018-06-25 Radical polymerizable resin composition and structural repair material
JP2019526887A JP7164522B2 (en) 2017-06-26 2018-06-25 Radically polymerizable resin composition and structural repair material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124652 2017-06-26
JP2017-124652 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019004125A1 true WO2019004125A1 (en) 2019-01-03

Family

ID=64741576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024008 WO2019004125A1 (en) 2017-06-26 2018-06-25 Radical polymerizable resin composition and structure-repairing material

Country Status (4)

Country Link
JP (1) JP7164522B2 (en)
CN (1) CN110799558B (en)
TW (1) TWI754078B (en)
WO (1) WO2019004125A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118014A (en) * 2019-01-22 2020-08-06 株式会社菱晃 Coating layer, manufacturing method of coating layer and composition for coating
CN112851874A (en) * 2019-11-26 2021-05-28 昭和电工株式会社 Thermosetting resin composition
KR20210098321A (en) * 2020-01-30 2021-08-10 (주)유티아이 Coating Resin Composition for Flexible Cover Window and Flexible Cover Window thereby
JP7453814B2 (en) 2019-03-26 2024-03-21 三菱ケミカルインフラテック株式会社 Laminate, anti-slip pavement structure, and method for producing anti-slip pavement structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656637B (en) * 2022-03-16 2023-12-26 东南大学 Carbon fiber wire/liquid metal liquid crystal elastomer composite material and preparation method thereof
CN114671638B (en) * 2022-04-14 2022-10-18 深圳大学 Repeatability and long-term self-repairing aggregate and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302053A (en) * 1996-05-14 1997-11-25 Denki Kagaku Kogyo Kk Cold-setting acrylic repair material for civil engineering and construction
JP2001247636A (en) * 2000-03-09 2001-09-11 Japan U-Pica Co Ltd Resin composition for fiber reinforcement, fiber- reinforced resin and method for reinforcing and repairing concrete structure using resin composition for fiber reinforcement
JP2002029867A (en) * 1996-04-26 2002-01-29 Nippon Nsc Ltd Method for reinforcing concrete structure and radical- polymerizable primer and radical-polymerized hardened resin-forming composition, for use in the same
JP2006274723A (en) * 2005-03-30 2006-10-12 Dainippon Ink & Chem Inc Photocurable primer composition for concrete
WO2014203779A1 (en) * 2013-06-17 2014-12-24 昭和電工株式会社 Ene-thiol-type curable composition and cured product thereof
WO2016171151A1 (en) * 2015-04-21 2016-10-27 昭和電工株式会社 Radical-polymerizable resin composition, curing method thereof, method of producing same, use of radical-polymerizable resin composition, and use method of thereof
WO2016171150A1 (en) * 2015-04-21 2016-10-27 昭和電工株式会社 Radical-polymerizable, water-containing resin composition, curing method thereof, and method for producing radical-polymerizable, water-containing resin composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008341A (en) * 1968-10-11 1977-02-15 W. R. Grace & Co. Curable liquid polymer compositions
US4536523A (en) * 1983-12-23 1985-08-20 The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services Dental composite formulation from acrylate monomer and polythiol accelerator
JPH11106643A (en) * 1997-10-03 1999-04-20 Mitsubishi Rayon Co Ltd Curable resin composition
JP2000119353A (en) * 1998-10-20 2000-04-25 Mitsubishi Rayon Co Ltd Syrup composition
JP4707981B2 (en) * 2004-08-06 2011-06-22 昭和電工株式会社 Manufacturing method of molded product
KR20060022820A (en) * 2004-09-08 2006-03-13 주식회사 엘지화학 Method for producing an (meta)acrylate syrup
JP5457644B2 (en) * 2008-06-03 2014-04-02 昭和電工株式会社 Low temperature curable resin composition, coating film forming method using the same, resin mortar and fiber reinforced resin
CN101724218B (en) * 2009-12-08 2013-03-06 中国铁道科学研究院金属及化学研究所 Unsaturated resin composition as well as preparation method and purpose thereof
EP2851352A1 (en) * 2013-09-19 2015-03-25 HILTI Aktiengesellschaft Reaction-resin mortar curable by head to tail polymerisation and method for fixing anchor rods
JP6447868B2 (en) * 2014-12-22 2019-01-09 株式会社スリーボンド Anaerobic curable adhesive
RU2702687C2 (en) * 2015-02-19 2019-10-09 Сова Денко К.К. Repair material for profile recovery, capable of hardening at low temperatures, as well as method of reducing profile using such material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029867A (en) * 1996-04-26 2002-01-29 Nippon Nsc Ltd Method for reinforcing concrete structure and radical- polymerizable primer and radical-polymerized hardened resin-forming composition, for use in the same
JPH09302053A (en) * 1996-05-14 1997-11-25 Denki Kagaku Kogyo Kk Cold-setting acrylic repair material for civil engineering and construction
JP2001247636A (en) * 2000-03-09 2001-09-11 Japan U-Pica Co Ltd Resin composition for fiber reinforcement, fiber- reinforced resin and method for reinforcing and repairing concrete structure using resin composition for fiber reinforcement
JP2006274723A (en) * 2005-03-30 2006-10-12 Dainippon Ink & Chem Inc Photocurable primer composition for concrete
WO2014203779A1 (en) * 2013-06-17 2014-12-24 昭和電工株式会社 Ene-thiol-type curable composition and cured product thereof
WO2016171151A1 (en) * 2015-04-21 2016-10-27 昭和電工株式会社 Radical-polymerizable resin composition, curing method thereof, method of producing same, use of radical-polymerizable resin composition, and use method of thereof
WO2016171150A1 (en) * 2015-04-21 2016-10-27 昭和電工株式会社 Radical-polymerizable, water-containing resin composition, curing method thereof, and method for producing radical-polymerizable, water-containing resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118014A (en) * 2019-01-22 2020-08-06 株式会社菱晃 Coating layer, manufacturing method of coating layer and composition for coating
JP7324077B2 (en) 2019-01-22 2023-08-09 三菱ケミカルインフラテック株式会社 Coating layer, method for producing coating layer, resin composition and coating composition
JP7453814B2 (en) 2019-03-26 2024-03-21 三菱ケミカルインフラテック株式会社 Laminate, anti-slip pavement structure, and method for producing anti-slip pavement structure
CN112851874A (en) * 2019-11-26 2021-05-28 昭和电工株式会社 Thermosetting resin composition
CN112851874B (en) * 2019-11-26 2023-09-26 株式会社力森诺科 Thermosetting resin composition
KR20210098321A (en) * 2020-01-30 2021-08-10 (주)유티아이 Coating Resin Composition for Flexible Cover Window and Flexible Cover Window thereby
KR102336592B1 (en) * 2020-01-30 2021-12-08 (주)유티아이 Coating Resin Composition for Flexible Cover Window and Flexible Cover Window thereby
TWI819437B (en) * 2020-01-30 2023-10-21 南韓商Uti有限公司 Coating resin composition for flexible cover window and flexible cover window using same

Also Published As

Publication number Publication date
CN110799558B (en) 2024-02-20
CN110799558A (en) 2020-02-14
TW201906952A (en) 2019-02-16
JP7164522B2 (en) 2022-11-01
TWI754078B (en) 2022-02-01
JPWO2019004125A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP7164522B2 (en) Radically polymerizable resin composition and structural repair material
RU2702687C2 (en) Repair material for profile recovery, capable of hardening at low temperatures, as well as method of reducing profile using such material
CN109863179B (en) Radical polymerizable resin composition
JP6690638B2 (en) Radical-polymerizable water-containing resin composition, method for curing the same, and method for producing radical-polymerizable water-containing resin composition
JP4973914B2 (en) Curable resin composition and waterproof material composition
JP2016029125A (en) Two-pack curable resin composition, covering material, covering method and covering structure
JP2011231231A (en) Radically curable unsaturated resin composition and coating material
JP2006274723A (en) Photocurable primer composition for concrete
EP3858805A1 (en) Structure repairing method
JP5131156B2 (en) Radical polymerizable resin composition
JP5179696B2 (en) Low odor resin composition, coating material containing the same, and coating method using the same
JP2003301020A (en) Curable resin composition and adhesive
CN114829432A (en) Radical polymerizable resin composition and cured product thereof
JP6952686B2 (en) Carbon fiber reinforced resin composition, carbon fiber reinforced resin composition, cured product
JP4100120B2 (en) Covering structure
WO2022224989A1 (en) Recess filling material kit, cured product thereof, and method for filling recess
JP2005015642A (en) Radically polymerizable resin composition
WO2022224988A1 (en) Recess filling material kit, cured product of same, and recess filling method
JP4895471B2 (en) Resin composition for adhesive, adhesive and application thereof
JP4462068B2 (en) Thixotropic radical polymerization molding material, production method thereof and molded article
JP4873212B2 (en) Resin composition for pipe lining material and pipe lining material using the same
WO2016171034A1 (en) Radical polymerizable resin composition and primer for civil engineering and construction
TW202138408A (en) Radically polymerizable resin composition and cured product of same
JP2005146205A (en) Covering material, covering material for civil engineering and construction industry and paint for wood working

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824717

Country of ref document: EP

Kind code of ref document: A1