WO2015064017A1 - レーザビーム合成装置 - Google Patents

レーザビーム合成装置 Download PDF

Info

Publication number
WO2015064017A1
WO2015064017A1 PCT/JP2014/005084 JP2014005084W WO2015064017A1 WO 2015064017 A1 WO2015064017 A1 WO 2015064017A1 JP 2014005084 W JP2014005084 W JP 2014005084W WO 2015064017 A1 WO2015064017 A1 WO 2015064017A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
axicon
optical system
mirror
cone angle
Prior art date
Application number
PCT/JP2014/005084
Other languages
English (en)
French (fr)
Inventor
亨 永井
郁雄 和仁
隆二 長岡
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP14857042.7A priority Critical patent/EP3064986B1/en
Priority to EP18200132.1A priority patent/EP3470910B1/en
Priority to US15/033,441 priority patent/US9746681B2/en
Publication of WO2015064017A1 publication Critical patent/WO2015064017A1/ja
Priority to IL245323A priority patent/IL245323B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/061Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to a laser beam synthesizer, and more particularly to a laser beam synthesizer that incoherently synthesizes a plurality of annular laser beams.
  • a laser beam synthesizing apparatus disclosed in Patent Document 1 is known as an apparatus for increasing the output of a laser beam by synthesizing a plurality of annular laser beams.
  • a plurality of circular laser beams are combined so that a circular laser beam with a large diameter surrounds a circular laser beam with a small diameter.
  • the condensing property of the annular laser beam depends on the width dimension and the inner / outer diameter ratio (inner diameter dimension / outer diameter dimension) in the ring-shaped cross section of the annular laser beam before focusing.
  • the smaller the width (cross-sectional area of the light beam) of the annular laser beam before focusing the larger the diameter of the focused laser beam and the lower the focusing performance.
  • the condensed laser beam is inferior in condensing performance.
  • the annular laser beam having a large diameter surrounds the annular laser beam having a small diameter, and thus the width dimension of each annular laser beam is small. Therefore, when the laser beam obtained by combining the annular laser beams is condensed, the diameter of the condensed laser beam is increased. As a result, the diameter of the laser beam obtained by synthesizing a plurality of annular laser beams also increases, and the energy density (energy per unit area irradiated) and power density (energy density per unit time) decrease. . As a result, there arises a problem that high energy cannot be obtained at the focal point of the focused laser beam or the distance that the focused laser beam can be irradiated becomes short.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a laser beam synthesizing apparatus that improves irradiation performance of high energy density and high power density.
  • a laser beam synthesizing apparatus includes a plurality of shaping optical units that emit circular laser beams having different amounts of change in outer diameter per unit propagation distance, and each of the shaping optical units emits light.
  • the annular laser beams are arranged so as to be concentric.
  • the present invention has an effect that it can provide a laser beam synthesizing apparatus having the above-described configuration and improved irradiation performance of high energy density and high power density.
  • FIG. 5A is a graph showing the intensity distribution of the annular laser beam on the fifth reflecting surface in FIG. FIG.
  • FIG. 5B is a graph showing the intensity distribution of the laser beam obtained by condensing the annular laser beam of FIG. 5A. It is a block diagram which shows typically the condensing optical system of the laser beam synthesizing
  • FIG. 7A is a graph showing the diameter dimension of the annular laser beam on the fifth reflecting surface when the annular laser beams do not overlap with each other on the fifth reflecting surface in FIG. 6.
  • FIG. 7B is a graph showing the diameter dimension of the annular laser beam on the fifth reflecting surface when the annular laser beams overlap with each other on the fifth reflecting surface in FIG. 6. It is a graph which shows the relationship between the focal distance and energy density ratio of the laser beam synthesizing
  • FIG. 12A is a diagram showing the intensity distribution of an annular laser beam before focusing in a conventional laser beam synthesizer
  • FIG. 12B is a cross section taken along the line AA in FIG. 12A
  • FIG. 12B is a diagram showing the intensity distribution of an annular laser beam before focusing in a conventional laser beam synthesizer
  • FIG. 13A is a diagram showing the intensity distribution of the annular laser beam before focusing in the laser beam combining apparatus of FIG. 11
  • FIG. 13B is a cross section taken along line BB of FIG. 13A
  • FIG. 14 is a graph showing an intensity distribution of a laser beam obtained by condensing the annular laser beam in FIGS. 13A and 13B.
  • FIG. It is a figure which shows the relationship of the cone angle in a pair of axicon lens of the laser beam synthesizing
  • a laser beam combining apparatus includes a plurality of shaping optical units that emit circular laser beams having different amounts of change in outer diameter per unit propagation distance.
  • the annular laser beams are arranged so as to be concentric.
  • the laser beam combining apparatus includes a first axicon having a conical surface for enlarging the diameter of the incident laser beam and emitting an annular laser beam.
  • An optical system a second axicon optical system having a conical surface for reducing the diameter of the annular laser beam emitted from the first axicon optical system, and a path of the annular laser beam emitted from the second axicon optical system.
  • a reflection optical system to be changed and at least one of a cone angle of the first axicon optical system and a cone angle of the second axicon optical system is different for each shaping optical unit, and the reflection optical system May emit the incident annular laser beam concentrically with respect to the annular laser beam emitted from the other reflection optical system.
  • the laser beam combining apparatus is a convex axicon mirror having a reflecting surface protruding in a conical shape
  • the second axicon optical system Is a concave axicon mirror having a reflecting surface facing the reflecting surface of the convex axicon mirror and recessed in a conical shape, and a hole penetrating between the reflecting surface and the opposite surface
  • the reflecting optical system is disposed between the convex axicon mirror and the concave axicon mirror, and is a reflecting surface that is inclined with respect to the optical axis of the annular laser beam emitted from the concave axicon mirror.
  • a scraper mirror having a hole penetrating between the reflecting surface and the surface on the opposite side.
  • the laser beam combining apparatus according to the third aspect, wherein a cone angle of the concave axicon mirror in each of the shaping optical units is smaller than a cone angle of the convex axicon mirror.
  • the difference between the cone angle of the concave axicon mirror and the cone angle of the convex axicon mirror may be smaller than the shaping optical unit provided on the exit direction side of the scraper mirror of the shaping optical unit.
  • a cone angle of the concave axicon mirror in each shaping optical unit is larger than a cone angle of the convex axicon mirror.
  • the difference between the cone angle of the concave axicon mirror and the cone angle of the convex axicon mirror may be larger than that of the shaping optical unit provided on the exit direction side of the scraper mirror of the shaping optical unit.
  • the laser beam combining apparatus wherein the first axicon optical system is a first axicon lens having an exit surface protruding in a conical shape, and the second axicon optical system.
  • the first axicon optical system is a first axicon lens having an exit surface protruding in a conical shape
  • the second axicon optical system Is a second axicon lens having an entrance surface facing the exit surface and projecting in a conical shape, and the reflection optical system sandwiches the second axicon lens between the first axicon lens and And a hole penetrating between the reflecting surface inclined with respect to the optical axis of the annular laser beam emitted from the second axicon lens and a surface on the opposite side of the reflecting surface
  • a scraper mirror having
  • the cone angle of the first axicon lens is larger than the cone angle of the second axicon lens
  • the first shaping optical unit has the first cone angle.
  • the difference between the cone angle of the axicon lens and the cone angle of the second axicon lens may be smaller than the shaping optical unit provided on the emission direction side of the scraper mirror of the shaping optical unit.
  • the laser beam combining apparatus wherein a cone angle of the first axicon lens is smaller than a cone angle of the second axicon lens, and the first shaping optical unit has the first cone angle.
  • the difference between the cone angle of the axicon lens and the cone angle of the second axicon lens may be larger than that of the shaping optical unit provided on the emission direction side of the scraper mirror of the shaping optical unit.
  • the laser beam combining apparatus according to any one of the second to eighth aspects, further comprising a condensing optical system that condenses the annular laser beam emitted from the reflection optical system.
  • the difference between the cone angle of the first axicon optical system and the cone angle of the second axicon optical system in the shaping optical unit is that the annular laser beam emitted from the reflection optical system of each shaping optical unit is the condensing optical system. May be determined so as to overlap each other on the exit surface.
  • the condensing optical system includes a secondary mirror having a reflecting surface that enlarges the diameter of the annular laser beam emitted from the reflecting optical system.
  • a primary mirror having a reflecting surface for condensing an annular laser beam emitted from the secondary mirror, and a cone angle of the first axicon optical system and a cone angle of the second axicon optical system in each shaping optical unit The difference may be determined so that the annular laser beams emitted from the reflecting optical systems of the shaping optical units overlap each other on the reflecting surface of the main mirror.
  • a laser beam combining apparatus according to the ninth or tenth aspect, wherein the diameter of the circular laser beam emitted from the reflection optical system is reduced and emitted to the condensing optical system.
  • An optical system may be further provided.
  • the laser beam combining apparatus according to any one of the second to eleventh aspects, wherein the cone angle of the first axicon optical system and the cone angle of the second axicon optical system in each shaping optical unit.
  • the curvature of the wavefront of each annular laser beam may be set so as to correct the difference in the focal length of each annular laser beam caused by the difference between the two.
  • the laser beam synthesizer according to any one of the second to twelfth aspects, wherein the guide light source emits visible light along the optical axis of the annular laser beam emitted from the reflection optical system. May be further provided.
  • a laser beam combining apparatus according to the first aspect of the present invention, wherein an emission optical system for emitting an annular laser beam and a diameter dimension of the annular laser beam emitted from the emission optical system are changed.
  • a reflecting optical system having an elliptical conical surface that changes the path of the annular laser beam, and the cone angles on both the major axis side and the minor axis side of the elliptical cone surface of the reflecting optical system are different for each shaping optical unit.
  • the reflective optical system may emit the incident circular laser beam concentrically with respect to another circular laser beam emitted from another reflective optical system.
  • FIG. 1 is a configuration diagram schematically showing a laser beam synthesizing apparatus 100 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the relationship between the cone angles ⁇ A and ⁇ B of the pair of axicon mirrors 14 and 15. With reference to FIGS. 1 and 2, the configuration of the laser beam combining apparatus 100 will be described.
  • a laser beam combining device 100 is a device that combines a plurality of annular laser beams, and includes a plurality of shaping optical units 11 (hereinafter referred to as “units”).
  • the annular laser beam is a ring-shaped laser beam from which a central portion of a laser beam having a circular cross section is removed.
  • the laser beam combining device 100 may further include a laser light source 12 and a condensing optical system 20.
  • the laser light source 12 is a laser device that emits a solid laser beam, and a semiconductor laser, a fiber laser, a solid-state laser, or the like is used according to necessary characteristics.
  • the laser light source 12 is provided corresponding to each unit 11, and for example, three laser light sources 12 are provided.
  • the three laser light sources 12 are arranged so that the optical axes of the emitted solid laser beams are parallel to each other.
  • the unit 11 is provided with a plurality of, for example, three units that emit circular laser beams having different reduction amounts of the outer diameter per unit propagation distance.
  • the three units 11 include a first unit 11a, a second unit 11b, and a third unit 11c.
  • the third unit 11c, the second unit 11b, and the first unit 11a are arranged in this order (proximity order) so that the third unit 11c is closest to the condensing optical system 20.
  • each of the first unit 11a, the second unit 11b, and the third unit 11c may be referred to as an nth unit 11.
  • the nth unit 11 is closer to the condensing optical system 20 than the n ⁇ 1 unit 11, and n and n ⁇ 1 are integers from 1 to 3 in this embodiment.
  • the unit 11 includes a pair of axicon mirrors 14 and 15 and a scraper mirror 16.
  • the pair of axicon mirrors 14 and 15 includes a concave axicon mirror 14 and a convex axicon mirror 15, and the concave axicon mirror 14 is positioned closer to the laser light source 12 than the convex axicon mirror 15. .
  • the convex axicon mirror 15 is a first axicon optical system, has a substantially disk shape, and has a first reflecting surface 15a.
  • the first reflecting surface 15a is a conical surface that expands the diameter dimension (inner diameter dimension and outer diameter dimension) of the incident laser beam and emits an annular laser beam.
  • the first reflecting surface 15 a protrudes in a conical shape, and is formed so that the apex of the cone is located at the center of the convex axicon mirror 15.
  • the convex axicon mirror 15 is arranged so that the first reflecting surface 15 a faces the laser light source 12.
  • the concave axicon mirror 14 is a second axicon optical system, has a substantially disk shape, and has a second reflecting surface 14a and a hole (first passage hole) 14b.
  • the second reflecting surface 14 a is a conical surface that reduces the diameter of the annular laser beam emitted from the convex axicon mirror 15.
  • the second reflecting surface 14 a is recessed in a conical shape, and is formed so that the apex of the cone is located at the center of the concave axicon mirror 14.
  • the diameter of the second reflecting surface 14a is larger than the diameter of the first reflecting surface 15a.
  • the first passage hole 14b penetrates between the second reflecting surface 14a and the surface on the opposite side along the axis of the second reflecting surface 14a at the apex of the second reflecting surface 14a.
  • the concave axicon mirror 14 is arranged such that the first passage hole 14b is along the optical axis of the solid laser beam from the laser light source 12.
  • the concave axicon mirror 14 is disposed such that the second reflecting surface 14a faces the first reflecting surface 15a and the axis of the second reflecting surface 14a coincides with the axis of the first reflecting surface 15a. Yes.
  • the scraper mirror 16 is a reflection optical system that changes the path of the annular laser beam emitted from the concave axicon mirror 14, and is disposed between the concave axicon mirror 14 and the convex axicon mirror 15.
  • the scraper mirror 16 has a disk shape and has a flat third reflecting surface 16a and a hole (second passage hole) 16b.
  • the second passage hole 16b penetrates between the third reflecting surface 16a and the surface on the opposite side thereof at the center of the third reflecting surface 16a.
  • the second passage hole 16b is opened from two directions inclined at 45 ° with respect to the third reflecting surface 16a so that two laser beams orthogonal to each other can pass through.
  • the scraper mirror 16 is disposed so that the first direction is parallel to the axis of the second reflecting surface 14a and the second direction is orthogonal to the axis of the second reflecting surface 14a. Further, in the scraper mirror 16, the center of the second passage hole 16b in the second reflecting surface 14a is on the axis of the first reflecting surface 15a and the axis of the second reflecting surface 14a, and the third reflecting surface 16a is the second reflecting surface. It arrange
  • the pair of axicon mirrors 14 and 15 differ in the cone angle ⁇ A of the first reflecting surface 15 a and the cone angle ⁇ B of the second reflecting surface 14 a, and this difference ⁇ is close to the unit 11. It is formed so that it becomes larger (in order of proximity of the unit 11).
  • the cone angle ⁇ A of the first reflecting surface 15a is twice the angle ⁇ a between the cone rotation axis and the cone generatrix on the first reflecting surface 15a.
  • the cone angle ⁇ B of the second reflecting surface 14a is twice the angle ⁇ b between the cone rotation axis and the cone generating line in the second reflecting surface 14a.
  • the cone angle ⁇ A and the cone angle ⁇ B are obtuse angles, and are preferably 170 to 180 °, for example.
  • the cone angle ⁇ A of the first reflecting surface 15a is formed larger than the cone angle ⁇ B of the second reflecting surface 14a.
  • This difference ⁇ is, for example, 0.001 to 0.1 °, and increases in the order of proximity of the units 11. That is, the difference ⁇ in the (n ⁇ 1) th unit 11 is smaller than the difference ⁇ in the nth unit provided on the emission direction side of the third reflecting surface 16a.
  • the difference ⁇ is set to 0.010 in the first unit 11a
  • the difference ⁇ is set to 0.015 in the second unit 11b
  • the difference ⁇ is set to 0.020 in the third unit 11c.
  • the cone angle ⁇ B is constant
  • the cone angle ⁇ A is set so as to increase in the order of proximity of the unit 11.
  • the cone angle ⁇ A may be constant and the cone angle ⁇ B may be changed, or both the cone angles ⁇ A and ⁇ B may be changed. Good.
  • the cone angle ⁇ A is larger than the cone angle ⁇ B in each unit 11, but the cone angle ⁇ A may be equal to the cone angle ⁇ B in the first unit 11a. In this case, the difference ⁇ between the cone angle ⁇ A and the cone angle ⁇ B is zero.
  • the pair of axicon mirrors 14 and 15 in each unit 11 are arranged so that the dimension between the first reflecting surface 15 a and the second reflecting surface 14 a increases in the order of proximity of the unit 11.
  • the diameter of the circular laser beam reflected by the reflecting surfaces 14 a and 15 a increases in the order of proximity of the unit 11.
  • the cone angle of the first reflecting surface 15a is set so that the diameter of the annular laser beam reflected by the reflecting surfaces 14a and 15a increases in the order of proximity of the unit 11. You may adjust (theta) A and the cone angle (theta) B of the 2nd reflective surface 14a.
  • the scraper mirrors 16 are arranged so that the center lines (guide lines) in the second direction of the second passage holes 16b coincide. Further, in each unit 11, the scraper mirror 16 is formed so that the diameters of the third reflecting surface 16 a and the second passage hole 16 b are larger as the unit 11 is closer to the condensing optical system 20. That is, the diameter dimensions of the scraper mirror 16 and the second passage hole 16b in the nth unit 11 are larger than those of the n-1th unit 11.
  • the condensing optical system 20 is a reflection optical system having a primary mirror 21 and a secondary mirror 22.
  • the primary mirror 21 has a fifth reflective surface 21a and a hole (third passage hole 21b), and the secondary mirror 22 has a fourth reflective surface 22a.
  • the third passage hole 21b penetrates between the fifth reflecting surface 21a and the surface on the opposite side at the center of the fifth reflecting surface 21a.
  • the diameter of the fifth reflecting surface 21a is set larger than the diameter of the fourth reflecting surface 22a.
  • the fifth reflecting surface 21a is a concave surface
  • the fourth reflecting surface 22a is a convex surface.
  • the fourth reflection surface 22a may be formed as a concave surface.
  • Each reflection surface 21a, 22a is formed of an aspherical surface such as a paraboloid or a hyperboloid, and in this embodiment is formed of a paraboloid.
  • the fifth reflecting surface 21a and / or the fourth reflecting surface 22a may be formed as a spherical surface.
  • the radius of curvature of the fourth reflecting surface 22a is set to be sufficiently large so as to suppress the generation of geometric optical aberration as compared with the radial dimension of the outer diameter of the annular laser beam incident on the fourth reflecting surface 22a.
  • the sub mirror 22 is arranged such that the axis of the fourth reflecting surface 22a coincides with the axis of the fifth reflecting surface 21a, and the fourth reflecting surface 22a faces the fifth reflecting surface 21a.
  • the condensing optical system 20 is a Cassegrain type optical system using the primary mirror 21 having the third passage hole 21b, but is not limited thereto.
  • the condensing optical system 20 may be a Nasmyth type or coupe type optical system.
  • the reflecting surface is arranged between the primary mirror 21 and the secondary mirror 22 without providing the third passage hole 21 b in the primary mirror 21.
  • the reflecting surface is a flat surface and is inclined with respect to the axis of the secondary mirror 22.
  • the reflecting surface reflects the annular laser beam incident from the side thereof and guides it to the secondary mirror 22.
  • the laser beam synthesizing apparatus 100 may include a reduction optical system 30 (FIG. 9), a light guide optical system 40, or the like between the unit 11 and the condensing optical system 20, as necessary.
  • the reduction optical system 30 (FIG. 9) is an optical system that reduces the diameter of the annular laser beam emitted from the unit 11.
  • the light guide optical system 40 is an optical system that guides the annular laser beam emitted from the unit 11 to the condensing optical system 20, and in this embodiment, two flat mirrors 41 and 42 are used.
  • the laser beam combining device 100 may further include a guide light source 60 that emits visible light.
  • the guide light source 60 is arranged so that visible light passes through the center of the second passage hole 16b of each scraper mirror 16 along the guide line from the second direction.
  • FIG. 3 is a diagram showing the shape of the combined laser beam in the condensing optical system 20.
  • FIG. 4 is a diagram schematically showing the combined laser beam condensed by the condensing optical system 20.
  • a solid laser beam enters each unit 11 from each laser light source 12.
  • the diameter of the first passage hole 14b of the concave axicon mirror 14 and the diameter of the second passage hole 16b of the scraper mirror 16 are set larger than the diameter of the solid laser beam. Therefore, the solid laser beam passes through the first passage hole 14b and further passes through the second passage hole 16b in the first direction.
  • the solid laser beam reaches the first reflecting surface 15 a of the convex axicon mirror 15. At this time, the vertex of the first reflecting surface 15a is on the optical axis of the solid laser beam.
  • the center of the solid laser beam hits the apex of the first reflecting surface 15a, and the solid laser beam is line symmetric with respect to the axis of the conical first reflecting surface 15a, regardless of the distance from this axis. Reflects at a certain angle.
  • the solid laser beam is converted into an annular laser beam, and the annular laser beam advances toward the scraper mirror 16 with its width dimension being constant.
  • the diameter dimension of the second passage hole 16b of the scraper mirror 16 is set to be larger than the outer diameter dimension of the annular laser beam reflected by the first reflecting surface 15a. For this reason, the annular laser beam passes through the second passage hole 16b in the first direction toward the concave axicon mirror 14.
  • the annular laser beam travels along the axis of the second reflecting surface 14 a while spreading around the optical axis, and the inner diameter of the annular laser beam is larger than the diameter of the first passage hole 14 b of the concave axicon mirror 14. growing. Thereby, the annular laser beam strikes the second reflecting surface 14a around the first passage hole 14b.
  • the annular laser beam is axisymmetric with respect to the axis of the second reflecting surface 14a and is reflected at a constant angle regardless of the distance from this axis. Since the axis of the second reflecting surface 14a coincides with the axis of the first reflecting surface 15a, the annular laser beam is reflected by the second reflecting surface 14a while remaining in a ring shape.
  • the annular laser beam reflected by the second reflecting surface 14a becomes slightly narrower around the optical axis and again becomes a scraper mirror. Proceed toward 16.
  • the second reflecting surface 14a is a conical surface, the annular laser beam maintains its width dimension constant. Since the inner diameter of the annular laser beam is larger than the diameter of the second passage hole 16b in the scraper mirror 16, the annular laser beam strikes the third reflecting surface 16a around the second passage hole 16b. Then, the annular laser beam is reflected in a direction perpendicular to the axis of the second reflecting surface 14 a and is emitted from the unit 11.
  • the diameter of the annular laser beam is adjusted so as to increase in the order of proximity of the unit 11. Thereby, the diameter of the annular laser beam (n-th annular laser beam) emitted from the n-th unit 11 is set so that the annular laser beam (n-1-th annular laser) emitted from the n-1 unit 11 is reduced. Beam).
  • the diameter dimension of the second passage hole 16 b of the scraper mirror 16 is increased in the order of proximity of the unit 11.
  • the diameter of the second passage hole 16b in the nth unit 11 is larger than the outer diameter of the n-1 annular laser beam emitted from the n-1 unit 11. For this reason, the (n-1) -th annular laser beam can pass through the second passage hole 16b of the n-th unit 11.
  • the third reflecting surface 16a is arranged on the guide line at the center and has the same inclination angle. For this reason, the optical axes of the annular laser beams reflected by the third reflecting surface 16a of each unit 11 coincide.
  • the three annular laser beams are combined concentrically and the combined laser beam is emitted coaxially.
  • This synthesized laser beam has a shape in which the n-th annular laser beam surrounds the (n-1) -th laser beam immediately after emission.
  • the combined laser beam is reduced to a size that can pass through the third passage hole 21b of the condensing optical system 20 in the reduction optical system 30 (FIG. 9).
  • the combined laser beam that has passed through the reduction optical system 30 (FIG. 9) is reflected by the plate mirrors 41 and 42 of the light guide optical system 40 and guided to the condensing optical system 20.
  • the combined laser beam passes through the third passage hole 21 b of the primary mirror 21 and travels toward the secondary mirror 22.
  • each annular laser beam of the synthetic laser beam is reduced in diameter while the difference (width dimension) between the outer diameter and the inner diameter of the ring-shaped cross section is constant. This is because, as shown in FIG. 2, since the cone angle ⁇ A is larger than the cone angle ⁇ B, the annular laser beam travels in a direction approaching the optical axis OA, not parallel to the optical axis OA.
  • the cone angle ⁇ A is increased in the order of approach of the unit 11 so that the difference ⁇ between the cone angle ⁇ A and the cone angle ⁇ B is increased in the order of approach of the unit 11.
  • the incident angle and the reflection angle of the annular laser beam reflected by the first reflecting surface 15a, the second reflecting surface 14a, and the third reflecting surface 16a become smaller in the order of proximity. Therefore, as shown in FIG. 3, the angle (inclination) between the annular laser beam reflected by the third reflecting surface 16a and the optical axis OA increases in the order in which the units 11 approach each other. For this reason, as the distance from the third reflecting surface 16a increases, the ratio of the reduction in the diameter of the annular laser beam increases in the order of proximity of the units 11.
  • the diameter dimension of the annular laser beam increases in the order of proximity of the unit 11 when reflected by the third reflecting surface 16a. For this reason, as the circular laser beam has a larger diameter, the inclination of the circular laser beam is larger and the rate of reduction is larger. Accordingly, the diameter of the n-th annular laser beam is greatly reduced as compared with the (n-1) -th annular laser beam as the distance from the third reflecting surface 16a is maintained while the width dimension is kept constant.
  • the inner diameter dimension of the nth annular laser beam is smaller than the outer diameter dimension of the (n-1) th annular laser beam and overlaps with the (n-1) th annular laser beam. As a result, as shown by G2 in FIG. 3, in the synthetic laser beam on the fourth reflecting surface 22a, the annular laser beams overlap each other.
  • each annular laser beam travels toward the main mirror 21 while its width dimension increases with distance from the fourth reflecting surface 22a along with the diameter dimension in its ring-shaped cross section. For this reason, as indicated by G3 in FIG. 3, the annular laser beams overlap each other even in the combined laser beam on the fifth reflecting surface 21a of the primary mirror 21.
  • the synthesized laser beam is reflected by the concave fifth reflecting surface 21a and condensed.
  • the annular laser beam converges while the diameter dimension in the ring-shaped cross section decreases as the distance from the fifth reflecting surface 21 a decreases.
  • the focal lengths of the annular laser beams in the combined laser beam are different, the combined laser beam is irradiated with a width in the direction of the optical axis OA.
  • the radius of curvature of the fifth reflecting surface 21a / the radius of curvature of the fourth reflecting surface 22a is defined as an enlargement factor P, and the distance F from the fifth reflecting surface 21a to the focal point is set.
  • the angle of the n-th annular laser beam incident on the fourth reflecting surface 22a is ⁇ n, and the radial dimension of the n-th annular laser beam incident on the fifth reflecting surface 21a (here, the outer radius and the inner radius) Let yn be an average value.
  • the distance Fn to the focal point of the n-th annular laser beam becomes shorter in the order of proximity.
  • the combined laser beam is emitted from the laser beam combining apparatus 100 with a certain high energy density over a wide range in the optical axis OA.
  • a laser light source 12 that emits a laser beam having an infrared wavelength is often used.
  • the laser beam synthesized and emitted by the laser beam synthesizer 100 cannot be seen with the naked eye.
  • the visible light emitted from the guide light source 60 travels along the optical axis OA of the annular laser beam and the optical axis of the combined laser beam. Based on the visible light, the position of the combined laser beam can be confirmed.
  • the reflecting surfaces 14 a and 15 a in each unit 11 are conical surfaces, and the difference ⁇ between the cone angles ⁇ A and ⁇ B of the reflecting surfaces 14 a and 15 a is increased in the order of proximity of the units 11.
  • the annular laser beam emitted from each unit 11 propagates, the outer diameter dimension decreases, and the amount of decrease in the outer diameter dimension per unit propagation distance increases in the order of proximity of the units 11.
  • each annular laser beam has a larger ratio of the outer diameter to the inner diameter (inner / outer diameter ratio) while maintaining its width dimension constant.
  • annular laser beams can be easily overlapped on the primary mirror 21 before focusing, and the width dimension and the inner / outer diameter ratio of each annular laser beam can be increased without increasing the primary mirror 21. .
  • the diameter dimension of the condensed laser beam can be reduced.
  • the energy density of the combined laser beam at the irradiation position can be increased while suppressing an increase in the size of the laser beam combining apparatus 100.
  • FIG. 5A is a graph showing the intensity distribution (near-field image) of the annular laser beam before focusing on the fifth reflecting surface 21a.
  • the outer diameter size and the total power (intensity integrated value) of each annular laser beam on the fifth reflecting surface 21a are made the same.
  • the vertical axis indicates the intensity of the laser beam
  • the horizontal axis indicates the distance from the center of the laser beam.
  • the intensity (power density) of the laser beam condensed in the far field increases as the inner / outer diameter ratio of the annular laser beam before the condensing increases.
  • the smaller the inner / outer diameter ratio of the annular laser beam before focusing the smaller the width dimension of the annular laser beam and the higher the intensity.
  • side lobes are generated around the main lobe having the highest intensity in each laser beam. The smaller the inner / outer diameter ratio of the annular laser beam before focusing, the higher the intensity of the side lobe in the laser beam after focusing.
  • each annular laser beam is overlapped on the fifth reflecting surface 21a and its width is widened to reduce the diameter of the focused laser beam, and the power density at the target position and its time integration. Energy density can be increased.
  • the difference ⁇ between the cone angles ⁇ A and ⁇ B is changed in the order in which the units 11 approach each other, and the incident angle ⁇ n of each annular laser beam is set appropriately in advance, thereby condensing each annular laser beam.
  • a difference is provided in the focal length.
  • the irradiation range of the laser beam having a certain high energy density is expanded on the optical axis OA. For this reason, even when distance measurement to the target position is difficult, the target position can be irradiated with the laser beam.
  • the energy of the synthesized laser beam can be increased and the output of the synthesized laser beam can be increased.
  • each annular laser beam is synthesized coaxially, each annular laser beam is focused on the optical axis OA of the synthesized laser beam. Therefore, since the spread of the irradiation range in the direction perpendicular to the optical axis OA is suppressed, the energy density of the combined laser beam on the optical axis OA can be kept high.
  • a reflection optical system composed of a pair of axicon mirrors 14 and 15 and a scraper mirror 16 is used for the unit 11.
  • a plurality of annular laser beams can be synthesized, whereby the energy of the synthesized laser beam can be increased.
  • problems such as a thermal lens effect and output loss that occur when a transmission optical system is used in the unit 11 can be eliminated.
  • a reduction in the energy of the annular laser beam can be prevented, and the energy density of the combined laser beam at the focal point can be kept high.
  • the visible light is emitted from the guide light source 60 along the optical axis of the annular laser beam, the visible light is positioned at the center of the synthetic laser beam, so that the irradiation position of the synthetic laser beam is visually observed based on the visible light. Can be confirmed.
  • the curvature radius of the secondary mirror 22 is less than the radius of the outer diameter of the annular laser beam incident on the secondary mirror 22, and the generation of geometric optical aberration is suppressed. Is set to be large enough. Thereby, the laser beam synthesizing apparatus 100 can be used for an application in which the laser beam is irradiated with a certain high energy density over a wide range on the optical axis OA. On the other hand, a laser beam having a higher energy density may be required.
  • FIG. 6 is a diagram schematically showing the condensing optical system 20 of the laser beam combining apparatus 100 according to the second embodiment. With reference to this FIG. 6, the structure of the laser beam synthesizing
  • the fifth reflecting surface 21 a of the primary mirror 21 and the fourth reflecting surface 22 a of the secondary mirror 22 are each formed by a parabolic surface.
  • the annular laser beam is reflected by the fifth reflecting surface 21a and the fourth reflecting surface 22a as described above, so that geometrical optical aberration occurs, and the focal positions of the annular laser beams can be brought close to each other.
  • the curvature radius of the fifth reflection surface 21a / the curvature radius of the fourth reflection surface 22a is defined as an enlargement factor P
  • the fifth reflection surface 21a is determined by the distance between the fifth reflection surface 21a and the fourth reflection surface 22a.
  • a distance F from the focus to the focus is set.
  • the incident angle of the n-th annular laser beam with respect to the fourth reflecting surface 22a is ⁇ n
  • the radial dimension of the n-th annular laser beam incident on the fifth reflecting surface 21a (here, the average of the outer radius and the inner radius) (Value)
  • geometric optical aberration for the n-th annular laser beam is ⁇ n.
  • each incident angle ⁇ n and / or each geometric optical aberration ⁇ n is set so as to cancel out ⁇ n / P ⁇ n.
  • the inclination ⁇ n of the annular laser beam is different, and therefore the focal length of the condensed laser beam is different.
  • the difference in the incident angle ⁇ n is reduced, and the focal lengths of the annular laser beams can be matched. For example, as the incident angle ⁇ n of the annular laser beam is larger, the inclination ⁇ n of the annular laser beam reflected by the fifth reflecting surface 21a of the main mirror 21 is larger and the focal length Fn is shorter.
  • the reflection angle increases as the diameter of the light is reflected at a position away from the optical axis OA, and the annular laser beam reflected by the fifth reflecting surface 21a.
  • the slope ⁇ n of becomes smaller.
  • the difference in the incident angle ⁇ n is canceled out by the geometric optical aberration ⁇ n, the focal lengths Fn of the annular laser beams become equal, and the annular laser beams are condensed at one point.
  • FIG. 7A is an example of a graph showing the diameter of the annular laser beam on the fifth reflecting surface 21a when the annular laser beams do not overlap on the fifth reflecting surface 21a.
  • FIG. 7B is an example of a graph showing the diameter dimension of the annular laser beam on the fifth reflecting surface 21a when the annular laser beams overlap each other on the fifth reflecting surface 21a.
  • the vertical axis represents the outer and inner radial dimensions of the annular laser beam
  • the horizontal axis represents the shaping optical unit number.
  • the shaping optical unit numbers are assigned in the order of proximity of the units 11, and the closer the shaping optical unit number is, the closer to the secondary mirror 22. In this case, six units 11 were used.
  • the circle mark represents the radial dimension of the outer diameter of the annular laser beam on the fifth reflecting surface 21a
  • the square mark represents the radius dimension of the inner diameter of the annular laser beam on the fifth reflecting surface 21a.
  • the difference ⁇ between the cone angle ⁇ A of the first reflecting surface 15a and the cone angle ⁇ B of the second reflecting surface 14a is in the order of the shaping optical unit number (that is, the approaching order of the units 11).
  • FIG. 8 is a graph showing the relationship between the focal length and the energy density ratio.
  • the vertical axis represents the energy density ratio of the combined laser beam, and the horizontal axis represents the focal length of the combined laser beam.
  • This energy density ratio is a ratio of the energy density of the combined laser beam shown in FIG. 7B to the energy density of the combined laser beam shown in FIG. 7A, and is, for example, 2 to 4.5.
  • each annular laser beam When the annular laser beams do not overlap each other, the width dimension of each annular laser beam becomes small as shown by the difference between the circle mark and the square mark of each unit 11 in FIG. 7A.
  • the annular laser beams overlap with each other as shown by the difference between the circle mark and the square mark of each unit 11 in FIG. ) Can be increased.
  • the diameter size of the condensed combined laser beam is reduced, and the energy density of the combined laser beam is increased.
  • the synthetic laser beam of FIG. 7B has less energy density attenuation when the focal length is increased.
  • the energy density ratio increases as the focal length of the combined laser beam increases.
  • the greater the energy density of the synthetic laser beam the longer the focal length (that is, the distance that can be effectively irradiated).
  • FIG. 9 is a diagram schematically showing a laser beam combining apparatus 100 according to the third embodiment.
  • FIG. 10 is a diagram illustrating the relationship between the cone angles ⁇ C and ⁇ D of the pair of axicon lenses 51 and 52. With reference to FIGS. 9 and 10, the configuration of the laser beam combining apparatus 100 will be described.
  • the unit 11 includes a pair of axicon lenses 51 and 52 and a scraper mirror 16.
  • the pair of axicon lenses includes a first axicon lens 51 and a second axicon lens 52, and materials having the same refractive index are used.
  • the first axicon lens 51 is a first axicon optical system, and is positioned closer to the laser light source 12 than the second axicon lens 52, and emits a circular planar incident surface (first incident surface 51a) and a conical surface. It has a surface (first emission surface 51b).
  • the first exit surface 51b is a conical surface that emits an annular laser beam by enlarging the diameter of the incident laser beam.
  • the second axicon lens 52 is a second axicon optical system, and is positioned between the first axicon lens 51 and the scraper mirror 16, and has a conical incident surface (second incident surface 52a) and a circular planar shape.
  • the second incident surface 52 a is a conical surface that reduces the diameter of the annular laser beam emitted from the first axicon lens 51.
  • the pair of axicon lenses 51 and 52 are arranged such that the first exit surface 51b and the second entrance surface 52a face each other and the cone axes thereof coincide.
  • the cone angle ⁇ C of the first exit surface 51b and the cone angle ⁇ D of the second entrance surface 52a are obtuse angles, and the cone angle ⁇ C is slightly larger than the cone angle ⁇ D. 0.005 to 0.5 °.
  • the cone angle ⁇ C of the first exit surface 51b is twice the angle ⁇ c between the cone rotation axis and the cone bus line on the first exit surface 51b.
  • the cone angle ⁇ D is twice the angle ⁇ d between the cone rotation axis and the cone bus line on the second incident surface 52a.
  • the cone angle ⁇ C in each unit 11 is larger than the cone angle ⁇ D, but in the first unit 11a, the cone angle ⁇ C may be equal to the cone angle ⁇ D. In this case, the difference ⁇ between the cone angle ⁇ C and the cone angle ⁇ D is zero.
  • the difference ⁇ between the cone angle ⁇ C and the cone angle ⁇ D is set so as to increase as it approaches the secondary mirror 22. That is, the difference ⁇ in the (n ⁇ 1) th unit 11 is smaller than the difference ⁇ in the nth unit provided on the emission direction side of the third reflecting surface 16a.
  • the pair of axicon lenses 51 and 52 are arranged such that the dimension between the first exit surface 51 b and the second entrance surface 52 a is larger as the unit 11 is closer to the secondary mirror 22. Further, in each unit 11, the diameter of the second axicon lens 52 is formed so as to be larger as the unit 11 is closer to the secondary mirror 22.
  • the second passage hole 16b of the scraper mirror 16 is opened from a direction inclined at 45 ° with respect to the third reflecting surface 16a.
  • the diameter dimension of the second passage hole 16b is set smaller than the inner diameter dimension of the annular laser beam emitted from the second exit surface 52b.
  • the center of the second passage hole 16b on the incident surface is on the axis of the second incident surface 52a
  • the third reflecting surface 16a is inclined at 45 ° with respect to the axis of the second incident surface 52a
  • the second passage hole 16b is arranged so as to be orthogonal to the axis of the second incident surface 52a.
  • a solid laser beam is emitted from the laser light source 12 in each unit 11.
  • the solid laser beam is incident on the first axicon lens 51 from the first incident surface 51a and is emitted from the second emission surface 52b.
  • the optical axis of the solid laser beam coincides with the axis of the first emission surface 51b. Therefore, the solid laser beam is axisymmetric with respect to the axis of the conical first emission surface 51b, and is refracted at a constant angle regardless of the distance from the axis.
  • the solid laser beam is converted into an annular laser beam, and the annular laser beam advances toward the second incident surface 52a while expanding.
  • the annular laser beam is incident on the second axicon lens 52 from the second incident surface 52a.
  • the annular laser beam is line-symmetric with respect to the axis of the conical second incident surface 52a, and is refracted at a constant angle regardless of the distance from the axis.
  • the cone angle ⁇ C of the first exit surface 51b is slightly larger than the cone angle ⁇ D of the second entrance surface 52a
  • the refraction angle at the first exit surface 51b is slightly smaller than the refraction angle at the second exit surface 52b.
  • the diameter of the annular laser beam is reduced while the width dimension of the ring-shaped cross section is constant.
  • the annular laser beam emitted from the second exit surface 52b strikes the third reflecting surface 16a around the second passage hole 16b in the scraper mirror 16 and is reflected in a direction orthogonal to the axis of the second exit surface 52b.
  • the third reflecting surface 16a of each unit 11 is centered on the guide line and has the same inclination angle. For this reason, the circular laser beam reflected by the third reflecting surface 16a of each unit 11 travels coaxially with the center of the circle of the cross-section being coincident.
  • each unit 11 the dimension between the first exit surface 51 b and the second entrance surface 52 a is larger as the unit 11 is closer to the secondary mirror 22. For this reason, the diameter dimension of the annular laser beam emitted from the unit 11 close to the secondary mirror 22 is increased.
  • the annular laser beam immediately after being emitted from each unit 11 has a concentric cross section, and the nth annular laser beam surrounds the n ⁇ 1th laser beam. It has a shape.
  • the refraction angle of the annular laser beam in the pair of axicon lenses 51 and 52 is determined by the refractive index of the lenses 51 and 52 and the cone angles ⁇ C and ⁇ D. Therefore, the refraction angle of the annular laser beam may be changed by making the cone angles ⁇ C and ⁇ D equal in each unit 11 and changing the difference in refractive index between the axicon lenses 51 and 52 in the order of proximity of the units 11.
  • the annular laser beams emitted from the respective units 11 are concentric and have different amounts of reduction in outer diameter per unit propagation distance.
  • the concentric annular laser beams may be close to each other and overlap. For this reason, the amount of change in the outer diameter per unit propagation distance only needs to be different from each other. For example, the amount of change may be an increase instead of a decrease.
  • FIG. 11 is a diagram illustrating the relationship between the cone angles ⁇ A and ⁇ B of the pair of axicon mirrors 14 and 15. With reference to FIGS. 11 and 1, the configuration of the laser beam combining apparatus 100 will be described.
  • the pair of axicon mirrors 14 and 15 in each unit 11 has a cone angle ⁇ B of the second reflecting surface 14a larger than the cone angle ⁇ A of the first reflecting surface 15a.
  • This difference ⁇ b is, for example, 0.001 to 0.1 °, and becomes smaller in the order of proximity of the units 11. That is, the difference ⁇ b in the (n ⁇ 1) th unit 11 is larger than the difference ⁇ b in the nth unit provided on the emission direction side of the third reflecting surface 16a.
  • the cone angle ⁇ A may be constant and the cone angle ⁇ B may decrease in the order of proximity of the unit 11, or both the cone angles ⁇ A and ⁇ B may be decreased. May be changed.
  • the cone angle ⁇ B is larger than the cone angle ⁇ A in each unit 11, but in the unit 11 closest to the condensing optical system 20, the cone angle ⁇ A and the cone angle ⁇ B may be equal. In this case, the difference ⁇ b is zero.
  • the cone angle of the second reflecting surface 14a is made larger than that of the first reflecting surface 15a, and the cone angle difference ⁇ b is made smaller in the order of approach of the unit 11.
  • 12A to 12C show the intensity distribution of the annular laser beam in the conventional laser beam synthesis apparatus
  • FIGS. 13A to 13C show the intensity distribution of the annular laser beam in the laser beam synthesis apparatus 100 of the present embodiment.
  • 12A and 13A are diagrams showing the intensity distribution (near-field image) of the annular laser beam before focusing on the fifth reflecting surface 21a.
  • 12B and 13B are graphs showing the intensity distribution of a conventional annular laser beam in a cross section cut along line AA in FIG. 12A and line BB in FIG. 13A.
  • 12C and 13C are graphs showing the intensity distribution (far field image) of the laser beam obtained by condensing the annular laser beam.
  • the vertical axis indicates the intensity
  • the horizontal axis indicates the distance from the center of the laser beam.
  • the vertical axis in FIG. 12C and FIG. 13C indicates intensity.
  • the distance between the fifth reflecting surface 21a and the condensing position of the annular laser beam is 1 km.
  • the cone angle ⁇ A of the first reflecting surface 15a and the cone angle ⁇ B of the second reflecting surface 14a are set equal.
  • the annular laser beams before focusing in the near-field image have a small width dimension of each annular laser beam and are spaced apart from each other.
  • strength of each annular laser beam is represented.
  • the intensity of the annular laser beam with a smaller diameter increases.
  • the annular laser beams before focusing in the near-field image are wide and overlap each other.
  • the intensity of the portion where the annular laser beam overlaps (the center in the width direction) is large, and the intensity decreases as it approaches the end (the inner periphery and the outer periphery of the ring-shaped cross section).
  • the intensity of the laser beam condensed in the far field is large, which is about 3.9 times the intensity of FIG. 13C. Thereby, the power density and energy density in a target position are raised.
  • the annular laser beams emitted from the respective units 11 are concentric, and the amount of increase in the outer diameter per unit propagation distance is different from each other.
  • the amount of change in the outer diameter per unit propagation distance is different from each other, and it is only necessary to approach and overlap each other as the concentric annular laser beam propagates.
  • the reflection optical system including the pair of axicon mirrors 14 and 15 is used for the unit 11.
  • the transmission optical system is used for the unit 11 in the fifth embodiment.
  • This transmission optical system is the same as that of the second embodiment, but the relationship between the cone angles ⁇ C and ⁇ D of the axicon lenses 51 and 52 and the difference thereof are different.
  • FIG. 14 is a diagram illustrating the relationship between the cone angles ⁇ C and ⁇ D of the pair of axicon lenses 51 and 52.
  • the cone angle ⁇ C of the first exit surface 51b is smaller than the cone angle ⁇ D of the second entrance surface 52a.
  • This difference is, for example, 0.005 to 0.5 °, and becomes smaller in the order of proximity of the units 11. That is, the difference in the (n ⁇ 1) th unit 11 is larger than the nth unit provided on the emission direction side of the third reflecting surface 16a.
  • the cone angle ⁇ C in each unit 11 is smaller than the cone angle ⁇ D.
  • the cone angle ⁇ C may be equal to the cone angle ⁇ D. In this case, the difference ⁇ between the cone angle ⁇ C and the cone angle ⁇ D is zero.
  • the cone angle of the first exit surface 51b is made smaller than that of the second entrance surface 52a, and the difference between the cone angles is made smaller in the order of approach of the units 11.
  • a reflective optical system having a primary mirror 21 and a secondary mirror 22 is used as the condensing optical system 20.
  • the condensing optical system 20 is not limited to this as long as it collects the annular laser beam from the scraper mirror 16, and for example, a transmission optical system such as a single lens or a transmission telescope can also be used.
  • a transmission optical system such as a single lens or a transmission telescope can also be used.
  • the difference between the cone angle of the first axicon optical system 15, 51 and the cone angle of the second axicon optical system 14, 52 in each unit 11 is due to the annular laser beam emitted from the scraper mirror 16 of each unit 11. They are determined so as to overlap each other on the exit surface of the condensing optical system 20.
  • the radius of curvature of the secondary mirror 22 is set so that the focal positions of the annular laser beams of the combined laser beam are close to each other in order to improve the condensing performance of the combined laser beam.
  • the method for improving the condensing property of the combined laser beam is not limited to this.
  • it can also be realized by optimizing the curvature of the wavefront of the laser beam incident on the axicon optical system 14, 15, 51, 52 of the unit 11 from the laser light source 12.
  • the difference between the cone angle of the first axicon optical system 15, 51 and the cone angle of the second axicon optical system 14, 52 is different in the order of proximity of the unit 11.
  • the inclination of each annular laser beam reflected by the main mirror 21 is different, and the focal length of each annular laser beam is different. Therefore, the wavefront curvature of the laser beam from the laser light source 12 is set so that the focal lengths of the respective annular laser beams coincide.
  • the divergence angle of the laser beam incident on the axicon optical system 14, 15, 51, 52 is adjusted so as to correct the difference in focal length.
  • the focal lengths of the respective annular laser beams collected from the main mirror 21 become closer to each other and the irradiation area of the synthetic laser beam is reduced, so that the energy density and power density of the synthetic laser beam can be further increased.
  • the annular laser beams can be completely overlapped.
  • the curvature of the wavefront of each annular laser beam may be optimized as in the seventh embodiment. Thereby, the condensing property of the laser beam is improved.
  • an image relay optical system can be used for the reduction optical system 30.
  • the image relay optical system reduces the diameter of the circular laser beam emitted from the scraper mirror 16 and emits it to the condensing optical system 20.
  • the annular laser beam emitted from the scraper mirror 16 is reduced by an image relay optical system having a reduction ratio R (value smaller than 1).
  • R reduction ratio
  • the interval between the annular laser beams is reduced to R times, and the inclination (change rate of the outer diameter) of each annular laser beam is increased to 1 / R times. Therefore, the propagation distance until the circular laser beams emitted from the scraper mirror 16 without being reduced overlap each other is L1.
  • the propagation distance L2 required until the circular laser beams emitted from the scraper mirror 16 and reduced by the image relay optical system overlap each other can be expressed as R 2 L1.
  • the propagation distance L2 is shorter than L1, the laser beam combining apparatus 100 can be downsized.
  • the ring laser beam reduced by the image relay optical system may be expanded.
  • the annular laser beam is once reduced and then expanded and emitted to the condensing optical system.
  • the guide light source 60 is provided in the laser beam combining apparatus 100.
  • the guide light source 60 may not be provided.
  • the guide light source 60 may be provided in the laser beam combining apparatus 100 according to the first and third embodiments.
  • the difference between the cone angles ⁇ A and ⁇ C of the first axicon optical systems 15 and 51 and the cone angles ⁇ B and ⁇ C of the second axicon optical systems 14 and 52 in each unit 11 is increased in the order of proximity of the units 11.
  • the reflecting surface 16a of the scraper mirror 16 in each unit 11 is an elliptical conical surface that keeps the circular laser beam reflected by the reflecting surface 16a circular, and the cone angle of the reflecting surface 16a is the unit. You may set so that it may become small in order of 11 proximity.
  • the reflecting surface 16a of the scraper mirror 16 is an elliptical cone surface that reduces the diameter of the annular laser beam emitted from the axicon optical system and changes the path of the annular laser beam.
  • the reflection surface 16 a is recessed in an elliptical cone shape, and is formed so that the vertex is located at the center of the scraper mirror 16.
  • the major axis and minor axis of the elliptical cone surface are different for each unit 11, and the cone angle on both the major axis side and the minor axis side of the elliptical cone surface is smaller as the unit 11 is closer to the condensing optical system 20.
  • the reflective surface 16a of the scraper mirror 16 in the first unit 11a may be a flat surface.
  • the reflecting surface 16a is an elliptical conical surface, the reflecting surface 16a may be a conical surface as long as the circular laser beam reflected by the reflecting surface 16a is kept circular.
  • the annular laser beam reflected by the concave reflecting surface 16a having the elliptical cone shape propagates while maintaining its width dimension constant and reducing the outer diameter dimension. Since the cone angle of the reflecting surface 16a decreases in the order of proximity of the unit 11, the amount of decrease in the outer diameter per unit propagation distance of the annular laser beam increases in the order of proximity of the unit 11. Further, the outer diameter dimension of the annular laser beam on the reflecting surface 16a is larger in the order of approach of the unit 11. Therefore, the annular laser beam incident from the reflecting surface 16a overlaps with each other on the fourth reflecting surface 22a and the fifth reflecting surface 21a before focusing.
  • the width dimension and the inner / outer diameter ratio of the annular laser beam before focusing can be increased without increasing the diameter dimension of the fifth reflecting surface 21a.
  • the diameter dimension of the condensed laser beam becomes smaller. Energy density and power density can be increased.
  • the axicon optical system is an optical system having a conical surface that emits an incident laser beam as an annular laser beam.
  • an axicon optical system for example, a pair of optical systems of a convex axicon mirror 15, a convex axicon mirror 15 and a concave axicon mirror 14, a first axicon lens 51, and a first axicon lens 51 and a second A pair of optical systems of the axicon lens 52 is used.
  • the exit optical system that shapes the solid laser beam into an annular laser beam and emits it is not limited to the pair of axicon optical systems 14, 15, 51, 52.
  • a scraper mirror can be used as the output optical system.
  • This scraper mirror has a flat plate shape and has a through hole at the center thereof. For this reason, when a solid laser beam is emitted from the laser light source 12 to the scraper mirror, when the solid laser beam passes through the scraper mirror, the central portion thereof is removed and converted into an annular laser beam.
  • the scraper mirror 16 is arranged such that the third reflecting surface 16a is inclined at 45 ° with respect to the axis of the second reflecting surface 14a.
  • this inclination angle is not limited to 45 °.
  • the inclination angle can be changed according to the arrangement of the units 11. Thereby, the freedom degree of arrangement
  • the nth laser beam surrounds the n-1th annular laser beam.
  • the n-th annular laser beam and the n-1th laser beam may overlap.
  • the laser beam having the smallest diameter on the fifth reflecting surface 21a of the primary mirror 21 is an annular laser beam having a ring-shaped cross section, but may be a solid laser beam.
  • the reflecting surface 16a of the scraper mirror 16 is an elliptical conical surface that reduces the diameter of the circular laser beam emitted from the axicon optical system and changes the path of the circular laser beam.
  • the reflecting surface 16a of the scraper mirror 16 may be an elliptical cone surface that enlarges the diameter of the annular laser beam emitted from the axicon optical system and changes the path of the annular laser beam.
  • the reflection surface 16 a has a protruding elliptical cone shape, and the cone angle of the reflection surface 16 a increases in the order of proximity of the unit 11.
  • the annular laser beam reflected by the reflecting surface 16a propagates with a wide width dimension and an enlarged outer diameter dimension.
  • the amount of expansion of the outer diameter per unit propagation distance of the annular laser beam decreases in the order in which the units 11 approach each other.
  • the outer diameter dimension of the annular laser beam on the reflecting surface 16a is larger in the order of approach of the unit 11. Therefore, the annular laser beams incident from the reflecting surface 16a overlap each other before focusing. Therefore, it is possible to increase the energy density and power density of the combined laser beam at the irradiation position by reducing the diameter of the focused laser beam while suppressing the increase in size of the laser beam combining apparatus 100.
  • the laser beam synthesizing apparatus of the present invention is useful as a laser beam synthesizing apparatus or the like for improving the irradiation performance of high energy density or high power density.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Lenses (AREA)
  • Lasers (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

レーザビーム合成装置(100)は、単位伝搬距離当たりの外径寸法の変化量が互いに異なる円環レーザビームを出射する複数の整形光学ユニット(11)を備え、前記各整形光学ユニットは、出射する円環レーザビームが同心状となるように配置されている。

Description

レーザビーム合成装置
 本発明は、レーザビーム合成装置に関し、特に、複数の円環レーザビームをインコヒーレントに合成するレーザビーム合成装置に関する。
 従来、複数の円環レーザビームを合成することによりレーザビームの高出力化を図る装置として、たとえば、特許文献1のレーザビーム合成装置が知られている。この装置では、径の大きい円環レーザビームが径の小さい円環レーザビームを取り巻くように、複数の円環レーザビームを合成している。
特開平9-43537号公報
 円環レーザビームの集光性は、集光前の円環レーザビームのリング状断面における幅寸法や内外径比(内径寸法/外径寸法)に依存する。外径寸法が同じ円環レーザビームでは、集光前の円環レーザビームの幅寸法(光束の断面積)が小さいほど、集光したレーザビームの径寸法が大きくなり、集光性が低下する。たとえば、特許文献1のレーザビーム合成装置で合成したレーザビームを集光する場合、集光したレーザビームは集光性に劣る。これは、合成したレーザビームにおいて、径の大きい円環レーザビームが径の小さい円環レーザビームを取り巻いているため、各円環レーザビームの幅寸法が小さいからである。よって、この円環レーザビームを合成したレーザビームを集光すると、集光したレーザビームの径寸法が大きくなる。これにより、複数の円環レーザビームを合成したレーザビームの径寸法も大きくなり、そのエネルギー密度(照射された単位面積当たりのエネルギー)やパワー密度(単位時間当たりのエネルギー密度)が低下してしまう。この結果、集光したレーザビームの焦点において高いエネルギーを得られなかったり、集光したレーザビームの照射可能な距離が短くなったりする問題が生じる。
 本発明はこのような課題を解決するためになされたものであり、高エネルギー密度や高パワー密度の照射性能向上を図ったレーザビーム合成装置を提供することを目的としている。
 本発明のある態様に係るレーザビーム合成装置は、単位伝搬距離当たりの外径寸法の変化量が互いに異なる円環レーザビームを出射する複数の整形光学ユニットを備え、前記各整形光学ユニットは、出射する円環レーザビームが同心状となるように配置されている。
 本発明は、以上に説明した構成を有し、高エネルギー密度や高パワー密度の照射性能向上を図ったレーザビーム合成装置を提供することができるという効果を奏する。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明の第1実施の形態に係るレーザビーム合成装置を模式的に示す構成図である。 図1のレーザビーム合成装置の一対のアキシコンミラーにおける円錐角の関係を示す図である。 図1のレーザビーム合成装置の集光光学系における円環レーザビームの形状を示す図である。 図3の集光光学系により集光された合成レーザビームを模式的に示す図である。 図5Aは、図1の第5反射面における円環レーザビームの強度分布を示すグラフである。図5Bは、図5Aの円環レーザビームを集光したレーザビームの強度分布を示すグラフである。 本発明の第2実施の形態に係るレーザビーム合成装置の集光光学系を模式的に示す構成図である。 図7Aは、図6の第5反射面において円環レーザビームがそれぞれ重ならない場合における、第5反射面上の円環レーザビームの径寸法を表したグラフである。図7Bは、図6の第5反射面において円環レーザビームがそれぞれ重なっている場合における、第5反射面上の円環レーザビームの径寸法を表したグラフである。 図6のレーザビーム合成装置の焦点距離とエネルギー密度比との関係を示すグラフである。 本発明の第3実施の形態に係るレーザビーム合成装置を模式的に示す図である。 図9のレーザビーム合成装置の一対のアキシコンレンズにおける円錐角の関係を示す図である。 本発明の第4実施の形態に係るレーザビーム合成装置の一対のアキシコンミラーにおける円錐角の関係を示す図である。 図12Aは従来のレーザビーム合成装置における集光前の円環レーザビームの強度分布を示す図であり、図12Bは図12AのA-A線に沿って切断した断面におけ、図12Cは、図12Aおよび図12Bの円環レーザビームを集光したレーザビームの強度分布を示すグラフである。 図13Aは図11のレーザビーム合成装置における集光前の円環レーザビームの強度分布を示す図であり、図13Bは図13AのB-B線に沿って切断した断面におけ、図13Cは、図13Aおよび図13Bの円環レーザビームを集光したレーザビームの強度分布を示すグラフである。 本発明の第5実施の形態に係るレーザビーム合成装置の一対のアキシコンレンズにおける円錐角の関係を示す図である。
 第1の本発明に係るレーザビーム合成装置は、単位伝搬距離当たりの外径寸法の変化量が互いに異なる円環レーザビームを出射する複数の整形光学ユニットを備え、前記各整形光学ユニットは、出射する円環レーザビームが同心状となるように配置されている。
 第2の本発明に係るレーザビーム合成装置は、第1の発明において、前記整形光学ユニットは、入射したレーザビームの径寸法を拡大して円環レーザビームを出射する円錐面を有する第1アキシコン光学系と、前記第1アキシコン光学系から出射した円環レーザビームの径寸法を縮小する円錐面を有する第2アキシコン光学系と、前記第2アキシコン光学系から出射した円環レーザビームの進路を変更する反射光学系と、を含み、前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の少なくともいずれか一方が前記各整形光学ユニットごとに異なっており、前記反射光学系は、入射した円環レーザビームを、他の前記反射光学系から出射された円環レーザビームに対して同心状に出射してもよい。
 第3の本発明に係るレーザビーム合成装置は、第2の発明において、前記第1アキシコン光学系は、円錐形状に突出した反射面を有する凸型アキシコンミラーであり、前記第2アキシコン光学系は、前記凸型アキシコンミラーの反射面に対向しかつ円錐形状に窪んだ反射面、および、当該反射面とその反対側にある面との間を貫通した孔を有する凹型アキシコンミラーであり、前記反射光学系は、前記凸型アキシコンミラーと前記凹型アキシコンミラーとの間に配置され、かつ、前記凹型アキシコンミラーから出射した円環レーザビームの光軸に対して傾斜する反射面、および、当該反射面とその反対側にある面との間を貫通した孔を有するスクレイパーミラーであってもよい。
 第4の本発明に係るレーザビーム合成装置は、第3の発明において、前記各整形光学ユニットにおける前記凹型アキシコンミラーの円錐角は前記凸型アキシコンミラーの円錐角より小さく、前記整形光学ユニットにおける前記凹型アキシコンミラーの円錐角と前記凸型アキシコンミラーの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより小さくてもよい。
 第5の本発明に係るレーザビーム合成装置は、第3の発明において、前記各整形光学ユニットにおける前記凹型アキシコンミラーの円錐角は前記凸型アキシコンミラーの円錐角より大きく、前記整形光学ユニットにおける前記凹型アキシコンミラーの円錐角と前記凸型アキシコンミラーの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより大きくてもよい。
 第6の本発明に係るレーザビーム合成装置は、第2の発明において、前記第1アキシコン光学系は、円錐形状に突出した射出面を有する第1アキシコンレンズであり、前記第2アキシコン光学系は、前記射出面に対向しかつ円錐形状に突出した入射面を有する第2アキシコンレンズであり、前記反射光学系は、前記第1アキシコンレンズとの間に前記第2アキシコンレンズを挟むように配置され、かつ、前記第2アキシコンレンズから出射した円環レーザビームの光軸に対して傾斜する反射面、および、当該反射面とその反対側にある面との間を貫通した孔を有するスクレイパーミラーであってもよい。
 第7の本発明に係るレーザビーム合成装置は、第6の発明において、前記第1アキシコンレンズの円錐角は前記第2アキシコンレンズの円錐角より大きく、前記各整形光学ユニットにおける前記第1アキシコンレンズの円錐角と前記第2アキシコンレンズの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより小さくてもよい。
 第8の本発明に係るレーザビーム合成装置は、第6の発明において、前記第1アキシコンレンズの円錐角は前記第2アキシコンレンズの円錐角より小さく、前記各整形光学ユニットにおける前記第1アキシコンレンズの円錐角と前記第2アキシコンレンズの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより大きくてもよい。
 第9の本発明に係るレーザビーム合成装置は、第2~第8のいずれかの発明において、前記反射光学系から出射した円環レーザビームを集光する集光光学系をさらに備え、前記各整形光学ユニットにおける前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の差は、前記各整形光学ユニットの前記反射光学系から出射した円環レーザビームが前記集光光学系の出射面において互いに重なるように定められていてもよい。
 第10の本発明に係るレーザビーム合成装置は、第9の発明において、前記集光光学系は、前記反射光学系から出射した円環レーザビームの径寸法を拡大する反射面を有する副鏡と、前記副鏡から出射した円環レーザビームを集光する反射面を有する主鏡と、を含み前記各整形光学ユニットにおける前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の差は、前記各整形光学ユニットの前記反射光学系から出射した円環レーザビームが前記主鏡の反射面において互いに重なるように定められていてもよい。
 第11の本発明に係るレーザビーム合成装置は、第9または第10の発明において、前記反射光学系から出射した円環レーザビームの径寸法を縮小して前記集光光学系に出射するイメージリレー光学系をさらに備えていてもよい。
 第12の本発明に係るレーザビーム合成装置は、第2~第11のいずれかの発明において、前記各整形光学ユニットにおける前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の差により発生する各円環レーザビームの焦点距離の差異を補正するように、各円環レーザビームの波面の曲率が設定されてもよい。
 第13の本発明に係るレーザビーム合成装置は、第2~第12のいずれかの発明において、前記反射光学系から出射された円環レーザビームの光軸に沿って可視光線を出射するガイド光源をさらに備えていてもよい。
 第14の本発明に係るレーザビーム合成装置は、第1の発明において、円環レーザビームを出射する出射光学系と、前記出射光学系から出射した円環レーザビームの径寸法を変化して当該円環レーザビームの進路を変更する楕円錐面を有する反射光学系と、を含み、前記反射光学系の楕円錐面の長径側および短径側の両方の円錐角が前記各整形光学ユニットごとに異なり、前記反射光学系は、入射した円環レーザビームを、他の前記反射光学系から出射された他の円環レーザビームに対して同心状に出射してもよい。
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 (第1実施の形態)
  (レーザビーム合成装置の構成)
 図1は、本発明の第1実施の形態に係るレーザビーム合成装置100を模式的に示す構成図である。図2は、一対のアキシコンミラー14、15の円錐角θA、θBの関係を示す図である。この図1および図2を参照して、レーザビーム合成装置100の構成について説明する。
 図1に示すように、レーザビーム合成装置100は、複数の円環レーザビームを合成する装置であって、複数の整形光学ユニット11(以下、「ユニット」と言う。)を備えている。円環レーザビームは、断面が円形状のレーザビームの中央部が除去されたリング状のレーザビームである。また、レーザビーム合成装置100は、レーザ光源12および集光光学系20をさらに備えていてもよい。レーザ光源12は、中実レーザビームを発するレーザ装置であって、必要な特性に応じて、半導体レーザやファイバーレーザ、固体レーザなどが用いられる。レーザ光源12は、各ユニット11に対応して設けられており、たとえば、3つ設けられている。3つのレーザ光源12は、出射する中実レーザビームの光軸が互いに平行になるように配置されている。
 ユニット11は、単位伝搬距離当たりの外径寸法の減少量が互いに異なる円環レーザビームを出射する複数、たとえば、3つ設けられている。3つのユニット11は、第1ユニット11a、第2ユニット11b、第3ユニット11cで構成されている。第3ユニット11cが集光光学系20に最も近くなるように、第3ユニット11c、第2ユニット11bおよび第1ユニット11aはこの順(近接順)で並んでいる。なお、便宜上、第1ユニット11a、第2ユニット11b、第3ユニット11cのそれぞれを第nユニット11と記すことがある。この場合、第nユニット11は第n-1ユニット11より集光光学系20に近く、この実施の形態では、nおよびn-1は1~3までの整数である。
 ユニット11は、一対のアキシコンミラー14、15およびスクレイパーミラー16を備えている。一対のアキシコンミラー14、15は、凹型アキシコンミラー14および凸型アキシコンミラー15により構成されており、凹型アキシコンミラー14は凸型アキシコンミラー15よりレーザ光源12側に位置している。
 凸型アキシコンミラー15は、第1アキシコン光学系であって、略円盤形状であり、第1反射面15aを有している。第1反射面15aは、入射したレーザビームの径寸法(内径寸法および外径寸法)を拡大して円環レーザビームを出射する円錐面である。第1反射面15aは、円錐形状に突き出し、この円錐の頂点が凸型アキシコンミラー15の中心に位置するように形成されている。凸型アキシコンミラー15は、第1反射面15aがレーザ光源12と対向するように配置されている。
 凹型アキシコンミラー14は、第2アキシコン光学系であって、略円盤形状であり、第2反射面14aおよび孔(第1通過孔)14bを有している。第2反射面14aは、凸型アキシコンミラー15から出射した円環レーザビームの径寸法を縮小する円錐面である。第2反射面14aは、円錐形状に窪み、この円錐の頂点が凹型アキシコンミラー14の中心に位置するように形成されている。第2反射面14aは、その径寸法が第1反射面15aの径寸法より大きい。第1通過孔14bは、第2反射面14aの頂点において第2反射面14aの軸に沿って第2反射面14aとその反対側にある面との間を貫通している。凹型アキシコンミラー14は、第1通過孔14bがレーザ光源12からの中実レーザビームの光軸に沿うように配置されている。また、凹型アキシコンミラー14は、その第2反射面14aが第1反射面15aに対向し、かつ、第2反射面14aの軸が第1反射面15aの軸と一致するように配置されている。
 スクレイパーミラー16は、凹型アキシコンミラー14から出射した円環レーザビームの進路を変更する反射光学系であって、凹型アキシコンミラー14と凸型アキシコンミラー15との間に配置されている。スクレイパーミラー16は、円盤形状であって、平らな第3反射面16aおよび孔(第2通過孔)16bを有している。第2通過孔16bは、第3反射面16aの中央において、第3反射面16aとその反対側にある面との間を貫通している。第2通過孔16bは、互いに直交する2つのレーザビームが通過できるように、第3反射面16aに対して45°に傾く2方向から開けられている。この第1方向が第2反射面14aの軸に平行であり、第2方向が第2反射面14aの軸に対して直交するように、スクレイパーミラー16は配置されている。また、スクレイパーミラー16は、第2反射面14aにおける第2通過孔16bの中心が第1反射面15aの軸および第2反射面14aの軸上にあり、第3反射面16aが第2反射面14aの軸に対して45°で傾斜するように配置されている。
 各ユニット11において一対のアキシコンミラー14、15は、第1反射面15aの円錐角θAと第2反射面14aの円錐角θBとが異なり、この差Δが集光光学系20に近いユニット11ほど(ユニット11の近接順に)大きくなるように形成されている。具体的には、図2に示すように、第1反射面15aの円錐角θAは、第1反射面15aにおける円錐の回転軸と円錐の母線との間の角度θaの2倍である。第2反射面14aの円錐角θBは、第2反射面14aにおける円錐の回転軸と円錐の母線との間の角度θbの2倍である。この円錐角θAおよび円錐角θBは、鈍角であって、たとえば、170~180°が好ましい。第1反射面15aの円錐角θAは、第2反射面14aの円錐角θBより大きく形成されている。この差Δは、たとえば、0.001~0.1°であって、ユニット11の近接順に大きくなっている。つまり、第n-1ユニット11における差Δは、第3反射面16aの出射方向側に設けられた第nユニットにおける差Δより小さくなっている。たとえば、第1ユニット11aでは差Δが0.010に、第2ユニット11bでは差Δが0.015に、第3ユニット11cでは差Δが0.020に設定されている。この実施の形態では、円錐角θBが一定で、円錐角θAがユニット11の近接順に大きくなるように設定されている。ただし、差Δがユニット11の近接順に大きくなっていれば、円錐角θAを一定にして、円錐角θBを変化させてもよいし、または、円錐角θAおよびθBの両方共を変化させてもよい。また、この実施の形態では、各ユニット11において円錐角θAが円錐角θBより大きいが、第1ユニット11aでは円錐角θAが円錐角θBと等しくてもよい。この場合、円錐角θAと円錐角θBとの差Δは0になる。
 また、図1に示すように、各ユニット11において一対のアキシコンミラー14、15は、第1反射面15aと第2反射面14aとの間の寸法がユニット11の近接順に大きくなるように配置されている。これにより、反射面14a、15aで反射された円環レーザビームの径寸法がユニット11の近接順に大きくなる。なお、反射面14a、15a間の寸法調整に代えて、反射面14a、15aで反射された円環レーザビームの径寸法がユニット11の近接順に大きくなるように、第1反射面15aの円錐角θAおよび第2反射面14aの円錐角θBを調整してもよい。
 さらに、各ユニット11において、スクレイパーミラー16は、第2通過孔16bの第2方向の中心線(ガイド線)が一致するように並べられている。また、各ユニット11においてスクレイパーミラー16は、第3反射面16aおよび第2通過孔16bの径寸法が集光光学系20に近いユニット11ほど大きくなるように形成されている。つまり、第nユニット11におけるスクレイパーミラー16および第2通過孔16bの径寸法は、第n-1ユニット11のそれらより大きくなっている。
 集光光学系20は、主鏡21および副鏡22を有する反射光学系である。主鏡21は、第5反射面21aおよび孔(第3通過孔21b)を有し、副鏡22は第4反射面22aを有している。第3通過孔21bは第5反射面21aの中央において第5反射面21aとその反対側にある面との間を貫通している。第5反射面21aの径寸法は第4反射面22aの径寸法より大きく設定されている。第5反射面21aは凹面であって、第4反射面22aは凸面である。なお、第4反射面22aは凹面で形成されていてもよい。
 各反射面21a、22aは放物面または双曲面などの非球面で形成されており、この実施の形態では、放物面で形成されている。ただし、第5反射面21aおよび/または第4反射面22aは、球面で形成されていてもよい。また、第4反射面22aの曲率半径は、第4反射面22aに入射する円環レーザビームの外径の半径寸法に比べて、幾何光学的収差の発生を抑えるように十分に大きく設定されている。副鏡22は、第4反射面22aの軸が第5反射面21aの軸と一致し、第4反射面22aが第5反射面21aに対向するように配置されている。
 なお、集光光学系20は、第3通過孔21bを有する主鏡21を用いたカセグレン式の光学系であるが、これに限定されない。たとえば、集光光学系20にナスミス式やクーデ式の光学系であってもよい。この場合、主鏡21には第3通過孔21bを設けずに、主鏡21と副鏡22との間に反射面を配置する。この反射面は、平面であって、副鏡22の軸に対して傾斜する。反射面は、その側方から入射する円環レーザビームを反射して副鏡22に導く。
 レーザビーム合成装置100は、ユニット11と集光光学系20との間に縮小光学系30(図9)や導光光学系40などを必要に応じて備えていてもよい。縮小光学系30(図9)は、ユニット11から出射された円環レーザビームの径寸法を縮小させる光学系である。導光光学系40は、ユニット11から出射された円環レーザビームを集光光学系20に導く光学系であって、この実施の形態では2つの平板ミラー41、42を用いている。
 レーザビーム合成装置100は、可視光線を出射するガイド光源60をさらに備えていてもよい。ガイド光源60は、可視光線が各スクレイパーミラー16の第2通過孔16bの中心を第2方向からガイド線に沿って通過するように配置されている。
  (レーザビーム合成装置の動作)
 図3は、集光光学系20における合成レーザビームの形状を示す図である。図4は、集光光学系20により集光した合成レーザビームを模式的に示す図である。以下、図1~図4を参照して、レーザビーム合成装置100が複数の円環レーザビームを合成する動作について説明する。
 図1に示すように、中実レーザビームが各レーザ光源12から各ユニット11に入射する。ユニット11では凹型アキシコンミラー14の第1通過孔14bの径寸法およびスクレイパーミラー16の第2通過孔16bの径寸法は、中実レーザビームの径寸法より大きく設定されている。このため、中実レーザビームは第1通過孔14bを通り抜け、さらに、第2通過孔16bを第1方向に通過する。そして、中実レーザビームは、凸型アキシコンミラー15の第1反射面15aに達する。このとき、中実レーザビームの光軸上に第1反射面15aの頂点がある。このため、中実レーザビームの中心が第1反射面15aの頂点に当たり、中実レーザビームは、円錐形状の第1反射面15aの軸に対して線対称で、この軸からの距離に関わらず一定の角度で反射する。これにより、中実レーザビームが円環レーザビームに変換されて、円環レーザビームはその幅寸法が一定のままスクレイパーミラー16の方へ進む。このスクレイパーミラー16の第2通過孔16bの径寸法は、第1反射面15aで反射された円環レーザビームの外径寸法より大きく設定されている。このため、円環レーザビームは、第2通過孔16bを第1方向に通り、凹型アキシコンミラー14へ向かう。この際、円環レーザビームは光軸を中心に広がりながら第2反射面14aの軸に沿って進み、円環レーザビームの内径寸法は凹型アキシコンミラー14の第1通過孔14bの径寸法より大きくなる。これにより、円環レーザビームは第1通過孔14bの周りの第2反射面14aに当たる。円環レーザビームは、第2反射面14aの軸に対して線対称で、この軸からの距離に関わらず一定の角度で反射する。この第2反射面14aの軸が第1反射面15aの軸と一致しているため、円環レーザビームはリング状のまま第2反射面14aで反射する。第2反射面14aの円錐角θBが第1反射面15aの円錐角θAより少し小さいと、第2反射面14aで反射した円環レーザビームは光軸を中心にわずかに狭くなりながら再びスクレイパーミラー16に向かって進む。ただし、第2反射面14aは円錐面であるため、円環レーザビームはその幅寸法を一定に維持する。そして、スクレイパーミラー16において円環レーザビームの内径寸法が第2通過孔16bの径寸法より大きいため、円環レーザビームは第2通過孔16bの周りの第3反射面16aに当たる。そして、円環レーザビームは第2反射面14aの軸に対して垂直な方向に反射されて、ユニット11から出射する。
 この円環レーザビームの径寸法がユニット11の近接順に大きくなるように、調整されている。これにより、第nユニット11から出射された円環レーザビーム(第n円環レーザビーム)の径寸法が、第n-1ユニット11から出射された円環レーザビーム(第n-1円環レーザビーム)より大きくなっている。
 これに対して、各ユニット11においてスクレイパーミラー16の第2通過孔16bの径寸法がユニット11の近接順に大きくなっている。特に、第nユニット11における第2通過孔16bの径寸法は、第n-1ユニット11から出射される第n-1円環レーザビームの外径寸法より大きい。このため、第n-1円環レーザビームは第nユニット11の第2通過孔16bを通り抜けることができる。
 また、各ユニット11において第3反射面16aは、その中心がガイド線上に並び、かつ、傾斜角度が等しい。このため、各ユニット11の第3反射面16aで反射された円環レーザビームの光軸が一致する。
 よって、図1のG1に示す合成レーザビームの断面形状のように、3つの円環レーザビームは同心状に合成されて、合成レーザビームは同軸に出射される。この合成レーザビームは、出射直後には、第n円環レーザビームが第n-1レーザビームを取り囲む形状を有している。
 そして、合成レーザビームは、縮小光学系30(図9)において集光光学系20の第3通過孔21bを通過可能な大きさに縮小される。縮小光学系30(図9)を経た合成レーザビームは、導光光学系40の平板ミラー41、42に反射されて、集光光学系20に導かれる。集光光学系20では、合成レーザビームは、主鏡21の第3通過孔21bを通過して、副鏡22へ向かう。
 この際、合成レーザビームの各円環レーザビームは、そのリング状断面の外径寸法と内径寸法との差(幅寸法)が一定のまま、径寸法が縮小していく。これは、図2に示すように、円錐角θAが円錐角θBより大きいため、円環レーザビームはその光軸OAに平行でなく、光軸OAに近づく方向に進行するためである。
 また、円錐角θAと円錐角θBとの差Δがユニット11の近接順に大きくなるように、円錐角θAがユニット11の近接順に大きくなっている。これにより、第1反射面15a、第2反射面14aおよび第3反射面16aで反射された円環レーザビームの入射角および反射角は、近接順に小さくなる。よって、ユニット11の近接順に従って、図3に示すように、第3反射面16aで反射された円環レーザビームとその光軸OAとの間の角度(傾き)が大きくなる。このため、第3反射面16aから離れるに従って円環レーザビームの径寸法が縮小する割合は、ユニット11の近接順に大きくなる。
 この円環レーザビームの径寸法は、第3反射面16aで反射した時点ではユニット11の近接順に大きくなっている。このため、径寸法が大きい円環レーザビームほど、円環レーザビームの傾きが大きく、その縮小する割合も大きくなる。これにより、第n円環レーザビームは、幅寸法を一定に維持しながら、第3反射面16aから離れるにつれて第n-1円環レーザビームよりも径寸法が大きく縮小する。そして、第4反射面22a上において、第n円環レーザビームは、その内径寸法が第n-1円環レーザビームの外径寸法より小さくなり、第n-1円環レーザビームに重なる。この結果、図3のG2に示すように、第4反射面22aの合成レーザビームでは、円環レーザビームは互いに重なり合う。
 そして、合成レーザビームは、凸型の第4反射面22aで反射し、拡大する。これにより、各円環レーザビームは、そのリング状断面における径寸法と共に、幅寸法が第4反射面22aから離れるに従って大きくなりながら主鏡21に向かう。このため、図3のG3に示すように、主鏡21の第5反射面21a上の合成レーザビームにおいても円環レーザビームは互いに重なり合う。
 合成レーザビームは凹型の第5反射面21aで反射して集光する。これにより、図4に示すように、円環レーザビームは、そのリング状断面における径寸法が第5反射面21aから離れるに従って小さくなりながら収束する。この際、合成レーザビームにおける各円環レーザビームの焦点距離が異なるため、合成レーザビームはその光軸OA方向に幅を持って照射される。
 具体的には、第5反射面21aの曲率半径/第4反射面22aの曲率半径を拡大率Pとし、第5反射面21aから焦点までの距離Fを設定する。また、第4反射面22aに入射する第n円環レーザビームの角度をαnとし、第5反射面21aに入射する第n円環レーザビームの半径寸法(ここでは、外径半径と内径半径の平均値とする)をynとする。このとき、第5反射面21aから出射された第n円環レーザビームと光軸OAとのなす角(傾き)βnは、βn=tan-1(yn/F)+αn/Pと表せる。これにより、第n円環レーザビームの焦点距離Fnは、Fn=yn/tan{tan-1(yn/F)+αn/P}となる。ここで、円錐角θAと円錐角θBとの差Δがユニット11の近接順に大きくなっているため、入射角度αnが近接順に大きくなっている。これにより、第n円環レーザビームの焦点までの距離Fnが近接順に短くなる。この結果、合成レーザビームは、光軸OAにおいて広い範囲に亘りある程度高いエネルギー密度を持ってレーザビーム合成装置100から照射される。
 なお、この合成レーザビームの高出力化を図る上で、赤外の波長のレーザビームを出射するレーザ光源12が用いられることが多い。この場合、レーザビーム合成装置100で合成されて出射されたレーザビームを肉眼で見ることができない。これに対して、ガイド光源60から出射された可視光線は、円環レーザビームの光軸OAの光軸および合成レーザビームの光軸に沿って進む。この可視光線に基づいて合成レーザビームの位置を確認することができる。
  (作用・効果)
 上記実施の形態では、各ユニット11における反射面14a、15aを円錐面とし、この反射面14a、15aの円錐角θA、θBの差Δをユニット11の近接順に大きくしている。これにより、各ユニット11から出射する円環レーザビームは、伝搬するに従って、外径寸法が減少し、その単位伝搬距離当たりの外径寸法の減少量はユニット11の近接順に大きくなっている。また、各円環レーザビームは、その幅寸法を一定に維持しながら、内径寸法に対する外径寸法の比(内外径比)が大きくなる。これにより、集光前の主鏡21上において複数の円環レーザビームを簡単に重ねて、主鏡21を大きくせずに各円環レーザビームの幅寸法や内外径比を大きくすることができる。このような円環レーザビームをその幅寸法および外径寸法が小さくなるように集光すると、集光したレーザビームの径寸法を小さくすることができる。この結果、レーザビーム合成装置100の大型化を抑制しながら、照射位置における合成レーザビームのエネルギー密度を高めることができる。
 図5Aは、第5反射面21aにおける集光前の円環レーザビームの強度分布(近視野像)を示すグラフである。この図において、破線は内外径比M=1.2の円環レーザビームの強度(パワー密度)である。実線は内外径比M=1.5の円環レーザビームの強度である。点線は内外径比M=2.0の円環レーザビームの強度である。また、第5反射面21aにおける各円環レーザビームの外径寸法およびトータルパワー(強度積分値)を同じに揃えている。なお、各円環レーザビームについて、光源12から出射されたレーザビームの波長は1.315μmであり、第5反射面21a上における円環レーザビームの外径寸法は40cmであり、第5反射面21aから目標位置までの距離は1000mである。図5Bは、図5Aの各円環レーザビームを集光したレーザビームの強度分布(遠視野像)を示すグラフである。つまり、破線は内外径比M=1.2の円環レーザビームを集光したレーザビームの強度である。実線は内外径比M=1.5の円環レーザビームを集光したレーザビームの強度である。点線は内外径比M=2.0の円環レーザビームを集光したレーザビームの強度である。各図において、縦軸はレーザビームの強度を示し、横軸はレーザビームの中心からの距離を示している。
 図5Bに示すように、遠視野において集光したレーザビームの強度(パワー密度)は、集光前の円環レーザビームの内外径比が大きいほど高くなる。具体的には、図5Aに示すように、集光前の円環レーザビームの内外径比が小さいほど、円環レーザビームの幅寸法が小さく、強度が大きい。この各円環レーザビームの集光後には、図5Bに示すように、各レーザビームにおいて強度が最も大きい主ローブの周囲にサイドローブが発生する。集光前の円環レーザビームの内外径比が小さいほど、集光後のレーザビームにおいてサイドローブの強度が大きくなる。これにより、集光後のレーザビームの強度が分散し、その集光性が低下する。このため、集光前の円環レーザビームの内外径比および幅寸法が大きいほど、集光後のレーザビームの強度が大きくなる。この結果、第5反射面21a上で各円環レーザビームを重ねて、その幅を広くとることによって、集光したレーザビームの径寸法を小さくし、目標位置におけるパワー密度やその時間積分であるエネルギー密度を高めることができる。
 また、円錐角θA、θBの差Δをユニット11の近接順に変化させて、各円環レーザビームの入射角度αnを予め適切に設定することにより、各円環レーザビームを集光させたレーザビームの焦点距離に差分を設けている。これによって、ある程度高いエネルギー密度を有するレーザビームの照射範囲が光軸OA上において拡がる。このため、目標位置への測距が困難な場合であっても、レーザビームを目標位置に照射することができる。
 また、複数の円環レーザビームを合成することによって、合成レーザビームのエネルギーを高め、合成レーザビームの高出力化を図ることができる。
 さらに、各円環レーザビームを同軸に合成しているため、各円環レーザビームが合成レーザビームの光軸OA上に集光する。よって、光軸OAと垂直な方向における照射範囲の広がりが抑えられるため、光軸OA上における合成レーザビームのエネルギー密度を高く維持することができる。
 また、一対のアキシコンミラー14、15およびスクレイパーミラー16で構成した反射光学系をユニット11に用いている。これにより、複数の円環レーザビームを合成することができ、これにより合成レーザビームのエネルギーを高めることができる。さらに、透過光学系をユニット11に用いた場合に生じる熱レンズ効果や出力損失などの問題を排除することができる。この結果、円環レーザビームのエネルギーの低下を防ぎ、焦点における合成レーザビームのエネルギー密度を高く維持することができる。
 さらに、ガイド光源60から可視光線を円環レーザビームの光軸に沿って出射することにより、可視光線が合成レーザビームの中心に位置するため、可視光線に基づいて合成レーザビームの照射位置を目視で確認することができる。
 (第2実施の形態)
 上記第1実施の形態に係るレーザビーム合成装置100では、副鏡22の曲率半径が副鏡22に入射する円環レーザビームの外径の半径寸法に比べて、幾何光学的収差の発生を抑えるように十分に大きく設定されている。これにより、レーザビーム合成装置100は、レーザビームが光軸OA上において広い範囲にある程度高いエネルギー密度を持って照射される用途に利用され得る。これに対して、さらに高いエネルギー密度を有するレーザビームが必要な場合がある。このため、第2実施の形態に係るレーザビーム合成装置100では、合成レーザビームにおいて各レーザビームの焦点位置を互いに近づけるように副鏡22の曲率半径を設定している。図6は、第2実施の形態に係るレーザビーム合成装置100の集光光学系20を模式的に示す図である。この図6を参照して、レーザビーム合成装置100の構成について説明する。
 図6に示すように、主鏡21の第5反射面21aおよび副鏡22の第4反射面22aは放物面でそれぞれ形成される。このような第5反射面21aおよび第4反射面22aで円環レーザビームが反射することによって、幾何光学的収差が発生し、各円環レーザビームの焦点位置を互いに近づけることができる。
 具体的には、第5反射面21aの曲率半径/第4反射面22aの曲率半径を拡大率Pとし、第5反射面21aと第4反射面22aとの間の距離により第5反射面21aから焦点までの距離Fを設定する。また、第4反射面22aに対する第n円環レーザビームの入射角度をαnとし、第5反射面21aに入射する第n円環レーザビームの半径寸法(ここでは、外径半径と内径半径の平均値)をynとし、第n円環レーザビームに対する幾何光学的収差をγnとする。このとき、第5反射面21aから出射した第n円環レーザビームの光軸OAに対する傾きβnは、βn=tan-1(yn/F)+αn/P-γnと表せる。これにより、第n円環レーザビームの焦点距離Fnは、Fn=yn/tan{tan-1(yn/F)+αn/P-γn}と表せる。ここで、αn/P-γnを相殺するように、各入射角度αnおよび/または各幾何光学的収差γnを設定する。この結果、αn/P-γn=0となるため、Fn=Fとなり、すべてのnについて焦点距離は一致する。
 合成レーザビームにおいて第4反射面22aに対する円環レーザビームの入射角度αnに差があると、円環レーザビームの傾きβnが相違するため、集光したレーザビームの焦点距離が異なる。これに対して、幾何光学的収差γnにより入射角度αnの差を相殺することにより、傾きβnの差が小さくなり、円環レーザビームの焦点距離が一致させることができる。たとえば、円環レーザビームの入射角度αnが大きいほど、主鏡21の第5反射面21aで反射された円環レーザビームの傾きβnが大きく、焦点距離Fnが短くなる。これに対して、幾何光学的収差γnが発生すると、径寸法が大きくて光軸OAから離れた位置で反射した光ほど反射角が大きくなり、第5反射面21aで反射された円環レーザビームの傾きβnが小さくなる。この結果、入射角度αnの差が幾何光学的収差γnにより打ち消され、各円環レーザビームの焦点距離Fnが等しくなり、各円環レーザビームを一点に集光する。これにより、合成レーザビームの照射面積が小さくなるため、合成レーザビームのエネルギー密度やパワー密度をさらに高めることができる。
 また、合成レーザビームのエネルギー密度が向上することによって、合成レーザビームを有効に照射できる距離を長くすることができる。具体的には、図7Aは、第5反射面21aにおいて円環レーザビームがそれぞれ重ならない場合における、第5反射面21a上の円環レーザビームの径寸法を表したグラフの一例である。図7Bは、第5反射面21aにおいて円環レーザビームがそれぞれ重なる場合における、第5反射面21a上の円環レーザビームの径寸法を表したグラフの一例である。いずれに図においても、縦軸が円環レーザビームの外径および内径の半径寸法を示し、横軸が整形光学ユニット番号を示している。整形光学ユニット番号はユニット11の近接順につけられており、整形光学ユニット番号が大きくなるほど副鏡22に近くなる。この場合、6つのユニット11を用いた。また、いずれに図においても、丸マークは第5反射面21aにおける円環レーザビームの外径の半径寸法を表し、四角マークは第5反射面21aにおける円環レーザビームの内径の半径寸法を表している。なお、図7Bの場合では、第1反射面15aの円錐角θAと第2反射面14aの円錐角θBとの差Δが、整形光学ユニット番号の順(つまり、ユニット11の近接順)に、0.008、0.014、0.020、0.026、0.032、0.038に設定されている。図8は、焦点距離とエネルギー密度比との関係を示すグラフである。縦軸は、合成レーザビームのエネルギー密度比を示し、横軸は、合成レーザビームの焦点距離を表している。このエネルギー密度比は、図7Aで示す場合の合成レーザビームのエネルギー密度に対する、図7Bで示す場合の合成レーザビームのエネルギー密度の比率であって、たとえば、2~4.5である。
 円環レーザビームが互いに重ならない場合には、図7Aにおいて各ユニット11の円マークと四角マークとの差で示されるように、各円環レーザビームの幅寸法は小さくなる。これに対して、円環レーザビームが互いに重なる場合には、図7Bにおいて各ユニット11の円マークと四角マークとの差で示されるように、各円環レーザビームの幅寸法(光束の断面積)を大きくすることができる。これにより、図7Bに示す場合には、集光した合成レーザビームの径寸法が小さくなり、合成レーザビームのエネルギー密度が大きくなる。この結果、図7Aの合成レーザビームに比べて図7Bの合成レーザビームは、焦点距離を大きくした場合のエネルギー密度の減衰が少ない。このため、図8に示すように、合成レーザビームの焦点距離が長くなるにつれて、エネルギー密度比が増加する。このように、合成レーザビームは、そのエネルギー密度が大きいものほど、焦点距離(すなわち、有効に照射できる距離)を長くすることができる。
 (第3実施の形態)
 上記第1および第2実施の形態では、一対のアキシコンミラー14、15で構成される反射光学系をユニット11に用いた。これに対して、第3実施の形態では、透過光学系をユニット11に用いている。図9は、第3実施の形態に係るレーザビーム合成装置100を模式的に示す図である。図10は、一対のアキシコンレンズ51、52の円錐角θC、θDの関係を示す図である。この図9および図10を参照して、レーザビーム合成装置100の構成について説明する。
 図9に示すように、ユニット11は、一対のアキシコンレンズ51、52およびスクレイパーミラー16を備えている。一対のアキシコンレンズは、第1アキシコンレンズ51および第2アキシコンレンズ52により構成されており、屈折率が同じ材料が用いられている。第1アキシコンレンズ51は、第1アキシコン光学系であって、第2アキシコンレンズ52よりレーザ光源12側に位置し、円形平面状の入射面(第1入射面51a)および円錐面の射出面(第1射出面51b)を有している。第1射出面51bは、入射したレーザビームの径寸法を拡大して円環レーザビームを出射する円錐面である。第2アキシコンレンズ52は、第2アキシコン光学系であって、第1アキシコンレンズ51とスクレイパーミラー16との間に位置し、円錐面の入射面(第2入射面52a)および円形平面状の射出面(第2射出面52b)を有している。第2入射面52aは、第1アキシコンレンズ51から出射した円環レーザビームの径寸法を縮小する円錐面である。一対のアキシコンレンズ51、52は、第1射出面51bと第2入射面52aとが対向し、その円錐の軸が一致するように配置されている。
 図10に示すように、第1射出面51bの円錐角θCおよび第2入射面52aの円錐角θDは鈍角であって、円錐角θCは円錐角θDよりわずかに大きく、その差は、たとえば、0.005~0.5°である。第1射出面51bの円錐角θCは、第1射出面51bにおける円錐の回転軸と円錐の母線との間の角度θcの2倍である。円錐角θDは、第2入射面52aにおける円錐の回転軸と円錐の母線との間の角度θdの2倍である。なお、この実施の形態では、各ユニット11における円錐角θCが円錐角θDより大きいが、第1ユニット11aでは円錐角θCが円錐角θDと等しくてもよい。この場合、円錐角θCと円錐角θDとの差Δは0になる。
 各ユニット11において、図9に示すように、円錐角θCと円錐角θDとの差Δが副鏡22に近いほど大きくなるように設定されている。つまり、第n-1ユニット11における差Δは、第3反射面16aの出射方向側に設けられた第nユニットにおける差Δより小さくなっている。また、各ユニット11において一対のアキシコンレンズ51、52は、第1射出面51bと第2入射面52aとの間の寸法が副鏡22に近いユニット11ほど大きくなるように配置されている。さらに、各ユニット11において第2アキシコンレンズ52の径寸法は副鏡22に近いユニット11ほど大きくなるように形成されている。
 スクレイパーミラー16の第2通過孔16bは、第3反射面16aに対して45°に傾く方向から開けられている。第2通過孔16bの径寸法は、第2射出面52bから出射された円環レーザビームの内径寸法より小さく設定されている。スクレイパーミラー16は、入射面における第2通過孔16bの中心が第2入射面52aの軸上にあり、第3反射面16aが第2入射面52aの軸に対して45°で傾斜し、さらに、第2通過孔16bが第2入射面52aの軸に対して直交するように配置されている。
 上記レーザビーム合成装置100では、各ユニット11において、中実レーザビームがレーザ光源12から出射される。中実レーザビームは、第1入射面51aから第1アキシコンレンズ51に入射して、第2射出面52bから出射する。この際、中実レーザビームの光軸が第1射出面51bの軸に一致する。このため、中実レーザビームは、円錐形状の第1射出面51bの軸に対して線対称で、この軸からの距離に関わらず一定の角度で屈折する。これにより、中実レーザビームは円環状レーザビームに変換されて、円環レーザビームは拡大しながら第2入射面52aに向かって進む。
 そして、円環レーザビームは、第2入射面52aから第2アキシコンレンズ52に入射する。この際、円環レーザビームは、円錐形状の第2入射面52aの軸に対して線対称で、この軸からの距離に関わらず一定の角度で屈折する。この場合、第1射出面51bの円錐角θCが第2入射面52aの円錐角θDよりわずかに大きいため、第1射出面51bにおける屈折角が第2射出面52bにおける屈折角よりわずかに小さい。これにより、円環レーザビームは、そのリング状断面の幅寸法が一定のまま、径寸法が縮小していく。
 この第2射出面52bから出射した円環レーザビームは、スクレイパーミラー16において第2通過孔16bの周りの第3反射面16aに当たって、第2射出面52bの軸に対して直交する方向へ反射される。この際、各ユニット11の第3反射面16aは、その中心がガイド線上に並び、かつ、傾斜角が等しい。このため、各ユニット11の第3反射面16aで反射された円環レーザビームは、その断面の円の中心が一致して、同軸で進む。
 また、各ユニット11において第1射出面51bと第2入射面52aとの間の寸法は、副鏡22に近いユニット11ほど大きくなっている。このため、副鏡22に近いユニット11から出射された円環レーザビームの径寸法が大きくなる。これにより、図9のG4に示すように、各ユニット11から出射された直後の円環レーザビームは、その断面が同心円であって、第n円環レーザビームが第n-1レーザビームを取り囲む形状を有している。
 さらに、各ユニット11において円錐角θCと円錐角θDとの差が大きいほど、円環レーザビームとその光軸OAとの間の角度(傾き)が大きくなる。この差は副鏡22に近いユニット11ほど大きいため、副鏡22に近いユニット11から出射された円環レーザビームほど、その径寸法が大きく、かつ、径寸法が大きく縮小する。よって、副鏡22の第4反射面22aおよび主鏡21の第5反射面21aにおいて、合成レーザビームの円環レーザビームは互いに重なり合う。そして、この合成レーザビームは、凹型の第5反射面21aで反射して集光しながら、レーザビーム合成装置100から出射される。
 なお、一対のアキシコンレンズ51、52における円環レーザビームの屈折角は、レンズ51、52の屈折率および円錐角θC、θDにより決まる。よって、各ユニット11において円錐角θC、θDを等しくし、アキシコンレンズ51、52の屈折率の差をユニット11の近接順に変えることによって、円環レーザビームの屈折角を変化させてもよい。
 (第4実施の形態)
 上記第1および第2実施の形態では、各ユニット11が出射する円環レーザビームは、同心状であって、その単位伝搬距離当たりの外径寸法の減少量が互いに異なるようにした。ただし、同心状の円環レーザビームが伝搬するに従って互いに接近して重なり合えばよい。このため、単位伝搬距離当たりの外径寸法の変化量が互いに異なっていればよく、たとえば、この変化量が減少量でなく増加量であってもよい。図11は、一対のアキシコンミラー14、15の円錐角θA、θBの関係を示す図である。この図11および図1を参照して、レーザビーム合成装置100の構成について説明する。
 図11に示すように、各ユニット11において一対のアキシコンミラー14、15は、第1反射面15aの円錐角θAより第2反射面14aの円錐角θBが大きい。この差Δbは、たとえば、0.001~0.1°であって、ユニット11の近接順に小さくなっている。つまり、第n-1ユニット11における差Δbは、第3反射面16aの出射方向側に設けられた第nユニットにおける差Δbより大きくなっている。この実施の形態では、円錐角θBが一定で、円錐角θA=θB-Δbがユニット11の近接順に大きくなるように設定されている。ただし、差Δbがユニット11の近接順に小さくなっていれば、円錐角θAを一定にして、円錐角θBをユニット11の近接順に小さくなっていてよいし、または、円錐角θAおよびθBの両方共を変化させてもよい。また、この実施の形態では、各ユニット11において円錐角θBが円錐角θAより大きいが、集光光学系20に最も近いユニット11では円錐角θAと円錐角θBとが等しくてもよい。この場合、差Δbは0になる。
 上記実施の形態では、第2反射面14aの円錐角を第1反射面15aより大きくし、この円錐角の差Δbをユニット11の近接順に小さくしている。これにより、各ユニット11から出射する円環レーザビームは、伝搬するに従って外径寸法が増加し、その単位伝搬距離当たりの外径寸法の増加量はユニット11の近接順に小さくなる。これにより、集光前においてこれらの円環レーザビームは、その幅を広く確保しながら、互いに重なり合う。この結果、レーザビーム合成装置100の大型化を抑制しながら、集光したレーザビームの径寸法を小さくして、照射位置における合成レーザビームのエネルギー密度およびパワー密度を高めることができる。
 図12A~図12Cは従来のレーザビーム合成装置における円環レーザビームの強度分布を示し、図13A~図13Cは本実施の形態のレーザビーム合成装置100における円環レーザビームの強度分布を示している。図12Aおよび図13Aは、第5反射面21aにおける集光前の円環レーザビームの強度分布(近視野像)を示す図である。図12Bおよび図13Bは、図12AのA-A線、図13AのB-B線に沿って切断した断面における従来の円環レーザビームの強度分布を示すグラフである。図12Cおよび図13Cは、円環レーザビームを集光したレーザビームの強度分布(遠視野像)を示すグラフである。図12Bおよび図13Bにおいて縦軸は強度を示し、横軸はレーザビームの中心からの距離を示している。図12Cおよび図13Cの縦軸は強度を示している。第5反射面21aと円環レーザビームの集光位置との間の距離は、1kmである。これらの強度分布は、光源12から出力されたレーザビームの波長を1.064μmとして波動光学に基づきシミュレーションした結果である。
 従来のレーザビーム合成装置では、第1反射面15aの円錐角θAと第2反射面14aの円錐角θBとは等しく設定されている。このため、図12Aに示すように、近視野像において集光前の円環レーザビームは、各円環レーザビームの幅寸法が小さく、互いに間隔を開けて離れている。このため、図12Bに示すように、それぞれの円環レーザビームの強度が表されている。ここでは、径が小さい円環レーザビームほどその強度が大きくなっている。この各円環レーザビームの集光後には、図12Cに示すように、遠視野において集光したレーザビームでは、主ローブの周囲に多数のサイドローブが発生し、レーザビームの強度が分散している。よって、レーザビームの集光性が低く、主ローブの強度が低くなっている。
 一方、本実施の形態のレーザビーム合成装置によれば、図13Aに示すように、近視野像において集光前の円環レーザビームは、それぞれ幅が広く、互いに重なっている。このため、図13Bに示すように、円環レーザビームが重なっている部分(幅方向の中央)の強度が大きく、端(リング状断面の内周および外周)に近くなるほど強度が小さくなっている。また、図13Cに示すように、遠視野において集光したレーザビームの強度は大きく、図13Cの強度に比べて約3.9倍になっている。これにより、目標位置におけるパワー密度やエネルギー密度が高められている。
 なお、上記構成において、各ユニット11が出射する円環レーザビームは、同心状であって、その単位伝搬距離当たりの外径寸法の増加量が互いに異なるようにした。ただし、複数の円環レーザビームのうち、一部の円環レーザビームの単位伝搬距離当たりの外径寸法を増加させ、残る円環レーザビームの単位伝搬距離当たりの外径寸法を減少させてもよい。これにより、単位伝搬距離当たりの外径寸法の変化量が互いに異なって、同心状の円環レーザビームが伝搬するに従って互いに接近して重なり合えばよい。
 (第5実施の形態)
 上記第4実施の形態では、一対のアキシコンミラー14、15で構成される反射光学系をユニット11に用いた。これに対して、第5実施の形態では透過光学系をユニット11に用いている。この透過光学系は第2実施の形態と同様であるが、アキシコンレンズ51、52の円錐角θCとθDとの関係およびその差が異なる。図14は、一対のアキシコンレンズ51、52の円錐角θC、θDの関係を示す図である。
 図14に示すように、第1射出面51bの円錐角θCは第2入射面52aの円錐角θDより小さい。この差は、たとえば、0.005~0.5°であって、ユニット11の近接順に小さくなっている。つまり、第n-1ユニット11における差は、第3反射面16aの出射方向側に設けられた第nユニットより大きい。なお、この実施の形態では、各ユニット11における円錐角θCが円錐角θDより小さいが、集光光学系20に最も近いユニット11では円錐角θCが円錐角θDと等しくてもよい。この場合、円錐角θCと円錐角θDとの差Δは0になる。
 上記実施の形態では、第1射出面51bの円錐角を第2入射面52aより小さくし、この円錐角の差をユニット11の近接順に小さくしている。これにより、各ユニット11から出射する円環レーザビームは、伝搬するに従って外径寸法が増加し、その単位伝搬距離当たりの外径寸法の増加量はユニット11の近接順に小さくなる。このため、集光前においてこれらの円環レーザビームは、その幅を広く確保しながら、互いに重なり合う。よって、レーザビーム合成装置100の大型化を抑制しながら、集光したレーザビームの径寸法を小さくして、照射位置における合成レーザビームのエネルギー密度およびパワー密度を高めることができる。
 (第6実施の形態)
 上記全ての実施の形態では、集光光学系20に主鏡21および副鏡22を有する反射光学系を用いた。しかしながら、集光光学系20は、スクレイパーミラー16からの円環レーザビームを集光するものであればこれに限定されず、たとえば、単レンズや透過型望遠鏡などの透過光学系を用いることもできる。この場合、各ユニット11における第1アキシコン光学系15、51の円錐角と第2アキシコン光学系14、52の円錐角との差は、各ユニット11のスクレイパーミラー16から出射した円環レーザビームが集光光学系20の出射面において互いに重なるように定められる。
 (第7実施の形態)
 上記第2実施の形態では、合成レーザビームの集光性を向上させるために、合成レーザビームの各円環レーザビームの焦点位置を互いに近づけるように副鏡22の曲率半径を設定した。しかしながら、合成レーザビームの集光性を向上させる方法はこれに限定されない。たとえば、レーザ光源12からユニット11のアキシコン光学系14、15、51、52に入射させるレーザビームの波面の曲率を最適化することによっても実現することができる。
 すなわち、第1アキシコン光学系15、51の円錐角と第2アキシコン光学系14、52の円錐角との差がユニット11の近接順に異なっている。これにより、主鏡21で反射された各円環レーザビームの傾きが異なり、各円環レーザビームの焦点距離に差異が生じる。よって、各円環レーザビームの焦点距離が一致するようにレーザ光源12からのレーザビームの波面曲率を設定する。これにより、焦点距離の差異を補正するようにアキシコン光学系14、15、51、52に入射するレーザビームの発散角が調整される。この結果、主鏡21から集光される各円環レーザビームの焦点距離が互いに近づき、合成レーザビームの照射面積が小さくなるため、合成レーザビームのエネルギー密度やパワー密度をさらに高めることができる。
 また、たとえば、第2実施形態のように幾何光学的収差γnにより焦点距離の差異を補正する場合、集光光学系20の出射面において各円環レーザビームを非常に僅かにずらす必要があった。これに対し、本実施の形態のように、レーザビームの波面の曲率を最適化する方法では、各円環レーザビームを完全に重ねることができる。
 なお、上記第3~第6実施の形態においても、第7実施の形態のように、各円環レーザビームの波面の曲率を最適化するようにしてもよい。これによりレーザビームの集光性の向上が図られる。
 (第8実施の形態)
 上記全ての実施の形態において、縮小光学系30にイメージリレー光学系を用いることができる。イメージリレー光学系は、スクレイパーミラー16から出射した円環レーザビームの径寸法を縮小して集光光学系20に出射する。
 スクレイパーミラー16から出射した円環レーザビームを、縮小倍率R(1より小さい値)のイメージリレー光学系により縮小する。これにより、各円環レーザビームの間隔がR倍に縮小し、各円環レーザビームの傾き(外径の変化率)が1/R倍に大きくなる。よって、縮小せずにスクレイパーミラー16から出射した各円環レーザビームが重なるまでの伝搬距離をL1とする。この場合、スクレイパーミラー16から出射しイメージリレー光学系で縮小した各円環レーザビームが重なるまでに必要な伝搬距離L2は、RL1と表せる。このように、伝搬距離L2はL1より短いため、レーザビーム合成装置100の小型化が図られる。
 なお、必要に応じて、イメージリレー光学系により縮小した円環レーザビームを拡大してもよい。これにより、円環レーザビームは一旦縮小された後に拡大されて、集光光学系へ出射される。
 (その他の実施の形態1)
 上記第1実施の形態では、レーザビーム合成装置100にガイド光源60を設けたが、ガイド光源60を設けなくてもよい。また、第1および第3実施の形態に係るレーザビーム合成装置100にガイド光源60を設けてもよい。
 上記全ての実施の形態では、各ユニット11において第1アキシコン光学系15、51の円錐角θA、θCと第2アキシコン光学系14、52の円錐角θB、θCの差をユニット11の近接順に大きくなるように設定した。これに対して、各ユニット11におけるスクレイパーミラー16の反射面16aを、その反射面16aで反射された円環レーザビームを円形に保つような楕円錐面とし、その反射面16aの円錐角をユニット11の近接順に小さくなるように設定してもよい。
 具体的には、スクレイパーミラー16の反射面16aは、アキシコン光学系から出射した円環レーザビームの径寸法を縮小して当該円環レーザビームの進路を変更する楕円錐面である。反射面16aは、楕円錐形状に窪み、この頂点がスクレイパーミラー16の中心に位置するように形成されている。反射面16aでは楕円錐面の長径および短径がユニット11ごとに異なり、楕円錐面の長径側および短径側の両方の円錐角が集光光学系20に近いユニット11ほど小さくなっている。なお、第1ユニット11aにおけるスクレイパーミラー16の反射面16aは平面で形成されていてもよい。また、反射面16aを楕円錐面としたが、反射面16aで反射された円環レーザビームが円形に保たれれば、反射面16aは円錐面であってもよい。
 これにより、窪んだ楕円錐形状の反射面16aで反射された円環レーザビームは、その幅寸法を一定に維持し、外径寸法が減少しながら伝搬する。この反射面16aの円錐角がユニット11の近接順に小さくなるため、円環レーザビームの単位伝搬距離当たりの外径寸法の減少量はユニット11の近接順に大きくなっている。また、反射面16aにおける円環レーザビームの外径寸法はユニット11の近接順に大きい。したがって、反射面16aから入射した円環レーザビームは、集光前の第4反射面22aおよび第5反射面21aにおいて互いに重なり合う。よって、第5反射面21aの径寸法を大きくすることなく、集光前の円環レーザビームの幅寸法や内外径比を大きくすることができる。この結果、このような円環レーザビームを第5反射面21aで反射して、その幅寸法および外径寸法が小さくなるように集光すると、集光したレーザビームの径寸法が小さくなり、そのエネルギー密度やパワー密度を高めることができる。
 なお、アキシコン光学系は、入射したレーザビームを円環レーザビームにして出射する円錐面を有する光学系である。アキシコン光学系として、たとえば、凸型アキシコンミラー15、凸型アキシコンミラー15および凹型アキシコンミラー14の一対の光学系、第1アキシコンレンズ51、ならびに、第1アキシコンレンズ51および第2アキシコンレンズ52の一対の光学系が用いられる。
 なお、中実レーザビームを円環レーザビームに整形して出射する出射光学系は、一対のアキシコン光学系14、15、51、52に限らない。たとえば、このアキシコン光学系に代えてスクレイパーミラーを出射光学系として用いることもできる。このスクレイパーミラーは、平板状であって、その中央部に貫通孔を有している。このため、レーザ光源12からスクレイパーミラーに中実レーザビームを出射すると、中実レーザビームはスクレイパーミラーを通過するとき、その中央部が除去されて円環レーザビームに変換される。
 上記全ての実施の形態では、スクレイパーミラー16は、その第3反射面16aが第2反射面14aの軸に対して45°で傾斜するように配置されていた。ただし、この傾斜角度は、45°に限定されない。たとえば、各ユニット11の配置に合わせて傾斜角度を変えることができる。これにより、レーザビーム合成装置100における各部の配置の自由度が高まり、また、レーザビーム合成装置100の小型化が図られる。
 上記全ての実施の形態では、各ユニット11から出射された直後の合成レーザビームでは、第nレーザビームが第n-1円環レーザビームを取り囲んでいた。これに対して、各ユニット11からの出射直後における合成レーザビームにおいて、第n円環レーザビームと第n-1レーザビームとが重なっていてもよい。
 上記全ての実施の形態では、主鏡21の第5反射面21aにおいて径が最も小さいレーザビームは、断面がリング状の円環レーザビームであったが、中実レーザビームであってもよい。
 (その他の実施の形態2)
 上記その他の実施の形態1では、スクレイパーミラー16の反射面16aは、アキシコン光学系から出射した円環レーザビームの径寸法を縮小して当該円環レーザビームの進路を変更する楕円錐面とした。これに対して、スクレイパーミラー16の反射面16aは、アキシコン光学系から出射した円環レーザビームの径寸法を拡大して当該円環レーザビームの進路を変更する楕円錐面としてもよい。この場合、反射面16aは、突き出した楕円錐形状であって、反射面16aの円錐角をユニット11の近接順に大きくなる。
 これにより、反射面16aで反射された円環レーザビームは、広い幅寸法で、外径寸法が拡大しながら伝搬する。この際、円環レーザビームの単位伝搬距離当たりの外径寸法の拡大量はユニット11の近接順に小さくなっている。また、反射面16aにおける円環レーザビームの外径寸法はユニット11の近接順に大きい。したがって、反射面16aから入射した円環レーザビームは、集光前に互いに重なり合う。よって、レーザビーム合成装置100の大型化を抑制しながら、集光したレーザビームの径寸法を小さくして、照射位置における合成レーザビームのエネルギー密度およびパワー密度を高めることができる。
 また、上記全実施の形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明のレーザビーム合成装置は、高エネルギー密度や高パワー密度の照射性能向上を図ったレーザビーム合成装置等として有用である。
100 レーザビーム合成装置
11  整形光学ユニット
14  凹型アキシコンミラー(第2アキシコン光学系、アキシコン光学系、出射光学系)
14a 第2反射面
14b 第1通過孔
15  凸型アキシコンミラー(第1アキシコン光学系、アキシコン光学系、出射光学系)
15a 第1反射面
16  スクレイパーミラー(反射光学系)
16a 第3反射面
16b 第2通過孔
20  集光光学系
21  主鏡
21a 第5反射面
21b 第3通過孔
22  副鏡
22a 第4反射面
30  縮小光学系
51  第1アキシコンレンズ(第1アキシコン光学系、アキシコン光学系、出射光学系)
51a 第1入射面
51b 第1射出面
52  第2アキシコンレンズ(第2アキシコン光学系、アキシコン光学系、出射光学系)
52a 第2入射面
52b 第2射出面
60  ガイド光源

Claims (14)

  1.  単位伝搬距離当たりの外径寸法の変化量が互いに異なる円環レーザビームを出射する複数の整形光学ユニットを備え、
     前記各整形光学ユニットは、出射する円環レーザビームが同心状となるように配置されている、レーザビーム合成装置。
  2.  前記整形光学ユニットは、
     入射したレーザビームの径寸法を拡大して円環レーザビームを出射する円錐面を有する第1アキシコン光学系と、
     前記第1アキシコン光学系から出射した円環レーザビームの径寸法を縮小する円錐面を有する第2アキシコン光学系と、
     前記第2アキシコン光学系から出射した円環レーザビームの進路を変更する反射光学系と、を含み、
     前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の少なくともいずれか一方が前記各整形光学ユニットごとに異なっており、
     前記反射光学系は、入射した円環レーザビームを、他の前記反射光学系から出射された円環レーザビームに対して同心状に出射する、請求項1に記載のレーザビーム合成装置。
  3.  前記第1アキシコン光学系は、円錐形状に突出した反射面を有する凸型アキシコンミラーであり、
     前記第2アキシコン光学系は、前記凸型アキシコンミラーの反射面に対向しかつ円錐形状に窪んだ反射面、および、当該反射面とその反対側にある面との間を貫通した孔を有する凹型アキシコンミラーであり、
     前記反射光学系は、前記凸型アキシコンミラーと前記凹型アキシコンミラーとの間に配置され、かつ、前記凹型アキシコンミラーから出射した円環レーザビームの光軸に対して傾斜する反射面、および、当該反射面とその反対側にある面との間を貫通した孔を有するスクレイパーミラーである、請求項2に記載のレーザビーム合成装置。
  4.  前記各整形光学ユニットにおける前記凹型アキシコンミラーの円錐角は前記凸型アキシコンミラーの円錐角より小さく、
     前記整形光学ユニットにおける前記凹型アキシコンミラーの円錐角と前記凸型アキシコンミラーの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより小さい、請求項3に記載のレーザビーム合成装置。
  5.  前記各整形光学ユニットにおける前記凹型アキシコンミラーの円錐角は前記凸型アキシコンミラーの円錐角より大きく、
     前記整形光学ユニットにおける前記凹型アキシコンミラーの円錐角と前記凸型アキシコンミラーの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより大きい、請求項3に記載のレーザビーム合成装置。
  6.  前記第1アキシコン光学系は、円錐形状に突出した射出面を有する第1アキシコンレンズであり、
     前記第2アキシコン光学系は、前記射出面に対向しかつ円錐形状に突出した入射面を有する第2アキシコンレンズであり、
     前記反射光学系は、前記第1アキシコンレンズとの間に前記第2アキシコンレンズを挟むように配置され、かつ、前記第2アキシコンレンズから出射した円環レーザビームの光軸に対して傾斜する反射面、および、当該反射面とその反対側にある面との間を貫通した孔を有するスクレイパーミラーである、請求項2に記載のレーザビーム合成装置。
  7.  前記第1アキシコンレンズの円錐角は前記第2アキシコンレンズの円錐角より大きく、
     前記各整形光学ユニットにおける前記第1アキシコンレンズの円錐角と前記第2アキシコンレンズの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより小さい、請求項6に記載のレーザビーム合成装置。
  8.  前記第1アキシコンレンズの円錐角は前記第2アキシコンレンズの円錐角より小さく、
     前記各整形光学ユニットにおける前記第1アキシコンレンズの円錐角と前記第2アキシコンレンズの円錐角との差は、当該整形光学ユニットの前記スクレイパーミラーの出射方向側に設けられた整形光学ユニットより大きい、請求項6に記載のレーザビーム合成装置。
  9.  前記反射光学系から出射した円環レーザビームを集光する集光光学系をさらに備え、
     前記各整形光学ユニットにおける前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の差は、前記各整形光学ユニットの前記反射光学系から出射した円環レーザビームが前記集光光学系の出射面において互いに重なるように定められる、請求項2~8のいずれか一項に記載のレーザビーム合成装置。
  10.  前記集光光学系は、
     前記反射光学系から出射した円環レーザビームの径寸法を拡大する反射面を有する副鏡と、
     前記副鏡から出射した円環レーザビームを集光する反射面を有する主鏡と、を含み
     前記各整形光学ユニットにおける前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の差は、前記各整形光学ユニットの前記反射光学系から出射した円環レーザビームが前記主鏡の反射面において互いに重なるように定められる、請求項9に記載のレーザビーム合成装置。
  11.  前記反射光学系から出射した円環レーザビームの径寸法を縮小して前記集光光学系に出射するイメージリレー光学系をさらに備えている、請求項9または10に記載のレーザビーム合成装置。
  12.  前記各整形光学ユニットにおける前記第1アキシコン光学系の円錐角および前記第2アキシコン光学系の円錐角の差により発生する各円環レーザビームの焦点距離の差異を補正するように、各円環レーザビームの波面の曲率が設定されている、請求項2~11に記載のレーザビーム合成装置。
  13.  前記反射光学系から出射された円環レーザビームの光軸に沿って可視光線を出射するガイド光源をさらに備えている、請求項2~12のいずれか一項に記載のレーザビーム合成装置。
  14.  前記整形光学ユニットは、
     円環レーザビームを出射する出射光学系と、
     前記出射光学系から出射した円環レーザビームの径寸法を変化して当該円環レーザビームの進路を変更する楕円錐面を有する反射光学系と、を含み、
     前記反射光学系の楕円錐面の長径側および短径側の両方の円錐角が前記各整形光学ユニットごとに異なり、
     前記反射光学系は、入射した円環レーザビームを、他の前記反射光学系から出射された他の円環レーザビームに対して同心状に出射する、請求項1記載のレーザビーム合成装置。
PCT/JP2014/005084 2013-10-29 2014-10-06 レーザビーム合成装置 WO2015064017A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14857042.7A EP3064986B1 (en) 2013-10-29 2014-10-06 Laser-beam synthesis device
EP18200132.1A EP3470910B1 (en) 2013-10-29 2014-10-06 Laser-beam synthesis device
US15/033,441 US9746681B2 (en) 2013-10-29 2014-10-06 Laser beam combining device
IL245323A IL245323B (en) 2013-10-29 2016-04-27 A device for connecting laser beams

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013224638A JP5603992B1 (ja) 2013-10-29 2013-10-29 レーザビーム合成装置
JP2013-224638 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015064017A1 true WO2015064017A1 (ja) 2015-05-07

Family

ID=51840445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005084 WO2015064017A1 (ja) 2013-10-29 2014-10-06 レーザビーム合成装置

Country Status (5)

Country Link
US (1) US9746681B2 (ja)
EP (2) EP3470910B1 (ja)
JP (1) JP5603992B1 (ja)
IL (1) IL245323B (ja)
WO (1) WO2015064017A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353516A (zh) * 2015-12-14 2016-02-24 中国科学院光电技术研究所 单一探测器对光瞳光轴分区域成像的双光束合成传感器
JPWO2022018850A1 (ja) * 2020-07-22 2022-01-27

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267620B2 (ja) * 2014-10-06 2018-01-24 川崎重工業株式会社 レーザビーム合成装置
JP6412988B1 (ja) 2017-08-03 2018-10-24 川崎重工業株式会社 レーザビーム合成装置
CN108287412B (zh) * 2017-12-30 2020-09-01 湖北航天技术研究院总体设计所 一种基于光学微扫机构的激光空间合成传输系统
CN109164573A (zh) * 2018-10-09 2019-01-08 湖北航天技术研究院总体设计所 一种基于多路径调整机构的激光空间功率合成系统
US20230012441A1 (en) * 2019-12-09 2023-01-12 Daylight Solutions, Inc. Device with a hollow output beam
IT202100011456A1 (it) * 2021-05-05 2022-11-05 Clay Paky Spa Dispositivo di illuminazione e proiettore scenografico comprendente una pluralita di tali dispositivi di illuminazione
CN113740828B (zh) * 2021-08-20 2023-05-05 森思泰克河北科技有限公司 共轴激光雷达光学系统及激光雷达

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153024A (ja) * 1983-12-20 1985-08-12 アルファ・ランシア・インダストリアレ・ソチエタ・ペル・アチオニ レ−ザビ−ムを融通自在に構成するためのシステム
JPH0943537A (ja) 1995-07-31 1997-02-14 Nec Corp レーザビーム合成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05111786A (ja) * 1991-10-22 1993-05-07 Toshiba Corp レーザ光合成装置
JP4386137B2 (ja) * 2008-02-29 2009-12-16 トヨタ自動車株式会社 レーザ加工装置及びレーザ加工方法
US8345724B2 (en) * 2008-10-27 2013-01-01 Trumpf Photonics Inc. Laser beam interleaving

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153024A (ja) * 1983-12-20 1985-08-12 アルファ・ランシア・インダストリアレ・ソチエタ・ペル・アチオニ レ−ザビ−ムを融通自在に構成するためのシステム
JPH0943537A (ja) 1995-07-31 1997-02-14 Nec Corp レーザビーム合成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3064986A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353516A (zh) * 2015-12-14 2016-02-24 中国科学院光电技术研究所 单一探测器对光瞳光轴分区域成像的双光束合成传感器
JPWO2022018850A1 (ja) * 2020-07-22 2022-01-27
WO2022018850A1 (ja) * 2020-07-22 2022-01-27 三菱電機株式会社 レーザ装置
JP7143553B2 (ja) 2020-07-22 2022-09-28 三菱電機株式会社 レーザ装置

Also Published As

Publication number Publication date
EP3470910B1 (en) 2020-07-22
EP3064986A4 (en) 2017-07-26
US9746681B2 (en) 2017-08-29
JP5603992B1 (ja) 2014-10-08
US20160274369A1 (en) 2016-09-22
EP3470910A1 (en) 2019-04-17
EP3064986B1 (en) 2018-11-28
IL245323A0 (en) 2016-06-30
EP3064986A1 (en) 2016-09-07
IL245323B (en) 2019-03-31
JP2015087484A (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
WO2015064017A1 (ja) レーザビーム合成装置
JP6267620B2 (ja) レーザビーム合成装置
US11931827B2 (en) Laser cutting device and laser cutting method
JP5678354B2 (ja) レフラキシコン装置およびその組立方法
US20140003456A1 (en) Device For Converting The Profile of a Laser Beam Into a Laser Beam With a Rotationally Symmetrical Intensity Distribution
US7771067B2 (en) Conic of rotation (CoR) optical surfaces and systems of matched CoRs
US20170235150A1 (en) Device for Shaping Laser Radiation
WO2017187609A1 (ja) 平行光発生装置
CN105629449A (zh) 一种新型菲涅耳光学天线发射系统
CN111443483A (zh) 基于自由曲面透镜的光束整形结构的设计方法
US11693250B2 (en) Laser beam combining device
US11662578B2 (en) Image display device
US9798047B2 (en) Device for applying light to an inner surface of a cylinder and beam transformation device for such a device
KR102318271B1 (ko) 펌핑 광 장치, 이를 구비한 디스크 레이저 및 레이저 활성 매체의 펌핑 방법
JP6808892B2 (ja) 合波光学系
KR20190039453A (ko) 화상 표시 장치
CN113625458B (zh) 双共焦反射式变倍扩束镜
KR102425179B1 (ko) 라인빔 형성장치
JP6146745B2 (ja) 入射光ビームを変換するための光学配置、光ビームをラインフォーカスに変換する方法、及びそのための光学デバイス
CN117348262A (zh) 基于空间整形的超连续谱空心光束发射系统
CN116149079A (zh) 悬浮显示装置
JP2012165178A (ja) 球面鏡アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 245323

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2014857042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014857042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15033441

Country of ref document: US