CN108287412B - 一种基于光学微扫机构的激光空间合成传输系统 - Google Patents

一种基于光学微扫机构的激光空间合成传输系统 Download PDF

Info

Publication number
CN108287412B
CN108287412B CN201711490982.7A CN201711490982A CN108287412B CN 108287412 B CN108287412 B CN 108287412B CN 201711490982 A CN201711490982 A CN 201711490982A CN 108287412 B CN108287412 B CN 108287412B
Authority
CN
China
Prior art keywords
micro
scanning mechanism
subsystem
laser
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711490982.7A
Other languages
English (en)
Other versions
CN108287412A (zh
Inventor
李梦庆
武春风
李强
姜永亮
胡黎明
许伟才
彭小康
胡海力
王玉雷
兰硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Designing Institute of Hubei Space Technology Academy
Original Assignee
General Designing Institute of Hubei Space Technology Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Designing Institute of Hubei Space Technology Academy filed Critical General Designing Institute of Hubei Space Technology Academy
Priority to CN201711490982.7A priority Critical patent/CN108287412B/zh
Publication of CN108287412A publication Critical patent/CN108287412A/zh
Application granted granted Critical
Publication of CN108287412B publication Critical patent/CN108287412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors

Abstract

本发明公开了一种基于光学微扫机构的激光空间合成传输系统,包括传输子系统、望远子系统及成像子系统,还包括分光镜。本发明使用时空间多束激光束分别从光纤激光器输出,并输入至准直组件,其中准直组件的负镜组安装于光学扫描机构上,通过调节光学扫描机构,可以实现激光束之间的准直;已被准直各激光束分别进入传输调焦组件,再经过分光镜反射至快反镜,然后进入主镜、次镜及调焦组件,最终实现多束激光束在空间的同一处汇聚至目标;光学微扫机构,其为柔性铰链机构,其微位移由压电陶瓷驱动实现,具备二维平移功能;其采用压电陶瓷叠堆驱动,具备高运动分辨率、大行程的特点,可以实现微米级或亚微米级的分辨率以及几十或几百微米的行程。

Description

一种基于光学微扫机构的激光空间合成传输系统
技术领域
本发明属于激光传输技术领域,具体涉及一种基于光学微扫机构的激光空间合成传输系统。
背景技术
激光空间合成传输系统是提高到靶功率密度的一种系统形式,起到将多束激光能量或激光信息汇聚至目标的作用;同时,传输系统包含一个望远子系统,具有远距离目标观测和压缩光束发散角的作用。激光空间合成是将空间不同分布的激光束通过传输系统,在空间目标处高度汇聚,这就要求激光器输出的激光束之间的平行度严格一致,因此需要实现激光束达到亚微米的调整分辨率以及几百微米的运动行程。然而,在实际工程中,常使用的普通机械调整方法无法满足精度要求,同时也很难保证实时地调整。
发明内容
为解决上述问题,本发明提供了一种基于光学微扫机构的激光空间合成传输系统,包括包括传输子系统、望远子系统及成像子系统,还包括分光镜,
所述传输子系统包括多个微扫机构、多个准直组件及多个传输调焦组件;
所述望远子系统包括快反镜、主镜、次镜及调焦组件;
多束激光分别依次经过各自的微扫机构、准直组件、传输调焦组件,合束于分光镜,再依次经过快反镜、次镜及调焦组件、主镜,多束激光在主镜上均匀分布,通过次镜及调焦组件的调节,实现多束激光作用到预定位置的目标;
所述的准直组件,负镜组安装于光学微扫机构上,微扫机构由压电陶瓷驱动,用以高精度微量调整各束激光间相互平行;
所述分光镜对经过传输调焦组件调焦后的多束激光实现激光波段光束的反射,而透过可见光波段的光束;
所述的望远子系统,通过快反镜锁定能量和信息输出区域,先通过次镜调焦后再通过主镜,实现光束扩束、压缩发散角,实现多束激光在不同空间目标处的汇聚;同时所述快速反射镜,还用于实现空间目标的捕获、跟踪与瞄准。
进一步地,还包括成像子系统,所述成像子系统包括成像探测器、成像调焦组件和反射镜;
所述反射镜接受通过望远子系统的分光镜传送来的目标信息,极大地降低光学元件因装调误差所引起的光轴偏差,将目标成像于成像探测器,通过成像调焦组件可使目标清晰成像,再通过快反镜及成像控制单元使目标实时处于成像探测器的视场中心;所述成像子系统和望远子系统共光路。
具体地,所述传输子系统还包括微扫机构控制单元,由所述微扫机构控制单元控制微扫机构,实现负镜组在垂直于光轴平面内的二维移动,可以实时根据光束作用于目标的位置反馈,调整负镜组的位置,从而实现各路激光束之间的高精度平行。
具体地,所述望远子系统还包括快反镜控制单元,用于控制快速反射镜,实现移动目标的成像,并将激光光束传输至目标。
具体地,所述成像子系统还包括成像控制单元。
优选地,所述的光学微扫机构,为柔性铰链机构,其微位移由压电陶瓷驱动实现二维平移;其依据杠杆原理采用多级放大模式,增大了微扫机构的运动行程。
本发明使用时空间多束激光束分别从光纤激光器输出,并输入至准直组件,其中准直组件的负镜组安装于光学扫描机构上,通过调节光学扫描机构,可以实现激光束之间的准直;已被准直各激光束分别进入传输调焦组件,再经过分光镜反射至快反镜,然后进入主镜、次镜及调焦组件,最终输出至目标;
光学微扫机构,其为柔性铰链机构,其微位移由压电陶瓷驱动实现,具备二维平移功能;其依据杠杆原理采用多级放大模式,增大了微扫机构的运动行程;其采用压电陶瓷叠堆驱动,具备高运动分辨率、大行程的特点,可以实现微米级或亚微米级的分辨率以及几十或几百微米的行程。
本发明的传输子系统采用两级调焦模式,首先,通过各子激光束的传输调焦组件(调焦扩束组件),可实现各自光束的光斑汇聚;再者,再通过次镜及调焦组件,可以实现多束激光束在空间的同一处汇聚。
成像子系统和望远子系统共光路,成像光路的作用是对目标成像,使目标处于视场内,实现目标的捕获跟踪;共光路的优势为看到目标即可将激光传输到目标上。
本发明可用于多束激光的空间合成以提高到靶功率密度,解决目前激光到靶功率密度低、空间多光束调整精度低、在线调整维护难等问题,可大幅度降低工程实施难度并提高维护和调整效率。
附图说明
图1为本发明一种基于光学微扫机构的激光空间合成传输系统结构示意图;
图2为三束光束分布示意图;
图3三束光束分布及空间合成示意图即图2的A向剖面视图;
图4为光学微扫机构主视图;
图5为光学微扫机构立体侧视图。
图中:1-快反镜,2-主镜,3-次镜及调焦组件,4-分光镜,5-反射镜,6-成像调焦组件,7-成像探测器,8-微扫机构控制单元,9-快反镜控制单元(也称作成像控制单元),10-微扫机构,101、103-压电陶瓷,102-多级放大柔性铰链机构,11-负镜组,12-准直组件,13-传输调焦组件,14-光纤激光器,141、144、145-激光束。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明的具体实施方式作进一步说明。应当理解,此处所描述的具体实施例仅仅用于帮助理解本发明,并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
结合图1~3说明。本发明的一种基于光学微扫机构的激光空间合成传输系统,包括传输子系统、望远子系统及成像子系统,还包括分光镜4,分光镜是传输子系统和成像子系统的过渡元件,它既可以反射激光波段光束,又可以透过可见光波段光束,还可以对子激光束直径进行有效扩束,实现光束口径匹配;
所述传输子系统包括多个微扫机构、多个准直组件及多个传输调焦组件(也称调焦扩束组件),本实施例中包括三个微扫机构、三个准直组件及三个传输调焦组件;
所述望远子系统包括快反镜、主镜、次镜及调焦组件,可以对子激光束进行调焦,
三束激光分别依次经过各自的微扫机构、准直组件、传输调焦组件,合束于分光镜,再依次经过快反镜、次镜及调焦组件、主镜,三束激光在主镜上均匀分布,通过次镜及调焦组件的调节,实现多束激光作用到预定位置的目标;
所述的准直组件(包括负镜组和正镜组),负镜组安装于光学微扫机构上,光学微扫机构为柔性铰链机构,其微位移由压电陶瓷驱动实现,具备二维平移功能;其依据杠杆原理采用多级放大模式,增大了微扫机构的运动行程;其采用压电陶瓷驱动,压电陶瓷一般都是堆叠起来使用,所以也称为压电陶瓷堆叠驱动,具备高运动分辨率、大行程的特点,可以实现微米级或亚微米级的分辨率以及几十或几百微米的行程,微扫机构由压电陶瓷驱动实现高精度微量调整(上、下、左、右平动),本实施例中驱动器选用芯明天PSt 150/2×3/5型压电陶瓷驱动器,可以满足精度、行程与推力的要求;用以高精度微量调整各束激光间相互平行;
所述分光镜对经过传输调焦组件调焦后的多束激光实现激光波段光束的反射,而透过可见光波段的光束;
所述的望远子系统,通过快反镜锁定能量和信息输出区域,先通过次镜调焦后再通过主镜,实现光束扩束、压缩发散角,实现多束激光在不同空间目标处的汇聚;同时所述快速反射镜,还用于实现空间目标的捕获、跟踪与瞄准。
本实施例的基于光学微扫机构的激光空间合成传输系统还包括成像子系统,所述成像子系统包括成像探测器、成像调焦组件和反射镜;
所述反射镜接受通过望远子系统的分光镜传送来的目标(光)信息,极大地降低光学元件因装调误差所引起的光轴偏差,将目标成像于成像探测器,通过成像调焦组件可使目标清晰成像,再通过快反镜及成像控制单元(本实施例中成像控制单元与微扫机构控制单元为一体)使目标实时处于成像探测器的视场中心;所述成像子系统和望远子系统共光路,可以大大降低光学元件因装调误差所引起的两光轴偏差;成像光路的作用是对目标成像,使目标处于视场内,实现目标的捕获跟踪;共光路的优势为看到目标即可将激光传输到目标上。
所述传输子系统还包括微扫机构控制单元,由所述微扫机构控制单元控制微扫机构,实现负镜组在垂直于光轴平面内的二维移动,可以实时根据光束作用于目标的位置反馈,根据三束激光束作用在目标上作用光斑情况,以最佳光斑重合度为优化目标,微扫机构控制单元将不断输送位置信号给微扫机构驱动器,通过迭代优化,使光斑重合度达到最佳,以此调整负镜组的位置;根据光学设计知识,负镜组在垂直光轴平面内平移时,将改变光束的偏角,从而实现各路激光束之间平行度的高精度调整。
如图4~5,负镜组安装于光学微扫机构上,微扫机构采用二维的多级放大柔性铰链机构,其微位移由压电陶瓷驱动实现二维平移;并通过依据杠杆原理采用多级放大模式,增大了微扫机构的运动行程,采用压电陶瓷叠堆驱动,具备高运动分辨率、大行程的特点,可以扩大实现微米级或亚微米级的分辨率以及几十或几百微米的行程,从而实现高精度、大行程的调整负镜组的位置的目的。本实施例使用两级杠杆原理实现两级放大。
该发明提出的传输子系统采用两级调焦模式,首先,各激光束的传输调焦组件(调焦扩束组件),用于实现各自光束的光斑汇聚;再者,通过次镜,可以实现多束子激光束在空间的同一处汇聚;
本实施例的所述望远子系统还包括快反镜控制单元,用于控制快速反射镜,实现移动目标的成像,并将激光光束传输至目标;快反镜控制单元是光电跟踪系统常用的单元,它可以从CCD中获得光束传输点与目标点的脱靶量,然后通过控制单元的优化算法,实时使脱靶量校正回来,并满足一定的要求,从而实现将激光光束传输到靶标上,同时也让靶标实时处于CCD视场中。
本实施例中成像控制单元和快反镜控制单元是一体的,传输光路和成像光路是共用快反镜的(也共用主镜和次镜)。
为了进一步实现激光束之间的高精度平行,由成像子系统将目标成像于成像探测器,通过成像调焦组件可使目标清晰成像,再通过快反镜及成像控制单元可是使目标实时处于成像探测器的视场中心。

Claims (4)

1.一种基于光学微扫机构的激光空间合成传输系统,其特征在于包括传输子系统、望远子系统及成像子系统,还包括分光镜,
所述传输子系统包括多个微扫机构、多个准直组件及多个传输调焦组件;
所述望远子系统包括快反镜、主镜、次镜及调焦组件;
多束激光分别依次经过各自的微扫机构、准直组件、传输调焦组件,合束于分光镜,再依次经过快反镜、次镜及调焦组件、主镜,多束激光在主镜上均匀分布,通过次镜及调焦组件的调节,实现多束激光作用到预定位置的目标;
所述的准直组件,负镜组安装于微扫机构上,微扫机构由压电陶瓷驱动,用以高精度微量调整各束激光间相互平行;
所述分光镜对经过传输调焦组件调焦后的多束激光实现激光波段光束的反射,而透过可见光波段的光束;
所述的望远子系统,通过快反镜锁定能量和信息输出区域,先通过次镜及调焦组件调焦后再通过主镜,实现光束扩束、压缩发散角,实现多束激光在不同空间目标处的汇聚;同时所述快反镜,还用于实现空间目标的捕获、跟踪与瞄准;
所述成像子系统包括成像探测器、成像调焦组件和反射镜;
所述反射镜接受通过分光镜传送来的目标信息,极大地降低光学元件因装调误差所引起的光轴偏差,将目标成像于成像探测器,通过成像调焦组件可使目标清晰成像,再通过快反镜及成像控制单元使目标实时处于成像探测器的视场中心;所述成像子系统和望远子系统共光路;
所述传输子系统还包括微扫机构控制单元,由所述微扫机构控制单元控制微扫机构,实现负镜组在垂直于光轴平面内的二维移动,可以实时根据光束作用于目标的位置反馈,调整负镜组的位置,从而实现各路激光束之间的高精度平行。
2.根据权利要求1所述基于光学微扫机构的激光空间合成传输系统,其特征在于所述望远子系统还包括快反镜控制单元,用于控制快反镜,实现移动目标的成像,并将激光光束传输至目标。
3.根据权利要求1所述的基于光学微扫机构的激光空间合成传输系统,其特征在于所述成像子系统还包括成像控制单元。
4.根据权利要求1所述基于光学微扫机构的激光空间合成传输系统,其特征在于所述的微扫机构,其为柔性铰链机构,其微位移由压电陶瓷驱动实现二维平移;其依据杠杆原理采用多级放大模式,增大了微扫机构的运动行程。
CN201711490982.7A 2017-12-30 2017-12-30 一种基于光学微扫机构的激光空间合成传输系统 Active CN108287412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711490982.7A CN108287412B (zh) 2017-12-30 2017-12-30 一种基于光学微扫机构的激光空间合成传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711490982.7A CN108287412B (zh) 2017-12-30 2017-12-30 一种基于光学微扫机构的激光空间合成传输系统

Publications (2)

Publication Number Publication Date
CN108287412A CN108287412A (zh) 2018-07-17
CN108287412B true CN108287412B (zh) 2020-09-01

Family

ID=62819494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711490982.7A Active CN108287412B (zh) 2017-12-30 2017-12-30 一种基于光学微扫机构的激光空间合成传输系统

Country Status (1)

Country Link
CN (1) CN108287412B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164573A (zh) * 2018-10-09 2019-01-08 湖北航天技术研究院总体设计所 一种基于多路径调整机构的激光空间功率合成系统
CN111288850A (zh) * 2018-12-06 2020-06-16 中国科学院长春光学精密机械与物理研究所 一种基于临近空间平台的空间光电对抗方法及装备
CN110500919B (zh) * 2019-09-09 2021-10-26 重庆连芯光电技术研究院有限公司 一种快速高精度调焦的激光防御系统及方法
EP4073574A4 (en) * 2019-12-09 2024-01-10 Daylight Solutions Inc DEVICE HAVING A HOLLOW OUTPUT BEAM
CN111552087A (zh) * 2020-04-24 2020-08-18 哈尔滨工业大学 一种将环形光束与共轴反射式光学系统耦合的方法
CN112526543B (zh) * 2020-11-26 2023-05-05 湖北航天技术研究院总体设计所 一种激光测距与主动照明复合探测系统及探测方法
CN112596230B (zh) * 2020-12-16 2022-09-20 航天科工微电子系统研究院有限公司 用于光电跟踪主动层析照明的光路系统
CN113644982B (zh) * 2021-07-13 2024-03-01 中国科学院上海光学精密机械研究所 一种激光能量发射系统
CN114819111B (zh) * 2022-06-24 2022-09-02 济钢防务技术有限公司 空间合成激光排爆系统的调焦控制神经网络输入采样方法
CN115507697B (zh) * 2022-11-21 2023-02-10 长春理工大学 一种高精度激光光束监测与跟踪的高能激光装置与方法
CN117192706B (zh) * 2023-10-23 2024-03-19 中国人民解放军国防科技大学 实现空心光束发射的超连续谱激光系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629481A (zh) * 2014-11-05 2016-06-01 北京航天计量测试技术研究所 一种高能激光、探测成像光及远距离测距激光共光路结构
US20160274369A1 (en) * 2013-10-29 2016-09-22 Kawasaki Jukogyo Kabushiki Kaisha Laser beam combining device
CN206532042U (zh) * 2016-12-14 2017-09-29 北京热刺激光技术有限责任公司 超大功率的激光空间合束系统及其相关系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160274369A1 (en) * 2013-10-29 2016-09-22 Kawasaki Jukogyo Kabushiki Kaisha Laser beam combining device
CN105629481A (zh) * 2014-11-05 2016-06-01 北京航天计量测试技术研究所 一种高能激光、探测成像光及远距离测距激光共光路结构
CN206532042U (zh) * 2016-12-14 2017-09-29 北京热刺激光技术有限责任公司 超大功率的激光空间合束系统及其相关系统

Also Published As

Publication number Publication date
CN108287412A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
CN108287412B (zh) 一种基于光学微扫机构的激光空间合成传输系统
CN112713935B (zh) 自由空间光通信扫描跟踪方法、系统、设备及介质
CN103837982A (zh) 基于光斑质心计算的目标在回路阵列光束共靶瞄准控制方法
CN110632714B (zh) 一种光纤耦合系统及耦合方法
CN112068309B (zh) 一种含双抛物面镜动态聚焦模块的三维扫描系统
CN110971296B (zh) 一种空间无信标光通信终端扫描系统
CN110174075B (zh) 一种单变焦结构光深度相机及变焦方法
CN112596230B (zh) 用于光电跟踪主动层析照明的光路系统
JP6680109B2 (ja) 映像投射装置及びそれを備えるヘッドアップディスプレイ装置
CN114660741B (zh) 一种基于离焦的大偏移下单模光纤自动耦合方法及系统
CN104539372A (zh) 一种快速对准的远距离激光大气通信接收装置及通信方法
CN106405825B (zh) 自适应激光远场功率密度控制装置
CN101144906A (zh) 靶面焦斑监测装置
US11112615B2 (en) Device and method for the generation of a double or multiple spot in laser material processing
CN111871967A (zh) 一种激光清洗设备
KR101435404B1 (ko) 이중 파장 하이브리드 레이저 가공장치 및 가공방법
CN105974579A (zh) 基于离轴抛物面镜大口径平行光束的角度改变装置
US4772121A (en) Movement and focus control system for a high-energy laser
KR101558435B1 (ko) 복수 망원경을 갖춘 레이저 추적조준 광학계
CN113237439B (zh) 一种潜望式激光通信终端的解耦跟踪方法
CN109871035A (zh) 一种光束指向的精确控制方法
CN1279378C (zh) 不同波长激光光束同轴耦合的调整方法
CN111487764B (zh) 一种基于抛物面反射镜折叠光路的激光动态聚焦系统
CN110681991B (zh) 一种基于光程可变的多反射镜激光动态聚焦系统
CN114353596A (zh) 一种反无人机多光谱探测跟踪装备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant