WO2015063401A2 - Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef - Google Patents

Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef Download PDF

Info

Publication number
WO2015063401A2
WO2015063401A2 PCT/FR2014/052724 FR2014052724W WO2015063401A2 WO 2015063401 A2 WO2015063401 A2 WO 2015063401A2 FR 2014052724 W FR2014052724 W FR 2014052724W WO 2015063401 A2 WO2015063401 A2 WO 2015063401A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
engine
engine speed
fuel return
Prior art date
Application number
PCT/FR2014/052724
Other languages
English (en)
Other versions
WO2015063401A3 (fr
Inventor
Antoine Veyrat-Masson
Nicolas GOMES
Lauranne MOTTET
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US15/032,821 priority Critical patent/US10036326B2/en
Publication of WO2015063401A2 publication Critical patent/WO2015063401A2/fr
Publication of WO2015063401A3 publication Critical patent/WO2015063401A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/005Accessories not provided for in the groups B64D37/02 - B64D37/28
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/02Tanks
    • B64D37/14Filling or emptying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/32Safety measures not otherwise provided for, e.g. preventing explosive conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Definitions

  • the invention relates to the general field of fuel circuit architectures of aircraft engines fuel return (in English, "Motive Flow”) stung on a fuel system engine.
  • FIG 1 illustrates a typical fuel architecture of an aircraft engine.
  • an electric pump 11 called an air pump
  • the engine fuel system 20 makes it possible to produce hydraulic energy and to supply fuel to the engine (not shown) (arrow M) as well as cylinders making it possible to move variable geometries (not shown) (arrow GV).
  • This aircraft pump needs to be powered electrically.
  • a jet pump 12 operating according to the venturi effect is also embedded in the tank 10 and allows to take over from the aircraft pump under certain conditions.
  • This jet pump 12 needs a hydraulic power source which is, in known manner, provided by a return pipe 2 of fuel stitched on the engine fuel system 20.
  • This return pipe 2 makes it possible to send into the jet pump 12, pressurized fuel taken from the engine fuel system 20.
  • a valve 30 of fuel return (in English, “Motive Flow Valve”) can be positioned along the return pipe 2 to obstruct it, under certain conditions depending on the design and system performance fuel and in particular according to the N2 engine rotation regime of the aircraft.
  • valve malfunctions and remains locked in the open position so that it allows fuel from the engine fuel system 20 to be delivered to the fuel tank 10 when it should not. This causes deterioration of engine performance since the flow of fuel taken to be sent into the fuel tank causes a reduction in the flow (pressure) of the flow sent into the engine. There is therefore a need to detect a failure of the fuel return valve.
  • the invention responds to this need and proposes according to a first aspect, a method for detecting a failure of a fuel return valve of a fuel system of an aircraft engine, said fuel system comprising:
  • a motor fuel system connected to the fuel tank, said fuel system comprising a high-pressure pump delivering a flow rate Q, which is a function of an engine speed of said engine, to an actuating cylinder able to actuate variable geometries, a shut-off valve capable of supplying the actuating cylinder disposed in a supply pipe for said motor;
  • a fuel return line connected on the one hand downstream of the high pressure pump and upstream of the shut-off valve and on the other hand to the fuel tank;
  • a fuel return valve arranged to switch between an open position and a closed position, said fuel return valve being able to obstruct, in the closed position, the fuel return pipe and to put in communication, in the open position, the fuel line; return of fuel with the fuel tank;
  • the method comprising the following steps, implemented in a computer: starting the engine at a motor speed NO;
  • the method comprises a step of comparing the engine speed N corresponding to the opening of the valve to a predetermined threshold
  • the method comprises a step of detecting a failure of the fuel return valve; if the engine speed N thus measured is 8% higher than the predetermined threshold, the method comprises a step of detecting a failure of the fuel return valve; the position of the jack is measured by a sensor of the LVDT type;
  • the predetermined value QO of flow corresponds to a setting threshold of a spring of the shut-off valve
  • the invention proposes a fuel system comprising:
  • a motor fuel system connected to the fuel tank, said fuel system comprising a high-pressure pump delivering a flow rate Q, which is a function of an engine speed of said engine, to an actuating cylinder able to actuate variable geometries, a shut-off valve capable of supplying the actuating cylinder disposed in a supply pipe for said motor;
  • a fuel return line connected on the one hand downstream of the high pressure pump and upstream of the shut-off valve and on the other hand to the fuel tank;
  • a fuel return valve arranged to switch between an open position and a closed position, said fuel return valve being able to obstruct, in the closed position, the fuel return pipe and to put in communication, in the open position, the fuel line; return of fuel with the fuel tank;
  • the high pressure pump is a positive displacement pump.
  • the invention proposes an aircraft comprising a motor fueled by a fuel circuit according to the second aspect of the invention.
  • FIG. 2 illustrates a diagram of a portion of a fuel system of the invention with a shutoff valve in the closed position
  • FIG. 3 illustrates a diagram of a portion of a fuel system of the invention with a shutoff valve in the open position;
  • FIG. 4 schematically illustrates steps of a method according to the invention.
  • FIG. 5 illustrates a curve illustrating the evolution of the position of a cylinder according to a engine speed of a fuel circuit of the invention.
  • the fuel system 20 comprises a high-pressure pump 21 followed downstream by a shut-off valve 22 which makes it possible, in particular, to increase the pressure of the fuel system 20.
  • This shut-off valve 22 opens when the flow rate applied to it reaches a precisely known calibration threshold of its spring 22a. It allows on the one hand the setting in motion of one or more cylinder (s) 23 ensuring the displacement of variable geometries (not shown) via an associated servovalve 24 connected by an upstream pipe 25 to the high pressure pump and by a pipe downstream 26 to the shutoff valve 22 and secondly the supply of the motors (not shown) by placing them in communication with the high pressure pump 21.
  • the fuel system 20 further comprises a computer 28 connected to the various components of the fuel system 20 and ensures its general control from different data, such as the desired engine speed N or the displacement of the piston 23a of the cylinder 23 measured by a sensor 23b ( in English, "Linear Variable Displacement Transducer” (LVBDT)).
  • a computer 28 connected to the various components of the fuel system 20 and ensures its general control from different data, such as the desired engine speed N or the displacement of the piston 23a of the cylinder 23 measured by a sensor 23b ( in English, "Linear Variable Displacement Transducer" (LVBDT)).
  • LVBDT Linear Variable Displacement Transducer
  • each comprises a sensor 23b for measuring the displacement of the piston.
  • a pipe 27 for recirculating the flow of the shut-off valve is connected to the downstream pipe 26 through the shut-off valve 22.
  • the fuel system 20 comprises other known components (for example filters, valves, exchangers, ...) whose description does not appear however necessary for the understanding of the invention and which are therefore not represented .
  • this high-pressure pump 21 delivers a flow rate Q which is a function of the engine speed N2 towards the cylinder 23 ( via the servovalve 24) and the shut-off valve 22.
  • shutoff valve 22 When the shutoff valve 22 is in a closed state (FIG. 2), the pipe 26 between the outlet of the servovalve 24 and the shut-off valve 22 is obstructed by this last.
  • the pressure differential across the cylinder 23 is zero and the two chambers of this jack being at identical pressure, the piston 23a is stationary and the variable geometries it actuates.
  • the cylinder being equipped with a sensor 23b LVDT, it is then possible by means of the computer 28 to accurately detect the moment when the piston is moved, corresponding to this opening of the shutoff valve 22, and to raise the engine speed N2 associated.
  • the applicant has noticed that the engine speed for which the cylinder opens is related to the state of the fuel return valve.
  • the gate valve moves according to the flow that passes through (and the speed) and when it reaches a certain position, it opens a light that releases the movement of the cylinder. It is only then that the variable geometries can move and follow their instructions in position.
  • the fuel return valve In order not to thwart this operation, the fuel return valve must be kept closed before the shut-off valve moves. Indeed, the stitching of the fuel flow by the fuel return valve being located upstream of the shutoff valve, the flow taken is a flow less through which it passes through and thus influences the regime that actuates if it ever was open when the variable geometries move.
  • the detection of a failure of the fuel return valve is implemented in the computer according to a method described below in connection with FIG. 4.
  • the engine is started (step E1) at a low initial speed NO and the shutoff valve 22 is closed.
  • step E2 It is first of all carried out from the computer 28 to the motion control (step E2) of the cylinder 23.
  • the shutoff valve being closed, the cylinder can not respond to this command and therefore remains stationary.
  • the engine speed N is increased (step E3) gradually.
  • the flow rate sent on the shut-off valve 22 is not sufficient, the latter remains closed and the cylinder 23 does not move not.
  • the shutoff valve 22 opens and the cylinder 23 then starts moving.
  • the engine speed N corresponding to the opening of the shut-off valve 22 and thus to the movement of the cylinder is raised by the LVDT 23b of the cylinder 23 to which the computer 28 is connected and stored therein (step E4 and step E5).
  • step E6 If the regime for which the cylinder begins to move is greater than a predetermined threshold then the fuel return valve is out of order and a failure is detected (step E6 and step E7).
  • This threshold depends on several factors including the type of fuel used, fuel temperature, manufacturing tolerances as well as equipment aging.
  • Figure 5 illustrates as a function of time
  • a movement of the cylinder 23 is detected from ⁇ % N2, then the fuel return valve is not out of order (curve 43) and if a movement of the cylinder 23 is detected later at least X 2 % N2 (X 2 > Xi) and preferably at 8% later than ⁇ % N2 then the fuel return valve is out of order (curve 44).
  • X% is 22% and X 2% is at least 30%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef, ledit circuit carburant comprenant: un réservoir de carburant; un système carburant moteur connecté au réservoir de carburant, ledit système carburant comprenant une pompe haute pression délivrant un débit Q, fonction d'un régime moteur dudit moteur, vers un vérin d'actionnement apte à actionner des géométries variables, une vanne de coupure apte à alimenter le vérin d'actionnement disposée dans une canalisation d'alimentation dudit moteur; une canalisation de retour de carburant connectée d'une part en aval de la pompe haute pression et en amont de la vanne de coupure et d'autre part au réservoir de carburant; une vanne de retour carburant agencée pour commuter entre une position ouverte et une position fermée, ladite vanne de retour carburant étant apte à obstruer, en position fermée, la canalisation de retour de carburant et à mettre en communication, en position ouverte, la canalisation de retour de carburant avec le réservoir de carburant; le procédé comprenant les étapes suivantes, mises en œuvre dans un calculateur: démarrage du moteur à un régime moteur N0; augmentation du régime moteur jusqu'à ce que le débit Q atteigne une valeur prédéterminée Q0 suffisante pour ouvrir la vanne de coupure; mesure d'une part de la position du vérin d'actionnement et d'autre part du régime moteur N correspondant à l'ouverture de ladite vanne de coupure.

Description

PROCÉDÉ DE DÉTECTION D'UNE PANNE D'UNE VANNE DE RETOUR DE CARBURANT D'UN CIRCUIT CARBURANT D'UN MOTEUR D'AÉRONEF
DOMAINE TECHNIQUE GENERAL
L'invention concerne le domaine général des architectures de circuit carburant des moteurs d'aéronef à retour carburant (en anglais, « Motive Flow ») piqué sur un système carburant moteur.
ETAT DE LA TECHNIQUE
La figure 1 illustre une architecture carburant classique d'un moteur d'aéronef. Dans une telle architecture, une pompe 11 électrique, dite pompe avion, noyée dans un réservoir 10 de carburant permet d'envoyer du carburant dans un système carburant moteur 20 de l'aéronef par l'intermédiaire d'une canalisation d'alimentation 1. Le système carburant moteur 20 permet de produire de l'énergie hydraulique et d'alimenter en carburant le moteur (non représenté) (flèche M) ainsi que des vérins permettant de mouvoir des géométries variables (non représentées) (flèche GV).
Cette pompe avion nécessite d'être alimentée de manière électrique.
Pour éviter d'avoir recours systématiquement à cette pompe avion, une pompe à jet 12 fonctionnant selon l'effet venturi est également noyée dans le réservoir 10 et permet de prendre le relais de la pompe avion sous certaines conditions.
Cette pompe à jet 12 a besoin d'une source de puissance hydraulique qui est, de manière connue, fournie par une canalisation de retour 2 de carburant piquée sur le système carburant moteur 20.
Cette canalisation de retour 2 permet d'envoyer dans la pompe à jet 12, du carburant sous pression prélevé dans le système carburant moteur 20.
Pour ce faire, une vanne 30 de retour de carburant (en anglais, « Motive Flow Valve ») peut être positionnée le long de la canalisation de retour 2 afin de l'obstruer, sous certaines conditions dépendantes de la conception et des performances du système carburant et en particulier en fonction du régime N2 de rotation du moteur de l'aéronef.
II arrive parfois que la vanne présente un dysfonctionnement et reste bloquée en position ouverte de sorte qu'elle laisse envoyer du carburant issu du système carburant moteur 20 dans le réservoir de carburant 10 alors qu'elle ne devrait pas. Ceci engendre des dégradations des performances du moteur puisque le flux de carburant prélevé pour être envoyé dans le réservoir de carburant engendre une réduction du débit (pression) du flux envoyé dans le moteur. Il existe par conséquent un besoin de détecter une panne de la vanne de retour de carburant.
PRESENTATION DE L'INVENTION
L'invention répond à ce besoin et propose selon un premier aspect, un procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef, ledit circuit carburant comprenant :
un réservoir de carburant ;
un système carburant moteur connecté au réservoir de carburant, ledit système carburant comprenant une pompe haute pression délivrant un débit Q, fonction d'un régime moteur dudit moteur, vers un vérin d'actionnement apte à actionner des géométries variables, une vanne de coupure apte à alimenter le vérin d'actionnement disposée dans une canalisation d'alimentation dudit moteur ;
une canalisation de retour de carburant connectée d'une part en aval de la pompe haute pression et en amont de la vanne de coupure et d'autre part au réservoir de carburant ;
une vanne de retour carburant agencée pour commuter entre une position ouverte et une position fermée, ladite vanne de retour carburant étant apte à obstruer, en position fermée, la canalisation de retour de carburant et à mettre en communication, en position ouverte, la canalisation de retour de carburant avec le réservoir de carburant ;
le procédé comprenant les étapes suivantes, mises en œuvre dans un calculateur : démarrage du moteur à un régime moteur NO ;
augmentation du régime moteur jusqu'à ce que le débit Q atteigne une valeur prédéterminée QO suffisante pour ouvrir la vanne de coupure ;
mesure d'une part de la position du vérin d'actionnement et d'autre part du régime moteur N correspondant à l'ouverture de ladite vanne de coupure.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
le procédé comprend une étape de comparaison du régime moteur N correspondant à l'ouverture de la vanne à un seuil prédéterminé ;
si le régime moteur N ainsi mesuré est supérieur au seuil prédéterminé, le procédé comprend une étape de détection d'une panne de la vanne de retour de carburant ; - si le régime moteur N ainsi mesuré est supérieur de 8% au seuil prédéterminé, le procédé comprend une étape de détection d'une panne de la vanne de retour de carburant ; la position du vérin est mesurée par un capteur du type LVDT ;
la valeur prédéterminée QO de débit correspond à un seuil de tarage d'un ressort de la vanne de coupure;
Selon un second aspect, l'invention propose un circuit carburant comprenant :
un réservoir de carburant ;
un système carburant moteur connecté au réservoir de carburant, ledit système carburant comprenant une pompe haute pression délivrant un débit Q, fonction d'un régime moteur dudit moteur, vers un vérin d'actionnement apte à actionner des géométries variables, une vanne de coupure apte à alimenter le vérin d'actionnement disposée dans une canalisation d'alimentation dudit moteur ;
une canalisation de retour de carburant connectée d'une part en aval de la pompe haute pression et en amont de la vanne de coupure et d'autre part au réservoir de carburant ;
une vanne de retour carburant agencée pour commuter entre une position ouverte et une position fermée, ladite vanne de retour carburant étant apte à obstruer, en position fermée, la canalisation de retour de carburant et à mettre en communication, en position ouverte, la canalisation de retour de carburant avec le réservoir de carburant ;
un calculateur configuré pour mettre en œuvre les étapes suivantes :
démarrage du moteur à un régime moteur NO ;
augmentation du régime moteur jusqu'à ce que le débit Q atteigne une valeur prédéterminée QO suffisante pour ouvrir la vanne de coupure ;
mesure d'une part de la position du vérin d'actionnement et d'autre part du régime moteur N correspondant à l'ouverture de ladite vanne de coupure.
De manière avantageuse, la pompe haute pression est une pompe volumétrique. Selon un troisième aspect, l'invention propose un aéronef comprenant un moteur alimenté en carburant par un circuit carburant selon le second aspect de l'invention.
PRESENTATION DES FIGURES
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels, outre la figure 1 déjà discutée :
- la figure 2 illustre un schéma d'une partie d'un circuit carburant de l'invention avec une vanne de coupure en position fermée ;
- la figure 3 illustre un schéma d'une partie d'un circuit carburant de l'invention avec une vanne de coupure en position ouverte ; - la figure 4 illustre schématiquement des étapes d'un procédé selon l'invention.
- la figure 5 illustre une courbe illustrant l'évolution de la position d'un vérin en fonction d'un régime moteur d'un circuit carburant de l'invention.
Sur l'ensemble des figures, les éléments similaires portent des références identiques.
DESCRIPTION DETAILLEE DE L'INVENTION
En relation avec les figures 2 et 3, le système carburant 20 comprend une pompe haute pression 21 suivie en aval par une vanne de coupure 22 qui permet notamment d'assurer la montée en pression du système carburant 20.
Cette vanne de coupure 22 s'ouvre lorsque le débit qui lui appliqué permet d'atteindre un seuil de tarage précisément connu de son ressort 22a. Elle permet d'une part la mise en mouvement d'un ou plusieurs vérin(s) 23 assurant le déplacement des géométries variables (non représentées) via une servovalve associée 24 reliée par une canalisation amont 25 à la pompe haute pression et par une canalisation aval 26 à la vanne de coupure 22 et d'autre part l'alimentation des moteurs (non représentés) par la mise en communication de ceux-ci avec la pompe haute pression 21.
Le système carburant 20 comprend en outre en calculateur 28 connecté aux différents composants du système carburant 20 et assure son contrôle général à partir de différentes données, comme le régime moteur N souhaité ou le déplacement du piston 23a du vérin 23 mesuré par un capteur 23b (en anglais, « Linear Variable Displacement Transducer » (LVBDT)).
Dans le mode de réalisation ici décrit un seul vérin 23 est illustré mais bien entendu dans le cas où il y a plusieurs vérins 23, chacun comprend un capteur 23b de mesure du déplacement du piston.
En outre, une canalisation 27 de recirculation du débit de la vanne de coupure est reliée à la canalisation aval 26 au travers de la vanne de coupure 22.
Bien entendu, le système carburant 20 comporte d'autres composants connus (par exemple des filtres, vannes, échangeurs,...) dont la description n'apparait toutefois pas nécessaire pour la compréhension de l'invention et qui ne sont donc pas représentés.
Le gavage de la pompe haute pression 21 (de préférence une pompe volumétrique) étant assuré par une pompe basse pression (non représentée) située en amont, cette pompe haute pression 21 délivre un débit Q fonction du régime moteur N2 en direction du vérin 23 (via la servovalve 24) et de la vanne de coupure 22.
Lorsque la vanne de coupure 22 est dans un état fermé (figure 2), la canalisation 26 entre la sortie de la servovalve 24 et la vanne de coupure 22 est obstruée par cette dernière. Le différentiel de pression aux bornes du vérin 23 est nul et les deux chambres de ce vérin étant à pression identique, le piston 23a est immobile ainsi que les géométries variables qu'il actionne.
Dès que la pression au niveau de la vanne de coupure 22 dépasse un seuil de tarage du ressort 22a, c'est-à-dire quand le débit qu'elle voit est suffisamment élevé, elle commute dans un état de pleine ouverture (figure 3) et la canalisation 26 entre la sortie de la servovalve 24 et la vanne de coupure 22 n'est plus obstruée. Le flux de carburant est alors à basse pression et le piston 23a est soumis à une pression différentielle (différentiel de pression non nul) qui le met en mouvement s'il est commandé par le calculateur 28,
Le vérin étant équipé d'un capteur 23b LVDT, il est alors possible au moyen du calculateur 28 de détecter précisément l'instant où le piston est déplacé, correspondant donc à cette ouverture de la vanne de coupure 22, et de relever le régime moteur N2 associé.
Selon l'invention, pour détecter une panne de la vanne de retour de carburant, le demandeur a remarqué que le régime moteur pour lequel le vérin s'ouvre est lié à l'état de la vanne de retour de carburant.
En effet, la vanne de coupure de déplace en fonction du débit qui la traverse (donc du régime) et lorsqu'elle atteint une certaine position, elle ouvre une lumière qui permet de libérer le mouvement du vérin. C'est seulement à ce moment que les géométries variables peuvent bouger et suivre leur consigne en position.
Afin de ne pas contrarier ce fonctionnement, il convient de garder la vanne de retour de carburant fermée avant le mouvement de la vanne de coupure. En effet, le piquage du flux de carburant par la vanne de retour de carburant étant situé en amont de la vanne de coupure, le flux prélevé est un débit en moins qui la traverse et influe ainsi sur le régime qui l'actionne si jamais elle était ouverte au moment où les géométries variables bougent.
C'est donc la détection d'un décalage du régime d'ouverture du vérin qui permet de détecter une panne de la vanne de retour de carburant.
La détection d'une panne de la vanne de retour de carburant est mise en œuvre dans le calculateur selon un procédé décrit ci-dessous en relation avec la figure 4.
Le moteur est démarré (étape El) à un bas régime initial NO et la vanne de coupure 22 est fermée.
Il est tout d'abord procédé depuis le calculateur 28 à la commande de mise en mouvement (étape E2) du vérin 23. Toutefois, la vanne de coupure étant fermée, le vérin ne peut répondre à cette commande et reste donc immobile. En parallèle à cette commande, le régime moteur N est augmenté (étape E3) progressivement. Tant que le débit envoyé sur la vanne de coupure 22 n'est pas suffisant, cette dernière reste fermée et le vérin 23 ne bouge pas. Quand le débit est suffisant (valeur déterminée QO correspondant au seuil de tarage du ressort 12A), la vanne de coupure 22 s'ouvre et le vérin 23 se met alors en mouvement.
Le régime moteur N correspondant à l'ouverture de la vanne de coupure 22 et donc au mouvement du vérin est relevé grâce au LVDT 23b du vérin 23 auquel le calculateur 28 est relié et stocké dans ce dernier (étape E4 et étape E5).
Si le régime pour lequel le vérin commence son mouvement est supérieur à un seuil prédéterminé alors la vanne de retour de carburant est en panne et une panne est détectée (étape E6 et étape E7).
Au contraire, si le régime pour lequel le vérin entre en mouvement est égal au seuil prédéterminé alors la vanne de retour de carburant fonctionne correctement.
Ce seuil dépend de plusieurs facteurs et notamment du type de carburant utilisé, de la température du carburant, de tolérances de fabrication ainsi que du vieillissement des équipements.
La figure 5 illustre en fonction du temps :
- la variation 41 du régime moteur au cours du démarrage ;
la consigne de position 42 que le vérin 23 doit atteindre ;
l'évolution de la position 43 du vérin 23 au cours du démarrage lorsque la vanne de retour de carburant fonctionne correctement ;
l'évolution de la position 44 du vérin 23 au cours du démarrage lorsque la vanne de retour de carburant est en panne.
On constate en relation avec la figure 5 que lors du démarrage du moteur, le vérin 23 est commandé pour rejoindre une consigne en position à un certain régime (courbe 41). Le vérin 23 est bloqué à sa position de repos (sur la figure 4 à 0) tant que la vanne de coupure ne s'est pas ouverte, normalement à un régime de Χι% N2 par exemple.
Si un mouvement du vérin 23 est détecté à partir de Χι% N2, alors la vanne de retour de carburant n'est pas en panne (courbe 43) et si un mouvement du vérin 23 est détecté plus tard à au moins X2%N2 (X2>Xi) et de préférence à 8% plus tard que Χι% N2 alors la vanne de retour de carburant est en panne (courbe 44). Typiquement, Xi% vaut 22% et X2% vaut au moins 30%.

Claims

REVENDICATIONS
1. Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef, ledit circuit carburant comprenant :
un réservoir de carburant (10) ;
un système carburant moteur (20) connecté au réservoir de carburant (10), ledit système carburant comprenant une pompe haute pression (21) délivrant un débit Q, fonction d'un régime moteur dudit moteur, vers un vérin d'actionnement (23) apte à actionner des géométries variables, une vanne de coupure (22) apte à alimenter le vérin d'actionnement (23) disposée dans une canalisation (28) d'alimentation dudit moteur ;
une canalisation (2) de retour de carburant connectée d'une part en aval de la pompe haute pression (21) et en amont de la vanne de coupure (22) et d'autre part au réservoir de carburant (10) ;
une vanne (30) de retour carburant agencée pour commuter entre une position ouverte et une position fermée, ladite vanne de retour carburant étant apte à obstruer, en position fermée, la canalisation de retour de carburant (2) et à mettre en communication, en position ouverte, la canalisation de retour de carburant (2) avec le réservoir de carburant (10) ;
le procédé comprenant les étapes suivantes, mises en œuvre dans un calculateur
(28) :
démarrage (El) du moteur à un régime moteur N0 ;
augmentation (E3) du régime moteur jusqu'à ce que le débit Q atteigne une valeur prédéterminée Q0 suffisante pour ouvrir la vanne de coupure (22);
mesure (E4, E5) d'une part de la position du vérin d'actionnement (23) et d'autre part du régime moteur N correspondant à l'ouverture de ladite vanne de coupure (22).
2. Procédé selon la revendication 1, comprenant une étape (E6) de comparaison du régime moteur N correspondant à l'ouverture de la vanne à un seuil prédéterminé.
3. Procédé selon la revendication précédente, dans lequel si le régime moteur N ainsi mesuré est supérieur au seuil prédéterminé, le procédé comprend une étape (E7) de détection d'une panne de la vanne de retour de carburant.
4. Procédé selon la revendication 2, dans lequel si le régime moteur N ainsi mesuré est supérieur de 8% au seuil prédéterminé, le procédé comprend une étape (E7) de détection d'une panne de la vanne de retour de carburant.
5. Procédé selon l'une des revendications précédentes, dans lequel la position du vérin est mesurée par un capteur du type LVDT.
6. Procédé selon l'une des revendications précédentes, dans lequel la valeur prédéterminée Q0 de débit correspond à un seuil de tarage d'un ressort (22a) de la vanne de coupure (22).
7. Circuit carburant comprenant :
un réservoir de carburant (10) ;
un système carburant moteur (20) connecté au réservoir de carburant (10), ledit système carburant comprenant une pompe haute pression (21) délivrant un débit Q, fonction d'un régime moteur dudit moteur, vers un vérin d'actionnement (23) apte à actionner des géométries variables, une vanne de coupure (22) apte à alimenter le vérin d'actionnement (23) disposée dans une canalisation (28) d'alimentation dudit moteur ;
une canalisation (2) de retour de carburant connectée d'une part en aval de la pompe haute pression (21) et en amont de la vanne de coupure (22) et d'autre part au réservoir de carburant (10) ;
une vanne (30) de retour carburant agencée pour commuter entre une position ouverte et une position fermée, ladite vanne de retour carburant étant apte à obstruer, en position fermée, la canalisation de retour de carburant (2) et à mettre en communication, en position ouverte, la canalisation de retour de carburant (2) avec le réservoir de carburant (10) ;
un calculateur (28) configuré pour mettre en œuvre les étapes suivantes :
démarrage (El) du moteur à un régime moteur N0 ;
augmentation (E3) du régime moteur jusqu'à ce que le débit Q atteigne une valeur prédéterminée Q0 suffisante pour ouvrir la vanne de coupure (22);
mesure (E4, E5) d'une part de la position du vérin d'actionnement (23) et d'autre part du régime moteur N correspondant à l'ouverture de ladite vanne de coupure (22).
8. Circuit carburant selon la revendication précédente, dans lequel la pompe haute pression (21) est une pompe volumétrique.
9. Aéronef comprenant un moteur alimenté en carburant par un circuit carburant selon l'une des revendications 7 à 8.
PCT/FR2014/052724 2013-10-30 2014-10-27 Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef WO2015063401A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/032,821 US10036326B2 (en) 2013-10-30 2014-10-27 Method for detecting a failure in a motive flow valve of an aircraft engine fuel circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1360634 2013-10-30
FR1360634A FR3012418B1 (fr) 2013-10-30 2013-10-30 Procede de detection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aeronef

Publications (2)

Publication Number Publication Date
WO2015063401A2 true WO2015063401A2 (fr) 2015-05-07
WO2015063401A3 WO2015063401A3 (fr) 2015-09-11

Family

ID=49876881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052724 WO2015063401A2 (fr) 2013-10-30 2014-10-27 Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef

Country Status (3)

Country Link
US (1) US10036326B2 (fr)
FR (1) FR3012418B1 (fr)
WO (1) WO2015063401A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920729B2 (en) 2017-02-08 2021-02-16 Pratt & Whitney Canada Corp. Method and system for testing operation of solenoid valves
US10604268B2 (en) * 2017-02-22 2020-03-31 Pratt & Whitney Canada Corp. Autothrottle control for turboprop engines

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1539734A (en) * 1975-06-10 1979-01-31 Rolls Royce Fuel supply system for a gas turbine engine
JPS5487319A (en) * 1977-12-23 1979-07-11 Nissan Motor Co Ltd Fuel control equipment of gas turbine
US4608820A (en) * 1985-05-03 1986-09-02 Chandler Evans Inc. Dual stepper motor actuator for fuel metering valve
US5493902A (en) * 1994-03-02 1996-02-27 Ford Motor Company On-board detection of pressure regulator malfunction
JP3000675B2 (ja) * 1996-02-29 2000-01-17 三菱自動車工業株式会社 内燃機関用燃料供給装置
US5685268A (en) * 1996-05-20 1997-11-11 Siemens Automotive Corporation Fuel leakage detector system
US6655151B2 (en) * 2001-09-07 2003-12-02 Honeywell International, Inc. Method for controlling fuel flow to a gas turbine engine
US7431015B2 (en) * 2006-01-31 2008-10-07 Honeywell International Inc. Fuel metering system proportional bypass valve error compensation system and method
US7296406B2 (en) * 2006-02-28 2007-11-20 Honeywell International, Inc. System for positioning a piston including a fail fixed valve for holding the piston in position during a power interruption and method of using same
US7836676B2 (en) * 2007-06-04 2010-11-23 Honeywell International Inc. Fuel metering valve back-up position control system
GB2532388B (en) * 2013-08-02 2020-06-17 Snecma Fuel circuit of an aircraft engine with a fuel recirculating valve controlled by a pressure differential of a low-pressure pump of the fuel system
FR3012420B1 (fr) * 2013-10-30 2015-10-23 Snecma Procede de detection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aeronef

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
FR3012418A1 (fr) 2015-05-01
WO2015063401A3 (fr) 2015-09-11
FR3012418B1 (fr) 2016-12-30
US20160312706A1 (en) 2016-10-27
US10036326B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
EP1848884B1 (fr) Dispositif d'alimentation en carburant d'un moteur à turbine à gaz avec debit de carburant regule
EP1853805B1 (fr) Alimentation en carburant d'un moteur d'aeronef
CA2848466C (fr) Procede de suivi du rendement volumetrique d'une pompe hp d'un systeme de regulation hydraulique de turbomachine
WO2015015129A1 (fr) Circuit carburant d'un moteur d'aéronef à vanne de retour de carburant commandée par un différentiel de pression d'une pompe basse pression du système carburant
WO2015063400A2 (fr) Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef
FR2933126A1 (fr) Actionnement d'un inverseur de poussee dans une turbomachine
FR3022000A1 (fr) Systeme d'alimentation de turbomachine en fluide avec un ensemble de pompage basse pression comprenant deux pompes en parallele
FR2968041A1 (fr) Dispositif et procede d'alimentation
WO2015063401A2 (fr) Procédé de détection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'aéronef
EP3601765B1 (fr) Dispositif amélioré d'augmentation temporaire de puissance de turbomachine
EP0278814B1 (fr) Ensemble de régulation à dosage de carburant amélioré notamment pour turbomachines
EP3914829B1 (fr) Procédé de surveillance de l'état de fonctionnement d'un système de positionnement d'organes à géométrie variable d'une turbomachine
FR3013837A1 (fr) Procede de test d'equipements a geometries variables d'un moteur d'aeronef, notamment de turbomachine
EP3976950B1 (fr) Systeme d'alimentation en carburant d'une turbomachine avec regulation du debit de carburant
EP3293390A1 (fr) Système de commande d'un actionneur d'une vanne by-pass d'un échangeur thermique d'egr
WO2017071797A1 (fr) Procede de verification de la fonctionnalite d'un systeme d'alimentation en carburant haute pression d'un moteur a combustion interne
FR3000989A1 (fr) Systeme de surveillance du demarrage d'un aeronef a voilure tournante, aeronef et procede mettant en oeuvre ce systeme
FR3012175A1 (fr) Procede de detection de pannes et turbomachine
EP3450718A1 (fr) Systeme d'alimentation en gaz pour un moteur à combustion interne
FR3018545A1 (fr) Ensemble pour vehicule automobile muni d'un compresseur electrique apte a fonctionner comme une source de vide
FR3014153A1 (fr) Dispositif pour la commande hydraulique de verins
FR3009342A1 (fr) Procede de detection d'une panne d'une vanne de retour de carburant d'un circuit carburant d'un moteur d'un aeronef
FR3009280A1 (fr) Circuit carburant d'un moteur d'aeronef a vanne de retour de carburant commandee par un differentiel de pression d'une pompe basse pression du systeme carburant
WO2017115030A1 (fr) Engin, de préférence roulant, tel qu'un véhicule de manutention
FR2951783A1 (fr) Regulateur de pression pour dispositif d'injection diesel comportant des moyens assurant un fonctionnement en mode degrade, moteur thermique comportant un tel dispositif d'injection et vehicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14805986

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15032821

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14805986

Country of ref document: EP

Kind code of ref document: A2