WO2015062592A1 - Sensorsystem zur drehzahlmessung mit einem polrad mit linearisiertem magnetfeld - Google Patents

Sensorsystem zur drehzahlmessung mit einem polrad mit linearisiertem magnetfeld Download PDF

Info

Publication number
WO2015062592A1
WO2015062592A1 PCT/DE2014/200413 DE2014200413W WO2015062592A1 WO 2015062592 A1 WO2015062592 A1 WO 2015062592A1 DE 2014200413 W DE2014200413 W DE 2014200413W WO 2015062592 A1 WO2015062592 A1 WO 2015062592A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
sensor system
pole wheel
sensor
magnetic field
Prior art date
Application number
PCT/DE2014/200413
Other languages
English (en)
French (fr)
Inventor
Benjamin Kaufner
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US15/026,843 priority Critical patent/US10078094B2/en
Priority to CN201480058566.8A priority patent/CN105683762B/zh
Publication of WO2015062592A1 publication Critical patent/WO2015062592A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux

Definitions

  • the invention relates to a sensor system for measuring the rotational speed of a rotatable component with a pole wheel comprising a carrier with at least one track of alternately arranged magnetic north and south poles and at least one magnetic field sensor for scanning the track of the pole wheel.
  • Pole wheels can be used as speed or angle encoders.
  • a typical field of application are electric drives for vehicles.
  • angle and commutation sensors Polator are used to generate signals depending on the rotational movement of a component.
  • Pole wheels for example, often used as a signal generator for ABS and speed sensors.
  • Pole wheels comprise a disc or annular carrier having at least one track of north and south magnetic poles. The magnetic poles serve as a material measure and can be scanned without contact with magnetic field sensors.
  • WO 2012/038169 A1 shows a sensor system for measuring the rotational speed of a rotatable machine element, in particular a wheel hub, with a signal transmitter and a first and a second sensor.
  • the signal generator is coupled to the rotatable machine element and arranged concentrically to the axis of rotation and has in the circumferential direction alternate alternating information areas of two different types.
  • the first sensor interacts with an information area and the second sensor interacts with a boundary area of two adjacent information areas.
  • An information area of the first type is preferably designed as a magnetic positive pole and an information area of the second type as a magnetic negative pole.
  • From DE 10 2004 010 948 B4 an angle measuring device for a crankshaft of an internal combustion engine is known.
  • the angle measuring device comprises a supporting body with a first magnetic track designed as a circular ring surface and a second track formed as a cylindrical lateral surface. Each track can be scanned by at least one electromagnetic sensor.
  • DE 102 10 372 A1 describes a rotational angle sensor with a disc-shaped carrier of a first track of magnetic north and south poles and a second track of magnetic north and south poles with a different number of north and south poles of the first track and each with a sensor element for detecting the first and second lanes.
  • a first coarse detection of the rotation angle of the track carrier is carried out after the start of the rotation angle sensor, and a high-resolution detection of the rotation angle is realized with the second track.
  • the sinusoidal signal of the angle of rotation sensor is linearized by application of an angle function.
  • the pole wheels used in the prior art naturally have nonlinear characteristics of their field profile to the pole wheel position.
  • the pulses produced by the poles on the sensor can be evaluated.
  • the evaluation of the non-linear characteristics presents considerable difficulties.
  • the object of the present invention is to provide a sensor system for speed measurement with a flywheel whose magnetic field provides a sensor which evaluates the field direction or strength, a possible linear field angle change per Polradwindung. Furthermore, the sensor system should be able to rely on inexpensive standard components. To achieve the object of the invention, a sensor system according to the appended claim 1 is used.
  • the sensor system according to the invention is characterized in that in front of and behind the magnetic field sensor opposite to the track in each case a ferromagnetic flux guide is arranged, the ferromagnetic flux guides are arranged in the radial direction at least partially in the space between the magnetic field sensor and the flywheel.
  • the distance between the ferromagnetic Flussleit Swissen in the direction of rotation corresponds approximately to the length of a magnetic pole of the pole wheel.
  • An essential advantage of the sensor system according to the invention is the fact that the course of the magnetic flux density can be changed to this effect by using ferromagnetic flux conducting pieces. that its angle change is more uniformly associated with the rotor rotation.
  • An optimization of the course of the vector field is achieved in such a way that an approximately linear relationship between the field angle change and the pole wheel angle change arises at a suitable sensor position.
  • the magnetic field sensor used for scanning the track of the pole wheel thus provides an approximately linear sensor signal, which is much more robust and reacts equally to tolerance fluctuations in the entire measuring range. Since a largely linear signal already exists according to the invention due to the influencing of the magnetic flux on the sensor, the hitherto required, complex computational linearization of the sensor signal is eliminated, which is not least of all very cost-effective.
  • Another advantage is the fact that no changes are required on the flywheel itself, which can be used on relatively inexpensive pole wheels from mass production.
  • the air gap between the magnetic field sensor and the pole wheel is greater than the air gap between the ferromagnetic Flussleit Swissen and the pole wheel. This results from the arrangement of the flux guide in the space between the magnetic field sensor and the pole wheel.
  • the flux guides are rod-shaped.
  • the length of the flux guides preferably corresponds to the track width of a magnetic pole.
  • the flux guides preferably have a width of ⁇ 50% of the length of a magnetic pole.
  • the pole can be designed as a radial pole.
  • the track of the magnetic north and south poles is designed as a cylindrical surface.
  • the track has a radial effective direction and can be queried radially by means of a magnetic field sensor.
  • the pole wheel may be formed as an axial pole wheel.
  • Axial Poltate have a formed as a cylinder jacket surface Trail of magnetic north and south poles.
  • the track has an axial direction of action and can be interrogated axially by means of a magnetic field sensor.
  • the pole wheel has more than one track of magnetic north and south poles. It can be formed with radial or axial direction of action multiple tracks. Likewise, a combination of tracks with radial and axial effective direction is possible. In these embodiments, opposite to each track magnetic north and south poles ferromagnetic flux guides are to be arranged accordingly.
  • FIG. 1 shows an inventive sensor system for speed measurement in a perspective view.
  • FIG. 2 is an illustration of the course of the magnetic field lines over a pole pair of a magnetic pole ring and the linearity error of a sensor system according to the prior art
  • FIG. 3 shows a diagram for illustrating the linearity error of the sensor system according to the invention and a sensor system according to the prior art.
  • the sensor system 01 comprises a pole wheel 02 as well as a magnetic field sensor 03.
  • the pole wheel 02 consists of a disc-shaped carrier 04, which has a cylinder-shaped carrier 04. coat surface formed track of alternately arranged magnetic north and south poles 05 has.
  • a flywheel 02 with such arranged magnetic north and south poles 05 is referred to as a radial flywheel, since the magnetic material is radially applied to the carrier 04 and thus has a radial direction of action.
  • the sensor system oil according to the invention further comprises two ferromagnetic flux guide pieces 07, which are arranged in the direction of rotation in front of and behind the magnetic field sensor 03 and in the radial direction in the installation space between the magnetic field sensor 03 and the pole wheel 02.
  • the distance between the ferromagnetic flux guide elements 07 corresponds approximately to the width of a magnetic pole 05 of the pole wheel 02.
  • the air gap between the magnetic field sensor 03 and the pole wheel 02 is greater than the air gap between the ferromagnetic flux guide elements 07 and the pole wheel 02.
  • the flux guides 07 have a rod-shaped design in the illustrated embodiment.
  • the length of the flux guide pieces 07 corresponds to the track width of a magnetic pole 05, while the width of the flux guide pieces is ⁇ 50% of the length of a magnetic pole 05.
  • All poles 05 of the pole wheel 02 preferably each have the same pole angle.
  • the track of magnetic north and south poles 05 may be formed as a circular ring surface.
  • Such pole wheels are referred to as axial pole wheels.
  • the magnetic material is applied axially on the carrier 04 and thus has an axial effective direction.
  • the magnetic field sensor 03 is in turn positioned accordingly, that is aligned in this case axially to the flywheel 02 in order to scan axially.
  • FIG. 2 is an illustration of the course of the magnetic field lines over a pole pair of a magnetic pole ring and the linearity error of a sensor system according to the prior art.
  • the background is a representation of the course of the magnetic field lines over a pole pair of a pole wheel 02.
  • the linearity error of a sensor signal is recorded, which uses the field angle as a measure of the pole pair position, ie the difference of the field angle to the ideal straight line over the length of the pole pair. It can be seen in particular from FIG. 2 that the linearity error always becomes zero when the field line orientation to be measured extends perpendicularly or horizontally through the sensor. Conversely, the error always reaches its maximum when the field is inclined at 45 ° through the sensor. It follows that the magnetic field should remain untouched in the orthogonal cases. This is achieved by the present invention.
  • FIG. 3 shows a diagram for illustrating the linearity error of the sensor system according to the invention and of a sensor system according to the prior art.
  • the ideal case is assumed that over a pole pair a straight output line from - ⁇ to + ⁇ should be output.
  • FIG. 3 shows the difference between the simulated sensor output signal and these ideals, based on the entire value range.
  • the dotted curve shows the linearity error of a sensor system according to the prior art.
  • the solid curve shows the linearity error of the sensor system according to the invention.
  • the use of the ferromagnetic flux guide elements 07 optimizes the magnetic field of the pole wheel 02 in such a way that it provides the magnetic field sensor 03 with an approximately linear field angle change per pole wheel rotation.
  • the previously required, subsequent computational linearization of the sensor signal can be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Die Erfindung betrifft ein Sensorsystem (01) zur Drehzahlmessung eines drehbaren Bauteils mit einem Polrad (02) umfassend einen Träger (04) mit mindestens einer Spur von abwechselnd angeordneten magnetischen Nord- und Südpolen (05) sowie mindestens einen Magnetfeldsensor (03) zum Abtasten der Spur des Polrades (02). Das erfindungsgemäßen Sensorsystem (01) zeichnet sich insbesondere dadurch aus, dass in Drehrichtung vor und hinter dem Magnetfeldsensor (03) gegenüberliegend zur Spur jeweils ein ferromagnetisches Flussleitstück (07) angeordnet ist, wobei die ferromagnetischen Flussleitstücke (07) im Bauraum zwischen dem Magnetfeldsensor (03) und dem Polrad (02) angeordnet sind, dass der Abstand zwischen den ferromagnetischen Flussleitstücken (07) der Breite eines magnetischen Pols (05) des Polrades (02) entspricht.

Description

Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem
Magnetfeld
Die Erfindung betrifft ein Sensorsystem zur Drehzahlmessung eines drehbaren Bauteils mit einem Polrad umfassend einen Träger mit mindestens einer Spur von abwechselnd angeordneten magnetischen Nord- und Südpolen sowie min- destens einem Magnetfeldsensor zum Abtasten der Spur des Polrades.
Polräder können als Drehzahl- oder Winkelgeber verwendet werden. Ein typisches Einsatzfeld sind elektrische Antriebe für Fahrzeuge. So werden in der Winkel- und Kommutierungssensorik Polräder verwendet, um abhängig von der Drehbewegung eines Bauteils Signale zu erzeugen. Polräder werden beispielsweise häufig als Signalgeber für ABS- und Drehzahlsensoren verwendet. Polräder umfassen einen Scheiben- oder ringförmigen Träger, welcher mindestens eine Spur von magnetischen Nord- und Südpolen aufweist. Die Magnetpole dienen als Maßverkörperung und können mit Magnetfeldsensoren berüh- rungslos abgetastet werden.
Die WO 2012/038169 A1 zeigt ein Sensorsystem zur Drehzahlmessung eines drehbaren Maschinenelementes, insbesondere einer Radnabe, mit einem Signalgeber und einem ersten und einem zweiten Sensor. Der Signalgeber ist mit dem drehbaren Maschinenelement gekoppelt und zu dessen Drehachse konzentrisch angeordnet und weist in Umfangsrichtung sich abwechselnde alternierende Informationsbereiche zweier unterschiedlicher Arten auf. Der erste Sensor steht in Wechselwirkung mit einem Informationsbereich und der zweite Sensor steht in Wechselwirkung mit einem Grenzbereich zweier benachbarter Informationsbereiche. Ein Informationsbereich erster Art ist vorzugsweise als magnetischer Pluspol und ein Informationsbereich zweiter Art als magnetischer Minuspol ausgeführt. Aus der DE 10 2004 010 948 B4 ist eine Winkelmesseinrichtung für eine Kurbelwelle einer Verbrennungskraftmaschine bekannt. Die Winkelmesseinrichtung umfasst einen Tragkörper mit einer ersten als Kreisringfläche ausgebildeten magnetischen Spur und einer zweiten als Zylindermantelfläche ausgebildeten Spur. Jede Spur ist durch mindestens einen elektromagnetischen Sensor abtastbar.
Die DE 102 10 372 A1 beschreibt einen Drehwinkelsensor mit einem scheibenförmigen Träger einer ersten Spur von magnetischen Nord- und Südpolen und einer zweiten Spur von magnetischen Nord- und Südpolen mit einer von der ersten Spur abweichenden Anzahl von Nord- und Südpolen und mit je einem Sensorelement zur Detektion der ersten und der zweiten Spur. Mit der ersten Spur wird nach Inbetriebnahme des Drehwinkelsensors eine erste grobe Erfassung des Drehwinkels des Spurträgers durchgeführt und mit der zweiten Spur eine hochaufgelöste Erfassung des Drehwinkels realisiert. Das sinusförmige Signal des Drehwinkelsensors wird durch Anwendung einer Winkelfunktion li- nearisiert.
Die im Stand der Technik verwendeten Polräder weisen naturgemäß nichtlinea- re Kennlinien ihres Feldverlaufs zur Polradposition auf. Soweit nur die Winkelstellung des Polrades mit einer Genauigkeit, die etwa dem Abstand benachbarter Pole entspricht, erfasst werden muss, können die von den Polen am Sensor hervorgerufenen Impulse ausgewertet werden. Insbesondere wenn die Position zwischen zwei benachbarten Polen genauer bestimmt werden soll, bereitet die Auswertung der nicht-linearen Kennlinien erhebliche Schwierigkeiten. Um ein in vielen Anwendungen gewünschtes Maß an linearem Signalverlauf zu erhalten, ist es bekannt, das vom Sensor erfasste Signal nachträglich über geeignete Softwarealgorithmen auf einem MikroController oder in einem Steuergerät zu linearisieren. Problematisch an dieser Vorgehensweise ist, dass die rechneri- sehe Linearisierung eines Sensorsignals in der Regel eine ungleichmäßig über den Messbereich verteilte Sensitivität überdeckt. Ein originär bereits lineares Signal ist wesentlich robuster und reagiert auf Toleranzschwankungen im gesamten Messbereich auf gleiche Art und Weise. Weiterhin nachteilig ist, dass MikroController und die zur Linearisierung verwendeten Softwarealgorithmen Kosten verursachen. Außerdem muss die Nichtlinearität des Signals bekannt sein, um einen geeigneten Linearisierungsalgorithmus darauf anwenden zu können.
Des Weiteren ist es bekannt, speziell auf die jeweilige Anwendung abgestimmte Polräder zu verwenden. Dies hat allerdings den großen Nachteil, dass spezielle Polräder wesentlich teurer in der Herstellung als einfacher gehaltene Bauteile sind. Hinzu kommt, dass insbesondere Standard-ABS-Geber dermaßen ver- breitet sind, dass diese in Massenproduktion herstellbar sind und somit sehr günstig erworben werden können.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Sensorsystem zur Drehzahlmessung mit einem Polrad zur Verfügung zu stellen, dessen magneti- sches Feld einem Sensor, der die Feldrichtung bzw. -stärke auswertet, eine möglichst lineare Feldwinkeländerung pro Polraddrehung bietet. Weiterhin soll das Sensorsystem auf kostengünstige Standardbauelemente zurückgreifen können. Zur Lösung der erfindungsgemäßen Aufgabe dient ein Sensorsystem gemäß dem beigefügten Anspruch 1 .
Das erfindungsgemäße Sensorsystem zeichnet sich dadurch aus, dass in Drehrichtung vor und hinter dem Magnetfeldsensor gegenüberliegend zur Spur je- weils ein ferromagnetisches Flussleitstück angeordnet ist, wobei die ferromagnetischen Flussleitstücke in radialer Richtung gesehen zumindest teilweise im Bauraum zwischen dem Magnetfeldsensor und dem Polrad angeordnet sind. Der Abstand zwischen den ferromagnetischen Flussleitstücken in Drehrichtung entspricht etwa der Länge eines magnetischen Pols des Polrades.
Ein wesentlicher Vorteil des erfindungsgemäßen Sensorsystems ist darin zu sehen, dass durch Verwendung von ferromagnetischen Flussleitstücken der Verlauf der magnetischen Flussdichte dahingehend verändert werden kann, dass dessen Winkeländerung gleichmäßiger mit der Rotordrehung einhergeht. Es wird eine Optimierung des Verlaufs des Vektorfeldes dahingehend erreicht, dass an einer geeigneten Sensorposition ein näherungsweise linearer Zusammenhang zwischen Feldwinkeländerung und Polradwinkeländerung entsteht. Der zum Abtasten der Spur des Polrades verwendete Magnetfeldsensor liefert somit ein näherungsweise lineares Sensorsignal, welches wesentlich robuster ist und auf Toleranzschwankungen im gesamten Messbereich gleich reagiert. Da durch die vorgenommene Beeinflussung des Magnetflusses am Sensor erfindungsgemäß bereits ein weitgehend lineares Signal vorliegt, entfällt die bislang erforderliche, aufwendige rechnerische Linearisierung des Sensorsignals, was nicht zuletzt auch aus Kostengründen sehr vorteilhaft ist. Ein weiterer Vorteil ist darin zu sehen, dass am Polrad selber keine Änderungen erforderlich sind, wodurch auf relativ preiswerte Polräder aus der Massenproduktion zurückgegriffen werden kann.
Der Luftspalt zwischen Magnetfeldsensor und Polrad ist größer als der Luftspalt zwischen den ferromagnetischen Flussleitstücken und dem Polrad. Dies ergibt sich durch die Anordnung der Flussleitstücke im Bauraum zwischen dem Magnetfeldsensor und dem Polrad.
Nach einer bevorzugten Ausführungsform sind die Flussleitstücke stabförmig ausgebildet. Die Länge der Flussleitstücke entspricht vorzugsweise der Spurbreite eines magnetischen Poles. Die Flussleitstücke weisen bevorzugt eine Breite von < 50% der Länge eines magnetischen Poles auf.
Das Polrad kann als radiales Polrad ausgeführt sein. Bei radialen Polrädern ist die Spur der magnetischen Nord- und Südpole als Zylindermantelfläche ausgebildet. Die Spur weist eine radiale Wirkrichtung auf und kann mittels eines Magnetfeldsensors radial abgefragt werden.
Bei alternativen Ausführungsformen kann das Polrad als axiales Polrad ausgebildet sein. Axiale Polräder besitzen eine als Zylindermantelfläche aus-gebildete Spur magnetischer Nord- und Südpole. Die Spur weist eine axiale Wirkrichtung auf und kann mit Hilfe eines Magnetfeldsensors axial abgefragt werden.
Weiterhin sind Ausführungsformen möglich, bei denen das Polrad mehr als eine Spur magnetischer Nord- und Südpole aufweist. Es können mehrere Spuren mit radialer bzw. axialer Wirkrichtung ausgebildet sein. Ebenso ist eine Kombination von Spuren mit radialer und axialer Wirkrichtung möglich. Bei diesen Ausführungen sind gegenüberliegend zu jeder Spur magnetischer Nord- und Südpole ferromagnetische Flussleitstücke entsprechend anzuordnen.
Als zweckmäßig hat es sich erwiesen, wenn alle Pole jeweils einen gleichen Polwinkel aufweisen.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der Figuren näher erläutert.
Es zeigen:
Fig. 1 : ein erfindungsgemäßes Sensorsystem zur Drehzahlmessung in einer perspektivischen Ansicht;
Fig. 2: eine Darstellung des Verlaufs der Magnetfeldlinien über einem Polpaar eines Magnetpolrings und des Linearitätsfehlers eines Sensorsystems nach dem Stand der Technik;
Fig. 3: ein Diagramm zur Darstellung des Linearitätsfehlers des erfindungs- gemäßen Sensorsystem und eines Sensorsystems nach dem Stand der Technik.
Fig. 1 zeigt ein erfindungsgemäßes Sensorsystem zur Drehzahlmessung in einer perspektivischen, vereinfachten Ansicht. Das erfindungsgemäße Sensor- System 01 umfasst ein Polrad 02 sowie einen Magnetfeldsensor 03. Das Polrad 02 besteht aus einem scheibenförmigen Träger 04, welcher eine als Zylinder- mantelfläche ausgebildete Spur von abwechselnd angeordneten magnetischen Nord- und Südpolen 05 aufweist. Ein Polrad 02 mit derart angeordneten magnetischen Nord- und Südpolen 05 wird als radiales Polrad bezeichnet, da das Magnetmaterial radial auf dem Träger 04 aufgebracht ist und somit eine radiale Wirkrichtung hat.
Das erfindungsgemäße Sensorsystem Ol umfasst weiterhin zwei ferromagneti- sche Flussleitstücke 07, welche in Drehrichtung vor und hinter dem Magnetfeldsensor 03 und in radialer Richtung im Bauraum zwischen dem Magnetfeldsen- sor 03 und dem Polrad 02 angeordnet sind. Der Abstand zwischen den ferro- magnetischen Flussleitstücken 07 entspricht etwa der Breite eines magnetischen Poles 05 des Polrades 02. Der Luftspalt zwischen Magnetfeldsensor 03 und Polrad 02 ist größer als der Luftspalt zwischen den ferromagnetischen Flussleitstücken 07 und dem Polrad 02.
Die Flussleitstücke 07 besitzen in der dargestellten Ausführung eine stabförmi- ge Gestalt. Zur optimalen Beeinflussung des magnetischen Feldes des Polrades 02 entspricht die Länge der Flussleitstücke 07 der Spurbreite eines magnetischen Poles 05, während die Breite der Flussleitstücke < 50% der Länge eines magnetischen Poles 05 ist. Alle Pole 05 des Polrades 02 weisen vorzugsweise jeweils den gleichen Polwinkel auf.
Bei alternativen Ausführungsformen kann die Spur magnetischer Nord- und Südpole 05 als Kreisringfläche ausgebildet sein. Derartige Polräder werden als axiale Polräder bezeichnet. Bei axialen Polrädern ist das Magnetmaterial axial auf dem Träger 04 aufgebracht und weist somit eine axiale Wirkrichtung auf. Der Magnetfeldsensor 03 ist wiederum entsprechend positioniert, d. h. in diesem Fall axial zum Polrad 02 ausgerichtet, um axial abtasten zu können. Die Unterschiede bezüglich des erfindungsgemäß gewonnenen Sensorsignals und dem beim Stand der Technik gewonnenen Sensorsignal werden nachfolgend anhand der Fig. 2 und 3 näher erläutert. Fig. 2 zeigt eine Darstellung des Verlaufs der Magnetfeldlinien über einem Polpaar eines Magnetpolrings und des Linearitätsfehlers eines Sensorsystems nach dem Stand der Technik. In Fig. 2 sind zwei Informationen überlagert: Den Hintergrund bildet eine Darstellung des Verlaufs der Magnetfeldlinien über ei- nem Polpaar eines Polrads 02. Davor ist der Linearitätsfehler eines Sensorsignals aufgezeichnet, welches den Feldwinkel als Maß für die Polpaarposition verwendet, also die Differenz des Feldwinkels zur idealen Geraden über die Länge des Polpaares. Fig. 2 kann insbesondere entnommen werden, dass der Linearitätsfehler immer dann zu null wird, wenn die zu messende Feldlinienaus- richtung senkrecht oder waagerecht durch den Sensor verläuft. Umgekehrt erreicht der Fehler immer dann sein Maximum, wenn das Feld im 45°-Winkel schräg durch den Sensor verläuft. Hieraus ergibt sich, dass das magnetische Feld in den orthogonalen Fällen unangetastet bleiben sollte. Dies wird durch die vorliegende Erfindung erreicht.
Fig. 3 zeigt ein Diagramm zur Darstellung des Linearitätsfehlers des erfindungsgemäßen Sensorsystem und eines Sensorsystems nach dem Stand der Technik. Es wird von dem Idealfall ausgegangen, dass über einem Polpaar eine gerade Ausgangslinie von -π bis +π ausgegeben werden soll. In Fig. 3 ist die Differenz des simulierten Sensorausgangssignals zu dieser Idealen, bezogen auf den gesamten Wertebereich dargestellt. Die gepunktete Kurve zeigt den Linearitätsfehler eines Sensorsystems nach dem Stand der Technik. Die durchgezogene Kurve zeigt den Linearitätsfehler des erfindungsgemäßen Sensorsystems. Durch Verwendung der ferromagnetischen Flussleitstücke 07 wird der Verlauf der magnetischen Flussdichte dahingehend verändert, dass dessen Winkeländerung deutlich gleichmäßiger mit der Rotordrehung einhergeht. Dies wird dadurch erreicht, dass in den Fällen, in denen der Magnetfeldsensor 03 schrägen Feldverläufen ausgesetzt ist, die Flussleitstücke 07 unterschiedlich magnetisiert werden. Dadurch wird das Feld an der Sensorposition verzerrt. Diese Verzerrung wirkt weitgehend entgegen dem ursprünglichen Linearitätsfehler, so dass sich eine deutliche Verbesserung des Linearitätsfehlers ergibt. Die orthogonalen Fälle werden dagegen nicht beeinflusst, da hier der magnetische Fluss symmetrisch durch die Flussleitstücke 07 verläuft. Der Winkel des Feldverlaufs an der Sensorposition wird in diesem Fall durch die ebenfalls spiegelsymmetrisch angeordneten Flussleitstücke 07 nicht verändert.
Erfindungsgemäß wird durch die Verwendung der ferromagnetischen Flussleit- stücke 07 das magnetische Feld des Polrades 02 dahingehend optimiert, dass es dem Magnetfeldsensor 03 eine annähernd lineare Feldwinkeländerung pro Polraddrehung bietet. Somit kann die bislang erforderliche, nachträgliche rechentechnische Linearisierung des Sensorsignals entfallen.
Bezugszeichenliste
01 - Sensorsystem zur Drehzahinnessung 02 - Polrad
03 - Magnetfeldsensor
04 - Träger
05 - Pol
06 - 07 - ferromagnetische Flussleitstücke

Claims

Patentansprüche
Sensorsystem (01 ) zur Drehzahlmessung eines drehbaren Bauteils mit einem Polrad (02) umfassend:
- einen Träger (04) mit mindestens einer Spur von abwechselnd angeordneten magnetischen Nord- und Südpolen (05),
- mindestens einen Magnetfeldsensor (03) zum Abtasten der Spur auf dem Träger (04) des Polrades (02),
dadurch gekennzeichnet, dass in Drehrichtung vor und hinter dem Magnetfeldsensor (03) gegenüberliegend zur Spur jeweils ein ferromagneti- sches Flussleitstück (07) angeordnet ist, wobei die ferromagnetischen Flussleitstücke (07) in radialer Richtung gesehen zumindest teilweise im Bauraum zwischen dem Magnetfeldsensor (03) und dem Träger (04) angeordnet sind, und wobei der Abstand zwischen den ferromagnetischen Flussleitstücken (07) in Drehrichtung etwa der Länge eines magnetischen Pols (05) des Polrades (02) entspricht.
Sensorsystem (01 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der Luftspalt zwischen Magnetfeldsensor (03) und Polrad (02) größer als der Luftspalt zwischen den ferromagnetischen Flussleitstücken (07) und dem Polrad (02) ist.
Sensorsystem (01 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Flussleitstücke (07) stabförmig sind.
Sensorsystem (01 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Länge der Flussleitstücke (07) der Spurbreite eines magnetischen Poles (05) entspricht. Sensorsystem (01 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Flussleitstücke (07) eine Breite von < 50% der Länge eines magnetischen Poles (05) aufweisen.
Sensorsystem (01 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Spur des Polrades (02) als Zylindermantelfläche ausgebildet ist.
Sensorsystem (01 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Spur des Polrades (02) als Kreisringfläche ausgebildet ist.
Sensorsystem (01 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Polrad (02) mehr als eine Spur aufweist.
Sensorsystem (01 ) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass alle Pole (05) des Polrades (02) jeweils einen gleichen Polwinkel umfassen.
PCT/DE2014/200413 2013-10-29 2014-08-20 Sensorsystem zur drehzahlmessung mit einem polrad mit linearisiertem magnetfeld WO2015062592A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/026,843 US10078094B2 (en) 2013-10-29 2014-08-20 Sensor system for rotational speed measurement having a pole wheel with a linearized magnetic field
CN201480058566.8A CN105683762B (zh) 2013-10-29 2014-08-20 具有带线性化磁场的磁极转子的用于转速测量的传感器系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013221943.1 2013-10-29
DE102013221943.1A DE102013221943A1 (de) 2013-10-29 2013-10-29 Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem Magnetfeld

Publications (1)

Publication Number Publication Date
WO2015062592A1 true WO2015062592A1 (de) 2015-05-07

Family

ID=51687763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200413 WO2015062592A1 (de) 2013-10-29 2014-08-20 Sensorsystem zur drehzahlmessung mit einem polrad mit linearisiertem magnetfeld

Country Status (4)

Country Link
US (1) US10078094B2 (de)
CN (1) CN105683762B (de)
DE (1) DE102013221943A1 (de)
WO (1) WO2015062592A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092344A1 (fr) 2017-11-10 2019-05-16 Safran Transmission Systems Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712281B (zh) * 2016-02-18 2017-08-04 国家纳米科学中心 一种锥形纳米碳材料功能化针尖及其制备方法
DE102016206389A1 (de) * 2016-04-15 2017-10-19 Continental Teves Ag & Co. Ohg Raddrehzahlsensor und Befestigungssystem zur Montage eines Raddrehzahlsensors
DE102019110851A1 (de) * 2019-04-26 2020-10-29 Schaeffler Technologies AG & Co. KG Messsystem
CN111141201B (zh) * 2019-11-25 2022-03-25 中车浦镇阿尔斯通运输系统有限公司 一种轨道车辆贯通道横向位移及夹角的实时同步检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH386123A (de) * 1959-09-23 1964-12-31 Siemens Ag Messwertumformer
DE10210372A1 (de) 2002-03-08 2003-09-25 Siemens Ag Drehwinkelsensor mit hoher Winkelauflösung
DE102006007926A1 (de) * 2006-02-21 2007-08-30 Schaeffler Kg Sensoranordnung zur Erfassung der Drehzahl und/oder des Drehwinkels eines magnetischen Encoder-Sensor-Systems
DE102004010948B4 (de) 2004-03-03 2008-01-10 Carl Freudenberg Kg Winkelmesseinrichtung
DE102007018238A1 (de) * 2007-04-18 2008-10-23 Robert Bosch Gmbh Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils
DE102007041798A1 (de) * 2007-08-30 2009-03-05 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Antrieb für eine Verstelleinrichtung eines Kraftfahrzeugs
US20110101969A1 (en) * 2009-10-30 2011-05-05 Honeywell International Inc. Self-powered magnetic tachometer
WO2012038169A1 (de) 2010-09-21 2012-03-29 Schaeffler Technologies AG & Co. KG Sensorsystem und verfahren zur inkrementellen drehzahlmessung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164668A (en) * 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
JPH08136558A (ja) * 1994-11-11 1996-05-31 Nippon Seiko Kk 回転速度検出装置
FR2790549B1 (fr) * 1999-03-03 2001-04-13 Moving Magnet Tech Capteur de position a sonde magneto-sensible et aimant encastre dans le fer
EP1499901A2 (de) * 2002-04-18 2005-01-26 Continental Teves AG & Co. oHG Verfahren und vorrichtung zur erfassung von ortsverschiebungen und drehbewegungen
US6998838B2 (en) * 2003-02-25 2006-02-14 Delphi Technologies, Inc. Linear position sensor having enhanced sensing range to magnet size ratio
DE10331580A1 (de) * 2003-07-11 2005-01-27 Robert Bosch Gmbh Vorrichtung zur Detektion der Drehzahl und/oder der Position eines rotierenden Bauteils
CN1985176A (zh) * 2004-07-15 2007-06-20 西门子公司 废气涡轮增压机
DE102005010921A1 (de) * 2004-07-15 2006-02-09 Siemens Ag Abgasturbolader
DE102005031086A1 (de) * 2005-07-04 2007-01-18 Robert Bosch Gmbh Sensoranordnung zur Erfassung eines Differenzwinkels
DE102005040168A1 (de) * 2005-08-25 2007-03-01 Robert Bosch Gmbh Sensoranordnung
US7834616B2 (en) * 2007-01-29 2010-11-16 Honeywell International Inc. Magnetic speed, direction, and/or movement extent sensor
US7463023B1 (en) * 2007-08-02 2008-12-09 Delphi Technologies, Inc. Non-contacting rotary and linear travel sensor
DE102007060241A1 (de) 2007-12-14 2009-06-25 Robert Bosch Gmbh Elektrische Maschine mit einer Sensoreinrichtung zur Rotorlageerkennung
US7956604B2 (en) * 2008-07-09 2011-06-07 Infineon Technologies, Ag Integrated sensor and magnetic field concentrator devices
US8085036B2 (en) * 2009-01-14 2011-12-27 Infineon Technologies Ag Sensor including two code rings and a magnetic field sensor between the code rings
DE102009005960A1 (de) * 2009-01-23 2010-08-05 Avantis Ltd. Polrad einer Windenergieanlage
DE102009047222A1 (de) * 2009-11-27 2011-06-01 Robert Bosch Gmbh Sensoranordnung zum Ermitteln eines Drehmoments und zur Indexerkennung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH386123A (de) * 1959-09-23 1964-12-31 Siemens Ag Messwertumformer
DE10210372A1 (de) 2002-03-08 2003-09-25 Siemens Ag Drehwinkelsensor mit hoher Winkelauflösung
DE102004010948B4 (de) 2004-03-03 2008-01-10 Carl Freudenberg Kg Winkelmesseinrichtung
DE102006007926A1 (de) * 2006-02-21 2007-08-30 Schaeffler Kg Sensoranordnung zur Erfassung der Drehzahl und/oder des Drehwinkels eines magnetischen Encoder-Sensor-Systems
DE102007018238A1 (de) * 2007-04-18 2008-10-23 Robert Bosch Gmbh Vorrichtung zur Erfassung der Drehzahl eines rotierbaren Teils
DE102007041798A1 (de) * 2007-08-30 2009-03-05 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Antrieb für eine Verstelleinrichtung eines Kraftfahrzeugs
US20110101969A1 (en) * 2009-10-30 2011-05-05 Honeywell International Inc. Self-powered magnetic tachometer
WO2012038169A1 (de) 2010-09-21 2012-03-29 Schaeffler Technologies AG & Co. KG Sensorsystem und verfahren zur inkrementellen drehzahlmessung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092344A1 (fr) 2017-11-10 2019-05-16 Safran Transmission Systems Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante
FR3073435A1 (fr) * 2017-11-10 2019-05-17 Safran Transmission Systems Procede de fabrication de piece tournante magnetisee, piece tournante et systeme de mesure de rotation d'une piece tournante

Also Published As

Publication number Publication date
CN105683762B (zh) 2020-03-27
DE102013221943A1 (de) 2015-04-30
CN105683762A (zh) 2016-06-15
US10078094B2 (en) 2018-09-18
US20160231347A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
DE19818799C2 (de) Verfahren und Vorrichtung zum Messen von Winkeln
AT510377B1 (de) Verfahren und ausführungsformen zur absoluten positionsbestimmung mittels zweier hallsensoren
WO2015062592A1 (de) Sensorsystem zur drehzahlmessung mit einem polrad mit linearisiertem magnetfeld
EP3029427B1 (de) Vorrichtung und algorythmik zur radialen mechanisch absoluten winkelbestimmung einer welle
EP2899510A1 (de) Schaltung und Messsystem
EP3025125B1 (de) Verfahren zur dynamischen linearisierung von sensorsignalen eines magnetband-längenmesssystems
DE102017222676A1 (de) Wegsensor
WO2014086525A1 (de) Sensorvorrichtung zur bestimmung mindestens einer rotationseigenschaft eines rotierenden elements
DE102006030469A1 (de) Vorrichtung zur berührungsfreien Erfassung der Drehzahl und/oder Position eines Geberteils mit einem Encoder
DE102018211216A1 (de) Geberradanordnung und Verfahren zum Ermitteln einer Absolutwinkelposition und einer Drehrichtung
WO2021069014A1 (de) Sensorvorrichtung zur erfassung der drehwinkelstellung einer drehbeweglichen welle sowie lenkungsanordnung eines fahrzeugs
EP2597429B1 (de) Verfahren und Anordnung zur Bestimmung des dynamischen Zustands eines Elektromotors
EP2339299A2 (de) Drehwinkelsensoranordnung und Verfahren zur Feststellung der Drehposition einer Welle
DE102006020700A1 (de) Einrichtung zur Drehwinkelerfassung
DE102011111846A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Drehmoments und eines Lenkwinkels
EP1600737A2 (de) Vorrichtung zur rotativen Winkelmessung
WO2016045816A1 (de) Sensoranordnung zur weg- und/oder winkelmessung
DE112018000654T5 (de) Magnetkodierer und Verfahren zu dessen Herstellung
DE102011076284A1 (de) Lagereinheit mit Winkelmesssystem
DE102012221327A1 (de) Sensorvorrichtung zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE202014002597U1 (de) Magnetring und Positionssensor
DE10228663A1 (de) Anordnung zum Bestimmen der Lage eines Körpers
EP3913349A1 (de) Verfahren zur ermittlung der belastung einer antriebswelle
DE102013211797A1 (de) Polrad mit verbesserter Feldwinkeländerung
EP2905882B1 (de) Erfassung eines kinematischen Zustands einer rotierbaren Maschinenkomponente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14781807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026843

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14781807

Country of ref document: EP

Kind code of ref document: A1