WO2015061967A1 - 一种多带超通道外差光信号接收系统和光信号接收方法 - Google Patents

一种多带超通道外差光信号接收系统和光信号接收方法 Download PDF

Info

Publication number
WO2015061967A1
WO2015061967A1 PCT/CN2013/086148 CN2013086148W WO2015061967A1 WO 2015061967 A1 WO2015061967 A1 WO 2015061967A1 CN 2013086148 W CN2013086148 W CN 2013086148W WO 2015061967 A1 WO2015061967 A1 WO 2015061967A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
super
frequency
optical comb
channel
Prior art date
Application number
PCT/CN2013/086148
Other languages
English (en)
French (fr)
Inventor
易兴文
洪成
青华平
徐晓庚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001410.1A priority Critical patent/CN105122691B/zh
Priority to PCT/CN2013/086148 priority patent/WO2015061967A1/zh
Publication of WO2015061967A1 publication Critical patent/WO2015061967A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained

Definitions

  • the invention belongs to the field of optical communications, and in particular relates to a multi-band super-channel heterodyne optical signal receiving system and an optical signal receiving method. Halo technology
  • a typical single-wavelength source-based superchannel CO-OFDM multiband receiver uses two optical demultiplexers, one for spectral segmentation of superchannel optical signals and one for demultiplexing local optical comb signals. .
  • both optical demultiplexers are implemented using arrayed waveguide gratings.
  • a commonly used arrayed waveguide grating is mainly composed of an input/output waveguide, two star-waveguide couplers, and a dispersion waveguide array having the same length difference, and therefore the waveguide structure has a large size, which is disadvantageous for miniaturization of the receiver. Summary of the invention
  • An object of the present invention is to provide a multi-band super-channel heterodyne optical signal receiving system and an optical signal receiving method, which solve the problem of requiring at least two arrayed waveguide gratings for multi-band super-channel external optical signal reception in the prior art.
  • an embodiment of the present invention provides a multi-band super-channel heterodyne optical signal receiving system, where the system includes:
  • a circular arrayed waveguide grating for optically demultiplexing an input superchannel signal comprising two adjacent frequency subbands and an optical comb signal comprising two local frequencies of adjacent frequencies, a superchannel signal and an optical comb
  • the signals are respectively input from two adjacent input ports, and output a first superchannel signal and a first local comb signal at the first output port, and output a second superchannel signal and a second local comb at the second output port.
  • the first superchannel signal is a signal of a first frequency sub-band included in the superchannel signal
  • the first local optical comb line signal is a local frequency comb line signal of a first frequency
  • the second super channel signal is a signal of a second frequency sub-band of the super channel signal
  • the second local optical comb line signal a local optical comb line signal of a second frequency
  • a photodetector for scoring the superchannel signal and the local optical comb signal outputted by the first output port of the cyclic arrayed waveguide grating to obtain a first intermediate frequency signal, and the second output port of the cyclic arrayed waveguide grating
  • the output superchannel signal and the local optical comb signal beat frequency are obtained as a second intermediate frequency signal
  • RFMix Choinese name: radio frequency mixer
  • the second intermediate frequency signal is converted into a first baseband signal and a second baseband signal;
  • ADC Chinese name analog digital converter, for converting the first baseband signal and the second baseband signal obtained by post-conversion of the RFMix into a first baseband digital signal and a second baseband digital signal;
  • An OFDM receiver for receiving the first baseband digital signal and the second baseband digital signal converted by the ADC.
  • a spacing of a center frequency of adjacent subbands of the two superchannel signals received by the cyclic arrayed waveguide grating, and two adjacent local comb signals The frequency spacing is the same as the frequency spacing of adjacent output ports of the cyclic arrayed waveguide grating.
  • the frequency spacing of adjacent output ports of the cyclic arrayed waveguide grating refers to the frequency difference of the center of the transmission spectrum of two adjacent output ports with respect to the same input port.
  • the center frequency of each of the sub-bands in the super-channel signal received by the cyclic arrayed waveguide grating and its corresponding local optical comb signal The frequency difference is the same as the frequency spacing of adjacent output ports of the cyclic arrayed waveguide grating, and the local optical comb line signal is at least one more than the number of sub-bands of the super-channel signal.
  • the frequency difference between the center frequency of the superchannel signal of each of the bands received by the cyclic arrayed waveguide grating and the corresponding local optical comb line signal is different from the frequency spacing of the adjacent output ports of the cyclic arrayed waveguide grating, and the local optical comb
  • the line signal is the same as the number of bands of the superchannel signal.
  • the system further includes:
  • a low pass filter for low pass filtering the first baseband signal and the second baseband signal of the RFMixl03 frequency conversion.
  • an embodiment of the present invention provides a multi-band superchannel heterodyne optical signal receiving method, where the method includes:
  • the cyclic arrayed waveguide grating optically demultiplexes the input superchannel signal including two adjacent frequency subbands and the optical comb signal including two local frequencies of the adjacent frequency, and the superchannel signal and the optical comb signal are respectively Two adjacent input ports are input, and the first sub-band signal and the first local optical comb line signal included in the super-channel signal are outputted at the first output port, and the super-channel signal is outputted at the second output port a second sub-band and a second local optical line signal, wherein the first super-channel signal is a first frequency sub-band of the super-channel signal, and the first local optical comb signal is a local light of a first frequency a comb signal, wherein the second superchannel signal is a superchannel signal of a second frequency subband included in the superchannel signal;
  • the photodetector beats the super channel signal and the local optical comb line signal outputted by the first output port to a first intermediate frequency signal, and beats the super channel signal and the local optical comb line signal output by the second output port to Second intermediate frequency signal;
  • RFMix converts the first intermediate frequency signal and the second intermediate frequency signal into a first baseband signal and a second Baseband signal
  • the ADC converts the first baseband signal and the second baseband signal into a first baseband digital signal and a second baseband digital signal
  • the OFDM receiver receives the first baseband digital signal and the second baseband digital signal.
  • the super-channel signal received by the cyclic arrayed waveguide grating has a center frequency spacing of two adjacent sub-bands, and two adjacent local optical comb signals The frequency spacing is the same as the frequency spacing of the output ports of the cyclic arrayed waveguide grating.
  • the center frequency of each sub-band included in the super-channel signal received by the cyclic arrayed waveguide grating and its corresponding local optical comb The frequency difference of the line signals is the same as the frequency spacing of adjacent output ports of the cyclic arrayed waveguide grating, and the local optical comb line signal is at least one more than the number of sub-wave bands of the super-channel signal.
  • the center frequency of the superchannel signal of each sub-band received by the cyclic arrayed waveguide grating and its corresponding local optical comb signal The frequency difference is different from the frequency spacing of adjacent output ports of the cyclic arrayed waveguide grating, and the local optical comb line signal is the same as the number of sub-bands of the super-channel signal.
  • the first possible implementation manner of the second aspect the second possible implementation manner of the second aspect, the third possible implementation method of the second aspect, in the fourth possible implementation manner
  • the ADC will be the first before the step of converting the baseband signal and the second baseband signal into the first baseband digital signal and the second baseband digital signal, the method further includes:
  • a low pass filter low pass filters the first baseband signal and the second baseband signal.
  • a received super-channel signal including a plurality of adjacent bands and a local optical comb line signal including a plurality of frequencies are photo-demultiplexed by a cyclic arrayed waveguide grating including a plurality of input and output ports, in a loop
  • Each output port of the arrayed waveguide grating outputs a super-channel signal of a wave band and a local optical comb line signal of one frequency, and converts the signal outputted by the circular array waveguide grating through the photodetector, the RFMix and the ADC, and finally converts the converted signal.
  • the digital signal is transmitted to the OFDM receiver, so that the superchannel signal including the multi-band and the local optical comb line signal containing multiple frequencies only need one optical demultiplexer, which reduces the volume of the OFDM receiver and simplifies the receiver. Design and cost. DRAWINGS
  • FIG. 1 is a structural diagram of a multi-band super-channel heterodyne optical signal receiving system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a multi-band super-channel heterodyne optical signal receiving method according to an embodiment of the present invention.
  • FIG. 1 is a structural diagram of a multi-band super-channel heterodyne optical signal receiving system according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, including:
  • a cyclic arrayed waveguide grating 101 for optically demultiplexing an input superchannel signal including two adjacent frequency subbands and a local optical comb line signal including two adjacent frequencies, and outputting at the first output port
  • the first superchannel signal and the first local comb signal output a second superchannel signal and a second local comb signal at the second output port, wherein the first superchannel signal is a first frequency included in the superchannel signal a signal of the wavelet band, the first local comb signal is a local comb signal of a first frequency, and the second superchannel signal is a signal of a second frequency subband of the superchannel signal,
  • the second local comb signal is a local comb signal of the second frequency.
  • the cyclic arrayed waveguide grating 101 receives a superchannel signal comprising two adjacent frequency subbands and a local optical comb signal comprising two adjacent frequencies, the received superchannel signal and the local optical comb.
  • the first superchannel signal and the first local optical comb line signal are outputted at the first output port
  • the second superchannel signal and the second local optical comb line signal are outputted at the second output port, where
  • the local optical comb line signal is generated by electro-optic modulation using a single-frequency laser.
  • the signal used in electro-optic modulation is the RF clock signal in the optical comb generator, and the frequency is the frequency spacing of adjacent local optical comb lines.
  • the superchannel signal contains a number of bands that are less than or equal to the circular array waveguide grating
  • the number of output ports for 101 The number of output ports for 101. It should be noted that the pitch of the center frequency of the superchannel signals of the two adjacent bands, the frequency spacing of the two adjacent local comb signals, and the frequency spacing of the output ports of the cyclic arrayed waveguide grating 101 are respectively the same, and the super The center frequency of the band signal has the following relationship with the frequency of the local comb signal:
  • the center frequency of the superchannel signal of each band and the frequency of its corresponding local comb signal The difference is the same as the frequency spacing of adjacent output ports of the cyclic arrayed waveguide grating, and the local optical comb line signal is at least one more than the number of bands of the superchannel signal.
  • the frequency difference between the center frequency of the superchannel signal of each band and its corresponding local comb line signal is different from the frequency spacing of the adjacent output port of the cyclic arrayed waveguide grating, and the local optical comb line signal is The number of bands of the superchannel signal is the same.
  • the center frequency spacing of the two sets of superchannel signals is the same as the frequency period of the cyclic arrayed waveguide grating 101.
  • the center frequency spacing of the two sets of superchannel signals is the same as the frequency period of the cyclic arrayed waveguide grating 101, that is, the center frequency spacing of the two sets of superchannel signals is the same as the free spectral range of the cyclic arrayed waveguide grating 101.
  • the center frequency spacing of the two sets of superchannel signals is an integer multiple of the free spectral range of the cyclic arrayed waveguide grating 101.
  • the embodiment of the present invention only receives the super channel signal including the two frequency sub-bands, so as to indicate that the super channel signal including multiple frequency sub-bands can be received, and the embodiment of the present invention can only receive A superchannel signal containing two frequency subbands, that is, if the third superchannel signal, the fourth superchannel signal, etc. are included, then the third port, the fourth port, etc. Output.
  • the photodetector 102 is configured to beat the super channel signal and the local optical comb line signal outputted by the first output port of the cyclic arrayed waveguide grating 101 into a first intermediate frequency signal, and the second cyclic arrayed waveguide grating 101
  • the super channel signal output by the second output port and the local optical comb line signal beat frequency are the second intermediate frequency signal.
  • the photodetector 102 receives the super channel signal and the local optical comb line signal outputted by the cyclic arrayed waveguide grating 101, and converts the super channel signal and the local optical comb line signal into an intermediate frequency through the beat frequency of the photodetector 102. signal.
  • the RFMix101 is configured to convert the first intermediate frequency signal and the second intermediate frequency signal of the photodetector 102 beat frequency into a first baseband signal and a second baseband signal.
  • the IF local oscillator signal can be generated by the RF clock signal of the local optical comb generator.
  • the ADC 104 is configured to convert the first baseband signal and the second baseband signal converted by the RFMix103 into a first baseband digital signal and a second baseband digital signal.
  • the OFDM receiver 105 is configured to receive the first baseband digital signal and the second baseband digital signal converted by the ADC 104.
  • a received super-channel signal including a plurality of adjacent bands and a local optical comb line signal including a plurality of frequencies are photo-demultiplexed by a cyclic arrayed waveguide grating including a plurality of input and output ports, in a loop
  • Each output port of the arrayed waveguide grating outputs a super-channel signal of a wave band and a local optical comb line signal of one frequency, and converts the signal outputted by the circular array waveguide grating through the photodetector, the RFMix and the ADC, and finally converts the converted signal.
  • the digital signal is transmitted to the OFDM receiver, so that the superchannel signal including the multi-band and the local optical comb line signal containing multiple frequencies only need one optical demultiplexer, which reduces the volume of the OFDM receiver and simplifies the receiver. Design and cost.
  • the system further includes:
  • the low pass filter 106 is configured to low pass filter the first baseband signal and the second baseband signal of the RFMixl03 frequency conversion.
  • the cutoff frequency of the low pass filter is input to the cyclic array waveguide grating.
  • FIG. 2 is a flowchart of a multi-band super-channel heterodyne optical signal receiving method according to an embodiment of the present invention, where the method includes:
  • the cyclic arrayed waveguide grating optically demultiplexes the input superchannel signal including two adjacent frequency bands and the local optical comb line signal including two adjacent frequencies, and outputs the output on the first output port.
  • the first superchannel signal and the first local comb signal output a second superchannel signal and a second local comb signal at the second output port, the first superchannel signal being a superchannel of the first frequency band a signal, the first local comb signal is a local frequency comb signal of a first frequency, the second superchannel signal is a superchannel signal of a second frequency band, and the second local comb signal is The local optical comb signal of the second frequency.
  • the cyclic arrayed waveguide grating receives a superchannel signal comprising two adjacent frequency wavelet bands and a local optical comb line signal comprising two adjacent frequencies, the received superchannel signal and the local optical comb line
  • the first superchannel signal and the first local optical comb line signal are outputted at the first output port
  • the second superchannel signal and the second local optical comb line signal are outputted at the second output port
  • the local optical comb signal is generated by electro-optic modulation using a single-frequency laser.
  • the signal used in electro-optic modulation is the RF clock signal in the optical comb generator, and the frequency is the frequency spacing of adjacent local optical comb signals.
  • the superchannel signal should contain less than or equal to the number of output ports of the cyclic arrayed waveguide grating. It should be noted that the pitch of the center frequency of the superchannel signals of the two adjacent bands, the frequency spacing of the two adjacent local comb signals, and the frequency spacing of the output ports of the cyclic arrayed waveguide grating are respectively the same, and the super channel
  • the center frequency of the subband of the signal has the following relationship with the frequency of the local comb signal:
  • the frequency difference between the center frequency of the superchannel signal of each subband and its corresponding local comb line signal is the same as the frequency spacing of the adjacent output ports of the cyclic arrayed waveguide grating, and the local optical comb line
  • the signal is at least one more than the number of bands of the superchannel signal.
  • the frequency difference between the center frequency of the superchannel signal of each subband and its corresponding local comb signal is different from the frequency spacing of the adjacent output port of the cyclic arrayed waveguide grating, and the local optical comb signal is The number of bands of the superchannel signal is the same.
  • the center frequency spacing of the two sets of superchannel signals is the same as the frequency period of the cyclic arrayed waveguide grating.
  • the center frequency spacing of the two sets of superchannel signals is the same as the frequency period of the cyclic arrayed waveguide grating, that is, the center frequency spacing of the two sets of superchannel signals is the same as the free spectral range of the cyclic arrayed waveguide grating, or two
  • the center frequency spacing of the set of superchannel signals is an integer multiple of the free spectral range of the cyclic arrayed waveguide grating.
  • step S202 the photodetector beats the super channel signal and the local optical comb line signal output by the first output port to a first intermediate frequency signal, and outputs the super channel signal and the local optical comb output by the second output port.
  • the line signal beat frequency is the second intermediate frequency signal.
  • the photodetector receives the super channel signal and the local optical comb line signal outputted by the circulating array waveguide grating, and the super channel signal and the local optical comb line signal are converted into the intermediate frequency signal through the beat frequency of the photodetector.
  • step S203 the RFMix converts the first intermediate frequency signal and the second intermediate frequency signal into a first baseband signal and a second baseband signal.
  • the IF local oscillator signal used can be generated by the RF clock signal of the local optical comb generator.
  • step S204 the ADC converts the first baseband signal and the second baseband signal into a first baseband digital signal and a second baseband digital signal.
  • step S205 the OFDM receiver receives the first baseband digital signal and the second baseband digital signal.
  • a received super-channel signal including a plurality of adjacent bands and a local optical comb line signal including a plurality of frequencies are photo-demultiplexed by a cyclic arrayed waveguide grating including a plurality of input and output ports, in a loop
  • Each output port of the arrayed waveguide grating outputs a super-channel signal of a wave band and a local optical comb line signal of one frequency, and converts the signal outputted by the circular array waveguide grating through the photodetector, the RFMix and the ADC, and finally converts the converted signal.
  • the digital signal is transmitted to the OFDM receiver, so that the superchannel signal including the multi-band and the local optical comb line signal containing multiple frequencies only need one optical demultiplexer, which reduces the volume of the OFDM receiver and simplifies the receiver. Design and cost.
  • the RFMix converts the first intermediate frequency signal and the second intermediate frequency signal into a first baseband signal and a second baseband signal.
  • the method further includes:
  • a low pass filter low pass filters the first baseband signal and the second baseband signal.
  • the cutoff frequency of the low pass filter is the bandwidth of one of the superchannel signals input to the cyclic arrayed waveguide grating, and the bandwidth of the band can be selected according to actual needs, and the present invention does not limited.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明适用于光通信领域,提供了一种含多子波带的超通道的外差光信号接收系统和光信号接收方法,所述系统包括:循环阵列波导光栅、光电探测器、RFMix.ADC、OFDM接收机。本发明实施例,通过包含多个输入输出端口的循环阵列波导光栅对接收的包含多个相邻子波带的超通道信号和包含多个频率的本地光梳线信号进行光解复用,在循环阵列波导光栅的每个输出端口输出一个超通道信号的子波带信号和一个频率的本地光梳线信号,并通过光电探测器、RFMix和ADC对循环阵列波导光栅输出的信号进行转化,最终将转换的数字信号传输到OFDM接收机,使得包含多子波带的超通道信号和包含多频率的本地光梳线信号只需要一个光解复用器,简化了接收机的设计和成本。

Description

一种多带趄通道外差光信号接收系统和光信号接收方法 技术领域
本发明属于光通信领域,尤其涉及一种多带超通道外差光信号接收系统和 光信号接收方法。 背暈技术
典型的基于单波长光源的超通道 CO-OFDM 多带接收机中使用了两个光 解复用器,一个用于超通道光信号的频谱分割,一个用于本地光梳线信号的解 复用。通常情况下,这两个光解复用器都是采用阵列波导光栅实现。 常用的阵 列波导光栅主要由输入 /输出波导,两个星形波导耦合器和具有相同长度差的 色散波导阵列组成, 因此该波导结构的尺寸较大,不利于该接收机小型化。 发明内容
本发明实施例的目的在于提供一种多带超通道外差光信号接收系统和光 信号接收方法,以解决现有技术中多带超通道外光信号接收需要至少两个阵列 波导光栅的问题。
第一方面,本发明实施例提供一种多带超通道外差光信号接收系统,所述 系统包括:
循环阵列波导光栅,用于对输入的包含两条相邻频率子波带的超通道信号 和包含两个相邻频率的本地光梳线的光梳信号进行光解复用 ,超通道信号和光 梳信号分别从两个相邻的输入端口输入,并在第一输出端口输出第一超通道信 号和第一本地光梳线信号,在第二输出端口输出第二超通道信号和第二本地光 梳线信号,所述第一超通道信号为超通道信号所含第一频率子波带的信号,所 述第一本地光梳线信号为第一频率的本地光梳线信号,所述第二超通道信号为 超通道信号所含第二频率子波带的信号,所述第二本地光梳线信号为第二频率 的本地光梳线信号;
光电探测器,用于将所述循环阵列波导光栅的第一输出端口输出的超通道 信号和本地光梳线信号拍频所得为第一中频信号,将所述循环阵列波导光栅的 第二输出端口输出的超通道信号和本地光梳线信号拍频所得为第二中频信号; RFMix (中文名为 :射频混频器),用于将所述光电探测器拍频所得的第一 中频信号和第二中频信号变频为第一基带信号和第二基带信号;
ADC 中文名为 :模拟数字转化器),用于将所述 RFMix后变频所得的第 一基带信号和第二基带信号转换为第一基带数字信号和第二基带数字信号;
OFDM接收机,用于接收所述 ADC转换的第一基带数字信号和第二基带 数字信号。
在第一方面的第一种可能选的实施方式中 ,所述循环阵列波导光栅接收的 两条超通道信号中相邻子波带的中心频率的间距、两条相邻本地光梳线信号的 频率间距和循环阵列波导光栅的相邻输出端口的频率间距相同。所述循环阵列 波导光栅的相邻输出端口的频率间距是指相对于同一输入端口而言的两个相 邻的输出端口的透射谱中心的频率差距。
结合第一方面的第一种可能的实施方式,在第二种可能的实施方式中 ,所 述循环阵列波导光栅接收的超通道信号中每条子波带的中心频率与其对应的 本地光梳线信号的频率差与循环阵列波导光栅的相邻输出端口的频率间距相 同,且所述本地光梳线信号比所述超通道信号的子波带的数量至少多一条。
结合第一方面的第一种可能的实施方式,在第三种可能的实施方式中 ,所 述循环阵列波导光栅接收的每种波带的超通道信号的中心频率与其对应的本 地光梳线信号的频率差与循环阵列波导光栅的相邻输出端口的频率间距不同, 且所述本地光梳线信号与所述超通道信号的波带的数量相同。
结合第一方面,第一方面的第一种可能的实施方式,第一方面的第二种可 能的实施方式,第一方面的第三种可能的实施方法,在第四种可能的实施方式 中 ,如果所述循环阵列波导光栅接收的超通道信号包括两组,则所述 RFMix 变频之后, ADC转换之前,所述系统还包括:
低通滤波器,用于对所述 RFMixl03变频的第一基带信号和第二基带信号 进行低通滤波。
第二方面,本发明实施例提供了一种多带超通道外差光信号接收方法,所 述方法包括:
循环阵列波导光栅对输入的包含两条相邻频率子波带的超通道信号和包 含两条相邻频率的本地光梳线的光梳信号进行光解复用 ,超通道信号和光梳信 号分别从两个相邻的输入端口输入,并在第一输出端口输出超通道信号所含的 第一子波带信号和第一本地光梳线信号,在第二输出端口输出超通道信号所含 的第二子波带和第二本地光梳线信号,所述第一超通道信号为超通道信号所含 第一频率子波带的,所述第一本地光梳线信号为第一频率的本地光梳线信号, 所述第二超通道信号为超通道信号所含第二频率子波带的超通道信号;
光电探测器将所述第一输出端口输出的超通道信号和本地光梳线信号拍 频为第一中频信号,将所述第二输出端口输出的超通道信号和本地光梳线信号 拍频为第二中频信号;
RFMix 将所述第一中频信号和第二中频信号变频为第一基带信号和第二 基带信号;
ADC将所述第一基带信号和第二基带信号转换为第一基带数字信号和第 二基带数字信号;
OFDM接收机接收所述第一基带数字信号和第二基带数字信号。
在第二方面的第一种可能的实施方式中 ,所述循环阵列波导光栅接收的超 通道信号所含两条相邻子波带的中心频率的间距、两种相邻本地光梳线信号的 频率间距和循环阵列波导光栅的输出端口的频率间距相同。
结合第二方面的第一种可能的实施方式,在第二种可能的实施方式中 ,所 述循环阵列波导光栅接收的超通道信号所含的每条子波带的中心频率与其对 应的本地光梳线信号的频率差与循环阵列波导光栅的相邻输出端口的频率间 距相同,且所述本地光梳线信号比所述超通道信号的子波带的数量至少多一条。
结合第二方面的第一种可能的实施方式,在第三种可能的实施方式中 ,所 述循环阵列波导光栅接收的每条子波带的超通道信号的中心频率与其对应的 本地光梳线信号的频率差与循环阵列波导光栅的相邻输出端口的频率间距不 同,且所述本地光梳线信号与所述超通道信号的子波带的数量相同。
结合第二方面,第二方面的第一种可能的实施方式,第二方面的第二种可 能的实施方式,第二方面的第三种可能的实施方法,在第四种可能的实施方式 中 ,如果所述超通道信号为至少两组,则在所述 RFMix将所述第一中频信号 和第二中频信号变频为第一基带信号和第二基带信号的步骤之后, ADC 将所 述第一基带信号和第二基带信号转换为第一基带数字信号和第二基带数字信 号的步骤之前,所述方法还包括:
低通滤波器对所述第一基带信号和第二基带信号进行低通滤波。 本发明实施例,通过包含多个输入输出端口的循环阵列波导光栅对接收的 包含多个相邻波带的超通道信号和包含多个频率的本地光梳线信号进行光解 复用 ,在循环阵列波导光栅的每个输出端口输出一个波带的超通道信号和一个 频率的本地光梳线信号,并通过光电探测器、 RFMix和 ADC对循环阵列波导 光栅输出的信号进行转化,最终将转换的数字信号传输到 OFDM接收机,使 得包含多波带的超通道信号和包含多频率的本地光梳线信号只需要一个光解 复用器,减小了 OFDM接收机的体积,简化了接收机的设计和成本。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的多带超通道外差光信号接收系统的结构图 ; 图 2是本发明实施例提供的多带超通道外差光信号接收方法的流程图。 具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行清 楚、 完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本发明的目的、技术方案及优点更加清楚明白 ,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 用以解释本发明,并不用于限定本发明。
如图 1 所示为本发明实施例提供的多带超通道外差光信号接收系统的结 构图 ,为了便于说明 ,仅示出与本发明实施例相关的部分,包括:
循环阵列波导光栅 101,用于对输入的包含两条相邻频率子波带的超通道 信号和包含两条相邻频率的本地光梳线信号进行光解复用 ,并在第一输出端口 输出第一超通道信号和第一本地光梳线信号,在第二输出端口输出第二超通道 信号和第二本地光梳线信号,所述第一超通道信号为超通道信号所含第一频率 子波带的信号,所述第一本地光梳线信号为第一频率的本地光梳线信号,所述 第二超通道信号为超通道信号所含第二频率子波带的信号,所述第二本地光梳 线信号为第二频率的本地光梳线信号。
在本发明实施例中 ,循环阵列波导光栅 101接收包含两条相邻频率子波带 的超通道信号和包含两条相邻频率的本地光梳线信号,对接收的超通道信号和 本地光梳线信号光解复用之后,在第一输出端口输出第一超通道信号和第一本 地光梳线信号,在第二输出端口输出第二超通道信号和第二本地光梳线信号, 其中所使用的本地光梳线信号是利用单频激光器经过电光调制产生,电光调制 所使用的信号即是光梳生成器中的 RF时钟信号,其频率即为相邻本地光梳线 信号的频率间距。 超通道信号包含的波带数应小于或等于循环阵列波导光栅
101的输出端口数量。 需要指出的是,两种相邻波带的超通道信号的中心频率 的间距、两种相邻本地光梳线信号的频率间距和循环阵列波导光栅 101的输出 端口的频率间距分别相同,且超通道信号的波带中心频率与本地光梳线信号的 频率存在以下关系:
1、 每条波带的超通道信号的中心频率与其对应的本地光梳线信号的频率 差与循环阵列波导光栅的相邻输出端口的频率间距相同,且所述本地光梳线信 号比所述超通道信号的波带的数量至少多一条。
2、 每条波带的超通道信号的中心频率与其对应的本地光梳线信号的频率 差与循环阵列波导光栅的相邻输出端口的频率间距不同,且所述本地光梳线信 号与所述超通道信号的波带的数量相同。
需要指出的是,当循环阵列波导光栅 101接收至少两组超通道信号时,所 述两组超通道信号的中心频率间距与循环阵列波导光栅 101的频率周期相同。
在本发明实施例中 ,两组超通道信号的中心频率间距与循环阵列波导光栅 101的频率周期相同,即:两组超通道信号的中心频率间距与循环阵列波导光 栅 101的自由光谱范围相同,或两组超通道信号的中心频率间距为循环阵列波 导光栅 101的自由光谱范围的整数倍。
需要指出的是,本发明实施例仅已接收包含两条频率子波带的超通道信号, 来表示可以接收包含多个频率子波带的超通道信号,并不限定本发明实施例只 能接收包含两条频率子波带的超通道信号,即:如果包含第三超通道信号、 第 四超通道信号 ......,则可在第三端口、 第四端口 ......输出。
光电探测器 102 ,用于将所述循环阵列波导光栅 101的第一输出端口输出 的超通道信号和本地光梳线信号拍频为第一中频信号,将所述第二循环阵列波 导光栅 101 的第二输出端口输出的超通道信号和本地光梳线信号拍频为第二 中频信号。
在本发明实施例中 ,光电探测器 102接收循环阵列波导光栅 101输出的超 通道信号和本地光梳线信号,经过光电探测器 102的拍频,超通道信号和本地 光梳线信号转换为中频信号。 RFMixl03 ,用于将所述光电探测器 102拍频的第一中频信号和第二中频 信号变频为第一基带信号和第二基带信号。
需要指出的是,在使用 RFMixl03将中频信号变频为基带信号时,所使用 的中频本振信号可以通过本地光梳线生成器的 RF时钟信号生成。
ADC104 ,用于将所述 RFMixl03变频的第一基带信号和第二基带信号转 换为第一基带数字信号和第二基带数字信号。
OFDM接收机 105,用于接收所述 ADC104转换的第一基带数字信号和第 二基带数字信号。
本发明实施例,通过包含多个输入输出端口的循环阵列波导光栅对接收的 包含多个相邻波带的超通道信号和包含多个频率的本地光梳线信号进行光解 复用 ,在循环阵列波导光栅的每个输出端口输出一个波带的超通道信号和一个 频率的本地光梳线信号,并通过光电探测器、 RFMix和 ADC对循环阵列波导 光栅输出的信号进行转化,最终将转换的数字信号传输到 OFDM接收机,使 得包含多波带的超通道信号和包含多频率的本地光梳线信号只需要一个光解 复用器,减小了 OFDM接收机的体积,简化了接收机的设计和成本。
作为本发明的一个可选实施例,如果所述超通道信号为至少两组,则在所 述 RFMixl03变频之后, ADC104转换之前,所述系统还包括:
低通滤波器 106 ,用于对所述 RFMixl03变频的第一基带信号和第二基带 信号进行低通滤波。
需要指出的是,所述低通滤波器的截止频率为输入所述循环阵列波导光栅
101的超通道信号中的一个波带的带宽,波带的带宽可以根据实际使用需要进 行选择,本发明不做限定。 如图 2 所示为本发明实施例提供的多带超通道外差光信号接收方法的流 程图 ,所述方法包括:
在步骤 S201中 ,循环阵列波导光栅对输入的包含两种相邻频率波带的超 通道信号和包含两种相邻频率的本地光梳线信号进行光解复用 ,并在第一输出 端口输出第一超通道信号和第一本地光梳线信号,在第二输出端口输出第二超 通道信号和第二本地光梳线信号,所述第一超通道信号为第一频率波带的超通 道信号,所述第一本地光梳线信号为第一频率的本地光梳线信号,所述第二超 通道信号为第二频率波带的超通道信号,所述第二本地光梳线信号为第二频率 的本地光梳线信号。
在本发明实施例中 ,循环阵列波导光栅接收包含两条相邻频率子波带的超 通道信号和包含两条相邻频率的本地光梳线信号,对接收的超通道信号和本地 光梳线信号光解复用之后,在第一输出端口输出第一超通道信号和第一本地光 梳线信号,在第二输出端口输出第二超通道信号和第二本地光梳线信号,其中 所使用的本地光梳线信号是利用单频激光器经过电光调制产生,电光调制所使 用的信号即是光梳生成器中的 RF时钟信号,其频率即为相邻本地光梳线信号 的频率间距。超通道信号包含的波带数应小于或等于循环阵列波导光栅的输出 端口数量。 需要指出的是,两种相邻波带的超通道信号的中心频率的间距、 两 种相邻本地光梳线信号的频率间距和循环阵列波导光栅的输出端口的频率间 距分别相同,且超通道信号的子波带中心频率与本地光梳线信号的频率存在以 下关系:
1、 每条子波带的超通道信号的中心频率与其对应的本地光梳线信号的频 率差与循环阵列波导光栅的相邻输出端口的频率间距相同,且所述本地光梳线 信号比所述超通道信号的波带的数量至少多一条。
2、 每条子波带的超通道信号的中心频率与其对应的本地光梳线信号的频 率差与循环阵列波导光栅的相邻输出端口的频率间距不同,且所述本地光梳线 信号与所述超通道信号的波带的数量相同。
需要指出的是,当循环阵列波导光栅接收至少两组超通道信号时,所述两 组超通道信号的中心频率间距与循环阵列波导光栅的频率周期相同。
在本发明实施例中 ,两组超通道信号的中心频率间距与循环阵列波导光栅 的频率周期相同,即:两组超通道信号的中心频率间距与循环阵列波导光栅的 自由光谱范围相同,或两组超通道信号的中心频率间距为循环阵列波导光栅的 自由光谱范围的整数倍。
在步骤 S202中 ,光电探测器将所述第一输出端口输出的超通道信号和本 地光梳线信号拍频为第一中频信号,将所述第二输出端口输出的超通道信号和 本地光梳线信号拍频为第二中频信号。
在本发明实施例中 ,光电探测器接收循环阵列波导光栅输出的超通道信号 和本地光梳线信号,经过光电探测器的拍频,超通道信号和本地光梳线信号转 换为中频信号。
在步骤 S203中 ,RFMix将所述第一中频信号和第二中频信号变频为第一 基带信号禾口第二基带信号。
需要指出的是,在使用 RFMixl03将中频信号变频为基带信号时,所使用 的中频本振信号可以通过本地光梳线生成器的 RF时钟信号生成。
在步骤 S204中 ,ADC将所述第一基带信号和第二基带信号转换为第一基 带数字信号和第二基带数字信号。 在步骤 S205中 , OFDM接收机接收所述第一基带数字信号和第二基带数 字信号。
本发明实施例,通过包含多个输入输出端口的循环阵列波导光栅对接收的 包含多个相邻波带的超通道信号和包含多个频率的本地光梳线信号进行光解 复用 ,在循环阵列波导光栅的每个输出端口输出一个波带的超通道信号和一个 频率的本地光梳线信号,并通过光电探测器、 RFMix和 ADC对循环阵列波导 光栅输出的信号进行转化,最终将转换的数字信号传输到 OFDM接收机,使 得包含多波带的超通道信号和包含多频率的本地光梳线信号只需要一个光解 复用器,减小了 OFDM接收机的体积,简化了接收机的设计和成本。
作为本发明的一个可选实施例,如果所述超通道信号为至少两组,则在所 述 RFMix将所述第一中频信号和第二中频信号变频为第一基带信号和第二基 带信号的步骤之后, ADC 将所述第一基带信号和第二基带信号转换为第一基 带数字信号和第二基带数字信号的步骤之前,所述方法还包括:
低通滤波器对所述第一基带信号和第二基带信号进行低通滤波。
需要指出的是,所述低通滤波器的截止频率为输入所述循环阵列波导光栅 的超通道信号中的一个波带的带宽,波带的带宽可以根据实际使用需要进行选 择,本发明不做限定。
另外,本领域普通技术人员可以理解实现上述各方法实施例中的全部或部 分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计 算机可读存储介质中 ,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明实施例掲露的技术范围内 , 可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 因此,本发明 的保护范围应该以权利要求的保护范围为准
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中 ,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施 例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的 一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变 之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种多带超通道外差光信号接收系统,其特征在于,所述系统包括: 循环阵列波导光栅,用于对输入的包含两条相邻频率子波带的超通道信号 和包含两条相邻频率的本地光梳线的光梳信号进行光解复用 ,超通道信号和光 梳信号分别从两个相邻的输入端口输入,并在第一输出端口输出第一超通道信 号和第一本地光梳线信号,在第二输出端口输出第二超通道信号和第二本地光 梳线信号,所述第一超通道信号为超通道信号所含第一频率子波带信号,所述 第一本地光梳线信号为第一频率的本地光梳线信号,所述第二超通道信号为超 通道信号所含第二频率子波带的超通道信号,所述第二本地光梳线信号为第二 频率的本地光梳线信号;
光电探测器,用于将所述循环阵列波导光栅的第一输出端口输出的超通道 信号和本地光梳线信号拍频为第一中频信号,将所述第二循环阵列波导光栅的 第二输出端口输出的超通道信号和本地光梳线信号拍频为第二中频信号; RFMix,用于将所述光电探测器拍频的第一中频信号和第二中频信号变频 为第一基带信号和第二基带信号;
ADC ,用于将所述 RFMix变频的第一基带信号和第二基带信号转换为第 一基带数字信号和第二基带数字信号;
OFDM接收机,用于接收所述 ADC转换的第一基带数字信号和第二基带 数字信号。
2、 如权利要求 1所述的系统,其特征在于,所述循环阵列波导光栅接收 的超通道信号所含两个相邻子波带的的中心频率的间距、两条相邻本地光梳线 信号的频率间距和循环阵列波导光栅的相邻输出端口的频率间距相同。所述循 环阵列波导光栅的相邻输出端口的频率间距是指相对于同一输入端口而言的 两个相邻的输出端口的透射谱中心的频率差距。
3、 如权利要求 2所述的系统,其特征在于,所述循环阵列波导光栅接收 的每个子波带的超通道信号的中心频率与其对应的本地光梳线信号的频率差 与循环阵列波导光栅的相邻输出端口的频率间距相同,且所述本地光梳线信号 的数量比所述超通道信号的子波带的数量至少多一条。
4、 如权利要求 2所述的系统,其特征在于,所述循环阵列波导光栅接收 的每种波带的超通道信号的中心频率与其对应的本地光梳线信号的频率差与 循环阵列波导光栅的相邻输出端口的频率间距不同,且所述本地光梳线信号与 所述超通道信号的波带的数量相同。
5、 如权利要求 1~4任一项所述的系统,其特征在于,如果所述循环阵列 波导光栅接包括两组超通道信号,则所述 RFMix变频之后, ADC转换之前, 所述系统还包括:
低通滤波器,用于对所述 RFMixl03变频的第一基带信号和第二基带信号 进行低通滤波。
6、 一种多带超通道外差光信号接收方法,其特征在于,所述方法包括: 循环阵列波导光栅对输入的包含两条频率相邻的子波带的超通道信号和 包含两条频率相邻的本地光梳线信号进行光解复用 ,超通道信号和光梳信号分 别从两个相邻的输入端口输入,并在第一输出端口输出第一超通道信号和第一 本地光梳线信号,在第二输出端口输出第二超通道信号和第二本地光梳线信号, 所述第一超通道信号为超通道信号的第一频率波带的信号,所述第一本地光梳 线信号为第一频率的本地光梳线信号,所述第二超通道信号为第二频率子波带 的超通道信号,所述第二本地光梳线信号为第二频率的本地光梳线信号;
光电探测器将所述第一输出端口输出的超通道信号和本地光梳线信号拍 频所得为第一中频信号,将所述第二输出端口输出的超通道信号和本地光梳线 信号拍频所得为第二中频信号;
RFMix 将所述第一中频信号和第二中频信号变频为第一基带信号和第二 基带信号;
ADC将所述第一基带信号和第二基带信号转换为第一基带数字信号和第 二基带数字信号;
OFDM接收机接收所述第一基带数字信号和第二基带数字信号。
7、 如权利要求 6所述的方法,其特征在于,所述循环阵列波导光栅接收 的两条相邻波带的超通道信号的中心频率的间距、两条相邻本地光梳线信号的 频率间距和循环阵列波导光栅的相邻输出端口的频率间距相同。
8、 如权利要求 7所述的方法,其特征在于,所述循环阵列波导光栅接收 的每条子波带的超通道信号的中心频率与其对应的本地光梳线信号的频率差 与循环阵列波导光栅的相邻输出端口的频率间距相同,且所述本地光梳线信号 比所述超通道信号的波带的数量至少多一条。
9、 如权利要求 7所述的方法,其特征在于,所述循环阵列波导光栅接收 的每条子波带的超通道信号的中心频率与其对应的本地光梳线信号的频率差 与循环阵列波导光栅的相邻输出端口的频率间距不同,且所述本地光梳线信号 与所述超通道信号的波带的数量相同。
10、如权利要求 6~9任一项所述的方法,其特征在于,如果所述超通道信 号为至少两组,则在所述 RFMix将所述第一中频信号和第二中频信号变频为 第一基带信号和第二基带信号的步骤之后, ADC 将所述第一基带信号和第二 基带信号转换为第一基带数字信号和第二基带数字信号的步骤之前,所述方法 还包括:
低通滤波器对所述第一基带信号和第二基带信号进行低通滤波。
PCT/CN2013/086148 2013-10-29 2013-10-29 一种多带超通道外差光信号接收系统和光信号接收方法 WO2015061967A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001410.1A CN105122691B (zh) 2013-10-29 2013-10-29 一种多带超通道外差光信号接收系统和光信号接收方法
PCT/CN2013/086148 WO2015061967A1 (zh) 2013-10-29 2013-10-29 一种多带超通道外差光信号接收系统和光信号接收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086148 WO2015061967A1 (zh) 2013-10-29 2013-10-29 一种多带超通道外差光信号接收系统和光信号接收方法

Publications (1)

Publication Number Publication Date
WO2015061967A1 true WO2015061967A1 (zh) 2015-05-07

Family

ID=53003100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086148 WO2015061967A1 (zh) 2013-10-29 2013-10-29 一种多带超通道外差光信号接收系统和光信号接收方法

Country Status (2)

Country Link
CN (1) CN105122691B (zh)
WO (1) WO2015061967A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529188A (zh) * 2003-09-27 2004-09-15 浙江大学 基于二维分布阵列波导光栅的光波分复用器/解复用器
EP2239874A1 (fr) * 2009-04-08 2010-10-13 Alcatel Lucent Dispositif optique de réception de peignes à séparation fréquentielle inter-canaux
CN102882606A (zh) * 2012-10-10 2013-01-16 华中科技大学 基于空间复用的非本振相干接收光纤通信系统
CN103326803A (zh) * 2012-02-29 2013-09-25 中兴通讯(美国)公司 奈奎斯特波分复用系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223340B (zh) * 2011-06-20 2013-12-11 电子科技大学 基于光梳的太比特传输速率相干光正交频分复用系统
CN103001911B (zh) * 2012-11-05 2016-03-30 上海大学 自相干检测正交频分复用无源光网络系统和传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529188A (zh) * 2003-09-27 2004-09-15 浙江大学 基于二维分布阵列波导光栅的光波分复用器/解复用器
EP2239874A1 (fr) * 2009-04-08 2010-10-13 Alcatel Lucent Dispositif optique de réception de peignes à séparation fréquentielle inter-canaux
CN103326803A (zh) * 2012-02-29 2013-09-25 中兴通讯(美国)公司 奈奎斯特波分复用系统
CN102882606A (zh) * 2012-10-10 2013-01-16 华中科技大学 基于空间复用的非本振相干接收光纤通信系统

Also Published As

Publication number Publication date
CN105122691A (zh) 2015-12-02
CN105122691B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN110061781B (zh) 使用光频梳的射频光子光谱仪的方法和设备
ITMO20090135A1 (it) Sistema e metodo per la distribuzione di segnali a radiofrequenza
WO2011107055A2 (zh) 基于微波光子技术的信号接收装置和信号接收方法
KR20160106996A (ko) 이동통신 기지국에서 무선 광섬유로 디지털 유닛과 통신을 위한 원격 무선 유닛
JP4637014B2 (ja) ミリ波無線通信システム、ミリ波無線通信方法
KR20100044651A (ko) Tmr 시스템 및 그의 신호 전송 방법
WO2013097384A1 (zh) 一种超密集波分复用系统及方法
JP2018121107A (ja) 直交周波数分割多重信号分離システム
CN103812562A (zh) 一种延长无源光纤网络传输距离的方法和装置
US10056917B2 (en) Data compression device and method using floating point format
CN105490769A (zh) 偏振无关自相干正交频分复用光纤传输系统以及传输方法
CN103733547B (zh) 光线路终端、光网络系统及信号处理方法
WO2015061967A1 (zh) 一种多带超通道外差光信号接收系统和光信号接收方法
Jin et al. New ROADMs with DSP-enabled dynamic and flexible operations for elastic optical networks
US11811498B2 (en) Methods and apparatus for feedback control of mode MUX and DEMUX
KR20090081268A (ko) 위상 동기 신호를 이용하여 수동소자 상호변조 신호를제거하는 방법 및 장치
US7583650B2 (en) Frequency multiplexed architecture
EP3753113B1 (en) Transmitter and receiver
JP4863307B2 (ja) アンダーサンプリングを用いた受信機、プログラム及び方法
JP2014138197A (ja) 分散アレーアンテナシステム
KR20170051262A (ko) RoF 광전송 시스템
CN113132015B (zh) 一种用于偶数个射频信道的光学射频信道化实现方法
US20170149509A1 (en) An optical device, an optical transceiver and a network node
JP4150232B2 (ja) 光伝送システム
Huang et al. Precise sub-carrier frequency monitor and control method for superchannel transmission in cascaded ROADM network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896445

Country of ref document: EP

Kind code of ref document: A1