WO2015060636A1 - Complex and asymmetric composite thin film and method for preparing same using atomic layer deposition - Google Patents

Complex and asymmetric composite thin film and method for preparing same using atomic layer deposition Download PDF

Info

Publication number
WO2015060636A1
WO2015060636A1 PCT/KR2014/009938 KR2014009938W WO2015060636A1 WO 2015060636 A1 WO2015060636 A1 WO 2015060636A1 KR 2014009938 W KR2014009938 W KR 2014009938W WO 2015060636 A1 WO2015060636 A1 WO 2015060636A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
layer
doped region
dopant
region layer
Prior art date
Application number
PCT/KR2014/009938
Other languages
French (fr)
Korean (ko)
Inventor
정윤장
이영국
최원진
이정오
정택모
김창균
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2015060636A1 publication Critical patent/WO2015060636A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Definitions

  • the present invention relates to a manufacturing method using a composite thin film and asymmetric composite thin film and monoatomic vapor deposition in the thickness direction with a doped region layer and a non-doped region layer.
  • Thin films are uniform two-dimensional structures, typically several micrometers or less thick, and are used throughout the electronics industry, such as displays and memories, due to their variety of functionality.
  • monoatomic deposition is widely used among various vapor phase processes in order to match a thin thickness of several nanometers required for commercially available products.
  • the monoatomic deposition method proceeds by using a surface reaction, so that the reaction is saturated by itself and thus the atomic layer deposition is possible (FIGS. 1 and 3).
  • a ZnO-Al 2 O 3 thin film may be produced by monoatomic deposition (Al-doped ZnO transparent conductive film using atomic layer deposition and Characteristics Evaluation, Hyun-Joon Jung, Master Thesis, Chungnam National University 2010).
  • monoatomic deposition Al-doped ZnO transparent conductive film using atomic layer deposition and Characteristics Evaluation, Hyun-Joon Jung, Master Thesis, Chungnam National University 2010.
  • this is to produce a whole thin film while performing alternately repeated ZnO ALD cycle and Al 2 O 3 ALD cycle, the overall thin film will have a uniform composition.
  • the thin film matrix precursor and the dopant precursor are sequentially or simultaneously pulsed in one cycle and the reactants are pulsed to oxidize to produce one doped atomic layer.
  • the composition of the entire thin film becomes uniform. Therefore, the thin film thus prepared has a uniform composition and thus exhibits a single characteristic.
  • the necessity of a thin film having a complex and interlayer asymmetric property in a thin film is required in various device fields such as a solar cell, a transistor, and a memory.
  • the solar cell industry uses a functional thin film having a multi-bonded laminated structure in order to absorb sunlight having various wavelengths more effectively, because it uses various materials and processes in terms of cost and energy efficiency. You lose money. Therefore, if it is possible to manufacture a thin film having a complex and asymmetrical properties in a single in situ process, this problem can be solved, and furthermore, a solar device having characteristics not previously possible can be made.
  • the inventors In the process of manufacturing a thin film by depositing in atomic layer units, the inventors form a doped region layer on a portion of a thin film by laminating an atomic layer with a dopant material, thereby forming a composite on a component in a thin film thickness direction rather than a uniform composition. And it was confirmed that the production of a thin film having asymmetrical properties.
  • the thin film thus prepared exhibits complex electromagnetic properties, and furthermore, it has been confirmed that the thin film has an influence on the independent electromagnetic properties according to the location of the doped region layer and its dopant concentration.
  • the present invention is based on this.
  • a first aspect of the present invention is a composite thin film having a doped region layer and a non-doped region layer in the thickness direction of the composite and asymmetric, wherein the doped region layer is an atomic layer deposition (ALD) method
  • the present invention provides a composite thin film which is characterized by having at least one dopant atomic layer formed by using a dopant precursor.
  • a second aspect of the present invention is a method for producing a composite thin film according to the present invention on a substrate using atomic layer deposition (ALD), wherein at least one dopant atomic layer is formed using a dopant precursor.
  • ALD atomic layer deposition
  • the forming of the doped region layer comprises: a first layer of laminating the dopant atomic layer by an ALD cycle by pulsing a dopant precursor in a reaction chamber; step; And a second step of depositing a thin film matrix atomic layer by an ALD cycle by pulsing the thin film matrix precursor, wherein the first and second steps may be performed in a reverse order.
  • a third aspect of the present invention provides an electronic device having the composite thin film of the first aspect.
  • ALD cyclo thin film matrix atomic layer (ZnO layer) and dopant atomic layer (Al 2 O 3 layer) are repeatedly stacked at regular intervals.
  • ZnO layer cyclo thin film matrix atomic layer
  • Al 2 O 3 layer dopant atomic layer
  • the thin film matrix precursor and the dopant precursor are sequentially or simultaneously pulsed in one cycle and the reactants are pulsed to oxidize to prepare one doped atomic layer,
  • the thin film manufactured by the above methods is uniform in overall composition, and there is no asymmetrical characteristic between layer regions in the thin film.
  • a doped region layer is formed on a portion of the thin film by laminating a dopant atomic layer with a dopant material during the thin film deposition process using the monoatomic deposition method, and thus, there is a feature that there are complex and asymmetrical characteristics between the layer regions in the thin film. Therefore, the doped region layer and the undoped region layer in the thin film may have different constituent compositions depending on the presence or absence of the dopant atomic layer, and thus the band structure and the crystal structure thereof may be different. Controllable and at the same time complex properties can be exhibited in one thin film.
  • Partial doped (doped region layer) composite thin film produced by the method according to the present invention can be used throughout the display, memory, semiconductor area is improved in functionality compared to the existing thin films, a separate additional process or a plurality of Since there is no need to manufacture the membrane separately, there is an advantage that there is no difference from the existing in terms of production cost.
  • the composite thin film according to the present invention includes a doped region layer and an undoped region layer, and has a complex and asymmetrical feature on the components in the thickness direction. That is, the doped region layer is a lamination structure formed by monoatomic deposition, and includes at least one dopant atomic layer formed using a dopant precursor, while the doped region layer does not include a dopant atomic layer, Does not include In the composite thin film of the present invention, since the doped region layer and the undoped region layer are each one or more, and are sequentially stacked, the composite thin film of the present invention exhibits asymmetric and complex composition in the thickness direction of the thin film cross section.
  • the composite thin film according to the present invention may include one or more doped region layers and one or more non-doped region layers, which may be sequentially stacked alternately.
  • the doped region layer may further include at least one thin film matrix atomic layer formed using a thin film matrix precursor as well as a dopant atomic layer.
  • the dopant atomic layer and the thin film matrix atomic layer are each formed by performing only an ALD cycle by pulsed only a dopant precursor or an ALD cycle by pulsed only a thin film matrix precursor.
  • only a dopant material or a thin film is used. It can consist of a single substance alone.
  • the dopant atomic layer in the doped region layer of the composite thin film according to the present invention forms an independent atomic layer with little diffusion into the thin film. May form regions separated by component phase (Experimental Example 1)
  • the dopant atomic layer and the thin film matrix atomic layer may be stacked according to a predetermined ALD cycle circulation rule, or may be stacked without a predetermined rule.
  • a predetermined ALD cycle circulation rule For example, when an atomic layer serving as a matrix of a thin film is A and a dopant atomic layer is B, they are A-B-A-B-A-B... It can be stacked in the form of, but if they are stacked in an irregular ALD cycle A-A-B-A-B-B-A-A... It may be stacked in the form of.
  • two or more dopant atomic layers formed using dopant precursors in the doped region layer may be stacked in succession (e.g., B-B ).
  • the dopant atomic layer in the doped region layer is N
  • the thin film matrix atomic layer is M
  • the N and M is an integer of 1 or more
  • N: M is 1: 1 to 1 May be 40.
  • the N and M may be controlled by the number of times the ALD cycle is performed by pulsed dopant precursor and the number of times the ALD cycle is performed by pulse of the thin film matrix precursor, thereby controlling the doping concentration of the thin film. If the N: M exceeds 1: 1 (for example 1: 0.5), the matrix material and the dopant material are inverted. Furthermore, the concentration of the dopant material is excessively increased and diffusion into the thin film is prevented. There may be problems that can occur or disrupt the thin film matrix crystal structure.
  • the concentration of the dopant material may be excessively low, so there may be a problem in that there is little difference between the characteristics of the single thin film and the thin film.
  • the above range is applicable only to the material system of the present invention, and is not particularly limited to the above range in other material groups having different characteristics.
  • the doped region layer does not mean a region consisting only of the dopant atomic layer, but means a region from the point where the dopant atomic layer appears to the point where the dopant atomic layer is present at the bottom of the layer. do.
  • the atomic layer deposition in a thin film is.
  • the "B-A-A-A-B-A-A-A-B" region may be referred to as a doping region layer according to the present invention.
  • the meaning of the doped region layer may be expanded to include not only the "B-A-A-A-A-B-A-A-A-B" region but also the front and rear atomic layers thereof according to the setting of the supercycle for forming the doped region layer.
  • the undoped region layer is a layered structure consisting of only a thin film matrix atomic layer formed by monoatomic deposition without a dopant atomic layer, and located below and / or above the doped region layer.
  • A-A-A-A-A it means the same area as.
  • the dopant atomic layer may be formed by laminating the dopant atomic layer by an ALD cycle by pulsing a dopant precursor in a reaction chamber.
  • the thin film matrix atomic layer may be formed by stacking a thin film matrix atomic layer by an ALD cycle by pulsing a thin film matrix precursor.
  • the dopant precursor and the thin film matrix precursor are respectively different metal source compounds, and the metal is Ti, Hf, Zr, Si, Al, Ta, Sr, Ba, Sc, Sn, In, Ga, Y, La, It may be any one selected from the group consisting of Eu and Dy.
  • the metal source compound that is the dopant precursor and the thin film matrix precursor is not particularly limited.
  • the dopant material has a high diffusion coefficient in relation to the thin film matrix formed of the thin film matrix precursor, there may be a problem that the dopant material of the dopant atomic layer diffuses into the entire thin film. Therefore, a precursor material (metal source) in which diffusion between the dopant material and the thin film matrix material does not occur significantly even at a temperature of 100 to 200 ° C., which is a temperature of the monoatomic deposition process, and a heat treatment condition at a temperature of 300 ° C. or lower which is usually performed on the thin film. Compound). This may be appropriately selected by those skilled in the art in view of the diffusion coefficient and interaction of dopant materials and thin film matrix materials commonly known in the art.
  • the metal source compound which is a dopant precursor
  • the metal source compound which is a thin film matrix precursor
  • the metal source compound which is a thin film matrix precursor
  • the metal source compound is preferably selected as a source material having a similar surface reaction temperature on the same substrate. May be advantageous.
  • those skilled in the art can appropriately select a metal source compound depending on the use of the thin film and the desired properties.
  • a non-limiting example of the dopant precursor is trimethyl aluminum (TMA) as an Al source
  • a non-limiting example of a thin film matrix precursor is a Di as a Zn source Dietyl zinc (DEZ).
  • TMA trimethyl aluminum
  • DEZ Dietyl zinc
  • the specific configuration of the composite thin film according to the present invention will be described as follows. Specifically, the structure of the Al-doped ZnO composite thin film according to an embodiment of the present invention, in which the dopant atomic layer is Al 2 O 3 and the thin film matrix atomic layer is ZnO, is illustrated in FIG. 1.
  • the ZnO thin film according to the present invention may be a doped region layer in which a partial region layer of the cross section of the layer is doped with Al.
  • the remaining regions are non-doped region layers and are composed of only ZnO atomic layers. That is, the illustrated composite thin film includes one doped region layer and one undoped region layer.
  • the doped region layer is enlarged, it can be seen that the ZnO (thin film) atomic layer and the Al 2 O 3 (dopant) atomic layer are sequentially stacked.
  • the thicknesses of the ZnO atomic layer and the Al 2 O 3 atomic layer may vary depending on how many times each monoatomic deposition cycle is performed in succession, and the Al dopant composition of the doped region layer may be adjusted by adjusting the thickness thereof.
  • the Al 2 O 3 atomic layer is composed of Al 2 O 3 only, and accordingly the Al doping according to the present invention can be understood as the concept of the insertion of the Al atomic layer.
  • the doped region layer and the undoped region layer have a distinctly different composition due to the presence or absence of the Al dopant atomic layer, and as described above, the composition shows asymmetric and complex composition in the thickness direction of the thin film cross section. .
  • the thin film is diffused into the entire thin film so that the composition becomes uniform throughout.
  • the dopant material is not diffused but is an independent dopant atom. With a layer, it is distinguished in the thin film thickness direction and exhibits discontinuous component composition.
  • the characteristics of the thin film may vary depending on the position of the doped region layer in the thin film and the dopant concentration thereof.
  • the position of the doped region layer in the thin film may be determined in consideration of the use and functionality of the specific thin film. That is, as described above, the composite thin film of the present invention has an asymmetric characteristic in composition between the doped region layer and the undoped region layer, and in particular, the doped region layer is provided with a dopant atomic layer unlike the undoped region layer. Exhibit distinct optical and electromagnetic properties. Therefore, in consideration of the characteristics of the doped region layer, the position of the doped region layer can be determined according to the characteristics of the electronic device to be used.
  • the electron injection barrier is increased only in the thin film region layer to be bonded to the electrode, that is, the band gap is increased, and the remaining region layer has a high dielectric constant. It is important to do. Therefore, in this case, it is advantageous to use the upper and lower end region layers of the composite thin film as the doping region layer, which is obtained by stacking the dopant atomic layer using the dopant precursor at the beginning and the end of the monoatomic deposition process in manufacturing the composite thin film according to the present invention.
  • the doped region layer may be formed on both top and bottom regions of the thin film. Furthermore, since the intermediate region layer of the thin film is formed of an undoped region layer, the region may have a high dielectric constant.
  • the composite thin film is used as the operating layer of the thin film transistor according to an embodiment of the present invention, it was confirmed that the effect on the independent transistor characteristics different depending on the position of the doping region layer, in particular (Experimental Examples 3 to 6) .
  • the doped region layer is located under the thin film, that is, at the interface of the semiconductor / insulating layer, it may have a great influence on the on characteristics (eg, mobility) of the transistor.
  • the doped region layer is located on the top of the thin film, that is, the surface of the composite thin film, it may have a great influence on the off characteristics (eg, threshold voltage) of the transistor.
  • the doped region layer may be formed in the lower region layer of the thin film by forming a doped region layer by laminating a dopant atomic layer using a dopant precursor at the beginning of the monoatomic deposition process in manufacturing the composite thin film according to the present invention.
  • the non-doped region layer stacked on the doped region layer may have a high dielectric constant to serve as an insulating film.
  • a doped region layer may be formed on the upper portion (thin film surface) of the composite thin film to easily control the threshold voltage, which may be particularly suitable for a display panel.
  • the composite thin film according to the present invention first, only the thin film matrix precursor is pulsed to perform a monoatomic deposition process, and then a dopant precursor is used when the thin film is deposited and reaches the upper region of the thin film. As a result, the doped region layer may be formed on the upper region layer of the thin film.
  • the characteristics of the thin film may vary according to which region layer of the composite thin film is determined as the doped region layer, and the characteristics of the entire thin film may also vary according to the ratio of the physical thickness of the doped region layer to the total composite thin film. This can be determined by those skilled in the art as appropriately selected for the application.
  • the thickness of the doped region layer may be 2 nm to 4 nm, but is not particularly limited as described above, and may be appropriately selected by those skilled in the art.
  • the composite thin film according to the present invention not only the position of the doped region layer but also the dopant concentration thereof may be an important factor in determining the characteristics of the thin film.
  • the composite thin film when used as an operating layer of the thin film transistor according to an embodiment of the present invention, when the dopant concentration exceeds a certain level when the doped region layer is located below the thin film, the mobility may be reduced. (Experimental example 6).
  • the doped region layer is located on top of the thin film, it can be seen that as the dopant concentration increases, the threshold voltage is changed to a greater width (Experimental Example 5).
  • the ratio of the dopant atomic layer and the thin film matrix atomic layer is controlled by adjusting the ratio of the dopant cycle and the thin film cycle.
  • the dopant concentration (atomic ratio) can be adjusted. More details will be described later.
  • a second aspect of the present invention is a method for producing a composite thin film according to the present invention on a substrate using atomic layer deposition (ALD), wherein at least one dopant atomic layer is formed using a dopant precursor.
  • ALD atomic layer deposition
  • the forming of the doped region layer comprises: a first layer of laminating the dopant atomic layer by an ALD cycle by pulsing a dopant precursor in a reaction chamber; step; And a second step of depositing a thin film matrix atomic layer by an ALD cycle by pulsing the thin film matrix precursor, wherein the first and second steps may be performed in a reverse order.
  • the monoatomic deposition according to the present invention may be performed in a reaction space, that is, in a reaction chamber capable of controlling conditions in a typical monoatomic deposition process.
  • the reaction chamber may be, for example, a reaction chamber of a single-wafer ALD reactor or a reaction chamber of a batch ALD reactor in which deposition on a plurality of substrates is performed simultaneously.
  • the composite thin film according to the present invention can be prepared by forming a doped region layer and an undoped region layer in situ in the same reaction chamber.
  • the substrate on which the composite thin film according to the present invention is formed is typically a workpiece on which thin film deposition is required, and non-limiting examples thereof include silicon, silica, coated silicon, Metal, such as copper or aluminum, dielectric materials, nitrides, or a combination thereof.
  • the step of forming the doped region layer including one or more dopant atomic layers may be performed by depositing the dopant atomic layer by an ALD cycle by specifically pulsing the dopant precursor in the reaction chamber.
  • a first step and a second step of laminating the thin film matrix atomic layer by an ALD cycle by pulsing the thin film matrix precursor wherein the first step and the second step may be performed sequentially or may be performed in the opposite order, and are particularly limited. It is not.
  • a layer B of a dopant atomic layer may be formed through a first step
  • a layer A of a thin film matrix atomic layer may be formed through a second step. If the first step and the second step are performed sequentially, the A layer is stacked next to the B layer (B-A), and if the steps proceed in the opposite order, the B layer is stacked after the A layer (A-B).
  • the first and second steps may be performed repeatedly. Further, the first and second steps may be regularly stacked by being repeatedly performed according to a predetermined circulation rule, or may be repeatedly stacked without being carried out without a specific rule to form a doped region layer.
  • laminating regularly as described above, for example, A-B-A-B-A-B.
  • laminating irregularly as described above, for example, A-A-B-A-B-B-A-A ... It means to laminate in the same form as.
  • the ALD cycle of the first step is performed n times
  • the ALD cycle of the second step is performed m times
  • n: m may be 1: 1 to 1:40.
  • the method of depositing the dopant atomic layer or the thin film matrix atomic layer may be performed by a conventional monoatomic deposition method in the art.
  • This is a process of alternately supplying a metal source compound, which is a dopant precursor or a thin film matrix precursor, and an oxygen source compound, which is a reactant, to form a metal oxide film (oxidized metal atomic layer), while maintaining a constant temperature of the substrate in the reaction chamber.
  • the precursor metal source compound and the reactant oxygen source compound are alternately supplied to the substrate to adsorb and react, and the reactor is evacuated between these steps, or an inert gas such as argon is sent to the reactor, thereby leaving unreacted residues and by-products.
  • the method of forming an atomic layer and stacking one by one through the process of removing it may be more specifically represented by the following steps a to d. 3 shows a schematic diagram of a monoatomic deposition cycle according to the present invention.
  • Pulse a dopant precursor or thin film matrix precursor in the reaction chamber B) removing excess dopant precursor or thin film matrix precursor from the reaction chamber; C) pulsed reactant in the reaction chamber; And d) removing excess reactants and reaction products from the reaction chamber.
  • Steps a to d are referred to as one cycle, and one atomic layer may be formed through the cycle.
  • the reactant of step c may be any one or more selected from the group consisting of H 2 O, O 2 , O 3 , O radicals, H 2 O 2 and D 2 O, but is not particularly limited.
  • a third aspect of the present invention provides an electronic device having the composite thin film of the first aspect.
  • the electronic device may be specifically a transistor or a DRAM, but is not particularly limited.
  • the composite thin film according to the present invention has a doped region layer including a dopant atomic layer on a part of the thin film, thereby having a complex and asymmetric characteristic in the component direction in the thickness direction of the thin film, which is between the doped region layer and the non-doped region layer.
  • the electromagnetic characteristics of the thin film can be easily adjusted according to the purpose by adjusting the position and concentration of the doped region layer.
  • the composite thin film according to the present invention is manufactured by the monoatomic deposition method, the optical and electromagnetic properties of the thin film can be controlled through a simple process, and there is no need to separately prepare additional processes or a plurality of films separately. Is also advantageous.
  • FIG. 1 is a schematic diagram showing a structure of a ZnO composite thin film doped with Al locally under a thin film according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a reactor for producing a composite thin film according to the present invention.
  • A represents a thin film matrix precursor and B represents a dopant precursor.
  • FIG. 4 is an electron spectroscopy chemical analysis (XPS) graph according to the concentration of doped Al, performed in one experimental example of the present invention.
  • FIG. 4A shows when the atomic percentage (concentration) of Al is about 7%
  • FIG. 4B when about 20%
  • FIG. 4C when about 50%.
  • FIG. 5 is a graph showing thin film cross-sectional TEM images and EDX line distribution results of Al-doped ZnO composite thin films and ZnO single thin films according to the present invention, performed in an experimental example of the present invention.
  • FIG. 5A shows a ZnO single thin film
  • FIG. 5B shows a ZnO composite thin film doped with Al locally.
  • FIG. 6 is a graph showing transistor operating characteristics according to the Al doped region layer position in the composite thin film, which was performed in an experimental example of the present invention.
  • 6A and 6B are graphs illustrating I-V characteristics of a drain current-gate voltage
  • FIG. 6C is a graph of saturation mobility-gate voltage.
  • FIG. 7 is a graph showing the XPS depth analysis results for the thin film depth of the composite thin film prepared in the embodiment of the present invention.
  • 7A to 7C are graphs of ZnO composite thin films having a doped region layer doped with Al on top of a thin film prepared by the method according to Examples 1 to 3, and
  • FIGS. 7D to 7F are examples 4 to 6 A graph of a ZnO composite thin film having a doped region layer doped with Al under a thin film prepared by the method described above.
  • FIG. 8 is a graph showing transistor operating characteristics of a ZnO composite thin film prepared in Examples 1 to 3 of the present invention having a doped region layer doped with Al on the thin film.
  • 8A and 8B are IV characteristic graphs for the Drain Current-Gate Voltage
  • FIG. 8C is a graph for Saturation Mobility-Gate Voltage
  • FIG. 8D is a threshold voltage graph for each of 6 samples
  • FIG. 8E is 6, respectively. Saturation mobility graph for dog samples.
  • FIG. 9 is a graph showing transistor operating characteristics of a ZnO composite thin film prepared in Examples 4 to 6 of the present invention having a doped region layer doped with Al under a thin film.
  • 9A and 9B are IV characteristic graphs for the Drain Current-Gate Voltage
  • FIG. 9C is a graph for Saturation Mobility-Gate Voltage
  • FIG. 9D is a threshold voltage graph for each of 6 samples
  • FIG. 9E is 6, respectively. Saturation mobility graph for dog samples.
  • the reaction apparatus includes a reaction chamber 1 in which monoatomic deposition is performed, a heater 2 for heating the reaction chamber, a carrier gas inlet part 3 connected to the reaction chamber, and a gas discharged from the reaction chamber.
  • a gas outlet 4 a thin film matrix precursor supply canister 5 connected to the reaction chamber, a dopant precursor supply canister 6 connected to the reaction chamber, and a reactant (oxygen source material) supply canister connected to the reaction chamber.
  • thin film matrix precursor manual valve (8), dopant precursor manual valve (9), reactant manual valve (10), thin film matrix precursor pneumatic valve (11), dopant precursor pneumatic valve (12) and reactant pneumatic valve It consists of (13).
  • the manual valves of the thin film matrix precursor, the dopant precursor, and the reactants are left open, and the pneumatic valve corresponding to the deposition step is supplied to supply an appropriate source material. It is possible to manufacture a composite thin film using magnetic vapor deposition.
  • the dopant precursor is trimethyl aluminum (TMA)
  • the thin film matrix precursor is diethyl zinc (DEZ)
  • the reactant is water (H 2 O)
  • the carrier gas Nitrogen (N 2 ) was selected.
  • the canisters 5-7 were held during the deposition process at 15 ° C., 15 ° C., and 10 ° C., respectively, in order.
  • the cycle for forming the ZnO thin film matrix atomic layer was composed of DEZ pulses ⁇ purge ⁇ H 2 O pulses ⁇ purge step, and the cycles were controlled by controlling the time from 0.5s ⁇ 10s ⁇ 0.1s ⁇ 10s.
  • the cycle for forming the Al 2 O 3 dopant atomic layer consists of a TMA pulse ⁇ purge ⁇ H 2 O pulse ⁇ purge step, the execution time of the detailed step was performed in the same manner as the ZnO thin film matrix atomic layer cycle.
  • the temperature was maintained at 150 ° C. during the deposition process through the cycle.
  • Nitrogen the carrier gas for the purge, was adjusted to 500 sccm during the deposition process.
  • Thin film samples prepared through monoatomic deposition were heat treated at a temperature of 200 ° C. under vacuum for 1 hour.
  • the composite thin film according to the present invention was prepared as follows. Specifically, trimethyl aluminum (TMA) is selected as the dopant precursor and diethyl zinc (DEZ) is selected as the thin film matrix precursor, and ZnO doped with Al having a doped region layer having an Al 2 O 3 dopant atomic layer.
  • TMA trimethyl aluminum
  • DEZ diethyl zinc
  • ZnO doped with Al having a doped region layer having an Al 2 O 3 dopant atomic layer ZnO doped with Al having a doped region layer having an Al 2 O 3 dopant atomic layer.
  • a composite thin film was prepared. In this case, the composite thin film is a transistor operation layer, and a doped region layer is formed on the surface of the composite thin film (upper thin film), which is a bulk region.
  • the composite thin film according to the present embodiment targets a ZnO-based transistor thin film operating layer
  • a thin film having a total thickness of about 20 nm is suitable.
  • the doped region layer having the dopant atomic layer is electron-aggregated. The thickness within 4 nm in which the layer is formed is appropriate, and the remaining about 16 nm is appropriately formed as an undoped region layer.
  • a silicon substrate on which a silicon oxide film was formed 100 nm was placed in the chamber.
  • the lower portion of the thin film should be made of only the ZnO thin film matrix atomic layer, which is the undoped region layer
  • only the ethyl dopant precursor diethyl zinc (DEZ) is pulsed to deposit the ZnO thin film matrix atomic layer to form the undoped region layer. Formed. At this time, the number of cycles was adjusted to about 80 times so that the thickness is 16nm.
  • a doped region layer having a dopant atomic layer was formed to a thickness of about 5 nm to prepare a composite thin film having a total thickness of 20 nm. Specifically, the doped region layer was determined to be formed within 20 cycles for the 4nm thickness.
  • deposition was performed. By repeating the above supercycle, when the total cycle is about 20 cycles was stopped to form a thickness of the doped region layer 4nm.
  • Example 1 a ZnO composite thin film in which a portion of the thin film, which is a portion of the thin film, is doped with Al was prepared.
  • the atomic ratio (concentration) of Al in the doped region layer of the thin film according to Example 1 was about 7%, Example 2 was about 20%, and Example 3 was about 50%.
  • the composite thin film is a transistor operating layer, and a doped region layer is formed at the semiconductor / insulating film interface (lower thin film). Except that the doped region layer was formed on the bottom of the thin film, the same procedure as in Examples 1 to 3. Specifically, it is as follows.
  • a doped region layer was formed on a silicon substrate within 20 cycles (about 4 nm).
  • the dopant precursor (TMA) is pulsed and the dopant atomic layer is laminated once
  • a ZnO single thin film was prepared by laminating a thin film matrix atomic layer using monoatomic deposition. Unlike the above Examples 1 to 6, a ZnO single thin film having a total thickness of 20 nm is repeated by repeating the cycle about 100 times without using a dopant precursor (TMA) and only diethyl zinc (DEZ), which is a thin film matrix precursor.
  • TMA dopant precursor
  • DEZ diethyl zinc
  • the Al 2 O 3 atomic layer is present only in a partial region of the composite thin film (Al doped). Furthermore, even though the concentration of the doped Al is increased (for example, FIG. 4C), the Al peak exists only in a specific region, so that the diffusion of Al, which is a dopant material, hardly occurs even when the thin film is heat-treated at a high temperature. Can be confirmed. As a result, in the composite thin film according to the present invention, it was confirmed that the dopant was present only in the doped region layer without being diffused into the entire thin film, and Al could be locally doped only in a portion of the thin film.
  • the thin film matrix is subjected to 45 cycles of laminating the thin film matrix precursor layer DEZ on the silicon substrate, followed by one cycle of laminating the dopant atomic layer thereon.
  • the Al dopant concentration is the same, but the transistor operating characteristics are examined by changing the formation position of the doped region layer in the thin film thickness direction. saw.
  • the doping region layer forming cycle is performed on all the composite thin films by pulsing the dopant precursor layer by laminating the dopant precursor layer (TMA), thereby pulsing the thin film matrix precursor layer (DEZ).
  • the ZnO cycle which is the non-doped region layer, is performed ten times, the doped region layer cycle is performed, and the ZnO cycle is performed 90 times (ZnO 10 cycles ⁇ doping 12 cycles ⁇ ZnO). 90 cycles)
  • the first composite thin film was prepared (10).
  • the second composite thin film was prepared by performing ZnO 25 cycles ⁇ 12 cycles of doping ⁇ ZnO 75 cycles (25), and the third composite thin film was prepared by performing ZnO 50 cycles ⁇ 12 doping cycles ⁇ ZnO 50 cycles (50).
  • the thin film was prepared by performing ZnO 75 cycles ⁇ 12 cycles of doping ⁇ ZnO 25 cycles (75), and the fifth composite thin film was prepared by performing ZnO 90 cycles ⁇ 12 cycles of doping ⁇ 10 cycles of ZnO (90). That is, the doped region layer was manufactured by variously distributing a position from the lower side of the thin film close to the semiconductor / insulating film interface to the upper side of the thin film which is the thin film surface.
  • the composite thin films were compared with the single thin film ref of Comparative Example 1 and the operating characteristics of the thin film transistor including the thin film transistor as the operating layer were examined.
  • 6A to 6C show conduction characteristics of a thin film transistor using a silicon substrate as a gate electrode.
  • the I-V characteristic curve has a negative parallel shift (FIGS. 6A and 6B).
  • the independent position of the doped region layer affects the independent characteristics of the thin film. Specifically, the on characteristic is turned off by the doped region layer located under the thin film. ) Is influenced by the doped region layer located on top of the thin film. As a result, it was confirmed that a thin film having complex characteristics could be provided by adjusting the position and number of the doped region layers according to the characteristics of the desired thin film transistor.
  • XPS analysis was performed on the depth of the thin film according to the position of the doped region layer and the concentration of the dopant (Al).
  • the doped region layer is on top of the thin film, in the upper region, the Al thickness increases and the Zn atomic ratio decreases with increasing Al doping concentration, that is, from FIG. 7A to FIG. 7C. It can be seen that there is a doped region layer which is divided in phase in the component direction.
  • FIGS. 7D to 7F in which the doped region layer is under the thin film, as the Al doping concentration increases in the thin film lower region (Si semiconductor interface) (from FIG. 7D to FIG. 7F), the Al atomic ratio increases and Zn atoms It can be seen that there is a doped region layer that is componently divided in the thin film thickness direction with a decreasing ratio.
  • the composite thin film according to the present invention can adjust the position and concentration of the doped region layer clearly defined in the thickness direction in the thin film as desired.
  • the transistor operating characteristics of the ZnO composite thin film having the doped region layer doped with Al on the surface of the composite thin film (upper thin film) prepared by the method according to Examples 1 to 3 were examined and the results are shown in FIGS. 8A to 8E. Indicated. Furthermore, the ZnO single thin film manufactured by the method according to Comparative Example 1 was also examined for comparison (Ref).
  • the composite thin films of Examples 1 to 3 having a doped region layer on the thin film were found to have a negative parallel shift in IV characteristic curve compared to Comparative Example 1.
  • 8A and 8B in particular, as the concentration of the Al dopant increases, a larger equilibrium shift may occur (Example 3). This is because when the doped region layer is formed on the thin film, the off characteristic of the thin film transistor is affected.
  • the doped region layer is provided on the upper portion of the thin film, it is possible to control the threshold voltage, which is an off characteristic, thereby making a thin film transistor capable of precise control in a field such as a display panel. It was confirmed that it can be provided.
  • the transistor operating characteristics of the ZnO composite thin film having the doped region layer doped with Al in the lower portion of the thin film (semiconductor / insulating film interface) manufactured by the method according to Examples 4 to 6 were examined and the results are illustrated in FIGS. 9A to 9E. Shown in Furthermore, the ZnO single thin film manufactured by the method according to Comparative Example 1 was also examined for comparison (Ref).
  • the doped region layer is provided under the thin film (position) and the dopant concentration is adjusted to an appropriate low value (concentration, within about 7%), It was confirmed that the thin film mobility can be improved, thereby providing an excellent thin film for the transistor operating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a composite thin film, which is provided with a doping region layer and non-doping region layer by means of atomic layer deposition (ALD) and thus is complex and asymmetric in terms of components in the thickness direction, and to a method for preparing same. The composite thin film, according to the present invention, has, on one area of the thin film, a doping region layer comprising a dopant atomic layer, thereby having complex and asymmetric properties in terms of components in the thickness direction of the thin film, and allows the doping region layer and a non-doping region layer to have different band structures, thereby having a different electromagnetic property for each layer region of the thin film. Thus, the composite thin film has improved functionality and may be used in all fields of displays, memories and semiconductors.

Description

단원자 증착법을 이용한 복합 및 비대칭적인 복합박막 및 이의 제조방법Composite and Asymmetric Composite Thin Films Using Monoatomic Vapor Deposition and Its Manufacturing Method
본 발명은 도핑영역층과 비도핑영역층을 구비하여 두께 방향으로 성분상에 있어서 복합 및 비대칭적인 복합박막 및 단원자 증착법을 이용한 이의 제조방법에 관한 것이다.The present invention relates to a manufacturing method using a composite thin film and asymmetric composite thin film and monoatomic vapor deposition in the thickness direction with a doped region layer and a non-doped region layer.
박막은 통상적으로 두께가 수 마이크로미터 이하의 균일한 2차원 구조물로, 다양한 기능성으로 인해서 디스플레이와 메모리 등 전자 산업에 전반에 사용되고 있다. 특히, 최근에는 상용화되는 제품에 요구되는 수 나노미터 단위의 얇은 두께를 맞추기 위해서 다양한 기상 공정 중에서도 단원자 증착법이 많이 사용되고 있다.Thin films are uniform two-dimensional structures, typically several micrometers or less thick, and are used throughout the electronics industry, such as displays and memories, due to their variety of functionality. In particular, in recent years, monoatomic deposition is widely used among various vapor phase processes in order to match a thin thickness of several nanometers required for commercially available products.
단원자 증착법은 화학기상법과 다르게 표면반응을 이용하여 진행되기 때문에 자체적으로 반응이 포화되어 원자층 단위의 증착이 가능하다(도 1 및 도 3). 이는 이 방법의 가장 큰 장점 중 하나인 조성제어 역시 원자층 단위로 가능하다는 특징이 있다. 따라서, 이러한 단원자 증착법은 정밀한 조성제어가 가능하고 높은 밀도와 품질을 가지는 박막들을 대면적에 걸쳐서 만들 수 있기 때문에 주로 메모리나 트랜지스터에 사용되는 절연막을 최적화시키는데 사용되었다. 이 최적화 과정에서는 보통 단일화된 최적 조성을 찾고, 이에 맞추어 박막 전체를 그 조성이 되도록 제어하면서 절연막을 제조한다. 종래 기술로는, 예를 들어, ZnO-Al2O3의 박막(Al 도핑된 ZnO 박막)을 단원자 증착법을 사용하여 제조하는 것이 있다(원자층 증착법을 이용한 Al-doped ZnO 투명전도막의 제조 및 특성평가, 정현준, 석사 학위논문, 충남대학교 2010). 그러나 이는 ZnO ALD사이클과 Al2O3 ALD사이클을 교대로 반복하여 수행하면서 전체 박막을 제조하는 것으로, 박막 전체적으로는 균일한 조성을 갖게 된다. 또는, 박막 매트릭스층과 도판트층을 별개의 사이클로 적층하는 것이 아니라, 이를 하나의 사이클에서 박막 매트릭스 전구체 및 도판트 전구체를 순차적 또는 동시에 펄스하고 반응물을 펄스하여 산화시켜 하나의 도핑된 원자층을 제조하고, 이를 계속 적층하는 방법이 있다(대한민국특허 공개번호 제10-2013-0049752호). 이 역시 박막 전체의 조성은 균일한 것이 된다. 따라서 이와 같이 준비된 박막은 균일 조성을 가지기 때문에 단일 특성을 나타내게 된다.Unlike the chemical vapor deposition method, the monoatomic deposition method proceeds by using a surface reaction, so that the reaction is saturated by itself and thus the atomic layer deposition is possible (FIGS. 1 and 3). This is one of the biggest advantages of this method, composition control is also possible in atomic layer units. Therefore, this monoatomic deposition method is mainly used to optimize the insulating film used in the memory or transistor because it is possible to make a precise composition control, and to make a thin film having a high density and quality over a large area. In this optimization process, an insulating film is usually manufactured by finding an unified optimal composition and controlling the entire thin film accordingly. In the prior art, for example, a ZnO-Al 2 O 3 thin film (Al-doped ZnO thin film) may be produced by monoatomic deposition (Al-doped ZnO transparent conductive film using atomic layer deposition and Characteristics Evaluation, Hyun-Joon Jung, Master Thesis, Chungnam National University 2010). However, this is to produce a whole thin film while performing alternately repeated ZnO ALD cycle and Al 2 O 3 ALD cycle, the overall thin film will have a uniform composition. Alternatively, instead of stacking the thin film matrix layer and the dopant layer in separate cycles, the thin film matrix precursor and the dopant precursor are sequentially or simultaneously pulsed in one cycle and the reactants are pulsed to oxidize to produce one doped atomic layer. There is a method of stacking them continuously (Korean Patent Publication No. 10-2013-0049752). Again, the composition of the entire thin film becomes uniform. Therefore, the thin film thus prepared has a uniform composition and thus exhibits a single characteristic.
그러나 최근에는 기술이 발전하면서 단일 특성이 아닌 복합적이며 박막 내 층간 비대칭 특성을 갖는 박막의 필요성이 태양전지, 트랜지스터, 메모리 등 다양한 소자 분야에서 요구되고 있다. 대표적인 예로, 태양전지 산업에서는 다양한 파장을 갖는 태양광을 보다 효과적으로 흡수하기 위해서 다중 접합된 적층 구조를 가지는 기능성 박막을 사용하는데, 이는 여러 가지 물질과 공정을 사용하기 때문에 비용적인 측면과 에너지 효율적인 측면에서 손해를 보게 된다. 따라서 인 시츄(in situ) 단일 공정으로 복합, 비대칭적 특성을 갖는 박막의 제조가 가능하다면 이러한 문제를 해결할 수 있을 뿐 아니라, 나아가서는 기존에는 가능하지 않았던 특성을 갖는 태양광 소자를 만들 수 있다.However, in recent years, as the technology develops, the necessity of a thin film having a complex and interlayer asymmetric property in a thin film is required in various device fields such as a solar cell, a transistor, and a memory. As a representative example, the solar cell industry uses a functional thin film having a multi-bonded laminated structure in order to absorb sunlight having various wavelengths more effectively, because it uses various materials and processes in terms of cost and energy efficiency. You lose money. Therefore, if it is possible to manufacture a thin film having a complex and asymmetrical properties in a single in situ process, this problem can be solved, and furthermore, a solar device having characteristics not previously possible can be made.
그러나 이에 대해서 진행된 연구는 매우 제한적이다.However, research on this is very limited.
본 발명자들은 원자층 단위로 증착해가면서 박막을 제조하는 과정 중, 도판트 물질로 원자층을 적층하여 박막 일부에 도핑영역층을 형성함으로써, 균일 조성이 아닌, 박막 두께 방향으로 성분상에 있어서 복합 및 비대칭적 특성을 갖는 박막의 제조가 가능함을 확인하였다. 이와 같이 제조된 박막은 복합적인 전자기적 특성을 나타내며, 나아가 도핑영역층의 위치 및 이의 도판트 농도에 따라 서로 다른 독립적인 전자기적 특성에 영향을 미침을 확인하였다. 본 발명은 이에 기초한 것이다.In the process of manufacturing a thin film by depositing in atomic layer units, the inventors form a doped region layer on a portion of a thin film by laminating an atomic layer with a dopant material, thereby forming a composite on a component in a thin film thickness direction rather than a uniform composition. And it was confirmed that the production of a thin film having asymmetrical properties. The thin film thus prepared exhibits complex electromagnetic properties, and furthermore, it has been confirmed that the thin film has an influence on the independent electromagnetic properties according to the location of the doped region layer and its dopant concentration. The present invention is based on this.
본 발명의 제1양태는 도핑영역층과 비도핑영역층을 구비하여 두께 방향으로 성분상에 있어서 복합 및 비대칭적인 복합박막에 있어서, 상기 도핑영역층은 단원자 증착(atomic layer deposition, ALD)법으로 형성된 적층구조로서, 도판트 전구체를 이용하여 형성된 도판트 원자층 1 이상을 구비한 것이 특징인 복합박막을 제공한다.A first aspect of the present invention is a composite thin film having a doped region layer and a non-doped region layer in the thickness direction of the composite and asymmetric, wherein the doped region layer is an atomic layer deposition (ALD) method The present invention provides a composite thin film which is characterized by having at least one dopant atomic layer formed by using a dopant precursor.
본 발명의 제2양태는 단원자 증착(atomic layer deposition, ALD)법을 이용하여, 기판 상에, 본 발명에 따른 복합박막을 제조하는 방법으로서, 도판트 전구체를 이용하여 1 이상의 도판트 원자층을 적층하여 도핑영역층을 형성하는 단계를 포함하고, 상기 도핑영역층을 형성하는 단계는, 반응 챔버 내에 도판트 전구체를 펄스(pulse)하여 ALD사이클에 의해 상기 도판트 원자층을 적층하는 제1단계; 및 박막 매트릭스 전구체를 펄스하여 ALD사이클에 의해 박막 매트릭스 원자층을 적층하는 제2단계를 포함하며, 상기 제1단계 및 제2단계는 서로 상반된 순서로 진행될 수 있는 것이 특징인 제조 방법을 제공한다.A second aspect of the present invention is a method for producing a composite thin film according to the present invention on a substrate using atomic layer deposition (ALD), wherein at least one dopant atomic layer is formed using a dopant precursor. And forming a doped region layer, wherein the forming of the doped region layer comprises: a first layer of laminating the dopant atomic layer by an ALD cycle by pulsing a dopant precursor in a reaction chamber; step; And a second step of depositing a thin film matrix atomic layer by an ALD cycle by pulsing the thin film matrix precursor, wherein the first and second steps may be performed in a reverse order.
본 발명의 제3양태는 상기 제1양태의 복합박막을 구비한 전자 소자를 제공한다.A third aspect of the present invention provides an electronic device having the composite thin film of the first aspect.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
기존에 단원자 증착법을 이용하여 도핑된 박막을 제조하는 방법과 관련해서는, 앞서 설명한 바와 같이 ALD 사이클로 박막 매트릭스 원자층(ZnO 층)과 도판트 원자층(Al2O3 층)을 일정한 주기로 반복 적층하여 균일 조성의 ZnO-Al2O3 박막을 제조하는 것이 있다(원자층 증착법을 이용한 Al-doped ZnO 투명전도막의 제조 및 특성평가, 정현준, 석사 학위논문, 충남대학교 2010). 또는, 박막층과 도판트층을 별개의 사이클로 적층하는 것이 아니라, 이를 하나의 사이클에서 박막 매트릭스 전구체 및 도판트 전구체를 순차적 또는 동시에 펄스하고 반응물을 펄스하여 산화시켜 하나의 도핑된 원자층을 제조하고, 이를 계속 적층하는 방법이 있다(대한민국특허 공개번호 제10-2013-0049752호). 그러나, 상기 방법들로 제조된 박막은 전체적인 조성이 균일한 것으로, 박막 내 층 영역간 비대칭적 특성이 존재하지 않는다.Regarding a method of manufacturing a doped thin film by using monoatomic deposition, as described above, ALD cyclo thin film matrix atomic layer (ZnO layer) and dopant atomic layer (Al 2 O 3 layer) are repeatedly stacked at regular intervals. To fabricate a ZnO-Al 2 O 3 thin film with uniform composition (a preparation and characterization of Al-doped ZnO transparent conductive film by atomic layer deposition method, Hyun-Joon Jung, Master's Thesis, Chungnam National University 2010). Alternatively, instead of laminating the thin film layer and the dopant layer in separate cycles, the thin film matrix precursor and the dopant precursor are sequentially or simultaneously pulsed in one cycle and the reactants are pulsed to oxidize to prepare one doped atomic layer, There is a method of laminating continuously (Korean Patent Publication No. 10-2013-0049752). However, the thin film manufactured by the above methods is uniform in overall composition, and there is no asymmetrical characteristic between layer regions in the thin film.
그러나 본 발명은 단원자 증착법을 이용한 박막 증착 과정 중 도판트 물질로 도판트 원자층을 적층하여 박막 일부에 도핑영역층을 형성함으로써, 박막 내 층 영역간 복합 및 비대칭적 특성이 존재하는 특징이 있다. 따라서, 박막 내 도핑영역층과 비도핑영역층은 도판트 원자층의 유무에 따른 구성 조성이 상이하여 이의 밴드 구조 및 결정 구조가 상이할 수 있으며, 따라서 박막의 층 영역별로 광학적 및 전자기적 특성을 제어할 수 있음과 동시에 하나의 박막에서 복합적인 특성이 발휘될 수 있다.However, according to the present invention, a doped region layer is formed on a portion of the thin film by laminating a dopant atomic layer with a dopant material during the thin film deposition process using the monoatomic deposition method, and thus, there is a feature that there are complex and asymmetrical characteristics between the layer regions in the thin film. Therefore, the doped region layer and the undoped region layer in the thin film may have different constituent compositions depending on the presence or absence of the dopant atomic layer, and thus the band structure and the crystal structure thereof may be different. Controllable and at the same time complex properties can be exhibited in one thin film.
본 발명에 따른 방법으로 제조된 일부분이 도핑된(도핑영역층) 복합박막은 기존의 박막들에 비해서 기능성이 향상되어 디스플레이, 메모리, 반도체 영역 전반에 걸쳐서 사용될 수 있으며, 별도의 추가 공정이나 복수의 막을 따로따로 제조할 필요가 없기 때문에 생산 단가 측면에서도 기존과 별다른 차이가 없다는 이점이 있다.Partial doped (doped region layer) composite thin film produced by the method according to the present invention can be used throughout the display, memory, semiconductor area is improved in functionality compared to the existing thin films, a separate additional process or a plurality of Since there is no need to manufacture the membrane separately, there is an advantage that there is no difference from the existing in terms of production cost.
본 발명에 따른 복합박막은 도핑영역층과 비도핑영역층을 구비하여 두께 방향으로 성분상에 있어서 복합 및 비대칭적인 특징이 있다. 즉, 도핑영역층은 단원자 증착법으로 형성된 적층구조로서, 도판트 전구체를 이용하여 형성된 도판트 원자층을 1 이상 구비하고 있는 반면, 비도핑영역층은 도판트 원자층을 구비하지 않으므로 도판트 물질을 포함하지 않는다. 본 발명의 복합박막 내에서 상기 도핑영역층과 비도핑영역층은 각각 1 이상으로써, 순차적으로 적층되어 있기 때문에, 본 발명의 복합박막은 박막 단면의 두께 방향으로 비대칭적이고 복합적인 성분조성을 나타내게 된다.The composite thin film according to the present invention includes a doped region layer and an undoped region layer, and has a complex and asymmetrical feature on the components in the thickness direction. That is, the doped region layer is a lamination structure formed by monoatomic deposition, and includes at least one dopant atomic layer formed using a dopant precursor, while the doped region layer does not include a dopant atomic layer, Does not include In the composite thin film of the present invention, since the doped region layer and the undoped region layer are each one or more, and are sequentially stacked, the composite thin film of the present invention exhibits asymmetric and complex composition in the thickness direction of the thin film cross section.
본 발명에 따른 복합박막은 도핑영역층과 비도핑영역층을 각각 1 이상 구비할 수 있으며, 이들은 교대로 순차적으로 적층되어 있을 수 있다.The composite thin film according to the present invention may include one or more doped region layers and one or more non-doped region layers, which may be sequentially stacked alternately.
본 발명에 있어서, 상기 도핑영역층은 도판트 원자층뿐만 아니라 박막 매트릭스 전구체를 이용하여 형성된 박막 매트릭스 원자층 1 이상을 추가로 구비할 수 있다. 다만, 상기 도판트 원자층과 박막 매트릭스 원자층은 각각 도판트 전구체만을 펄스하여 ALD사이클을 수행하거나 박막 매트릭스 전구체만을 펄스하여 ALD사이클을 수행하여 형성된 것으로, 하나의 원자층에는 도판트 물질만으로 또는 박막 물질만으로 단일하게 이루어져 있을 수 있다. 나아가 본 발명의 일 실시예에 있어서, 본 발명에 따른 복합박막의 도핑영역층 내 도판트 원자층은 박막 내부로 확산이 거의 이루어지지 않고 독립된 원자층을 형성함을 확인하였고, 이로써 상기 도핑영역층은 성분상으로 구분된 영역을 이룰 수 있다 (실험예 1)In the present invention, the doped region layer may further include at least one thin film matrix atomic layer formed using a thin film matrix precursor as well as a dopant atomic layer. However, the dopant atomic layer and the thin film matrix atomic layer are each formed by performing only an ALD cycle by pulsed only a dopant precursor or an ALD cycle by pulsed only a thin film matrix precursor. In one atomic layer, only a dopant material or a thin film is used. It can consist of a single substance alone. Furthermore, in one embodiment of the present invention, it was confirmed that the dopant atomic layer in the doped region layer of the composite thin film according to the present invention forms an independent atomic layer with little diffusion into the thin film. May form regions separated by component phase (Experimental Example 1)
나아가 상기 도판트 원자층과 상기 박막 매트릭스 원자층의 적층시, 일정한 ALD사이클 순환 규칙에 따라 적층되거나, 일정한 규칙 없이 적층될 수 있다. 예를 들어, 박막의 매트릭스가 되는 원자층을 A라 하고, 도판트 원자층을 B라 할때, 이들이 일정 규칙에 따른 ALD사이클로 적층된다면 A-B-A-B-A-B… 와 같은 형태로 적층될 수 있으나, 이들이 불규칙한 ALD사이클로 적층된다면 A-A-B-A-B-B-A-A… 와 같은 형태로 적층될 수 있다. 나아가, 도핑영역층 내 도판트 전구체를 이용하여 형성된 2개 이상의 도판트 원자층은 연속적으로 적층될 수 있다(예를 들어, …B-B…).Further, when the dopant atomic layer and the thin film matrix atomic layer are stacked, the dopant atomic layer and the thin film matrix atomic layer may be stacked according to a predetermined ALD cycle circulation rule, or may be stacked without a predetermined rule. For example, when an atomic layer serving as a matrix of a thin film is A and a dopant atomic layer is B, they are A-B-A-B-A-B... It can be stacked in the form of, but if they are stacked in an irregular ALD cycle A-A-B-A-B-B-A-A... It may be stacked in the form of. Furthermore, two or more dopant atomic layers formed using dopant precursors in the doped region layer may be stacked in succession (e.g., B-B ...).
본 발명의 상기 도핑영역층에 있어서, 도핑영역층 내 도판트 원자층은 N개이고, 박막 매트릭스 원자층은 M개이며, 상기 N과 M은 1 이상의 정수이고, N:M은 1:1 내지 1:40일 수 있다. 상기 N과 M은 박막 제조시 도판트 전구체를 펄스하여 ALD사이클을 수행하는 횟수와 박막 매트릭스 전구체를 펄스하여 ALD사이클을 수행하는 횟수를 통해 조절할 수 있으며, 이를 통해 박막의 도핑 농도를 조절할 수 있다. 만약 상기 N:M이 1:1을 넘어서는 경우(예를 들어 1:0.5), 매트릭스 물질과 도판트 물질이 뒤바뀌게 되는 경우이며, 나아가 도판트 물질의 농도가 과도하게 많아져 박막 내부로 확산이 발생하거나 박막 메트릭스 결정구조를 붕괴시킬 수 있는 문제가 있을 수 있다. 만약 상기 N:M이 1:30보다 작아지는 경우(예를 들어 1:50), 도판트 물질의 농도가 과도하게 적어져 단일박막과 박막 특성의 차이가 거의 없는 문제가 있을 수 있다. 그러나 상기의 범위는 본 발명의 물질계에만 해당하는 경우로, 다른 특성을 갖는 다른 물질군에 있어선 상기 범위로 특별히 제한되는 것은 아니다.In the doped region layer of the present invention, the dopant atomic layer in the doped region layer is N, the thin film matrix atomic layer is M, the N and M is an integer of 1 or more, N: M is 1: 1 to 1 May be 40. The N and M may be controlled by the number of times the ALD cycle is performed by pulsed dopant precursor and the number of times the ALD cycle is performed by pulse of the thin film matrix precursor, thereby controlling the doping concentration of the thin film. If the N: M exceeds 1: 1 (for example 1: 0.5), the matrix material and the dopant material are inverted. Furthermore, the concentration of the dopant material is excessively increased and diffusion into the thin film is prevented. There may be problems that can occur or disrupt the thin film matrix crystal structure. If the N: M is smaller than 1:30 (for example, 1:50), the concentration of the dopant material may be excessively low, so there may be a problem in that there is little difference between the characteristics of the single thin film and the thin film. However, the above range is applicable only to the material system of the present invention, and is not particularly limited to the above range in other material groups having different characteristics.
본 발명에 있어서, 상기 도핑영역층은 도판트 원자층만으로 이루어진 영역을 의미하는 것은 아니고, 층의 하부에서 도판트 원자층이 등장한 지점부터 도판트 원자층이 마지막으로 존재하는 지점까지의 영역을 의미한다. 예를 들어, 박막 내 원자층 적층이 …A-A-B-A-A-A-B-A-A-A-B-A-A… 라 한다면, 여기서 "B-A-A-A-B-A-A-A-B" 영역을 본 발명에 따른 도핑영역층이라 할 수 있다. 다만 도핑영역층의 의미는 좀 더 확장되어, 도핑영역층 형성을 위한 슈퍼사이클의 설정에 따라 상기 "B-A-A-A-B-A-A-A-B" 영역뿐만 아니라 이의 전후 원자층까지 포함될 수 있다.In the present invention, the doped region layer does not mean a region consisting only of the dopant atomic layer, but means a region from the point where the dopant atomic layer appears to the point where the dopant atomic layer is present at the bottom of the layer. do. For example, the atomic layer deposition in a thin film is. A-A-B-A-A-A-B-A-A-A-B-A-A... In this case, the "B-A-A-A-B-A-A-A-B" region may be referred to as a doping region layer according to the present invention. However, the meaning of the doped region layer may be expanded to include not only the "B-A-A-A-A-B-A-A-A-B" region but also the front and rear atomic layers thereof according to the setting of the supercycle for forming the doped region layer.
본 발명에 있어서, 상기 비도핑영역층은 도판트 원자층이 포함되지 않은, 단원자 증착법으로 형성된 박막 매트릭스 원자층 만으로 이루어진 적층구조의 영역으로서, 상기 도핑영역층의 하부 및/또는 상부에 위치하는 …A-A-A-A-A… 와 같은 영역을 의미한다.In the present invention, the undoped region layer is a layered structure consisting of only a thin film matrix atomic layer formed by monoatomic deposition without a dopant atomic layer, and located below and / or above the doped region layer. … A-A-A-A-A... It means the same area as.
본 발명에 있어서, 상기 도판트 원자층은 반응 챔버 내에 도판트 전구체를 펄스(pulse)하여 ALD사이클에 의해 상기 도판트 원자층을 적층하여 형성할 수 있다. 또한, 상기 박막 매트릭스 원자층은 박막 매트릭스 전구체를 펄스하여 ALD사이클에 의해 박막 매트릭스 원자층을 적층하여 형성할 수 있다. 이때, 상기 도판트 전구체 및 박막 매트릭스 전구체는 각각 서로 다른 금속 소스 화합물이며, 상기 금속은 Ti, Hf, Zr, Si, Al, Ta, Sr, Ba, Sc, Sn, In, Ga, Y, La, Eu 및 Dy로 이루어진 군에서 선택된 어느 하나일 수 있다. 상기 도판트 전구체 및 박막 매트릭스 전구체인 금속 소스 화합물은 특별히 제한되는 것은 아니다. 다만 도판트 물질이, 박막 매트릭스 전구체로 형성되는 박막 메트릭스와의 관계에서 높은 확산계수를 갖는 경우엔, 도판트 원자층의 도판트 물질이 박막 내부 전체로 확산되는 문제가 있을 수 있다. 따라서, 통상 단원자 증착 공정의 온도인 100 내지 200℃의 온도, 및 박막에 통상 수행되는 300℃ 이하 온도에서의 열처리 조건에서도 도판트 물질과 박막 매트릭스 물질간의 확산이 크게 일어나지 않는 전구체 물질(금속 소스 화합물)을 각각 선택함이 바람직하다. 이는, 해당 기술분야에서 통상 알려진 도판트 물질과 박막 매트릭스 물질들의 확산 계수와 상호작용을 고려하여 당업자가 적절히 선택할 수 있다. 이러한 취지로 도판트 전구체인 금속 소스 화합물과 박막 매트릭스 전구체인 금속 소스 화합물은 동일 기판 상에서 표면 반응 온도가 비슷한 소스 물질로 선택하는 것이 바람직하며, 나아가 양자간 인큐베이션 기간이 적은 것이 원하는 조성제어를 하는데 있어서 유리할 수 있다. 이 역시 박막의 용도 및 목적하는 특성에 따라 당업자가 적절하게 금속 소스 화합물을 선택할 수 있다.In the present invention, the dopant atomic layer may be formed by laminating the dopant atomic layer by an ALD cycle by pulsing a dopant precursor in a reaction chamber. The thin film matrix atomic layer may be formed by stacking a thin film matrix atomic layer by an ALD cycle by pulsing a thin film matrix precursor. In this case, the dopant precursor and the thin film matrix precursor are respectively different metal source compounds, and the metal is Ti, Hf, Zr, Si, Al, Ta, Sr, Ba, Sc, Sn, In, Ga, Y, La, It may be any one selected from the group consisting of Eu and Dy. The metal source compound that is the dopant precursor and the thin film matrix precursor is not particularly limited. However, when the dopant material has a high diffusion coefficient in relation to the thin film matrix formed of the thin film matrix precursor, there may be a problem that the dopant material of the dopant atomic layer diffuses into the entire thin film. Therefore, a precursor material (metal source) in which diffusion between the dopant material and the thin film matrix material does not occur significantly even at a temperature of 100 to 200 ° C., which is a temperature of the monoatomic deposition process, and a heat treatment condition at a temperature of 300 ° C. or lower which is usually performed on the thin film. Compound). This may be appropriately selected by those skilled in the art in view of the diffusion coefficient and interaction of dopant materials and thin film matrix materials commonly known in the art. For this purpose, the metal source compound, which is a dopant precursor, and the metal source compound, which is a thin film matrix precursor, are preferably selected as a source material having a similar surface reaction temperature on the same substrate. May be advantageous. Again, those skilled in the art can appropriately select a metal source compound depending on the use of the thin film and the desired properties.
본 발명에 따른 일실시예에 있어서, 상기 도판트 전구체의 비제한적인 예로는 Al 소스(source)로서 트리메틸 알루미늄(trimethyl aluminum, TMA)이 있고, 박막 매트릭스 전구체의 비제한적인 예로는 Zn 소스로서 디에틸 아연(dietyl zinc, DEZ)이 있다. 특히 TMA와 DEZ로 인해 형성되는 Al 도판트 원자층과 ZnO 박막 매트릭스 원자층 간에 있어서 상호 확산 계수가 작기 때문에, 적어도 400℃를 넘는 고온 조건이 아니고서는 상호 확산을 무시할 수 있다는 이점이 있다.In one embodiment according to the present invention, a non-limiting example of the dopant precursor is trimethyl aluminum (TMA) as an Al source, a non-limiting example of a thin film matrix precursor is a Di as a Zn source Dietyl zinc (DEZ). In particular, since the interdiffusion coefficient is small between the Al dopant atomic layer formed by TMA and DEZ and the ZnO thin film matrix atomic layer, there is an advantage that the interdiffusion can be ignored unless the high temperature condition is at least 400 ° C.
도 1에 나타난 바와 같이, 본 발명에 따른 복합박막의 구체적인 구성을 아래와 같이 설명한다. 구체적으로 도판트 원자층이 Al2O3이고 박막 매트릭스 원자층이 ZnO로 이루어진, 본 발명의 일 실시예에 따른 Al이 국부적으로 도핑된 ZnO 복합박막의 구조가 도 1에 예시되어 있다.As shown in Figure 1, the specific configuration of the composite thin film according to the present invention will be described as follows. Specifically, the structure of the Al-doped ZnO composite thin film according to an embodiment of the present invention, in which the dopant atomic layer is Al 2 O 3 and the thin film matrix atomic layer is ZnO, is illustrated in FIG. 1.
본 발명에 따른 ZnO 박막은 층 단면의 일부 영역층이 Al으로 도핑된 도핑영역층일 수 있으며, 도 1에는 박막 하부 영역에 구분되어 형성되어 위치하고 있음을 볼 수 있다. 도핑영역층을 제외한 나머지 영역은 비도핑영역층으로, ZnO 원자층 만으로 구성되어 있다. 즉, 상기 예시된 복합박막은 1개의 도핑영역층과 1개의 비도핑영역층을 구비한다. 상기 도핑영역층을 확대해보면, ZnO(박막) 원자층과 Al2O3(도판트) 원자층이 순차적으로 적층되어 있는 구조임을 확인할 수 있다. 이때, ZnO 원자층과 Al2O3 원자층의 두께는 각각의 단원자 증착 사이클을 연속적으로 몇 회 실시하느냐에 따라 달라질 수 있으며, 이들의 두께를 조절함으로써 도핑영역층의 Al 도판트 조성을 조절할 수 있다. 나아가 상기 Al2O3 원자층은 Al2O3만으로 이루어져 있으며, 따라서 본 발명에 따른 Al 도핑이란, Al 원자층의 삽입이라는 개념으로 이해할 수 있다. 결론적으로 상기 도핑영역층과 상기 비도핑영역층은 Al 도판트 원자층의 유무로 인하여 명확히 다른 성분 조성을 가지고 있으며, 이들이 적층됨으로써 박막 단면의 두께 방향으로 비대칭적이고 복합적인 성분조성을 나타냄은 앞서 설명한 바와 같다. 특히, 일반적으로 박막에 도핑된 도판트 물질의 경우 박막 내에서 박막 전체로 확산되어 조성이 전체적으로 균일해지는 특성이 있음에 반해, 본 발명에 따른 복합박막은 도판트 물질이 확산되지 않고 독립된 도판트 원자층을 구비하여, 박막 두께 방향으로 구별되며 불연속적인 성분조성을 나타내는 특징이 있다.The ZnO thin film according to the present invention may be a doped region layer in which a partial region layer of the cross section of the layer is doped with Al. In FIG. Except for the doped region layer, the remaining regions are non-doped region layers and are composed of only ZnO atomic layers. That is, the illustrated composite thin film includes one doped region layer and one undoped region layer. When the doped region layer is enlarged, it can be seen that the ZnO (thin film) atomic layer and the Al 2 O 3 (dopant) atomic layer are sequentially stacked. In this case, the thicknesses of the ZnO atomic layer and the Al 2 O 3 atomic layer may vary depending on how many times each monoatomic deposition cycle is performed in succession, and the Al dopant composition of the doped region layer may be adjusted by adjusting the thickness thereof. . Furthermore, the Al 2 O 3 atomic layer is composed of Al 2 O 3 only, and accordingly the Al doping according to the present invention can be understood as the concept of the insertion of the Al atomic layer. In conclusion, the doped region layer and the undoped region layer have a distinctly different composition due to the presence or absence of the Al dopant atomic layer, and as described above, the composition shows asymmetric and complex composition in the thickness direction of the thin film cross section. . In particular, in the case of a dopant material doped in a thin film, in general, the thin film is diffused into the entire thin film so that the composition becomes uniform throughout. In the composite thin film according to the present invention, the dopant material is not diffused but is an independent dopant atom. With a layer, it is distinguished in the thin film thickness direction and exhibits discontinuous component composition.
본 발명에 따른 복합박막은 박막 내 도핑영역층의 위치와 이의 도판트 농도에 따라 박막의 특성이 다양하게 변화될 수 있다.In the composite thin film according to the present invention, the characteristics of the thin film may vary depending on the position of the doped region layer in the thin film and the dopant concentration thereof.
먼저, 구체적인 박막의 용도와 기능성을 고려하여, 박막 내 도핑영역층의 위치를 결정할 수 있다. 즉, 앞서 설명한 바와 같이, 본 발명의 복합박막은 도핑영역층과 비도핑영역층 간 조성상의 비대칭적 특성이 존재하며, 특히 도핑영역층은 비도핑영역층과는 달리 도판트 원자층이 구비되어 별개의 광학적 및 전자기적 특성을 나타내게 된다. 따라서, 이러한 도핑영역층의 특성을 고려하여, 사용될 전자 소자의 특성에 맞추어 도핑영역층의 위치를 결정할 수 있다.First, the position of the doped region layer in the thin film may be determined in consideration of the use and functionality of the specific thin film. That is, as described above, the composite thin film of the present invention has an asymmetric characteristic in composition between the doped region layer and the undoped region layer, and in particular, the doped region layer is provided with a dopant atomic layer unlike the undoped region layer. Exhibit distinct optical and electromagnetic properties. Therefore, in consideration of the characteristics of the doped region layer, the position of the doped region layer can be determined according to the characteristics of the electronic device to be used.
예를 들어, 본 발명에 따른 복합박막이 DRAM의 절연막으로 사용되는 경우, 전극과 접합하는 박막 영역층에서만 전자 주입 배리어를 높게 하고, 즉 밴드갭을 크게 하고, 나머지 영역층에서는 높은 유전 계수를 가지게 하는 것이 중요하다. 따라서, 이경우 복합박막의 상하부 양끝 영역층을 도핑영역층으로 하는 것이 유리하며, 이는 본 발명에 따른 복합박막 제조 시 단원자 증착공정 초기 및 말기에 도판트 전구체를 이용하여 도판트 원자층을 적층하여 도핑영역층을 형성함으로써 박막의 상하부 양끝 영역층에 도핑영역층을 형성시킬 수 있다. 나아가 이때 박막의 중간 영역층은 비도핑영역층으로 이루어지기 때문에, 해당 영역은 높은 유전 계수를 가지게 할 수 있다.For example, when the composite thin film according to the present invention is used as an insulating film of a DRAM, the electron injection barrier is increased only in the thin film region layer to be bonded to the electrode, that is, the band gap is increased, and the remaining region layer has a high dielectric constant. It is important to do. Therefore, in this case, it is advantageous to use the upper and lower end region layers of the composite thin film as the doping region layer, which is obtained by stacking the dopant atomic layer using the dopant precursor at the beginning and the end of the monoatomic deposition process in manufacturing the composite thin film according to the present invention. By forming the doped region layer, the doped region layer may be formed on both top and bottom regions of the thin film. Furthermore, since the intermediate region layer of the thin film is formed of an undoped region layer, the region may have a high dielectric constant.
또한 본 발명의 일 실시예에 따라 복합박막이 박막 트랜지스터의 동작층으로 사용되는 경우, 특히 도핑영역층의 위치에 따라 각기 다른 독립적인 트랜지스터 특성에 영향을 미침을 확인하였다(실험예 3 내지 6). 도핑영역층이 박막의 하부, 즉 반도체/절연막 계면에 위치할 경우, 트랜지스터의 온(on) 특성(예를 들어, 모빌리티)에 큰 영향을 미칠 수 있다. 반면 도핑영역층이 박막의 상부, 즉 복합박막 표면에 위치할 경우, 트랜지스터의 오프(off) 특성(예를 들어, 문턱 전압)에 큰 영향을 미칠 수 있다. 따라서, 트렌지스터의 켜져있는 상태(스위치 온)의 전기적 특성을 향상시키기 위해서는 모빌리티가 증가됨이 유리하기 때문에, 복합박막의 하부 영역층(반도체/절연막 계면)을 도핑영역층으로 형성하여 모빌리티를 증가시킬 수 있다. 이 경우, 본 발명에 따른 복합박막 제조시 단원자 증착공정 초기에 도판트 전구체를 이용하여 도판트 원자층을 적층하여 도핑영역층을 형성함으로써 박막의 하부 영역층에 도핑영역층을 형성시킬 수 있다. 나아가 이때 도핑영역층 상부에 적층된 비도핑영역층은 높은 유전 계수를 가짐으로써 절연막의 역할을 수행할 수 있다. 한편, 트랜지스터의 정밀한 제어를 위해서는 도핑영역층을 복합박막의 상부(박막 표면)에 형성시켜 문턱 전압을 용이하게 제어할 수 있으며, 이는 특히 디스플레이 패널에 있어서 적합할 수 있다. 이 경우, 본 발명에 따른 복합박막 제조시 먼저 박막 매트릭스 전구체만을 펄스하여 단원자 증착공정을 수행함으로써 비도핑영역층을 형성하고, 이후 박막이 증착되어 박막 상부 영역에 도달했을 때 도판트 전구체를 이용하여 도핑영역층을 형성함으로써 박막의 상부 영역층에 도핑영역층을 형성시킬 수 있다.In addition, when the composite thin film is used as the operating layer of the thin film transistor according to an embodiment of the present invention, it was confirmed that the effect on the independent transistor characteristics different depending on the position of the doping region layer, in particular (Experimental Examples 3 to 6) . When the doped region layer is located under the thin film, that is, at the interface of the semiconductor / insulating layer, it may have a great influence on the on characteristics (eg, mobility) of the transistor. On the other hand, when the doped region layer is located on the top of the thin film, that is, the surface of the composite thin film, it may have a great influence on the off characteristics (eg, threshold voltage) of the transistor. Therefore, it is advantageous to increase the mobility in order to improve the electrical characteristics of the switched-on state (switch-on), so that the lower region layer (semiconductor / insulation interface) of the composite thin film can be formed as a doped region layer to increase the mobility. have. In this case, the doped region layer may be formed in the lower region layer of the thin film by forming a doped region layer by laminating a dopant atomic layer using a dopant precursor at the beginning of the monoatomic deposition process in manufacturing the composite thin film according to the present invention. . Further, at this time, the non-doped region layer stacked on the doped region layer may have a high dielectric constant to serve as an insulating film. On the other hand, for precise control of the transistor, a doped region layer may be formed on the upper portion (thin film surface) of the composite thin film to easily control the threshold voltage, which may be particularly suitable for a display panel. In this case, when manufacturing the composite thin film according to the present invention, first, only the thin film matrix precursor is pulsed to perform a monoatomic deposition process, and then a dopant precursor is used when the thin film is deposited and reaches the upper region of the thin film. As a result, the doped region layer may be formed on the upper region layer of the thin film.
위와 같이 복합박막의 어느 영역층을 도핑영역층으로 결정할 것인지에 따라 박막의 특성이 달라질 수 있으며, 또한 전체 복합박막 대비 상기 도핑영역층의 물리적인 두께의 비율에 따라 전체 박막의 특성도 달라질 수 있으며, 이는 당업자가 용도에 맞게 적절히 선택하여 결정할 수 있다. 본 발명의 일실시예에 있어서, 상기 도핑영역층의 두께는 2nm 내지 4nm일 수 있으나, 상기 설명한 바와 같이 특별히 제한되는 것은 아니며, 당업자가 적절히 선택할 수 있다.As described above, the characteristics of the thin film may vary according to which region layer of the composite thin film is determined as the doped region layer, and the characteristics of the entire thin film may also vary according to the ratio of the physical thickness of the doped region layer to the total composite thin film. This can be determined by those skilled in the art as appropriately selected for the application. In an embodiment of the present invention, the thickness of the doped region layer may be 2 nm to 4 nm, but is not particularly limited as described above, and may be appropriately selected by those skilled in the art.
위와 같이, 본 발명에 따른 복합박막이 DRAM의 절연막 또는 트렌지스터의 동작층으로 사용될 경우의 도핑영역층의 위치 및 형성 방법에 대하여 구체적으로 설명하고 있다 하여도, 본 기술분야의 당업자는 본 명세서에 개시된 용도 및 응용방법들이, 본 발명의 도핑영역층을 갖는 복합박막을 필요로 하는 다른 전자 소자들까지 다양한 유형으로 적용될 수 있음을 이해해야 한다.As described above, even if the composite thin film according to the present invention has been described in detail with respect to the position and the formation method of the doped region layer when used as an insulating layer or transistor operating layer of the DRAM, those skilled in the art It is to be understood that the uses and application methods can be applied in various types to other electronic devices that require composite thin films having the doped region layer of the present invention.
나아가 본 발명에 따른 복합박막에 있어서 도핑영역층의 위치뿐만 아니라 이의 도판트 농도 역시 박막의 특성을 결정짓는 중요한 인자가 될 수 있다. 본 발명의 일 실시예에 따라 복합박막이 박막 트랜지스터의 동작층으로 사용되는 경우, 도핑영역층이 박막의 하부에 위치해 있을 때 도판트 농도가 일정 수준을 넘어서면 오히려 모빌리티가 감소하는 현상을 확인할 수 있었다(실험예 6). 한편 도핑영역층이 박막의 상부에 위치해 있을 때 도판트 농도가 증가할수록 문턱 전압이 보다 큰 폭으로 변화함을 확인할 수 있었다(실험예 5).Furthermore, in the composite thin film according to the present invention, not only the position of the doped region layer but also the dopant concentration thereof may be an important factor in determining the characteristics of the thin film. When the composite thin film is used as an operating layer of the thin film transistor according to an embodiment of the present invention, when the dopant concentration exceeds a certain level when the doped region layer is located below the thin film, the mobility may be reduced. (Experimental example 6). On the other hand, when the doped region layer is located on top of the thin film, it can be seen that as the dopant concentration increases, the threshold voltage is changed to a greater width (Experimental Example 5).
따라서 원하는 박막의 특성을 위해 도판트 농도를 적절히 조절함이 필요하며, 이는 단원자 증착공정에 있어서 도판트 사이클과 박막 사이클의 비율을 조절하여 도판트 원자층과 박막 매트릭스 원자층의 비율을 조절함으로써, 도판트 농도(원자 비율)를 조절할 수 있다. 보다 자세히는 후술한다.Therefore, it is necessary to adjust the dopant concentration appropriately for the characteristics of the desired thin film. In the monoatomic deposition process, the ratio of the dopant atomic layer and the thin film matrix atomic layer is controlled by adjusting the ratio of the dopant cycle and the thin film cycle. The dopant concentration (atomic ratio) can be adjusted. More details will be described later.
본 발명의 제2양태는 단원자 증착(atomic layer deposition, ALD)법을 이용하여, 기판 상에, 본 발명에 따른 복합박막을 제조하는 방법으로서, 도판트 전구체를 이용하여 1 이상의 도판트 원자층을 적층하여 도핑영역층을 형성하는 단계를 포함하고, 상기 도핑영역층을 형성하는 단계는, 반응 챔버 내에 도판트 전구체를 펄스(pulse)하여 ALD사이클에 의해 상기 도판트 원자층을 적층하는 제1단계; 및 박막 매트릭스 전구체를 펄스하여 ALD사이클에 의해 박막 매트릭스 원자층을 적층하는 제2단계를 포함하며, 상기 제1단계 및 제2단계는 서로 상반된 순서로 진행될 수 있는 것이 특징인 제조 방법을 제공한다.A second aspect of the present invention is a method for producing a composite thin film according to the present invention on a substrate using atomic layer deposition (ALD), wherein at least one dopant atomic layer is formed using a dopant precursor. And forming a doped region layer, wherein the forming of the doped region layer comprises: a first layer of laminating the dopant atomic layer by an ALD cycle by pulsing a dopant precursor in a reaction chamber; step; And a second step of depositing a thin film matrix atomic layer by an ALD cycle by pulsing the thin film matrix precursor, wherein the first and second steps may be performed in a reverse order.
본 발명의 제2양태에 따른 제조 방법에서의 구체적인 용어, 발명의 특징 및 기본 원리들은 앞서 제1양태에 따른 복합박막에서 설명한 바와 같다.Specific terms in the manufacturing method according to the second aspect of the present invention, features and basic principles of the invention are as described above in the composite thin film according to the first aspect.
본 발명에 따른 상기 단원자 증착은, 반응 공간, 즉 통상적인 단원자 증착 공정에 있어서의 조건들을 제어할 수 있는 반응 챔버 내에서 수행될 수 있다. 상기 반응 챔버는, 예를 들어 단일 웨이퍼형 원자층 증착기(single-wafer ALD reactor)의 반응 챔버, 또는 동시에 복수의 기판들 상의 증착이 수행되는 배치형 원자층 증착기(batch ALD reactor)의 반응 챔버일 수 있다. 본 발명에 따른 복합박막은 상기 동일한 반응 챔버 내에서 인 시츄로 도핑영역층 및 비도핑영역층을 형성함으로써 제조될 수 있다.The monoatomic deposition according to the present invention may be performed in a reaction space, that is, in a reaction chamber capable of controlling conditions in a typical monoatomic deposition process. The reaction chamber may be, for example, a reaction chamber of a single-wafer ALD reactor or a reaction chamber of a batch ALD reactor in which deposition on a plurality of substrates is performed simultaneously. Can be. The composite thin film according to the present invention can be prepared by forming a doped region layer and an undoped region layer in situ in the same reaction chamber.
본 발명에 따른 복합박막이 형성되는 상기 기판은 통상적으로 그 위에 박막 증착이 요구되는 워크 피스(workpiece)이며, 이의 비제한적인 예로서, 실리콘, 실리카(silica), 코팅된 실리콘(coated silicon), 구리나 알루미늄과 같은 금속, 유전 물질들, 질화물들, 또는 이들의 조합일 수 있다.The substrate on which the composite thin film according to the present invention is formed is typically a workpiece on which thin film deposition is required, and non-limiting examples thereof include silicon, silica, coated silicon, Metal, such as copper or aluminum, dielectric materials, nitrides, or a combination thereof.
본 발명에 있어서, 1 이상의 도판트 원자층을 포함하는 상기 도핑영역층을 형성하는 단계는 구체적으로 반응 챔버 내에 도판트 전구체를 펄스(pulse)하여 ALD사이클에 의해 상기 도판트 원자층을 적층하는 제1단계와 박막 매트릭스 전구체를 펄스하여 ALD사이클에 의해 박막 매트릭스 원자층을 적층하는 제2단계를 포함하며, 상기 제1단계 및 제2단계는 순차적으로 수행되거나 상반된 순서로 진행될 수 있으며, 특별히 제한되는 것은 아니다. 예를 들어, 제1단계를 통하여 도판트 원자층인 B층이 형성될 수 있고, 제2단계를 통하여 박막 매트릭스 원자층인 A층이 형성될 수 있다. 제1단계와 제2단계가 순차적으로 수행되면 B층 다음에 A층이 적층되며(B-A), 상반된 순서로 진행되면 A층 다음에 B층이 적층된다(A-B).In the present invention, the step of forming the doped region layer including one or more dopant atomic layers may be performed by depositing the dopant atomic layer by an ALD cycle by specifically pulsing the dopant precursor in the reaction chamber. A first step and a second step of laminating the thin film matrix atomic layer by an ALD cycle by pulsing the thin film matrix precursor, wherein the first step and the second step may be performed sequentially or may be performed in the opposite order, and are particularly limited. It is not. For example, a layer B of a dopant atomic layer may be formed through a first step, and a layer A of a thin film matrix atomic layer may be formed through a second step. If the first step and the second step are performed sequentially, the A layer is stacked next to the B layer (B-A), and if the steps proceed in the opposite order, the B layer is stacked after the A layer (A-B).
특히, 상기 제1단계 및 제2단계는 반복하여 수행될 수 있다. 나아가, 상기 제1단계 및 제2단계는 일정한 순환 규칙에 따라 반복하여 수행됨으로써 규칙적으로 적층될 수 있으며, 또는 특별한 규칙 없이 반복하여 수행됨으로써 불규칙하게 적층되어 도핑영역층을 형성할 수 있다. 규칙적으로 적층하는 경우는, 앞서 설명한 바와 같이, 예를 들어 A-B-A-B-A-B… 와 같은 형태로 적층하는 것을 의미하며, 불규칙하게 적층하는 경우는, 앞서 설명한 바와 같이, 예를 들어 A-A-B-A-B-B-A-A… 와 같은 형태로 적층하는 것을 의미한다.In particular, the first and second steps may be performed repeatedly. Further, the first and second steps may be regularly stacked by being repeatedly performed according to a predetermined circulation rule, or may be repeatedly stacked without being carried out without a specific rule to form a doped region layer. When laminating regularly, as described above, for example, A-B-A-B-A-B... In the case of laminating irregularly, as described above, for example, A-A-B-A-B-B-A-A ... It means to laminate in the same form as.
나아가 본 발명에 따른 도핑영역층의 형성에 있어서, 상기 제1단계의 ALD사이클은 n번 수행되고, 상기 제2단계의 ALD사이클은 m번 수행되며, 상기 n과 m의 횟수를 조절하여 도핑 농도를 조절할 수 있다. 예를 들어, 도 3에 나타난 바와 같이, 제1단계는 1번(n=1), 제2단계는 2번(m=2)수행하는 경우, B-A-A 와 같은 층이 적층될 수 있다.Further, in the formation of the doped region layer according to the present invention, the ALD cycle of the first step is performed n times, the ALD cycle of the second step is performed m times, and the doping concentration is controlled by adjusting the number of n and m. Can be adjusted. For example, as shown in FIG. 3, when the first step is performed once (n = 1) and the second step is performed twice (m = 2), a layer such as B-A-A may be stacked.
이때, 상기 B-A-A까지 적층하는 주기를 슈퍼사이클이라 할 수 있다. 즉 슈퍼사이클은 제1단계 및 제2단계가 규칙적으로 반복하여 수행되는 경우에 있어서, 제1단계의 ALD사이클이 n번 수행되고, 제2단계의 ALD사이클이 m번 수행된 주기를 의미한다. 따라서, 본 발명에 따른 도핑영역층 형성 단계는 상기 슈퍼사이클을 x번 반복하여 수행함으로써, 원하는 층 두께가 만들어질 때까지 수행할 수 있다. 만약, 상기 예에서 슈퍼사이클을 3회 실시한다면(x=3), B-A-A-B-A-A-B-A-A 와 같은 도핑영역층이 형성된다. 이때, 도핑영역층 내 도판트 원자층은 3개이고(N=3), 박막 매트릭스 원자층은 6개이며(M=6), n:m=N:M 이며, 이 경우엔 1:2임을 확인할 수 있다.In this case, the cycle of stacking up to B-A-A may be referred to as a supercycle. That is, the supercycle means a cycle in which the ALD cycle of the first stage is performed n times and the ALD cycle of the second stage is performed m times when the first stage and the second stage are regularly and repeatedly performed. Therefore, the step of forming the doped region layer according to the present invention may be performed until the desired layer thickness is made by repeatedly performing the supercycle x times. If the supercycle is executed three times in the above example (x = 3), a doped region layer such as B-A-A-B-A-A-B-A-A is formed. In this case, three dopant atomic layers in the doped region layer (N = 3), six thin film matrix atomic layers (M = 6), and n: m = N: M, in this case 1: 2. Can be.
본 발명에 따른 상기 도핑영역층을 형성하는 단계에 있어서, 상기 n:m은 1:1 내지 1:40 일 수 있다.In the forming of the doped region layer according to the present invention, n: m may be 1: 1 to 1:40.
본 발명에 있어서, 도판트 원자층 또는 박막 매트릭스 원자층을 증착하는 방법은 본 기술분야의 통상적인 단원자 증착법에 의해 수행될 수 있다. 이는 도판트 전구체 또는 박막 매트릭스 전구체인 금속 소스 화합물과, 반응물인 산소 소스 화합물을 교대로 공급하여 금속산화막(산화된 금속 원자층)을 형성하는 공정으로서, 반응 챔버 내 기판의 온도를 일정하게 유지하면서 반응 챔버 내부로 전구체인 금속 소스 화합물과, 반응물인 산소 소스 화합물을 기질에 번갈아 공급하여 흡착 및 반응시키고 이들 단계 사이에 반응기를 배기하거나 반응기에 아르곤과 같은 비활성 기체를 보내어 반응하지 않은 잔류물과 부산물을 제거하는 과정을 통해 원자층을 형성하여 하나 하나 적층하는 방법으로, 보다 구체적으로는 하기 제a단계 내지 제d단계로 나타낼 수 있다. 이와 관련하여 도 3에는 본 발명에 따른 단원자 증착 사이클에 대한 개요도가 나타나 있다.In the present invention, the method of depositing the dopant atomic layer or the thin film matrix atomic layer may be performed by a conventional monoatomic deposition method in the art. This is a process of alternately supplying a metal source compound, which is a dopant precursor or a thin film matrix precursor, and an oxygen source compound, which is a reactant, to form a metal oxide film (oxidized metal atomic layer), while maintaining a constant temperature of the substrate in the reaction chamber. Into the reaction chamber, the precursor metal source compound and the reactant oxygen source compound are alternately supplied to the substrate to adsorb and react, and the reactor is evacuated between these steps, or an inert gas such as argon is sent to the reactor, thereby leaving unreacted residues and by-products. The method of forming an atomic layer and stacking one by one through the process of removing it may be more specifically represented by the following steps a to d. 3 shows a schematic diagram of a monoatomic deposition cycle according to the present invention.
반응 챔버 내에 도판트 전구체 또는 박막 매트릭스 전구체를 펄스하는 제a단계; 상기 반응 챔버로부터 여분의 도판트 전구체 또는 박막 매트릭스 전구체를 제거하는 제b단계; 상기 반응 챔버 내에 반응물을 펄스하는 제c단계; 및 상기 반응 챔버로부터 여분의 반응물 및 반응 생성물을 제거하는 제d단계.Pulse a dopant precursor or thin film matrix precursor in the reaction chamber; B) removing excess dopant precursor or thin film matrix precursor from the reaction chamber; C) pulsed reactant in the reaction chamber; And d) removing excess reactants and reaction products from the reaction chamber.
상기 제a단계 내지 제d단계를 1 사이클(cycle)이라 하며, 상기의 사이클을 통해 1 원자층을 형성할 수 있다.Steps a to d are referred to as one cycle, and one atomic layer may be formed through the cycle.
상기 제c단계의 반응물은 H2O, O2, O3, O 라디칼들, H2O2 및 D2O로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으나, 특별히 제한되는 것은 아니다.The reactant of step c may be any one or more selected from the group consisting of H 2 O, O 2 , O 3 , O radicals, H 2 O 2 and D 2 O, but is not particularly limited.
본 발명의 제3양태는 상기 제1양태의 복합박막을 구비한 전자 소자를 제공한다. 본 발명에 있어서, 상기 전자 소자는 구체적으로 트랜지스터 또는 DRAM일 수 있으나 특별히 제한되는 것은 아니다.A third aspect of the present invention provides an electronic device having the composite thin film of the first aspect. In the present invention, the electronic device may be specifically a transistor or a DRAM, but is not particularly limited.
본 발명의 제3양태에 따른 전자 소자에서의 구체적인 용어, 발명의 특징 및 기본 원리들은 앞서 제1양태에 따른 복합박막의 구체적인 응용예에서 설명한 바와 같다. 즉, 본 발명에 따른 복합박막에 있어서의 도핑영역층의 위치와 이의 도판트 농도를 조절하여 박막의 특성을 변화시킴으로써, 이를 구비한 전자 소자로 사용될 수 있다.Specific terms, features and basic principles of the electronic device according to the third aspect of the present invention are as described above in the specific application of the composite thin film according to the first aspect. That is, by controlling the position of the doped region layer and the dopant concentration thereof in the composite thin film according to the present invention, it can be used as an electronic device having the thin film.
본 발명에 따른 복합박막은 박막 일부에 도판트 원자층을 포함하는 도핑영역층을 구비함으로써, 박막 두께 방향으로 성분상에 있어서 복합 및 비대칭적 특성을 갖게 되고, 이는 도핑영역층과 비도핑영역층간의 밴드 구조가 달라지게 됨으로써 박막의 층 영역별로 전자기적 특성이 달라지게 되고, 기능성이 향상되어 디스플레이, 메모리, 반도체 영역 전반에 걸쳐서 사용될 수 있다.The composite thin film according to the present invention has a doped region layer including a dopant atomic layer on a part of the thin film, thereby having a complex and asymmetric characteristic in the component direction in the thickness direction of the thin film, which is between the doped region layer and the non-doped region layer. By changing the band structure, the electromagnetic characteristics of each layer region of the thin film may be changed, and the functionality may be improved, and thus may be used throughout the display, memory, and semiconductor regions.
나아가 복합박막 내 도핑영역층의 위치 및 이의 도판트 농도에 따라 다양한 전자기적 특성에 영향을 미치며, 따라서 도핑영역층의 위치 및 농도를 조절함으로써 박막의 전자기적 특성을 목적에 따라 손쉽게 조절할 수 있다. Furthermore, it affects various electromagnetic properties according to the position of the doped region layer in the composite thin film and its dopant concentration, and thus, the electromagnetic characteristics of the thin film can be easily adjusted according to the purpose by adjusting the position and concentration of the doped region layer.
본 발명에 따른 복합박막은 단원자 증착법으로 제조됨으로써, 간단한 공정을 통하여 박막의 광학적 및 전자기적 특성을 제어할 수 있으며, 별도의 추가 공정이나 복수의 막을 따로따로 제조할 필요가 없기 때문에 생산 단가 측면에서도 유리하다.Since the composite thin film according to the present invention is manufactured by the monoatomic deposition method, the optical and electromagnetic properties of the thin film can be controlled through a simple process, and there is no need to separately prepare additional processes or a plurality of films separately. Is also advantageous.
도 1은 본 발명의 일 실시예에 따른 Al이 박막 하부에 국부적으로 도핑된 ZnO 복합박막의 구조를 나타낸 개략도이다.1 is a schematic diagram showing a structure of a ZnO composite thin film doped with Al locally under a thin film according to an embodiment of the present invention.
도 2는 본 발명에 따른 복합박막을 제조하기 위한 반응장치의 개략도이다.2 is a schematic diagram of a reactor for producing a composite thin film according to the present invention.
도 3은 본 발명에 따른 복합박막의 제조방법인 단원자 증착 사이클에 대한 개요도이다. A는 박막 매트릭스 전구체, B는 도판트 전구체를 나타낸다.3 is a schematic diagram of a monoatomic deposition cycle which is a method of manufacturing a composite thin film according to the present invention. A represents a thin film matrix precursor and B represents a dopant precursor.
도 4는 본 발명의 일 실험예에서 수행된, 도핑된 Al의 농도에 따른 전자분광 화학분석(XPS) 그래프이다. 도 4a는 Al의 원자 비율(농도)이 약 7%일 때, 도 4b는 약 20%일 때, 및 도 4c는 약 50%일 때를 나타낸다.4 is an electron spectroscopy chemical analysis (XPS) graph according to the concentration of doped Al, performed in one experimental example of the present invention. FIG. 4A shows when the atomic percentage (concentration) of Al is about 7%, FIG. 4B when about 20%, and FIG. 4C when about 50%.
도 5는 본 발명의 일 실험예에서 수행된, 본 발명에 따른 Al이 국부적으로 도핑된 ZnO 복합박막과 ZnO 단일박막에 있어서의 박막 단면 TEM 이미지와 EDX 라인 분포 결과 그래프이다. 도 5a는 ZnO 단일 박막을 나타내며, 도 5b는 Al이 국부적으로 도핑된 ZnO 복합박막을 나타낸다.FIG. 5 is a graph showing thin film cross-sectional TEM images and EDX line distribution results of Al-doped ZnO composite thin films and ZnO single thin films according to the present invention, performed in an experimental example of the present invention. FIG. 5A shows a ZnO single thin film, and FIG. 5B shows a ZnO composite thin film doped with Al locally.
도 6은 본 발명의 일 실험예에서 수행된, 복합박막 내 Al 도핑영역층 위치에 따른 트랜지스터 동작 특성을 나타낸 그래프이다. 도 6a 및 도 6b는 Drain Current-Gate Voltage에 대한 I-V 특성 그래프이며, 도 6c는 Saturation Mobility-Gate Voltage에 대한 그래프이다.6 is a graph showing transistor operating characteristics according to the Al doped region layer position in the composite thin film, which was performed in an experimental example of the present invention. 6A and 6B are graphs illustrating I-V characteristics of a drain current-gate voltage, and FIG. 6C is a graph of saturation mobility-gate voltage.
도 7은 본 발명의 실시예에서 제조된 복합박막의 박막 깊이에 대한 XPS depth 분석 결과를 나타낸 그래프이다. 도 7a 내지 7c는 실시예 1 내지 3에 따른 방법으로 제조된, 박막 상부에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막에 관한 그래프이고, 도 7d 내지 도 7f는 실시예 4 내지 6에 따른 방법으로 제조된, 박막 하부에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막에 관한 그래프이다.7 is a graph showing the XPS depth analysis results for the thin film depth of the composite thin film prepared in the embodiment of the present invention. 7A to 7C are graphs of ZnO composite thin films having a doped region layer doped with Al on top of a thin film prepared by the method according to Examples 1 to 3, and FIGS. 7D to 7F are examples 4 to 6 A graph of a ZnO composite thin film having a doped region layer doped with Al under a thin film prepared by the method described above.
도 8은 본 발명의 실시예 1 내지 3에서 제조된, 박막 상부에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막의 트랜지스터 동작 특성을 나타낸 그래프이다. 도 8a 및 도 8b는 Drain Current-Gate Voltage에 대한 I-V 특성 그래프이며, 도 8c는 Saturation Mobility-Gate Voltage에 대한 그래프이고, 도 8d는 각각 6개 샘플에 대한 문턱 전압 그래프이고, 도 8e는 각각 6개 샘플에 대한 포화 모빌리티 그래프이다.FIG. 8 is a graph showing transistor operating characteristics of a ZnO composite thin film prepared in Examples 1 to 3 of the present invention having a doped region layer doped with Al on the thin film. 8A and 8B are IV characteristic graphs for the Drain Current-Gate Voltage, FIG. 8C is a graph for Saturation Mobility-Gate Voltage, FIG. 8D is a threshold voltage graph for each of 6 samples, and FIG. 8E is 6, respectively. Saturation mobility graph for dog samples.
도 9는 본 발명의 실시예 4 내지 6에서 제조된, 박막 하부에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막의 트랜지스터 동작 특성을 나타낸 그래프이다. 도 9a 및 도 9b는 Drain Current-Gate Voltage에 대한 I-V 특성 그래프이며, 도 9c는 Saturation Mobility-Gate Voltage에 대한 그래프이고, 도 9d는 각각 6개 샘플에 대한 문턱 전압 그래프이고, 도 9e는 각각 6개 샘플에 대한 포화 모빌리티 그래프이다.FIG. 9 is a graph showing transistor operating characteristics of a ZnO composite thin film prepared in Examples 4 to 6 of the present invention having a doped region layer doped with Al under a thin film. 9A and 9B are IV characteristic graphs for the Drain Current-Gate Voltage, FIG. 9C is a graph for Saturation Mobility-Gate Voltage, FIG. 9D is a threshold voltage graph for each of 6 samples, and FIG. 9E is 6, respectively. Saturation mobility graph for dog samples.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
도 2를 참조하여 본 발명에 따른 복합박막을 제조하기 위한 단원자 증착 반응 장치를 설명한다.Referring to Figure 2 will be described a monoatomic deposition reaction apparatus for producing a composite thin film according to the present invention.
상기 반응 장치는, 단원자 증착이 수행되는 반응 챔버(1), 상기 반응 챔버를 가열해주는 히터(2), 상기 반응 챔버와 연결되는 캐리어 가스 유입부(3), 상기 반응 챔버로부터 가스가 배출되는 가스 분출구(4), 상기 반응 챔버와 연결되는 박막 매트릭스 전구체 공급 캐니스터(5), 상기 반응 챔버와 연결되는 도판트 전구체 공급 캐니스터(6), 상기 반응 챔버와 연결되는 반응물(산소 소스 물질) 공급 캐니스터(7), 박막 매트릭스 전구체 매뉴얼 밸브(8), 도판트 전구체 매뉴얼 밸브(9), 반응물 매뉴얼 밸브(10), 박막 매트릭스 전구체 공압 밸브(11), 도판트 전구체 공압 밸브(12) 및 반응물 공압 밸브(13)로 이루어져 있다.The reaction apparatus includes a reaction chamber 1 in which monoatomic deposition is performed, a heater 2 for heating the reaction chamber, a carrier gas inlet part 3 connected to the reaction chamber, and a gas discharged from the reaction chamber. A gas outlet 4, a thin film matrix precursor supply canister 5 connected to the reaction chamber, a dopant precursor supply canister 6 connected to the reaction chamber, and a reactant (oxygen source material) supply canister connected to the reaction chamber. (7), thin film matrix precursor manual valve (8), dopant precursor manual valve (9), reactant manual valve (10), thin film matrix precursor pneumatic valve (11), dopant precursor pneumatic valve (12) and reactant pneumatic valve It consists of (13).
상기 반응 장치를 통한 단원자 증착 수행 시, 박막 매트릭스 전구체, 도판트 전구체 및 반응물의 메뉴얼 밸브는 모두 열어놓고, 해당 증착 단계에 대응하는 공압 밸브를 열어 알맞은 소스 물질을 공급해 줌으로써, 본원발명에 따른 단원자 증착을 이용한 복합박막 제조가 가능하다.When performing monoatomic deposition through the reactor, the manual valves of the thin film matrix precursor, the dopant precursor, and the reactants are left open, and the pneumatic valve corresponding to the deposition step is supplied to supply an appropriate source material. It is possible to manufacture a composite thin film using magnetic vapor deposition.
보다 구체적으로 본 발명에 따른 복합박막 제조에 있어서, 상기 도판트 전구체로는 트리메틸 알루미늄(TMA), 박막 매트릭스 전구체로는 디에틸 아연(DEZ), 반응물로는 물(H2O) 및 캐리어 가스는 질소(N2)를 선택하였다. 캐니스터들(5~7)은 각각 순서대로 15℃, 15℃, 및 10℃로 증착 과정동안 유지시켰다.More specifically, in the preparation of the composite thin film according to the present invention, the dopant precursor is trimethyl aluminum (TMA), the thin film matrix precursor is diethyl zinc (DEZ), the reactant is water (H 2 O) and the carrier gas Nitrogen (N 2 ) was selected. The canisters 5-7 were held during the deposition process at 15 ° C., 15 ° C., and 10 ° C., respectively, in order.
ZnO 박막 매트릭스 원자층을 형성하기 위한 사이클은 DEZ 펄스→퍼지→H2O 펄스→퍼지 단계로 이루어지며, 각각 0.5s→10s→0.1s→10s의 시간으로 제어하여 사이클을 수행하였다. Al2O3 도판트 원자층을 형성하기 위한 사이클은 TMA 펄스→퍼지→H2O 펄스→퍼지 단계로 이루어지며, 세부 단계의 수행시간은 앞서 ZnO 박막 매트릭스 원자층 사이클과 동일하게 수행하였다.The cycle for forming the ZnO thin film matrix atomic layer was composed of DEZ pulses → purge → H 2 O pulses → purge step, and the cycles were controlled by controlling the time from 0.5s → 10s → 0.1s → 10s. The cycle for forming the Al 2 O 3 dopant atomic layer consists of a TMA pulse → purge → H 2 O pulse → purge step, the execution time of the detailed step was performed in the same manner as the ZnO thin film matrix atomic layer cycle.
상기 사이클을 통한 증착 과정 동안 온도는 150℃로 유지하였다.The temperature was maintained at 150 ° C. during the deposition process through the cycle.
상기 퍼지를 위한 캐리어 가스인 질소는 증착 과정 동안 유량을 500sccm으로 조절하였다.Nitrogen, the carrier gas for the purge, was adjusted to 500 sccm during the deposition process.
단원자 증착을 통해 제조된 박막 샘플들은 1시간 동안 진공에서 200℃의 온도로 열처리하였다.Thin film samples prepared through monoatomic deposition were heat treated at a temperature of 200 ° C. under vacuum for 1 hour.
실시예 1 내지 3: 박막 상부에 도핑영역층을 구비한, Al으로 도핑된 ZnO 복합박막의 제조Examples 1 to 3: Preparation of Al-doped ZnO Composite Thin Film with Doping Region Layer on Top of Thin Film
본 발명에 따른 복합박막을 아래와 같이 제조하였다. 구체적으로, 도판트 전구체로는 트리메틸 알루미늄(TMA), 박막 매트릭스 전구체로는 디에틸 아연(DEZ)을 선택하여, Al2O3 도판트 원자층을 갖는 도핑영역층을 구비한 Al으로 도핑된 ZnO 복합박막을 제조하였다. 이때, 상기 복합박막은 트랜지스터 동작층으로서, 벌크 영역인 복합박막 표면(박막 상부)에 도핑영역층을 형성하였으며, 구체적으론 아래와 같다.The composite thin film according to the present invention was prepared as follows. Specifically, trimethyl aluminum (TMA) is selected as the dopant precursor and diethyl zinc (DEZ) is selected as the thin film matrix precursor, and ZnO doped with Al having a doped region layer having an Al 2 O 3 dopant atomic layer. A composite thin film was prepared. In this case, the composite thin film is a transistor operation layer, and a doped region layer is formed on the surface of the composite thin film (upper thin film), which is a bulk region.
본 실시예에 따른 복합박막은 ZnO 기반의 트랜지스터 박막 동작층을 목표로 하고 있기 때문에, 총 두께가 약 20nm 정도 되는 박막이 적당하며, 이를 감안하였을 때 도판트 원자층을 갖는 도핑영역층은 전자 응집층이 형성되는 4nm 이내의 두께가 적절하며, 나머지 약 16nm 정도는 비도핑영역층으로 형성됨이 적절하다.Since the composite thin film according to the present embodiment targets a ZnO-based transistor thin film operating layer, a thin film having a total thickness of about 20 nm is suitable. In view of this, the doped region layer having the dopant atomic layer is electron-aggregated. The thickness within 4 nm in which the layer is formed is appropriate, and the remaining about 16 nm is appropriately formed as an undoped region layer.
실리콘 산화막이 100nm 형성되어 있는 실리콘 기판을 챔버 내에 투입하여 위치시켰다. 본 실시예에 있어서 박막 하부는 비도핑영역층인 ZnO 박막 매트릭스 원자층 만으로 이루어져야 하기 때문에, 도판트 전구체인 디에틸 아연(DEZ)만을 펄스하여, ZnO 박막 매트릭스 원자층을 증착시켜 비도핑영역층을 형성시켰다. 이때, 두께는 16nm가 되도록 사이클의 횟수를 약 80회로 조절하였다.A silicon substrate on which a silicon oxide film was formed 100 nm was placed in the chamber. In the present embodiment, since the lower portion of the thin film should be made of only the ZnO thin film matrix atomic layer, which is the undoped region layer, only the ethyl dopant precursor diethyl zinc (DEZ) is pulsed to deposit the ZnO thin film matrix atomic layer to form the undoped region layer. Formed. At this time, the number of cycles was adjusted to about 80 times so that the thickness is 16nm.
비도핑영역층을 형성시킨 이후, 도판트 원자층을 갖는 도핑영역층을 약 5nm 두께로 형성시켜 총 두께 20nm인 복합 박막을 제조하였다. 구체적으로, 4nm 두께를 위해 도핑영역층은 20 사이클 이내로 수행하여 형성하기로 결정하였다. 도판트 전구체(TMA)를 펄스하여 도판트 원자층을 적층하는 사이클을 1회 수행함에 따라, 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 10회 수행하는 경우(n:m=1:10, 실시예 1), 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 3회 수행하는 경우(n:m=1:3, 실시예 2) 또는 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 1회 수행하는 경우(n:m=1:1, 실시예 3)로 각각 나누어 증착을 수행하였다. 위와 같은 슈퍼사이클을 반복하여, 총 사이클이 약 20사이클이 되었을 때 중단하여 도핑영역층의 두께가 4nm가 되도록 형성하였다.After forming the undoped region layer, a doped region layer having a dopant atomic layer was formed to a thickness of about 5 nm to prepare a composite thin film having a total thickness of 20 nm. Specifically, the doped region layer was determined to be formed within 20 cycles for the 4nm thickness. When the dopant precursor (TMA) is pulsed and the dopant atomic layer is laminated once, the thin film matrix precursor (DEZ) is pulsed and the thin film matrix atomic layer is laminated 10 times (n: m = 1: 10, Example 1) When the thin film matrix precursor DEZ is pulsed to perform three cycles of laminating a thin film matrix atomic layer (n: m = 1: 3, Example 2) or a thin film matrix In the case where the cycle of stacking the thin film matrix atomic layer by pulsing the precursor DEZ was performed once (n: m = 1: 1, Example 3), deposition was performed. By repeating the above supercycle, when the total cycle is about 20 cycles was stopped to form a thickness of the doped region layer 4nm.
결과적으로, 박막의 일부 영역인 박막 상부가 Al으로 도핑된 ZnO 복합박막을 제조하였다. 상기 실시예 1에 따른 박막의 도핑영역층 내 Al의 원자 비율(농도)은 약 7%이고, 실시예 2는 약 20%, 및 실시예 3은 약 50%였다.As a result, a ZnO composite thin film in which a portion of the thin film, which is a portion of the thin film, is doped with Al was prepared. The atomic ratio (concentration) of Al in the doped region layer of the thin film according to Example 1 was about 7%, Example 2 was about 20%, and Example 3 was about 50%.
실시예 4 내지 6: 박막 하부에 도핑영역층을 구비한, Al으로 도핑된 ZnO 복합박막의 제조Examples 4 to 6: Preparation of Al-doped ZnO composite thin film having a doped region layer under the thin film
본 실시예에 있어서 복합박막은 트랜지스터 동작층으로서, 반도체/절연막 계면(박막 하부)에 도핑영역층을 형성하였다. 도핑영역층을 박막 하부에 형성시켰다는 것을 제외하고, 상기 실시예 1 내지 3과 동일하게 수행하였다. 구체적으론 아래와 같다.In this embodiment, the composite thin film is a transistor operating layer, and a doped region layer is formed at the semiconductor / insulating film interface (lower thin film). Except that the doped region layer was formed on the bottom of the thin film, the same procedure as in Examples 1 to 3. Specifically, it is as follows.
박막 하부 영역을 도핑영역층으로 하기 위해, 먼저 실리콘 기판상에 도핑영역층 형성을 20 사이클 이내(약 4nm)로 수행하였다. 도판트 전구체(TMA)를 펄스하여 도판트 원자층을 적층하는 사이클을 1회 수행함에 따라, 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 10회 수행하는 경우(n:m=1:10, 실시예 4), 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 3회 수행하는 경우(n:m=1:3, 실시예 5) 또는 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 1회 수행하는 경우(n:m=1:1, 실시예 6)로 각각 나누어 증착을 수행하였다. 위와 같은 슈퍼사이클을 반복하여, 총 사이클이 약 20사이클이 되었을 때 중단하여 도핑영역층의 두께가 4nm가 되도록 형성하였다.In order to make the lower region of the thin film a doped region layer, first, a doped region layer was formed on a silicon substrate within 20 cycles (about 4 nm). When the dopant precursor (TMA) is pulsed and the dopant atomic layer is laminated once, the thin film matrix precursor (DEZ) is pulsed and the thin film matrix atomic layer is laminated 10 times (n: m = 1: 10, Example 4) When the thin film matrix precursor DEZ is pulsed to perform three cycles of laminating the thin film matrix atomic layer (n: m = 1: 3, Example 5) or the thin film matrix When the cycle of stacking the thin film matrix atomic layer by pulsing the precursor DEZ was performed once (n: m = 1: 1, Example 6), deposition was performed. By repeating the above supercycle, when the total cycle is about 20 cycles was stopped to form a thickness of the doped region layer 4nm.
이후 상기 도핑영역층 상에 도판트 전구체인 디에틸 아연(DEZ)만을 펄스하여, ZnO 박막 매트릭스 원자층을 증착시켜 비도핑영역층을 형성시켰다. 이때, 두께는 16nm가 되도록 사이클의 횟수를 약 80회로 조절하였으며, 결과적으로 총 두께 약 20nm, 박막의 일부 영역인 박막 하부가 Al으로 도핑된 ZnO 복합박막을 제조하였다. 상기 실시예 4에 따른 박막의 도핑영역층 내 Al의 원자 비율(농도)은 약 7%이고, 실시예 5는 약 20%, 및 실시예 6은 약 50%였다.Subsequently, only dopant precursor diethyl zinc (DEZ) was pulsed on the doped region layer, thereby depositing a ZnO thin film matrix atomic layer to form an undoped region layer. At this time, the number of cycles was adjusted to about 80 times so that the thickness is 16nm, and as a result, a total thickness of about 20nm, a ZnO composite thin film was doped with Al in the lower portion of the thin film, which is a part of the thin film. The atomic ratio (concentration) of Al in the doped region layer of the thin film according to Example 4 was about 7%, Example 5 was about 20%, and Example 6 was about 50%.
비교예 1: ZnO 단일박막의 제조Comparative Example 1: Preparation of ZnO Single Thin Film
실리콘 산화막이 100nm 형성되어 있는, 상기 실시예 1 내지 6과 동일한 실리콘 기판을 챔버 내에 투입하여 위치시켰다. 상기 기판 상에, 단원자 증착법을 이용하여 박막 매트릭스 원자층을 적층함으로써 ZnO 단일박막을 제조하였다. 상기 실시예 1 내지 6과는 다르게 도판트 전구체(TMA)는 사용하지 않고, 박막 매트릭스 전구체인 디에틸 아연(DEZ)만을 펄스하여 사이클을 총 약 100회 반복 수행함으로써, 총 두께 20nm의 ZnO 단일박막을 제조하였다.The same silicon substrate as in Examples 1 to 6, in which a silicon oxide film was formed at 100 nm, was placed in the chamber. On the substrate, a ZnO single thin film was prepared by laminating a thin film matrix atomic layer using monoatomic deposition. Unlike the above Examples 1 to 6, a ZnO single thin film having a total thickness of 20 nm is repeated by repeating the cycle about 100 times without using a dopant precursor (TMA) and only diethyl zinc (DEZ), which is a thin film matrix precursor. Was prepared.
실험예 1: XPS 분석 Experimental Example 1: XPS Analysis
상기 실시예 4 내지 6에 따른 방법으로 제조된, 박막의 일부 영역인 박막 하부가 Al으로 도핑된 ZnO 복합박막에 대하여 전자분광 화학분석(XPS)을 이용하여 표면분석(박막분석)을 수행하였다.Surface analysis (thin film analysis) was performed on the ZnO composite thin film doped with Al in a portion of the thin film, which is prepared by the method according to Examples 4 to 6, using Al.
상기 실시예 4 내지 6에 따른 방법으로 제조된 복합박막을 1시간 동안 공기중에서 400℃로 열처리한 후, 박막 깊이에 따른 Al 2p 피크 분포를 XPS 분석으로 살펴보았다. 이온 빔 출력을 500eV로 고정하고 매 10초 간격으로 스펙트럼 포착을 수행하였다. 그 결과를 도 4에 나타내었다.After heat-treating the composite thin film prepared by the method according to Examples 4 to 6 at 400 ° C. in air for 1 hour, the Al 2p peak distribution according to the depth of the thin film was examined by XPS analysis. The ion beam output was fixed at 500 eV and spectral capture was performed every 10 seconds. The results are shown in FIG.
상기 XPS 분석 결과를 통하여, 상기 복합박막이 국부적으로 일부 영역층에만 Al2O3 원자층이 존재함을(Al이 도핑됨을) 확인할 수 있다. 나아가, 도핑된 Al의 농도가 증가함에도 불구하고(예를 들어, 도 4c) Al 피크가 특정 영역에만 존재하고 있어, 박막이 높은 온도로 열처리가 됐음에도 도판트 물질인 Al의 확산이 제한되어 거의 일어나지 않음을 확인할 수 있다. 이로써 본 발명에 따른 복합박막의 경우, 도판트가 박막 전체로 확산되지 않고 명확히 도핑영역층 내에서만 존재하는 것으로, 국부적으로 박막 일부 영역에만 Al이 도핑 가능함을 확인하였다.Through the XPS analysis result, it can be confirmed that the Al 2 O 3 atomic layer is present only in a partial region of the composite thin film (Al doped). Furthermore, even though the concentration of the doped Al is increased (for example, FIG. 4C), the Al peak exists only in a specific region, so that the diffusion of Al, which is a dopant material, hardly occurs even when the thin film is heat-treated at a high temperature. Can be confirmed. As a result, in the composite thin film according to the present invention, it was confirmed that the dopant was present only in the doped region layer without being diffused into the entire thin film, and Al could be locally doped only in a portion of the thin film.
실험예 2: TEM 이미지 및 EDX 분석Experimental Example 2: TEM image and EDX analysis
본 발명에 따른 복합박막에 대하여 TEM 이미지 및 EDX 분석을 수행하였다. 본 실험예 2의 분석 대상인 복합박막은 아래와 같이 제조하였다.TEM images and EDX analysis were performed on the composite thin film according to the present invention. Composite thin film to be analyzed in Experimental Example 2 was prepared as follows.
도핑영역층을 박막 중간에 형성시켰다는 것을 제외하고는, 상기 실시예 1 내지 3 또는 실시예 4 내지 6과 유사하게 수행하였다. 구체적으로, 실리콘 기판 상에 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 45회 수행하고, 이어서 그 위에 도판트 원자층을 적층하는 사이클을 1회 수행함에 따라, 박막 매트릭스 원자층을 적층하는 사이클을 1회 수행하는 슈퍼사이클(n:m=1:1)을 5회(총 10사이클) 수행하고, 나아가 그 위에 다시 박막 매트릭스 원자층을 적층하는 사이클을 45회 수행하였다(ZnO 45사이클→도핑 10사이클→ ZnO 45사이클).It was carried out similarly to Examples 1 to 3 or Examples 4 to 6, except that the doped region layer was formed in the middle of the thin film. Specifically, the thin film matrix is subjected to 45 cycles of laminating the thin film matrix precursor layer DEZ on the silicon substrate, followed by one cycle of laminating the dopant atomic layer thereon. Supercycle (n: m = 1: 1) was performed five times (10 cycles in total) for carrying out one cycle of atomic layer deposition, and then 45 times for laminating thin film matrix atomic layers thereon. (45 cycles of ZnO → 10 cycles of doping → 45 cycles of ZnO).
비교예 1에서 제조된 ZnO 단일박막 및 상기 제조된 복합박막에 있어서, 각각의 박막 단면 TEM 이미지와 EDX 라인 분포 결과를 각각 도 5a 및 도 5b에 나타내어 이들을 비교하였다.In the ZnO single thin film prepared in Comparative Example 1 and the composite thin film prepared above, respective thin film cross-sectional TEM images and EDX line distribution results are shown in FIGS. 5A and 5B, respectively, to compare them.
먼저, 비교예 1의 단일박막 단면 TEM 이미지(도 5a)와 상기 제조된 복합박막의 TEM 이미지(도 5b)를 비교하면, 본 발명에 따른 복합박막의 경우 Al 도핑영역층이 비도핑역층과는 구별되는 전자밀도를 가짐으로써, 도핑영역층이 박막 내에 명확히 형성되어 있음을 확인할 수 있다.First, comparing the TEM image (FIG. 5A) of the single thin film cross-section TEM image (FIG. 5B) of Comparative Example 1, in the case of the composite thin film according to the present invention, the Al doped region layer and the non-doping inverse layer By having a distinct electron density, it can be seen that the doped region layer is clearly formed in the thin film.
나아가, TEM 이미지에 화살표 방향에 대한 EDX 라인 분포를 비교하였을 때, 복합박막의 경우 Al이 델타함수와 비슷한 형태로 박막 중간에서 나타나고 있어, 명확히 구별되는 Al 도핑영역층의 존재를 관찰할 수 있었다(도 5b). 이는 앞서 도 4에서 확인한 바와 동일한 결과이다.Furthermore, when comparing the EDX line distribution with respect to the arrow direction in the TEM image, in the case of the composite thin film, Al appeared in the middle of the thin film in a similar form to the delta function, so that the presence of a distinctly doped Al layer could be observed. 5b). This is the same result as confirmed in FIG.
실험예 3: 도핑영역층 위치(국부적 도핑 위치)에 따른 트랜지스터 동작 특성Experimental Example 3: Transistor Operational Characteristics According to Doped Region Layer Location (Local Doping Position)
본 발명에 따른 복합박막에 있어서 도핑영역층 위치에 따른 트랜지스터 동작 특성의 차이를 살펴보기 위해, Al 도판트 농도는 동일하지만 박막 두께 방향에 있어 도핑영역층의 형성 위치를 달리하여 트랜지스터 동작 특성을 살펴보았다.In order to examine the difference in transistor operating characteristics according to the doped region layer position in the composite thin film according to the present invention, the Al dopant concentration is the same, but the transistor operating characteristics are examined by changing the formation position of the doped region layer in the thin film thickness direction. saw.
도핑영역층 형성 사이클은 모든 복합박막에 있어서, 도판트 전구체(TMA)를 펄스하여 도판트 원자층을 적층하는 사이클을 1회 수행함에 따라, 박막 매트릭스 전구체(DEZ)를 펄스하여 박막 매트릭스 원자층을 적층하는 사이클을 3회 수행하였다(n:m=1:3). 이러한 슈퍼사이클을 3회 반복하여 총 12사이클이 되도록 수행함으로써 도핑영역층을 형성하였다.The doping region layer forming cycle is performed on all the composite thin films by pulsing the dopant precursor layer by laminating the dopant precursor layer (TMA), thereby pulsing the thin film matrix precursor layer (DEZ). The lamination cycle was performed three times (n: m = 1: 3). This supercycle was repeated three times to form a total of 12 cycles to form a doped region layer.
상기 도핑영역층의 위치를 달리하기 위하여, 먼저 비도핑영역층인 ZnO 사이클을 10번 수행하고 상기 도핑영역층 사이클을 수행하고 다시 ZnO 사이클을 90번 수행하여(ZnO 10사이클→도핑 12사이클→ZnO 90사이클) 첫번째 복합박막을 제조하였다(10). 두번째 복합박막은 ZnO 25사이클→도핑 12사이클→ZnO 75사이클을 수행하여 제조하였고(25), 세번째 복합박막은 ZnO 50사이클→도핑 12사이클→ZnO 50사이클을 수행하여 제조하였고(50), 네번째 복합박막은 ZnO 75사이클→도핑 12사이클→ZnO 25사이클을 수행하여 제조하였고(75), 다섯번째 복합박막은 ZnO 90사이클→도핑 12사이클→ZnO 10사이클을 수행하여 제조하였다(90). 즉, 도핑영역층의 위치를 반도체/절연막 계면과 가까운 박막 하부 쪽부터, 박막 표면인 박막 상부 쪽까지 다양하게 분포시켜 제조하였다.In order to change the position of the doped region layer, first, the ZnO cycle, which is the non-doped region layer, is performed ten times, the doped region layer cycle is performed, and the ZnO cycle is performed 90 times (ZnO 10 cycles → doping 12 cycles → ZnO). 90 cycles) The first composite thin film was prepared (10). The second composite thin film was prepared by performing ZnO 25 cycles → 12 cycles of doping → ZnO 75 cycles (25), and the third composite thin film was prepared by performing ZnO 50 cycles → 12 doping cycles → ZnO 50 cycles (50). The thin film was prepared by performing ZnO 75 cycles → 12 cycles of doping → ZnO 25 cycles (75), and the fifth composite thin film was prepared by performing ZnO 90 cycles → 12 cycles of doping → 10 cycles of ZnO (90). That is, the doped region layer was manufactured by variously distributing a position from the lower side of the thin film close to the semiconductor / insulating film interface to the upper side of the thin film which is the thin film surface.
상기 복합박막들을 비교예 1의 단일박막(ref)과 비교하여 이들을 동작층으로 하는 박막 트랜지스터의 동작 특성을 살펴보았다. 실리콘 기판을 게이트 전극으로 한 박막 트랜지스터로서의 전도 특성을 도 6a 내지 도 6c에 나타내었다.The composite thin films were compared with the single thin film ref of Comparative Example 1 and the operating characteristics of the thin film transistor including the thin film transistor as the operating layer were examined. 6A to 6C show conduction characteristics of a thin film transistor using a silicon substrate as a gate electrode.
먼저, 도핑영역층이 박막 하부인 반도체/절연막 계면과 가깝게 위치한 경우(10)의 모빌리티(Mobility)는 ZnO 단일박막(ref)에 비해 1/3 수준으로 급격히 감소함을 확인할 수 있었다. 그러나 반도체/절연막 계면으로부터 도핑영역층이 멀리 떨어질수록(예를 들어, 75 및 90), ZnO 단일박막의 모빌리티와 별다른 차이가 없음을 확인할 수 있었다. 이로써, 도핑영역층이 박막 하부인 반도체/절연막 계면과 가깝게 위치할수록 박막의 모빌리티에 더 많은 영향을 미치며, 특정 두께 이상으로 멀리 위치하면 모빌리티 특성에 거의 영향을 주지 않음을 확인하였다(도 6c).First, when the doped region layer is located close to the semiconductor / insulation layer interface under the thin film (10) it can be seen that the mobility (Mobility) is rapidly reduced to 1/3 level compared to the ZnO single thin film (ref). However, as the doped region layer is farther away from the semiconductor / insulating layer interface (for example, 75 and 90), there is no difference with the mobility of the ZnO single thin film. As a result, the closer the doped region layer is located near the semiconductor / insulating layer interface under the thin film, the more it affects the mobility of the thin film, and the farther it is located above a certain thickness, it is confirmed that the mobility property is hardly affected (FIG. 6C).
나아가, 도핑영역층이 반도체/절연막 계면으로부터 도핑영역층이 멀리 떨어진 경우(75 및 90), I-V 특성 곡선이 음의 평형이동(negative parallel shift)함을 확인할 수 있었다(도 6a 및 도 6b).Furthermore, when the doped region layer is far away from the semiconductor / insulating layer interface (75 and 90), it can be seen that the I-V characteristic curve has a negative parallel shift (FIGS. 6A and 6B).
상기의 결과들로부터, 도핑영역층의 독립적인 위치에 따라 박막의 독립적인 특성에 영향을 미침을 확인할 수 있으며, 구체적으로 온(on) 특성은 박막 하부에 위치한 도핑영역층에 의해, 오프(off) 특성은 박막 상부에 위치한 도핑영역층에 의해 영향을 받음을 알 수 있다. 이로써 목적하는 박막 트랜지스터의 특성에 따라 도핑영역층의 위치 및 개수를 조절함으로써 복합 특성을 갖는 박막을 제공할 수 있음을 확인하였다.From the above results, it can be seen that the independent position of the doped region layer affects the independent characteristics of the thin film. Specifically, the on characteristic is turned off by the doped region layer located under the thin film. ) Is influenced by the doped region layer located on top of the thin film. As a result, it was confirmed that a thin film having complex characteristics could be provided by adjusting the position and number of the doped region layers according to the characteristics of the desired thin film transistor.
실험예 4: 도핑영역층 위치 및 Al 농도에 따른 XPS 분석Experimental Example 4 XPS Analysis According to Doping Region Layer Location and Al Concentration
본 발명에 따른 복합박막에 있어서, 도핑영역층의 위치와 도판트(Al)의 농도에 따른, 박막 깊이에 대한 XPS 분석을 수행하였다.In the composite thin film according to the present invention, XPS analysis was performed on the depth of the thin film according to the position of the doped region layer and the concentration of the dopant (Al).
상기 실시예 1 내지 3에 따른 방법으로 제조된, 박막 상부에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막과 상기 실시예 4 내지 6에 따른 방법으로 제조된, 박막 하부에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막에 대하여 XPS 분석을 실시하여 그 결과를 도 7a 내지 도 7f로 나타내었다.ZnO composite thin film having a doped region layer doped with Al on the thin film prepared by the method according to Examples 1 to 3 and doped with Al under the thin film prepared by the method according to Examples 4 to 6 above XPS analysis was performed on the ZnO composite thin film having the doped region layer and the results are shown in FIGS. 7A to 7F.
도핑영역층이 박막 상부에 있는 도 7a 내지 도 7c의 경우, 상부 영역에서, Al 도핑 농도가 증가할수록 즉, 도 7a에서 도 7c로 갈수록 Al 원자 비율은 증가하고 Zn 원자 비율은 감소하는, 박막 두께 방향으로 성분상 구분되는 도핑영역층이 존재함을 확인할 수 있다.7A-7C where the doped region layer is on top of the thin film, in the upper region, the Al thickness increases and the Zn atomic ratio decreases with increasing Al doping concentration, that is, from FIG. 7A to FIG. 7C. It can be seen that there is a doped region layer which is divided in phase in the component direction.
반면 도핑영역층이 박막 하부에 있는 도 7d 내지 도 7f의 경우, 박막 하부 영역(Si 반도체 계면)에서 Al 도핑 농도가 증가할수록(도 7d에서 도 7f로 갈수록), Al 원자 비율은 증가하며 Zn 원자 비율은 감소하는, 박막 두께 방향으로 성분상 구분되는 도핑영역층이 존재함을 확인할 수 있다.On the other hand, in FIGS. 7D to 7F in which the doped region layer is under the thin film, as the Al doping concentration increases in the thin film lower region (Si semiconductor interface) (from FIG. 7D to FIG. 7F), the Al atomic ratio increases and Zn atoms It can be seen that there is a doped region layer that is componently divided in the thin film thickness direction with a decreasing ratio.
이로써 본 발명에 따른 복합박막은 박막 내 두께방향으로 명확히 구분되는 도핑영역층의 위치 및 이의 농도를 원하는 대로 조절할 수 있음을 확인하였다.As a result, it was confirmed that the composite thin film according to the present invention can adjust the position and concentration of the doped region layer clearly defined in the thickness direction in the thin film as desired.
실험예 5: 박막 상부에 도핑영역층을 구비한, Al으로 도핑된 ZnO 복합박막의 트랜지스터 동작 특성Experimental Example 5: Transistor Operational Characteristics of Al-doped ZnO Composite Thin Film with Doping Region Layer on Top of Thin Film
상기 실시예 1 내지 3에 따른 방법으로 제조된, 복합박막 표면(박막 상부)에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막의 트랜지스터 동작 특성을 살펴보았고 그 결과를 도 8a 내지 도 8e에 나타내었다. 나아가 비교를 위해 비교예 1에 따른 방법으로 제조된 ZnO 단일박막을 함께 살펴보았다(Ref). The transistor operating characteristics of the ZnO composite thin film having the doped region layer doped with Al on the surface of the composite thin film (upper thin film) prepared by the method according to Examples 1 to 3 were examined and the results are shown in FIGS. 8A to 8E. Indicated. Furthermore, the ZnO single thin film manufactured by the method according to Comparative Example 1 was also examined for comparison (Ref).
먼저 앞서 실험예 3에서 살펴본 바와 같이, 박막 상부에 도핑영역층을 구비한 실시예 1 내지 3의 복합박막은 비교예 1에 비하여 I-V 특성 곡선이 음의 평형이동(negative parallel shift)함을 확인하였으며(도 8a 및 도 8b), 특히 Al 도판트의 농도가 높아질수록 더 큰 평형이동이 일어남을 확인할 수 있다(실시예 3). 이는 박막 상부에 도핑영역층이 형성될 경우, 박막 트랜지스터의 오프(off) 특성에 영향을 주기 때문이다.First, as described in Experiment 3, the composite thin films of Examples 1 to 3 having a doped region layer on the thin film were found to have a negative parallel shift in IV characteristic curve compared to Comparative Example 1. 8A and 8B, in particular, as the concentration of the Al dopant increases, a larger equilibrium shift may occur (Example 3). This is because when the doped region layer is formed on the thin film, the off characteristic of the thin film transistor is affected.
동일한 취지로 문턱 전압(Threshold Voltage)의 경우(도 8d), 비교예 1과 비교하여 큰 폭으로 변화하며, 특히 Al 도판트의 농도가 높아질수록 현저히 큰폭으로 변화함을 살펴볼 수 있다. 그러나 포화 모빌리티(Saturation Mobility)에는 별다른 영향을 주지 않음을 살펴볼 수 있다.For the same purpose, in the case of a threshold voltage (Fig. 8d), it is significantly changed compared to Comparative Example 1, and it can be seen that it changes significantly significantly as the concentration of the Al dopant increases. However, it can be seen that it does not affect saturation mobility.
결론적으로, 본 발명에 따른 복합박막에 있어 도핑영역층을 박막 상부에 구비시킬 경우, 오프(off) 특성인 문턱 전압을 제어할 수 있으며 이로써 디스플레이 패널과 같은 분야에 있어서 정밀한 제어가 가능한 박막 트랜지스터를 제공할 수 있음을 확인하였다.In conclusion, in the composite thin film according to the present invention, when the doped region layer is provided on the upper portion of the thin film, it is possible to control the threshold voltage, which is an off characteristic, thereby making a thin film transistor capable of precise control in a field such as a display panel. It was confirmed that it can be provided.
실험예 6: 박막 하부에 도핑영역층을 구비한, Al으로 도핑된 ZnO 복합박막의 트랜지스터 동작 특성Experimental Example 6: Transistor Operational Characteristics of Al-doped ZnO Composite Thin Film with Doping Region Layer Under
상기 실시예 4 내지 6에 따른 방법으로 제조된, 박막 하부(반도체/절연막 계면)에 Al으로 도핑된 도핑영역층을 구비한 ZnO 복합박막의 트랜지스터 동작 특성을 살펴보았고 그 결과를 도 9a 내지 도 9e에 나타내었다. 나아가 비교를 위해 비교예 1에 따른 방법으로 제조된 ZnO 단일박막을 함께 살펴보았다(Ref).The transistor operating characteristics of the ZnO composite thin film having the doped region layer doped with Al in the lower portion of the thin film (semiconductor / insulating film interface) manufactured by the method according to Examples 4 to 6 were examined and the results are illustrated in FIGS. 9A to 9E. Shown in Furthermore, the ZnO single thin film manufactured by the method according to Comparative Example 1 was also examined for comparison (Ref).
먼저 앞서 실험예 3에서 살펴본 바와 같이, 박막 하부에 도핑영역층을 구비한 실시예 4 내지 6의 복합박막은 비교예 1에 비하여 모빌리티가 크게 변화함을 확인하였다(도 9c 및 도 9e). 특히 앞서 실험예 5에서 박막 상부에 도핑영역층이 구비된 실시예 1 내지 3에 따른 박막과는 반대로, 문턱 전압(Threshold Voltage)의 경우(도 9d)엔 별다른 영향을 미치지 못하는 반면 포화 모빌리티(Saturation Mobility)에는 큰 영향을 미침을 살펴볼 수 있다(도 9c 및 도 9e). 이는 박막 하부에 도핑영역층이 형성될 경우, 상부에 형성될 때와는 전혀 다르게 박막 트랜지스터의 온(on) 특성에 영향을 주기 때문이다.First, as described in Experiment 3, it was confirmed that the mobility of the composite thin films of Examples 4 to 6 having the doped region layer under the thin film was significantly changed compared to Comparative Example 1 (FIGS. 9C and 9E). In particular, in contrast to the thin film according to Embodiments 1 to 3, in which the doped region layer is provided on the thin film in Experimental Example 5, in the case of the threshold voltage (FIG. 9D), the saturation mobility is not significantly affected. Mobility) can be seen to have a great effect (FIGS. 9C and 9E). This is because when the doped region layer is formed under the thin film, it affects the on characteristic of the thin film transistor differently from when formed on the top.
나아가 실시예 4 내지 6의 복합박막에 있어서 Al 농도에 따라 모빌리티 특성이 상반되게 변화함을 살펴볼 수 있었다. 즉, 실시예 4와 같이 Al 농도가 약 7% 정도로 낮은 경우, 비교예 1에 비하여 모빌리티 값이 상당히 증가함을 볼 수 있다. 그러나, 실시에 5 및 6과 같이 Al 농도가 약 20% 내지 약 50%로 높은 경우에는 모빌리티 값이 반대로 상당히 감소함을 볼 수 있다. 이는 지나치게 높아진 Al 원자 농도로 인해, 이물질인 Al이 ZnO 메트릭스를 붕괴시킴으로써 결정화된 ZnO 박막 구조가 유지될 수 없음에 기인한 것으로 사료된다.Furthermore, in the composite thin films of Examples 4 to 6, it was found that mobility characteristics were changed in accordance with Al concentration. That is, when Al concentration is as low as about 7% as in Example 4, it can be seen that the mobility value is significantly increased compared to Comparative Example 1. However, when the Al concentration is as high as about 20% to about 50% as in Examples 5 and 6, it can be seen that the mobility value is significantly reduced on the contrary. This is thought to be due to the excessively high Al atomic concentration that the crystallized ZnO thin film structure cannot be maintained by Al decomposing the ZnO matrix.
결론적으로, 본 발명에 따른 복합박막에 있어 도핑영역층을 박막 하부에 구비시키고(위치), 도판트 농도를 적절한 낮은 값으로 조절(농도, 약 7% 이내)할 경우, 온(on) 특성인 박막 모빌리티를 향상시킬 수 있으며 이로써 트랜지스터 동작층으로 우수한 박막을 제공할 수 있음을 확인하였다.In conclusion, in the composite thin film according to the present invention, when the doped region layer is provided under the thin film (position) and the dopant concentration is adjusted to an appropriate low value (concentration, within about 7%), It was confirmed that the thin film mobility can be improved, thereby providing an excellent thin film for the transistor operating layer.

Claims (21)

  1. 도핑영역층과 비도핑영역층을 구비하여 두께 방향으로 성분상에 있어서 복합 및 비대칭적인 복합박막에 있어서,In a composite thin film having a doped region layer and a non-doped region layer and asymmetric in composition in the thickness direction,
    상기 도핑영역층은 단원자 증착(atomic layer deposition, ALD)법으로 형성된 적층구조로서, 도판트 전구체를 이용하여 형성된 도판트 원자층 1 이상을 구비한 것이 특징인 복합박막.The doped region layer is a laminate structure formed by atomic layer deposition (ALD), and has a dopant atomic layer formed by using a dopant precursor.
  2. 제1항에 있어서, 상기 도핑영역층은 박막 매트릭스 전구체를 이용하여 형성된 박막 매트릭스 원자층 1 이상을 추가로 구비하며,The method of claim 1, wherein the doped region layer further comprises at least one thin film matrix atomic layer formed using a thin film matrix precursor,
    도판트 원자층과 박막 매트릭스 원자층의 적층시 일정한 ALD사이클 순환 규칙에 따라 적층되거나, 일정한 규칙 없이 적층된 것이 특징인 복합박막.A composite thin film characterized in that the lamination of a dopant atomic layer and a thin film matrix atomic layer in accordance with a constant ALD cycle circulation rules, or laminated without a constant rule.
  3. 제2항에 있어서, 상기 도핑영역층 내 도판트 원자층은 N개이고, 박막 매트릭스 원자층은 M개일 때(N과 M은 1 이상의 정수),3. The method of claim 2, wherein when there are N dopant atomic layers in the doped region layer and M thin film matrix atomic layers (N and M are integers of 1 or more),
    N:M은 1:1 내지 1:40인 것이 특징인 복합박막.N: M is a composite thin film, characterized in that 1: 1 to 1:40.
  4. 제1항에 있어서, 상기 도핑영역층 내 도판트 전구체를 이용하여 형성된 2개 이상의 도판트 원자층이 연속적으로 적층된 것이 특징인 복합박막.The composite thin film according to claim 1, wherein two or more dopant atomic layers formed by using a dopant precursor in the doped region layer are successively stacked.
  5. 제1항에 있어서, 상기 복합박막은 기판 상에 형성된 것이 특징인 복합박막.The composite thin film according to claim 1, wherein the composite thin film is formed on a substrate.
  6. 제1항에 있어서, 상기 복합박막은 DRAM의 절연막이고, 상기 도핑영역층은 전극과 접합하는 부위에 형성되어 있는 것이 특징인 복합박막.The composite thin film according to claim 1, wherein the composite thin film is an insulating film of a DRAM, and the doped region layer is formed at a portion to be bonded to an electrode.
  7. 제1항에 있어서, 상기 복합박막은 박막 트랜지스터의 동작층이고, 상기 도핑영역층은 반도체와의 계면에 형성되어 있는 것이 특징인 복합박막.The composite thin film according to claim 1, wherein the composite thin film is an operating layer of a thin film transistor, and the doped region layer is formed at an interface with a semiconductor.
  8. 제1항에 있어서, 상기 복합박막은 박막 트랜지스터의 동작층이고, 상기 도핑영역층은 복합박막의 표면에 형성되어 있는 것이 특징인 복합박막.The composite thin film according to claim 1, wherein the composite thin film is an operating layer of a thin film transistor, and the doped region layer is formed on a surface of the composite thin film.
  9. 제1항에 있어서, 상기 도핑영역층은 2nm 내지 4nm인 것이 특징인 복합박막.The composite thin film of claim 1, wherein the doped region layer is 2 nm to 4 nm.
  10. 제2항에 있어서, 상기 도판트 전구체 및 박막 매트릭스 전구체는 각각 서로 다른 금속 소스 화합물이며, 상기 금속은 Ti, Hf, Zr, Si, Al, Ta, Sr, Ba, Sc, Y, La, Eu 및 Dy로 이루어진 군에서 선택된 것이 특징인 복합박막.The method of claim 2, wherein the dopant precursor and the thin film matrix precursor are each different metal source compounds, and the metal is Ti, Hf, Zr, Si, Al, Ta, Sr, Ba, Sc, Y, La, Eu, and Composite thin film characterized in that selected from the group consisting of Dy.
  11. 제2항에 있어서, 상기 도판트 전구체는 트리메틸 알루미늄(trimethyl aluminum, TMA)을 포함하고,The method of claim 2, wherein the dopant precursor comprises trimethyl aluminum (TMA),
    상기 박막 매트릭스 전구체는 디에틸 아연(dietyl zinc, DEZ)을 포함하는 것이 특징인 복합박막.The thin film matrix precursor is a composite thin film comprising diethyl zinc (DEZ).
  12. 단원자 증착(atomic layer deposition, ALD)법을 이용하여, 기판 상에, 제1항 내지 제11항 중 어느 한 항에 기재된 복합박막을 제조하는 방법으로서,As a method of manufacturing the composite thin film according to any one of claims 1 to 11 on a substrate by using an atomic layer deposition (ALD) method,
    도판트 전구체를 이용하여 1 이상의 도판트 원자층을 적층하여 도핑영역층을 형성하는 단계를 포함하고,Laminating one or more dopant atomic layers using a dopant precursor to form a doped region layer,
    상기 도핑영역층을 형성하는 단계는, 반응 챔버 내에 도판트 전구체를 펄스(pulse)하여 ALD사이클에 의해 상기 도판트 원자층을 적층하는 제1단계; 및The forming of the doped region layer may include: a first step of depositing the dopant atomic layer by an ALD cycle by pulsing a dopant precursor in a reaction chamber; And
    박막 매트릭스 전구체를 펄스하여 ALD사이클에 의해 박막 매트릭스 원자층을 적층하는 제2단계를 포함하며,Pulsed the thin film matrix precursor to deposit a thin film matrix atomic layer by an ALD cycle;
    상기 제1단계 및 제2단계는 서로 상반된 순서로 진행될 수 있는 것이 특징인 제조 방법.The first step and the second step is characterized in that the proceeding in the order opposite to each other.
  13. 제12항에 있어서, 상기 ALD사이클은,The method of claim 12, wherein the ALD cycle,
    반응 챔버 내에 도판트 전구체 또는 박막 매트릭스 전구체를 펄스하는 제a단계;Pulse a dopant precursor or thin film matrix precursor in the reaction chamber;
    상기 반응 챔버로부터 여분의 도판트 전구체 또는 박막 매트릭스 전구체를 제거하는 제b단계;B) removing excess dopant precursor or thin film matrix precursor from the reaction chamber;
    상기 반응 챔버 내에 반응물을 펄스하는 제c단계; 및C) pulsed reactant in the reaction chamber; And
    상기 반응 챔버로부터 여분의 반응물 및 반응 생성물을 제거하는 제d단계를 포함하는 것이 특징인 제조 방법.And d) removing excess reactants and reaction products from the reaction chamber.
  14. 제12항에 있어서, 상기 제1단계의 ALD사이클은 n번 수행되고,The method of claim 12, wherein the ALD cycle of the first step is performed n times,
    상기 제2단계의 ALD사이클은 m번 수행되며,The ALD cycle of the second step is performed m times,
    상기 n과 m의 횟수를 조절하여 도핑 농도를 조절할 수 있는 것이 특징인 제조 방법.Manufacturing method characterized in that the doping concentration can be adjusted by adjusting the number of n and m.
  15. 제14항에 있어서, 상기 n:m은 1:1 내지 1:40인 것이 특징인 제조 방법.The method of claim 14, wherein n: m is 1: 1 to 1:40.
  16. 제14항에 있어서, 상기 제1단계 및 제2단계는 반복하여 수행되는 것이 특징인 제조 방법.The manufacturing method according to claim 14, wherein the first step and the second step are performed repeatedly.
  17. 제12항에 있어서, 상기 도판트 전구체 및 박막 매트릭스 전구체는 각각 서로 다른 금속 소스 화합물이며, 상기 금속은 Ti, Hf, Zr, Si, Al, Ta, Sr, Ba, Sc, Y, La, Eu 및 Dy로 이루어진 군에서 선택된 것이 특징인 제조 방법.The method of claim 12, wherein the dopant precursor and the thin film matrix precursor are each different metal source compounds, and the metal is Ti, Hf, Zr, Si, Al, Ta, Sr, Ba, Sc, Y, La, Eu, and A manufacturing method characterized by being selected from the group consisting of Dy.
  18. 제12항에 있어서, 상기 도판트 전구체는 트리메틸 알루미늄(trimethyl aluminum, TMA)을 포함하고,The method of claim 12, wherein the dopant precursor comprises trimethyl aluminum (TMA),
    상기 박막 매트릭스 전구체는 디에틸 아연(dietyl zinc, DEZ)을 포함하는 것이 특징인 제조 방법.And the thin film matrix precursor comprises diethyl zinc (DEZ).
  19. 제13항에 있어서, 상기 제c단계의 반응물은 H2O, O2, O3, O 라디칼들, H2O2 및 D2O로 이루어진 군으로부터 선택된 어느 하나 이상인 것이 특징인 제조 방법.The method of claim 13, wherein the reactant of step c is at least one selected from the group consisting of H 2 O, O 2 , O 3 , O radicals, H 2 O 2, and D 2 O.
  20. 제1항 내지 제11항 중 어느 한 항에 기재된 복합박막을 구비한 것이 특징인 전자 소자.An electronic device comprising the composite thin film according to any one of claims 1 to 11.
  21. 제20항에 있어서, 트랜지스터 또는 DRAM인 것이 특징인 전자 소자.The electronic device of claim 20 which is a transistor or a DRAM.
PCT/KR2014/009938 2013-10-23 2014-10-22 Complex and asymmetric composite thin film and method for preparing same using atomic layer deposition WO2015060636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0126765 2013-10-23
KR1020130126765A KR20150048259A (en) 2013-10-23 2013-10-23 Multi and asymmetric complex thin film using atomic layer deposition and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2015060636A1 true WO2015060636A1 (en) 2015-04-30

Family

ID=52993161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009938 WO2015060636A1 (en) 2013-10-23 2014-10-22 Complex and asymmetric composite thin film and method for preparing same using atomic layer deposition

Country Status (2)

Country Link
KR (1) KR20150048259A (en)
WO (1) WO2015060636A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102291279B1 (en) * 2019-11-29 2021-08-23 한국생산기술연구원 MCFC cathode to reduce nickel melt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080065517A (en) * 2007-01-09 2008-07-14 한국전자통신연구원 P type zno semiconductor manufacturing method using atomic layer deposition and thin film transistor including p type zno semiconductor
KR20090085695A (en) * 2006-12-08 2009-08-07 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Technique for atomic layer deposition
KR20090092728A (en) * 2008-02-27 2009-09-01 에이에스엠 아메리카, 인코포레이티드 Doping with ALD technology
KR20100019414A (en) * 2007-03-06 2010-02-18 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Technique for atomic layer deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090085695A (en) * 2006-12-08 2009-08-07 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Technique for atomic layer deposition
KR20080065517A (en) * 2007-01-09 2008-07-14 한국전자통신연구원 P type zno semiconductor manufacturing method using atomic layer deposition and thin film transistor including p type zno semiconductor
KR20100019414A (en) * 2007-03-06 2010-02-18 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Technique for atomic layer deposition
KR20090092728A (en) * 2008-02-27 2009-09-01 에이에스엠 아메리카, 인코포레이티드 Doping with ALD technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, KI - CHEOL ET AL.: "Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition", TRANS. KOREAN SOC. MECH. ENG. B, vol. 37, no. 6, June 2013 (2013-06-01), pages 577 - 582 *

Also Published As

Publication number Publication date
KR20150048259A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US7498230B2 (en) Magnesium-doped zinc oxide structures and methods
TWI500084B (en) Manufacturing method of semiconductor device
KR101509663B1 (en) Method of forming oxide semiconductor layer and method of manufacturing semiconductor device using the same
CN101471254B (en) Method for forming dielectric films
US7871940B2 (en) Apparatus and process for producing thin films and devices
US7887884B2 (en) Method for atomic layer deposition of materials using an atmospheric pressure for semiconductor devices
US20120261803A1 (en) High-k gate dielectric material and method for preparing the same
CN103597114A (en) Method and apparatus for ion-assisted atomic layer deposition
WO2016122081A1 (en) Method for producing metal chalcogenide thin film
WO2018066884A1 (en) Method for preparing composite membrane
KR100752559B1 (en) Method of forming a dielectric film
WO2015060636A1 (en) Complex and asymmetric composite thin film and method for preparing same using atomic layer deposition
KR101060740B1 (en) Capacitor comprising a dielectric film containing strontium and titanium and a method of manufacturing the same
WO2017082695A2 (en) Metal-carbide-oxide thin film comprising carbon, oxide, and metal, and method for manufacturing same
US7829457B2 (en) Protection of conductors from oxidation in deposition chambers
KR101472409B1 (en) Preparation of CIS thin film solar cells using chemical vapor depositions
KR20230000470A (en) Method for manufacturing Bi2O2Se thin film using organometallic chemical vapor deposition method and precursor for the same
KR101141244B1 (en) The method for forming gate oxide film using contorl of Hf-oxide film thickness and gate electrode using the same
JP5187736B2 (en) Thin film deposition method
WO2023096270A1 (en) Masking agent for high dielectric constant thin film, selected area deposition method using same, and semiconductor substrate and semiconductor device manufactured thereby
KR101991456B1 (en) Multi and asymmetric complex thin film using atomic layer deposition and method for manufacturing thereof
WO2022245021A1 (en) Thin film deposition method
US20220123131A1 (en) Method of forming structures for threshold voltage control
KR100844956B1 (en) Capacitor with zrconium oxide and niobium oxide and method for manufacturing the same
US20240153762A1 (en) Wafer for the cvd growth of uniform graphene and method of manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855224

Country of ref document: EP

Kind code of ref document: A1