WO2015060405A1 - Solar heat utilization system - Google Patents

Solar heat utilization system Download PDF

Info

Publication number
WO2015060405A1
WO2015060405A1 PCT/JP2014/078257 JP2014078257W WO2015060405A1 WO 2015060405 A1 WO2015060405 A1 WO 2015060405A1 JP 2014078257 W JP2014078257 W JP 2014078257W WO 2015060405 A1 WO2015060405 A1 WO 2015060405A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature
pump
collector
storage tank
Prior art date
Application number
PCT/JP2014/078257
Other languages
French (fr)
Japanese (ja)
Inventor
正登 小粥
義裕 市野
元巳 稲垣
Original Assignee
矢崎エナジーシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎エナジーシステム株式会社 filed Critical 矢崎エナジーシステム株式会社
Priority to CN201480057971.8A priority Critical patent/CN105723162B/en
Publication of WO2015060405A1 publication Critical patent/WO2015060405A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1012Arrangement or mounting of control or safety devices for water heating systems for central heating by regulating the speed of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1042Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a heat storage system such as a solar heat utilization system.
  • Such a solar heat utilization system circulates a heat medium by driving a pump.
  • the pump starts operation when the temperature difference between the heat medium temperature in the solar heat collecting device and the heat storage temperature in the heat storage tank is equal to or higher than the first predetermined value, and is lower than the second predetermined value lower than the first predetermined value. Operation stops.
  • the heat medium temperature of the solar heat collecting device during the pump stop tends to be detected differently depending on the mounting position of the temperature sensor.
  • the detected temperature of the heat medium tends to vary depending on the installation location. There is.
  • the heat medium temperature is not detected differently only when a temperature sensor is installed in the return pipe, but is detected differently due to various factors such as contamination of the heat collecting part of the solar heat collecting device. It is.
  • the temperature difference is unlikely to be equal to or higher than the first predetermined value, and from the original temperature of the heat medium, the temperature difference is equal to or higher than the first predetermined value. In spite of this, the pump may not operate and the heat collection efficiency may be reduced.
  • the above problem is not limited to the solar heat utilization system that supplies hot water stored in the heat storage tank to the home, etc., but also uses solar heat that uses the heat medium and heat stored in the heat storage tank for the operation of other equipment. This is a common problem in the system.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a solar heat utilization system capable of improving the heat collection efficiency.
  • the solar heat utilization system of the present invention includes a heat collecting device that heats a heat medium by receiving sunlight, a heat storage tank that stores heat by introducing the heat medium heated by the heat collecting apparatus, and the heat storage tank.
  • a pump that circulates the heat medium again to the heat storage tank through the heat collection device, a plurality of first temperature sensors that detect the temperature of the heat medium heated by the heat collection device, and a heat storage temperature in the heat storage tank.
  • the average value of the temperature difference between the second temperature sensor for detecting the temperature, the temperature of the heat medium detected by the plurality of first temperature sensors, and the heat storage temperature detected by the second temperature sensor is equal to or greater than a first predetermined value.
  • Control means for operating the pump in the event that the value becomes equal to or less than a second predetermined value that is lower than the first predetermined value, and stopping the pump when the average value is lower than the first predetermined value. 1 or to heat the heating medium by receiving sunlight
  • a plurality of heat collector groups each constituted by a plurality of heat collectors, wherein the plurality of first temperature sensors are provided for two or more heat collector groups of the plurality of heat collector groups.
  • the control means predetermines the pump when the average value is not equal to or greater than the first predetermined value while the pump is stopped and a part of the temperature difference is equal to or greater than the first predetermined value. It is characterized by being operated for hours.
  • a part of the temperature difference between the temperature of the heat medium detected by the plurality of first temperature sensors and the heat storage temperature detected by the second temperature sensor is a first predetermined value.
  • the pump is operated for a predetermined time. For this reason, a heat medium will be stirred by the driving
  • the temperature of the heat medium in the heat collector is averaged by stirring, and the mounting position of the first temperature sensor has an effect.
  • it is possible to reduce the frequency of occurrence of a situation where heat can be collected even though it can be collected. Therefore, it is possible to improve the heat collection efficiency.
  • the control means detects the temperature of the heat medium detected by one of the plurality of first temperature sensors and the other first temperature sensors excluding the one.
  • the one first temperature sensor or the heat collector group provided with the one first temperature sensor is in an abnormal state. It is preferable to judge.
  • the one temperature sensor or the heat collector group provided with the one first temperature sensor is determined to be in an abnormal state.
  • the case where there is a difference greater than a specified value with respect to the average value includes sensor failure, dirt on the panel surface of the heat collecting device, clogging of the flow path, and the like.
  • the heat collector is of a vacuum tube type, the vacuum tube is broken. Therefore, when such a detection value is shown, it can be determined that the state is abnormal.
  • the average value is not limited to the average value itself, but is a concept including a value obtained by further calculating the average value, that is, a value derived from the average value.
  • FIG. 1 is a schematic configuration diagram of a heat storage system according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing details of the solar heat collecting apparatus shown in FIG. 1.
  • FIG. 3 is a diagram illustrating pump control by the control panel according to the present embodiment.
  • FIG. 4 is a flowchart showing a control method of the heat storage system according to the present embodiment.
  • FIG. 1 is a schematic configuration diagram of a heat storage system according to an embodiment of the present invention.
  • a heat storage system 1 performs heat storage using solar heat, and includes a solar heat collector (heat collector) 11, a heat storage tank 12, and a heat collection channel. 13 and a heat collecting pump (pump) 14.
  • the solar heat collector 11 heats the heat medium by receiving sunlight, and is installed at a position that is easy to receive sunlight and has an inclination, for example, on a roof.
  • the heat medium water, antifreeze, propylene glycol aqueous solution, or the like is used.
  • the heat storage tank 12 introduces a heat medium heated by the solar heat collector 11 and stores heat.
  • the heat storage tank 12 is a tank that stores a heat medium therein. Moreover, the heat storage tank 12 may store the heat of the introduced heat medium with a heat storage material.
  • the heat storage tank 12 is connected to a heat utilization device (for example, an absorption chiller / heater) that operates using heat, and the heat stored in the heat accumulation tank 12 is used by the heat utilization device.
  • a heat utilization device for example, an absorption chiller / heater
  • the heat storage tank 12 stores heat with a heat storage material
  • a heat storage material for example, magnesium hydroxide is used as the heat storage material, but is not limited thereto.
  • the heat storage tank 12 may function as a so-called hot water storage tank, and hot water may be supplied to a home or the like.
  • the heat storage tank 12 may be of a type including a heat exchanger.
  • the heat collection channel 13 is a pipe that circulates the heat medium from the heat storage tank 12 to the heat storage tank 12 again through the solar heat collector 11.
  • the flow path from the heat storage tank 12 to the solar heat collection apparatus 11 is referred to as a first heat collection flow path 13a
  • the flow path from the solar heat collection apparatus 11 to the heat storage tank 12 is referred to as a second heat collection flow path 13b.
  • the heat collection pump 14 is provided in the first heat collection flow path 13a of the heat collection flow path 13, and serves as a power source for circulating the heat medium from the heat storage tank 12 to the heat storage tank 12 again through the solar heat collecting apparatus 11. It is.
  • the heat storage system 1 includes a plurality of heat collector temperature sensors (a plurality of first temperature sensors) 15, a heat storage tank temperature sensor (second temperature sensor) 16, and a control panel (control means) 17. It has.
  • the plurality of heat collecting device temperature sensors 15 detect the temperature of the heat medium heated by the solar heat collecting device 11 and transmit a signal corresponding to the heat medium temperature to the control panel 17.
  • the heat storage tank temperature sensor 16 detects the temperature of the heat medium in the heat storage tank 12 (heat storage temperature of the heat storage tank 12), and transmits a signal corresponding to the heat medium temperature to the control panel 17.
  • the control panel 17 includes a CPU (Central Processing Unit) and controls the entire heat storage system 1 by the CPU.
  • the control panel 17 controls the heat collection pump 14 based on the temperature of the heat medium detected by the plurality of heat collector temperature sensors 15 and the heat storage temperature detected by the heat storage tank temperature sensor 16. .
  • FIG. 2 is a configuration diagram showing details of the solar heat collecting apparatus 11 shown in FIG.
  • the solar heat collector 11 is a so-called reverse return type heat collector, and includes a plurality (three) of heat collector groups 11a to 11c.
  • the plurality of heat collector groups 11a to 11c introduce and heat the heat medium in parallel with each other, and the plurality of (five) heat collectors 11a1 to 11a1 to heat the heat medium by receiving sunlight.
  • 11a5, 11b1 to 11b5, 11c1 to 11c5 are respectively configured.
  • the solar heat collector 11 includes a forward pipe 11d, a branch forward pipe 11e1 to 11e3, a return pipe 11f, and a branch return pipe 11g1 to 11g3 in addition to the heat collector groups 11a to 11c. .
  • the forward piping 11d introduces the heat medium from the heat storage tank 12.
  • the branch outgoing pipes 11e1 to 11e3 are pipes, one end of which is connected to the outgoing pipe 11d, for feeding the heat medium from the outgoing pipe 11d to each of the heat collector groups 11a to 11c.
  • the first branch outgoing pipe 11e1 has one end connected to the outgoing pipe 11d and the other end connected to the first heat collector group 11a.
  • the second branch forward pipe 11e2 has one end connected to the forward pipe 11d, the other end connected to the second heat collector group 11b, and is connected in parallel to the first branch forward pipe 11e1.
  • the third branch forward pipe 11e3 has one end connected to the forward pipe 11d, the other end connected to the third heat collector group 11c, and is connected in parallel to the first and second branch forward pipes 11e1 and 11e2. .
  • one end of the first branch outgoing pipe 11e1 is connected to the front side (that is, the side closer to the heat collecting pump 14 and the heat storage tank 12) of the outgoing pipe 11d than the other branch outgoing pipes 11e2 and 11e3.
  • One end of the third branch forward pipe 11e3 is connected to the end of the forward pipe 11d, and one end of the second branch forward pipe 11e2 is an intermediate point in the forward pipe 11d (that is, the first branch forward pipe 11e1 and the forward pipe). Between the connection point of the pipe 11d and the connection point of the third branch forward pipe 11e3 and the forward pipe 11d).
  • the first heat collector group 11a includes a plurality (five) of heat collectors 11a1 to 11a5
  • the first branch outgoing pipe 11e1 has a heat medium in parallel with each of the heat collectors 11a1 to 11a5.
  • the other end is branched into a plurality (5) so as to be supplied.
  • the second and third heat collector groups 11b and 11c are also provided with a plurality (five) of heat collectors 11b1 to 11b5 and 11c1 to 11c5, respectively, so that the second and third branch outgoing pipes 11e2 and 11e3 are provided.
  • the other end side is branched into a plurality (five) so that the heat medium is supplied in parallel to the respective heat collectors 11b1 to 11b5 and 11c1 to 11c5.
  • the return pipe 11f discharges the heated heat medium to the heat storage tank 12 side.
  • the branch return pipes 11g1 to 11g3 are pipes whose other ends are connected to the return pipe 11f, and for transferring the heat medium from the respective heat collector groups 11a to 11c to the return pipe 11f.
  • the first branch return pipe 11g1 has one end connected to the first heat collector group 11a and the other end connected to the return pipe 11f.
  • the second branch return pipe 11g2 has one end connected to the second heat collector group 11b, the other end connected to the return pipe 11f, and connected in parallel to the first branch return pipe 11g1.
  • the third branch return pipe 11g3 has one end connected to the third heat collector group 11c, the other end connected to the return pipe 11f, and connected in parallel to the first and second branch return pipes 11g1 and 11g2. Yes.
  • the other end of the first branch return pipe 11g1 is connected to the end of the return pipe 11f.
  • the other end of the third branch return pipe 11g3 is connected to the near side (that is, the side closer to the heat storage tank 12) than the other branch return pipes 11g1 and 11g2.
  • the other end of the second branch return pipe 11g2 is an intermediate point in the return pipe 11f (that is, a connection point between the first branch return pipe 11g1 and the return pipe 11f, and a connection point between the third branch return pipe 11g3 and the return pipe 11f). Between).
  • the first branch return pipe 11g1 receives a heat medium from each of the heat collectors 11a1 to 11a5 in parallel.
  • One end is branched into a plurality (five) so as to be accepted.
  • the second and third heat collector groups 11b and 11c are also provided with a plurality (five) of heat collectors 11b1 to 11b5 and 11c1 to 11c5, respectively, so that the second and third branch return pipes 11g2 and 11g3 are provided.
  • the plurality of heat collector groups 11a to 11c introduce and heat the heat medium in parallel with each other.
  • the configuration of the solar heat collector 11 is not limited to that shown in FIG. 2, and may be connected to a pipe so as to be, for example, a direct return method, or may be configured by a vacuum tube type heat collector.
  • the solar heat collecting apparatus 11 is of a vacuum tube type, it goes without saying that the plurality of heat collectors 11a1 to 11a5, 11b1 to 11b5, 11c1 to 11c5 are constituted by vacuum tube type heat collecting tubes.
  • the plurality of heat collector groups 11a to 11c include a plurality of heat collectors 11a1 to 11a5, 11b1 to 11b5, and 11c1 to 11c5, respectively. .
  • the heat medium temperature tends to be detected differently depending on the mounting position of the heat collector temperature sensor 15. Further, when only a part of the surface of the heat collector is dirty, the solar heat collector 11 has a plurality of heat collector groups 11a to 11c as a heat medium regardless of the mounting position of the heat collector temperature sensor 15. Differences in temperature may occur.
  • the plurality of heat collector temperature sensors 15 are provided for each of the heat collector groups 11a to 11c as shown in FIG.
  • the first heat collector temperature sensor 15a is provided on the outlet side of the first branch return pipe 11g1 provided for the first heat collector group 11a
  • the second heat collector temperature sensor 15b is the second heat collector temperature sensor 15b.
  • a third heat collecting device temperature sensor 15c is provided on the outlet side of the second branch return pipe 11g2 provided for the heat collector group 11b, and a third branch return pipe provided for the third heat collector group 11c. 11g3 outlet side.
  • the plurality of heat collector temperature sensors 15 are not limited to one provided for each of the heat collector groups 11a to 11c, and are provided two for each of the heat collector groups 11a to 11c. Alternatively, the number of sensors attached to each of the heat collector groups 11a to 11c may be different.
  • the plurality of heat collector temperature sensors 15 are provided for all of the heat collector groups 11a to 11c.
  • the present invention is not limited to this, and two or more heat collector groups ( For example, what is necessary is just to be provided in the 1st and 2nd heat collector group 11a, 11b).
  • the plurality of heat collector temperature sensors 15 be provided at the same position in each of the heat collector groups 11a to 11c. That is, in the example shown in FIG. 2, the plurality of heat collector temperature sensors 15 are provided on the outlet sides of the branch return pipes 11g1 to 11g3, respectively, and are provided at the same positions. This is because the heat collecting pump 14 can be operated more accurately in the processing described later by providing the same position in this way.
  • FIG. 3 is a diagram showing pump control by the control panel 17 according to the present embodiment.
  • the control panel 17 calculates the temperature difference between each temperature of the heat medium detected by the plurality of heat collector temperature sensors 15 and the temperature of the heat medium (heat storage temperature) detected by the heat storage tank temperature sensor 16. calculate.
  • the control panel 17 calculates the average value of the differential temperatures.
  • the control panel 17 heat collecting pump 14 is operated. Further, when it is determined that the differential temperature is equal to or lower than T2 ° C. (second predetermined value) lower than T1 ° C. during the operation of the heat collection pump 14, the control panel 17 stops the heat collection pump 14.
  • control panel 17 executes the following control.
  • FIG. 4 is a flowchart showing a control method of the heat storage system 1 according to the present embodiment. In addition, the process shown in FIG. 4 is repeatedly performed until the heat storage system 1 stops.
  • the control panel 17 calculates an average value of the differential temperatures and determines whether the average value is equal to or higher than T1 ° C. (S1). When it is determined that the average value is equal to or higher than T1 ° C. (S1: YES), the control panel 17 starts the operation of the heat collecting pump 14 (S2).
  • control panel 17 refers to the detected temperature of each of the plurality of heat collecting device temperature sensors 15, and removes the temperature of the heat medium detected by one of the plurality of first temperature sensors 15 and the other one. It is determined whether the average value of the temperature of the heat medium detected by the first temperature sensor 15 has a difference equal to or greater than a specified value (S3). More specifically, the control panel 17 determines whether the difference between the temperature detected by the first heat collector temperature sensor 15a and the temperature detected by the second and third heat collector temperature sensors 15b, 15c is greater than a specified value.
  • step S5 it is determined whether the difference between the detected temperature of the second heat collector temperature sensor 15b and the detected temperature of the first and third heat collector temperature sensors 15a and 15c has a difference equal to or greater than a specified value.
  • step S5 it is determined whether or not the difference between the temperature detected by the third heat collector temperature sensor 15c and the temperature detected by the first and second heat collector temperature sensors 15a and 15b is greater than a specified value.
  • the control panel 17 determines whether the heat collector temperature sensor 15 having a difference equal to or greater than a specified value or the sensor 15 is present. It is determined that the provided heat collector groups 11a to 11c are in an abnormal state, and a display and sound to that effect are output (S4). Examples of the abnormality include failure of the heat collector temperature sensor 15 having a difference of a specified value or more, contamination on the surface of the heat collector of the solar heat collector 11, clogging of the flow path, and the like. In addition, when the heat collectors 11a1 to 11a5, 11b1 to 11b5, and 11c1 to 11c5 are vacuum tube type heat collectors, the vacuum tubes are broken. After output, the process proceeds to step S5.
  • step S5 the control panel 17 calculates an average value of the differential temperatures and determines whether the average value is T2 ° C. or less (S5). When it is determined that the average value is T2 ° C. or less (S5: YES), the control panel 17 stops the operation of the heat collecting pump 14 (S6). Then, the processing shown in FIG. 4 proceeds to step S1. On the other hand, when it is determined that the average value is not equal to or lower than T2 ° C. (S5: NO), the process proceeds to step S2.
  • the control panel 17 detects each temperature of the heat medium detected by the plurality of heat collector temperature sensors 15 and the heat storage tank temperature sensor 16. It is determined whether a part of the temperature difference from the temperature of the heat medium that has been performed is equal to or higher than T1 ° C. (S7).
  • step S1 If it is determined that all are not T1 ° C. or higher (S7: NO), the process proceeds to step S1. On the other hand, when it is determined that a part of the temperature is T1 ° C. or higher (S7: YES), the control panel 17 starts the operation of the heat collecting pump 14 (S8). As a result, the heat medium is agitated, and even if there is a difference in the heat medium temperature in the solar heat collector 11 when the pump is stopped, the heat medium temperature in the solar heat collector 11 is averaged by the agitation. The situation where the operation of the heat collecting pump 14 in step S2 is not performed due to the mounting position of the heat collecting device temperature sensor 15 is prevented.
  • control panel 17 determines whether t minutes have elapsed from the start of operation (S9). If it is determined that t minutes have not elapsed (S9: NO), the process proceeds to step S8. On the other hand, when it is determined that t minutes have elapsed (S9: YES), the control panel 17 determines that the stirring of the heat medium has been completed and stops the operation of the heat collecting pump 14 (S6). Then, the processing shown in FIG. 4 proceeds to step S1.
  • the heat collection pump 14 is operated for t minutes. For this reason, the heat medium is agitated by the operation of the heat collecting pump 14.
  • the heat medium temperature in the solar heat collector 11 is averaged by stirring, and the heat collector temperature in the solar heat collector 11 is averaged.
  • the frequency of occurrence of a situation in which heat is not collected even though the heat can be collected due to the mounting position of the heat device temperature sensor 15 can be suppressed. Therefore, it is possible to improve the heat collection efficiency.
  • one heat collector temperature sensor 15 or the heat collector groups 11a to 11c provided with the heat collector temperature sensor 15 is in an abnormal state.
  • the case where there is a difference greater than a specified value with respect to the average value includes sensor failure, contamination on the surface of the heat collector of the solar heat collector 11, clogging of the flow path, and the like.
  • the heat collectors 11a1 to 11a5, 11b1 to 11b5, and 11c1 to 11c5 are vacuum tube type heat collectors, the vacuum tubes are broken. Therefore, when such a detection value is shown, it can be determined that the state is abnormal.
  • a heat collector (11) that heats the heat medium by receiving sunlight, A heat storage tank (12) for storing heat by introducing a heat medium heated by the heat collector (11); A pump (heat collection pump 14) for circulating a heat medium from the heat storage tank (12) to the heat storage tank (12) again through the heat collecting device (11); A plurality of first temperature sensors (heat collector temperature sensor 15) for detecting the temperature of the heat medium heated by the heat collector (11); A second temperature sensor (heat storage tank temperature sensor 16) for detecting the heat storage temperature in the heat storage tank (12); The average value of the temperature difference between each temperature of the heat medium detected by the plurality of first temperature sensors (heat collector temperature sensor 15) and the heat storage temperature detected by the second temperature sensor (heat storage tank temperature sensor 16).
  • the pump (heat collecting pump 14) is operated when the value becomes equal to or higher than the first predetermined value, and the pump (heat collecting value) when the average value becomes equal to or lower than the second predetermined value lower than the first predetermined value.
  • the heat collector (11) has a plurality of heat collector groups (11a to 11c) each constituted by one or a plurality of heat collectors that heat the heat medium by receiving sunlight.
  • the plurality of first temperature sensors are provided for two or more heat collector groups of the plurality of heat collector groups (11a to 11c),
  • the control means (control panel 17) is configured such that the average value is not equal to or more than the first predetermined value while the pump (heat collecting pump 14) is stopped, and a part of the differential temperature is the first predetermined value.
  • a solar heat utilization system that causes the pump (heat collecting pump 14) to operate for a predetermined time in the case described above.
  • the control means is configured so that the temperature of the heat medium detected by one of the plurality of first temperature sensors (heat collecting device temperature sensor 15) and other than the one are excluded.
  • the one first temperature sensor (heat collector temperature sensor 15) or The solar heat utilization system according to [1], wherein the heat collector group provided with the one first temperature sensor (heat collector temperature sensor 15) is determined to be in an abnormal state.
  • the present invention it is possible to improve the heat collection efficiency.
  • the present invention having this effect is useful for a solar heat utilization system.
  • Thermal storage system (solar heat utilization system) 11 Solar heat collector (heat collector) 11a to 11c Multiple heat collector groups 11a1 to 11a5, 11b1 to 11b5, 11c1 to 11c5 Heat collector 11d Outward pipe 11e1 to 11e3 Branch forward pipe 11f Return pipe 11g1 to 11g3 Branch return pipe 12 Heat storage tank 13 Heat collection path 14 Heat pump (pump) 15 Multiple heat collector temperature sensors (multiple first temperature sensors) 16 Thermal storage tank temperature sensor (second temperature sensor) 17 Control panel (control means)

Abstract

A heat storage system (1) equipped with: a solar heat collection device (11); a heat storage tank (12); a heat collection pump (14); multiple heat collection device temperature sensors (15); a heat storage tank temperature sensor (16); and a control board (17). The solar heat collection device (11) has multiple heat collector groups (11a-11c) each of which is configured from one or more heat collectors that heat a heat medium by receiving sunlight, and the multiple heat collection device temperature sensors (15) are provided with respect to two or more of the multiple heat collector groups (11a-11c). During the time when the heat collection pump (14) is stopped, if the average value of the temperature difference between the heat storage temperature detected by the heat storage tank temperature sensor (16) and the respective heat medium temperatures detected by the multiple heat collection device temperature sensors (15) is less than a temperature T1°C and some of the temperature differences are equal to or greater than the temperature T1°C, the control board (17) causes the heat collection pump (14) to operate for a prescribed period of time.

Description

太陽熱利用システムSolar heat utilization system
 本発明は、太陽熱利用システムなどの蓄熱システムに関する。 The present invention relates to a heat storage system such as a solar heat utilization system.
 従来、太陽熱集熱装置に対して熱媒を供給し、太陽光の受光によって加熱された熱媒を利用して蓄熱槽の冷水を加熱し、加熱により得られた温水を家庭内等に供給する太陽熱利用システムが提案されている(特許文献1,2参照)。 Conventionally, a heat medium is supplied to a solar heat collector, the cold water in the heat storage tank is heated using the heat medium heated by receiving sunlight, and the hot water obtained by the heating is supplied to the home etc. A solar heat utilization system has been proposed (see Patent Documents 1 and 2).
 このような太陽熱利用システムは、熱媒をポンプの駆動により循環させている。ポンプは、太陽熱集熱装置における熱媒温度と蓄熱槽における蓄熱温度の差温が第1所定値以上となった場合に運転が開始し、第1所定値よりも低い第2所定値以下となった場合に運転が停止する。 Such a solar heat utilization system circulates a heat medium by driving a pump. The pump starts operation when the temperature difference between the heat medium temperature in the solar heat collecting device and the heat storage temperature in the heat storage tank is equal to or higher than the first predetermined value, and is lower than the second predetermined value lower than the first predetermined value. Operation stops.
日本国特開昭63-213763号公報Japanese Laid-Open Patent Publication No. Sho 63-213763 日本国特開昭63-207951号公報Japanese Unexamined Patent Publication No. Sho 63-207951
 上記太陽熱利用システムでは、太陽熱集熱装置からの熱媒温度を正確に計測することが肝要となる。しかし、従来の太陽熱利用システムにおいて、ポンプ停止中における太陽熱集熱装置の熱媒温度は温度センサの取り付け位置によって異なって検出されてしまう傾向がある。特に、太陽熱集熱装置内において集熱器からの熱媒を蓄熱槽側に供給する為の戻り配管に温度センサを設置した場合には、取付場所によって熱媒の検出温度に差が生じやすい傾向がある。 In the solar heat utilization system, it is important to accurately measure the heat medium temperature from the solar heat collector. However, in the conventional solar heat utilization system, the heat medium temperature of the solar heat collecting device during the pump stop tends to be detected differently depending on the mounting position of the temperature sensor. In particular, when a temperature sensor is installed in the return pipe for supplying the heat medium from the heat collector to the heat storage tank in the solar heat collector, the detected temperature of the heat medium tends to vary depending on the installation location. There is.
 なお、熱媒温度は戻り配管に温度センサを設置した場合のみに異なって検出されてしまうのではなく、太陽熱集熱装置の集熱部の汚れなど、種々の要因によって異なって検出されてしまうものである。 Note that the heat medium temperature is not detected differently only when a temperature sensor is installed in the return pipe, but is detected differently due to various factors such as contamination of the heat collecting part of the solar heat collecting device. It is.
 そして、熱媒温度が低くなる箇所に温度センサが取り付けられていた場合には、上記差温が第1所定値以上になり難く、熱媒の本来の温度からすると差温は第1所定値以上になっているにも拘わらず、ポンプが運転せずに集熱効率の低下を招いてしまうことがある。 When the temperature sensor is attached at a location where the temperature of the heat medium becomes low, the temperature difference is unlikely to be equal to or higher than the first predetermined value, and from the original temperature of the heat medium, the temperature difference is equal to or higher than the first predetermined value. In spite of this, the pump may not operate and the heat collection efficiency may be reduced.
 なお、上記の問題は、蓄熱槽に蓄えられた温水を家庭内等に供給する太陽熱利用システムに限らず、蓄熱槽に蓄熱された熱媒や熱を他の機器の運転等に利用する太陽熱利用システムにおいても共通する問題である。 The above problem is not limited to the solar heat utilization system that supplies hot water stored in the heat storage tank to the home, etc., but also uses solar heat that uses the heat medium and heat stored in the heat storage tank for the operation of other equipment. This is a common problem in the system.
 本発明はこのような従来の課題を解決するためになされたものであり、その目的とするところは、集熱効率の向上を図ることが可能な太陽熱利用システムを提供することにある。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a solar heat utilization system capable of improving the heat collection efficiency.
 本発明の太陽熱利用システムは、太陽光を受光することで熱媒を加熱する集熱装置と、前記集熱装置にて加熱された熱媒を導入して蓄熱する蓄熱槽と、前記蓄熱槽から前記集熱装置を経て再度前記蓄熱槽に熱媒を循環させるポンプと、前記集熱装置にて加熱された熱媒の温度を検出する複数の第1温度センサと、前記蓄熱槽内の蓄熱温度を検出する第2温度センサと、前記複数の第1温度センサにより検出された熱媒の温度それぞれと前記第2温度センサにより検出された蓄熱温度との差温の平均値が第1所定値以上となった場合に前記ポンプを運転させ、前記平均値が前記第1所定値よりも低い第2所定値以下となった場合に前記ポンプを停止させる制御手段と、を備え、前記集熱装置は、太陽光を受光することで熱媒を加熱する1又は複数の集熱器によりそれぞれが構成された複数の集熱器群を有し、前記複数の第1温度センサは、前記複数の集熱器群のうち2以上の集熱器群に対して設けられ、前記制御手段は、前記ポンプの停止中において前記平均値が前記第1所定値以上でなく、且つ、前記差温のうち一部が前記第1所定値以上となる場合に前記ポンプを所定時間運転させることを特徴とする。 The solar heat utilization system of the present invention includes a heat collecting device that heats a heat medium by receiving sunlight, a heat storage tank that stores heat by introducing the heat medium heated by the heat collecting apparatus, and the heat storage tank. A pump that circulates the heat medium again to the heat storage tank through the heat collection device, a plurality of first temperature sensors that detect the temperature of the heat medium heated by the heat collection device, and a heat storage temperature in the heat storage tank The average value of the temperature difference between the second temperature sensor for detecting the temperature, the temperature of the heat medium detected by the plurality of first temperature sensors, and the heat storage temperature detected by the second temperature sensor is equal to or greater than a first predetermined value. Control means for operating the pump in the event that the value becomes equal to or less than a second predetermined value that is lower than the first predetermined value, and stopping the pump when the average value is lower than the first predetermined value. 1 or to heat the heating medium by receiving sunlight A plurality of heat collector groups each constituted by a plurality of heat collectors, wherein the plurality of first temperature sensors are provided for two or more heat collector groups of the plurality of heat collector groups. And the control means predetermines the pump when the average value is not equal to or greater than the first predetermined value while the pump is stopped and a part of the temperature difference is equal to or greater than the first predetermined value. It is characterized by being operated for hours.
 本発明の太陽熱利用システムによれば、複数の第1温度センサにより検出された熱媒の温度それぞれと第2温度センサにより検出された蓄熱温度との差温のうち、一部が第1所定値以上となる場合にポンプを所定時間運転させる。このため、熱媒はポンプの運転によって撹拌されることとなる。これにより、たとえポンプ停止状態において集熱装置内の熱媒温度に差があったとしても、撹拌によって集熱装置内の熱媒温度は平均化することとなり、第1温度センサの取付位置が影響して本来ならば集熱できるにも拘わらず集熱しないといった事態の発生頻度を抑えることができる。従って、集熱効率の向上を図ることができる。 According to the solar heat utilization system of the present invention, a part of the temperature difference between the temperature of the heat medium detected by the plurality of first temperature sensors and the heat storage temperature detected by the second temperature sensor is a first predetermined value. In such a case, the pump is operated for a predetermined time. For this reason, a heat medium will be stirred by the driving | operation of a pump. As a result, even if there is a difference in the temperature of the heat medium in the heat collector when the pump is stopped, the temperature of the heat medium in the heat collector is averaged by stirring, and the mounting position of the first temperature sensor has an effect. Thus, it is possible to reduce the frequency of occurrence of a situation where heat can be collected even though it can be collected. Therefore, it is possible to improve the heat collection efficiency.
 また、本発明の太陽熱利用システムにおいて、前記制御手段は、前記複数の第1温度センサのうちの1つにより検出された熱媒の温度と、前記1つを除く他の第1温度センサにより検出された熱媒の温度の平均値とが規定値以上の差を有する場合、当該1つの第1温度センサ又は当該1つの第1温度センサが設けられた集熱器群について、異常状態であると判断することが好ましい。 In the solar heat utilization system of the present invention, the control means detects the temperature of the heat medium detected by one of the plurality of first temperature sensors and the other first temperature sensors excluding the one. When the average value of the temperature of the heat medium that has been performed has a difference of a specified value or more, the one first temperature sensor or the heat collector group provided with the one first temperature sensor is in an abnormal state. It is preferable to judge.
 この太陽熱利用システムによれば、1つの第1温度センサにより検出された熱媒の温度と他の第1温度センサにより検出された熱媒の温度の平均値とが規定値以上の差を有する場合、当該1つの第1温度センサ又は当該1つの第1温度センサが設けられた集熱器群について、異常状態であると判断する。ここで、平均値に対して規定値以上の差を有する場合とは、センサ故障、集熱装置のパネル表面における汚れ、流路の詰まりなどが挙げられる。また、集熱器が真空管式のものである場合には、真空管の破損が挙げられる。よって、このような検出値を示した場合に、異常状態であると判断することができる。 According to this solar heat utilization system, when the temperature of the heat medium detected by one first temperature sensor and the average value of the temperature of the heat medium detected by another first temperature sensor have a difference equal to or greater than a specified value The one temperature sensor or the heat collector group provided with the one first temperature sensor is determined to be in an abnormal state. Here, the case where there is a difference greater than a specified value with respect to the average value includes sensor failure, dirt on the panel surface of the heat collecting device, clogging of the flow path, and the like. Further, when the heat collector is of a vacuum tube type, the vacuum tube is broken. Therefore, when such a detection value is shown, it can be determined that the state is abnormal.
 なお、上記において平均値とは、平均値そのものに限らず、平均値をさらに演算して得られた値、すなわち平均値を由来とする値を含む概念である。 In the above, the average value is not limited to the average value itself, but is a concept including a value obtained by further calculating the average value, that is, a value derived from the average value.
 本発明によれば、集熱効率の向上を図ることが可能な太陽熱利用システムを提供することができる。 According to the present invention, it is possible to provide a solar heat utilization system capable of improving the heat collection efficiency.
図1は、本発明の実施形態に係る蓄熱システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a heat storage system according to an embodiment of the present invention. 図2は、図1に示した太陽熱集熱装置の詳細を示す構成図である。FIG. 2 is a configuration diagram showing details of the solar heat collecting apparatus shown in FIG. 1. 図3は、本実施形態に係る制御盤によるポンプ制御を示す図である。FIG. 3 is a diagram illustrating pump control by the control panel according to the present embodiment. 図4は、本実施形態に係る蓄熱システムの制御方法を示すフローチャートである。FIG. 4 is a flowchart showing a control method of the heat storage system according to the present embodiment.
 以下、本発明の好適な実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係る蓄熱システムの概略構成図である。図1に示すように、本実施形態に係る蓄熱システム1は、太陽熱を利用して蓄熱を行うものであって、太陽熱集熱装置(集熱装置)11と、蓄熱槽12と、集熱流路13と、集熱ポンプ(ポンプ)14とを備えている。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a heat storage system according to an embodiment of the present invention. As shown in FIG. 1, a heat storage system 1 according to the present embodiment performs heat storage using solar heat, and includes a solar heat collector (heat collector) 11, a heat storage tank 12, and a heat collection channel. 13 and a heat collecting pump (pump) 14.
 太陽熱集熱装置11は、太陽光を受光することで熱媒を加熱するものであって、例えば屋根の上などの太陽光を受光し易く且つ傾斜を有する位置に設置されるものである。なお、熱媒は、水、不凍液、及びプロピレングリコール水溶液などが用いられる。 The solar heat collector 11 heats the heat medium by receiving sunlight, and is installed at a position that is easy to receive sunlight and has an inclination, for example, on a roof. As the heat medium, water, antifreeze, propylene glycol aqueous solution, or the like is used.
 蓄熱槽12は、太陽熱集熱装置11にて加熱された熱媒を導入して蓄熱するものである。この蓄熱槽12は、熱媒を内部に貯めるタンクである。また、蓄熱槽12は、導入した熱媒の熱を蓄熱材により蓄熱するものであってもよい。この蓄熱槽12は、熱を利用して運転等する熱利用機器(例えば吸収式冷温水機)に接続されており、蓄熱槽12に蓄熱された熱は熱利用機器にて利用される。 The heat storage tank 12 introduces a heat medium heated by the solar heat collector 11 and stores heat. The heat storage tank 12 is a tank that stores a heat medium therein. Moreover, the heat storage tank 12 may store the heat of the introduced heat medium with a heat storage material. The heat storage tank 12 is connected to a heat utilization device (for example, an absorption chiller / heater) that operates using heat, and the heat stored in the heat accumulation tank 12 is used by the heat utilization device.
 なお、蓄熱槽12が蓄熱材により蓄熱するものである場合、蓄熱材料は、例えば水酸化マグネシウムが用いられるが特にこれに限られるものではない。さらに、熱媒が水であり、蓄熱槽12が水を内部に貯めるタンクである場合、蓄熱槽12はいわゆる貯湯槽として機能し、家庭等に湯水が供給されるようになっていてもよい。加えて、蓄熱槽12は熱交換機を備えるタイプのものであってもよい。 In addition, when the heat storage tank 12 stores heat with a heat storage material, for example, magnesium hydroxide is used as the heat storage material, but is not limited thereto. Furthermore, when the heat medium is water and the heat storage tank 12 is a tank that stores water therein, the heat storage tank 12 may function as a so-called hot water storage tank, and hot water may be supplied to a home or the like. In addition, the heat storage tank 12 may be of a type including a heat exchanger.
 集熱流路13は、蓄熱槽12から太陽熱集熱装置11を経て再度蓄熱槽12に熱媒を循環させる配管である。このうち、蓄熱槽12から太陽熱集熱装置11に向かう流路を第1集熱流路13aと称し、太陽熱集熱装置11から蓄熱槽12に向かう流路を第2集熱流路13bと称する。 The heat collection channel 13 is a pipe that circulates the heat medium from the heat storage tank 12 to the heat storage tank 12 again through the solar heat collector 11. Among these, the flow path from the heat storage tank 12 to the solar heat collection apparatus 11 is referred to as a first heat collection flow path 13a, and the flow path from the solar heat collection apparatus 11 to the heat storage tank 12 is referred to as a second heat collection flow path 13b.
 集熱ポンプ14は、集熱流路13のうち第1集熱流路13aに設けられており、蓄熱槽12から太陽熱集熱装置11を経て再度蓄熱槽12に熱媒を循環させる動力源となるものである。 The heat collection pump 14 is provided in the first heat collection flow path 13a of the heat collection flow path 13, and serves as a power source for circulating the heat medium from the heat storage tank 12 to the heat storage tank 12 again through the solar heat collecting apparatus 11. It is.
 さらに、本実施形態において蓄熱システム1は、複数の集熱装置温度センサ(複数の第1温度センサ)15と、蓄熱槽温度センサ(第2温度センサ)16と、制御盤(制御手段)17とを備えている。 Furthermore, in this embodiment, the heat storage system 1 includes a plurality of heat collector temperature sensors (a plurality of first temperature sensors) 15, a heat storage tank temperature sensor (second temperature sensor) 16, and a control panel (control means) 17. It has.
 複数の集熱装置温度センサ15は、太陽熱集熱装置11にて加熱された熱媒の温度を検出するものであって、熱媒温度に応じた信号を制御盤17に送信するものである。蓄熱槽温度センサ16は、蓄熱槽12内の熱媒の温度(蓄熱槽12の蓄熱温度)を検出するものであって、熱媒温度に応じた信号を制御盤17に送信するものである。 The plurality of heat collecting device temperature sensors 15 detect the temperature of the heat medium heated by the solar heat collecting device 11 and transmit a signal corresponding to the heat medium temperature to the control panel 17. The heat storage tank temperature sensor 16 detects the temperature of the heat medium in the heat storage tank 12 (heat storage temperature of the heat storage tank 12), and transmits a signal corresponding to the heat medium temperature to the control panel 17.
 制御盤17は、CPU(Central Processing Unit)を備え、CPUにより蓄熱システム1の全体を制御するものである。特に本実施形態において制御盤17は、複数の集熱装置温度センサ15により検出された熱媒の温度と蓄熱槽温度センサ16により検出された蓄熱温度とに基づいて、集熱ポンプ14を制御する。 The control panel 17 includes a CPU (Central Processing Unit) and controls the entire heat storage system 1 by the CPU. In particular, in the present embodiment, the control panel 17 controls the heat collection pump 14 based on the temperature of the heat medium detected by the plurality of heat collector temperature sensors 15 and the heat storage temperature detected by the heat storage tank temperature sensor 16. .
 図2は、図1に示した太陽熱集熱装置11の詳細を示す構成図である。図2に示すように、太陽熱集熱装置11は、いわゆるリバースリターン方式の集熱装置であって、複数(3つ)の集熱器群11a~11cを備えている。 FIG. 2 is a configuration diagram showing details of the solar heat collecting apparatus 11 shown in FIG. As shown in FIG. 2, the solar heat collector 11 is a so-called reverse return type heat collector, and includes a plurality (three) of heat collector groups 11a to 11c.
 複数の集熱器群11a~11cは、互いに熱媒を並列に導入して加熱するものであって、太陽光を受光することで熱媒を加熱する複数(5つ)の集熱器11a1~11a5,11b1~11b5,11c1~11c5によりそれぞれが構成されている。 The plurality of heat collector groups 11a to 11c introduce and heat the heat medium in parallel with each other, and the plurality of (five) heat collectors 11a1 to 11a1 to heat the heat medium by receiving sunlight. 11a5, 11b1 to 11b5, 11c1 to 11c5 are respectively configured.
 より詳細に説明すると、太陽熱集熱装置11は、集熱器群11a~11cに加えて、往き配管11d、分岐往き配管11e1~11e3、還り配管11f、及び分岐還り配管11g1~11g3を備えている。 More specifically, the solar heat collector 11 includes a forward pipe 11d, a branch forward pipe 11e1 to 11e3, a return pipe 11f, and a branch return pipe 11g1 to 11g3 in addition to the heat collector groups 11a to 11c. .
 往き配管11dは蓄熱槽12からの熱媒を導入するものである。分岐往き配管11e1~11e3は、一端が往き配管11dに接続されて、往き配管11dからの熱媒を各集熱器群11a~11cに液送するための配管である。 The forward piping 11d introduces the heat medium from the heat storage tank 12. The branch outgoing pipes 11e1 to 11e3 are pipes, one end of which is connected to the outgoing pipe 11d, for feeding the heat medium from the outgoing pipe 11d to each of the heat collector groups 11a to 11c.
 詳細に第1分岐往き配管11e1は一端が往き配管11dに接続され、他端が第1集熱器群11aに接続されている。また、第2分岐往き配管11e2は一端が往き配管11dに接続され、他端が第2集熱器群11bに接続されると共に、第1分岐往き配管11e1と並列に接続されている。第3分岐往き配管11e3は一端が往き配管11dに接続され、他端が第3集熱器群11cに接続されると共に、第1及び第2分岐往き配管11e1,11e2と並列に接続されている。 Specifically, the first branch outgoing pipe 11e1 has one end connected to the outgoing pipe 11d and the other end connected to the first heat collector group 11a. The second branch forward pipe 11e2 has one end connected to the forward pipe 11d, the other end connected to the second heat collector group 11b, and is connected in parallel to the first branch forward pipe 11e1. The third branch forward pipe 11e3 has one end connected to the forward pipe 11d, the other end connected to the third heat collector group 11c, and is connected in parallel to the first and second branch forward pipes 11e1 and 11e2. .
 さらに、第1分岐往き配管11e1の一端は、往き配管11dのうち、他の分岐往き配管11e2,11e3よりも、手前側(すなわち集熱ポンプ14及び蓄熱槽12に近い側)に接続されている。第3分岐往き配管11e3の一端は、往き配管11dの端部に接続されており、第2分岐往き配管11e2の一端は、往き配管11dのうち、中間地点(すなわち第1分岐往き配管11e1及び往き配管11dの接続点と、第3分岐往き配管11e3及び往き配管11dの接続点との間)に接続されている。 Furthermore, one end of the first branch outgoing pipe 11e1 is connected to the front side (that is, the side closer to the heat collecting pump 14 and the heat storage tank 12) of the outgoing pipe 11d than the other branch outgoing pipes 11e2 and 11e3. . One end of the third branch forward pipe 11e3 is connected to the end of the forward pipe 11d, and one end of the second branch forward pipe 11e2 is an intermediate point in the forward pipe 11d (that is, the first branch forward pipe 11e1 and the forward pipe). Between the connection point of the pipe 11d and the connection point of the third branch forward pipe 11e3 and the forward pipe 11d).
 また、第1集熱器群11aが複数(5つ)の集熱器11a1~11a5を備えていることから、第1分岐往き配管11e1は、それぞれの集熱器11a1~11a5に熱媒を並列的に供給するように他端側が複数本(5本)に分岐している。第2及び第3集熱器群11b,11cについても、それぞれ複数(5つ)の集熱器11b1~11b5,11c1~11c5を備えていることから、第2及び第3分岐往き配管11e2,11e3は、それぞれの集熱器11b1~11b5,11c1~11c5に熱媒を並列的に供給するように他端側が複数本(5本)に分岐している。 Further, since the first heat collector group 11a includes a plurality (five) of heat collectors 11a1 to 11a5, the first branch outgoing pipe 11e1 has a heat medium in parallel with each of the heat collectors 11a1 to 11a5. The other end is branched into a plurality (5) so as to be supplied. The second and third heat collector groups 11b and 11c are also provided with a plurality (five) of heat collectors 11b1 to 11b5 and 11c1 to 11c5, respectively, so that the second and third branch outgoing pipes 11e2 and 11e3 are provided. The other end side is branched into a plurality (five) so that the heat medium is supplied in parallel to the respective heat collectors 11b1 to 11b5 and 11c1 to 11c5.
 還り配管11fは、加熱された熱媒を蓄熱槽12側に排出するものである。分岐還り配管11g1~11g3は、他端が還り配管11fに接続されて、各集熱器群11a~11cからの熱媒を還り配管11fに液送するための配管である。 The return pipe 11f discharges the heated heat medium to the heat storage tank 12 side. The branch return pipes 11g1 to 11g3 are pipes whose other ends are connected to the return pipe 11f, and for transferring the heat medium from the respective heat collector groups 11a to 11c to the return pipe 11f.
 詳細に第1分岐還り配管11g1は一端が第1集熱器群11aに接続され、他端が還り配管11fに接続されている。また、第2分岐還り往き配管11g2は一端が第2集熱器群11bに接続され、他端が還り配管11fに接続されると共に、第1分岐還り配管11g1と並列に接続されている。第3分岐還り往き配管11g3は一端が第3集熱器群11cに接続され、他端が還り配管11fに接続されると共に、第1及び第2分岐還り配管11g1,11g2と並列に接続されている。 Specifically, the first branch return pipe 11g1 has one end connected to the first heat collector group 11a and the other end connected to the return pipe 11f. The second branch return pipe 11g2 has one end connected to the second heat collector group 11b, the other end connected to the return pipe 11f, and connected in parallel to the first branch return pipe 11g1. The third branch return pipe 11g3 has one end connected to the third heat collector group 11c, the other end connected to the return pipe 11f, and connected in parallel to the first and second branch return pipes 11g1 and 11g2. Yes.
 さらに、第1分岐還り配管11g1の他端は、還り配管11fの端部に接続されている。第3分岐還り配管11g3の他端は、他の分岐還り配管11g1,11g2よりも、手前側(すなわち蓄熱槽12に近い側)に接続されている。第2分岐還り配管11g2の他端は、還り配管11fのうち、中間地点(すなわち第1分岐還り配管11g1及び還り配管11fの接続点と、第3分岐還り配管11g3及び還り配管11fの接続点との間)に接続されている。 Furthermore, the other end of the first branch return pipe 11g1 is connected to the end of the return pipe 11f. The other end of the third branch return pipe 11g3 is connected to the near side (that is, the side closer to the heat storage tank 12) than the other branch return pipes 11g1 and 11g2. The other end of the second branch return pipe 11g2 is an intermediate point in the return pipe 11f (that is, a connection point between the first branch return pipe 11g1 and the return pipe 11f, and a connection point between the third branch return pipe 11g3 and the return pipe 11f). Between).
 また、第1集熱器群11aが複数(5つ)の集熱器11a1~11a5を備えていることから、第1分岐還り配管11g1は、それぞれの集熱器11a1~11a5から熱媒を並列的に受け入れるように一端側が複数本(5本)に分岐している。第2及び第3集熱器群11b,11cについても、それぞれ複数(5つ)の集熱器11b1~11b5,11c1~11c5を備えていることから、第2及び第3分岐還り配管11g2,11g3は、それぞれの集熱器11b1~11b5,11c1~11c5から熱媒を並列的に受け入れるように一端側が複数本(5本)に分岐している。 In addition, since the first heat collector group 11a includes a plurality (five) of heat collectors 11a1 to 11a5, the first branch return pipe 11g1 receives a heat medium from each of the heat collectors 11a1 to 11a5 in parallel. One end is branched into a plurality (five) so as to be accepted. The second and third heat collector groups 11b and 11c are also provided with a plurality (five) of heat collectors 11b1 to 11b5 and 11c1 to 11c5, respectively, so that the second and third branch return pipes 11g2 and 11g3 are provided. Are branched into a plurality (five) at one end so as to receive the heat medium in parallel from the respective heat collectors 11b1 to 11b5, 11c1 to 11c5.
 このような構成であるため、複数の集熱器群11a~11cは、互いに熱媒を並列に導入して加熱することとなる。 Because of such a configuration, the plurality of heat collector groups 11a to 11c introduce and heat the heat medium in parallel with each other.
 なお、太陽熱集熱装置11の構成は図2に示したものに限られず、例えばダイレクトリターン方式となるように配管接続されていてもよいし、真空管式の集熱器によって構成されてもよい。特に、太陽熱集熱装置11が真空管式のものである場合、複数の集熱器11a1~11a5,11b1~11b5,11c1~11c5は真空管式集熱管によって構成されることはいうまでもない。 Note that the configuration of the solar heat collector 11 is not limited to that shown in FIG. 2, and may be connected to a pipe so as to be, for example, a direct return method, or may be configured by a vacuum tube type heat collector. In particular, when the solar heat collecting apparatus 11 is of a vacuum tube type, it goes without saying that the plurality of heat collectors 11a1 to 11a5, 11b1 to 11b5, 11c1 to 11c5 are constituted by vacuum tube type heat collecting tubes.
 さらに、複数の集熱器群11a~11cは、集熱器11a1~11a5,11b1~11b5,11c1~11c5をそれぞれ複数備えているが、これに限らず、1つだけ備える構成であってもよい。 Further, the plurality of heat collector groups 11a to 11c include a plurality of heat collectors 11a1 to 11a5, 11b1 to 11b5, and 11c1 to 11c5, respectively. .
 以上のような太陽熱集熱装置11において、熱媒温度は集熱装置温度センサ15の取り付け位置によって異なって検出されてしまう傾向がある。さらに、太陽熱集熱装置11は、集熱器表面の一部のみが汚れている場合には、集熱装置温度センサ15の取り付け位置に拘わらず、複数の集熱器群11a~11cで熱媒温度に差が生じてしまうことがある。 In the solar heat collector 11 as described above, the heat medium temperature tends to be detected differently depending on the mounting position of the heat collector temperature sensor 15. Further, when only a part of the surface of the heat collector is dirty, the solar heat collector 11 has a plurality of heat collector groups 11a to 11c as a heat medium regardless of the mounting position of the heat collector temperature sensor 15. Differences in temperature may occur.
 そこで、本実施形態において複数の集熱装置温度センサ15は、図2に示すように各集熱器群11a~11cに対して設けられている。具体的に第1集熱装置温度センサ15aは、第1集熱器群11aに対して設けられる第1分岐還り配管11g1の出口側に設けられ、第2集熱装置温度センサ15bは、第2集熱器群11bに対して設けられる第2分岐還り配管11g2の出口側に設けられ、第3集熱装置温度センサ15cは、第3集熱器群11cに対して設けられる第3分岐還り配管11g3の出口側に設けられている。 Therefore, in the present embodiment, the plurality of heat collector temperature sensors 15 are provided for each of the heat collector groups 11a to 11c as shown in FIG. Specifically, the first heat collector temperature sensor 15a is provided on the outlet side of the first branch return pipe 11g1 provided for the first heat collector group 11a, and the second heat collector temperature sensor 15b is the second heat collector temperature sensor 15b. A third heat collecting device temperature sensor 15c is provided on the outlet side of the second branch return pipe 11g2 provided for the heat collector group 11b, and a third branch return pipe provided for the third heat collector group 11c. 11g3 outlet side.
 なお、複数の集熱装置温度センサ15は、各集熱器群11a~11cに対して1つずつ設ける場合に限らず、各集熱器群11a~11cに対して2つずつなど設けられてもよいし、集熱器群11a~11c毎に取り付けられるセンサ数は異なっていてもよい。 The plurality of heat collector temperature sensors 15 are not limited to one provided for each of the heat collector groups 11a to 11c, and are provided two for each of the heat collector groups 11a to 11c. Alternatively, the number of sensors attached to each of the heat collector groups 11a to 11c may be different.
 さらに、図2に示す例において、複数の集熱装置温度センサ15は、全ての集熱器群11a~11cに対して設けられているが、これに限らず、2以上の集熱器群(例えば第1及び第2集熱器群11a,11b)に設けられていればよい。 Further, in the example shown in FIG. 2, the plurality of heat collector temperature sensors 15 are provided for all of the heat collector groups 11a to 11c. However, the present invention is not limited to this, and two or more heat collector groups ( For example, what is necessary is just to be provided in the 1st and 2nd heat collector group 11a, 11b).
 加えて、複数の集熱装置温度センサ15は、それぞれ各集熱器群11a~11cの同位置に設けられることが好ましい。すなわち、図2に示す例では、複数の集熱装置温度センサ15は、それぞれ分岐還り配管11g1~11g3の出口側に設けられており、同位置に設けられている。このように同位置に設けることにより、後に説明する処理において、より正確に集熱ポンプ14の運転を行うことができるからである。 In addition, it is preferable that the plurality of heat collector temperature sensors 15 be provided at the same position in each of the heat collector groups 11a to 11c. That is, in the example shown in FIG. 2, the plurality of heat collector temperature sensors 15 are provided on the outlet sides of the branch return pipes 11g1 to 11g3, respectively, and are provided at the same positions. This is because the heat collecting pump 14 can be operated more accurately in the processing described later by providing the same position in this way.
 図3は、本実施形態に係る制御盤17によるポンプ制御を示す図である。まず、集熱ポンプ14が停止しているものとする。この状態において、制御盤17は、複数の集熱装置温度センサ15により検出された熱媒の温度それぞれと、蓄熱槽温度センサ16により検出された熱媒の温度(蓄熱温度)との差温を算出する。次いで、制御盤17は、差温の平均値を算出する。 FIG. 3 is a diagram showing pump control by the control panel 17 according to the present embodiment. First, it is assumed that the heat collection pump 14 is stopped. In this state, the control panel 17 calculates the temperature difference between each temperature of the heat medium detected by the plurality of heat collector temperature sensors 15 and the temperature of the heat medium (heat storage temperature) detected by the heat storage tank temperature sensor 16. calculate. Next, the control panel 17 calculates the average value of the differential temperatures.
 そして、平均値がT1℃(第1所定値)以上であると判断すると、制御盤17集熱ポンプ14を動作させる。また、集熱ポンプ14の動作中において、差温がT1℃よりも低いT2℃(第2所定値)以下であると判断した場合、制御盤17は集熱ポンプ14を停止させる。 When it is determined that the average value is equal to or higher than T1 ° C. (first predetermined value), the control panel 17 heat collecting pump 14 is operated. Further, when it is determined that the differential temperature is equal to or lower than T2 ° C. (second predetermined value) lower than T1 ° C. during the operation of the heat collection pump 14, the control panel 17 stops the heat collection pump 14.
 以上が制御盤17によるポンプ制御の基本動作となる。さらに、本実施形態において制御盤17は、以下の制御を実行する。 The above is the basic operation of pump control by the control panel 17. Further, in the present embodiment, the control panel 17 executes the following control.
 図4は、本実施形態に係る蓄熱システム1の制御方法を示すフローチャートである。なお、図4に示す処理は、蓄熱システム1が停止するまで、繰り返し実行される。 FIG. 4 is a flowchart showing a control method of the heat storage system 1 according to the present embodiment. In addition, the process shown in FIG. 4 is repeatedly performed until the heat storage system 1 stops.
 まず、集熱ポンプ14が停止しているとする。この状態において、図4に示すように制御盤17は、差温の平均値を算出して、平均値がT1℃以上であるかを判断する(S1)。平均値がT1℃以上であると判断した場合(S1:YES)、制御盤17は、集熱ポンプ14の運転を開始させる(S2)。 First, it is assumed that the heat collection pump 14 is stopped. In this state, as shown in FIG. 4, the control panel 17 calculates an average value of the differential temperatures and determines whether the average value is equal to or higher than T1 ° C. (S1). When it is determined that the average value is equal to or higher than T1 ° C. (S1: YES), the control panel 17 starts the operation of the heat collecting pump 14 (S2).
 次いで、制御盤17は、複数の集熱装置温度センサ15それぞれの検出温度を参照し、複数の第1温度センサ15のうちの1つにより検出された熱媒の温度と、1つを除く他の第1温度センサ15により検出された熱媒の温度の平均値とが規定値以上の差を有するかを判断する(S3)。より詳細には制御盤17は、第1集熱装置温度センサ15aの検出温度と、第2及び第3集熱装置温度センサ15b,15cの検出温度との差が規定値以上の差を有するかを判断し、次いで、第2集熱装置温度センサ15bの検出温度と、第1及び第3集熱装置温度センサ15a,15cの検出温度との差が規定値以上の差を有するかを判断し、次に、第3集熱装置温度センサ15cの検出温度と、第1及び第2集熱装置温度センサ15a,15bの検出温度との差が規定値以上の差を有するかを判断する。規定値以上の差を有する集熱装置温度センサ15がないと判断した場合(S3:NO)、処理はステップS5に移行する。 Next, the control panel 17 refers to the detected temperature of each of the plurality of heat collecting device temperature sensors 15, and removes the temperature of the heat medium detected by one of the plurality of first temperature sensors 15 and the other one. It is determined whether the average value of the temperature of the heat medium detected by the first temperature sensor 15 has a difference equal to or greater than a specified value (S3). More specifically, the control panel 17 determines whether the difference between the temperature detected by the first heat collector temperature sensor 15a and the temperature detected by the second and third heat collector temperature sensors 15b, 15c is greater than a specified value. Next, it is determined whether the difference between the detected temperature of the second heat collector temperature sensor 15b and the detected temperature of the first and third heat collector temperature sensors 15a and 15c has a difference equal to or greater than a specified value. Next, it is determined whether or not the difference between the temperature detected by the third heat collector temperature sensor 15c and the temperature detected by the first and second heat collector temperature sensors 15a and 15b is greater than a specified value. When it is determined that there is no heat collector temperature sensor 15 having a difference equal to or greater than the specified value (S3: NO), the process proceeds to step S5.
 一方、規定値以上の差を有する集熱装置温度センサ15があると判断した場合(S3:YES)、制御盤17は、規定値以上の差を有する集熱装置温度センサ15又は当該センサ15が設けられる集熱器群11a~11cについて異常状態であると判断し、その旨の表示や音声を出力する(S4)。ここでの異常は、例えば、規定値以上の差を有する集熱装置温度センサ15の故障、太陽熱集熱装置11の集熱器表面における汚れ、流路の詰まりなどが挙げられる。また、集熱器11a1~11a5,11b1~11b5,11c1~11c5が真空管式集熱器である場合には、真空管の破損が挙げられる。出力後、処理はステップS5に移行する。 On the other hand, if it is determined that there is a heat collector temperature sensor 15 having a difference equal to or greater than a specified value (S3: YES), the control panel 17 determines whether the heat collector temperature sensor 15 having a difference equal to or greater than a specified value or the sensor 15 is present. It is determined that the provided heat collector groups 11a to 11c are in an abnormal state, and a display and sound to that effect are output (S4). Examples of the abnormality include failure of the heat collector temperature sensor 15 having a difference of a specified value or more, contamination on the surface of the heat collector of the solar heat collector 11, clogging of the flow path, and the like. In addition, when the heat collectors 11a1 to 11a5, 11b1 to 11b5, and 11c1 to 11c5 are vacuum tube type heat collectors, the vacuum tubes are broken. After output, the process proceeds to step S5.
 ステップS5において、制御盤17は、差温の平均値を算出して、平均値がT2℃以下であるかを判断する(S5)。平均値がT2℃以下であると判断した場合(S5:YES)、制御盤17は、集熱ポンプ14の運転を停止させる(S6)。そして、図4に示す処理はステップS1に移行する。一方、平均値がT2℃以下でないと判断した場合(S5:NO)、処理はステップS2に移行する。 In step S5, the control panel 17 calculates an average value of the differential temperatures and determines whether the average value is T2 ° C. or less (S5). When it is determined that the average value is T2 ° C. or less (S5: YES), the control panel 17 stops the operation of the heat collecting pump 14 (S6). Then, the processing shown in FIG. 4 proceeds to step S1. On the other hand, when it is determined that the average value is not equal to or lower than T2 ° C. (S5: NO), the process proceeds to step S2.
 ところで、平均値がT1℃以上でないと判断した場合(S1:NO)、制御盤17は、複数の集熱装置温度センサ15により検出された熱媒の温度それぞれと、蓄熱槽温度センサ16により検出された熱媒の温度との差温のうち、一部がT1℃以上となっているかを判断する(S7)。 When it is determined that the average value is not equal to or higher than T1 ° C. (S1: NO), the control panel 17 detects each temperature of the heat medium detected by the plurality of heat collector temperature sensors 15 and the heat storage tank temperature sensor 16. It is determined whether a part of the temperature difference from the temperature of the heat medium that has been performed is equal to or higher than T1 ° C. (S7).
 全てがT1℃以上となっていないと判断した場合(S7:NO)、処理はステップS1に移行する。一方、一部がT1℃以上となっていると判断した場合(S7:YES)、制御盤17は、集熱ポンプ14の運転を開始させる(S8)。これにより、熱媒を撹拌させ、たとえポンプ停止状態において太陽熱集熱装置11内の熱媒温度に差があったとしても、撹拌によって太陽熱集熱装置11内の熱媒温度は平均化することとなり、集熱装置温度センサ15の取付位置が影響してステップS2における集熱ポンプ14の運転が行われなくなってしまう事態を防止する。 If it is determined that all are not T1 ° C. or higher (S7: NO), the process proceeds to step S1. On the other hand, when it is determined that a part of the temperature is T1 ° C. or higher (S7: YES), the control panel 17 starts the operation of the heat collecting pump 14 (S8). As a result, the heat medium is agitated, and even if there is a difference in the heat medium temperature in the solar heat collector 11 when the pump is stopped, the heat medium temperature in the solar heat collector 11 is averaged by the agitation. The situation where the operation of the heat collecting pump 14 in step S2 is not performed due to the mounting position of the heat collecting device temperature sensor 15 is prevented.
 次いで、制御盤17は、運転開始からt分経過したかを判断する(S9)。t分経過していないと判断した場合(S9:NO)、処理はステップS8に移行する。一方、t分経過したと判断した場合(S9:YES)、制御盤17は、熱媒の撹拌が完了したと判断し、集熱ポンプ14の運転を停止させる(S6)。そして、図4に示す処理はステップS1に移行する。 Next, the control panel 17 determines whether t minutes have elapsed from the start of operation (S9). If it is determined that t minutes have not elapsed (S9: NO), the process proceeds to step S8. On the other hand, when it is determined that t minutes have elapsed (S9: YES), the control panel 17 determines that the stirring of the heat medium has been completed and stops the operation of the heat collecting pump 14 (S6). Then, the processing shown in FIG. 4 proceeds to step S1.
 このようにして、本実施形態に係る蓄熱システム1によれば、複数の集熱装置温度センサ15により検出された熱媒の温度それぞれと蓄熱槽温度センサ16により検出された蓄熱温度との差温のうち、一部がT1℃以上となる場合に集熱ポンプ14をt分間運転させる。このため、熱媒は集熱ポンプ14の運転によって撹拌されることとなる。これにより、たとえ集熱ポンプ14の停止状態において太陽熱集熱装置11内の熱媒温度に差があったとしても、撹拌によって太陽熱集熱装置11内の熱媒温度は平均化することとなり、集熱装置温度センサ15の取付位置が影響して本来ならば集熱できるにもかかわらず集熱しないといった事態の発生頻度を抑えることができる。従って、集熱効率の向上を図ることができる。 Thus, according to the heat storage system 1 according to the present embodiment, the temperature difference between each temperature of the heat medium detected by the plurality of heat collector temperature sensors 15 and the heat storage temperature detected by the heat storage tank temperature sensor 16. Among these, when a part becomes T1 degreeC or more, the heat collection pump 14 is operated for t minutes. For this reason, the heat medium is agitated by the operation of the heat collecting pump 14. As a result, even if there is a difference in the heat medium temperature in the solar heat collector 11 when the heat collection pump 14 is stopped, the heat medium temperature in the solar heat collector 11 is averaged by stirring, and the heat collector temperature in the solar heat collector 11 is averaged. The frequency of occurrence of a situation in which heat is not collected even though the heat can be collected due to the mounting position of the heat device temperature sensor 15 can be suppressed. Therefore, it is possible to improve the heat collection efficiency.
 また、1つの集熱装置温度センサ15により検出された熱媒の温度と他の集熱装置温度センサ15により検出された熱媒の温度の平均値とが規定値以上の差を有する場合、その1つの集熱装置温度センサ15又は当該集熱装置温度センサ15が設けられた集熱器群11a~11cについて、異常状態であると判断する。ここで、平均値に対して規定値以上の差を有する場合とは、センサ故障、太陽熱集熱装置11の集熱器表面における汚れ、流路の詰まりなどが挙げられる。また、集熱器11a1~11a5,11b1~11b5,11c1~11c5が真空管式集熱器である場合には、真空管の破損が挙げられる。よって、このような検出値を示した場合に、異常状態であると判断することができる。 Further, when the temperature of the heat medium detected by one heat collector temperature sensor 15 and the average value of the temperature of the heat medium detected by another heat collector temperature sensor 15 have a difference equal to or more than a specified value, It is determined that one heat collector temperature sensor 15 or the heat collector groups 11a to 11c provided with the heat collector temperature sensor 15 is in an abnormal state. Here, the case where there is a difference greater than a specified value with respect to the average value includes sensor failure, contamination on the surface of the heat collector of the solar heat collector 11, clogging of the flow path, and the like. In addition, when the heat collectors 11a1 to 11a5, 11b1 to 11b5, and 11c1 to 11c5 are vacuum tube type heat collectors, the vacuum tubes are broken. Therefore, when such a detection value is shown, it can be determined that the state is abnormal.
 ここで、上述した本発明に係る太陽熱利用システムの実施形態の特徴をそれぞれ以下[1]~[2]に簡潔に纏めて列記する。 Here, the features of the embodiment of the solar heat utilization system according to the present invention described above are briefly summarized and listed in the following [1] to [2], respectively.
 [1] 太陽光を受光することで熱媒を加熱する集熱装置(11)と、
 前記集熱装置(11)にて加熱された熱媒を導入して蓄熱する蓄熱槽(12)と、
 前記蓄熱槽(12)から前記集熱装置(11)を経て再度前記蓄熱槽(12)に熱媒を循環させるポンプ(集熱ポンプ14)と、
 前記集熱装置(11)にて加熱された熱媒の温度を検出する複数の第1温度センサ(集熱装置温度センサ15)と、
 前記蓄熱槽(12)内の蓄熱温度を検出する第2温度センサ(蓄熱槽温度センサ16)と、
 前記複数の第1温度センサ(集熱装置温度センサ15)により検出された熱媒の温度それぞれと前記第2温度センサ(蓄熱槽温度センサ16)により検出された蓄熱温度との差温の平均値が第1所定値以上となった場合に前記ポンプ(集熱ポンプ14)を運転させ、前記平均値が前記第1所定値よりも低い第2所定値以下となった場合に前記ポンプ(集熱ポンプ14)を停止させる制御手段(制御盤17)と、を備え、
 前記集熱装置(11)は、太陽光を受光することで熱媒を加熱する1又は複数の集熱器によりそれぞれが構成された複数の集熱器群(11a~11c)を有し、
 前記複数の第1温度センサ(集熱装置温度センサ15)は、前記複数の集熱器群(11a~11c)のうち2以上の集熱器群に対して設けられ、
 前記制御手段(制御盤17)は、前記ポンプ(集熱ポンプ14)の停止中において前記平均値が前記第1所定値以上でなく、且つ、前記差温のうち一部が前記第1所定値以上となる場合に前記ポンプ(集熱ポンプ14)を所定時間運転させる
 太陽熱利用システム。
 [2] 前記制御手段(制御盤17)は、前記複数の第1温度センサ(集熱装置温度センサ15)のうちの1つにより検出された熱媒の温度と、前記1つを除く他の第1温度センサ(集熱装置温度センサ15)により検出された熱媒の温度の平均値とが規定値以上の差を有する場合、当該1つの第1温度センサ(集熱装置温度センサ15)又は当該1つの第1温度センサ(集熱装置温度センサ15)が設けられた集熱器群について、異常状態であると判断する
 上記[1]に記載の太陽熱利用システム。
[1] A heat collector (11) that heats the heat medium by receiving sunlight,
A heat storage tank (12) for storing heat by introducing a heat medium heated by the heat collector (11);
A pump (heat collection pump 14) for circulating a heat medium from the heat storage tank (12) to the heat storage tank (12) again through the heat collecting device (11);
A plurality of first temperature sensors (heat collector temperature sensor 15) for detecting the temperature of the heat medium heated by the heat collector (11);
A second temperature sensor (heat storage tank temperature sensor 16) for detecting the heat storage temperature in the heat storage tank (12);
The average value of the temperature difference between each temperature of the heat medium detected by the plurality of first temperature sensors (heat collector temperature sensor 15) and the heat storage temperature detected by the second temperature sensor (heat storage tank temperature sensor 16). The pump (heat collecting pump 14) is operated when the value becomes equal to or higher than the first predetermined value, and the pump (heat collecting value) when the average value becomes equal to or lower than the second predetermined value lower than the first predetermined value. Control means (control panel 17) for stopping the pump 14),
The heat collector (11) has a plurality of heat collector groups (11a to 11c) each constituted by one or a plurality of heat collectors that heat the heat medium by receiving sunlight.
The plurality of first temperature sensors (heat collector temperature sensor 15) are provided for two or more heat collector groups of the plurality of heat collector groups (11a to 11c),
The control means (control panel 17) is configured such that the average value is not equal to or more than the first predetermined value while the pump (heat collecting pump 14) is stopped, and a part of the differential temperature is the first predetermined value. A solar heat utilization system that causes the pump (heat collecting pump 14) to operate for a predetermined time in the case described above.
[2] The control means (control panel 17) is configured so that the temperature of the heat medium detected by one of the plurality of first temperature sensors (heat collecting device temperature sensor 15) and other than the one are excluded. When the average value of the temperature of the heat medium detected by the first temperature sensor (heat collector temperature sensor 15) has a difference of a specified value or more, the one first temperature sensor (heat collector temperature sensor 15) or The solar heat utilization system according to [1], wherein the heat collector group provided with the one first temperature sensor (heat collector temperature sensor 15) is determined to be in an abnormal state.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2013年10月23日出願の日本特許出願(特願2013-219907)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on October 23, 2013 (Japanese Patent Application No. 2013-219907), the contents of which are incorporated herein by reference.
 本発明によれば、集熱効率の向上を図ることができるという効果を奏する。この効果を奏する本発明は、太陽熱利用システムに関して有用である。 According to the present invention, it is possible to improve the heat collection efficiency. The present invention having this effect is useful for a solar heat utilization system.
1 蓄熱システム(太陽熱利用システム)
11 太陽熱集熱装置(集熱装置)
11a~11c 複数の集熱器群
11a1~11a5,11b1~11b5,11c1~11c5 集熱器
11d 往き配管
11e1~11e3 分岐往き配管
11f 還り配管
11g1~11g3 分岐還り配管
12 蓄熱槽
13 集熱流路
14 集熱ポンプ(ポンプ)
15 複数の集熱装置温度センサ(複数の第1温度センサ)
16 蓄熱槽温度センサ(第2温度センサ)
17 制御盤(制御手段)
1 Thermal storage system (solar heat utilization system)
11 Solar heat collector (heat collector)
11a to 11c Multiple heat collector groups 11a1 to 11a5, 11b1 to 11b5, 11c1 to 11c5 Heat collector 11d Outward pipe 11e1 to 11e3 Branch forward pipe 11f Return pipe 11g1 to 11g3 Branch return pipe 12 Heat storage tank 13 Heat collection path 14 Heat pump (pump)
15 Multiple heat collector temperature sensors (multiple first temperature sensors)
16 Thermal storage tank temperature sensor (second temperature sensor)
17 Control panel (control means)

Claims (2)

  1.  太陽光を受光することで熱媒を加熱する集熱装置と、
     前記集熱装置にて加熱された熱媒を導入して蓄熱する蓄熱槽と、
     前記蓄熱槽から前記集熱装置を経て再度前記蓄熱槽に熱媒を循環させるポンプと、
     前記集熱装置にて加熱された熱媒の温度を検出する複数の第1温度センサと、
     前記蓄熱槽内の蓄熱温度を検出する第2温度センサと、
     前記複数の第1温度センサにより検出された熱媒の温度それぞれと前記第2温度センサにより検出された蓄熱温度との差温の平均値が第1所定値以上となった場合に前記ポンプを運転させ、前記平均値が前記第1所定値よりも低い第2所定値以下となった場合に前記ポンプを停止させる制御手段と、を備え、
     前記集熱装置は、太陽光を受光することで熱媒を加熱する1又は複数の集熱器によりそれぞれが構成された複数の集熱器群を有し、
     前記複数の第1温度センサは、前記複数の集熱器群のうち2以上の集熱器群に対して設けられ、
     前記制御手段は、前記ポンプの停止中において前記平均値が前記第1所定値以上でなく、且つ、前記差温のうち一部が前記第1所定値以上となる場合に前記ポンプを所定時間運転させる
     太陽熱利用システム。
    A heat collector that heats the heat medium by receiving sunlight; and
    A heat storage tank for storing heat by introducing a heat medium heated by the heat collecting device; and
    A pump for circulating a heat medium from the heat storage tank to the heat storage tank again through the heat collecting device;
    A plurality of first temperature sensors for detecting the temperature of the heat medium heated by the heat collector;
    A second temperature sensor for detecting a heat storage temperature in the heat storage tank;
    The pump is operated when the average value of the temperature difference between each temperature of the heat medium detected by the plurality of first temperature sensors and the heat storage temperature detected by the second temperature sensor is equal to or greater than a first predetermined value. Control means for stopping the pump when the average value is equal to or lower than a second predetermined value lower than the first predetermined value,
    The heat collector has a plurality of heat collector groups each constituted by one or a plurality of heat collectors that heat the heat medium by receiving sunlight.
    The plurality of first temperature sensors are provided for two or more heat collector groups of the plurality of heat collector groups,
    The control means operates the pump for a predetermined time when the average value is not equal to or higher than the first predetermined value and a part of the differential temperature is equal to or higher than the first predetermined value while the pump is stopped. Let the solar heat utilization system.
  2.  前記制御手段は、前記複数の第1温度センサのうちの1つにより検出された熱媒の温度と、前記1つを除く他の第1温度センサにより検出された熱媒の温度の平均値とが規定値以上の差を有する場合、当該1つの第1温度センサ又は当該1つの第1温度センサが設けられた集熱器群について、異常状態であると判断する
     請求項1に記載の太陽熱利用システム。
    The control means includes a temperature of the heat medium detected by one of the plurality of first temperature sensors, and an average value of the temperature of the heat medium detected by other first temperature sensors excluding the one. The solar heat utilization according to claim 1, wherein the first temperature sensor or the heat collector group provided with the one first temperature sensor is determined to be in an abnormal state. system.
PCT/JP2014/078257 2013-10-23 2014-10-23 Solar heat utilization system WO2015060405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480057971.8A CN105723162B (en) 2013-10-23 2014-10-23 Sun heat utilization system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013219907A JP6232252B2 (en) 2013-10-23 2013-10-23 Solar heat utilization system
JP2013-219907 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015060405A1 true WO2015060405A1 (en) 2015-04-30

Family

ID=52992992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078257 WO2015060405A1 (en) 2013-10-23 2014-10-23 Solar heat utilization system

Country Status (3)

Country Link
JP (1) JP6232252B2 (en)
CN (1) CN105723162B (en)
WO (1) WO2015060405A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353161A (en) * 2022-01-14 2022-04-15 河北工业大学 Stepped storage and supply regulation and control method for solar energy-heat storage type pulsating heat pipe heating system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052162B (en) * 2016-07-01 2017-12-08 顺德职业技术学院 Heat pump and solar water heater combined system forecast Control Algorithm
JP7237889B2 (en) * 2020-07-13 2023-03-13 矢崎エナジーシステム株式会社 Heat collection system and its control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100357A (en) * 1982-11-29 1984-06-09 Matsushita Electric Ind Co Ltd Solar system
JPS63207951A (en) * 1987-02-21 1988-08-29 Matsushita Electric Ind Co Ltd Hot-water supplying apparatus utilizing solar heat
JPS63213763A (en) * 1987-03-03 1988-09-06 松下電器産業株式会社 Hot-water supply device utilizing solar heat
JP2013079759A (en) * 2011-10-04 2013-05-02 Tokyo Gas Co Ltd Heat collecting system
JP2013194983A (en) * 2012-03-19 2013-09-30 Yazaki Energy System Corp Solar heat utilization system and method of controlling pump rotating speed of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2823866Y (en) * 2005-09-25 2006-10-04 山东华元建设集团技术研究开发中心 Solar intelligent apparatus for heating air and water
CN100471002C (en) * 2006-04-21 2009-03-18 江苏大学 Thermoelectric battery and accumulator co-used power supply system
CN101509706A (en) * 2008-12-25 2009-08-19 吉林大学 Road heat collection underground energy-accumulation double temperature differential grade flow control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100357A (en) * 1982-11-29 1984-06-09 Matsushita Electric Ind Co Ltd Solar system
JPS63207951A (en) * 1987-02-21 1988-08-29 Matsushita Electric Ind Co Ltd Hot-water supplying apparatus utilizing solar heat
JPS63213763A (en) * 1987-03-03 1988-09-06 松下電器産業株式会社 Hot-water supply device utilizing solar heat
JP2013079759A (en) * 2011-10-04 2013-05-02 Tokyo Gas Co Ltd Heat collecting system
JP2013194983A (en) * 2012-03-19 2013-09-30 Yazaki Energy System Corp Solar heat utilization system and method of controlling pump rotating speed of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353161A (en) * 2022-01-14 2022-04-15 河北工业大学 Stepped storage and supply regulation and control method for solar energy-heat storage type pulsating heat pipe heating system

Also Published As

Publication number Publication date
CN105723162A (en) 2016-06-29
JP2015081731A (en) 2015-04-27
CN105723162B (en) 2018-09-14
JP6232252B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
WO2015060405A1 (en) Solar heat utilization system
KR102030890B1 (en) Heat pump system and operation method therefor
US20140060458A1 (en) Latent heat recovery type water heater
US8813742B2 (en) Hot water feeder
JP5312215B2 (en) Heat recovery system
JP5776649B2 (en) Heat pump water heater
JP2012211750A (en) Heat pump system and control method thereof
CN102607169B (en) Instant-heating heat pump water heater and heating control method for same
JP6026154B2 (en) Solar heat utilization system and pump control method thereof
JP5741847B2 (en) Abnormality judgment method for solar water heater
JP2006267066A (en) Diagnostic device for cogeneration system
JP2008309456A (en) Solar system
JP2015183948A (en) Solar device
JP5912707B2 (en) Solar heat utilization system and pump rotation speed control method thereof
JPH0972612A (en) Hot water storage type hot water supply equipment
JP5659734B2 (en) Solar power system
JP3846391B2 (en) Solar water heater
JP7237889B2 (en) Heat collection system and its control method
WO2015060370A1 (en) Heat storage system and pump control method therefor
JP5812829B2 (en) Heat pump position confirmation method and heat pump system in heat pump system
JP3371091B2 (en) Heat source equipment control device
JP2002130834A (en) Hot water supply apparatus utilizing solar heat
JP5601452B2 (en) Hot water storage hot water supply system
JP2016114279A (en) Energy utilization system
JP2010266166A (en) Hot water storage type exhaust heat recovery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856696

Country of ref document: EP

Kind code of ref document: A1