JP2010266166A - Hot water storage type exhaust heat recovery system - Google Patents

Hot water storage type exhaust heat recovery system Download PDF

Info

Publication number
JP2010266166A
JP2010266166A JP2009119530A JP2009119530A JP2010266166A JP 2010266166 A JP2010266166 A JP 2010266166A JP 2009119530 A JP2009119530 A JP 2009119530A JP 2009119530 A JP2009119530 A JP 2009119530A JP 2010266166 A JP2010266166 A JP 2010266166A
Authority
JP
Japan
Prior art keywords
hot water
heat
water storage
heat recovery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009119530A
Other languages
Japanese (ja)
Inventor
Juichi Okada
寿一 岡田
Masatomo Yoshimura
昌知 吉村
Kohei Yamaguchi
耕平 山口
Hiroaki Suga
宏明 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009119530A priority Critical patent/JP2010266166A/en
Publication of JP2010266166A publication Critical patent/JP2010266166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that heat radiation is increased as a heat recovering pipe is long and exposed outdoors, in a configuration that a fuel cell unit and a hot water storage unit are separated and connected by the heat recovering pipe. <P>SOLUTION: In this hot water storage type exhaust heat recovery system, a heat exchanger 102, a circulation pump 103, a switch 109 of a heat recovering water circulation circuit and a bypass pipe 110 are disposed in the fuel cell unit, and the fuel cell unit 201 and a hot water storage tank 104 in a hot water storage unit 202 independently disposed are connected by a heat recovering pipe A105 and a heat recovery pipe C107. According to this constitution, the heat recovering water can pass in the heat recovering pipe between the fuel cell unit and the hot water storage unit in a state of suppressing heat radiation with outside air flowing in the fuel cell unit when passing through the bypass pipe. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はコジェネレーションシステム、例えば燃料電池コジェネレーションシステムなどで排熱を離れた貯湯タンクに温水として蓄熱する貯湯式排熱回収システムに関するものである。   The present invention relates to a hot water storage type exhaust heat recovery system that stores heat as hot water in a hot water storage tank that has left the exhaust heat in a cogeneration system such as a fuel cell cogeneration system.

従来の貯湯式排熱回収システムとしては、燃料電池のコジェネレーションシステムに関するものがあった(例えば、特許文献1参照)。図4は、前記特許文献1に記載された従来の燃料電池のコジェネレーションシステムを示すものである。   As a conventional hot water storage type exhaust heat recovery system, there has been a fuel cell cogeneration system (see, for example, Patent Document 1). FIG. 4 shows a conventional fuel cell cogeneration system described in Patent Document 1. In FIG.

図4において、燃料電池101は余剰な熱を熱交換器102で熱回収水に受け渡すことで排出している。この熱回収水は、循環ポンプ103によって貯湯タンク104の下部から熱回収配管A105および熱回収配管B106を通じて搬送されたものである。熱交換器102で燃料電池101の余剰熱で加熱された熱回収水は熱交出温度センサー108で検出され、その温度が貯湯タンク104の上部の温度よりも高い時は熱回収配管C107によって貯湯タンク104の上部に搬送される。ここで加熱された熱回収水の温度が貯湯タンク104の上部の温度よりも低い時は切替弁109によってバイパス回路110を通じて熱回収配管A105の合流部に搬送され回路内を循環する。   In FIG. 4, the fuel cell 101 discharges surplus heat by passing it to the heat recovery water by the heat exchanger 102. This heat recovery water is conveyed from the lower part of the hot water storage tank 104 through the heat recovery pipe A105 and the heat recovery pipe B106 by the circulation pump 103. The heat recovery water heated by surplus heat of the fuel cell 101 in the heat exchanger 102 is detected by the heat exchange temperature sensor 108, and when the temperature is higher than the temperature of the upper part of the hot water storage tank 104, the heat recovery pipe C107 stores the hot water storage. It is conveyed to the upper part of the tank 104. When the temperature of the heat recovery water heated here is lower than the temperature of the upper part of the hot water storage tank 104, the changeover valve 109 conveys the heat recovery water to the junction of the heat recovery pipe A105 through the bypass circuit 110 and circulates in the circuit.

特開平11−223385号公報(図1)JP-A-11-223385 (FIG. 1)

しかしながら、前記従来の構成では、燃料電池の熱交換器の熱回収水の加熱温度を貯湯タンクにためるべき温度を目標に制御し、その過程で温度が貯湯タンクにためるべき温度か否かで切替弁を貯湯タンクとバイパス回路とに切り替えている。現状のシステム設置をみると、設置スペースの関係から燃料電池ユニットと貯湯ユニットを分離して熱回収配管で接続する形態がとられている。また、バイパス回路に流れる場合の回路の保有水量を増やすことからバイパス回路を貯湯ユニット内に設置している。このため熱回収配管が長くかつ屋外に露出しているために放熱量が大きくなる。貯湯タンク通水時もバイパス回路通水時も熱回収水は熱回収配管C上を通水するため絶えず放熱されることになる。貯湯タンクに蓄熱せずにバイパス回路で循環する場合はその往復において放熱ロスを生じているという課題を有していた。   However, in the conventional configuration, the heating temperature of the heat recovery water of the heat exchanger of the fuel cell is controlled to a temperature that should be accumulated in the hot water storage tank, and switching is performed depending on whether or not the temperature is to be accumulated in the hot water storage tank in the process. The valve is switched between a hot water storage tank and a bypass circuit. Looking at the current system installation, the fuel cell unit and hot water storage unit are separated from each other due to the installation space and connected by heat recovery piping. Moreover, the bypass circuit is installed in the hot water storage unit in order to increase the amount of water held in the circuit when flowing through the bypass circuit. For this reason, since heat recovery piping is long and exposed to the outdoors, the amount of heat radiation increases. Since the heat recovery water passes through the heat recovery pipe C both when the hot water tank passes and when the bypass circuit passes, the heat is continuously radiated. In the case of circulating in the bypass circuit without storing heat in the hot water storage tank, there was a problem that a heat dissipation loss occurred in the reciprocation.

本発明は、前記従来の課題を解決するもので、燃料電池を使った貯湯式のコジェネレーションシステムのように熱回収量が少なく、特に設置形態が主要本体ユニットと貯湯ユニットで分離されるために、従来の構成では想定していなかった熱回収配管における放熱が大きいという場合でもこれを考慮して熱回収水を搬送出来るように配慮した貯湯式排熱回収システムを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, because the amount of heat recovery is small like a hot water storage type cogeneration system using a fuel cell, and in particular, the installation form is separated by the main body unit and the hot water storage unit. An object of the present invention is to provide a hot water storage type waste heat recovery system that takes into consideration even when heat radiation in a heat recovery pipe, which was not assumed in the conventional configuration, is large, so that heat recovery water can be conveyed.

前記従来の課題を解決するために、本発明の貯湯式排熱回収システムは、燃料電池ユニット内に排熱を熱回収水との間で授受するための熱交換器と、燃料電池ユニット内で熱回収水を循環させる循環ポンプと、この燃料電池の排熱を温水として蓄えるための貯湯タンクを有する貯湯ユニットと、貯湯ユニット内の貯湯タンク内の水を熱回収水として循環ポ
ンプに送る熱回収配管Aと、熱回収水を循環ポンプから燃料電池ユニットの熱交換器に送る熱回収配管Bと、燃料電池ユニットの熱交換器から熱を回収し加熱された熱回収水を貯湯タンク上部に送るための熱回収配管Cと、この熱回収配管Cの途中の燃料電池ユニット内で貯湯タンク上部への経路とは異なる回路への切替器と、この切替器で切り替えられた熱回収水を熱回収配管Aの循環ポンプ手前で熱回収配管Aに合流させる燃料電池ユニット内を通るバイパス配管とを備えたものである。
In order to solve the above conventional problems, a hot water storage type exhaust heat recovery system of the present invention includes a heat exchanger for exchanging exhaust heat with heat recovery water in the fuel cell unit, and a fuel cell unit. A heat pump that circulates heat recovery water, a hot water storage unit having a hot water storage tank for storing the exhaust heat of the fuel cell as hot water, and heat recovery that sends water in the hot water storage tank in the hot water storage unit to the circulation pump as heat recovery water Pipe A, heat recovery pipe B for sending heat recovery water from the circulation pump to the heat exchanger of the fuel cell unit, and heat recovery from the heat exchanger of the fuel cell unit and sending the heated heat recovery water to the upper part of the hot water storage tank Heat recovery pipe C, a switch to a circuit different from the path to the upper part of the hot water storage tank in the fuel cell unit in the middle of the heat recovery pipe C, and heat recovery water switched by this switch to recover heat Circulation of pipe A Amplifier is before that a bypass pipe passing through the fuel cell unit for combining the heat recovery pipe A in.

本構成によって、熱回収配管の燃料電池ユニットと貯湯ユニットの間の熱回収水の通水はバイパス配管に通水時は燃料電池ユニット内を流れ外気との放熱を抑えることを可能とすることができる。   With this configuration, the flow of heat recovery water between the fuel cell unit and the hot water storage unit of the heat recovery pipe can flow through the fuel cell unit when passing through the bypass pipe and can suppress heat dissipation from the outside air. it can.

本発明の貯湯式排熱回収システムによれば、熱回収配管の燃料電池ユニットと貯湯ユニットの間の熱回収水の通水がバイパス配管に通水される場合には、絶えず燃料電池ユニット内を流れるため外気との接触を燃料電池ユニットが防ぐことになるため、熱回収水と外気との温度差から生じる放熱を抑えることを可能とすることができる。   According to the hot water storage type exhaust heat recovery system of the present invention, when the heat recovery water between the fuel cell unit and the hot water storage unit of the heat recovery pipe is passed through the bypass pipe, Since the fuel cell unit prevents contact with the outside air due to the flow, it is possible to suppress the heat radiation caused by the temperature difference between the heat recovery water and the outside air.

本発明の実施の形態1における貯湯式排熱回収システムの構成図Configuration diagram of hot water storage type exhaust heat recovery system in Embodiment 1 of the present invention 本発明の実施の形態2における貯湯式排熱回収システムの構成図Configuration diagram of hot water storage type exhaust heat recovery system in Embodiment 2 of the present invention 本発明の実施の形態3における貯湯式排熱回収システムの構成図Configuration diagram of hot water storage type exhaust heat recovery system in Embodiment 3 of the present invention 従来の燃料電池のコジェネレーションシステムの構成図Configuration diagram of conventional fuel cell cogeneration system

第1の発明は、排熱を熱回収水との間で授受するための熱交換器を有する機器である燃料電池ユニットと、この燃料電池の排熱を回収し回収した熱を温水として使用するために蓄えるための貯湯タンクを有する貯湯ユニットと、燃料電池ユニット内で熱回収水を循環させる循環ポンプと、貯湯ユニット内の貯湯タンク内の底部接続口から貯湯タンクの水を熱回収水として循環ポンプに送る熱回収配管Aと、熱回収水を循環ポンプから燃料電池ユニットの熱交換器に送る熱回収配管Bと、燃料電池ユニットの熱交換器から熱を回収し加熱された熱回収水を貯湯ユニット内の貯湯タンクの上部入り口から貯湯タンク内に送るための経路を構成する熱回収配管Cと、この熱回収配管Cの途中の燃料電池ユニット内で貯湯タンク上部への経路とは異なる回路への切替器と、この切替器で切り替えられた熱回収水を熱回収配管Aの循環ポンプ手前で熱回収配管Aに合流させる燃料電池ユニット内を通るバイパス配管を備えたものである。   1st invention uses the heat which collect | recovered and collect | recovered the exhaust heat of this fuel cell as a fuel cell unit which is an apparatus which has a heat exchanger for exchanging exhaust heat between heat recovery water as warm water A hot water storage unit having a hot water storage tank for storing, a circulation pump for circulating heat recovery water in the fuel cell unit, and circulating water from the hot water storage tank as heat recovery water from the bottom connection port in the hot water storage tank in the hot water storage unit Heat recovery pipe A that is sent to the pump, heat recovery pipe B that sends the heat recovery water from the circulation pump to the heat exchanger of the fuel cell unit, and heat recovery water that is heated and recovered from the heat exchanger of the fuel cell unit The heat recovery pipe C constituting the path for sending the hot water storage tank from the upper entrance of the hot water storage tank in the hot water storage unit to the hot water storage tank is different from the path to the upper part of the hot water storage tank in the fuel cell unit in the middle of the heat recovery pipe C. And switch to a circuit, in which the switched heat recovery water at this switch with a bypass pipe passing through the fuel cell unit for combining the heat recovery pipe A in the circulation pump before the heat recovery pipe A.

第2の発明は、特に、第1の発明において、燃料電池ユニット内でバイパス配管と熱回収配管Aの合流点から熱交換器の入口の間の経路にバッファータンクを有した回路構成のものである。   In particular, the second invention is a circuit configuration having a buffer tank in the path between the junction of the bypass pipe and the heat recovery pipe A and the inlet of the heat exchanger in the fuel cell unit in the first invention. is there.

第3の発明は、特に、第1または第2の発明において、熱交換器の出口と切替器の間の経路上で熱回収水の温度を検知する熱交出温度センサーと、熱交換器の入口とバイパス配管と熱回収配管Aの合流点の間の経路上で熱回収水の熱交換器入口の温度を検出する熱交入温度センサーと、貯湯ユニット内の熱回収配管Aから貯湯タンクへの熱回収水の温度を検知する貯湯入温度センサーと、熱交換器で加熱後の熱回収水温度を貯湯目標温度になるように熱交出温度センサーの温度を循環ポンプの回転数で制御する機能と切替器が貯湯タンク側で貯湯タンクに熱回収水を貯湯しているときに、熱交出温度センサーと貯湯入温度センサーとの温度情報から放熱が大きいと判断した時、熱交出温度センサーの制御温度を貯湯目標温度から燃料電池の運転に支障のない範囲の第2の目標温度とし、熱交出温度センサーの温度が第2の目標温度まで低くなったところで切替器をバイパス回路に切替え、
熱交入温度センサーの温度が第2の目標温度まで高くなったところで熱交出温度センサーの制御温度を貯湯目標温度に変更し、熱交出温度センサーの温度が切替設定温度よりも高くなったところで切替器を貯湯タンク側に切替える制御機能を備えたものである。
According to a third aspect of the invention, in particular, in the first or second aspect of the invention, a heat exchange temperature sensor that detects the temperature of the heat recovery water on the path between the outlet of the heat exchanger and the switch, and a heat exchanger A heat input temperature sensor for detecting the temperature of the heat exchanger inlet of the heat recovery water on the path between the junction of the inlet, the bypass pipe and the heat recovery pipe A, and the heat recovery pipe A in the hot water storage unit to the hot water storage tank The temperature of the hot water storage temperature sensor that detects the temperature of the heat recovery water and the temperature of the heat exchange temperature sensor that controls the temperature of the heat exchange temperature sensor so that the temperature of the heat recovery water heated by the heat exchanger becomes the target temperature for hot water storage. When the function and switch are storing hot recovered water in the hot water storage tank on the hot water storage tank side, if it is determined that the heat release is large from the temperature information of the heat transfer temperature sensor and the hot water storage temperature sensor, the heat output temperature Control the temperature of the sensor from the hot water storage target temperature To a second target temperature range not interfering, switching to the bypass circuit switch when the temperature of the heat 交出 temperature sensor is lowered to the second target temperature,
When the temperature of the heat input temperature sensor rises to the second target temperature, the control temperature of the heat exchange temperature sensor was changed to the hot water storage target temperature, and the temperature of the heat exchange temperature sensor became higher than the switching set temperature. By the way, it has a control function to switch the switch to the hot water storage tank side.

以下本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における貯湯式排熱回収システムの構成図である。図1において、図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 1)
FIG. 1 is a configuration diagram of a hot water storage type exhaust heat recovery system according to Embodiment 1 of the present invention. In FIG. 1, the same components as those in FIG.

図1において、排熱を熱回収水との間で授受するための熱交換器102を有する機器である燃料電池ユニット201と、この燃料電池101の排熱を回収し回収した熱を温水として使用するために蓄えるための貯湯タンク104を有する貯湯ユニット202と、燃料電池ユニット201内で熱回収水を循環させる循環ポンプ103と、貯湯ユニット202内の貯湯タンク104内の底部接続口から貯湯タンク104の水を熱回収水として循環ポンプ103に送る熱回収配管A105と、熱回収水を循環ポンプ103から燃料電池ユニット201の熱交換器102に送る熱回収配管B106と、燃料電池ユニット201の熱交換器102から熱を回収し加熱された熱回収水を貯湯ユニット202内の貯湯タンク104の上部入り口から貯湯タンク104内に送るための経路を構成する熱回収配管C107と、この熱回収配管C107の途中の燃料電池ユニット201内で貯湯タンク104上部への経路とは異なる回路への切替器109と、この切替器109で切り替えられた熱回収水を熱回収配管A105の循環ポンプ103手前で熱回収配管A105に合流させる燃料電池ユニット201内を通るバイパス配管110を備えている。   In FIG. 1, a fuel cell unit 201, which is a device having a heat exchanger 102 for exchanging exhaust heat with heat recovery water, and the heat recovered and recovered from the exhaust heat of the fuel cell 101 are used as hot water. A hot water storage unit 202 having a hot water storage tank 104 for storing, a circulation pump 103 for circulating heat recovery water in the fuel cell unit 201, and a hot water storage tank 104 from a bottom connection port in the hot water storage tank 104 in the hot water storage unit 202. Recovery pipe A105 for sending the water as heat recovery water to the circulation pump 103, heat recovery pipe B106 for sending the heat recovery water from the circulation pump 103 to the heat exchanger 102 of the fuel cell unit 201, and heat exchange for the fuel cell unit 201 Hot water is collected from the upper entrance of the hot water storage tank 104 in the hot water storage unit 202 by collecting heat from the vessel 102 and heating the recovered heat water. The heat recovery pipe C107 that constitutes a path for sending it into the 104, the switch 109 to a circuit different from the path to the upper part of the hot water storage tank 104 in the fuel cell unit 201 in the middle of the heat recovery pipe C107, and this switching The heat recovery water switched by the vessel 109 is provided with a bypass pipe 110 that passes through the fuel cell unit 201 for joining the heat recovery pipe A105 before the circulation pump 103 of the heat recovery pipe A105.

更に、詳述すると、図1において、燃料電池ユニット201の中の燃料電池101は余剰な熱を熱交換器102で熱回収水に受け渡すことで排出している。この熱回収水は、貯湯ユニット202内の貯湯タンク104の下部から熱回収配管A105を通じて循環ポンプ103を経て熱回収配管B106を通じて搬送されたものである。また、熱交換器102で燃料電池101の余剰熱で加熱された熱回収水は温度センサー108で温度を検出され、その温度によって熱回収水を貯湯タンク104に貯湯する場合は切替弁109を貯湯タンク側に切り替え、貯湯しない場合は切替弁109をバイパス回路110側に切り替える構成になっている。   More specifically, in FIG. 1, the fuel cell 101 in the fuel cell unit 201 discharges excess heat by passing it to the heat recovery water by the heat exchanger 102. This heat recovery water is conveyed from the lower part of the hot water storage tank 104 in the hot water storage unit 202 through the heat recovery pipe A105, the circulation pump 103, and the heat recovery pipe B106. Further, the temperature of the heat recovery water heated by the heat exchanger 102 with the excess heat of the fuel cell 101 is detected by the temperature sensor 108, and when the heat recovery water is stored in the hot water storage tank 104 based on the temperature, the switching valve 109 is stored in the hot water. When switching to the tank side and not storing hot water, the switching valve 109 is switched to the bypass circuit 110 side.

かかる構成によれば切替弁109をバイパス回路110側に切り替えた場合にバイパス回路110から循環ポンプ103を通り熱交換器102から切替器で構成される循環回路構成はすべてが燃料電池ユニット201の内部で構成され燃料電池ユニット201の外郭によって外気と遮断されることとなり、燃料電池ユニット201と貯湯ユニット202という分離された構成であってもこの循環回路の外気への放熱ロスをなくすことができる。   According to such a configuration, when the switching valve 109 is switched to the bypass circuit 110 side, the circulation circuit configuration configured from the bypass circuit 110 through the circulation pump 103 and the heat exchanger 102 to the switching device is entirely inside the fuel cell unit 201. Therefore, even if the fuel cell unit 201 and the hot water storage unit 202 are separated from each other, heat loss to the outside air of the circulation circuit can be eliminated.

(実施の形態2)
図2は、本発明の実施の形態2の貯湯式排熱回収システムの構成図である。図2において、図1および図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 2 is a configuration diagram of a hot water storage type exhaust heat recovery system according to Embodiment 2 of the present invention. 2, the same components as those in FIGS. 1 and 4 are denoted by the same reference numerals, and the description thereof is omitted.

図2において、バッファータンク203は循環ポンプ103の出口と熱交換器102の入口の間に設置されている。ここで、バッファータンク203は、バイパス回路110と熱回収配管Aの合流点110Aと循環ポンプ103の入口の間に設けてもよい。また、循環ポンプ103の中に構成してもかまわない。   In FIG. 2, the buffer tank 203 is installed between the outlet of the circulation pump 103 and the inlet of the heat exchanger 102. Here, the buffer tank 203 may be provided between the bypass circuit 110, the junction 110A of the heat recovery pipe A, and the inlet of the circulation pump 103. Further, it may be configured in the circulation pump 103.

かかる構成によれば、切替器109を切り替えた時に構成される循環回路の容積をバッ
ファータンク203の容積分大きくすることで切替器103の切替周期を長くすることができ、頻繁な切替による温度の頻繁な変動の発生を緩和することで、循環回路上の部品の耐久性能などへの影響を緩和できる。
According to such a configuration, it is possible to lengthen the switching cycle of the switch 103 by increasing the volume of the circulation circuit configured when the switch 109 is switched by the volume of the buffer tank 203, and the temperature of the switch due to frequent switching is increased. By mitigating the occurrence of frequent fluctuations, it is possible to mitigate the impact on the durability performance of components on the circulation circuit.

(実施の形態3)
図3は、本発明の実施の形態3の貯湯式排熱回収システムの構成図である。図3において、図1および図3、図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
FIG. 3 is a configuration diagram of a hot water storage type exhaust heat recovery system according to Embodiment 3 of the present invention. 3, the same components as those in FIGS. 1, 3, and 4 are denoted by the same reference numerals, and description thereof is omitted.

図3において、熱交入温度センサー204は熱交換器102に入る熱回収水温度を検出するために熱回収配管B106のバッファータンク203の出口と熱交換器102の入口の間に設けられている。また、熱交出温度センサー108は熱交換器102の出口と切替器109の間の熱回収配管C107を流れる熱回収水の温度を検出できる位置に設置され、熱回収配管C107の貯湯ユニット202内で貯湯タンク104の入口までの間に熱回収水の温度を検出するために貯湯入温度センサー205が設けられている。   In FIG. 3, the heat input temperature sensor 204 is provided between the outlet of the buffer tank 203 and the inlet of the heat exchanger 102 in the heat recovery pipe B 106 in order to detect the temperature of the heat recovery water entering the heat exchanger 102. . Further, the heat exchange temperature sensor 108 is installed at a position where the temperature of the heat recovery water flowing through the heat recovery pipe C107 between the outlet of the heat exchanger 102 and the switch 109 can be detected, and the temperature inside the hot water storage unit 202 of the heat recovery pipe C107. In order to detect the temperature of the heat recovery water until the inlet of the hot water storage tank 104, a hot water storage temperature sensor 205 is provided.

かかる構成によれば、熱交換器102から燃料電池101の排熱される熱量をQとすると熱回収水の熱交換器102への入り温度である熱交入温度センサー204の検知温度をTi、熱交換器102の加熱後の温度である熱交出温度センサー108の検知温度をTo、回路を流れる熱回収水の流量をM、循環ポンプ103の回転数をRとすると、温度差ΔToi=To-Tiに対してQ=ΔToi・M、ここで循環流量Mは循環ポンプ103の回転数Rに比例する(M∝R)ことがいえるため循環ポンプ103の回転数を制御することで熱交換器102の加熱後の温度Toを制御ができる。回転数Rを増やし循環流量Mが増えると温度差ΔToiは小さくなる。また、外気によって放熱する量を放熱量Hとすると、熱回収配管Cを流れる熱回収水の放熱前の温度を熱交出温度センサー108の検知温度をTo、放熱後の温度を貯湯入温度センサー205の検知温度をTt、配管の温度降下による温度差ΔTot=To-Ttとすると、主に対流放熱に依存すると考え近似的には、放熱量H≒ΔTot・Mといえる。よって、Tot≒H/Mより循環ポンプ103の回転数Rを増やし循環流量Mが増えると放熱による温度降下を減らすことができる。   According to such a configuration, if the amount of heat exhausted from the fuel cell 101 from the heat exchanger 102 is Q, the temperature detected by the heat input temperature sensor 204, which is the temperature at which heat recovery water enters the heat exchanger 102, is Ti, Assuming that the detected temperature of the heat exchange temperature sensor 108, which is the temperature after heating the exchanger 102, is To, M is the flow rate of the heat recovery water flowing through the circuit, and R is the rotational speed of the circulation pump 103, the temperature difference ΔToi = To− Q = ΔToi · M with respect to Ti, where the circulation flow rate M can be said to be proportional to the rotation speed R of the circulation pump 103 (M∝R). Therefore, the heat exchanger 102 is controlled by controlling the rotation speed of the circulation pump 103. The temperature To after heating can be controlled. When the rotational speed R is increased and the circulation flow rate M is increased, the temperature difference ΔToi is decreased. If the amount of heat released by the outside air is H, the temperature before heat release of the heat recovery water flowing through the heat recovery pipe C is the temperature detected by the heat exchange temperature sensor 108, and the temperature after heat release is the hot water storage temperature sensor. Assuming that the detected temperature 205 is Tt and the temperature difference ΔTot = To−Tt due to the temperature drop of the pipe, it can be said that the amount of heat release is approximately H≈ΔTot · M because it is mainly dependent on convection heat dissipation. Therefore, if the rotational speed R of the circulation pump 103 is increased from Tot≈H / M and the circulation flow rate M is increased, the temperature drop due to heat radiation can be reduced.

以上により、熱交換器102で加熱後の熱回収水温度を貯湯目標温度になるように熱交出温度センサー108の温度を循環ポンプ103の回転数で制御し、熱交出温度センサー108と貯湯入温度センサー205との温度から放熱が大きいと判断した時、熱交出温度センサー108の制御温度を貯湯目標温度から燃料電池の運転に支障のない範囲の第2の目標温度にさげるために循環ポンプ103の回転数を上げて、熱交出温度センサー108の温度が第2の目標温度まで低くなったところで切替器109をバイパス回路110に切替える。これによって循環回路内の熱回収水の温度は第2の目標温度まで上昇することになる。熱交入温度センサーの温度が第2の目標温度まで高く暖まったところで熱交出温度センサーの制御温度を貯湯目標温度に変更し、循環ポンプ103の回転数を制御する。ただし、ここでの回転数は循環温度が上昇しているため放熱が大きいと判断した時の回転数よりも高くなる。よって、熱回収配管C107および熱回収配管A105の中を流れる循環流量が多くなることで放熱量を減少させることができ、結果として高温の湯を貯湯タンク104に蓄えることが可能となる。   As described above, the temperature of the heat exchange temperature sensor 108 is controlled by the number of rotations of the circulation pump 103 so that the heat recovery water temperature heated by the heat exchanger 102 becomes the hot water storage target temperature, and the heat exchange temperature sensor 108 and the hot water storage When it is determined that heat radiation is large from the temperature with the temperature sensor 205, the heat exchange temperature sensor 108 is circulated to reduce the control temperature of the heat exchange temperature sensor 108 from the hot water storage target temperature to the second target temperature in a range that does not hinder the operation of the fuel cell. The number of rotations of the pump 103 is increased, and the switch 109 is switched to the bypass circuit 110 when the temperature of the heat exchange temperature sensor 108 is lowered to the second target temperature. As a result, the temperature of the heat recovery water in the circulation circuit rises to the second target temperature. When the temperature of the heat input temperature sensor becomes high to the second target temperature, the control temperature of the heat exchange temperature sensor is changed to the hot water storage target temperature, and the rotation speed of the circulation pump 103 is controlled. However, the number of revolutions here is higher than the number of revolutions when it is determined that the heat radiation is large because the circulating temperature is rising. Therefore, the amount of heat radiation can be reduced by increasing the circulation flow rate flowing through the heat recovery pipe C107 and the heat recovery pipe A105, and as a result, hot water can be stored in the hot water storage tank 104.

ここで、制御可能であれば貯湯入温度センサー205を廃止し熱交出温度センサー108の温度で制御することも可能である。さらに熱交出温度センサー108の熱交換器102の加熱後の温度検出と切替器109の切替温度検出の機能を同時に実現できないときは熱交換器102の後と切替器109の前にそれぞれ温度センサーを設置してもかまわない。   Here, if controllable, the hot water storage temperature sensor 205 can be abolished and the temperature can be controlled by the temperature of the heat exchange temperature sensor 108. Further, when the function of detecting the temperature after heating of the heat exchanger 102 of the heat exchange temperature sensor 108 and the function of detecting the switching temperature of the switch 109 cannot be realized at the same time, the temperature sensor after the heat exchanger 102 and before the switch 109 respectively. May be installed.

本発明にかかる貯湯式排熱回収システムは、燃料電池などの排熱を有効に利用しようとするシステムでその排熱を生じる本体ユニットと貯湯ユニットが分離されてその間を熱回収配管を用いて排熱の搬送を行うシステムにおいて外気と熱回収配管の間で生じる放熱ロスを低減できるシステムを提供できるもとして有用である。   The hot water storage type exhaust heat recovery system according to the present invention is a system that effectively uses exhaust heat of a fuel cell or the like, and a main body unit that generates the exhaust heat and a hot water storage unit are separated and exhausted between them using a heat recovery pipe. It is useful as a system that can reduce a heat dissipation loss that occurs between outside air and heat recovery piping in a system that transports heat.

102 熱交換器
103 循環ポンプ
104 貯湯タンク
105 熱回収配管A
106 熱回収配管B
107 熱回収配管C
108 熱交出温度センサー
109 切替器
110 バイパス配管
201 燃料電池ユニット
202 貯湯ユニット
203 バッファータンク
204 熱交入温度センサー
205 貯湯入温度センサー
102 Heat Exchanger 103 Circulation Pump 104 Hot Water Storage Tank 105 Heat Recovery Pipe A
106 Heat recovery pipe B
107 Heat recovery piping C
108 Heat Exchange Temperature Sensor 109 Switch 110 Bypass Pipe 201 Fuel Cell Unit 202 Hot Water Storage Unit 203 Buffer Tank 204 Heat Exchange Temperature Sensor 205 Hot Water Storage Temperature Sensor

Claims (3)

排熱を熱回収水との間で授受するための熱交換器を有する機器である燃料電池ユニットと、この燃料電池の排熱を回収し回収した熱を温水として使用するために蓄えるための貯湯タンクを有する貯湯ユニットと、燃料電池ユニット内で熱回収水を循環させる循環ポンプと、貯湯ユニット内の貯湯タンク内の底部接続口から貯湯タンクの水を熱回収水として循環ポンプに送る熱回収配管Aと、熱回収水を循環ポンプから燃料電池ユニットの熱交換器に送る熱回収配管Bと、燃料電池ユニットの熱交換器から熱を回収し加熱された熱回収水を貯湯ユニット内の貯湯タンクの上部入り口から貯湯タンク内に送るための経路を構成する熱回収配管Cと、この熱回収配管Cの途中の燃料電池ユニット内で貯湯タンク上部への経路とは異なる回路への切替器と、この切替器で切り替えられた熱回収水を熱回収配管Aの循環ポンプ手前で熱回収配管Aに合流させる燃料電池ユニット内を通るバイパス配管を備えた貯湯式排熱回収システム。 A fuel cell unit, which is a device having a heat exchanger for exchanging exhaust heat with heat recovery water, and hot water storage for storing the recovered heat of the fuel cell for use as hot water A hot water storage unit having a tank, a circulation pump that circulates heat recovery water in the fuel cell unit, and a heat recovery pipe that sends the water in the hot water storage tank as heat recovery water from the bottom connection port in the hot water storage tank in the hot water storage unit to the circulation pump A, heat recovery pipe B for sending heat recovery water from the circulation pump to the heat exchanger of the fuel cell unit, and a hot water storage tank in the hot water storage unit for recovering the heat recovered from the heat exchanger of the fuel cell unit Switching to a circuit different from the route to the upper part of the hot water storage tank in the fuel cell unit in the middle of the heat recovery pipe C When, hot-water storage type heat recovery system including a bypass pipe passing through the fuel cell unit for combining the heat recovery pipe A in the circulation pump before the switch in the switched heat recovery water heat recovery pipe A. 燃料電池ユニット内でバイパス配管と熱回収配管Aの合流点から熱交換器の入口の間の経路にバッファータンクを有した回路構成の請求項1に記載の貯湯式排熱回収システム。 The hot water storage type exhaust heat recovery system according to claim 1, having a circuit configuration having a buffer tank in a path between a junction of the bypass pipe and the heat recovery pipe A and an inlet of the heat exchanger in the fuel cell unit. 熱交換器の出口と切替器の間の経路上で熱回収水の温度を検知する熱交出温度センサーと、熱交換器の入口とバイパス配管と熱回収配管Aの合流点の間の経路上で熱回収水の熱交換器入口の温度を検出する熱交入温度センサーと、貯湯ユニット内の熱回収配管Aから貯湯タンクへの熱回収水の温度を検知する貯湯入温度センサーと、熱交換器で加熱後の熱回収水温度を貯湯目標温度になるように熱交出温度センサーの温度を循環ポンプの回転数で制御する機能と切替器が貯湯タンク側で貯湯タンクに熱回収水を貯湯しているときに、熱交出温度センサーと貯湯入温度センサーとの温度情報から放熱が大きいと判断した時、熱交出温度センサーの制御温度を貯湯目標温度から燃料電池の運転に支障のない範囲の第2の目標温度とし、熱交出温度センサーの温度が第2の目標温度まで低くなったところで切替器をバイパス回路に切替え、熱交入温度センサーの温度が第2の目標温度まで高くなったところで熱交出温度センサーの制御温度を貯湯目標温度に変更し、熱交出温度センサーの温度が切替設定温度よりも高くなったところで切替器を貯湯タンク側に切替える制御機能を備えた請求項1または請求項2に記載の貯湯式排熱回収システム。 On the path between the heat exchanger temperature sensor that detects the temperature of the heat recovery water on the path between the outlet of the heat exchanger and the switch, and on the path between the inlet of the heat exchanger, the bypass pipe, and the heat recovery pipe A Heat exchange temperature sensor for detecting the temperature of the heat recovery water inlet of the heat recovery water, hot water storage temperature sensor for detecting the temperature of the heat recovery water from the heat recovery pipe A in the hot water storage unit to the hot water storage tank, and heat exchange A function that controls the temperature of the heat exchanging temperature sensor with the number of rotations of the circulating pump so that the temperature of the heat recovery water after heating in the cooler becomes the target temperature for hot water storage, and the switch stores hot recovered water in the hot water storage tank on the hot water storage tank side. When it is judged that the heat dissipation is large from the temperature information of the heat exchange temperature sensor and the hot water storage temperature sensor, the control temperature of the heat exchange temperature sensor is set from the hot water storage target temperature to the fuel cell operation. The second target temperature in the range and the heat exchange temperature When the temperature of the sensor decreases to the second target temperature, the switch is switched to a bypass circuit, and when the temperature of the heat input temperature sensor reaches the second target temperature, the control temperature of the heat exchange temperature sensor is stored. The hot water storage type exhaust heat according to claim 1 or 2, further comprising a control function of switching to a hot water storage tank side when the temperature of the heat exchange temperature sensor becomes higher than the switching set temperature when the temperature is changed to a target temperature. Collection system.
JP2009119530A 2009-05-18 2009-05-18 Hot water storage type exhaust heat recovery system Pending JP2010266166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119530A JP2010266166A (en) 2009-05-18 2009-05-18 Hot water storage type exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119530A JP2010266166A (en) 2009-05-18 2009-05-18 Hot water storage type exhaust heat recovery system

Publications (1)

Publication Number Publication Date
JP2010266166A true JP2010266166A (en) 2010-11-25

Family

ID=43363289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119530A Pending JP2010266166A (en) 2009-05-18 2009-05-18 Hot water storage type exhaust heat recovery system

Country Status (1)

Country Link
JP (1) JP2010266166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366488B1 (en) 2012-05-21 2014-02-24 현대하이스코 주식회사 Water tank with excellent dispersion efficiency for water pressure and fuel cell system using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213821A (en) * 2001-01-16 2002-07-31 Denso Corp Heat-pump water heater
JP2004190870A (en) * 2002-12-06 2004-07-08 Sekisui Chem Co Ltd Cogeneration system
JP2004263904A (en) * 2003-02-28 2004-09-24 Noritz Corp Cogeneration system
JP2004263915A (en) * 2003-02-28 2004-09-24 Noritz Corp Hot water supply device
JP2005011644A (en) * 2003-06-18 2005-01-13 Sekisui Chem Co Ltd Cogeneration system
JP2008032321A (en) * 2006-07-28 2008-02-14 Nippon Oil Corp Duct freezing prevention method and cogeneration system
JP2008032320A (en) * 2006-07-28 2008-02-14 Nippon Oil Corp Duct freezing prevention method and cogeneration system
JP2008144659A (en) * 2006-12-08 2008-06-26 Aisin Seiki Co Ltd Cogeneration device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213821A (en) * 2001-01-16 2002-07-31 Denso Corp Heat-pump water heater
JP2004190870A (en) * 2002-12-06 2004-07-08 Sekisui Chem Co Ltd Cogeneration system
JP2004263904A (en) * 2003-02-28 2004-09-24 Noritz Corp Cogeneration system
JP2004263915A (en) * 2003-02-28 2004-09-24 Noritz Corp Hot water supply device
JP2005011644A (en) * 2003-06-18 2005-01-13 Sekisui Chem Co Ltd Cogeneration system
JP2008032321A (en) * 2006-07-28 2008-02-14 Nippon Oil Corp Duct freezing prevention method and cogeneration system
JP2008032320A (en) * 2006-07-28 2008-02-14 Nippon Oil Corp Duct freezing prevention method and cogeneration system
JP2008144659A (en) * 2006-12-08 2008-06-26 Aisin Seiki Co Ltd Cogeneration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366488B1 (en) 2012-05-21 2014-02-24 현대하이스코 주식회사 Water tank with excellent dispersion efficiency for water pressure and fuel cell system using the same

Similar Documents

Publication Publication Date Title
KR101058575B1 (en) Solar Heating System
JP2007010177A (en) Heat recovery device and cogeneration system
JP2010007950A (en) Cogeneration system
JP2012137247A (en) Heat recovery and utilization system
JP2006313048A (en) Waste heat utilizing system and its operating method
JP2009127918A (en) Heat source water supply system
JP2010266166A (en) Hot water storage type exhaust heat recovery system
JP2005164201A (en) Exhaust heat recovery system
JP5069490B2 (en) Open air heat storage device
JP6115754B2 (en) Heat source machine and freeze prevention control method
JP4208792B2 (en) Cogeneration system
JP2014142140A (en) Heat source machine
JP4833707B2 (en) Waste heat recovery device
JP2008051073A (en) Cogeneration system
JP2007155275A (en) Heat pump hot water feeder
JP2015194314A (en) Solar heat utilization gas hot water system
JP2005147662A (en) Hot water supply system using bath heat
JP3913077B2 (en) Solar heating system
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP2011257130A (en) Apparatus for recovering exhaust heat
JP2013057435A (en) Heat supply system
JP6026154B2 (en) Solar heat utilization system and pump control method thereof
JP2010267565A (en) Fuel cell system
JP2010270942A (en) Cogeneration system
JP2005083659A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203