WO2015060026A1 - Method for manufacturing high purity manganese and high purity manganese - Google Patents

Method for manufacturing high purity manganese and high purity manganese Download PDF

Info

Publication number
WO2015060026A1
WO2015060026A1 PCT/JP2014/073615 JP2014073615W WO2015060026A1 WO 2015060026 A1 WO2015060026 A1 WO 2015060026A1 JP 2014073615 W JP2014073615 W JP 2014073615W WO 2015060026 A1 WO2015060026 A1 WO 2015060026A1
Authority
WO
WIPO (PCT)
Prior art keywords
purity
ppm
less
melting
high purity
Prior art date
Application number
PCT/JP2014/073615
Other languages
French (fr)
Japanese (ja)
Inventor
和人 八木
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020167029451A priority Critical patent/KR20160125537A/en
Priority to JP2015518497A priority patent/JP6050485B2/en
Priority to KR1020157028532A priority patent/KR101678334B1/en
Priority to US14/777,064 priority patent/US20160032427A1/en
Publication of WO2015060026A1 publication Critical patent/WO2015060026A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/009Treating ocean floor nodules refining, e.g. separation of metals obtained by the above methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese

Definitions

  • the present invention relates to high-purity manganese (Mn) from commercially available electrolytic manganese (Mn) and a method for producing the same.
  • a commercially available method for producing metal Mn is an electrolytic method from an ammonium sulfate electrolytic bath.
  • sulfur (S) is about 100 to 3000 ppm
  • carbon (C) is also several hundred ppm.
  • Chlorine (Cl) is also several hundred ppm
  • oxygen (O) is contained in the order of several thousand ppm because it is an electrodeposit from the aqueous solution.
  • a sublimation purification method As a method for removing S and O from the electrolytic Mn, a sublimation purification method is well known in the prior art.
  • the sublimation purification method has a problem that the apparatus is very expensive and the yield is very bad.
  • S and O can be reduced by the sublimation purification method, it is contaminated due to the heater material, condenser material, etc. of the sublimation purification device, so metal Mn by the purification method is used as a raw material for electronic devices. There was a problem that it was not suitable.
  • Patent Document 1 a method for removing S in metal Mn is described in Patent Document 1 below, and Mn oxidation is performed at a melting temperature of Mn acid compounds such as MnO, Mn 3 O 4 , MnO 2 and / or metal Mn.
  • Mn acid compounds such as MnO, Mn 3 O 4 , MnO 2 and / or metal Mn.
  • Mn carbonate or the like is added, and the metal Mn to which the Mn compound is added is melted in an inert atmosphere and kept in a molten state, preferably for 30 to 60 minutes, and the S content: 0.002% It is described that.
  • this document 1 does not describe the contents of oxygen (O), nitrogen (N), carbon (C), and chlorine (Cl) at all, and has not yet solved the problems caused by the contents thereof. .
  • Patent Document 2 a method for electrolytically collecting metal Mn and high-purity metal Mn are dissolved in hydrochloric acid, and an undissolved material is filtered.
  • a method for electrolytic collection of metal Mn characterized by using an electrolyte prepared by filtering a product and adding a buffer, preferably adding metal Mn to a hydrochloric acid solution of metal Mn, Using electrolyte prepared by adding hydrogen peroxide and aqueous ammonia to the solution obtained by filtering undissolved material, filtering the precipitate formed under weakly acidic or neutral liquidity, and adding a buffer.
  • a method of performing electrowinning of metal Mn is described.
  • Patent Document 3 describes a method for producing high-purity Mn.
  • An ion-exchange purification method using a chelate resin is applied to an aqueous Mn chloride solution, and then the purified aqueous Mn chloride solution is purified by electrowinning. How to do is described.
  • the dry method describes that high-purity Mn is obtained from solid-phase Mn by vacuum sublimation purification method (Mn vapor obtained by sublimation of solid-phase Mn is selectively condensed and vapor-deposited in the cooling section by vapor pressure difference). Has been.
  • the document 3 describes that the total concentration of sulfur (S), oxygen (O), nitrogen (N), and carbon (C) is 10 ppm or less. However, this document 3 does not describe the content of chlorine (Cl) that is harmful to the manufacture of semiconductor components. Since Mn chloride is used as a raw material, there is a possibility that chlorine may be contained in a high concentration, which is problematic.
  • Patent Document 4 describes a method for producing a low-oxygen Mn material, and obtains a Mn material in which the oxygen content is reduced to 100 ppm or less by inductively skull-dissolving the Mn raw material in an inert gas atmosphere. There is a description that it is preferable to perform acid cleaning before induction skull dissolution of the Mn raw material because oxygen can be further reduced. However, in this document 4, there is a description regarding the reduction of oxygen (O), sulfur (S), and nitrogen (N) in high-purity Mn, but there is no description regarding the content of other impurities. The problem of inclusion has not been solved.
  • Patent Document 5 describes a Mn alloy material for magnetic materials, a Mn alloy sputtering target, and a magnetic thin film, and has an oxygen content of 500 ppm or less and an S content of 100 ppm or less, preferably further impurities (Mn and alloy components). It is described that the total content of elements other than the above is 1000 ppm or less. Furthermore, the same literature describes a method for removing oxygen (O) and sulfur (S) by adding Ca, Mg, La, etc. as a deoxidizing / desulfurizing agent to commercially available electrolytic Mn, and performing high-frequency dissolution, It describes that it is purified by vacuum distillation after preliminary dissolution.
  • O oxygen
  • S sulfur
  • Example 3 In the above Mn raw material, in Example 3, a deoxidizing / desulfurizing agent was added and high-frequency dissolution was performed to obtain an oxygen content of 50 ppm and a sulfur content of 10 ppm (Table 3 of Patent Document 5). There is a description that the oxygen content is 30 ppm and the sulfur content is 10 ppm (Table 7 of Patent Document 5) by distillation. In these examples, Si is contained in an amount of about 10 to 20 ppm and Pb is contained in an amount of about 10 to 30 ppm.
  • Example 3 of Patent Document 5 below since the deoxidation / desulfurization agent is added and dissolved at high frequency, there is a problem that the deoxidation / desulfurization agent is mixed in Mn and lowers the purity. Has been subjected to vacuum distillation after pre-dissolution and volatilizes 99% or more of the dissolved Mn, which has a problem of high production cost.
  • Patent Document 6 describes a method for producing a high-purity Mn material and a high-purity Mn material for forming a thin film.
  • a high-purity Mn material is obtained by pre-dissolving crude Mn at 1250-1500 ° C. and then vacuum distillation at 1100-1500 ° C.
  • the degree of vacuum during vacuum distillation 5 ⁇ 10 - and 5 ⁇ 10 Torr.
  • the high-purity Mn thus obtained has a total impurity content of 100 ppm or less, oxygen (O): 200 ppm or less, nitrogen (N): 50 ppm or less, sulfur (S): 50 ppm or less, carbon (C): 100 ppm or less.
  • Example 2 (Table 2) describes an example in which oxygen is 30 ppm and other elements are less than 10 ppm. However, also in this case, the impurity level does not reach the target level.
  • Patent Document 7 describes a sputtering target made of a high-purity Mn alloy
  • Patent Document 8 describes a method of recovering Mn using sulfuric acid
  • Patent Document 9 produces metal Mn by heat reduction of Mn oxide.
  • desulfurization there is no description regarding desulfurization.
  • the present inventors leached the Mn raw material with an acid, filtered the residue with a filter, and then used the filtered solution on the cathode side in electrolysis, and also removed the electrolytic Mn.
  • a high-purity Mn production method for producing Mn with ⁇ 50 ppm, S ⁇ 50 ppm, and O ⁇ 30 ppm was proposed (see Patent Document 10). This method is effective for increasing the purity of Mn.
  • the present invention is aimed at a manufacturing method and high-purity Mn that can achieve higher purity and can reduce costs.
  • An object of the present invention is to provide a high-purity Mn from a commercially available electrolytic Mn and a method for producing the same, and in particular, to produce a high-purity Mn with a lower amount of impurities and at a lower cost than the prior art. Let it be an issue.
  • a method for producing high-purity Mn in which a Mn raw material is placed in a magnetic crucible and melted at a melting temperature of 1240 to 1400 ° C. in an inert atmosphere of 500 Torr or less using a vacuum induction melting furnace (VIM furnace).
  • VIM furnace vacuum induction melting furnace
  • Calcium (Ca) is added in the range of 0.5 to 2.0% of the Mn weight to perform deoxidation and desulfurization, and after completion of the deoxidation and desulfurization, an ingot is produced by casting into an iron mold.
  • a Mn ingot is loaded into a skull melting furnace, heated by reducing the pressure to 10 ⁇ 5 Torr or less with a vacuum pump, and after maintaining the molten state for 10 to 60 minutes, the melting reaction is terminated to obtain high purity Mn.
  • a method for producing high-purity Mn is described in detail below.
  • the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and has a purity of 4N5 (99.995%) or more excluding gas component elements.
  • High-purity Mn characterized by
  • the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and has a purity of 4N5 (99.995%) or more excluding gas component elements.
  • the unit “ppm” used in this specification means “wtppm”. Except for nitrogen (N) and oxygen (O) which are gas component elements, analysis values of each element concentration are GDMS (Glow Discharge). The analysis was performed by Mass Spectrometry, and the gas component elements (O, N) were analyzed using an oxygen-nitrogen analyzer manufactured by LECO.
  • the gas component element in the present invention means hydrogen (H), oxygen (O), nitrogen (N), and carbon (C). The following also means the same.
  • the present invention has the following effects. (1) High-purity Mn having a total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni of 50 ppm or less and a purity of 4N5 (99.995%) or more; It is possible to obtain high-purity Mn in which O and N as gas components can each be less than 10 ppm.
  • the method for producing high-purity Mn according to the present invention can use commercially available (2N level) flaky electrolytic Mn as a raw material, but since it does not affect the purity of the raw material, the type of the raw material is not particularly limited.
  • a Mn raw material is put in a magnesia crucible and melted at a melting temperature of 1240 to 1400 ° C. in an inert atmosphere of 500 Torr or less using a vacuum induction melting furnace (VIM furnace). If it is less than 1240 ° C., VIM treatment cannot be performed because Mn does not melt.
  • VIM furnace vacuum induction melting furnace
  • Mn obtained by this production method has a total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni of 50 ppm or less, and 4N5 (99.995% excluding gas components) ) High purity Mn having the above purity.
  • the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and O and N that are gas components can each be less than 10 ppm.
  • O and N in electronic devices using Mn forms oxides or nitrides, which not only deteriorates the properties of Mn itself, but also oxidizes in composites or alloyed materials with Mn.
  • the influence of the formation of nitrides or nitrides (deterioration of characteristics) or the influence of diffusion of O or N (deterioration of characteristics) between adjacent materials may occur.
  • the presence of Mn, which can be reduced, is extremely effective. A summary of these steps is shown in FIG.
  • a normal skull dissolution apparatus For skull dissolution, a normal skull dissolution apparatus can be used. In general, the skull furnace is cooled, and the raw material charged in the furnace is melted by induction heating, so that there is no contamination from the furnace. In the purification of Mn, VIM dissolution removes S and O in advance with calcium (Ca), and then the skull furnace is used to remove the extremely increased Mg and Ca, and finally increase the purity of Mn. It can be said that the idea of aiming did not exist in the prior art.
  • Example 1 Commercially available flaky electrolytic Mn (purity 2N: 99%) was used as a starting material.
  • the impurities of the raw material Mn are B: 15 ppm, Mg: 90 ppm, Al: 4.5 ppm, Si: 39 ppm, S: 280 ppm, Ca: 5.9 ppm, Cr: 2.9 ppm, Fe: 11 ppm, Ni: 10 ppm, O: 720-2500 ppm, N: 10-20 ppm.
  • VIM dissolution process The Mn raw material was placed in a magnetic crucible and melted at a melting temperature of 1300 ° C. in an inert atmosphere of 200 Torr or less using a vacuum induction melting furnace (VIM furnace). And 1 weight% of calcium (Ca) of Mn weight was gradually added to this Mn molten metal, and deoxidation and desulfurization were performed. After completion of deoxidation and desulfurization, an ingot was manufactured by casting a molten Mn into an iron mold. After the ingot was cooled, the slag adhering to the ingot was removed.
  • Impurities in the ingot after dissolution were B: 14 ppm, Mg: 160 ppm, Al: 1.2 ppm, Si: 16 ppm, S: 16 ppm, Ca: 520 ppm, Cr: 2.5 ppm, Fe: 3.6 ppm, Ni: 1 .3 ppm, O: less than 10 ppm, and N: less than 10 ppm.
  • the results are shown in Table 1.
  • the Mn ingot obtained by the above VIM melting is filled in a water-cooled crucible, the crucible is placed in a skull melting furnace, is made 10 ⁇ 5 Torr or less by a vacuum pump, heated by induction heating, After confirming the melting of a certain Mn ingot, the melting was terminated for 30 minutes, and solidified Mn was obtained.
  • Impurities of this Mn ingot were B: 8.1 ppm, Mg: 1.9 ppm, Al: 1.7 ppm, Si: 16 ppm, S: 2.7 ppm, Ca: 9.4 ppm, Cr: 1.1 ppm, Fe: 3 0.6 ppm, Ni: 1.1 ppm, O: less than 10 ppm, and N: less than 10 ppm.
  • the electrolytic Mn raw material with a purity of 2N could be highly purified to 4N5 except for gas component elements.
  • Mn with extremely high purity can be obtained, the manufacturing process is relatively simple, and the manufacturing cost can be reduced. Therefore, electronic component materials such as wiring materials and magnetic materials (magnetic heads), semiconductor components, etc. It is useful as a sputtering target material for producing a metal Mn used for the material, the same thin film, particularly a Mn-containing thin film. Since the present invention can be produced in a general-purpose furnace without requiring a special apparatus and can obtain high-purity Mn at a low cost and in a high yield as compared with the conventional distillation method, It can be said that the utility value of is high.

Abstract

The present invention relates to a method for manufacturing high purity Mn, the method being characterized in that: a Mn starting material is placed in a magnesia crucible and is melted at a melting temperature of 1240-1400°C using a vacuum induction melting furnace (VIM furnace) under an inert atmosphere of 500 Torr or less; calcium is added in a range of 0.5-2.0% of the Mn weight to perform de-oxygenation and de-sulfurization; after completion of the de-oxygenation and de-sulfurization, an ingot is manufactured by pouring into an iron mold; then said Mn ingot is loaded in a scull melting furnace, the pressure is reduced to 10-5 Torr or less using a vacuum pump, and heating is started; and after the melted state is maintained for 10-60 minutes, the melting reaction is completed to obtain high purity Mn. The present invention provides a method for manufacturing high purity metal Mn from commercially available electrolytic Mn. In particular, the present invention addresses the problem of obtaining high purity metal Mn with low amounts of impurities such as B, Mg, Al and Si.

Description

高純度マンガンの製造方法及び高純度マンガンMethod for producing high purity manganese and high purity manganese
 本発明は、市販の電解マンガン(Mn)から高純度マンガン(Mn)及びそれを製造する方法に関する。 The present invention relates to high-purity manganese (Mn) from commercially available electrolytic manganese (Mn) and a method for producing the same.
 市販で入手可能な金属Mnの製造方法は、硫酸アンモニウム電解浴からの電解法であり、この方法によって得られる市販の電解Mnには硫黄(S)が100~3000ppm程度、カーボン(C)も数100ppm含まれている。塩素(Cl)も数100ppm、また水溶液中からの電析物のため、酸素(O)も数1000ppm程度含まれている。 A commercially available method for producing metal Mn is an electrolytic method from an ammonium sulfate electrolytic bath. In the commercially available electrolytic Mn obtained by this method, sulfur (S) is about 100 to 3000 ppm, and carbon (C) is also several hundred ppm. include. Chlorine (Cl) is also several hundred ppm, and oxygen (O) is contained in the order of several thousand ppm because it is an electrodeposit from the aqueous solution.
 前記電解MnからのS,Oの除去法としては、従来技術では昇華精製法がよく知られている。しかし、昇華精製法は装置が非常に高い上に、歩留まりが非常に悪いという難点があった。また、昇華精製法ではSとOを低減できたとしても、昇華精製装置のヒータ材質、コンデンサー材質等を起因とする汚染を受けてしまうため、精製法による金属Mnは、電子デバイス用の原料として適さないという問題があった。 As a method for removing S and O from the electrolytic Mn, a sublimation purification method is well known in the prior art. However, the sublimation purification method has a problem that the apparatus is very expensive and the yield is very bad. In addition, even if S and O can be reduced by the sublimation purification method, it is contaminated due to the heater material, condenser material, etc. of the sublimation purification device, so metal Mn by the purification method is used as a raw material for electronic devices. There was a problem that it was not suitable.
 先行技術としては、下記特許文献1に金属Mn中のSの除去方法が記載され、MnO、Mn、MnOなどのMn酸化合物及び/又は金属Mnの溶融温度で、これらのMn酸化物となるもの、例えば炭酸Mnなどを添加し、Mn化合物を添加した金属Mnを、不活性雰囲気で溶融し、溶融状態で好ましくは30~60分間保持して、S含有量:0.002%とすることが記載されている。 As a prior art, a method for removing S in metal Mn is described in Patent Document 1 below, and Mn oxidation is performed at a melting temperature of Mn acid compounds such as MnO, Mn 3 O 4 , MnO 2 and / or metal Mn. For example, Mn carbonate or the like is added, and the metal Mn to which the Mn compound is added is melted in an inert atmosphere and kept in a molten state, preferably for 30 to 60 minutes, and the S content: 0.002% It is described that.
 しかし、この文献1には、酸素(O)、窒素(N)、炭素(C)、塩素(Cl)の含有量については、一切記載がなく、これらが含有することによる問題の解決に至っていない。 However, this document 1 does not describe the contents of oxygen (O), nitrogen (N), carbon (C), and chlorine (Cl) at all, and has not yet solved the problems caused by the contents thereof. .
 下記特許文献2には、金属Mnの電解採取方法および高純度金属Mnを、塩酸に過剰に溶解して未溶解物を濾過した溶解液に、酸化剤を添加すると共に中和し、生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いることを特徴とする金属Mnの電解採取方法が記載され、好ましくは、金属Mnの塩酸溶解液に、さらに金属Mnを追加し、未溶解物を濾過した溶解液に過酸化水素とアンモニア水を添加し、弱酸性ないし中性の液性下で生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いて金属Mnの電解採取を行う方法が記載されている。 In Patent Document 2 below, a method for electrolytically collecting metal Mn and high-purity metal Mn are dissolved in hydrochloric acid, and an undissolved material is filtered. A method for electrolytic collection of metal Mn, characterized by using an electrolyte prepared by filtering a product and adding a buffer, preferably adding metal Mn to a hydrochloric acid solution of metal Mn, Using electrolyte prepared by adding hydrogen peroxide and aqueous ammonia to the solution obtained by filtering undissolved material, filtering the precipitate formed under weakly acidic or neutral liquidity, and adding a buffer. A method of performing electrowinning of metal Mn is described.
 しかし、この文献2には、高純度MnのS:1ppmの低減化の記載はあるが、酸素(O)、窒素(N)、炭素(C)、塩素(Cl)の含有量については、一切記載がなく、これらが含有することによる問題の解決に至っていない。 However, in this document 2, there is a description of S: 1 ppm reduction of high-purity Mn, but the contents of oxygen (O), nitrogen (N), carbon (C), chlorine (Cl) are not at all. There is no description and it has not led to the solution of the problems caused by the inclusion thereof.
 下記特許文献3には、高純度Mnの製造方法が記載され、塩化Mn水溶液にキレート樹脂を用いたイオン交換精製法を適用し、次いで、その精製塩化Mn水溶液を、電解採取法により高純度化する方法が記載されている。乾式法は、固相Mnから真空昇華精製法(固相Mnの昇華により得たMn蒸気を蒸気圧差により、冷却部にて選択的に凝縮蒸着させること)により、高純度Mnを得ることが記載されている。 The following Patent Document 3 describes a method for producing high-purity Mn. An ion-exchange purification method using a chelate resin is applied to an aqueous Mn chloride solution, and then the purified aqueous Mn chloride solution is purified by electrowinning. How to do is described. The dry method describes that high-purity Mn is obtained from solid-phase Mn by vacuum sublimation purification method (Mn vapor obtained by sublimation of solid-phase Mn is selectively condensed and vapor-deposited in the cooling section by vapor pressure difference). Has been.
 そして、この文献3の硫黄(S)、酸素(O)、窒素(N)、炭素(C)の合計濃度が10ppm以下であることが記載されている。
 しかしながら、この文献3には、半導体部品の製造に有害である塩素(Cl)の含有量の記載がない。原料として塩化Mnを使用していることから、塩素が高濃度に含有される可能性があり、問題を有している。
The document 3 describes that the total concentration of sulfur (S), oxygen (O), nitrogen (N), and carbon (C) is 10 ppm or less.
However, this document 3 does not describe the content of chlorine (Cl) that is harmful to the manufacture of semiconductor components. Since Mn chloride is used as a raw material, there is a possibility that chlorine may be contained in a high concentration, which is problematic.
 下記特許文献4には、低酸素Mn材料の製造方法が記載され、Mn原料を不活性ガス雰囲気中で誘導スカル溶解することにより、酸素量を100ppm以下に低減したMn材料を得ること、また、Mn原料を誘導スカル溶解する前に酸洗浄することが、より酸素低減を図ることができるため好ましいという記載がある。しかし、この文献4には、高純度Mn中の酸素(O)、硫黄(S)、窒素(N)の低減に関する記載はあるが、それ以外の不純物の含有量に関する記載は一切なく、これらが含有することによる問題の解決に至っていない。 Patent Document 4 below describes a method for producing a low-oxygen Mn material, and obtains a Mn material in which the oxygen content is reduced to 100 ppm or less by inductively skull-dissolving the Mn raw material in an inert gas atmosphere. There is a description that it is preferable to perform acid cleaning before induction skull dissolution of the Mn raw material because oxygen can be further reduced. However, in this document 4, there is a description regarding the reduction of oxygen (O), sulfur (S), and nitrogen (N) in high-purity Mn, but there is no description regarding the content of other impurities. The problem of inclusion has not been solved.
 下記特許文献5には、磁性材用Mn合金材料、Mn合金スパッタリングタ-ゲット及び磁性薄膜が記載され、酸素含有量が500ppm以下、S含有量が100ppm以下、好ましくはさらに不純物(Mnおよび合金成分以外の元素)含有量が合計で1000ppm以下とすることが記載されている。
 さらに、同文献には、市販されている電解Mnに脱酸・脱硫剤としてCa,Mg,La等を加え、高周波溶解を行うことによって酸素(O)、硫黄(S)を除去する方法や、予備溶解後に真空蒸留して高純度化することが記載されている。
Patent Document 5 below describes a Mn alloy material for magnetic materials, a Mn alloy sputtering target, and a magnetic thin film, and has an oxygen content of 500 ppm or less and an S content of 100 ppm or less, preferably further impurities (Mn and alloy components). It is described that the total content of elements other than the above is 1000 ppm or less.
Furthermore, the same literature describes a method for removing oxygen (O) and sulfur (S) by adding Ca, Mg, La, etc. as a deoxidizing / desulfurizing agent to commercially available electrolytic Mn, and performing high-frequency dissolution, It describes that it is purified by vacuum distillation after preliminary dissolution.
 上記のMn原料において、実施例3では脱酸・脱硫剤を加え高周波溶解し、酸素含有量を50ppm、硫黄含有量10ppm(特許文献5の表3)となり、また実施例7では予備溶解後に真空蒸留して、酸素含有量を30ppm、硫黄含有量10ppm(特許文献5の表7)とする記載がある。また、これらの例では、Siが10~20ppm程度、Pbが10~30ppm程度含有されている。 In the above Mn raw material, in Example 3, a deoxidizing / desulfurizing agent was added and high-frequency dissolution was performed to obtain an oxygen content of 50 ppm and a sulfur content of 10 ppm (Table 3 of Patent Document 5). There is a description that the oxygen content is 30 ppm and the sulfur content is 10 ppm (Table 7 of Patent Document 5) by distillation. In these examples, Si is contained in an amount of about 10 to 20 ppm and Pb is contained in an amount of about 10 to 30 ppm.
 しかし、下記特許文献5より製造されるMnの純度は3Nレベルであり、本発明より得られる高純度のMnは得られていない。さらに、下記特許文献5の実施例3では脱酸・脱硫剤を加えて高周波溶解しているため脱酸・脱硫剤がMn中に混入して純度を下げる問題があり、実施例7の場合には予備溶解後に真空蒸留しており、溶解Mnの99%以上を揮発させるため、製造コストが高いという問題点がある。 However, the purity of Mn produced from Patent Document 5 below is 3N level, and the high purity Mn obtained from the present invention is not obtained. Further, in Example 3 of Patent Document 5 below, since the deoxidation / desulfurization agent is added and dissolved at high frequency, there is a problem that the deoxidation / desulfurization agent is mixed in Mn and lowers the purity. Has been subjected to vacuum distillation after pre-dissolution and volatilizes 99% or more of the dissolved Mn, which has a problem of high production cost.
 下記特許文献6には、高純度Mn材料の製造方法及び薄膜形成用高純度Mn材料が記載されている。この場合、粗Mnを1250~1500°Cで予備溶解した後、1100~1500°Cで真空蒸留することにより、高純度Mn材料を得ることが記載されている。好ましくは、真空蒸留の際の真空度を5×10- 5 ~10Torrとする。 Patent Document 6 below describes a method for producing a high-purity Mn material and a high-purity Mn material for forming a thin film. In this case, it is described that a high-purity Mn material is obtained by pre-dissolving crude Mn at 1250-1500 ° C. and then vacuum distillation at 1100-1500 ° C. Preferably, the degree of vacuum during vacuum distillation 5 × 10 - and 5 ~ 10 Torr.
 これにより得られる高純度Mnは不純物含有量が合計で100ppm以下、酸素(O):200ppm以下、窒素(N):50ppm以下、硫黄(S):50ppm以下、炭素(C):100ppm以下である。そして、実施例2(表2)では、酸素が30ppmであり、他の元素が10ppm未満である例が記載されている。しかし、この場合も、不純物レベルは目的とするレベルに至っていない。 The high-purity Mn thus obtained has a total impurity content of 100 ppm or less, oxygen (O): 200 ppm or less, nitrogen (N): 50 ppm or less, sulfur (S): 50 ppm or less, carbon (C): 100 ppm or less. . And Example 2 (Table 2) describes an example in which oxygen is 30 ppm and other elements are less than 10 ppm. However, also in this case, the impurity level does not reach the target level.
 この他、下記特許文献7に高純度Mn合金からなるスパッタリングターゲットが記載され、特許文献8に硫酸を使用したMnの回収方法が記載され、特許文献9に酸化Mnを加熱還元した金属Mnを製造する方法が記載されているが、特に脱硫に関する記載はない。 In addition, Patent Document 7 below describes a sputtering target made of a high-purity Mn alloy, Patent Document 8 describes a method of recovering Mn using sulfuric acid, and Patent Document 9 produces metal Mn by heat reduction of Mn oxide. However, there is no description regarding desulfurization.
 以上から、本発明者らは、Mn原料を酸で浸出し、フイルターで残渣をろ過後、電解においてカソード側に前記ろ過後の液を使用する高純度Mnの製造方法、また前記電解Mnを脱ガス処理し、電解Mn中のCl含有量を100ppm以下とする同高純度Mnの製造方法、さらに前記電解Mn原料を脱ガス処理し、不活性雰囲気中で溶解することにより、Cl≦10ppm、C≦50ppm、S<50ppm、O<30ppmのMnを製造する高純度Mnの製造方法を提案した(特許文献10参照)。
 この方法は、Mnの高純度化に有効である。本願発明は、さらに高純度化を達成でき、かつコスト低減が可能である製造方法と高純度Mnを目途とするものである。
From the above, the present inventors leached the Mn raw material with an acid, filtered the residue with a filter, and then used the filtered solution on the cathode side in electrolysis, and also removed the electrolytic Mn. A method for producing high-purity Mn having a Cl content of 100 ppm or less in the electrolytic Mn by gas treatment, and further by degassing the electrolytic Mn raw material and dissolving it in an inert atmosphere, Cl ≦ 10 ppm, C A high-purity Mn production method for producing Mn with ≦ 50 ppm, S <50 ppm, and O <30 ppm was proposed (see Patent Document 10).
This method is effective for increasing the purity of Mn. The present invention is aimed at a manufacturing method and high-purity Mn that can achieve higher purity and can reduce costs.
特開昭53-8309号公報JP 53-8309 A 特開2007-119854号公報JP 2007-119854 A 特開2002-285373号公報JP 2002-285373 A 特開2002-167630号公報JP 2002-167630 A 特開平11-100631号公報Japanese Patent Application Laid-Open No. 11-100651 特開平11-152528号公報Japanese Patent Laid-Open No. 11-152528 特開2011-068992号公報JP 2011-068992 A 特開2010-209384号公報JP 2010-209384 A 特開2011-094207号公報JP 2011-094207 A 特開2013-142184号公報JP2013-142184A
 本発明の目的は、市販の電解Mnから高純度Mn及びそれを製造する方法を提供するものであり、特に従来技術に比べて不純物量が少なく、かつ低コストで高純度Mnを製造することを課題とする。 An object of the present invention is to provide a high-purity Mn from a commercially available electrolytic Mn and a method for producing the same, and in particular, to produce a high-purity Mn with a lower amount of impurities and at a lower cost than the prior art. Let it be an issue.
 本発明は、上記課題を解決するものであって、以下の発明を提供する。
 1)高純度Mnの製造方法であって、Mn原料をマグネシアルツボに入れ、真空誘導溶解炉(VIM炉)を用いて500Torr以下の不活性雰囲気下、溶解温度1240~1400°Cで溶解し、カルシウム(Ca)をMn重量の0.5~2.0%の範囲で添加して脱酸及び脱硫を行い、脱酸及び脱硫の終了後鉄製鋳型に鋳込でインゴットを製造し、次にこのMnインゴットをスカル溶解炉に装填し、真空ポンプにより10-5Torr以下に減圧して加熱を開始し、溶融状態を10~60分保持した後、溶解反応を終了させ、高純度Mnを得ることを特徴とする高純度Mnの製造方法。
The present invention solves the above problems and provides the following inventions.
1) A method for producing high-purity Mn, in which a Mn raw material is placed in a magnetic crucible and melted at a melting temperature of 1240 to 1400 ° C. in an inert atmosphere of 500 Torr or less using a vacuum induction melting furnace (VIM furnace). Calcium (Ca) is added in the range of 0.5 to 2.0% of the Mn weight to perform deoxidation and desulfurization, and after completion of the deoxidation and desulfurization, an ingot is produced by casting into an iron mold. A Mn ingot is loaded into a skull melting furnace, heated by reducing the pressure to 10 −5 Torr or less with a vacuum pump, and after maintaining the molten state for 10 to 60 minutes, the melting reaction is terminated to obtain high purity Mn. A method for producing high-purity Mn.
 2)真空誘導溶解(VIM)とスカル溶解により精製した高純度Mnであって、不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分元素を除き、4N5(99.995%)以上の純度を有することを特徴とする高純度Mn。 2) High-purity Mn purified by vacuum induction melting (VIM) and skull melting, and the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, Ni is 50 ppm or less, A high-purity Mn having a purity of 4N5 (99.995%) or more excluding gas component elements.
 3)真空誘導溶解(VIM)とスカル溶解により精製した高純度Mnであって、不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分元素を除き、4N5(99.995%)以上の純度を有し、ガス成分である酸素(O)、窒素(N)がそれぞれ10ppm未満であることを特徴とする高純度Mn。 3) High-purity Mn purified by vacuum induction melting (VIM) and skull melting, and the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, Ni is 50 ppm or less, A high-purity Mn having a purity of 4N5 (99.995%) or higher, excluding gas component elements, and oxygen (O) and nitrogen (N) as gas components being less than 10 ppm each.
 4)不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分元素を除き、4N5(99.995%)以上の純度を有することを特徴とする高純度Mn。 4) The total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and has a purity of 4N5 (99.995%) or more excluding gas component elements. High-purity Mn characterized by
 5)不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分元素を除き、4N5(99.995%)以上の純度を有し、ガス成分である酸素(O)、窒素(N)がそれぞれ10ppm未満であることを特徴とする高純度Mn。 5) The total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and has a purity of 4N5 (99.995%) or more excluding gas component elements. High purity Mn, characterized in that oxygen (O) and nitrogen (N) as gas components are each less than 10 ppm.
 なお、本願明細書で使用する単位「ppm」は、全て「wtppm」を意味し、ガス成分元素である窒素(N)、酸素(O)を除き、各元素濃度の分析値はGDMS(Glow Discharge Mass Spectrometry)法によって分析し、またガス成分元素(O、N)の分析にはLECO社製の酸素窒素分析装置を使用して分析した。また、本発明におけるガス成分元素とは、水素(H)、酸素(O)、窒素(N)、炭素(C)を意味する。以下も同様を意味する。 The unit “ppm” used in this specification means “wtppm”. Except for nitrogen (N) and oxygen (O) which are gas component elements, analysis values of each element concentration are GDMS (Glow Discharge). The analysis was performed by Mass Spectrometry, and the gas component elements (O, N) were analyzed using an oxygen-nitrogen analyzer manufactured by LECO. In addition, the gas component element in the present invention means hydrogen (H), oxygen (O), nitrogen (N), and carbon (C). The following also means the same.
 本発明によれば、以下の効果を有する。
(1)不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、4N5(99.995%)以上の純度を有する高純度Mn、さらに、ガス成分であるO、Nが、それぞれ10ppm未満とすることができる高純度Mnを得ることができる。
The present invention has the following effects.
(1) High-purity Mn having a total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni of 50 ppm or less and a purity of 4N5 (99.995%) or more; It is possible to obtain high-purity Mn in which O and N as gas components can each be less than 10 ppm.
(2)本発明によれば、特別な装置を必要とせずに、汎用炉で製造可能であり、従来法である蒸留法と比較して低コストかつ高収率で高純度Mnを得ることができる等の効果を挙げられることができる。 (2) According to the present invention, it can be produced in a general-purpose furnace without requiring a special apparatus, and high purity Mn can be obtained at a low cost and in a high yield as compared with the conventional distillation method. The effect that it can do etc. can be mentioned.
(3)また、スパッタリングターゲットにした場合には、パーティクルの発生の少ないターゲットとすることができる効果を有する。 (3) Moreover, when it is set as a sputtering target, it has the effect that it can be set as the target with few generation | occurrence | production of a particle.
原料Mnから、VIM溶解、スカル溶解の工程を経て、高純度Mnを製造するまでの、一連の工程の概略説明図である。It is a schematic explanatory drawing of a series of processes from a raw material Mn to manufacturing high-purity Mn through VIM dissolution and skull dissolution processes.
 以下、本発明の実施の形態について、詳細に説明する。
 本願発明の高純度Mnの製造方法は、市販(2Nレベル)のフレーク状電解Mnを原料として使用できるが、原料の純度には影響しないので、原料の種類には、特に制限はない。
Hereinafter, embodiments of the present invention will be described in detail.
The method for producing high-purity Mn according to the present invention can use commercially available (2N level) flaky electrolytic Mn as a raw material, but since it does not affect the purity of the raw material, the type of the raw material is not particularly limited.
 高純度Mnの製造に際して、まずMn原料をマグネシア坩堝に入れ、真空誘導溶解炉(VIM炉)を用いて500Torr以下の不活性雰囲気下、溶解温度1240~1400°Cで溶解する。1240℃未満ではMnが融解しないためVIM処理することができない。
 1400℃を超えると、Mn溶湯中の酸化物、硫化物の浮遊物が高温のため再融解して溶湯Mn中に取り込まれ、VIM溶解後のマグネシウム(Mg)、カルシウム(Ca)、酸素(O)及び硫黄(S)の濃度が数百ppm~千ppmオーダーとなり、最終的に本発明の目的の純度を達成することができない。この結果を表2に示す。
In producing high-purity Mn, first, a Mn raw material is put in a magnesia crucible and melted at a melting temperature of 1240 to 1400 ° C. in an inert atmosphere of 500 Torr or less using a vacuum induction melting furnace (VIM furnace). If it is less than 1240 ° C., VIM treatment cannot be performed because Mn does not melt.
When the temperature exceeds 1400 ° C., oxide and sulfide suspended in the molten Mn are remelted due to high temperature and taken into the molten Mn, and magnesium (Mg), calcium (Ca), oxygen (O ) And sulfur (S) concentrations are on the order of several hundred ppm to 1,000 ppm, and the final purity of the present invention cannot be achieved. The results are shown in Table 2.
 そして、このMn溶湯に、CaをMn重量の0.5~2.0%の範囲で徐々に添加して脱酸及び脱硫を行った。脱酸及び脱硫の終了後に、鉄製鋳型に鋳込でインゴットを製造する。インゴットの冷却後、インゴットに付着しているスラグは除去する。
 次に、このMnインゴットをスカル溶解炉に装填し、真空ポンプにより10-5Torr以下に減圧して加熱を開始し、溶融状態を10~60分保持した後、溶解反応を終了させ、高純度Mnを得る。
 この製造方法により得られたMnは、不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分を除き、4N5(99.995%)以上の純度を有する高純度Mnとすることができる。
Then, Ca was gradually added to the molten Mn in a range of 0.5 to 2.0% of the Mn weight to perform deoxidation and desulfurization. After completion of deoxidation and desulfurization, an ingot is produced by casting into an iron mold. After cooling the ingot, slag adhering to the ingot is removed.
Next, the Mn ingot was charged into a skull melting furnace, heated by reducing the pressure to 10 −5 Torr or less with a vacuum pump, and after maintaining the molten state for 10 to 60 minutes, the melting reaction was terminated to obtain a high purity Obtain Mn.
Mn obtained by this production method has a total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni of 50 ppm or less, and 4N5 (99.995% excluding gas components) ) High purity Mn having the above purity.
 さらに、不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分であるO、Nがそれぞれ10ppm未満とすることができる。
 特に、Mnを使用する電子機器等においてO、Nの存在は、酸化物又は窒化物を形成するため、Mnそのものの特性を悪化させるだけでなく、Mnとの複合材若しくは合金化した材料における酸化物又は窒化物の形成による影響(特性の悪化)又は隣接する素材との間で、O又はNの拡散による影響(特性の悪化)が生じる場合があり、このようにO、Nの含有量の低減化が可能であるMnの存在は極めて有効である。
 これらの工程の概要の一覧を、図1に示す。
Furthermore, the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and O and N that are gas components can each be less than 10 ppm.
In particular, the presence of O and N in electronic devices using Mn forms oxides or nitrides, which not only deteriorates the properties of Mn itself, but also oxidizes in composites or alloyed materials with Mn. In some cases, the influence of the formation of nitrides or nitrides (deterioration of characteristics) or the influence of diffusion of O or N (deterioration of characteristics) between adjacent materials may occur. The presence of Mn, which can be reduced, is extremely effective.
A summary of these steps is shown in FIG.
 スカル溶解については、通常のスカル溶解装置を使用することが可能である。一般に、スカル炉は冷却されており、誘導加熱により、炉内部に装填された原料を溶解するので、炉からの汚染がないという特徴を有している。
 Mnの精製において、VIM溶解により、予めカルシウム(Ca)でS、Oを除き、次にスカル炉を使用して、極端に増加したMg、Caを除去し、最終的にMnの高純度化を図るという発想は、従来技術では存在しなかったと言える。
For skull dissolution, a normal skull dissolution apparatus can be used. In general, the skull furnace is cooled, and the raw material charged in the furnace is melted by induction heating, so that there is no contamination from the furnace.
In the purification of Mn, VIM dissolution removes S and O in advance with calcium (Ca), and then the skull furnace is used to remove the extremely increased Mg and Ca, and finally increase the purity of Mn. It can be said that the idea of aiming did not exist in the prior art.
 以下に、実施例をもって説明するが、これらは発明を理解し易いようにするためであり、本発明は実施例又は比較例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but these are for facilitating understanding of the invention, and the present invention is not limited to the examples or comparative examples.
 (実施例1)
 出発原料として、市販のフレーク状電解Mn(純度2N:99%)を使用した。原料Mnの不純物は、B:15ppm、Mg:90ppm、Al:4.5ppm、Si:39ppm、S:280ppm、Ca:5.9ppm、Cr:2.9ppm、Fe:11ppm、Ni:10ppm、O:720~2500ppm、N:10~20ppmであった。
Example 1
Commercially available flaky electrolytic Mn (purity 2N: 99%) was used as a starting material. The impurities of the raw material Mn are B: 15 ppm, Mg: 90 ppm, Al: 4.5 ppm, Si: 39 ppm, S: 280 ppm, Ca: 5.9 ppm, Cr: 2.9 ppm, Fe: 11 ppm, Ni: 10 ppm, O: 720-2500 ppm, N: 10-20 ppm.
(VIM溶解工程)
 上記Mn原料をマグネシアルツボに入れ、真空誘導溶解炉(VIM炉)を用いて200Torr以下の不活性雰囲気下で、溶解温度を1300°Cとし、溶解した。そして、このMn溶湯に、Mn重量の1重量%のカルシウム(Ca)を徐々に添加して脱酸及び脱硫を行った。脱酸及び脱硫の終了後、鉄製鋳型にMnの溶湯を鋳込でインゴットを製造した。インゴットの冷却後、インゴットに付着していたスラグは除去した。
(VIM dissolution process)
The Mn raw material was placed in a magnetic crucible and melted at a melting temperature of 1300 ° C. in an inert atmosphere of 200 Torr or less using a vacuum induction melting furnace (VIM furnace). And 1 weight% of calcium (Ca) of Mn weight was gradually added to this Mn molten metal, and deoxidation and desulfurization were performed. After completion of deoxidation and desulfurization, an ingot was manufactured by casting a molten Mn into an iron mold. After the ingot was cooled, the slag adhering to the ingot was removed.
 この溶解後のインゴットの不純物は、B:14ppm、Mg:160ppm、Al:1.2ppm、Si:16ppm、S:16ppm、Ca:520ppm、Cr:2.5ppm、Fe:3.6ppm、Ni:1.3ppm、O:10ppm未満、N:10ppm未満となった。この結果を、表1に示す。 Impurities in the ingot after dissolution were B: 14 ppm, Mg: 160 ppm, Al: 1.2 ppm, Si: 16 ppm, S: 16 ppm, Ca: 520 ppm, Cr: 2.5 ppm, Fe: 3.6 ppm, Ni: 1 .3 ppm, O: less than 10 ppm, and N: less than 10 ppm. The results are shown in Table 1.
 この表1に示す通り、カルシウム還元の工程なので、鋳造されたMn中にはCaが増加しており、また、マグネシア坩堝の構成元素であるMgは、Caに還元されやすく、その一部がMn中に混入してMgは大きく増加するが、S、O、Niが大きく低減し、他の元素も低減しているのが分かる。 As shown in Table 1, since it is a calcium reduction process, Ca is increased in the cast Mn, and Mg, which is a constituent element of the magnesia crucible, is easily reduced to Ca, part of which is Mn. It can be seen that Mg increases greatly when mixed in, but S, O and Ni are greatly reduced and other elements are also reduced.
(スカル溶解工程)
 次に、上記のVIM溶解で得たMnインゴットを水冷した坩堝に充填し、該坩堝をスカル溶解炉に設置して、真空ポンプにより10-5Torr以下とし、誘導加熱により加熱して、原料であるMnインゴットの融解を確認した後、30分間維持してから溶解を終了し、凝固したMnを得た。
(Skull dissolution process)
Next, the Mn ingot obtained by the above VIM melting is filled in a water-cooled crucible, the crucible is placed in a skull melting furnace, is made 10 −5 Torr or less by a vacuum pump, heated by induction heating, After confirming the melting of a certain Mn ingot, the melting was terminated for 30 minutes, and solidified Mn was obtained.
 このMnインゴットの不純物は、B:8.1ppm、Mg:1.9ppm、Al:1.7ppm、Si:16ppm、S:2.7ppm、Ca:9.4ppm、Cr:1.1ppm、Fe:3.6ppm、Ni:1.1ppm、O:10ppm未満、N:10ppm未満となった。 Impurities of this Mn ingot were B: 8.1 ppm, Mg: 1.9 ppm, Al: 1.7 ppm, Si: 16 ppm, S: 2.7 ppm, Ca: 9.4 ppm, Cr: 1.1 ppm, Fe: 3 0.6 ppm, Ni: 1.1 ppm, O: less than 10 ppm, and N: less than 10 ppm.
 この結果を、同様に表1に示す。表1に示す通り、スカル溶解後には、一次のVIM溶解で増加したCaとMgが大きく低減しているのが分かる。また、Sも低減している。これはスカル溶解により、揮発し易い不純物が除去されたと考えられる。 The results are also shown in Table 1. As shown in Table 1, it can be seen that after skull dissolution, Ca and Mg increased by primary VIM dissolution are greatly reduced. Also, S is reduced. This is considered to be due to the removal of impurities that tend to volatilize by skull dissolution.
 上記の脱酸・脱硫剤を添加したVIM溶解とスカル溶解処理を行うことによって、純度2Nの電解Mn原料が、ガス成分元素を除き、4N5に高純度化することができた。 By performing VIM dissolution and skull dissolution treatment with the above-described deoxidation / desulfurization agent added, the electrolytic Mn raw material with a purity of 2N could be highly purified to 4N5 except for gas component elements.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、極めて高い純度のMnを得ることができ、また製造工程も比較的簡単で、製造コストを低減できるので、配線材料、磁性材(磁気ヘッド)等の電子部品材料、半導体部品材料に使用する金属Mn、同薄膜、特にMn含有薄膜を作製するためのスパッタリングターゲット材として有用である。本発明は、特別な装置を必要とせずに、汎用炉で製造可能であり、従来法である蒸留法と比較して低コストかつ高収率で高純度Mnを得ることができるので、産業上の利用価値が高いと言える。 According to the present invention, Mn with extremely high purity can be obtained, the manufacturing process is relatively simple, and the manufacturing cost can be reduced. Therefore, electronic component materials such as wiring materials and magnetic materials (magnetic heads), semiconductor components, etc. It is useful as a sputtering target material for producing a metal Mn used for the material, the same thin film, particularly a Mn-containing thin film. Since the present invention can be produced in a general-purpose furnace without requiring a special apparatus and can obtain high-purity Mn at a low cost and in a high yield as compared with the conventional distillation method, It can be said that the utility value of is high.

Claims (5)

  1.  高純度Mnの製造方法であって、Mn原料をマグネシアルツボに入れ、真空誘導溶解炉(VIM炉)を用いて500Torr以下の不活性雰囲気下、溶解温度1240~1400°Cで溶解し、カルシウム(Ca)をMn重量の0.5~2.0%の範囲で添加して脱酸及び脱硫を行い、脱酸及び脱硫の終了後鉄製鋳型に鋳込でインゴットを製造し、次にこのMnインゴットをスカル溶解炉に装填し、真空ポンプにより10-5Torr以下に減圧して加熱を開始し、溶融状態を10~60分保持した後、溶解反応を終了させ、高純度Mnを得ることを特徴とする高純度Mnの製造方法。 A method for producing high-purity Mn, in which a Mn raw material is put in a magnetic crucible and melted at a melting temperature of 1240 to 1400 ° C. in an inert atmosphere of 500 Torr or less using a vacuum induction melting furnace (VIM furnace), and calcium ( Ca) is added in the range of 0.5 to 2.0% of the Mn weight to perform deoxidation and desulfurization, and after completion of deoxidation and desulfurization, an ingot is produced by casting into an iron mold, and then this Mn ingot Is loaded into a skull melting furnace, heated by reducing the pressure to 10 −5 Torr or less with a vacuum pump, held in a molten state for 10 to 60 minutes, and then the melting reaction is terminated to obtain high purity Mn. A method for producing high-purity Mn.
  2.  真空誘導溶解(VIM)とスカル溶解により精製した高純度Mnであって、不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分を除き4N5(99.995%)以上の純度を有することを特徴とする高純度Mn。 High-purity Mn purified by vacuum induction melting (VIM) and skull melting, and the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, Ni is 50 ppm or less, and gas components High-purity Mn having a purity of 4N5 (99.995%) or higher except for.
  3.  真空誘導溶解(VIM)とスカル溶解により精製した高純度Mnであって、不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分元素を除き4N5(99.995%)以上の純度を有し、ガス成分である酸素(O)、窒素(N)がそれぞれ10ppm未満であることを特徴とする高純度Mn。 High-purity Mn purified by vacuum induction melting (VIM) and skull melting, and the total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, Ni is 50 ppm or less, and gas components High-purity Mn having a purity of 4N5 (99.995%) or more excluding elements and having oxygen (O) and nitrogen (N) as gas components of less than 10 ppm each.
  4.  不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分元素を除き4N5(99.995%)以上の純度を有することを特徴とする高純度Mn。 The total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and has a purity of 4N5 (99.995%) or more excluding gas component elements. High purity Mn.
  5.  不純物元素であるB、Mg、Al、Si、S、Ca、Cr、Fe、Niの総量が50ppm以下であり、ガス成分元素を除き4N5(99.995%)以上の純度を有し、ガス成分である酸素(O)、窒素(N)がそれぞれ10ppm未満であることを特徴とする高純度Mn。 The total amount of impurity elements B, Mg, Al, Si, S, Ca, Cr, Fe, and Ni is 50 ppm or less, and has a purity of 4N5 (99.995%) or more, excluding gas component elements, High purity Mn, characterized in that oxygen (O) and nitrogen (N) are less than 10 ppm each.
PCT/JP2014/073615 2013-10-25 2014-09-08 Method for manufacturing high purity manganese and high purity manganese WO2015060026A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167029451A KR20160125537A (en) 2013-10-25 2014-09-08 High purity manganese
JP2015518497A JP6050485B2 (en) 2013-10-25 2014-09-08 Method for producing high purity manganese and high purity manganese
KR1020157028532A KR101678334B1 (en) 2013-10-25 2014-09-08 Method for manufacturing high purity manganese
US14/777,064 US20160032427A1 (en) 2013-10-25 2014-09-08 Method for manufacturing high purity manganese and high purity manganese

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-222139 2013-10-25
JP2013222139 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015060026A1 true WO2015060026A1 (en) 2015-04-30

Family

ID=52992631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073615 WO2015060026A1 (en) 2013-10-25 2014-09-08 Method for manufacturing high purity manganese and high purity manganese

Country Status (5)

Country Link
US (1) US20160032427A1 (en)
JP (1) JP6050485B2 (en)
KR (2) KR20160125537A (en)
TW (1) TW201527541A (en)
WO (1) WO2015060026A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088744A (en) * 2019-12-04 2021-06-10 株式会社 大阪アサヒメタル工場 Method for manufacturing high purity manganese and high purity manganese
CN115491533A (en) * 2022-09-29 2022-12-20 贵州松桃金瑞锰业有限责任公司 Preparation method of manganese alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088828B (en) * 2021-03-25 2022-04-19 江苏省沙钢钢铁研究院有限公司 high-Mn high-Al steel and vacuum melting process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285373A (en) * 2001-03-26 2002-10-03 Osaka Asahi Metal Mfg Co Ltd Method for producing high purity manganese
WO2013111609A1 (en) * 2012-01-23 2013-08-01 Jx日鉱日石金属株式会社 High-purity copper-manganese alloy sputtering target

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538309A (en) 1976-07-13 1978-01-25 Toyo Soda Mfg Co Ltd Removing method for sulfer in metalic manganese
JP3544293B2 (en) 1997-07-31 2004-07-21 株式会社日鉱マテリアルズ Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP4013999B2 (en) 1997-11-18 2007-11-28 日鉱金属株式会社 Manufacturing method of high purity Mn material
JP2002167630A (en) 2000-11-28 2002-06-11 Hitachi Metals Ltd METHOD FOR PRODUCING LOW OXYGEN Mn MATERIAL
JP4816897B2 (en) 2005-10-28 2011-11-16 三菱マテリアル株式会社 Electrolytic extraction method of metal manganese and high purity metal manganese
JP5495418B2 (en) 2009-03-09 2014-05-21 Dowaメタルマイン株式会社 Method for recovering manganese
JP5446735B2 (en) 2009-10-30 2014-03-19 Jfeスチール株式会社 Method for producing metal manganese
JP5808094B2 (en) 2010-09-29 2015-11-10 株式会社東芝 Manufacturing method of sputtering target
JP5944666B2 (en) 2012-01-12 2016-07-05 Jx金属株式会社 Manufacturing method of high purity manganese

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285373A (en) * 2001-03-26 2002-10-03 Osaka Asahi Metal Mfg Co Ltd Method for producing high purity manganese
WO2013111609A1 (en) * 2012-01-23 2013-08-01 Jx日鉱日石金属株式会社 High-purity copper-manganese alloy sputtering target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088744A (en) * 2019-12-04 2021-06-10 株式会社 大阪アサヒメタル工場 Method for manufacturing high purity manganese and high purity manganese
JP7298893B2 (en) 2019-12-04 2023-06-27 株式会社 大阪アサヒメタル工場 Method for producing high-purity manganese and high-purity manganese
CN115491533A (en) * 2022-09-29 2022-12-20 贵州松桃金瑞锰业有限责任公司 Preparation method of manganese alloy

Also Published As

Publication number Publication date
JPWO2015060026A1 (en) 2017-03-09
KR20150125721A (en) 2015-11-09
KR101678334B1 (en) 2016-11-21
US20160032427A1 (en) 2016-02-04
JP6050485B2 (en) 2016-12-21
TW201527541A (en) 2015-07-16
KR20160125537A (en) 2016-10-31

Similar Documents

Publication Publication Date Title
JP2010196172A (en) Method for producing high-purity hafnium
JP6050485B2 (en) Method for producing high purity manganese and high purity manganese
JP5944666B2 (en) Manufacturing method of high purity manganese
JP5925384B2 (en) Method for producing high purity manganese and high purity manganese
TWI542703B (en) High purity manganese and its manufacturing method
WO2013084672A1 (en) Method for producing calcium of high purity
JP2016180184A (en) High purity manganese
WO2011037473A1 (en) Method for producing high purity silicon
CN109609778B (en) Method for removing gallium from primary aluminum by utilizing metal extraction
JP2007224340A (en) Production method of high purity silver ingot
JP5554274B2 (en) Method for recovering In and Sn and method for recovering In and Sn from an ITO recycled material
JP2004307985A (en) PROCESS FOR MANUFACTURING Al ALLOY CONTAINING LITTLE Ca, AND BASE METAL FOR MANUFACTURING Al ALLOY CONTAINING LITTLE Ca
KR100526039B1 (en) Method for purifying magnesium scrap with vacuum distillation
CN109609779B (en) Method for removing gallium from primary aluminum by vacuum distillation
JP3292060B2 (en) Deoxygenation method of scandium metal
JP2015516512A (en) Method for producing oxide dispersion strengthened platinum-gold alloy powder using dry method
JP2002167630A (en) METHOD FOR PRODUCING LOW OXYGEN Mn MATERIAL
JP3613324B2 (en) Method for producing tantalum oxide and / or niobium oxide
KR101714937B1 (en) METHOD FOR NICKEL ENRICHMENT IN FeNi SOLUTION IN NICKEL HYDROMETALLURICAL EXTRACTION PROCESS
JP2005298238A (en) High-purity vanadium pentoxide and method for producing the same
JP2009293113A (en) Treatment method for aluminum molten metal
JP2006096613A (en) Method for removing iron in concentrated sulfuric acid

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015518497

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14777064

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157028532

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855655

Country of ref document: EP

Kind code of ref document: A1