WO2015059974A1 - Electronic apparatus - Google Patents

Electronic apparatus Download PDF

Info

Publication number
WO2015059974A1
WO2015059974A1 PCT/JP2014/070504 JP2014070504W WO2015059974A1 WO 2015059974 A1 WO2015059974 A1 WO 2015059974A1 JP 2014070504 W JP2014070504 W JP 2014070504W WO 2015059974 A1 WO2015059974 A1 WO 2015059974A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference voltage
power consumption
circuit
generation circuit
voltage generation
Prior art date
Application number
PCT/JP2014/070504
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 浩章
克行 米沢
健 松井
勝美 高岡
啓太 泉
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015059974A1 publication Critical patent/WO2015059974A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • This technology relates to an electronic device. Specifically, the present invention relates to an electronic device that generates a reference voltage.
  • reference voltage generation circuits that generate a constant reference voltage regardless of the power supply voltage have been widely used.
  • a power supply device that supplies power to a plurality of loads and includes a reference voltage generation circuit for each of the loads has been proposed (see, for example, Patent Document 1). Priorities are determined for each of the plurality of loads, and the power supply device stops the power supply devices in order from the reference voltage generation circuit corresponding to the load with the lower priority when reducing the power consumption.
  • This technology was created in view of such a situation, and aims to operate a circuit accurately with a simple configuration.
  • the present technology has been made to solve the above-described problems.
  • the first aspect of the present technology includes a first reference voltage generation circuit and a second power consumption lower than that of the first reference voltage generation circuit.
  • Reference voltage generation circuit two logic circuits that input and output a logic value based on the reference voltage, and a reference from the first reference voltage generation circuit in a normal mode in which both of the two logic circuits operate.
  • a reference voltage switching unit that supplies a voltage to the two logic circuits and supplies a reference voltage from the second reference voltage generation circuit to the one in a power saving mode in which one of the two logic circuits operates.
  • Electronic device Accordingly, the reference voltage from the first reference voltage generation circuit is supplied to the two logic circuits in the normal mode, and the reference voltage from the second reference voltage generation circuit is supplied to one side in the power saving mode. Bring.
  • one of the two logic circuits includes an input / output unit that inputs / outputs a logical value between the two logic circuits and the other, and the other and the input / output unit. And a control unit that sets a logical value input / output between them to a predetermined value in the power saving mode. This brings about the effect that the value of the input / output logical value becomes a predetermined value in the power saving mode.
  • the power consumption of each of the two logic circuits is different, and the lower power consumption of the two logic circuits may operate in the power saving mode. Thereby, in the power saving mode, there is an effect that the lower one of the two logic circuits operates.
  • one of the two logic circuits may stop the other of the two logic circuits and the first reference voltage generation circuit. This brings about the effect that the other of the two logic circuits and the first reference voltage generation circuit are stopped in the power saving mode.
  • a control circuit for stopping one of the two logic circuits and the first reference voltage generation circuit in the power saving mode may be further included. As a result, one of the two logic circuits and the first reference voltage generation circuit are stopped in the power saving mode.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a high power consumption reference voltage generation circuit according to the first embodiment.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a low power consumption reference voltage generation circuit according to the first embodiment.
  • 1 is a block diagram illustrating a configuration example of a low power consumption logic circuit according to a first embodiment. It is a figure which shows an example of the communication circuit at the time of the power saving mode in 1st Embodiment. It is a block diagram which shows the example of 1 structure of the communication circuit in a modification. It is a circuit diagram which shows one structural example of the low power consumption logic circuit in a modification.
  • FIG. 1 is a block diagram illustrating a configuration example of the communication apparatus 100 according to the first embodiment.
  • the communication device 100 is a device that performs communication with a communication partner device, and is mounted on a mobile communication device such as a mobile phone device, for example.
  • the communication device 100 includes a power supply circuit 110, a control circuit 120, and a communication circuit 200.
  • the power supply circuit 110 supplies the power supply voltage VDD to the communication circuit 200 via the signal line 119.
  • the communication circuit 200 detects a communication partner device and performs communication with the device.
  • the control circuit 120 generates a control signal and supplies it to the communication circuit 200 via the signal line 129.
  • This control signal is a signal for instructing either a normal mode in which the communication circuit 200 is operated with predetermined power consumption or a power saving mode in which the communication circuit 200 is operated with lower power consumption than in the normal mode.
  • the control circuit 120 generates a control signal instructing the normal mode in the initial state.
  • the control circuit 120 receives a device detection result from the communication circuit 200 and receives an operation signal generated by a user operation.
  • the control circuit 120 outputs a control signal for instructing the power saving mode when the communication circuit 200 does not detect the device for a certain period of time or when the power saving mode is set by a user operation. Generate.
  • the communication device 100 is an example of an electronic device described in the claims.
  • FIG. 2 is a block diagram illustrating a configuration example of the communication circuit 200 according to the first embodiment.
  • the communication circuit 200 includes a high power consumption reference voltage generation circuit 210, a low power consumption reference voltage generation circuit 220, and a switch 230.
  • the communication circuit 200 includes a high power consumption regulator 240, a low power consumption regulator 250, a voltage detector 260, a high power consumption logic circuit 270, and a low power consumption logic circuit 280.
  • the high power consumption reference voltage generation circuit 210 generates the reference voltage Vref1.
  • the high power consumption reference voltage generation circuit 210 receives the control signal, and when the normal mode is instructed by the control signal, generates the reference voltage Vref1 from the power supply voltage VDD and supplies the reference voltage Vref1 to the high power consumption regulator 240 and the switch 230. Supply.
  • the high power consumption reference voltage generation circuit 210 stops its operation. Thereby, power consumption is reduced in the power saving mode.
  • the low power consumption reference voltage generation circuit 220 generates the reference voltage Vref2. It is assumed that the power consumption of the low power consumption reference voltage generation circuit 220 is lower than that of the high power consumption reference voltage generation circuit 210. For this reason, the accuracy of the reference voltage Vref2 is lower than that of the reference voltage Vref1. The reason why the reference voltages of the reference voltage generation circuits (210 and 220) are different in accuracy will be described later.
  • the low power consumption reference voltage generation circuit 220 generates a reference voltage Vref2 from the power supply voltage VDD and supplies the reference voltage Vref2 to the switch 230.
  • the switch 230 switches the supply source of the reference voltage according to the control signal.
  • the switch 230 has two input terminals, one of which is connected to the high power consumption reference voltage generation circuit 210 and the other is connected to the low power consumption reference voltage generation circuit 220.
  • the switch 230 supplies the reference voltage Vref1 from the high power consumption reference voltage generation circuit 210 to the low power consumption regulator 250 when the normal mode is instructed by the control signal.
  • the switch 230 supplies the reference voltage Vref2 from the low power consumption reference voltage generation circuit 220 to the low power consumption regulator 250.
  • the switch 230 is an example of a reference voltage switching unit described in the claims.
  • the high power consumption regulator 240 adjusts the reference voltage Vref1.
  • the high power consumption regulator 240 adjusts the reference voltage Vref1 and supplies the adjusted voltage VDD1 to the voltage detector 260 and the high power consumption logic circuit 270. Further, when the power saving mode is instructed, the high power consumption regulator 240 stops its operation. Thereby, power consumption is reduced in the power saving mode.
  • the low power consumption regulator 250 adjusts the reference voltage Vref1 or Vref2 from the switch 230.
  • the high power consumption regulator 240 supplies VDD1 adjusted Vref1 or VDD1 ′ adjusted Vref2 to the low power consumption logic circuit 280.
  • the high power consumption regulator 240 and the low power consumption regulator 250 are provided as necessary. If adjustment of the reference voltage is unnecessary, these regulators need not be provided.
  • the voltage detector 260 detects whether or not the reference voltage Vref1 is equal to or higher than a predetermined threshold voltage.
  • the voltage detector 260 supplies the detection result to the low power consumption logic circuit 280. For example, a high level detection result is generated when the reference voltage Vref1 is equal to or higher than a predetermined threshold voltage, and a low level detection result is generated otherwise.
  • the high power consumption logic circuit 270 is a logic circuit that consumes more power than the low power consumption logic circuit 280.
  • the high power consumption logic circuit 270 performs a logic operation on a logic value based on the voltage VDD1.
  • the high power consumption logic circuit 270 for example, after a communication partner device is detected, processing on data transmitted to and received from the device is performed by a logical operation.
  • the high power consumption logic circuit 270 inputs / outputs the operation result to / from the low power consumption logic circuit 280. Further, the high power consumption logic circuit 270 stops its operation when the power saving mode is designated.
  • the low power consumption logic circuit 280 is a logic circuit with lower power consumption than the high power consumption logic circuit 270.
  • the low power consumption logic circuit 280 performs a logic operation on a logic value based on the voltage VDD1 ′.
  • a process of performing polling for detecting a communication partner device at regular intervals is performed by a logical operation.
  • the low power consumption logic circuit 280 inputs / outputs the operation result to / from the high power consumption logic circuit 270.
  • the low power consumption logic circuit 280 supplies the device detection result to the control circuit 120.
  • the switch 230 supplies a highly accurate reference voltage from the high power consumption reference voltage generation circuit 210 to the high power consumption logic circuit 270 and the low power consumption logic circuit 280 in the normal mode. Can be operated accurately. Further, since the same reference voltage is supplied to each of the logic circuits, it is not necessary to provide a level shifter between the high power consumption logic circuit 270 and the low power consumption logic circuit 280. Further, it is not necessary to perform a static timing analysis on the exchange of signals between these logic circuits. Therefore, the circuit can be accurately operated with a simple configuration.
  • the high power consumption regulator 240 and the voltage detector 260 are configured to stop in the power saving mode, at least one of them may be operated in the power saving mode.
  • the present invention is not limited to this configuration.
  • the power consumption of these logic circuits may be the same. Even in this case, power consumption can be reduced by stopping one of the logic circuits.
  • the reference voltage supply source is switched in the communication circuit 200, the reference voltage supply source is switched in a circuit other than the communication circuit as long as the circuit includes two logic circuits and one of them is stopped in the power saving mode. May be.
  • FIG. 3 is a circuit diagram illustrating a configuration example of the high power consumption reference voltage generation circuit 210 according to the first embodiment.
  • the high power consumption reference voltage generation circuit 210 includes a switch 211, resistors 212, 213, and 215, a plurality of diodes 214, and a diode 216.
  • the switch 211 stops the high power consumption reference voltage generation circuit 210 according to the control signal.
  • This switch 211 has two terminals, and opens and closes a line between these terminals according to a control signal.
  • One of the two terminals of the switch 211 is connected to the power supply circuit 110, and the other is connected to the power supply terminal of the operational amplifier 217.
  • the switch 211 shifts to the closed state when the control signal indicates the normal mode, and shifts to the open state when the control signal indicates the power saving mode.
  • the resistors 212 and 213 and the plurality of diodes 214 are connected in series between the output terminal of the operational amplifier 217 and the ground terminal.
  • the plurality of diodes 214 are connected in parallel between the resistor 213 and the ground terminal.
  • the resistor 215 and the diode 216 are connected in series between the output terminal of the operational amplifier 217 and the ground terminal.
  • the diodes 214 and 216 are forward-connected.
  • the anodes of the diodes 214 and 216 are connected to the operational amplifier 217 side, and the cathode is connected to the ground terminal.
  • the circuit composed of the resistor 212, the resistor 213, and the diode 214 and the circuit composed of the resistor 215 and the diode 216 are connected in parallel between the output terminal of the operational amplifier 217 and the ground terminal.
  • connection point between the resistor 212 and the resistor 213 is connected to the inverting input terminal ( ⁇ ) of the operational amplifier 217, and the connection point between the resistor 215 and the diode 216 is connected to the non-inverting input terminal (+) of the operational amplifier 217. .
  • the operational amplifier 217 amplifies the potential difference between the inverting input terminal ( ⁇ ) and the non-inverting input terminal (+).
  • the output terminal of the operational amplifier 217 is connected to the resistor 212, the resistor 215, and the switch 230. With this configuration, the output current of the operational amplifier 217 is fed back to the resistors 212 and 215.
  • K is a constant represented by the following formula 2.
  • VT is a thermal voltage represented by the following expression 3, and its unit is, for example, volts (V).
  • K R2 / R3 ⁇ ln (R2 / R1) Equation 2
  • VT k ⁇ T / q Equation 3
  • R1 is the resistance value of the resistor 215
  • R2 is the resistance value of the resistor 212
  • R3 is the resistance value of the resistor 213.
  • the unit of R1, R2 and R3 is, for example, ohm ( ⁇ ).
  • Equation 3 k is Boltzmann's constant, which is about 1.38 ⁇ 10 ⁇ 23 joules per Kelvin (J / K). T is an absolute temperature and the unit is, for example, Kelvin (K). q is the elementary electric charge and is about 1.60 ⁇ 10 ⁇ 19 coulombs (C).
  • Equations 1 to 3 indicate that the reference voltage Vref1 is a constant voltage determined by the characteristics of the diode 214 and the like and the resistance value.
  • This reference voltage Vref is a value depending on the band gap voltage of the semiconductor.
  • a circuit that generates a constant reference voltage depending on the bandgap voltage in this way is called a bandgap reference circuit.
  • the switch 211 is provided inside the high power consumption reference voltage generation circuit 210, the switch 211 may be provided outside the high power consumption reference voltage generation circuit 210.
  • the high power consumption reference voltage generation circuit 210 is not limited to the configuration illustrated in FIG. 3 as long as it can generate a constant reference voltage.
  • a transistor may be provided instead of the diodes 214 and 216.
  • FIG. 4 is a circuit diagram showing a configuration example of the low power consumption reference voltage generation circuit 220 according to the first embodiment.
  • the low power consumption reference voltage generation circuit 220 includes resistors 222, 223 and 225, a plurality of diodes 224, a diode 226, and an operational amplifier 227.
  • a circuit including these resistors 222, 223 and 225, a plurality of diodes 224, a diode 226, and an operational amplifier 227 has the same configuration as that of the high power consumption reference voltage generation circuit 210 excluding the switch 211.
  • the impedance of the entire low power consumption reference voltage generation circuit 220 is smaller than that of the high power consumption reference voltage generation circuit 210, the power consumption is relatively small.
  • offset voltage a slight voltage
  • This offset voltage indicates an error in the output voltage.
  • a current generated by the offset voltage is called an offset current.
  • the offset current is considered for each of the case where the transistor operates in the strong inversion region and the case where the transistor operates in the weak inversion region.
  • the offset current in the strong inversion region is expressed by the following equation.
  • V GS is the gate voltage of the transistor
  • V T is the threshold voltage of the transistor
  • I is the drain current.
  • B is a current amplification factor.
  • the mismatch tends to decrease as the gate voltage V GS increases.
  • the mismatch tends to increase as the power consumption decreases and the gate voltage V GS decreases.
  • the mismatch in the weak inversion region as described in "F. Forti and ME Wright” Measurement of MOS current mismatch in the weak inversion region "IEEE journal of solid state circuits, SC-29, 138 (1994)" There is a tendency for the current to increase as the current flowing through it decreases.
  • the mismatch tends to increase as the current decreases due to the reduction in power consumption.
  • mismatch increases in the feedback path in the low power consumption reference voltage generation circuit 220, and the variation of the reference voltage increases. In other words, the accuracy of the reference voltage is lowered.
  • the configuration of the low power consumption reference voltage generation circuit 220 is the same as that of the high power consumption reference voltage generation circuit 210 except for the switch 211. However, these configurations may be different.
  • FIG. 5 is a block diagram illustrating a configuration example of the low power consumption logic circuit 280 according to the first embodiment.
  • the low power consumption logic circuit 280 includes AND gates 281 and 282 and a polling processing unit 283.
  • the AND gate 281 makes the voltage of the signal output from the polling processing unit 283 to the high power consumption logic circuit 270 low level in the power saving mode.
  • the AND gate 281 outputs a logical product of the detection result from the voltage detector 260 and the logical value from the polling processing unit 283 to the high power consumption logic circuit 270. Thereby, the leakage current flowing to the high power consumption logic circuit 270 is suppressed.
  • the AND gate 281 outputs a signal from the polling processing unit 283 to the high power consumption logic circuit 270. This signal includes, for example, a detection result of the device.
  • the AND gate 282 makes the voltage of the signal input from the polling processing unit 283 to the high power consumption logic circuit 270 low level in the power saving mode.
  • the AND gate 282 outputs a logical product of the detection result from the voltage detector 260 and the logical value from the high power consumption logic circuit 270 to the polling processing unit 283. Thereby, it is suppressed that a signal with an indefinite level is input to the polling processing unit 283.
  • the AND gate 282 inputs a signal from the high power consumption logic circuit 270 to the polling processing unit 283.
  • This signal includes setting information related to polling processing such as a polling interval.
  • the circuit including the AND gates 281 and 282 is an example of a control unit described in the claims.
  • the polling processing unit 283 performs polling at regular intervals.
  • the polling processing unit 283 operates when a reference voltage is supplied from the low power consumption regulator 250 and supplies a device detection result to the control circuit 120 every time polling is performed.
  • the polling processing unit 283 is an example of an input / output unit described in the claims.
  • FIG. 6 is a diagram illustrating an example of the communication circuit 200 in the power saving mode according to the first embodiment.
  • the switch 230 switches the supply source of the reference voltage to the low power consumption reference voltage generation circuit 220 according to the control signal.
  • the high power consumption reference voltage generation circuit 210, the high power consumption regulator 240, the voltage detector 260, and the high power consumption logic circuit 270 stop operating in accordance with the control signal. Thereby, the power consumption of the communication circuit 200 is reduced.
  • the accuracy of the reference voltage Vref2 from the low power consumption reference voltage generation circuit 220 is relatively low.
  • the high power consumption logic circuit 270 is stopped in the power saving mode and no signal is exchanged between the high power consumption logic circuit 270 and the low power consumption logic circuit 280, no problem occurs.
  • the communication circuit 200 supplies the reference voltage Vref1 to the two logic circuits in the normal mode. Therefore, the logic circuits use the same reference voltage as a reference. Can be generated. Thus, the circuit can be accurately operated with a simple configuration.
  • control circuit 120 generates the control signal, but the low power consumption logic circuit 280 can also generate the control signal.
  • the communication circuit 200 according to the modified example is different from the first embodiment in that the low power consumption logic circuit 280 generates a control signal.
  • FIG. 7 is a block diagram illustrating a configuration example of the communication circuit 200 according to the modification.
  • the communication circuit 200 according to the modified example is different from the first embodiment in that an OR (logical sum) gate 290 is further provided.
  • the low power consumption logic circuit 280 of the modification is different from that of the first embodiment in that the control signal C2 is output instead of the detection result.
  • the control circuit 120 according to the modification does not receive the device detection result, and generates the control signal C1 according to the user's operation.
  • the OR gate 290 outputs a control signal from the control circuit 120 or the low power consumption logic circuit 280.
  • the OR gate 290 uses the logical sum of the control signal C1 and the control signal C2 as a control signal C3 to the switch 230, the high power consumption reference voltage generation circuit 210, the high power consumption regulator 240, the voltage detector 260, and the high power consumption logic circuit 270. Supply.
  • control circuit 120 and the low power consumption logic circuit 280 generate the control signal, but only the low power consumption logic circuit 280 may generate the control signal. In this case, it is not necessary to provide the OR gate 290.
  • FIG. 8 is a circuit diagram showing a configuration example of the low power consumption logic circuit 280 in the modification.
  • the low power consumption logic circuit 280 of the modification is different from that of the first embodiment in that a mode control unit 284 is further provided. Further, the polling processing unit 283 of the modification supplies the detection result to the mode control unit 284.
  • the mode control unit 284 generates the control signal C2 from the detection result.
  • the mode control unit 284 operates when a reference voltage is supplied from the low power consumption regulator 250. Then, for example, the mode control unit 284 generates the control signal C2 instructing the power saving mode when the period in which the device is not detected continues for a certain time or longer, and generates the control signal C2 instructing the normal mode otherwise. To do.
  • the mode control unit 284 supplies the generated control signal C2 to the OR gate 290.
  • the control circuit 120 since the low power consumption logic circuit 280 generates the control signal from the detection result, the control circuit 120 does not need to process the detection result, and the burden on the control circuit 120 is reduced.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • An electronic apparatus comprising: a reference voltage switching unit that supplies a reference voltage from a second reference voltage generation circuit to the one side.
  • One of the two logic circuits is An input / output unit for inputting / outputting a logical value to / from the other of the two logic circuits;
  • the electronic device according to (1) further comprising a control unit configured to set a logical value input / output between the other side and the input / output unit to a predetermined value in the power saving mode.
  • the power consumption of each of the two logic circuits is different, The electronic device according to (1) or (2), wherein the lower one of the two logic circuits operates in the power saving mode.
  • one of the two logic circuits stops the other of the two logic circuits and the first reference voltage generation circuit, according to any one of (1) to (3) Electronic devices.
  • the electronic device according to any one of (1) to (4) further including a control circuit that stops one of the two logic circuits and the first reference voltage generation circuit in the power saving mode. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)

Abstract

 The purpose of the invention is to accurately operate a circuit using a simple configuration. This electronic apparatus is provided with a first reference voltage generation circuit, a second reference voltage generation circuit the power consumption of which is lower than that of the first reference voltage generation circuit, two logic circuits, and a reference voltage switching unit. The two logic circuits input and output to each other a logic value referenced to a reference voltage . The reference voltage switching unit supplies, in a normal mode in which both of the two logic circuits are operating, the reference voltage from the first reference voltage generation circuit to the two logic circuits; and supplies, in a power-saving mode in which one of the two logic circuits is operating, the reference voltage from the second reference voltage generation circuit to the one operating logic circuit.

Description

電子装置Electronic equipment
 本技術は、電子装置に関する。詳しくは、基準電圧を生成する電子装置に関する。 This technology relates to an electronic device. Specifically, the present invention relates to an electronic device that generates a reference voltage.
 従来より、電子装置においては、電源電圧に関わらず、一定の基準電圧を生成する基準電圧生成回路が広く用いられている。例えば、複数の負荷に電源を供給し、それらの負荷ごとに基準電圧生成回路を備える電源供給装置が提案されている(例えば、特許文献1参照。)。複数の負荷のそれぞれには優先順位が定められており、電源供給装置は、消費電力量を低減する場合に、優先順位の低い負荷に対応する基準電圧生成回路から順番に停止させる。 Conventionally, in electronic devices, reference voltage generation circuits that generate a constant reference voltage regardless of the power supply voltage have been widely used. For example, a power supply device that supplies power to a plurality of loads and includes a reference voltage generation circuit for each of the loads has been proposed (see, for example, Patent Document 1). Priorities are determined for each of the plurality of loads, and the power supply device stops the power supply devices in order from the reference voltage generation circuit corresponding to the load with the lower priority when reducing the power consumption.
特開2004-23990号公報Japanese Patent Laid-Open No. 2004-23990
 しかしながら、上述の従来技術では、各負荷内の回路を正確に動作させることが困難である。複数の基準電圧生成回路のそれぞれの消費電力が異なる場合、消費電力が低い方の基準電圧生成回路は、消費電力が高い方の基準電圧生成回路と比較して、生成する基準電圧がばらつく傾向にある。このため、複数の基準電圧生成回路のそれぞれの基準電圧が同一とならないおそれがある。したがって、複数の負荷を動作させて、それらの負荷同士で、基準電圧を基準とした信号をやり取りする際に、信号の電圧を変換するレベルシフタを負荷の間に設ける必要がある。また、論理回路を含む負荷については、論理回路のタイミングを検証する静的タイミング解析(STA:static timing analysis)を設計において行う必要がある。この結果、簡易な構成で回路を正確に動作させることが困難となる。 However, with the above-described prior art, it is difficult to accurately operate the circuit in each load. When the power consumption of each of the plurality of reference voltage generation circuits is different, the reference voltage generation circuit with the lower power consumption tends to vary in the generated reference voltage compared to the reference voltage generation circuit with the higher power consumption. is there. For this reason, there is a possibility that the reference voltages of the plurality of reference voltage generation circuits may not be the same. Therefore, when operating a plurality of loads and exchanging signals based on the reference voltage between the loads, it is necessary to provide a level shifter for converting the voltage of the signal between the loads. For a load including a logic circuit, static timing analysis (STA) that verifies the timing of the logic circuit needs to be performed in the design. As a result, it is difficult to accurately operate the circuit with a simple configuration.
 本技術はこのような状況に鑑みて生み出されたものであり、簡易な構成で回路を正確に動作させることを目的とする。 This technology was created in view of such a situation, and aims to operate a circuit accurately with a simple configuration.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、第1の基準電圧生成回路と、上記第1の基準電圧生成回路より消費電力の低い第2の基準電圧生成回路と、基準電圧を基準とした論理値を互いに入出力する2つの論理回路と、上記2つの論理回路の両方が動作する通常モードにおいて上記第1の基準電圧生成回路からの基準電圧を上記2つの論理回路に供給し、上記2つの論理回路の一方が動作する省電力モードにおいて上記第2の基準電圧生成回路からの基準電圧を上記一方に供給する基準電圧切替部とを具備する電子装置である。これにより、通常モードにおいて第1の基準電圧生成回路からの基準電圧が上記2つの論理回路に供給され、省電力モードにおいて第2の基準電圧生成回路からの基準電圧が一方に供給されるという作用をもたらす。 The present technology has been made to solve the above-described problems. The first aspect of the present technology includes a first reference voltage generation circuit and a second power consumption lower than that of the first reference voltage generation circuit. Reference voltage generation circuit, two logic circuits that input and output a logic value based on the reference voltage, and a reference from the first reference voltage generation circuit in a normal mode in which both of the two logic circuits operate. A reference voltage switching unit that supplies a voltage to the two logic circuits and supplies a reference voltage from the second reference voltage generation circuit to the one in a power saving mode in which one of the two logic circuits operates. Electronic device. Accordingly, the reference voltage from the first reference voltage generation circuit is supplied to the two logic circuits in the normal mode, and the reference voltage from the second reference voltage generation circuit is supplied to one side in the power saving mode. Bring.
 また、この第1の側面において、上記2つの論理回路の一方は、上記2つの論理回路のうち他方との間で論理値を入出力する入出力部と、上記他方と上記入出力部との間で入出力される論理値の値を上記省電力モードにおいて所定値にする制御部とを備えてもよい。これにより、入出力される論理値の値が省電力モードにおいて所定値になるという作用をもたらす。 In the first aspect, one of the two logic circuits includes an input / output unit that inputs / outputs a logical value between the two logic circuits and the other, and the other and the input / output unit. And a control unit that sets a logical value input / output between them to a predetermined value in the power saving mode. This brings about the effect that the value of the input / output logical value becomes a predetermined value in the power saving mode.
 また、この第1の側面において、上記2つの論理回路のそれぞれの消費電力は異なり、上記省電力モードにおいて上記2つの論理回路のうち消費電力の低い方が動作してもよい。これにより、省電力モードにおいて2つの論理回路のうち消費電力の低い方が動作するという作用をもたらす。 Also, in this first aspect, the power consumption of each of the two logic circuits is different, and the lower power consumption of the two logic circuits may operate in the power saving mode. Thereby, in the power saving mode, there is an effect that the lower one of the two logic circuits operates.
 また、この第1の側面において、上記省電力モードにおいて上記2つの論理回路の一方は、上記2つの論理回路の他方と上記第1の基準電圧生成回路とを停止させてもよい。これにより、省電力モードにおいて2つの論理回路の他方と第1の基準電圧生成回路とが停止するという作用をもたらす。 In this first aspect, in the power saving mode, one of the two logic circuits may stop the other of the two logic circuits and the first reference voltage generation circuit. This brings about the effect that the other of the two logic circuits and the first reference voltage generation circuit are stopped in the power saving mode.
 また、この第1の側面において、上記省電力モードにおいて上記2つの論理回路のいずれかと上記第1の基準電圧生成回路とを停止させる制御回路をさらに具備してもよい。これにより、省電力モードにおいて2つの論理回路のいずれかと第1の基準電圧生成回路とが停止するという作用をもたらす。 In addition, in the first aspect, a control circuit for stopping one of the two logic circuits and the first reference voltage generation circuit in the power saving mode may be further included. As a result, one of the two logic circuits and the first reference voltage generation circuit are stopped in the power saving mode.
 本技術によれば、簡易な構成で回路を正確に動作させることができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, an excellent effect that the circuit can be accurately operated with a simple configuration can be obtained. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
第1の実施の形態における通信装置の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the communication apparatus in 1st Embodiment. 第1の実施の形態における通信回路の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the communication circuit in 1st Embodiment. 第1の実施の形態における高消費電力基準電圧生成回路の一構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration example of a high power consumption reference voltage generation circuit according to the first embodiment. 第1の実施の形態における低消費電力基準電圧生成回路の一構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration example of a low power consumption reference voltage generation circuit according to the first embodiment. 第1の実施の形態における低消費電力論理回路の一構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of a low power consumption logic circuit according to a first embodiment. 第1の実施の形態における省電力モードのときの通信回路の一例を示す図である。It is a figure which shows an example of the communication circuit at the time of the power saving mode in 1st Embodiment. 変形例における通信回路の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the communication circuit in a modification. 変形例における低消費電力論理回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the low power consumption logic circuit in a modification.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(基準電圧の供給元を切り替える例)
 2.変形例
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. 1st Embodiment (example which switches the supply source of a reference voltage)
2. Modified example
 <1.第1の実施の形態>
 [通信装置の構成例]
 図1は、第1の実施の形態における通信装置100の一構成例を示すブロック図である。この通信装置100は、通信相手のデバイスとの間で通信を行う装置であり、例えば、携帯電話装置などの移動体通信機器に搭載される。通信装置100は、電源回路110、制御回路120および通信回路200を備える。
<1. First Embodiment>
[Configuration example of communication device]
FIG. 1 is a block diagram illustrating a configuration example of the communication apparatus 100 according to the first embodiment. The communication device 100 is a device that performs communication with a communication partner device, and is mounted on a mobile communication device such as a mobile phone device, for example. The communication device 100 includes a power supply circuit 110, a control circuit 120, and a communication circuit 200.
 電源回路110は、電源電圧VDDを通信回路200に信号線119を介して供給するものである。通信回路200は、通信相手のデバイスを検知し、そのデバイスとの間で通信を行うものである。 The power supply circuit 110 supplies the power supply voltage VDD to the communication circuit 200 via the signal line 119. The communication circuit 200 detects a communication partner device and performs communication with the device.
 制御回路120は、制御信号を生成して通信回路200に信号線129を介して供給するものである。この制御信号は、所定の消費電力で通信回路200を動作させる通常モードと、通常モードより低い消費電力で通信回路200を動作させる省電力モードとのいずれかを指示する信号である。制御回路120は、例えば、初期状態において通常モードを指示する制御信号を生成する。また、制御回路120は、通信回路200からデバイスの検知結果を受け取り、ユーザの操作により生成された操作信号を受け取る。そして、制御回路120は、通信回路200においてデバイスが一定時間に亘って検知されなかった場合、または、ユーザの操作により省電力モードに設定された場合などに、省電力モードを指示する制御信号を生成する。 The control circuit 120 generates a control signal and supplies it to the communication circuit 200 via the signal line 129. This control signal is a signal for instructing either a normal mode in which the communication circuit 200 is operated with predetermined power consumption or a power saving mode in which the communication circuit 200 is operated with lower power consumption than in the normal mode. For example, the control circuit 120 generates a control signal instructing the normal mode in the initial state. The control circuit 120 receives a device detection result from the communication circuit 200 and receives an operation signal generated by a user operation. The control circuit 120 outputs a control signal for instructing the power saving mode when the communication circuit 200 does not detect the device for a certain period of time or when the power saving mode is set by a user operation. Generate.
 なお、通信装置100は、特許請求の範囲に記載の電子装置の一例である。 Note that the communication device 100 is an example of an electronic device described in the claims.
 [通信回路の構成例]
 図2は、第1の実施の形態における通信回路200の一構成例を示すブロック図である。この通信回路200は、高消費電力基準電圧生成回路210、低消費電力基準電圧生成回路220およびスイッチ230を備える。また、通信回路200は、高消費電力レギュレータ240、低消費電力レギュレータ250、電圧検出器260、高消費電力論理回路270および低消費電力論理回路280を備える。
[Configuration example of communication circuit]
FIG. 2 is a block diagram illustrating a configuration example of the communication circuit 200 according to the first embodiment. The communication circuit 200 includes a high power consumption reference voltage generation circuit 210, a low power consumption reference voltage generation circuit 220, and a switch 230. The communication circuit 200 includes a high power consumption regulator 240, a low power consumption regulator 250, a voltage detector 260, a high power consumption logic circuit 270, and a low power consumption logic circuit 280.
 高消費電力基準電圧生成回路210は、基準電圧Vref1を生成するものである。この高消費電力基準電圧生成回路210は、制御信号を受け取り、その制御信号により通常モードが指示された場合には、電源電圧VDDから基準電圧Vref1を生成し、高消費電力レギュレータ240およびスイッチ230に供給する。一方、省電力モードが指示された場合に高消費電力基準電圧生成回路210は、動作を停止する。これにより、省電力モードにおいて消費電力量が低減する。 The high power consumption reference voltage generation circuit 210 generates the reference voltage Vref1. The high power consumption reference voltage generation circuit 210 receives the control signal, and when the normal mode is instructed by the control signal, generates the reference voltage Vref1 from the power supply voltage VDD and supplies the reference voltage Vref1 to the high power consumption regulator 240 and the switch 230. Supply. On the other hand, when the power saving mode is instructed, the high power consumption reference voltage generation circuit 210 stops its operation. Thereby, power consumption is reduced in the power saving mode.
 低消費電力基準電圧生成回路220は、基準電圧Vref2を生成するものである。この低消費電力基準電圧生成回路220の消費電力は、高消費電力基準電圧生成回路210よりも低いものとする。このため、基準電圧Vref2の精度は、基準電圧Vref1より低くなる。基準電圧生成回路(210および220)のそれぞれの基準電圧の精度が異なる原因については後述する。低消費電力基準電圧生成回路220は、電源電圧VDDから基準電圧Vref2を生成し、スイッチ230に供給する。 The low power consumption reference voltage generation circuit 220 generates the reference voltage Vref2. It is assumed that the power consumption of the low power consumption reference voltage generation circuit 220 is lower than that of the high power consumption reference voltage generation circuit 210. For this reason, the accuracy of the reference voltage Vref2 is lower than that of the reference voltage Vref1. The reason why the reference voltages of the reference voltage generation circuits (210 and 220) are different in accuracy will be described later. The low power consumption reference voltage generation circuit 220 generates a reference voltage Vref2 from the power supply voltage VDD and supplies the reference voltage Vref2 to the switch 230.
 スイッチ230は、制御信号に従って基準電圧の供給元を切り替えるものである。スイッチ230は、2つの入力端子を有し、それらの一方は高消費電力基準電圧生成回路210に接続され、他方は低消費電力基準電圧生成回路220に接続される。スイッチ230は、制御信号により通常モードが指示された場合には、高消費電力基準電圧生成回路210からの基準電圧Vref1を低消費電力レギュレータ250に供給する。一方、省電力モードが指示された場合には、スイッチ230は低消費電力基準電圧生成回路220からの基準電圧Vref2を低消費電力レギュレータ250に供給する。なお、スイッチ230は、特許請求の範囲に記載の基準電圧切替部の一例である。 The switch 230 switches the supply source of the reference voltage according to the control signal. The switch 230 has two input terminals, one of which is connected to the high power consumption reference voltage generation circuit 210 and the other is connected to the low power consumption reference voltage generation circuit 220. The switch 230 supplies the reference voltage Vref1 from the high power consumption reference voltage generation circuit 210 to the low power consumption regulator 250 when the normal mode is instructed by the control signal. On the other hand, when the power saving mode is instructed, the switch 230 supplies the reference voltage Vref2 from the low power consumption reference voltage generation circuit 220 to the low power consumption regulator 250. The switch 230 is an example of a reference voltage switching unit described in the claims.
 高消費電力レギュレータ240は、基準電圧Vref1を調整するものである。この高消費電力レギュレータ240は、制御信号により通常モードが指示されると基準電圧Vref1を調整し、調整した電圧VDD1を電圧検出器260および高消費電力論理回路270に供給する。また、省電力モードが指示されると、高消費電力レギュレータ240は、動作を停止する。これにより、省電力モードにおいて消費電力量が低減する。 The high power consumption regulator 240 adjusts the reference voltage Vref1. When the normal mode is instructed by the control signal, the high power consumption regulator 240 adjusts the reference voltage Vref1 and supplies the adjusted voltage VDD1 to the voltage detector 260 and the high power consumption logic circuit 270. Further, when the power saving mode is instructed, the high power consumption regulator 240 stops its operation. Thereby, power consumption is reduced in the power saving mode.
 低消費電力レギュレータ250は、スイッチ230からの基準電圧Vref1またはVref2を調整するものである。高消費電力レギュレータ240は、Vref1を調整したVDD1、または、Vref2を調整したVDD1'を低消費電力論理回路280に供給する。なお、高消費電力レギュレータ240および低消費電力レギュレータ250は、必要に応じて設けられる。基準電圧の調整が不要である場合には、これらのレギュレータを設けなくてもよい。 The low power consumption regulator 250 adjusts the reference voltage Vref1 or Vref2 from the switch 230. The high power consumption regulator 240 supplies VDD1 adjusted Vref1 or VDD1 ′ adjusted Vref2 to the low power consumption logic circuit 280. The high power consumption regulator 240 and the low power consumption regulator 250 are provided as necessary. If adjustment of the reference voltage is unnecessary, these regulators need not be provided.
 電圧検出器260は、基準電圧Vref1が、所定の閾値電圧以上であるか否かを検出するものである。電圧検出器260は、検出結果を低消費電力論理回路280に供給する。例えば、基準電圧Vref1が、所定の閾値電圧以上である場合にハイレベルの検出結果が生成され、そうでない場合にローレベルの検出結果が生成される。 The voltage detector 260 detects whether or not the reference voltage Vref1 is equal to or higher than a predetermined threshold voltage. The voltage detector 260 supplies the detection result to the low power consumption logic circuit 280. For example, a high level detection result is generated when the reference voltage Vref1 is equal to or higher than a predetermined threshold voltage, and a low level detection result is generated otherwise.
 高消費電力論理回路270は、低消費電力論理回路280より消費電力の大きい論理回路である。この高消費電力論理回路270は、制御信号により通常モードが指定された場合には、電圧VDD1を基準とした論理値について論理演算を行う。高消費電力論理回路270においては、例えば、通信相手のデバイスが検知された後に、そのデバイスとの間で送受信したデータに対する処理が論理演算により行われる。そして、高消費電力論理回路270は、演算結果を低消費電力論理回路280との間で入出力する。また、高消費電力論理回路270は、省電力モードが指定された場合には動作を停止する。 The high power consumption logic circuit 270 is a logic circuit that consumes more power than the low power consumption logic circuit 280. When the normal mode is designated by the control signal, the high power consumption logic circuit 270 performs a logic operation on a logic value based on the voltage VDD1. In the high power consumption logic circuit 270, for example, after a communication partner device is detected, processing on data transmitted to and received from the device is performed by a logical operation. The high power consumption logic circuit 270 inputs / outputs the operation result to / from the low power consumption logic circuit 280. Further, the high power consumption logic circuit 270 stops its operation when the power saving mode is designated.
 低消費電力論理回路280は、高消費電力論理回路270より消費電力の低い論理回路である。低消費電力論理回路280は、電圧VDD1'を基準とした論理値について論理演算を行う。低消費電力論理回路280においては、例えば、通信相手のデバイスを検知するポーリングを一定間隔で行う処理が論理演算により行われる。そして、低消費電力論理回路280は、演算結果を高消費電力論理回路270との間で入出力する。また、低消費電力論理回路280は、デバイスの検知結果を制御回路120に供給する。 The low power consumption logic circuit 280 is a logic circuit with lower power consumption than the high power consumption logic circuit 270. The low power consumption logic circuit 280 performs a logic operation on a logic value based on the voltage VDD1 ′. In the low power consumption logic circuit 280, for example, a process of performing polling for detecting a communication partner device at regular intervals is performed by a logical operation. Then, the low power consumption logic circuit 280 inputs / outputs the operation result to / from the high power consumption logic circuit 270. The low power consumption logic circuit 280 supplies the device detection result to the control circuit 120.
 図2に例示したように、通常モードにおいて高消費電力基準電圧生成回路210からの精度の高い基準電圧をスイッチ230が高消費電力論理回路270および低消費電力論理回路280に供給することにより、それらを正確に動作させることができる。また、論理回路のそれぞれには、同じ基準電圧が供給されているため、高消費電力論理回路270および低消費電力論理回路280の間に、レベルシフタを設ける必要がない。さらに、これらの論理回路間の信号のやりとりについて、静的タイミング解析を行う必要がなくなる。したがって、簡易な構成により、回路を正確に動作させることができる。 As illustrated in FIG. 2, the switch 230 supplies a highly accurate reference voltage from the high power consumption reference voltage generation circuit 210 to the high power consumption logic circuit 270 and the low power consumption logic circuit 280 in the normal mode. Can be operated accurately. Further, since the same reference voltage is supplied to each of the logic circuits, it is not necessary to provide a level shifter between the high power consumption logic circuit 270 and the low power consumption logic circuit 280. Further, it is not necessary to perform a static timing analysis on the exchange of signals between these logic circuits. Therefore, the circuit can be accurately operated with a simple configuration.
 なお、高消費電力レギュレータ240および電圧検出器260は、省電力モードにおいて停止する構成としているが、これらのうちの少なくとも一方を省電力モードでも動作させてもよい。 In addition, although the high power consumption regulator 240 and the voltage detector 260 are configured to stop in the power saving mode, at least one of them may be operated in the power saving mode.
 また、高消費電力論理回路270および低消費電力論理回路280の消費電力が異なる構成としているが、この構成に限定されない。例えば、これらの論理回路の消費電力が同一であってもよい。この場合であっても、一方の論理回路が停止することにより、消費電力を低減することができる。 Further, although the power consumption of the high power consumption logic circuit 270 and the low power consumption logic circuit 280 is different, the present invention is not limited to this configuration. For example, the power consumption of these logic circuits may be the same. Even in this case, power consumption can be reduced by stopping one of the logic circuits.
 また、通信回路200において基準電圧の供給源を切り替えているが、2つの論理回路を備え、一方を省電力モードにおいて停止させる回路であれば、通信回路以外の回路において基準電圧の供給源を切り替えてもよい。 Further, although the reference voltage supply source is switched in the communication circuit 200, the reference voltage supply source is switched in a circuit other than the communication circuit as long as the circuit includes two logic circuits and one of them is stopped in the power saving mode. May be.
 [基準電圧生成回路の構成例]
 図3は、第1の実施の形態における高消費電力基準電圧生成回路210の一構成例を示す回路図である。この高消費電力基準電圧生成回路210は、スイッチ211と、抵抗212、213および215と、複数のダイオード214と、ダイオード216とを備える。
[Configuration example of reference voltage generation circuit]
FIG. 3 is a circuit diagram illustrating a configuration example of the high power consumption reference voltage generation circuit 210 according to the first embodiment. The high power consumption reference voltage generation circuit 210 includes a switch 211, resistors 212, 213, and 215, a plurality of diodes 214, and a diode 216.
 スイッチ211は、制御信号に従って、高消費電力基準電圧生成回路210を停止させるものである。このスイッチ211は、2つの端子を有し、それらの端子間の線路を制御信号に従って開閉する。スイッチ211の2つの端子の一方は電源回路110に接続され、他方は、オペアンプ217の電源端子に接続される。スイッチ211は、制御信号が通常モードを示す場合には閉状態に移行し、制御信号が省電力モードを示す場合には開状態に移行する。 The switch 211 stops the high power consumption reference voltage generation circuit 210 according to the control signal. This switch 211 has two terminals, and opens and closes a line between these terminals according to a control signal. One of the two terminals of the switch 211 is connected to the power supply circuit 110, and the other is connected to the power supply terminal of the operational amplifier 217. The switch 211 shifts to the closed state when the control signal indicates the normal mode, and shifts to the open state when the control signal indicates the power saving mode.
 抵抗212および抵抗213と、複数のダイオード214とは、オペアンプ217の出力端子と接地端子との間において直列に接続される。複数のダイオード214は、抵抗213と接地端子との間において並列に接続される。また、抵抗215およびダイオード216は、オペアンプ217の出力端子と接地端子との間において直列に接続される。 The resistors 212 and 213 and the plurality of diodes 214 are connected in series between the output terminal of the operational amplifier 217 and the ground terminal. The plurality of diodes 214 are connected in parallel between the resistor 213 and the ground terminal. The resistor 215 and the diode 216 are connected in series between the output terminal of the operational amplifier 217 and the ground terminal.
 ここで、ダイオード214および216は順方向接続される。言い換えれば、ダイオード214および216のアノードは、オペアンプ217側に接続され、カソードは接地端子に接続される。 Here, the diodes 214 and 216 are forward-connected. In other words, the anodes of the diodes 214 and 216 are connected to the operational amplifier 217 side, and the cathode is connected to the ground terminal.
 そして、抵抗212、抵抗213およびダイオード214からなる回路と、抵抗215およびダイオード216からなる回路とは、オペアンプ217の出力端子と接地端子との間において並列に接続される。 The circuit composed of the resistor 212, the resistor 213, and the diode 214 and the circuit composed of the resistor 215 and the diode 216 are connected in parallel between the output terminal of the operational amplifier 217 and the ground terminal.
 また、抵抗212と抵抗213との接続点はオペアンプ217の反転入力端子(-)に接続され、抵抗215とダイオード216との接続点は、オペアンプ217の非反転入力端子(+)に接続される。 The connection point between the resistor 212 and the resistor 213 is connected to the inverting input terminal (−) of the operational amplifier 217, and the connection point between the resistor 215 and the diode 216 is connected to the non-inverting input terminal (+) of the operational amplifier 217. .
 オペアンプ217は、反転入力端子(-)と非反転入力端子(+)との電位差を増幅するものである。このオペアンプ217の出力端子は、抵抗212、抵抗215およびスイッチ230に接続される。この構成により、オペアンプ217の出力電流は、抵抗212および215に帰還する。 The operational amplifier 217 amplifies the potential difference between the inverting input terminal (−) and the non-inverting input terminal (+). The output terminal of the operational amplifier 217 is connected to the resistor 212, the resistor 215, and the switch 230. With this configuration, the output current of the operational amplifier 217 is fed back to the resistors 212 and 215.
 所定の電源電圧VDDが印加されると、ダイオード214および216に順方向の電流が流れる。そして、その電流が多くなるほど、反転入力端子(-)の電圧V+と非反転入力端子(+)の電圧V-とが高くなる。ただし、電流の増加に対して電圧V+の変化量は比較的少ない。一方、電圧V-の変化量は、抵抗213があるために比較的多い。 When a predetermined power supply voltage VDD is applied, a forward current flows through the diodes 214 and 216. As the current increases, the voltage V + of the inverting input terminal (−) and the voltage V− of the non-inverting input terminal (+) increase. However, the amount of change in voltage V + is relatively small with respect to the increase in current. On the other hand, the amount of change in the voltage V− is relatively large because of the resistance 213.
 オペアンプ217は、出力電流を帰還させているため、帰還した出力電流により反転入力端子(-)の電圧V+と非反転入力端子(+)の電圧V-とが同一になる。反転入力端子(-)の電圧V+と非反転入力端子(+)の電圧V-とが同一になると、オペアンプ217の出力端子の電圧は、次の式1により表される基準電圧Vref1となる。
  Vref1=Vf+K×VT                   ・・・式1
Since the operational amplifier 217 feeds back the output current, the voltage V + of the inverting input terminal (−) and the voltage V− of the non-inverting input terminal (+) become the same by the feedback output current. When the voltage V + of the inverting input terminal (−) and the voltage V− of the non-inverting input terminal (+) become the same, the voltage of the output terminal of the operational amplifier 217 becomes a reference voltage Vref1 expressed by the following equation 1.
Vref1 = Vf + K × VT Equation 1
 上式においてKは次の式2により表される定数である。VTは次の式3により表される
熱電圧であり、単位は例えばボルト(V)である。
  K=R2/R3×ln(R2/R1)               ・・・式2
  VT=k×T/q                        ・・・式3
In the above formula, K is a constant represented by the following formula 2. VT is a thermal voltage represented by the following expression 3, and its unit is, for example, volts (V).
K = R2 / R3 × ln (R2 / R1) Equation 2
VT = k × T / q Equation 3
 ここで、式2においてR1は、抵抗215の抵抗値であり、R2は抵抗212の抵抗値であり、R3は、抵抗213の抵抗値である。これらR1、R2およびR3の単位は例えばオーム(Ω)である。 Here, in Expression 2, R1 is the resistance value of the resistor 215, R2 is the resistance value of the resistor 212, and R3 is the resistance value of the resistor 213. The unit of R1, R2 and R3 is, for example, ohm (Ω).
 また、式3においてkはボルツマン定数であり、約1.38×10-23ジュール毎ケルビン(J/K)である。Tは絶対温度であり、単位は例えば、ケルビン(K)である。qは、電気素量であり、約1.60×10-19クーロン(C)である。 In Equation 3, k is Boltzmann's constant, which is about 1.38 × 10 −23 joules per Kelvin (J / K). T is an absolute temperature and the unit is, for example, Kelvin (K). q is the elementary electric charge and is about 1.60 × 10 −19 coulombs (C).
 式1乃至式3は、基準電圧Vref1が、ダイオード214等の特性と抵抗の値とにより決定される一定の電圧であることを示す。この基準電圧Vrefは、半導体のバンドギャップ電圧に依存した値となる。このように、バンドギャップ電圧に依存した一定の基準電圧を生成する回路は、バンドギャップリファレンス回路と呼ばれる。 Equations 1 to 3 indicate that the reference voltage Vref1 is a constant voltage determined by the characteristics of the diode 214 and the like and the resistance value. This reference voltage Vref is a value depending on the band gap voltage of the semiconductor. A circuit that generates a constant reference voltage depending on the bandgap voltage in this way is called a bandgap reference circuit.
 なお、スイッチ211を高消費電力基準電圧生成回路210の内部に設ける構成としているが、高消費電力基準電圧生成回路210の外部に設ける構成としてもよい。 Although the switch 211 is provided inside the high power consumption reference voltage generation circuit 210, the switch 211 may be provided outside the high power consumption reference voltage generation circuit 210.
 また、高消費電力基準電圧生成回路210は、一定の基準電圧を生成することができる回路であれば、図3に例示した構成に限定されない。例えば、ダイオード214および216の代わりにトランジスタを設けてもよい。 The high power consumption reference voltage generation circuit 210 is not limited to the configuration illustrated in FIG. 3 as long as it can generate a constant reference voltage. For example, a transistor may be provided instead of the diodes 214 and 216.
 図4は、第1の実施の形態における低消費電力基準電圧生成回路220の一構成例を示す回路図である。この低消費電力基準電圧生成回路220は、抵抗222、223および225と、複数のダイオード224と、ダイオード226とオペアンプ227とを備える。これらの抵抗222、223および225と複数のダイオード224とダイオード226とオペアンプ227とからなる回路は、スイッチ211を除いた高消費電力基準電圧生成回路210と同様の構成である。ただし、低消費電力基準電圧生成回路220全体のインピーダンスは、高消費電力基準電圧生成回路210よりも小さいため、消費電力は比較的小さい。 FIG. 4 is a circuit diagram showing a configuration example of the low power consumption reference voltage generation circuit 220 according to the first embodiment. The low power consumption reference voltage generation circuit 220 includes resistors 222, 223 and 225, a plurality of diodes 224, a diode 226, and an operational amplifier 227. A circuit including these resistors 222, 223 and 225, a plurality of diodes 224, a diode 226, and an operational amplifier 227 has the same configuration as that of the high power consumption reference voltage generation circuit 210 excluding the switch 211. However, since the impedance of the entire low power consumption reference voltage generation circuit 220 is smaller than that of the high power consumption reference voltage generation circuit 210, the power consumption is relatively small.
 ここで、オペアンプ227においては、非反転入力端子および反転入力端子間の電位差がゼロであっても、その出力端子に、わずかな電圧(以下、「オフセット電圧」と称する。)が生じてしまう。このオフセット電圧は、出力電圧の誤差を示す。また、オフセット電圧により生じる電流はオフセット電流と呼ばれる。これらのオフセット電圧等は、オペアンプ227内の差動増幅回路における2つのトランジスタの特性が完全に一致しない(ミスマッチ)などの原因により生じる。 Here, in the operational amplifier 227, even if the potential difference between the non-inverting input terminal and the inverting input terminal is zero, a slight voltage (hereinafter referred to as “offset voltage”) is generated at the output terminal. This offset voltage indicates an error in the output voltage. A current generated by the offset voltage is called an offset current. These offset voltages and the like are caused by causes such as the characteristics of the two transistors in the differential amplifier circuit in the operational amplifier 227 not completely matching (mismatch).
 トランジスタが強反転領域で動作している場合と、弱反転領域で動作している場合のそれぞれでオフセット電流を考える。強反転領域でのオフセット電流は次の式であらわされる。
Figure JPOXMLDOC01-appb-M000001
上式においてVGSは、トランジスタのゲート電圧であり、Vは、トランジスタの閾値電圧である。Iは、ドレイン電流である。Bは、電流増幅率である。
The offset current is considered for each of the case where the transistor operates in the strong inversion region and the case where the transistor operates in the weak inversion region. The offset current in the strong inversion region is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
In the above equation, V GS is the gate voltage of the transistor, and V T is the threshold voltage of the transistor. I is the drain current. B is a current amplification factor.
 上式に示すように、ゲート電圧VGSが高くなるほどミスマッチは小さくなる傾向にある。消費電力が小さくなり、ゲート電圧VGSが低下してくるとミスマッチは増大する傾向にある。一方、弱反転領域でのミスマッチに関しても、「F. Forti and M. E. Wright "Measurement of MOS current mismatch in the weak inversion region" IEEE journal of solid state circuits, SC- 29,138( 1994)"」にあるようにトランジスタに流れる電流が小さくなると増大していく傾向がある。 As shown in the above equation, the mismatch tends to decrease as the gate voltage V GS increases. The mismatch tends to increase as the power consumption decreases and the gate voltage V GS decreases. On the other hand, with regard to the mismatch in the weak inversion region, as described in "F. Forti and ME Wright" Measurement of MOS current mismatch in the weak inversion region "IEEE journal of solid state circuits, SC-29, 138 (1994)" There is a tendency for the current to increase as the current flowing through it decreases.
 このように、トランジスタが強反転領域、弱反転領域のいずれで動作していたとしても、低消費電力化により電流が少なくなるとミスマッチが増大する傾向がある。その結果、低消費電力基準電圧生成回路220内のフィードバック経路においてミスマッチが増大し、基準電圧のばらつきが大きくなる。言い換えれば、基準電圧の精度が低くなる。 As described above, even if the transistor operates in either the strong inversion region or the weak inversion region, the mismatch tends to increase as the current decreases due to the reduction in power consumption. As a result, mismatch increases in the feedback path in the low power consumption reference voltage generation circuit 220, and the variation of the reference voltage increases. In other words, the accuracy of the reference voltage is lowered.
 なお、低消費電力基準電圧生成回路220の構成を、スイッチ211を除き、高消費電力基準電圧生成回路210と同様としているが、これらの構成が異なるものであってもよい。 The configuration of the low power consumption reference voltage generation circuit 220 is the same as that of the high power consumption reference voltage generation circuit 210 except for the switch 211. However, these configurations may be different.
 [低消費電力論理回路の構成例]
 図5は、第1の実施の形態における低消費電力論理回路280の一構成例を示すブロック図である。この低消費電力論理回路280は、ANDゲート281および282と、ポーリング処理部283とを備える。
[Configuration example of low power consumption logic circuit]
FIG. 5 is a block diagram illustrating a configuration example of the low power consumption logic circuit 280 according to the first embodiment. The low power consumption logic circuit 280 includes AND gates 281 and 282 and a polling processing unit 283.
 ANDゲート281は、省電力モードにおいてポーリング処理部283から高消費電力論理回路270へ出力される信号の電圧をローレベルにするものである。このANDゲート281は、電圧検出器260からの検出結果と、ポーリング処理部283からの論理値との論理積を高消費電力論理回路270へ出力する。これにより、高消費電力論理回路270へ流れるリーク電流が抑制される。また、通常モードにおいてANDゲート281は、ポーリング処理部283からの信号を高消費電力論理回路270へ出力する。この信号は、例えば、デバイスの検知結果を含む。 The AND gate 281 makes the voltage of the signal output from the polling processing unit 283 to the high power consumption logic circuit 270 low level in the power saving mode. The AND gate 281 outputs a logical product of the detection result from the voltage detector 260 and the logical value from the polling processing unit 283 to the high power consumption logic circuit 270. Thereby, the leakage current flowing to the high power consumption logic circuit 270 is suppressed. In the normal mode, the AND gate 281 outputs a signal from the polling processing unit 283 to the high power consumption logic circuit 270. This signal includes, for example, a detection result of the device.
 ANDゲート282は、省電力モードにおいてポーリング処理部283から高消費電力論理回路270に入力される信号の電圧をローレベルにするものである。このANDゲート282は、電圧検出器260からの検出結果と、高消費電力論理回路270からの論理値との論理積をポーリング処理部283へ出力する。これにより、レベルが不定の信号がポーリング処理部283に入力されることが抑制される。また、通常モードにおいてANDゲート282は、高消費電力論理回路270からの信号をポーリング処理部283に入力する。この信号は、例えば、ポーリング間隔など、ポーリング処理に関する設定情報を含む。 The AND gate 282 makes the voltage of the signal input from the polling processing unit 283 to the high power consumption logic circuit 270 low level in the power saving mode. The AND gate 282 outputs a logical product of the detection result from the voltage detector 260 and the logical value from the high power consumption logic circuit 270 to the polling processing unit 283. Thereby, it is suppressed that a signal with an indefinite level is input to the polling processing unit 283. In the normal mode, the AND gate 282 inputs a signal from the high power consumption logic circuit 270 to the polling processing unit 283. This signal includes setting information related to polling processing such as a polling interval.
 なお、ANDゲート281および282を含む回路は、特許請求の範囲に記載の制御部の一例である。 The circuit including the AND gates 281 and 282 is an example of a control unit described in the claims.
 ポーリング処理部283は、ポーリングを一定間隔で行うものである。このポーリング処理部283は、低消費電力レギュレータ250から基準電圧が供給されると動作し、ポーリングを行うたびにデバイスの検知結果を制御回路120へ供給する。なお、ポーリング処理部283は、特許請求の範囲に記載の入出力部の一例である。 The polling processing unit 283 performs polling at regular intervals. The polling processing unit 283 operates when a reference voltage is supplied from the low power consumption regulator 250 and supplies a device detection result to the control circuit 120 every time polling is performed. The polling processing unit 283 is an example of an input / output unit described in the claims.
 図6は、第1の実施の形態における省電力モードのときの通信回路200の一例を示す図である。省電力モードにおいては、スイッチ230は、制御信号に従って基準電圧の供給元を低消費電力基準電圧生成回路220に切り替える。また、高消費電力基準電圧生成回路210、高消費電力レギュレータ240、電圧検出器260および高消費電力論理回路270は、制御信号に従って動作を停止する。これにより、通信回路200の消費電力が低減される。前述したように、低消費電力基準電圧生成回路220からの基準電圧Vref2の精度は比較的低い。しかし、省電力モードでは高消費電力論理回路270は停止しており、高消費電力論理回路270および低消費電力論理回路280の間で信号がやりとりされることがないため、問題は生じない。 FIG. 6 is a diagram illustrating an example of the communication circuit 200 in the power saving mode according to the first embodiment. In the power saving mode, the switch 230 switches the supply source of the reference voltage to the low power consumption reference voltage generation circuit 220 according to the control signal. In addition, the high power consumption reference voltage generation circuit 210, the high power consumption regulator 240, the voltage detector 260, and the high power consumption logic circuit 270 stop operating in accordance with the control signal. Thereby, the power consumption of the communication circuit 200 is reduced. As described above, the accuracy of the reference voltage Vref2 from the low power consumption reference voltage generation circuit 220 is relatively low. However, since the high power consumption logic circuit 270 is stopped in the power saving mode and no signal is exchanged between the high power consumption logic circuit 270 and the low power consumption logic circuit 280, no problem occurs.
 このように、本技術の第1の実施の形態によれば、通信回路200は、通常モードにおいて基準電圧Vref1を2つの論理回路に供給するため、それらの論理回路は、同一の基準電圧を基準とした論理値を生成することができる。これにより、簡易な構成により回路を正確に動作させることができる。 As described above, according to the first embodiment of the present technology, the communication circuit 200 supplies the reference voltage Vref1 to the two logic circuits in the normal mode. Therefore, the logic circuits use the same reference voltage as a reference. Can be generated. Thus, the circuit can be accurately operated with a simple configuration.
 <2.変形例>
 第1の実施の形態では、制御回路120が制御信号を生成していたが、低消費電力論理回路280も制御信号を生成することができる。変形例の通信回路200は、低消費電力論理回路280が制御信号を生成する点において第1の実施の形態と異なる。
<2. Modification>
In the first embodiment, the control circuit 120 generates the control signal, but the low power consumption logic circuit 280 can also generate the control signal. The communication circuit 200 according to the modified example is different from the first embodiment in that the low power consumption logic circuit 280 generates a control signal.
 図7は、変形例における通信回路200の一構成例を示すブロック図である。変形例の通信回路200は、OR(論理和)ゲート290をさらに備える点において第1の実施の形態と異なる。また、変形例の低消費電力論理回路280は、検知結果の代わりに制御信号C2を出力する点において第1の実施の形態と異なる。また、変形例の制御回路120は、デバイスの検知結果を受け取らず、ユーザの操作に従って制御信号C1を生成する。 FIG. 7 is a block diagram illustrating a configuration example of the communication circuit 200 according to the modification. The communication circuit 200 according to the modified example is different from the first embodiment in that an OR (logical sum) gate 290 is further provided. Further, the low power consumption logic circuit 280 of the modification is different from that of the first embodiment in that the control signal C2 is output instead of the detection result. In addition, the control circuit 120 according to the modification does not receive the device detection result, and generates the control signal C1 according to the user's operation.
 ORゲート290は、制御回路120または低消費電力論理回路280からの制御信号を出力するものである。ORゲート290は、制御信号C1および制御信号C2の論理和を制御信号C3としてスイッチ230、高消費電力基準電圧生成回路210、高消費電力レギュレータ240、電圧検出器260および高消費電力論理回路270に供給する。 The OR gate 290 outputs a control signal from the control circuit 120 or the low power consumption logic circuit 280. The OR gate 290 uses the logical sum of the control signal C1 and the control signal C2 as a control signal C3 to the switch 230, the high power consumption reference voltage generation circuit 210, the high power consumption regulator 240, the voltage detector 260, and the high power consumption logic circuit 270. Supply.
 なお、制御回路120および低消費電力論理回路280の両方が制御信号を生成しているが、低消費電力論理回路280のみが制御信号を生成してもよい。この場合には、ORゲート290を設ける必要はない。 Note that both the control circuit 120 and the low power consumption logic circuit 280 generate the control signal, but only the low power consumption logic circuit 280 may generate the control signal. In this case, it is not necessary to provide the OR gate 290.
 図8は、変形例における低消費電力論理回路280の一構成例を示す回路図である。変形例の低消費電力論理回路280は、モード制御部284をさらに備える点において第1の実施の形態と異なる。また、変形例のポーリング処理部283は、検知結果をモード制御部284に供給する。 FIG. 8 is a circuit diagram showing a configuration example of the low power consumption logic circuit 280 in the modification. The low power consumption logic circuit 280 of the modification is different from that of the first embodiment in that a mode control unit 284 is further provided. Further, the polling processing unit 283 of the modification supplies the detection result to the mode control unit 284.
 モード制御部284は、検知結果から制御信号C2を生成するものである。このモード制御部284は、低消費電力レギュレータ250から基準電圧が供給されると動作する。そして、モード制御部284は、例えば、デバイスが検知されない期間が一定時間以上継続した場合に省電力モードを指示する制御信号C2を生成し、そうでない場合に通常モードを指示する制御信号C2を生成する。モード制御部284は、生成した制御信号C2をORゲート290に供給する。 The mode control unit 284 generates the control signal C2 from the detection result. The mode control unit 284 operates when a reference voltage is supplied from the low power consumption regulator 250. Then, for example, the mode control unit 284 generates the control signal C2 instructing the power saving mode when the period in which the device is not detected continues for a certain time or longer, and generates the control signal C2 instructing the normal mode otherwise. To do. The mode control unit 284 supplies the generated control signal C2 to the OR gate 290.
 このように、変形例によれば、低消費電力論理回路280が検知結果から制御信号を生成するため、制御回路120が検知結果を処理する必要がなくなり、制御回路120の負担が軽減される。 Thus, according to the modification, since the low power consumption logic circuit 280 generates the control signal from the detection result, the control circuit 120 does not need to process the detection result, and the burden on the control circuit 120 is reduced.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it. As this recording medium, for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
 なお、本技術は以下のような構成もとることができる。
(1)第1の基準電圧生成回路と、
 前記第1の基準電圧生成回路より消費電力の低い第2の基準電圧生成回路と、
 基準電圧を基準とした論理値を互いに入出力する2つの論理回路と、
 前記2つの論理回路の両方が動作する通常モードにおいて前記第1の基準電圧生成回路からの基準電圧を前記2つの論理回路に供給し、前記2つの論理回路の一方が動作する省電力モードにおいて前記第2の基準電圧生成回路からの基準電圧を前記一方に供給する基準電圧切替部と
を具備する電子装置。
(2)前記2つの論理回路の一方は、
 前記2つの論理回路のうち他方との間で論理値を入出力する入出力部と、
 前記他方と前記入出力部との間で入出力される論理値の値を前記省電力モードにおいて所定値にする制御部と
を備える前記(1)記載の電子装置。
(3)前記2つの論理回路のそれぞれの消費電力は異なり、
 前記省電力モードにおいて前記2つの論理回路のうち消費電力の低い方が動作する
前記(1)または(2)記載の電子装置。
(4)前記省電力モードにおいて前記2つの論理回路の一方は、前記2つの論理回路の他方と前記第1の基準電圧生成回路とを停止させる
前記(1)から(3)のいずれかに記載の電子装置。
(5)前記省電力モードにおいて前記2つの論理回路のいずれかと前記第1の基準電圧生成回路とを停止させる制御回路をさらに具備する
前記(1)から(4)のいずれかに記載の電子装置。
In addition, this technique can also take the following structures.
(1) a first reference voltage generation circuit;
A second reference voltage generation circuit that consumes less power than the first reference voltage generation circuit;
Two logic circuits that mutually input and output logic values based on a reference voltage;
In the normal mode in which both of the two logic circuits operate, the reference voltage from the first reference voltage generation circuit is supplied to the two logic circuits, and in the power saving mode in which one of the two logic circuits operates. An electronic apparatus comprising: a reference voltage switching unit that supplies a reference voltage from a second reference voltage generation circuit to the one side.
(2) One of the two logic circuits is
An input / output unit for inputting / outputting a logical value to / from the other of the two logic circuits;
The electronic device according to (1), further comprising a control unit configured to set a logical value input / output between the other side and the input / output unit to a predetermined value in the power saving mode.
(3) The power consumption of each of the two logic circuits is different,
The electronic device according to (1) or (2), wherein the lower one of the two logic circuits operates in the power saving mode.
(4) In the power saving mode, one of the two logic circuits stops the other of the two logic circuits and the first reference voltage generation circuit, according to any one of (1) to (3) Electronic devices.
(5) The electronic device according to any one of (1) to (4), further including a control circuit that stops one of the two logic circuits and the first reference voltage generation circuit in the power saving mode. .
 100 通信装置
 110 電源回路
 120 制御回路
 200 通信回路
 210 高消費電力基準電圧生成回路
 211、230 スイッチ
 212、213、215、222、223、225 抵抗
 214、216、224、226 ダイオード
 217、227 オペアンプ
 220 低消費電力基準電圧生成回路
 240 高消費電力レギュレータ
 250 低消費電力レギュレータ
 260 電圧検出器
 270 高消費電力論理回路
 280 低消費電力論理回路
 281、282 AND(論理積)ゲート
 283 ポーリング処理部
 284 モード制御部
 290 OR(論理和)ゲート
DESCRIPTION OF SYMBOLS 100 Communication apparatus 110 Power supply circuit 120 Control circuit 200 Communication circuit 210 High power consumption reference voltage generation circuit 211, 230 Switch 212, 213, 215, 222, 223, 225 Resistance 214, 216, 224, 226 Diode 217, 227 Operational amplifier 220 Low Power consumption reference voltage generation circuit 240 High power consumption regulator 250 Low power consumption regulator 260 Voltage detector 270 High power consumption logic circuit 280 Low power consumption logic circuit 281 282 AND (logical product) gate 283 Polling processing unit 284 Mode control unit 290 OR (logical sum) gate

Claims (5)

  1.  第1の基準電圧生成回路と、
     前記第1の基準電圧生成回路より消費電力の低い第2の基準電圧生成回路と、
     基準電圧を基準とした論理値を互いに入出力する2つの論理回路と、
     前記2つの論理回路の両方が動作する通常モードにおいて前記第1の基準電圧生成回路からの基準電圧を前記2つの論理回路に供給し、前記2つの論理回路の一方が動作する省電力モードにおいて前記第2の基準電圧生成回路からの基準電圧を前記一方に供給する基準電圧切替部と
    を具備する電子装置。
    A first reference voltage generation circuit;
    A second reference voltage generation circuit that consumes less power than the first reference voltage generation circuit;
    Two logic circuits that mutually input and output logic values based on a reference voltage;
    In the normal mode in which both of the two logic circuits operate, the reference voltage from the first reference voltage generation circuit is supplied to the two logic circuits, and in the power saving mode in which one of the two logic circuits operates. An electronic apparatus comprising: a reference voltage switching unit that supplies a reference voltage from a second reference voltage generation circuit to the one side.
  2.  前記2つの論理回路の一方は、
     前記2つの論理回路のうち他方との間で論理値を入出力する入出力部と、
     前記他方と前記入出力部との間で入出力される論理値の値を前記省電力モードにおいて所定値にする制御部と
    を備える請求項1記載の電子装置。
    One of the two logic circuits is
    An input / output unit for inputting / outputting a logical value to / from the other of the two logic circuits;
    The electronic device according to claim 1, further comprising: a control unit configured to set a logical value input / output between the other side and the input / output unit to a predetermined value in the power saving mode.
  3.  前記2つの論理回路のそれぞれの消費電力は異なり、
     前記省電力モードにおいて前記2つの論理回路のうち消費電力の低い方が動作する
    請求項1記載の電子装置。
    The power consumption of each of the two logic circuits is different,
    The electronic device according to claim 1, wherein one of the two logic circuits having the lower power consumption operates in the power saving mode.
  4.  前記省電力モードにおいて前記2つの論理回路の一方は、前記2つの論理回路の他方と前記第1の基準電圧生成回路とを停止させる
    請求項1記載の電子装置。
    2. The electronic device according to claim 1, wherein one of the two logic circuits stops the other of the two logic circuits and the first reference voltage generation circuit in the power saving mode.
  5.  前記省電力モードにおいて前記2つの論理回路のいずれかと前記第1の基準電圧生成回路とを停止させる制御回路をさらに具備する
    請求項1記載の電子装置。
    The electronic device according to claim 1, further comprising a control circuit that stops one of the two logic circuits and the first reference voltage generation circuit in the power saving mode.
PCT/JP2014/070504 2013-10-24 2014-08-04 Electronic apparatus WO2015059974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013220949 2013-10-24
JP2013-220949 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015059974A1 true WO2015059974A1 (en) 2015-04-30

Family

ID=52992585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070504 WO2015059974A1 (en) 2013-10-24 2014-08-04 Electronic apparatus

Country Status (1)

Country Link
WO (1) WO2015059974A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010492A (en) * 2000-06-27 2002-01-11 Ricoh Co Ltd Electronic equipment
JP2003345187A (en) * 2002-05-27 2003-12-03 Sharp Corp Power source device, and method of varying standard voltage
JP2005050473A (en) * 2003-07-31 2005-02-24 Renesas Technology Corp Semiconductor device
JP2008158775A (en) * 2006-12-22 2008-07-10 Canon Inc Interface circuit
JP2013246693A (en) * 2012-05-28 2013-12-09 Denso Corp Control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010492A (en) * 2000-06-27 2002-01-11 Ricoh Co Ltd Electronic equipment
JP2003345187A (en) * 2002-05-27 2003-12-03 Sharp Corp Power source device, and method of varying standard voltage
JP2005050473A (en) * 2003-07-31 2005-02-24 Renesas Technology Corp Semiconductor device
JP2008158775A (en) * 2006-12-22 2008-07-10 Canon Inc Interface circuit
JP2013246693A (en) * 2012-05-28 2013-12-09 Denso Corp Control device

Similar Documents

Publication Publication Date Title
JP4937865B2 (en) Constant voltage circuit
US7135842B2 (en) Voltage regulator having improved IR drop
US7548117B2 (en) Differential amplifier having an improved slew rate
CN109917846B (en) Voltage stabilizing circuit, semiconductor device, and power supply device
US10262985B2 (en) Circuits and methods for lowering leakage in ultra-low-power MOS integrated circuits
US11099081B2 (en) Current generating circuits capable of generating currents with different temperature coefficients and flexibly adjusting slope of the temperature coefficient
US9209822B2 (en) A/D converter and semiconductor integrated circuit
US9590560B2 (en) Summing amplifier and method thereof
US20150102789A1 (en) Voltage regulator
JP2009048539A (en) Variable voltage-dividing circuit and magnetic sensor circuit
JP2015011505A (en) Voltage detector, electronic device, and control method of voltage detector
US20160315604A1 (en) Voltage comparator
US10243550B2 (en) High voltage comparator
JP2010268350A (en) Termination resistance adjusting circuit
US10261116B2 (en) Apparatus for performing resistance control on a current sensing component in an electronic device, and associated method
TWI531801B (en) Voltage detection circuit
US10345353B2 (en) Fully differential current sensing
US9325298B2 (en) Receiving circuit
WO2015059974A1 (en) Electronic apparatus
KR20150123716A (en) Power supply voltage monitoring circuit, and electronic circuit including the power supply voltage monitoring circuit
US8446163B2 (en) Test circuit and test method for testing differential input circuit
JP2009282908A (en) Regulator
TW200921115A (en) Circuit for detecting power supply voltage drop
JP2007097131A (en) Differential amplifier
US9513646B2 (en) Low dropout regulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14856316

Country of ref document: EP

Kind code of ref document: A1