WO2015059897A1 - 映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ - Google Patents

映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ Download PDF

Info

Publication number
WO2015059897A1
WO2015059897A1 PCT/JP2014/005201 JP2014005201W WO2015059897A1 WO 2015059897 A1 WO2015059897 A1 WO 2015059897A1 JP 2014005201 W JP2014005201 W JP 2014005201W WO 2015059897 A1 WO2015059897 A1 WO 2015059897A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light
color
video
information
Prior art date
Application number
PCT/JP2014/005201
Other languages
English (en)
French (fr)
Inventor
塚田 正人
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/030,196 priority Critical patent/US10171757B2/en
Priority to JP2015543704A priority patent/JP6582987B2/ja
Publication of WO2015059897A1 publication Critical patent/WO2015059897A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Abstract

 一般的な映像撮像装置の構成を利用しつつ、簡易に、可視光領域および近赤外領域の映像処理が可能な映像撮影装置が開示される。係る映像撮像装置は、入射された光を複数色に分光するカラーフィルタと、カラーフィルタが分光した複数色の光を映像信号としてデータに変換するフォトセンサと、前記カラーフィルタの光進行方向前側または前記カラーフィルタと前記フォトセンサとの間に設けられ、近赤外光をカットする赤外カット部と、近赤外光を透過する赤外透過部と、を有する符号型赤外カットフィルタと、画素および隣接画素の赤外カット部を透過する光に係る複数の映像信号および赤外透過部を透過する光に係る映像信号に基づいて、画素の複数の色情報および近赤外情報を取得する映像処理手段と、を備える。

Description

映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ
 本発明は、映像撮影技術に関し、特に可視光領域および近赤外領域の映像処理に係る映像撮影技術に関する。
 デジタルカメラやビデオカメラなどの撮像装置において、通常、そのイメージセンサには赤(R)、緑(G)、青(B)の3色光学フィルタが組み込まれている。カメラに入射した光は、この3色光学フィルタにより分解され、イメージセンサによって映像信号に変換されてRGBの映像データが生成される。
 撮像装置に使用されているイメージセンサが、シリコン系センサの場合、可視光領域から近赤外領域の光に対するセンサ感度を有している。一方、デジタルカメラやビデオカメラでは高精度な色再現性が求められるため、色再現に悪影響を及ぼす近赤外光は、近赤外カットフィルタにより除去される。これは、R、G、Bの3色光学フィルタは、それぞれのフィルタが担当する可視光領域における波長帯で透過率を担保するが、可視光領域外である近赤外領域の光の透過特性については考慮されていない場合があるためである。
 図1は、RGB3色光学フィルタの分光透過率を示した例である。可視光領域は波長400nmから700nmとした場合、各色フィルタについて、Bフィルタは約400nm乃至500nm、Gフィルタは約500nm乃至600nm、Rフィルタは約600nm乃至700nmの波長の光を透過する特性が期待される。しかし、図1に示されるように、各フィルタは可視光領域外である700nm以上の光、すなわち、近赤外光を透過させる特性を有していることが確認できる。
 ところで、デジタルカメラやビデオカメラなどのカラー画像入力装置で一般に採用されているフォトダイオードによるイメージセンサの分光感度特性は、700nm以上の波長領域においても感度を有している。図1の分光特性を有する3色光学フィルタを、イメージセンサにそのまま適用するだけでは、色再現性の観点から問題が生じる。
 人間の色知覚に関するXYZ表色系の等色関数は、図2のように表わされる。人間の色知覚において、700nm以上の光については感度がゼロであるため、700nm以上の波長領域にパワーを有する光は、心理物理量である知覚色に影響を与えない。
 今、図3に示すように600nm以上の波長領域にパワーを有する光を観測する場合を考える。人間の場合、この光は赤として知覚される。一方、図1に示す特性を有する3色光学フィルタを用いてイメージセンサで観測すると、センサの出力信号は、Rだけでなく、GおよびBにも値を持つ。この結果、人間が知覚する赤と異なる色が観測されてしまう。このように、色再現に問題が生じる原因は、GおよびBの光学フィルタの700nm以上の波長領域において、分光透過率がゼロでないためである。
 カラー画像入力装置において、人間の色知覚向けに高精度な色再現性を実現するためには、図4に示すような700nm以上の近赤外光の影響を除去する分光透過率を有する赤外光(IR:infrared)カットフィルタを使用する。具体的には、図5に示したように、カラー画像入力装置の光学系に、IRカットフィルタを組み込み、3色光学フィルタおよびイメージセンサへの近赤外光の侵入を遮断する。このようにすることにより、可視光の波長領域のみにパワーを持つ光が3色光学フィルタに入力し、3色光学フィルタによって分光された光がイメージセンサに入力し、RGBの信号が生成される。
 一方、夜間屋外や暗所で映像を撮影する場合には、ノイズが抑えられた高感度撮影が求められる。この場合、光量不足に起因するセンサノイズを抑制するために、より多くの光をイメージセンサに受光させることが望ましい。暗所での高感度撮影を実現するために、近赤外領域の光を利用した撮影方法が提案されている。もっとも簡易な手法としては、高感度撮影時において、光学系にセットされたIRカットフィルタを機械的に除去する方式である。しかし、この方式は、部品点数が増加し製品コストアップとなるだけでなく、IRカットフィルタを除去する機械的動作を要するため、長期利用において故障の危険性が高いという大きなリスクがある。
 機械的動作を必要とせずに、RGB画像とIR(NIR:Near Infra-Red)画像を撮像する方法として、非特許文献1では、RGB画像とIR画像のそれぞれを撮影する2台のカメラを用いる方法が提案されている。
 非特許文献2では、図6に示したように、RGBの3色光学フィルタに加え、近赤外(NIR)光を透過するIRフィルタを加えた4色の光学フィルタが組み込まれたイメージセンサが提案されている。非特許文献2の第2図には、R、G、B、IRの各光学フィルタの分光感度特性が示されている。R、G、Bの各色フィルタの分光感度特性は、近赤外光において、IRフィルタと同等の形状の分光感度を有している。昼間撮影において、高い色再現性を実現するためには、R、G、Bに含まれる近赤外光の影響を除去する必要がある。非特許文献2のイメージセンサでは、IRフィルタを透過して得られたIR信号を利用することで、R、G、Bに含まれる近赤外光の影響を除去し、R、G、B信号を生成する。夜間撮影の場合には、R、G、B、IRすべての信号を利用する。
 特許文献1は、近赤外光を透過するR、G、Bの3色光学フィルタを用いるとともに、近赤外光(NIR)を感知する特殊なフォトセンサを用いることで、R、G、B、NIRの信号を生成する撮像デバイスを提案している。例えば、Rフィルタを透過した光は、R+NIRとなっており、フォトセンサに入射する。このフォトセンサは、光の入射方向において、浅い位置にRを検出する可視光センサ部と、深い位置にNIRを検出する非可視光センサ部から構成される。GおよびBも同様である。
 なお、非特許文献3は、本実施形態の説明の為に後述する、デモザイキング処理の手法の一例を示すものである。非特許文献4は、後述する、Gradient Based Interpolationを用いた手法を示すものである。非特許文献5は、デモザイキング処理の手法の一例を示すものである。特許文献2は、可視光信号が微弱な環境においても可視カラー画像を出力する撮像装置を開示する。特許文献3は、固体撮像素子用カラーフィルタおよびこれを用いたカラー撮像装置を開示する。
特開2011-243862号公報 特開2011-015087号公報 特開2005-006066号公報
松井壮介,島野美保子,岡部孝弘,佐藤洋一著,"カラー画像と近赤外画像の併用による低照度シーンの画質改善",第12回画像の認識・理解シンポジウム(MIRU2009)論文集,pp.1089-1096,2009年 香山,田中,廣瀬著,"監視カメラ用昼夜兼用イメージセンサ",PanasonicTechnical Journal Vol.54,No.4,2009年1月 O. Losson, L. Macaire, Y. Yang,"Comparison of Color Demosaicking Methods",Advances in Imaging and Electron Physics, Vol.162, p.p. 173-265, 2010年 R.Ramanath, W. Snyder, G. Bilbro, W. Sander, "Demosaicking methods for Bayer color array", J. Electronic Imaging, Vol.11, No.3, p.p. 306-315, 2002年 S. Ferradans, M. Bertalmio, V. Caselles,"Geometry-Based Demosaicking", IEEE Tras. on Image Processing, Vol.18, No.3,p.p. 665-670, 2009年
 非特許文献1の方法は、2台のカメラを用いることにより、高解像度なRGB画像とNIR画像が生成できるが、画像入力装置としてコンパクト化が難しく、またコストも高くなるという課題がある。なお、同方式を1台の装置内に組み込むことも可能であるが、RGBおよびNIRの2つの光学パスと、2つのイメージセンサが必要となるため、上記課題を解消することは難しい。
 非特許文献2および特許文献1のイメージセンサは、近赤外の画像を生成するための特殊なイメージセンサであると言える。即ち、本イメージセンサは、半導体製造で対応することになる。入手が難しく、現時点では通常のイメージセンサよりも高コストであるという課題がある。
 一般的な撮像装置の構成を利用しつつ、可視光領域および近赤外領域の映像処理が可能な映像撮影技術の開発が期待されている。
 本発明は、課題を解決するものであり、一般的な映像撮像装置の構成を利用しつつ、簡易に、可視光領域および近赤外領域の映像処理が可能な映像撮影技術を提供することを目的とする。
 上記課題を解決する本発明の一態様は、入射された光を複数色に分光するカラーフィルタと、前記カラーフィルタが分光した複数色の光を映像信号としてデータに変換するフォトセンサと、前記カラーフィルタの光進行方向前側または前記カラーフィルタと前記フォトセンサとの間に設けられ、近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有する符号型赤外カットフィルタと、画素および隣接画素の前記赤外カット部を透過する光に係る複数の映像信号および前記赤外透過部を透過する光に係る映像信号に基づいて、画素の複数の色情報および近赤外情報を取得する映像処理部と、を備える映像撮影装置である。
 上記課題を解決する本発明の一態様は、近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有する符号型赤外カットフィルタである。
 上記課題を解決する本発明の一態様は、近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有し、複数色の2×2画素配列を最小単位とする配列型のカラーフィルタに対応し、前記最小単位配列が複数N組隣接する箇所を基本ユニットとし、前記基本ユニットにおいて、前記赤外透過部は、N以上あり、一の最小単位配列における前記赤外透過部に対応する画素位置と、別の最小単位配列における前記赤外透過部に対応する画素位置と、が互いに、1以上異なる符号型赤外カットフィルタである。
 本発明によれば、一般的な撮像装置の構成を利用しつつ、簡素な構成を付加するのみで、可視光領域および近赤外領域の映像処理が可能となる。
RGB3色光学フィルタの分光透過率を示した例である。 人間の色知覚に関するXYZ表色系の等色関数である。 参考として示す色光の分光強度分布である。 IRカットフィルタの分光透過率の一例である。 カラー画像入力装置の光学系の概略構成である。 4色光学フィルタを利用した撮像デバイスの概略構成である。 第1実施形態における映像撮像装置の概略構成図である。 ベイヤ配列型カラーフィルタが組み込まれたフォトセンサである。 第1実施形態における符号型IRカットフィルタの概略である。 第1実施形態におけるフォトセンサが出力するRGB映像データの例である。 一般的なデモザイキング処理の例である。 特徴的なデモザイキング処理の例である。 特徴的なデモザイキング処理の例である。 第2実施形態における映像撮像装置の概略構成図である。 第2実施形態における符号型IRカットフィルタの概略である。 第2実施形態におけるフォトセンサが出力するRGB映像データの例である。 第3実施形態における符号型IRカットフィルタの概略である。 第3実施形態におけるフォトセンサが出力するRGB映像データの例である。 第4実施形態における映像撮像装置の概略構成図である。 第4実施形態におけるフォトセンサが出力するRGB映像データの例である。 第5実施形態における映像撮像装置の概略構成図である。 第6実施形態における符号型特定色カットフィルタの概略である。 第6実施形態における符号型特定色カットフィルタの分光透過率の一例である。 第6実施形態におけるフォトセンサが出力するRGB映像データの例である。 第7実施形態における映像撮像装置の概略構成図である。 第7実施形態における符号型IRカットフィルタの概略である。 第7実施形態におけるフォトセンサが出力するRGB映像データの例である。 第7実施形態におけるNIR映像データ取得の概念図である。 第7実施形態におけるNIR映像データの拡大版である。 第7実施形態におけるNIR映像データから抽出した基本ユニットである。 第7実施形態におけるX(横)方向、Y(縦)方向、斜め方向へ、それぞれ1画素の位置ズレが発生した場合のRGB映像データの例である。 位置ズレにかかる課題を説明するRGB映像データの例である。 第7実施形態における符号型IRカットフィルタのパターン変形例である。 第7実施形態におけるパターン2乃至3に対応する出力映像データである。 第8実施形態における映像撮像装置の概略構成図である。 上記各実施形態における映像撮像装置を実現するハードウエア構成の一例を示す図である。
 以下、本発明の実施形態(1乃至7)について図面を参照して説明する。
(第1実施形態)
 [構成]
 図7は、本発明の第1実施形態における映像撮像装置100の概略構成図である。
 本発明の第1実施形態における映像撮像装置100は、符号型IRカットフィルタ1、光学フィルタ2、フォトセンサ3、映像処理部4を備える。カメラレンズは、通常のカメラレンズで良い。光学フィルタ2およびフォトセンサ3は、現在、カラー画像入力装置(もしくは映像撮像装置)で一般的に使用されている光学フィルタおよびフォトセンサを使用すればよい。すなわち、光学フィルタ2の分光特性は図1と同様である。なお、図7において、符号100B、100C、1B、4B、4Cは、以下の第3または第6の実施形態において説明する構成を示す符号であって、本実施形態では使用しない。
 図8は、光学フィルタ2とフォトセンサ3の概略である。図8に示された光学フィルタにおけるR、G、Bからなる3色の配列は、ベイヤ配列型と呼ばれるものである。光学フィルタにおけるR、G、Bに対応するように、フォトセンサの1画素にR、G、Bいずれかの1色が割り当てられている。
 図9は符号型IRカットフィルタ1の概略である。符号型IRカットフィルタ1は、近赤外光(NIR)をカットする部分(赤外カット部11)と透過させる部分(赤外透過部12)との2つのパターンが施されたフィルタである。すなわち、符号型とは、透過とカットの2値を意味する。
 符号型IRカットフィルタ1は、光学フィルタ2の光進行方向前側に設けられるのが一般的であるが、光学フィルタ2とフォトセンサ3の間に設けられていても良い。
 符号型IRカットフィルタ1の赤外透過部12は、光学フィルタ2のGフィルタに対応して配置されている。
 符号型IRカットフィルタ1および光学フィルタ2を透過した光は、フォトセンサ3にてR、G、Bの3色信号に変換される。
 映像処理部4は、R、G、Bの3色信号からなる映像データに基づいて、R、G、B、NIRの4色信号からなる映像データを生成する。詳細については後述する。
 [動作]
 次に、映像撮像装置100の動作について説明する。カメラレンズを通じて、映像撮像装置100に入射する光は、符号型IRカットフィルタ1により、近赤外光がカットされた光と、近赤外光を含む光に分光される。分光された2種類の光は、ベイヤ配列型カラーフィルタ(光学フィルタ)2が組み込まれたフォトセンサ3に入射する。
 図10は、フォトセンサ3が出力するRGB映像データの各画素における色信号成分を表わしたものである。
 本実施形態においては、光学フィルタ2のベイヤ配列のうちGフィルタはそれぞれ組となるGフィルタを含む。また、符号型IRカットフィルタ1の赤外透過部12は、光学フィルタ2に含まれる組となるGフィルタの一方に対応して配置されている。
 したがって、赤外カット部11および光学フィルタ2を透過する光により、R信号、G信号、B信号が生成される。一方、赤外透過部12および光学フィルタ2を透過する光により、近赤外光の成分が含まれたG信号が生成される。ここで、近赤外光の成分が含まれたG信号を「G+NIR」と表記することにする。
 すなわち、フォトセンサ3はRGBの3チャネルの映像データを出力するが、G信号には、近赤外光がカットされたG信号と、近赤外光を含んだG+NIR信号がある。
 映像処理部4は、フォトセンサ3で出力されるR、G、Bの3チャネルの映像データにもとづいて、デモザイキング処理を適用して、R、G、B、NIRの4チャネルの映像データを生成する。映像処理部4は、デモザイキング処理によって、映像データ中の全ての画素について欠損する色信号を生成し、R、G、BおよびNIRの4チャネルの映像データを生成する。
 まず、図11を参照して、一般的なデモザイキング処理の一例を説明する。図11に示すように、画像に含まれる各画素は、X-Y座標における座標値を持つとする。
 まず、映像処理部4は、図11に示す画像における座標値(1,1)の画素の映像データ(R、G、B色情報)を取得する。座標値(1,1)の画素は、Rに対応するので、映像処理部4は、直接、R値を取得する。
R(1,1)=R(1,1)
 座標値(1,1)の画素に存在しないG値、B値については、映像処理部4は、例えば、以下のように周辺画素の色情報から補間して算出する。
G(1,1)=(G(2,1)+ G(1,2))/2
B(1,1)=B(2,2)
 ついで、映像処理部4は、座標値(1,2)の画素の映像データ(R、G、B色情報)を取得する。座標値(1,2)の画素は、Gに対応するので、映像処理部4は、直接、G値を取得する。
G(1,2)=G(1,2)
 映像処理部4は、座標値(1,2)の画素に存在しないR値、B値についても、同様に周辺画素の色情報から補間して算出する。
R(1,2)=R(1,1)
B(1,2)=B(2,2)
 映像処理部4は、上記処理を繰り返し、全ての画素について映像データ(R、G、B色情報)を取得する。なお、デモザイキング処理については、上記手法に限らず、非特許文献3で示されている様々な手法を用いてもよい。
 次に、映像処理部4は、上述の一般的なデモザイキング処理をR、G、B、G+NIRの4つの色信号が混在する1枚の映像データ(図10参照)に適用し、全画素にR、G、B、NIRが割り当てられた4チャネルの色信号から構成される映像データを生成する。R、Bについては、上述のデモザイキング処理を適用すれば良い。
 図10に示した映像データの一部を切り出した図12を利用してGおよびNIRに対するデモザイキング処理について説明する。ここで、図中に示されているG+NIRは便宜上、「GNIR」と表記する。
 座標値(1,3)の画素について説明する。映像処理部4は、座標値(1,3)の画素に存在しないG値、NIR値についても、同様に周辺画素の色情報から補間して算出する。
NIR(1,3)=(GNIR(1,2)+GINR(1,4))/2-G(2,3)
G(1,3)=G(2,3)
 参考までに座標値(1,1)、座標値(1,2)におけるG値、NIR値は以下のように計算できる(図13参照)。
 G(1,1)=G(2,1)
 NIR(1,1)=GNIR(1,2)-G(2,1)
 G(1,2)=(G(2,1)+G(2,3))/2
 NIR(1,2)=GNIR(1,2)-(G(2,1)+G(2,3))/2
 映像処理部4は、上記処理を繰り返し、全ての画素について映像データ(R、G、B、NIR)を取得する。なお、上記手法に限らず、非特許文献2で示されている様々なデモザイキング手法が応用可能である。
 さらに、映像処理部4は、主にR、G、B情報を利用して、可視光領域の映像処理をおこない、主にNIR情報を利用して、近赤外領域の映像処理をおこなう。
 [効果]
 本実施形態の映像撮像装置100は、一般的な撮像装置(図5参照)の構成である、光学フィルタ2とフォトセンサ3に、符号型IRカットフィルタ1を付加したものである。符号型IRカットフィルタ1は、一般的なカットフィルタに簡単な改良を加えたものであり、簡素な構成である。すなわち、関連技術と同様の構成に、簡素な構成を付加するのみで、可視光領域および近赤外領域の映像処理が可能となる。
 その結果、低コストで、撮像装置100を大量生産できる。さらに、付加構成が簡素であるため、撮像装置100は、故障が少ない。
 (第2実施形態)
 図14は、別の実施形態における映像撮像装置100Aの概略構成図である。
 映像撮像装置100Aは、符号型IRカットフィルタ1A、光学フィルタ2、フォトセンサ3、映像処理部4A、符号情報メモリ5を備える。光学フィルタ2およびフォトセンサ3は、第1実施形態同様、一般的な撮像装置で使用されている光学フィルタおよびフォトセンサを使用する。
 図15は符号型IRカットフィルタ1Aの概略である。第1実施形態において、符号型IRカットフィルタ1の赤外透過部12は、光学フィルタ2に含まれる組となるGフィルタの一方に対応して配置されている。一方、第2実施形態では、符号型IRカットフィルタ1Aの赤外透過部12は、R、G、Bの一つに制約されることなく、一組の複数色配列のうち任意の色フィルタに対応して配置される。色フィルタはランダムに選択される。
 符号情報メモリ5は、符号型IRカットフィルタ1Aの赤外透過部12に対応する画素位置情報、または、対応する色フィルタ情報(R、G、B)を記憶する。
 映像撮像装置100Aに入射する光は、符号型IRカットフィルタ1Aにより、近赤外光がカットされた光と、近赤外光を含む光に分光される。分光された2種類の光は、ベイヤ配列型カラーフィルタ2が組み込まれたフォトセンサ3に入射する。
 図16は、フォトセンサ3が出力するRGB映像データの各画素における色信号成分を表わしたものである。R、G、Bの信号にNIRが加算された画素と、NIRがカットされたR、G、Bの信号とがある。
 映像処理部4Aは、R、G、Bの3色信号からなる映像データに基づいて、R、G、B、NIRの4色信号からなる映像データを生成する。映像処理部4Aは、符号情報メモリ5からの情報に基づき、R、G、Bの信号にNIRが加算された画素の位置を判断する。
 まず、映像処理部4Aは、座標値(1,1)の画素の映像データ(R、G、B、NIR情報)を取得する。座標値(1,1)の画素は、Rに対応するので、映像処理部4Aは、直接、R値を取得する。
 映像処理部4Aは、座標値(1,1)の画素に欠損するG、B、NIRを、以下のようにして算出する。なお、以下のNIR値の算出は、周辺にNIRを含む色信号を持つ画素が1画素のみ隣接する場合の例である。
  G(1,1)=G(1,2)
  B(1,1)=B(2,2)
  NIR(1,1)=GNIR(2,1)-G(1,2)
 ついで、映像処理部4Aは、座標値(1,2)の画素の映像データ(R、G、B、NIR情報)を取得する。座標値(1,2)の画素は、Gに対応するので、映像処理部4Aは、直接、G値を取得する。
 座標値(1,2)の画素に存在しないR値、B値について、映像処理部4Aは、周辺画素の色情報から補間して算出する。
 NIRについては、映像処理部4Aは、以下のように算出する。なお、以下のNIR値の算出は、周辺にNIRを含む色信号を持つ画素が2画素隣接する場合の例である。
  NIR(1,2)=RNIR(1,3)-R(1,1)
 あるいは、
  NIR(1,2)=GNIR(2,1)-G(1,2)
 あるいは、
  NIR(1,2)=(RNIR(1,3)-R(1,1)+GNIR(2,1)-G(1,2))/2
 のいずれかを選択すればよい。
 映像処理部4Aは、上記処理を繰り返し、全ての画素について映像データ(R、G、B、NIR)を取得する。
 本実施形態の映像撮像装置100Aも、関連技術と同様の構成である、光学フィルタ2とフォトセンサ3を利用するものであり、第1実施形態と同様の効果が得られる。
 (第3実施形態)
 映像撮像装置100Bは、符号型IRカットフィルタ1B、光学フィルタ2、フォトセンサ3、映像処理部4Bを備える。すなわち、第1実施形態の概略構成(図7)と同様である。
 図17は符号型IRカットフィルタ1Bの概略である。第2実施形態では、符号型IRカットフィルタ1Aの赤外透過部12は、一組の複数色配列(R、G、B)のうち任意の色フィルタに対応して配置される。一方、第3実施形態では、符号型IRカットフィルタ1Bの赤外透過部12は、一組の複数色配列に対応して配置される。赤外透過部12の周りには、赤外カット部11が一組の複数色配列に対応して配置される。
 言い換えると、第1および第2実施形態においては、画素単位で符号情報を付すのに対し、第3実施形態では、配列単位(2×2画素)単位で符号情報を付す。
 映像撮像装置100Bに入射する光は、符号型IRカットフィルタ1Bにより、近赤外光がカットされた光と、近赤外光を含む光に分光される。分光された2種類の光は、ベイヤ配列型カラーフィルタ2が組み込まれたフォトセンサ3に入射する。
 図18は、フォトセンサ3が出力するRGB映像データの各画素における色信号成分を表わしたものである。R、G、Bの信号にNIRが加算された画素と、NIRがカットされたR、G、Bの信号とがある。座標値(3,3),(3,4),(4,3),(4,4)の画素には、NIRが加算されている。
 映像処理部4Bは、R、G、Bの3色信号からなる映像データに基づいて、R、G、B、NIRの4色信号からなる映像データを生成する。
 まず、映像処理部4Bは、座標値(1,1)の画素の映像データ(R、G、B、NIR情報)を取得する。座標値(1,1)の画素は、Rに対応するので、映像処理部4Bは、直接、R値を取得する。座標値(1,1)の画素に存在しないG値、B値については、映像処理部4Bは、周辺画素の色情報から補間して算出する。
 映像処理部4Bは、座標値(1,1)の画素に欠損するNIR値を、以下のようにして算出する。
NIR(1,1)=RNIR(3,3)-R(1,1)
 ついで、映像処理部4Bは、座標値(1,2)の画素の映像データ(R、G、B、NIR情報)を取得する。座標値(1,2)の画素は、Gに対応するので、映像処理部4Bは、直接、G値を取得する。座標値(1,2)の画素に存在しないR値、B値について、映像処理部4Bは、周辺画素の色情報から補間して算出する。
 映像処理部4Bは、座標値(1,2)の画素に欠損するNIR値を、以下のようにして算出する。
NIR(1,2)=(GNIR(4,3)+GNIR(3,4))/2-G(1,2)
 映像処理部4Bは、上記処理を繰り返し、全ての画素について映像データ(R、G、B、NIR)を取得する。
 本実施形態の映像撮像装置100Bも、関連技術と同様の構成である、光学フィルタ2とフォトセンサ3を利用するものであり、第1実施形態と同様の効果が得られる。
 さらに、符号型IRカットフィルタ1Bは、より簡素な構成になっている。その結果、上記効果が向上する。
 (第4実施形態)
 第1乃至3実施形態は、本発明を、ベイヤ配列型の光学フィルタにより分光する映像撮像装置に適用したものであるが、本発明はこれに限定されない。例えば、3板式映像撮像装置にも適用できる。
 図19は、本発明の別の実施の形態における映像撮像装置101の概略構成図である。
 本発明の別の実施の形態である映像撮像装置101は、符号型IRカットフィルタ1、プリズム(色分解部)21と、フォトセンサ31乃至33と、映像処理部41とを備える。カメラレンズは通常のカメラレンズで良い。プリズム21およびフォトセンサ31乃至33は、現在、3板式映像撮像装置で一般的に使用されているプリズムおよびフォトセンサを使用すればよい。
 符号型IRカットフィルタ1は、第1乃至第3実施形態で用いたものを適用する。
 符号型IRカットフィルタ1は、フォトセンサ31乃至33のうち少なくとも1つに対し、光進行方向前側に設けられる。一例として、R対応のフォトセンサ31に対応して設けられるものを図示する。なお、符号型赤外カットフィルタが設置されていない残り2つのフォトセンサに対して、色再現性を考慮しプリズム21から漏れる可能性のある近赤外光をカットするために、通常の赤外カットフィルタを設置してもよい。ここでは、プリズム21で分光されるG、Bの光には近赤外光は含まれていないとして説明する。
 カメラレンズを通じて、映像撮像装置101に入射する光は、プリズム21により、波長帯域が異なるR、G、Bの光に分解される。Rに対応する光はフォトセンサ31に入射し、Gに対応する光はフォトセンサ32に入射し、Bに対応する光はフォトセンサ33に入射する。
 このとき、Rに対応する光は、符号型IRカットフィルタ1により、近赤外光がカットされた光と、近赤外光を含む光に分光される。
 図20は、フォトセンサ31が出力するR映像データの各画素における色信号成分を表わしたものである。近赤外光がカットされたR信号と、近赤外光を含んだR+NIR信号がある。
 映像処理部41は、フォトセンサ31で出力されるRの映像データにもとづいて、全ての画素について映像データ(R、NIR)を取得する。
 また、映像処理部41は、フォトセンサ32で出力される映像データにもとづいて、全ての画素について映像データ(G)を取得し、フォトセンサ33で出力される映像データにもとづいて、全ての画素について映像データ(B)を取得する。
 これにより、映像処理部41は、全ての画素について映像データ(R、G、B、NIR)を取得する。
 本実施形態の映像撮像装置101は、一般的な3板式撮像装置の構成である、プリズム21およびフォトセンサ31乃至33に、符号型IRカットフィルタ1を付加したものである。符号型IRカットフィルタ1は、一般的なカットフィルタに簡単な改良を加えたものであり、簡素な構成である。すなわち、関連技術と同様の構成に、簡素な構成を付加するのみで、可視光領域および近赤外領域の映像処理が可能となり、生産コスト低減や故障軽減が期待できる。
 (第5実施形態)
 第1乃至3実施形態は、本発明を、ベイヤ配列型の光学フィルタにより分光する映像撮像装置に適用したものであるが、本発明はこれに限定されない。例えば、積層型センサを有する映像撮像装置にも適用できる。
 図21は、本発明の実施の形態における映像撮像装置102の概略構成図である。
 本発明の別の実施の形態である映像撮像装置102は、符号型IRカットフィルタ1、センサ34乃至36が積層された積層型センサと、映像処理部42とを備える。カメラレンズは通常のカメラレンズで良い。積層型センサ34乃至36は、現在、積層型センサ式映像撮像装置で一般的に使用されている積層型センサを使用すればよい。
 積層型センサは、光進行方向に対しセンサ34,35,36の順で積層される。センサ34はBの波長帯域に感度を有し、センサ35はGの波長帯域に感度を有し、センサ36はRの波長帯域に感度を有する。
 符号型IRカットフィルタ1は、第1乃至第3実施形態で用いたものを適用する。
 符号型IRカットフィルタ1は、積層センサに対し、光進行方向前側に設けられる。
 カメラレンズを通じて、映像撮像装置101に入射する光は、波長帯域が異なるR、G、BおよびNIRの光を含む。Bに対応する光はセンサ34により信号に変換され、Gに対応する光はセンサ35により信号に変換され、RおよびNIRに対応する光はセンサ36により信号に変換される。
 このとき、Rに対応する光は、符号型IRカットフィルタ1により、近赤外光がカットされた光と、近赤外光を含む光に分光される。
 すなわち、センサ36は、近赤外光がカットされたR信号と、近赤外光を含んだR+NIR信号を出力する。出力結果は、図20と同様になる。
 映像処理部42は、センサ36で出力されるRの映像データにもとづいて、全ての画素について映像データ(R、NIR)を取得する。
 また、映像処理部42は、センサ35で出力される映像データにもとづいて、全ての画素について映像データ(G)を取得し、センサ36で出力される映像データにもとづいて、全ての画素について映像データ(B)を取得する。
 これにより、映像処理部42は、全ての画素について映像データ(R、G、B、NIR)を取得する。
 本実施形態の映像撮像装置102は、一般的な積層センサ式映像撮像装置の構成である、積層センサ34乃至36に、符号型IRカットフィルタ1を付加したものである。符号型IRカットフィルタ1は、一般的なカットフィルタに簡単な改良を加えたものであり、簡素な構成である。すなわち、関連技術と同様の構成に、簡素な構成を付加するのみで、可視光領域および近赤外領域の映像処理が可能となり、生産コスト低減や故障軽減が期待できる。
 (第6実施形態)
 第1乃至5実施形態では、本発明の符号型IRカットフィルタ1は、赤外カット部11と赤外透過部12を有しているが、本発明はこれに限定されない。例えば、符号型特定色カットフィルタ6を用いられてもよい。図22は、符号型特定色カットフィルタ6の概略を示す図である。図22に示すように、例えば、符号型特定色カットフィルタ6は、特定の色に係る波長帯域を含む可視光領域をカットし可視光領域よりも長波長側の近赤外光を透過する特定色カット部61と、該波長帯域の光を透過する特定色透過部62とを有する。
 映像撮像装置100Cは、符号型特定色カットフィルタ6、光学フィルタ2、フォトセンサ3、映像処理部4Cを備える。すなわち、符号型カットフィルタ以外、第1実施形態の概略構成(図7)と同様である。
 符号型特定色カットフィルタ6は、光学フィルタ2の光進行方向前側に設けられるのが一般的であるが、光学フィルタ2とフォトセンサ3の間に設けられていても良い。
 符号型特定色カットフィルタ6の特定色カット部61は、光学フィルタ2のGフィルタに対応して配置されている。特定色カット部61は、近赤外光を透過するとともに、特定色Gに係る波長帯域を含む可視光領域をカットする。特定色透過部62は、近赤外光を透過するとともに、特定色Gに係る波長帯域の光を透過する。
 図23は、特定色カット部61の分光透過率と、特定色透過部62の分光透過率を示した例である。特定色カット部61は、特定色Gに係る波長帯域をカットできれば、図示の様に可視光領域を全てカットしても良い。また、特定色透過部62は、特定色Gに係る波長帯域を透過できれば、図示の様に可視光領域を全て透過しても良い。
 映像撮像装置100Cに入射する光は、符号型特定色カットフィルタ6により、特定色Gがカットされた光と、特定色Gを含む光に分光される。分光された2種類の光は、光学フィルタ2が組み込まれたフォトセンサ3に入射する。
 図24は、フォトセンサ3が出力するRGB映像データの各画素における色信号成分を表わしたものである。
 本実施形態においては、光学フィルタ2のベイヤ配列のうちGフィルタはそれぞれ組となるGフィルタを含む。また、符号型特定色カットフィルタ6の特定色カット部61は、光学フィルタ2に含まれる組となるGフィルタの一方に対応して配置されている。
 したがって、符号型特定色カットフィルタ6の特定色カット部61および光学フィルタ2の一のGフィルタを透過する光により、G成分がカットされ、NIR信号が生成される。
 一方、光学フィルタ2の分光特性は図1と同様である。すなわち、近赤外光の成分が含まれる。その結果、符号型特定色カットフィルタ6の特定色透過部62および光学フィルタ2の他のGフィルタおよびRフィルタ、Bフィルタを透過する光により、R+NIR信号、G+NIR信号、B+NIR信号が生成される。
 フォトセンサ3はRGBの3チャネルの映像データを出力するが、G信号には、近赤外光を含んだG+NIR信号と、近赤外光のみのNIR信号がある。また、R信号は、近赤外光を含んだR+NIR信号であり、B信号は、近赤外光を含んだB+NIR信号である。
 すなわち、第1実施形態では、映像処理部4は、R、G、B、G+NIRの4つの色信号からなる映像データ(図10参照)から、全ての画素について映像データ(R、G、B、NIR)を取得するのに対し、第6実施形態では、映像処理部4Cは、R+NIR、G+NIR、B+NIR、NIRの4つの色信号からなる映像データ(図24参照)から、全ての画素について映像データ(R、G、B、NIR)を取得する。
 本実施形態の映像撮像装置100Cも、関連技術と同様の構成である、光学フィルタ2とフォトセンサ3を利用するものであり、第1実施形態と同様の効果が得られる。
 (第7実施形態)
 [構成]
 図25は、別の実施形態における映像撮像装置100Dの概略構成図である。
 映像撮像装置100Dは、符号型IRカットフィルタ1D、光学フィルタ2、フォトセンサ3、映像処理部4D、符号情報メモリ5と、位置ズレ情報取得部7と、符号情報修正部8と、を備える。光学フィルタ2およびフォトセンサ3は、第1実施形態同様、一般的な撮像装置で使用されている光学フィルタおよびフォトセンサを使用する。
 図26は符号型IRカットフィルタ1Dの概略である。第1実施形態において、符号型IRカットフィルタ1の赤外透過部12は、一組のベイヤ配列毎に、光学フィルタ2に含まれる組となるGフィルタの一方に対応して配置されている。一方、第7実施形態では、ベイヤ配列の2×2配列(4×4画素)を基本ユニット(後述)とする。符号型IRカットフィルタ1Dの赤外透過部12は、4画素であり、基本ユニットの各行に1つ存在し、基本ユニットの各列に1つ存在し、かつ、重複がないように配置される。また、赤外透過部12は、光学フィルタ2における1個ずつのRとB、2個のGに対応する。この符号型IRカットフィルタのパターンをパターン1とする。
 符号情報メモリ5は、基本ユニットにおいて、赤外透過部12に係る情報を記憶する。位置ズレ情報取得部7は、符号型IRカットフィルタ1Dと光学フィルタ2との位置ズレ情報を取得する。符号情報修正部8は、位置ズレ情報に基づいて、符号情報メモリ5の赤外透過部12に係る情報を修正する。詳細については後述する。
 [撮影動作]
 次に、映像撮像装置100Dの撮影動作について説明する。映像撮像装置100Dに入射する光は、符号型IRカットフィルタ1Dにより、近赤外光がカットされた光と、近赤外光を含む光に分光される。分光された2種類の光は、光学フィルタ2が組み込まれたフォトセンサ3に入射する。
 図27は、フォトセンサ3が出力するRGB映像データの各画素における色信号成分を表わしたものである。R、G、Bの信号にNIRが加算された画素と、NIRがカットされたR、G、Bの信号とがある。
 映像処理部4Dは、R、G、Bの3色信号からなる映像データに基づいて、R、G、B、NIRの4色信号からなる映像データを生成する。符号情報メモリ5からの情報に基づき、R、G、Bの信号にNIRが加算された画素の位置を判断する。
 例えば、座標値(1,1)、座標値(1,5)、座標値(5,1)、座標値(5,5)の画素値は、R(赤)の波長領域の光に近赤外領域(NIR)の光が加算された出力値となっている。座標値(2,3)、座標値(3,4)、座標値(6,3)、座標値(7,4)、座標値(2,7)、座標値(3,8)、座標値(6,7)、座標値(7,8)の画素値は、G(緑)とNIRの加算値となっている。座標値(4,2)、座標値(4,6)、座標値(8,2)、座標値(8,6)の画素値は、B(青)とNIRの加算値となっている。
 光学フィルタ2の分光透過率は、700nm以上の近赤外領域において、同程度の透過特性を有しているものとし、同一光量の近赤外光が入射するのであれば、R、G、BにおけるNIRの信号量は同一であるとみなす。
 映像処理部4Dは、RGB3色の光学フィルタ2が組み込まれたフォトセンサ3で出力されるNIRを含んだRGBの3チャネルの映像データについてデモザイキング処理を適用して、R、G、B、NIRの4チャネルの映像データを生成する。
 4チャネルの映像データの生成方法について説明する。まず、映像処理部4Dは、映像データにおいて、NIR成分を含む画素に対して、NIRを含まない純粋な色情報(R、G、B)を計算する。今、4×4画素のパターン(基本ユニット)の繰り返しになっている。
 ここで、座標値(5,5)に着目する。R(5,5)+NIR(5,5)に対する、NIRを含まない純粋なRの情報は、その周辺に存在する純粋なRの情報を有する画素から算出する。非特許文献3に記載のGradient Based Interpolationを用いた手法について説明するが、様々な画素補間法が適用できる。座標値(5,5)のR+NIR(5,5)に対する、NIRを含まない純粋なRの情報は、座標値(5,5)の周辺に存在する純粋なRの情報を有する画素(R(3,3), R(3,5), R(3,7), R(5,3),R(5,7), R(7,3), R(7,5), R(7,7))から算出される。以下に、その計算手順を示す。
 GD1=(R(5,3)+R(5,7))/2 -(R(5,5)+NIR(5,5))
 GD2=(R(3,3)+R(7,7))/2 -(R(5,5)+NIR(5,5))
 GD3=(R(3,5)+R(7,5))/2 -(R(5,5)+NIR(5,5))
 GD4=(R(7,3)+R(3,7))/2 -(R(5,5)+NIR(5,5))
 GDとは、Gradient(画素値の傾き)を考慮した評価値(絶対値表示)である。縦方向、横方向、右斜め方向、左斜め方向の4方向について画素値の傾斜を評価する。GDが最小値であることは、画素値の連続性があることを示唆する。
 例えば、GD1が最小であった場合、映像処理部4Dは、
 R(5,5)=(R(5,3)+R(5,7))/2
 と決定する。最小値がGD2、GD3、GD4の場合もそれぞれ同様である。
 NIRを含むGやBの画素についても、映像処理部4Dは、その周辺に存在する純粋なGやBの情報を有する8つの画素から、NIRを含まない純粋なGやBの情報を同様の手法で計算する。
 なお、NIRを含むGの画素については、配列パターンがRおよびBと異なるため、斜め方向の画素値の傾きの評価を示すGD2およびGD4を変則的に計算してもよい。今、座標値(3,4)におけるR(3,4)+NIR(3,4)に対するGD2とGD4の計算方法の一例について説明する。
 GD2=(G(1,2)+G(1,2)+G(4,5)+G(5,6))/4-(G(3,4)+IR(3,4))
 GD4=(G(5,2)+G(4,3)+G(2,5)+G(1,6))/4-(G(3,4)+IR(3,4))
 そして、映像処理部4Dは、GD1乃至GD4の大小判定により、最小値を選択する。
 しかし、センサの外側周辺における、例えば、座標値(1,1)、座標値(2,3)、座標値(4,2)などに位置するNIRを含んだ画素については、その画素を中心とする周辺から8個の画素を取得できない。このような場合については、例外処理として、近接するNIRを含まない同色の画素の値から計算すればよい。
 例えば、座標値(1,1)の場合、
 R(1,1)=(R(1,3)+R(3,1)+R(3,3))/3
 あるいは、
 R(1,1)=(R(1,3)+R(3,1))/2
 とする。
 座標値(2,3)の場合、映像処理部4Dは、
 G(2,3)=((G(1,2)+G(1,4)+G(3,2))/3
 のように補間計算によって計算すればよい。
 対角成分については重みづけ係数を導入し、補間計算における寄与を抑えたりしてもよい。
 以上の処理により、NIR情報を含んだRGB映像データ(図27)から、NIR情報を含まない純粋なRGB映像データが得られる。ここで、NIR情報を含んだRGB映像データを「RGB+NIR映像データ」とよび、NIR情報を含まない純粋なRGB映像データを「RGB映像データ」呼ぶ。
 更に、映像処理部4Dは、RGB+NIR映像データとRGB映像データから、NIR情報のみを含むNIR映像データを生成する。具体的には、
 NIR映像データ= (RGB+NIR映像データ) - RGB映像データ
 により求める。図28は、NIR映像データ取得の概念図である。
 次に、映像処理部4Dは、RGB映像データおよびNIR映像データに対して、デモザイキング処理を適用して、映像データの全ての画素に対して、欠損している色情報(R、G、B、NIR)を算出する。
 まず、ベイヤ型配列のRGB映像データについては、非特許文献3、非特許文献4、非特許文献5で示されている様々なデモザイキング処理(画素補間法)が適用可能である。以上により、RGB映像データにおける全ての画素についてRGB全ての色情報が決定される。
 一方、NIR映像データに対するデモザイキング処理については、以下の様に行う。
 図29は、図28で示したNIR映像データの拡大版である。NIR映像データは、座標値(1,1)から座標値(4,4)までの4画素×4画素のパターンが1ユニットとなり、繰り返されている。今、座標値(5,5)から座標値(8,8)までの1ユニット(太枠で囲まれたユニット)について、NIRが欠損する画素のNIRを算出する方法について説明する。ここで、この太枠で囲まれたユニットを基本ユニットと呼ぶことにする。
 図30は、NIR映像データから抽出した基本ユニットを示す図である。映像処理部4Dは、まず、基本ユニットにおけるNIRが欠損する画素に関して、その画素に隣接する8個の画素にNIR情報を有する画素が3個以上存在する画素を見つける。映像処理部4Dは、当該画素におけるNIRを、画素補間を用いて算出する。
 図30において、基本ユニットにおいて、隣接する8個の画素にNIR情報を有する画素が3個以上存在する画素に、丸印(○印)を付加する。○印で示された座標値(5,6)、(6,8)、(7,7)、(8,5)の4個の画素については、映像処理部4Dは、NIR情報を有する隣接する画素から補間法を用いてNIRを算出する。例えば、映像処理部4Dは、座標値(7,7)の画素におけるNIRを、座標値(6,7)、(7,8)、(8,6)の3個のNIRから以下のような画素補間法によって計算できる。
NIR(7,7)=(NIR(6,7)+NIR(7,8)+NIR(8,6))/3
 残りの3個の画素(5,6)、(6,8)、(8,5)についても同様である。なお、この画素補間法以外も適用可能である。
 これにより、基本ユニット(4×4)のうち、図29にて取得した4つの画素および図30における○印が付された4つの画素にて、NIR情報が得られたことになる。更に、NIR情報が与えられていない残りの8個の画素、すなわち、座標値(5,7)、(5,8)、(6,5)、(6,6)、(7,5)、(7,6)、(8,7)、(8,8)におけるNIR情報を算出する。
 図30において○印が付されたことにより、残り8画素においても、隣接する8個の画素のうちNIR情報が与えられている画素が3個以上存在する。したがって、NIR情報を有する画素を用いた画素補間法によって、残りの8画素についてもNIR情報を算出することができる。以上により、基本ユニット内のすべての画素についてNIR情報を算出することができる。
 以上、RGBおよびNIRを算出する上記の処理を図27の映像データに適用することにより、全画素にR、G、B、NIRが与えられた映像データを生成することができる。
 さらに、主にR、G、B情報を利用して、可視光領域の映像処理をおこない、主にNIR情報を利用して、近赤外領域の映像処理をおこなう。
 [位置ズレ修正動作]
 本発明における一実施形態は、一般的な撮像装置に符号型IRカットフィルタ1を配置するものである。しかしながら、配置の際、符号型IRカットフィルタ1と光学フィルタ2との間に、位置ズレが発生するおそれがある。
 図31は、X(横)方向、Y(縦)方向、斜め方向へ、それぞれ1画素の位置ズレが発生した場合、フォトセンサ3が出力するRGB映像データの色信号成分のパターンを示したものである。なお、2画素の位置ズレはベイヤ配列型の性質から結果的に一致するため考慮する必要がない。
 以下、製作した映像撮像装置100Dの位置ズレ情報を検出し、位置ズレ情報に基づいて修正する方法について説明する。
 試験照射により、実際に映像撮像装置100Dによる撮影を行う。撮影シーンは特に規定しないが、近赤外光がすべての画素に照射するシーンを選択すればよい。
 まず、映像撮像装置100Dによる撮影を行う(後述のIRカットフィルタOFF)と、図31に示すNIR情報を含んだRGB映像データが得られる。
 同じシーンを図4に示す近赤外光領域の光のみを遮断するIRカットフィルタをレンズに被せるように設置し、撮影を行う(IRカットフィルタON)と、NIR情報を含まない純粋なRGB映像データが得られる。
 つまり、試験照射において、IRカットフィルタ「あり」と「なし」の2つの状態を撮影する。
 RGB+NIR映像データからRGB映像データを引いた際に、ある閾値を超える差分値を有する画素は、NIRを含んでいることを意味する。これにより、NIR映像データを取得できる(概略は図28とほぼ同じ)。
 ところで、符号情報メモリ5には、基本ユニットにおける、赤外透過部12に係るパターン情報が記憶されている。試験照射により得られた近赤外線画素パターンと符号型IRカットフィルタ1Dのパターンを比較すると、両者が一致するか、または、横方向、縦方向、斜め方向のいずれかの位置ズレが発生しているかを検出できる。
 位置ズレ情報取得部7は、横方向、縦方向、斜め方向いずれかの位置ズレパターンを取得し、符号情報修正部8は、位置ズレパターン(縦、横、斜)に基づいて、符号情報メモリ5の赤外透過部12に係る情報を修正する。
 映像処理部4Dは、修正済みの符号型赤外カットフィルタのパターン情報に基づいて、映像撮影を行う。
 [効果]
 本発明の第1ないし第6実施形態にかかる映像撮像装置は、一般的な撮像装置に符号型IRカットフィルタ1を配置するだけの簡素な構成であることを特徴とするが、配置の際、符号型IRカットフィルタ1と光学フィルタ2との間に、位置ズレが発生するおそれがある。
 位置ズレを修正するため、例えば、符号型IRカットフィルタ1を再配置する場合、作業手間となる。
 これに対し、本実施形態においては、符号型IRカットフィルタ1Dを再配置するのではなく、符号情報メモリ5の情報を修正することで、位置ズレを修正する。その結果、本発明の簡便性に係る効果が増強され、製作コストをさらに抑えることができる。
 [第7実施形態に特有の解決課題]
 たとえば、本発明の基本的な実施形態である第1実施形態において、位置ズレに係る課題が発生することがある。すなわち、符号型IRカットフィルタ1と光学フィルタ2との関係が1画素ズレると、機能しなくなることがある。
 図32は、位置ズレにかかる課題を説明するRGB映像データの例である。たとえば、符号型IRカットフィルタ1と光学フィルタ2との関係が横方向に1画素ズレた場合、出力データは、図10(第1実施形態)から図32の様になる。すなわち、フォトセンサ3は、R+NIR、G、Bの信号を出力する。言い換えると、NIRがカットされたR信号を出力しない。その結果、NIR値の算出ができない。
 同様に、縦方向に1画素ズレた場合、フォトセンサ3は、R、G、B+NIRの信号を出力する。言い換えると、NIRがカットされたB信号を出力しない。その結果、NIR値の算出ができない。
 第7実施形態にかかる符号型IRカットフィルタおよび映像撮像装置は、上記のような位置ズレにかかる課題をも解決することができる。
 [符号型IRカットフィルタ パターン変形例]
 上記符号型IRカットフィルタ1Dのパターンをパターン1(図26)とした。パターン1の特徴として、4×4画素の基本ユニットにおいて、
(1)赤外透過部12に係る画素は4個あり、それらは各行、各列において、重複することなく1個ずつ存在する。
(2)赤外透過部12に係る画素は、RとBそれぞれ1個、G2個に対応する。
ことが挙げられる。
 図33は、符号型IRカットフィルタ1Dのパターン変形例(パターン2およびパターン3)である。図34は、パターン2およびパターン3に対応する出力映像データである。
 パターン2およびパターン3は、上記2つの特徴を満たす。これにより、パターン1と同様に、容易に位置ズレを修正できる。また、撮影に係るデータ処理も、パターン1と同様である。
 さらに、符号型IRカットフィルタ1Dのパターン1乃至3以外を用いても、位置ズレを修正できる。たとえば、符号型IRカットフィルタ1B(図17)において、4×4画素(2配列×2配列)を基本ユニットとしてもよい。また、基本ユニットは、4×4画素(2配列×2配列)に限定されるものではない。例えば、4×2画素(2配列×1配列)でもよい。
 基本ユニットが隣接するN(Nは整数)組のベイヤ配列に対応する箇所から構成される場合、基本ユニットにおいて赤外透過部12がN個以上あることが好ましい。
 このとき、一のベイヤ配列対応箇所における赤外透過部位置と、別のベイヤ配列対応箇所における赤外透過部位置と、が1以上異なる。言い換えると、N組のベイヤ配列対応箇所において、赤外透過部位置が全て同じである場合は、除外される。
 図9を例に説明すると、基本ユニットが4組(2×2)のベイヤ配列に対応する箇所から構成される場合、赤外透過部12は4つある。しかし、各ベイヤ配列対応箇所の同じ位置Gに赤外透過部12があり、上記条件を満たさない。
 (第8の実施形態)
 上記実施形態を包含する第8の実施形態について、図35を参照して説明する。第8の実施形態に係る映像撮影装置200は、符号型赤外カットフィルタ201、カラーフィルタ202、フォトセンサ203、映像処理部204を備える。
 カラーフィルタ202は、入射された光を複数色に分光する。フォトセンサ203は、カラーフィルタが分光した複数色の光を映像信号としてデータに変換する。符号型赤外カットフィルタ201は、カラーフィルタの光進行方向前側またはカラーフィルタとフォトセンサとの間に設けられ、近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有する。映像処理部204は、画素および隣接画素の赤外カット部を透過する光に係る複数の映像信号および赤外透過部を透過する光に係る映像信号に基づいて、画素の複数の色情報および近赤外情報を取得する。
 上記構成を採用することにより、本第8の実施形態によれば、一般的な撮像装置の構成を利用しつつ、簡素な構成を付加するのみで、可視光領域および近赤外領域の映像処理が可能となるという効果が得られる。
 なお、各図に示した映像撮像装置の映像処理部、符号情報メモリ、位置ズレ情報取得部、符号情報修正部は、図36に例示するハードウエア資源において実現される。すなわち、図36に示す構成は、CPU(Central Processing Unit)20、RAM(Random Access Memory)21、ROM(Read Only Memory)22を備える。CPU20は、ROM22に記憶された各種ソフトウエア・プログラム(コンピュータ・プログラム)を、RAM21に読み出して実行することにより、映像撮像装置の全体的な動作を司る。すなわち、上記各実施形態において、CPU20は、ROM22を適宜参照しながら、映像撮像装置が備える各機能(各部)を実行するソフトウエア・プログラムを実行する。
 (その他)
 以上、好ましい実施形態をあげて本発明を説明したが、本発明は必ずしも上記実施形態に限定されるものではなく、その技術的思想の範囲内において様々に変形し実施することが出来る。
 例えば、上記実施形態では、映像データの表色系としてRGBの例について説明したが、補色系のCMYを用いた場合にも、同様の計算手法で応用可能である。
 また一般に、ベイヤ配列とは、RGB3色からなる2×2画素配列を最小単位とし、最小単位配列が規則正しく並んだ配列を指すが、補色系のCMYを用いても良い。更に、他の複数色の配列として、広義に解釈しても良い。
 (補足)
 一般的な映像撮影装置は、近赤外カットフィルタと光学フィルタとフォトセンサとを基本構成とする(図5参照)。近赤外カットフィルタにより、近赤外光は除去される。一方、フォトセンサは、本来、近赤外領域にまで感度があるのに対し、その能力を生かし切れていなかった。
 本発明者は、今まで有効に活用されていなかったフォトセンサの近赤外領域の感度に着目した。さらに、一般的な映像撮影装置の構成を利用しつつ、可視光領域および近赤外領域の映像処理をおこなうことを考えた。
 本発明者は、上記に付いて検討し、本発明を完成するに至った。
 この出願は、2013年10月23日に出願された日本出願特願2013-220507を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、例えば、デジタルカメラやビデオカメラなどの映像撮影装置に適用できる。
 1,1A乃至D 符号型IRカットフィルタ
 2 光学フィルタ
 3 フォトセンサ
 4 映像処理部
 5 符号情報メモリ
 6 符号型特定色カットフィルタ
 7 位置ズレ情報取得部
 8 符号情報修正部
 11 赤外カット部
 12 赤外透過部
 21 プリズム
 31乃至36 センサ
 41,42 映像処理部
 61 特定色カット部
 62 特定色透過部
 100,100A~D 映像撮影装置
 101 映像撮影装置(3板式)
 102 映像撮影装置(積層センサ式)

Claims (19)

  1.  入射された光を複数色に分光するカラーフィルタと、
     前記カラーフィルタが分光した複数色の光を映像信号としてデータに変換するフォトセンサと、
     前記カラーフィルタの光進行方向前側または前記カラーフィルタと前記フォトセンサとの間に設けられ、近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有する符号型赤外カットフィルタと、
     画素および隣接画素の前記赤外カット部を透過する光に係る複数の映像信号および前記赤外透過部を透過する光に係る映像信号に基づいて、画素の複数の色情報および近赤外情報を取得する映像処理手段と、
     を備えた映像撮影装置。
  2.  前記符号型赤外カットフィルタは、前記カラーフィルタの光進行方向前側に設けられる
     請求項1記載の映像撮影装置。
  3.  前記映像処理手段は、
      前記赤外透過部を透過する光に係る映像信号と、
      前記赤外カット部を透過し、前記赤外透過部を透過する光の色に対応する光に係る映像信号と、
     に基づいて画素の近赤外情報を取得する
     請求項1または2記載の映像撮影装置。
  4.  前記カラーフィルタは、複数色の2×2画素配列を最小単位とする配列型であり、
     前記符号型赤外カットフィルタの赤外透過部は、前記カラーフィルタの特定色フィルタに対応して配置され、
     前記映像処理手段は、
      前記赤外透過部を透過する光に係る特定色信号と、
      前記赤外カット部を透過する光に係る特定色信号と、
     に基づいて画素の近赤外情報を取得する
     請求項1ないし3のいずれか1項記載の映像撮影装置。
  5.  前記カラーフィルタは、複数色の2×2画素配列を最小単位とする配列型であり、
     前記符号型赤外カットフィルタの赤外透過部は、一組の最小単位配列のうち任意の色フィルタに対応して配置され、
     一組の最小単位配列毎に、前記赤外透過部に係る情報を記憶する符号情報記憶手段をさらに備え、
     前記映像処理手段は、
      前記赤外透過部に対応する色フィルタの情報と、
      前記赤外透過部を透過する光に係る映像信号と、
      前記赤外カット部を透過し、前記赤外透過部を透過する光の色に対応する光に係る映像信号と
     に基づいて画素の近赤外情報を取得する
     請求項1ないし3のいずれか1項記載の映像撮影装置。
  6.  前記カラーフィルタは、複数色の2×2画素配列を最小単位とする配列型であり、
     前記符号型赤外カットフィルタの赤外透過部は、一組の最小単位配列に対応して配置され、
     前記映像処理手段は、
      前記赤外透過部を透過する光に係る各色信号と、
      前記赤外カット部を透過する光に係る各色信号と、
     に基づいて画素の近赤外情報を取得する
     請求項1乃至3のいずれか1項記載の映像撮影装置。
  7.  波長帯域が異なる複数の光に分解する色分解手段と、
     前記分解された複数の光に対応してそれぞれ設けられ、前記複数色を映像信号としてデータに変換するフォトセンサと、
     近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有する符号型赤外カットフィルタと、
     映像処理手段と、
     を備え、
     前記符号型赤外カットフィルタは、前記分解された複数の光のうち少なくとも1つに対応して設けられ、
     前記映像処理手段は、前記赤外カット部を透過する光に係る映像信号および前記赤外透過部を透過する光に係る映像信号に基づいて、画素の色情報および近赤外情報を取得する
     映像撮影装置。
  8.  複数のセンサが積層され、波長帯域が異なる複数の光を各センサにより映像信号としてデータに変換する積層型センサと、
     前記積層型センサの光進行方向前側に設けられ、近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有する符号型赤外カットフィルタと、
     前記赤外カット部を透過する光に係る映像信号および前記赤外透過部を透過する光に係る映像信号に基づいて、画素の色情報および近赤外情報を取得する映像処理手段と、
     を備えた映像撮影装置。
  9.  入射された光を複数色に分光するカラーフィルタと、
     前記カラーフィルタが分光した複数色の光を映像信号としてデータに変換するフォトセンサと、
     前記カラーフィルタの光進行方向前側または前記カラーフィルタと前記フォトセンサとの間に設けられ、近赤外光をカットする赤外カット部と該近赤外光を透過する赤外透過部とを有する符号型赤外カットフィルタと、
     を備えた映像撮影装置は、
      前記赤外透過部を透過する光に係る映像信号と、
      前記赤外カット部を透過し、前記赤外透過部を透過する光の色に対応する光に係る映像信号と、
      に基づいて画素の近赤外情報を取得する
     映像撮影方法。
  10.  近赤外光をカットする赤外カット部と、
     該近赤外光を透過する赤外透過部と、
     を有する符号型赤外カットフィルタ。
  11.  特定の色に係る波長帯域を含む可視光領域をカットし、近赤外光を透過する特定色カット部と、
     該波長帯域の光を透過する特定色透過部と、
     を有する符号型特定色カットフィルタ。
  12.  入射された光を複数色に分光するカラーフィルタと、
     前記カラーフィルタが分光した複数色の光を映像信号としてデータに変換するフォトセンサと、
     前記カラーフィルタの光進行方向前側または前記カラーフィルタと前記フォトセンサとの間に設けられ、特定の色に係る波長帯域を含む可視光領域をカットし近赤外光を透過する特定色カット部と、該波長帯域の光を透過する特定色透過部と、を有する符号型特定色カットフィルタと、
     画素および隣接画素の前記特定色透過部を透過する光に係る複数の映像信号および前記特定色カット部を透過する光に係る映像信号に基づいて、画素の複数の色情報および近赤外情報を取得する映像処理手段と、
     を備えた映像撮影装置。
  13.  近赤外光をカットする赤外カット部と、該近赤外光を透過する赤外透過部と、を有し、
     複数色の2×2画素配列を最小単位とする配列型のカラーフィルタに対応し、
     前記最小単位配列が複数N組隣接する箇所を基本ユニットとし、
     前記基本ユニットにおいて、
      前記赤外透過部は、N以上あり、
      一の最小単位配列における前記赤外透過部に対応する画素位置と、別の最小単位配列における前記赤外透過部に対応する画素位置と、が互いに、1以上異なる
     符号型赤外カットフィルタ。
  14.  前記基本ユニットは、4行4列から構成され、
     前記赤外透過部は、
      前記基本ユニットの各行に1つ存在し、かつ、
      前記基本ユニットの各列に1つ存在する
     る請求項13記載の符号型赤外カットフィルタ。
  15.  前記赤外透過部は、前記基本ユニットにおいて、
      各行各列において、重複することなく、
      1つのRと、1つのBと、2つのGに対応している
     請求項13記載の符号型赤外カットフィルタ。
  16.  請求項13乃至15のいずれか1項記載の符号型赤外カットフィルタと、
     入射された光を複数色に分光するカラーフィルタと、
     前記カラーフィルタが分光した複数色の光を映像信号としてデータに変換するフォトセンサと、
    前記カラーフィルタの光進行方向前側または前記カラーフィルタと前記フォトセンサとの間に設けられた請求項13乃至15のいずれか1項記載の符号型赤外カットフィルタと、
     画素および隣接画素の前記赤外カット部を透過する光に係る複数の映像信号および前記赤外透過部を透過する光に係る映像信号に基づいて、画素の複数の色情報および近赤外情報を取得する映像処理手段と、
     を備えた映像撮影装置。
  17.  前記基本ユニット毎に、前記赤外透過部に係る情報を記憶する符号情報記憶手段と、
     前記符号型赤外カットフィルタと前記カラーフィルタとの位置ズレ情報を取得する位置ズレ情報取得手段と、
     前記位置ズレ情報に基づいて、前記符号情報記憶手段の前記赤外透過部に係る情報を修正する符号情報修正手段
     を更に備えた請求項16記載の映像撮影装置。
  18.  請求項17記載の映像撮影装置は、
     試験照射により、近赤外情報の画素パターンを取得し、
     前記近赤外画素パターンと前記符号型赤外カットフィルタのパターンとを比較して、位置ズレを検出し、
     前記位置ズレ情報に基づいて、前記符号情報記憶手段の前記赤外透過部に係る情報を修正し、
     情報修正後、映像撮影を行う
     映像撮影方法。
  19.  前記試験照射により、近赤外情報の画素パターンを取得する際に、
     赤外カットフィルタを配置しない試験照射パターンと、赤外カットフィルタを配置する試験照射パターンとを比較して、近赤外情報の画素パターンを取得する
     請求項18記載の映像撮影方法。
PCT/JP2014/005201 2013-10-23 2014-10-14 映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ WO2015059897A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/030,196 US10171757B2 (en) 2013-10-23 2014-10-14 Image capturing device, image capturing method, coded infrared cut filter, and coded particular color cut filter
JP2015543704A JP6582987B2 (ja) 2013-10-23 2014-10-14 映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-220507 2013-10-23
JP2013220507 2013-10-23

Publications (1)

Publication Number Publication Date
WO2015059897A1 true WO2015059897A1 (ja) 2015-04-30

Family

ID=52992517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005201 WO2015059897A1 (ja) 2013-10-23 2014-10-14 映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ

Country Status (3)

Country Link
US (1) US10171757B2 (ja)
JP (1) JP6582987B2 (ja)
WO (1) WO2015059897A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203760A1 (ja) * 2015-06-17 2016-12-22 日本電気株式会社 映像撮影装置および映像撮影方法
WO2017018150A1 (ja) * 2015-07-29 2017-02-02 富士フイルム株式会社 光センサデバイス、光センサユニット及び光センサシステム
WO2017222021A1 (ja) * 2016-06-24 2017-12-28 日本電気株式会社 画像処理装置、画像処理システム、画像処理方法及びプログラム記録媒体
WO2018116972A1 (ja) * 2016-12-22 2018-06-28 日本電気株式会社 画像処理方法、画像処理装置および記録媒体
WO2018135315A1 (ja) * 2017-01-20 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 撮像装置、画像処理方法および画像処理システム
WO2018207817A1 (ja) * 2017-05-11 2018-11-15 株式会社ナノルクス 固体撮像装置、撮像システム及び物体識別システム
JP2020072299A (ja) * 2018-10-29 2020-05-07 三星電子株式会社Samsung Electronics Co.,Ltd. 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
CN112305653A (zh) * 2019-07-30 2021-02-02 三星电子株式会社 光学滤波器和包括光学滤波器的光谱仪
US11917888B2 (en) 2020-05-04 2024-02-27 Intel Corporation In-display sensors and viewing angle adjustment microassemblies
US11972635B2 (en) 2017-01-06 2024-04-30 Intel Corporation Integrated image sensor and display pixel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011869A1 (ja) * 2013-07-23 2015-01-29 パナソニックIpマネジメント株式会社 撮像装置及びその駆動方法
WO2016170973A1 (ja) * 2015-04-20 2016-10-27 シャープ株式会社 集積回路、及び測定装置
US10440292B2 (en) * 2015-09-18 2019-10-08 Nec Corporation Color signal and near-infrared signal generated by using pattern information defining intensity-corresponding pattern
CN109951624B (zh) * 2019-04-12 2024-04-19 武汉鸿瑞达信息技术有限公司 一种基于滤镜光轮的成像拍摄系统和方法
JP7286024B2 (ja) 2019-12-14 2023-06-02 グラス イメージング インコーポレイテッド 回転可能なリフレクターを備えた撮像システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272666A (ja) * 2009-05-21 2010-12-02 Panasonic Corp 固体撮像素子
JP2011199798A (ja) * 2010-03-24 2011-10-06 Sony Corp 物理情報取得装置、固体撮像装置、物理情報取得方法
JP2011243862A (ja) * 2010-05-20 2011-12-01 Sony Corp 撮像デバイス及び撮像装置
JP2013162339A (ja) * 2012-02-06 2013-08-19 Hitachi Consumer Electronics Co Ltd 撮像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149244A (ja) * 1988-12-01 1990-06-07 Fuji Photo Optical Co Ltd 電子内視鏡装置
JPH11289491A (ja) * 1998-04-03 1999-10-19 Matsushita Electric Ind Co Ltd Ccdカメラ
JP4311988B2 (ja) 2003-06-12 2009-08-12 アキュートロジック株式会社 固体撮像素子用カラーフィルタおよびこれを用いたカラー撮像装置
JP5055643B2 (ja) * 2008-07-28 2012-10-24 株式会社リコー 撮像素子および画像撮像装置
JP2011015087A (ja) 2009-06-30 2011-01-20 Panasonic Corp 撮像装置および撮像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272666A (ja) * 2009-05-21 2010-12-02 Panasonic Corp 固体撮像素子
JP2011199798A (ja) * 2010-03-24 2011-10-06 Sony Corp 物理情報取得装置、固体撮像装置、物理情報取得方法
JP2011243862A (ja) * 2010-05-20 2011-12-01 Sony Corp 撮像デバイス及び撮像装置
JP2013162339A (ja) * 2012-02-06 2013-08-19 Hitachi Consumer Electronics Co Ltd 撮像装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016203760A1 (ja) * 2015-06-17 2018-04-05 日本電気株式会社 映像撮影装置および映像撮影方法
WO2016203760A1 (ja) * 2015-06-17 2016-12-22 日本電気株式会社 映像撮影装置および映像撮影方法
WO2017018150A1 (ja) * 2015-07-29 2017-02-02 富士フイルム株式会社 光センサデバイス、光センサユニット及び光センサシステム
JPWO2017018150A1 (ja) * 2015-07-29 2018-02-22 富士フイルム株式会社 光センサデバイス、光センサユニット及び光センサシステム
US10863115B2 (en) 2016-06-24 2020-12-08 Nec Corporation Generation of visible and near-infrared images based on estimated incident light spectral characteristics and image capturing device spectral sensitivity characteristics
WO2017222021A1 (ja) * 2016-06-24 2017-12-28 日本電気株式会社 画像処理装置、画像処理システム、画像処理方法及びプログラム記録媒体
WO2018116972A1 (ja) * 2016-12-22 2018-06-28 日本電気株式会社 画像処理方法、画像処理装置および記録媒体
US10931895B2 (en) 2016-12-22 2021-02-23 Nec Corporation Image processing method, image processing device, and storage medium
US11972635B2 (en) 2017-01-06 2024-04-30 Intel Corporation Integrated image sensor and display pixel
WO2018135315A1 (ja) * 2017-01-20 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 撮像装置、画像処理方法および画像処理システム
US10958847B2 (en) 2017-01-20 2021-03-23 Sony Semiconductor Solutions Corporation Imaging device, image processing method, and image processing system
JPWO2018207817A1 (ja) * 2017-05-11 2019-06-27 株式会社ナノルクス 固体撮像装置、撮像システム及び物体識別システム
US10863116B2 (en) 2017-05-11 2020-12-08 Nanolux Co. Ltd. Solid-state image capture device, image capture system, and object identification system
WO2018207817A1 (ja) * 2017-05-11 2018-11-15 株式会社ナノルクス 固体撮像装置、撮像システム及び物体識別システム
JP2020072299A (ja) * 2018-10-29 2020-05-07 三星電子株式会社Samsung Electronics Co.,Ltd. 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
CN112305653A (zh) * 2019-07-30 2021-02-02 三星电子株式会社 光学滤波器和包括光学滤波器的光谱仪
US11917888B2 (en) 2020-05-04 2024-02-27 Intel Corporation In-display sensors and viewing angle adjustment microassemblies

Also Published As

Publication number Publication date
US20160255286A1 (en) 2016-09-01
JPWO2015059897A1 (ja) 2017-03-09
US10171757B2 (en) 2019-01-01
JP6582987B2 (ja) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6582987B2 (ja) 映像撮影装置、映像撮影方法、符号型赤外カットフィルタ、および符号型特定色カットフィルタ
US10257484B2 (en) Imaging processing device and imaging processing method
US10182216B2 (en) Extended color processing on pelican array cameras
CN101878653B (zh) 用于实现来自彩色镶嵌成像器的全色响应的方法及设备
US8339489B2 (en) Image photographing apparatus, method and medium with stack-type image sensor, complementary color filter, and white filter
US20150288935A1 (en) Imaging apparatus, image processing method, and program
CN104025574B (zh) 摄像装置及图像处理方法
JP2004228662A (ja) 撮像装置
EP2630788A1 (en) System and method for imaging using multi aperture camera
US8564688B2 (en) Methods, systems and apparatuses for white balance calibration
KR20170074602A (ko) 영상 출력 장치 및 영상 출력 방법
US9936172B2 (en) Signal processing device, signal processing method, and signal processing program for performing color reproduction of an image
US7864235B2 (en) Imaging device and imaging method including generation of primary color signals
JP2008501256A (ja) デジタル撮像装置を用いたオブジェクトからの異なる形式の光の再生
WO2021041928A1 (en) Systems and methods for creating a full-color image in low light
US10616536B2 (en) Imaging systems having broadband monochromatic and chromatic image sensors
US10334185B2 (en) Image capturing device, signal separation device, and image capturing method
JP2015053578A (ja) カラー撮像装置及びカラー撮像方法
US11696043B2 (en) White balance compensation using a spectral sensor system
TW202205847A (zh) 攝像元件及電子機器
US10593717B2 (en) Image processing apparatus, image processing method, and imaging apparatus
JP2010276469A (ja) 画像処理装置及び測距装置の画像処理方法
JP2012010141A (ja) 画像処理装置
JP6640555B2 (ja) カメラシステム
WO2017047080A1 (ja) 映像処理装置、撮影装置、映像処理方法及びプログラム記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855391

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030196

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015543704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855391

Country of ref document: EP

Kind code of ref document: A1