WO2015058486A1 - 一种基于光电扫描的单站式三维坐标测量方法 - Google Patents

一种基于光电扫描的单站式三维坐标测量方法 Download PDF

Info

Publication number
WO2015058486A1
WO2015058486A1 PCT/CN2014/074060 CN2014074060W WO2015058486A1 WO 2015058486 A1 WO2015058486 A1 WO 2015058486A1 CN 2014074060 W CN2014074060 W CN 2014074060W WO 2015058486 A1 WO2015058486 A1 WO 2015058486A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
coordinate system
station
plane
dimensional
Prior art date
Application number
PCT/CN2014/074060
Other languages
English (en)
French (fr)
Inventor
邾继贵
杨凌辉
任永杰
刘哲旭
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2015058486A1 publication Critical patent/WO2015058486A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Definitions

  • the invention relates to the field of three-dimensional coordinate measurement based on photoelectric scanning, in particular to a single-station three-dimensional coordinate measuring method based on photoelectric scanning. Background technique
  • the rotating platform at the top of the transmitting station rotates uniformly around the fixed axis and emits two plane lasers rotating together with the rotating table, and the laser on the pedestal emits an omnidirectional light pulse as a single when the rotating platform is turned to a predetermined position.
  • the receiver receives the sync mark optical signal and the scan plane optical signal and records the time value through an internal timer to calculate the angle at which the transmitting station turns. After knowing the position information of the transmitting station, only the angle measurement values of two or more base stations are needed, and the angle coordinate method can be used to calculate the precise coordinates of the receiver at this time.
  • the existing photoelectric scanning three-dimensional coordinate measuring method requires two or more transmitting stations to be arranged simultaneously around the measuring space to determine the three-dimensional coordinates of the receiver.
  • the layout, installation and calibration of the transmitting station are often very complicated and time consuming. Therefore, for fast measurement tasks or single workpiece measurement tasks, existing methods are inefficient and cannot be efficient and fast. Measurement requirements. Summary of the invention
  • the invention provides a single-station three-dimensional coordinate measuring method based on photoelectric scanning.
  • the invention improves the measuring efficiency of three-dimensional coordinates and satisfies the requirements of high-efficiency and fast measurement, as described below:
  • a single-station three-dimensional coordinate measuring method based on photoelectric scanning comprising the following steps:
  • each receiver calculates two scanning plane lights by receiving the scanning planar light signal and the synchronous marking optical signal emitted by the transmitting station.
  • the plane equation corresponding to the signal when sweeping through each receiver;
  • the multi-plane constraint is established by the target calibration value obtained in step (2) and the multiple plane equations obtained in step (3).
  • the iteratively optimized solution method can be used to obtain the probe tip in the global coordinate system.
  • the operation of constructing the single-station three-dimensional coordinate measuring platform is specifically - the single-station three-dimensional coordinate measuring platform is composed of a single wMPS transmitting station and a cooperative target equipped with a plurality of wMPS receivers, and the cooperative target is any one of the stereo targets
  • the stereo target is provided with one probe and several wMPS receivers, and all wMPS receivers are not in one plane at the same time.
  • the target coordinate system Op-XpYpZp satisfies the Cartesian coordinate system, and the coordinates of each receiver ⁇ and the probe tip point P t in the target coordinate system are accurately calibrated using a high-precision coordinate measuring machine.
  • the multi-plane constraint is established by the target calibration value obtained in the step (2) and the plurality of plane equations obtained in the step (3), and the space three-dimensional coordinates of the probe tip point can be obtained by the iterative optimization solution method.
  • the operation is specifically as follows:
  • R and T are respectively the rotation matrix and the translation vector of the target coordinate system converted into the global measurement coordinate system;
  • the coordinates of the probe tip point P t obtained in step (2) in the target coordinate system are ( Xpt , y pt , z pt ), and then obtain the coordinate value of the probe tip point P t in the global measurement coordinate system -
  • the beneficial effects of the technical solution provided by the present invention are:
  • the single-station three-dimensional coordinate measuring method proposed by the present invention uses only a single wMPS transmitting station, and installs multiple wMPS receivers on a cooperative target with a probe during the measurement process.
  • the cooperative target probe contacts the measured point, and the angle information of the transmitting station measured by the plurality of receivers can be used to solve the coordinates of the measured point, thereby solving the above problem well; the invention improves the measurement of the three-dimensional coordinates Efficiency, meeting efficient and fast measurement requirements.
  • Figure la is a schematic diagram of a conventional wMPS system transmitting station
  • Figure lb is a schematic diagram of an existing receiver
  • FIG. 2 is a schematic diagram of a cooperative target structure proposed by the present invention (taking six receivers as an example on the target);
  • FIG. 3a is a schematic diagram of a normal vector of the light plane 1 and the light plane 2 at the initial time according to the present invention;
  • FIG. 3b is a schematic diagram showing a normal vector of a plane corresponding to two scanning plane optical signals swept through a receiver according to the present invention
  • FIG. 4 is a flow chart of a single-station three-dimensional coordinate measuring method based on photoelectric scanning according to the present invention.
  • 3 planar laser light source
  • 4 synchronous mark light source
  • embodiments of the present invention provide a single-station three-dimensional coordinate measurement method based on photoelectric scanning, which is supplemented by a single wMPS transmitting station.
  • a method of measuring cooperative three-dimensional coordinates of a cooperative target with multiple wMPS receivers see Figure 1 and Figure 4, as described below:
  • the single-station three-dimensional coordinate measuring platform is composed of a single wMPS transmitting station and a cooperative target equipped with a plurality of wMPS receivers.
  • the wMPS transmitting station is the transmitting station of the existing wMPS system.
  • the cooperative target is any stereo target, and the stereo target is provided with one probe and several wMPS receivers, and all wMPS receiving The device is not in a plane at the same time.
  • the embodiment of the present invention uses six wMPS receivers as an example.
  • the six wMPS receivers are: P 2 , P 3 , P 4 , P 5 , and P 6 , and can be IP 2 , P 3 , P 4 and P 5 are disposed on one plane, P 6 is disposed on another plane; or, Pi, P 2 , P 3 , and P 4 are disposed on one plane, and P 5 and P 6 are disposed on another plane; Pi P 2 , P 3 , P 4 , P 5 and P 6 are not in the same plane.
  • the number of wMPS receivers is greater than or equal to three, and settings are made as needed. During the installation process, the positions of multiple receivers should be guaranteed to be in the same plane.
  • Establishing the transmitting station coordinate system 0-XYZ, calibrating the internal parameters of the transmitting station can obtain the relevant information of the plane laser emitted by the transmitting station at the initial time (the time when the transmitting station transmits the synchronous marking light), that is, the initial moment shown in Fig. 3a Normal vector ⁇ , n 2 of light plane 1 and light plane 2 .
  • the coordinate system of the transmitting station and the calibration method of internal parameters please refer to the literature "Optimization of Calibration Methods for Scanning Plane Laser Coordinate Measuring System", 2011, Issue 04, Optical Precision Engineering.
  • 102 defining a target coordinate system, and calibrating coordinate values of each receiver and target probe tip point on the cooperative target in a target coordinate system;
  • the target coordinate system O p -X p Y p Z p is defined and the cooperative target is calibrated.
  • the definition of the target coordinate system is shown in Figure 2.
  • the probe tip point P t is used as the origin Op, the receiver and the plane are X p O p Y p plane, and the P t direction is ⁇ ⁇ axis.
  • ⁇ ⁇ axis is determined by the right hand rule.
  • the target coordinate system Op-XpYpZp can also be used as the origin ⁇ ⁇ , the receiver and the plane of the 3 ⁇ 4
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ plane ⁇ 2 direction is ⁇ ⁇ axis
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ plane normal is ⁇ ⁇ axis
  • ⁇ ⁇ axis is determined by right hand rule.
  • the target coordinate system Op-XpYpZp can also be used as the origin O receiver 3 ⁇ 4 and the plane of the plane is X p O p Y p plane, ⁇ 2 ⁇ 3 direction is ⁇ ⁇ axis, ⁇ ⁇ ⁇ ⁇ ⁇ plane normal is ⁇ The ⁇ axis, ⁇ ⁇ axis is determined by the right hand rule.
  • the target coordinate system ⁇ ⁇ - ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ can be arbitrarily set according to the needs of the actual application, and the target coordinate system Op-XpYpZp can satisfy the Cartesian coordinate system.
  • the high-precision coordinate measuring machine can be used in any measurement on the market.
  • the model adopted in the embodiment of the present invention is global classic SR07.10.07.
  • each receiver uses the transmitting station coordinate system as a global measurement coordinate system, and contacting the probe of the cooperative target with the measured point, and each receiver calculates two scanning plane optical signals by receiving the scanning plane optical signal and the synchronous marking optical signal emitted by the transmitting station.
  • the plane equation corresponding to each receiver is swept separately;
  • 3 ⁇ 4 , b u , c u , a 2i , b 2i , c 2i are the coefficients of the plane equation.
  • the calculation method please refer to the literature “Optimization of Calibration Methods for Scanning Planar Laser Coordinate Measuring System”, 2011, 04, Optical Precision Engineering.
  • the multi-plane constraint is established by using the target calibration value obtained in step 102 and the plurality of plane equations obtained in step 103, and the probe tip point (ie, the measured point) is obtained in the global coordinate by the iterative optimization solution method.
  • R and T are the rotation matrix and translation vector of the target coordinate system converted into the global measurement coordinate system respectively. Therefore, only the R and T can be solved to obtain the coordinate values of the measured point in the global measurement coordinate system.
  • Equation (6) R, T can be solved by some iterative optimization methods.
  • the Levenberg-Marquardt method is used for calculation, and the reference is "The Levenberg-Marquardt algorithm: Implementation and Theory", Volume 630 1978, Numerical Analysis.
  • the coordinates of the probe tip point (ie, the measured point) obtained according to step 102 in the target coordinate system are (1 ⁇ 1 ⁇ , 213 ⁇ 4 )

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

一种基于光电扫描的单站式三维坐标测量方法,搭建单站式三维坐标测量平台,建立发射站坐标系O-XYZ(101);定义靶标坐标系,标定合作靶标上各个接收器及靶标探针尖端点在靶标坐标系下的坐标值(102);以发射站坐标系作为全局测量坐标系,将合作靶标的探针接触被测点,各个接收器通过接收发射站发出的扫描平面光信号及同步标记光信号计算出两束扫描平面光信号分别扫过各个接收器时所对应的平面方程(103);通过靶标标定值及多个平面方程建立多平面约束,通过迭代优化的解算方法即可得出探针尖端在全局坐标系下的三维坐标(104)。该方法可提高三维坐标的测量效率,满足高效、快捷的测量要求。

Description

一种基于光电扫描的单站式三维坐标测量方法 技术领域
本发明涉及基于光电扫描的三维坐标测量领域, 特别涉及一种基于光电扫描的单站式三 维坐标测量方法。 背景技术
近年来, 基于光电扫描的三维坐标测量技术发展迅速, 因其具有测量范围广、 精度高、 扩展性好等优势, 已经在大尺寸工业测量中得到成功应用。 目前, 国内对于光电扫描三维坐 标测量技术的研究大多处于初始阶段, 只有天津大学推出了实用化产品, 即工作空间测量定 位系统(wMPS: workspace Measurement Positioning System) 。 该系统是一种针对工业现场整 体测量控制需求而发展起来的网络式大尺度空间坐标测量系统, 基于光电扫描三维坐标测量 技术, 通过多个旋转激光发射装置 (发射站;)组成测量网络, 采用多站式空间角度交汇测量方 法对单个接收器进行自动定位, 其具有网络化、 自动化、 高精度等特点。 工作时, 发射站顶 端旋转平台绕固定轴匀速旋转并向外发射两束随转台一同旋转的平面激光, 同时每当旋转平 台转到一个预定位置时基座上的激光器发出全向光脉冲作为单周旋转起点的同步标记。 接收 器接收到同步标记光信号及扫描平面光信号并通过内部计时器记录此时时间值, 进而解算出 发射站转过的角度。 在己知发射站方位信息后, 只需要得到两个以上基站的角度测量值, 便 可以使用角度交汇方法计算出接收器此时的精确坐标。
然而, 现有的光电扫描三维坐标测量方法需要在测量空间周围布局两个或两个以上发射 站同时工作才能确定接收器的三维坐标。 但是在工业现场条件下, 发射站的布局、 安装和标 定往往是十分复杂和耗时的, 因此, 对于快速测量任务或单工件测量任务而言, 现有方法效 率低下, 并不能满足高效、 快捷的测量要求。 发明内容
本发明提供了一种基于光电扫描的单站式三维坐标测量方法, 本发明提高了三维坐标的 测量效率, 满足了高效、 快捷的测量要求, 详见下文描述:
一种基于光电扫描的单站式三维坐标测量方法, 所述方法包括以下步骤:
( 1 )搭建单站式三维坐标测量平台, 建立发射站坐标系 0-XYZ ;
(2)定义靶标坐标系,标定合作靶标上各个接收器及靶标探针尖端点在靶标坐标系下的 坐标值;
(3 )以发射站坐标系作为全局测量坐标系, 将合作靶标的探针接触被测点, 各个接收器 通过接收发射站发出的扫描平面光信号及同步标记光信号计算出两束扫描平面光信号分别扫 过各个接收器时所对应的平面方程;
(4)通过歩骤(2) 中得到的靶标标定值及步骤(3 ) 中得到的多个平面方程建立多平面 约束, 通过迭代优化的解算方法即可得出探针尖端在全局坐标系下的三维坐标
(xmt, Ymt, zmt )。
所述搭建单站式三维坐标测量平台的操作具体为- 所述单站式三维坐标测量平台由单个 wMPS发射站辅以安装有多个 wMPS接收器的合作 靶标组成, 合作靶标为任意一立体靶标, 该立体靶标上设置有 1个探针和若干个 wMPS接收 器, 且所有的 wMPS接收器不同时位于一个平面。
所述靶标坐标系 Op-XpYpZp满足笛卡尔坐标系, 各个接收器 Β及探针尖端点 Pt在靶标坐 标系下的坐标值使用高精度三坐标测量机准确标定得到。
所述通过步骤 (2) 中得到的靶标标定值及步骤 (3 ) 中得到的多个平面方程建立多平面 约束, 通过迭代优化的解算方法即可得出探针尖端点的空间三维坐标的操作具体为:
假设接收器 在全局测量坐标系下的坐标为(Xn^ yn^ Z™) , 接收器 在靶标坐标系 下的坐标为 (χρι,ypi,zpi ), 由全局测量坐标系与靶标坐标系间的转换关系可得:
Figure imgf000004_0001
其中 R、 T分别为靶标坐标系转换为全局测量坐标系的旋转矩阵及平移向量; 构造目标函数 E为:
Ε = ΐ:( 十 F^ + M - f f = 0
i=l j=l
和 为定义的中间变量; 至 为定义的中间变量; M为惩罚因子 n为接收器的数 根据步骤 (2) 得到的探针尖端点 Pt在靶标坐标系下的坐标为 (Xpt,ypt,zpt), 进而得出 探针尖端点 Pt在全局测量坐标系下的坐标值-
Figure imgf000004_0002
本发明提供的技术方案的有益效果是: 本发明提出的单站式三维坐标测量方法仅使用单 个 wMPS发射站, 将多个 wMPS接收器安装在带有探针的合作靶标上, 在测量过程中, 合作 靶标探针接触被测点, 通过多个接收器测得的发射站的角度信息即可解算得出被测点坐标, 从而很好的解决了上述问题; 本发明提高了三维坐标的测量效率, 满足了高效、 快捷的测量 要求。
附图说明
图 la为现有的 wMPS系统发射站示意图;
图 lb为现有接收器示意图;
图 2为本发明提出的合作靶标结构示意图 (以靶标上安装 6个接收器为例) ; 图 3a为本发明提出的初始时刻光平面 1与光平面 2的法向量示意图;
图 3b 为本发明提出的两束扫描平面光信号分别扫过接收器时所对应平面的法向量示意 图;
图 4为本发明提出的一种基于光电扫描的单站式三维坐标测量方法的流程图。
附图中, 各部件的列表如下:
1: 回转轴; 2: 旋转平台;
3: 平面激光光源; 4: 同步标记光光源;
5: 固定基座; P2、 P3、 P4、 P5和 P6 : 接收器;
Pt: 探针尖端点。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作进 一步地详细描述。
为了提高三维坐标的测量效率, 满足高效、 快捷的测量要求, 扩展其应用领域, 本发明 实施例提供了一种基于光电扫描的单站式三维坐标测量方法, 该发明采用单个 wMPS发射站 辅以安装有多个 wMPS接收器的合作靶标来测量空间三维坐标的方法, 参见图 1和图 4, 详 见下文描述:
101: 搭建单站式三维坐标测量平台, 建立发射站坐标系 0-XYZ ;
其中, 参见图 1和图 2, 单站式三维坐标测量平台由单个 wMPS发射站辅以安装有多个 wMPS接收器的合作靶标组成。 wMPS发射站即现有的 wMPS系统的发射站。 合作靶标为任 意一立体靶标, 该立体靶标上设置有 1个探针和若干个 wMPS接收器, 且所有的 wMPS接收 器不同时位于一个平面。
具体实现时, 本发明实施例以 6个 wMPS接收器为例进行说明, 6个 wMPS接收器分别 为: P2、 P3、 P4、 P5和 P6, 可以将 I P2、 P3、 P4和 P5设置在一个平面, P6设置在另一 个平面; 或, 将 Pi、 P2、 P3和 P4设置在一个平面, P5和 P6设置在另一个平面; 即只要保证 Pi P2、 P3、 P4、 P5和 P6不在同一个平面。
实际应用时, wMPS接收器的数量大于等于 3个, 根据需要进行设定, 安装过程中应保 证多个接收器的位置不在同一平面内即可。
建立发射站坐标系 0-XYZ, 标定发射站内部参数, 可以得到发射站发出的平面激光在初 始时刻 (发射站发射同步标记光的时刻) 的相关信息, 即附图 3a中所示的初始时刻光平面 1 与光平面 2的法向量^、 n2。 发射站坐标系的建立及内部参数标定方法请参见文献《扫描平 面激光坐标测量系统校准方法的优化》 , 2011年 04期, 光学精密工程。
102: 定义靶标坐标系,标定合作靶标上各个接收器及靶标探针尖端点在靶标坐标系下的 坐标值;
定义靶标坐标系 Op-XpYpZp, 对合作靶标进行标定。 靶标坐标系的定义如图 2所示, 以 探针尖端点 Pt作为原点 Op, 接收器 和 所在平面为 XpOpYp平面, Pt 方向为 Χρ轴,
ΧρθρΥρ平面法线为 Ζρ轴, Υρ轴通过右手定则确定。
其中, 靶标坐标系 Op-XpYpZp还可以以 作为原点 θρ, 接收器 和¾所在平面为
ΧρΟρΥρ平面, Ρ2方向为 Χρ轴, ΧρΟρΥρ平面法线为 Ζρ轴, Υρ轴通过右手定则确定。
其中, 靶标坐标系 Op-XpYpZp还可以以 作为原点 O 接收器 ¾和 所在平面为 XpOpYp平面, Ρ2 Ρ3方向为 χρ轴, ΧρΟρΥρ平面法线为 Ζρ轴, Υρ轴通过右手定则确定。
实际应用时, 可以根据实际应用中的需要随意设定靶标坐标系 ΟρρΥρΖρ, 该靶标坐标 系 Op-XpYpZp满足笛卡尔坐标系即可。
各个接收器 ( i=l~6)及探针尖端点 Pt在靶标坐标系下的坐标值使用高精度三坐标测量 机准确标定得到, 高精度三坐标测量机可以采用市面上任意一款测量机, 本发明实施例采用 的型号是 global classic SR07.10.07。
103: 以发射站坐标系作为全局测量坐标系, 将合作靶标的探针接触被测点, 各个接收器 通过接收发射站发出的扫描平面光信号及同步标记光信号计算出两束扫描平面光信号分别扫 过各个接收器时所对应的平面方程;
即各个接收器通过接收发射站发出的扫描平面光信号及同步标记光信号计算出两束扫描 平面光信号分别扫过各个接收器 (1=1 6)时所对应平面的法向量, 即图 3b 中所示的 fiu、 n2i, 进而得出对应的平面方程:
Figure imgf000007_0001
¾、 bu、 cu、 a2i、 b2i、 c2i为平面方程的系数, 具体计算方法请参考文献《扫描平面 激光坐标测量系统校准方法的优化》 , 2011年 04期, 光学精密工程。
104:通过步骤 102中得到的靶标标定值及步骤 103中得到的多个平面方程建立多平面约 束, 通过迭代优化的解算方法即可得出探针尖端点 (即被测点)在全局坐标系下的三维坐标
(xmt 'Ymt ' zmt) (未知量) 。
具体解算过程如下:
假设接收器 (1=1〜6)在全局测量坐标系下的坐标为(Xmi,ymi,zmi) (未知量) , 带入 式 (1) 可得:
Figure imgf000007_0002
根据步骤 102 得到的接收器 Pi(i=l~6)在靶标坐标系下的坐标为
(xpi -ypi -zpi) (已知量) 可得:
Figure imgf000007_0005
Figure imgf000007_0003
其中 R、 T分别为靶标坐标系转换为全局测量坐标系的旋转矩阵及平移向量, 因此, 只 需解算 R、 T即可得出被测点在全局测量坐标系下的坐标值。 即旋转矩阵 R
Figure imgf000007_0004
将式 (3) 带入式 (2) , 有:
巧 i =alixpir1 + ypir2 +alizpir3 + blixpir4 + blypir5 + bi;zpir6
+ xpir7 + cuypir8 + ci;zpir9 + aHtx + buty + cutz = 0
(4)
=a2ixpir1+a2iypir2+a2izpir3 +b2ixpir4 +b2lypir5 +b2izpir6
+ c2ixpir7 + c2iypir8 + c2lzpir9 + a2itx + b2ity + c2itz + c2iAd = 0 和 ¾为定义的中间变量。 又因为旋转矩阵 R的正交性, 有: fi = r1 2 + r2 2+r3 2-l = =0
f2 = r4 2+r5 2+r6 2-l: =0
f3 = r7 2+r8 2+r9 2 - =0
f4 = r1r4 + r2r5+r3r6 =0
f5 = r1r7+r2rg+r3r9 =0
f6 = r4rv+r5r8 + r6r9 =0
由式 (4)及式 (5) , 构造目标函数 E为:
Ε = έ( + ) + Μ. ^2 =0 (6) 其中 M为惩罚因子 (本发明实施例中的取值为 105, 根据实际应用中的需要进行设定, 可以为 104至 10δ), n为接收器的数量。根据式(6),可以通过一些迭代优化方法解算得出 R、 T。 本发明实施例中采用 Levenberg-Marquardt 法进行计算, 参考文献为 《 The Levenberg-Marquardt algorithm: Implementation and theory》 , Volume 630 1978 , Numerical Analysis。
根据步骤 102得到的探针尖端点 (即被测点) 在靶标坐标系下的坐标为( 1^1^,21¾)
Figure imgf000008_0001
本领域技术人员可以理解附图只是一个优选实施例的示意图, 上述本发明实施例序号仅 仅为了描述, 不代表实施例的优劣。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则之 内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、一种基于光电扫描的单站式三维坐标测量方法,其特征在于,所述方法包括以下步骤: ( 1 )搭建单站式三维坐标测量平台, 建立发射站坐标系 0-XYZ ;
(2)定义靶标坐标系,标定合作靶标上各个接收器及靶标探针尖端点在靶标坐标系下的 坐标值;
(3 )以发射站坐标系作为全局测量坐标系, 将合作靶标的探针接触被测点, 各个接收器 通过接收发射站发出的扫描平面光信号及同步标记光信号计算出两束扫描平面光信号分别扫 过各个接收器时所对应的平面方程;
(4)通过步骤(2) 中得到的靶标标定值及步骤(3 ) 中得到的多个平面方程建立多平面 约束, 通过迭代优化的解算方法即可得出探针尖端在全局坐标系下的三维坐标
(xmt, Ymt, zmt )。
2、 根据权利要求 1所述的一种基于光电扫描的单站式三维坐标测量方法, 其特征在于, 所述搭建单站式三维坐标测量平台的操作具体为- 所述单站式三维坐标测量平台由单个 wMPS发射站辅以安装有多个 wMPS接收器的合作 靶标组成, 合作靶标为任意一立体靶标, 该立体靶标上设置有 1个探针和若干个 wMPS接收 器, 且所有的 wMPS接收器不同时位于一个平面。
3、 根据权利要求 1所述的一种基于光电扫描的单站式三维坐标测量方法, 其特征在于, 所述靶标坐标系 Op-XpYpZp满足笛卡尔坐标系, 各个接收器 及探针尖端点 Pt在靶标坐标系 下的坐标值使用高精度三坐标测量机准确标定得到。
4、 根据权利要求 1所述的一种基于光电扫描的单站式三维坐标测量方法, 其特征在于, 所述通过步骤(2) 中得到的靶标标定值及歩骤(3 ) 中得到的多个平面方程建立多平面约束, 通过迭代优化的解算方法即可得出探针尖端点的空间三维坐标的操作具体为:
假设接收器 在全局测量坐标系下的坐标为(xm,ymi,zmi ), 接收器 在靶标坐标系 下的坐标为 (Xpi,ypi,zpi ), 由全局测量坐标系与靶标坐标系间的转换关系可得:
Figure imgf000009_0001
其中 R、 T分别为靶标坐标系转换为全局测量坐标系的旋转矩阵及平移向量;
构造目标函数 E为: Ε =∑(¾+¾) + Μ.∑ =0
和 ¾为定义的中间变量; 至 为定义的中间变量; M为惩罚因子 n为接收器的数 根据步骤 (2) 得到的探针尖端点 Pt在靶标坐标系下的坐标为 (Xpt,ypt,zpt), 进而得出
Figure imgf000010_0001
PCT/CN2014/074060 2013-10-22 2014-03-25 一种基于光电扫描的单站式三维坐标测量方法 WO2015058486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310500333.6 2013-10-22
CN201310500333.6A CN103512499A (zh) 2013-10-22 2013-10-22 一种基于光电扫描的单站式三维坐标测量方法

Publications (1)

Publication Number Publication Date
WO2015058486A1 true WO2015058486A1 (zh) 2015-04-30

Family

ID=49895616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074060 WO2015058486A1 (zh) 2013-10-22 2014-03-25 一种基于光电扫描的单站式三维坐标测量方法

Country Status (2)

Country Link
CN (1) CN103512499A (zh)
WO (1) WO2015058486A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512499A (zh) * 2013-10-22 2014-01-15 天津大学 一种基于光电扫描的单站式三维坐标测量方法
CN105180940B (zh) * 2015-09-08 2018-04-10 北京控制工程研究所 一种基于wMPS系统的室内目标天文坐标的确定方法
CN105157729A (zh) * 2015-09-17 2015-12-16 天津大学 一种用于室内空间测量定位系统的调平与校准方法
CN105222718B (zh) * 2015-09-21 2017-05-17 天津大学 室内空间测量定位网络动态坐标测量多站数据同步方法
WO2017181865A1 (zh) * 2016-04-22 2017-10-26 成都理想境界科技有限公司 一种空间定位系统、定位设备和光传感器模组
CN107144273B (zh) * 2017-06-06 2018-05-22 天津大学 基于倾角传感的室内测量定位系统基站姿态自动补偿方法
CN108489382B (zh) * 2018-02-13 2020-02-18 天津大学 一种基于空间多点约束的agv动态位姿测量方法
CN108534801B (zh) * 2018-03-26 2019-09-17 天津大学 三维坐标基准场室内空间测量定位扫描光面校准方法
CN109115191B (zh) * 2018-08-03 2020-07-31 华南农业大学 全站仪多方位坐标测量方法
CN110879591B (zh) * 2019-11-07 2022-09-23 天津大学 一种复杂地貌下agv车定位导航系统接收单元及调控方法
CN111590588A (zh) * 2020-06-03 2020-08-28 南京埃斯顿机器人工程有限公司 一种焊接机器人的非接触式工具坐标系标定方法
CN113063354B (zh) * 2021-04-09 2022-01-07 天津大学 用于空间测量定位的合作靶标定向装置及其定向方法
CN113910239B (zh) * 2021-11-09 2022-05-10 天津大学 工业机器人绝对定位误差补偿装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065206A2 (en) * 2000-02-28 2001-09-07 Arc Second, Inc. Low cost 2d position measurement system and method
CN102384717A (zh) * 2011-08-17 2012-03-21 天津大学 采用标准杆的工作空间测量定位系统快速定向方法
US20130021618A1 (en) * 2011-07-18 2013-01-24 Kenneth Trent Apparatus and method to indicate a specified position using two or more intersecting lasers lines
CN103512499A (zh) * 2013-10-22 2014-01-15 天津大学 一种基于光电扫描的单站式三维坐标测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189594A (en) * 1986-04-11 1987-10-28 Integrated Photomatrix Ltd Optoelectronic measurement of package volume
JP5481397B2 (ja) * 2011-01-07 2014-04-23 株式会社豊田中央研究所 3次元座標計測装置
CN102425990B (zh) * 2011-09-14 2014-03-19 天津大学 工作空间测量定位系统网络状态监测方法
CN102636774B (zh) * 2012-04-26 2013-06-05 天津大学 一种基于光电扫描与超声测距的全站式空间测量定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065206A2 (en) * 2000-02-28 2001-09-07 Arc Second, Inc. Low cost 2d position measurement system and method
US20130021618A1 (en) * 2011-07-18 2013-01-24 Kenneth Trent Apparatus and method to indicate a specified position using two or more intersecting lasers lines
CN102384717A (zh) * 2011-08-17 2012-03-21 天津大学 采用标准杆的工作空间测量定位系统快速定向方法
CN103512499A (zh) * 2013-10-22 2014-01-15 天津大学 一种基于光电扫描的单站式三维坐标测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAO, DABAO ET AL.: "Optimization of Calibration Method for Scanning Planar Laser Coordinate Measurement System", OPTICS AND PRECISION ENGINEERING, vol. 19, no. 04, 30 April 2011 (2011-04-30), pages 870 - 876 *

Also Published As

Publication number Publication date
CN103512499A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2015058486A1 (zh) 一种基于光电扫描的单站式三维坐标测量方法
US10088295B2 (en) Interactive spatial orientation method and system
CN102668424B (zh) 用于使多个度量装置所进行的测量同步的方法和设备
CN104165600B (zh) 一种无线手持3d激光扫描系统
JP2017204222A (ja) 管理装置、管理方法および管理用プログラム
CN101694370B (zh) 大尺寸工业摄影测量系统的空间误差场获取方法及基准装置
JP2020042013A (ja) レーザレーダシステムに基づく距離測定方法、レーザレーダシステムに基づく距離測定装置及びコンピュータ読み取り可能な記憶媒体
CN109902409B (zh) 基于uwb技术构建平面图的方法和装置
CN202523112U (zh) 一种机器人激光扫描重建三维模型系统
CN107480356B (zh) 基于catia和激光跟踪仪的部件设计检验一体化方法
CN101504275A (zh) 一种基于空间无线定位的手持式线激光三维测量系统
CN106546172B (zh) 基于非正交轴系激光全站仪的三维坐标测量方法
Zhao et al. Optimization for calibration of large-scale optical measurement positioning system by using spherical constraint
CN107726980B (zh) 一种基于四轴测量机的线激光位移传感器的标定方法
CN110706331A (zh) 一种基于bim点云技术与三维扫描的施工质量控制方法
WO2017049940A1 (zh) 室内空间测量定位网络动态坐标测量多站数据同步方法
CN115019825A (zh) 面向地下隧道环境的声信道数字孪生方法、装置和系统
CN103278104B (zh) 一种用于dic测量的双相机系统的标定板及其标定方法
CN112461123B (zh) 空间定位系统的多发射站实现方法及装置
CN104344766B (zh) 半实物仿真红外点源/成像复合目标校准装置和校准方法
CN103363958A (zh) 基于数字近景摄影测量的街道房屋立面图绘制方法
CN102679878B (zh) 影像测量仪的图像匹配方法
CN104180791B (zh) 一种飞机水平测量方法
CN113063354B (zh) 用于空间测量定位的合作靶标定向装置及其定向方法
Yang et al. Distributed optical sensor network with self-monitoring mechanism for accurate indoor location and coordinate measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856533

Country of ref document: EP

Kind code of ref document: A1