WO2015058353A1 - 一种红细胞形态学分析结果表示方法 - Google Patents

一种红细胞形态学分析结果表示方法 Download PDF

Info

Publication number
WO2015058353A1
WO2015058353A1 PCT/CN2013/085659 CN2013085659W WO2015058353A1 WO 2015058353 A1 WO2015058353 A1 WO 2015058353A1 CN 2013085659 W CN2013085659 W CN 2013085659W WO 2015058353 A1 WO2015058353 A1 WO 2015058353A1
Authority
WO
WIPO (PCT)
Prior art keywords
red blood
sample
analysis target
blood cell
analysis
Prior art date
Application number
PCT/CN2013/085659
Other languages
English (en)
French (fr)
Inventor
钟志宏
丁建文
Original Assignee
爱威科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱威科技股份有限公司 filed Critical 爱威科技股份有限公司
Priority to PCT/CN2013/085659 priority Critical patent/WO2015058353A1/zh
Publication of WO2015058353A1 publication Critical patent/WO2015058353A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/80Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood groups or blood types or red blood cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts

Definitions

  • the present invention relates to the field of red blood cell detection technology, and more particularly to a method for expressing red blood cell morphology analysis results.
  • Red blood cell morphology examination Various types of red blood cell morphology are described by an experienced clinical examiner through microscopic observation. Such as: abnormal shape, abnormal size, abnormal dyeing, structural abnormalities, etc.;
  • red blood cell size The size of red blood cells is measured by a micrometer under a microscope and the data is recorded;
  • red blood cell parameters According to the number of red blood cells, hemoglobin concentration and hematocrit, the average red blood cell volume, the average red blood cell hemoglobin content, and the average red blood cell hemoglobin concentration were calculated.
  • the average red blood cell volume reflects the average of the red blood cell volume in one sample.
  • the red blood cell size in the sample is not uniform, and the average red blood cell volume cannot reflect this situation, then the average red blood cell volume detected has no clinical reference significance.
  • red blood cell morphology in addition to different sizes, there are also different shapes, such as ovals.
  • Red blood cells sickle-shaped red blood cells, oral red blood cells, spinous red blood cells, spore-shaped red blood cells, shoe-shaped red blood cells, target red blood cells, etc., all represent red blood cell abnormalities, but the instrument cannot detect such red blood cells.
  • the prior art cannot perform a separate test on the morphological characteristics of each red blood cell in the test sample, so that the test result of the sample to be tested is inaccurate.
  • the present invention provides a method for expressing morphological analysis results of red blood cells, so as to enable a separate analysis of each red blood cell characteristic in a sample to obtain a morphological characteristic value detection result of each red blood cell in the sample.
  • the technical solution adopted by the present invention is: A method for expressing the results of red blood cell morphology analysis, comprising the following steps:
  • S101 Processing a sample, and obtaining a size, a shape, a chromaticity, and a morphological characteristic parameter value of each red blood cell in the sample;
  • the scatter region formed in the erythrocyte nine-point map forms a normal red blood cell reference range
  • S105 Determine the pathological property of the abnormal red blood cells according to the change of the scatter region formed in the red blood cell quantogram according to the analysis target of various types of red blood cells in various abnormal samples.
  • the red blood cell quartogram has nine partitions, or thirty-six partitions, or nine square partitions.
  • the step S103 is specifically:
  • the minimum value and the maximum value of each analysis target are statistically obtained, and the minimum value of the analysis target determines the lower left corner of the erythrocyte nine-point map.
  • the boundary, so the maximum value of the analysis target determines the boundary of the upper right corner of the red blood cell quantogram.
  • the minimum value and the maximum value of each analysis target are statistically obtained, and the minimum value of the analysis target is subtracted from the first
  • the fixed value obtains the first boundary value
  • the first boundary value is used to determine the boundary of the lower left corner of the red blood cell quartogram
  • the maximum value of the analysis target is added to the second fixed value to obtain the second boundary value, and the second boundary value is used. Determine the boundary of the upper right corner of the red blood cell quart.
  • the first analysis target and the second sample are obtained. Analyze the target.
  • the values of the three morphological characteristic parameters in the size, shape, chromaticity and texture characteristics of each red blood cell in the normal population sample and the pathological case sample are selected as the analysis target of the sample;
  • the first analysis target, the second analysis target, and the third analysis target are selected as the analysis target of the sample.
  • the analysis target of the sample Preferably, when four morphological feature parameter values in the size, shape, chromaticity and texture characteristics of each red blood cell in the sample are selected as the analysis target of the sample; then two of the four analysis targets are selected The target, as the first analysis target and the second analysis target of the sample, the remaining two are the third analysis target and the fourth analysis target.
  • the representation form of the red blood cell quartile is a coordinate area map or a coordinate value range.
  • the red blood cell morphological analysis result representation method further comprises a sample pre-processing step: dyeing the sample with a staining reagent before the processing.
  • the step S101 is specifically as follows:
  • S201 performing microscopic examination and imaging on the sample by using a microscope camera to obtain morphological characteristic parameter information of the red blood cell;
  • S202 using an image digitizer to first perform segmentation and positioning according to the contained cells, and then digitizing the segmented image, that is, extracting morphological characteristic parameter values of each cell, using size, shape, chroma, texture Four types of characteristics to describe various types of cells;
  • the red blood cell morphological analysis result representation method further comprises the following steps:
  • the red blood cell morphological analysis result representation method further comprises the following steps:
  • the method for expressing morphological analysis results of red blood cells disclosed by the present invention firstly processes the sample to obtain the size, shape, chromaticity and texture morphological characteristic parameter values of each red blood cell in the sample. Secondly, selecting at least two morphological characteristic parameter values of each red cell size, shape, chroma and texture feature in the sample as an analysis target; secondly, according to the analysis target of each red blood cell in the sample The scatter region formed in the region to determine the coordinate region of the erythrocyte nine-point map; secondly, by investigating the scatter region formed by the analysis target of the red blood cell in the normal population, the normal red blood cell reference range is formed; The analysis target of various types of red blood cells in abnormal samples is to determine the pathological properties of abnormal red blood cells by changing the scatter regions formed in the red blood cell quantogram.
  • the analysis of the sample to be tested of the present invention is carried out by analyzing the chromaticity, size, shape and texture characteristics of each red blood cell in the sample, and forming the sample in the red blood cell quartogram, which enables the sample to be
  • the results of the analysis are more accurate and more clinically relevant.
  • FIG. 1 is a flow chart showing a method for expressing a result of morphological analysis of red blood cells according to the present invention
  • 2 is a scatter plot of the size and morphological morphological parameter values of the sample disclosed in the two-dimensional coordinates of the present invention
  • FIG. 3 is a erythrocyte size and chromaticity morphological characteristic parameter selected by the present invention.
  • FIG. 4 is a schematic diagram of determining the boundary of the red blood cell nine-point map by selecting the red blood cell size and the color morphological characteristic parameter value in the sample as the analysis target;
  • 5 is a nine-part graph of red blood cells having nine partitions disclosed in the present invention;
  • FIG. 6 is a nine-part graph of red blood cells having thirty-six partitions disclosed in the present invention;
  • FIG. 7 is a red blood cell having nine square partitions disclosed in the present invention.
  • Figure 9a is a distribution of morphological characteristics of red blood cells in a sample of a normal population disclosed in the present invention
  • Figure 8b is a distribution of chroma morphological characteristics of red blood cells in a sample of a normal population disclosed in the present invention
  • Figure 9a is the disclosure of the present invention
  • the distribution of morphological characteristics of red blood cells in a pathological case the dotted line is the distribution of morphological characteristics of the sample size in the normal population
  • the solid line is the distribution of morphological characteristics of red blood cells in the pathological sample.
  • 9b is a distribution of chroma morphological characteristics of red blood cells in a pathological case sample disclosed in the present invention, wherein a dotted line portion is a distribution of chroma morphological features of a normal population sample, and a solid line portion is a red blood cell sample in the pathological case sample.
  • FIG. 9c is a scatter plot of red blood cell size and chroma morphological features in a red blood cell quartogram in a pathological case sample disclosed in the present invention
  • Figure 10a is another The distribution of morphological characteristics of red blood cells in a pathological case, the dotted line is the distribution of morphological characteristics of the sample size of the normal population, and the solid line is The distribution of morphological characteristics of red blood cells in the pathological case sample
  • Figure 10b is a distribution of chroma morphological characteristics of red blood cells in another pathological case sample disclosed in the present invention, and the dotted line is the color morphology of the normal population sample.
  • the solid line is the distribution of chroma morphological features of red blood cells in the pathological case sample;
  • Figure 10c shows the size and chroma morphological characteristics of red blood cells in another pathological case sample disclosed in the present invention. a scatter plot in the subgraph;
  • Figure 11 is a flow chart showing a method for extracting the size, shape, chromaticity and texture morphological characteristic parameter values of each red blood cell in the sample disclosed in the present invention.
  • the embodiment of the invention discloses a method for expressing the result of morphological analysis of red blood cells, so as to realize a separate analysis of each red blood cell characteristic in the sample, and perform statistics and analysis on the characteristics of each red blood cell in the sample, and obtain the analysis result of the sample. .
  • the present invention discloses a method for expressing morphological analysis results of red blood cells, including:
  • S104 Forming a normal red blood cell reference range by investigating a scatter region formed by the analysis target of the red blood cells of the normal population in the red blood cell quartile map; S105. Determine the pathological properties of the abnormal red blood cells according to the change of the scatter region formed in the red blood cell quantogram according to the analysis target of various types of red blood cells in various abnormal samples.
  • the distribution of erythrocyte characteristics may vary due to the distribution of morphological characteristics of different ages, genders, regions, and red blood cells, and different sources of samples (such as urine, blood, and cerebrospinal fluid). It is also different, so when the sample is statistically analyzed to form a red blood cell quantogram, these factors that cause the difference need to be considered.
  • the above samples may include: a number of normal population samples, and a number of pathological case samples.
  • the pathological case samples include: small cell hypopigmentemia sample, large cell hyperpigmentemia sample, simple small cell anemia sample, etc.; may also include samples containing abnormal morphological red blood cells, abnormal morphology Red blood cells include wrinkled red blood cells, spore red blood cells, oral red blood cells, flower ring red blood cells, twisted red blood cells, vesicular red blood cells, broken red blood cells, pineapple red blood cells, teardrop red blood cells, red blood cells, etc.
  • the number of cases can be determined by yourself, as long as it meets the requirements of statistics.
  • the samples can be obtained based on the existing clinical experience values.
  • Step S103 is specifically as follows: according to the scatter region formed in the coordinate region of the analysis target of each red blood cell in the sample, the minimum value and the maximum value of each analysis target are statistically obtained, and the minimum value of the analysis target determines the red blood cell nine At the boundary of the lower left corner of the subgraph, the maximum value of the analysis target determines the boundary of the upper right corner of the red blood cell quartile.
  • step b scatter distribution of two morphological characteristic parameter values of size and chromaticity of each red blood cell in the sample, as shown in FIG. 2;
  • step c Calculate the scatter point in step b, obtain the minimum and maximum values of the size feature and the chrominance feature, and determine the lower left corner boundary of the erythrocyte nine-point map by using the minimum value of the red cell size feature and the chromaticity feature, and adopt the red cell size.
  • the maximum value of the feature and chrominance features determines the upper right corner boundary of the red blood cell quartile; as shown in Figure 3;
  • the following method is adopted: The analysis target of each red blood cell in the sample is in the scatter region formed in the coordinate region, and the minimum value and the maximum value of each analysis target are statistically obtained, and the minimum value of the analysis target is subtracted from the first fixed value to obtain the first boundary.
  • a value using a first boundary value to determine a boundary of a lower left corner of the red blood cell quartogram, adding a maximum value of the analysis target to a second fixed value to obtain a second boundary value, and determining a red cell nine-point map upper right by using the second boundary value The boundary of the corner.
  • the morphological characteristic values of the size and chromaticity of each red blood cell in the sample form a scatter distribution in the coordinate area, as shown in FIG. 2;
  • step b Statistics the scatter points in step b, and obtain the minimum and maximum values of the size feature and the chrominance feature respectively, and obtain the first boundary value by subtracting the first fixed value from the minimum values of the red cell size feature and the chrominance feature.
  • the first boundary value is used to determine the lower left corner of the red blood cell quartogram, and the maximum value of the red cell size feature and the chroma feature is added to the second fixed value to obtain the second boundary value, and the second boundary value is used to determine the red cell nine-point map.
  • the upper right corner boundary as shown in FIG. 4; in this step, the first fixed value and the second fixed value may be the same or different. For example, you can take 3, or 4, or you can take 3 for the first fixed value and 4 for the second fixed value.
  • the first fixed value subtracted from the minimum value of the size feature and the first fixed value obtained by subtracting the minimum value of the chrominance feature may be the same or different, for example, the first fixed value obtained by subtracting the minimum value of the size feature 3, the minimum value of the chromaticity feature minus the first fixed value is 4, similarly, the size characteristic
  • the second fixed value added by the maximum value and the second fixed value added to the maximum value of the chromaticity feature may be the same or different.
  • the red blood cell quartogram region formed by any of the above methods may be divided into thirty-six partitions, nine square partitions, and the like as needed. As shown in FIG. 6, it is a red blood cell nine-part map divided into thirty-six regions; as shown in FIG. 7, a red blood cell nine-point map divided into nine square partitions, of course, the number of partitions is not limited to the types listed here. .
  • Step S103 is specifically: according to the first analysis target of each red blood cell in the sample And a scatter region formed by the second analysis target in the coordinate region, the minimum value and the maximum value of each analysis target are statistically obtained, and the minimum value of the analysis target determines the boundary of the lower left corner of the erythrocyte pseudo-graph, the analysis target The maximum value determines the boundary of the upper right corner of the red blood cell quart.
  • the selection scheme of the first analysis target and the second analysis target may be the following situations: a, the first analysis target is a size, and the second analysis target is a chroma;
  • the first analysis target is size, and the second analysis target is shape;
  • the first analysis target is size
  • the second analysis target is texture
  • the first analysis target is chromaticity
  • the second analysis target is shape
  • the first analysis target is chromaticity
  • the second analysis target is texture
  • the first analysis target is a shape
  • the second analysis target is a texture
  • Step S103 when three morphological feature parameter values of the size, shape, chromaticity and texture characteristics of each red blood cell in the sample are selected as the analysis target of the sample, The first analysis target, the second analysis target, and the third analysis target of the sample; Step S103 is specifically:
  • the minimum value of the analysis target determines the boundary of the lowermost corner of the red blood cell quartile
  • the maximum value of the analysis target determines the boundary of the upper right corner of the red blood cell quartile.
  • the selection options of the first analysis target, the second analysis target, and the third analysis target may be as follows:
  • the first analysis target is size, the second analysis target is chromaticity, the third analysis target is shape; b, the first analysis target is size, the second analysis target is chromaticity, and the third analysis target is texture; c, The first analysis target is size, the second analysis target is shape, the third analysis target is texture; d, the first analysis target is chromaticity, the second analysis target is shape, and the third analysis target is texture.
  • the minimum value of the analysis target determines the boundary of the lower left corner of the erythrocyte nine-point map
  • the maximum value of the analysis target determines the boundary of the upper right corner of the erythrocyte nine-point map.
  • the analysis target The minimum value determines the boundary of the lower left corner of the red blood cell quartogram, and the maximum value of the analysis target determines the boundary of the upper right corner of the red blood cell quart.
  • the selection options of the first analysis target, the second analysis target, the third analysis target, and the fourth analysis target may be as follows:
  • the first analysis target is size
  • the second analysis target is chromaticity
  • the third analysis target is shape
  • the fourth analysis target is texture
  • the first analysis target is size
  • the second analysis target is shape
  • the third analysis target is texture
  • the fourth analysis target is chromaticity
  • the first analysis target is size, the second analysis target is texture, the third analysis target is chromaticity, and the fourth analysis target is shape; d.
  • the first analysis target is chromaticity, the second analysis target is shape, the third analysis target is texture, and the fourth analysis target is size.
  • the erythrocyte nine-point map and the morphological characteristics of the normal population sample and the pathological case sample may be as shown in FIG. 5, or FIG. 6, or FIG. 7, or FIG. 8c, or FIG. 9c in the erythrocyte nine-point map.
  • the coordinate area map in Fig. 10c indicates that these range of areas can also be represented by a range of coordinate values. For example, (xl,yl) ⁇ (x2,y2) is used to represent the extent of a partition in the red blood cell quantogram.
  • the difference between the normal population sample and the pathological case sample in the nine-point map is different, and the analysis results representing the sample are different.
  • the size and color morphological characteristic parameter values of the normal population sample and the two types of pathological case samples form a scatter distribution in the red blood cell quantogram.
  • Figure 8a shows the distribution of red blood cell size characteristics in normal population samples
  • Figure 8b shows the distribution of red blood cell chromaticity characteristics in normal population samples. It can be seen that the distribution of size and chromaticity are relatively concentrated.
  • FIG. 8c is a scatter plot of the size and chroma morphological characteristic values of each red blood cell in the normal human population sample in the two-dimensional red blood cell quantogram. From Fig. 8c, it can be seen that the red blood cells in the sample form in the red blood cell quantogram. Most of the scatter is distributed in the middle area. Very few are distributed in the marginal area; Figure 9a shows the distribution of red blood cell size characteristics in a pathological case, and Figure 9b shows the distribution of red blood cell chromaticity characteristics in a pathological case. It can be seen that the size of red blood cells is different from the normal population. Compared with the chromaticity characteristics, the values are shifted in a direction in which the value is smaller, and the distribution range is wider. It can be seen from Fig.
  • FIG. 9c that the scatter of red blood cells in the sample of red blood cells is shifted to the lower left corner, which proves that there are more red blood cells with low pigmentation in the sample, and the patient in which the sample is located may have small cell hypochromicity. anemia.
  • Figure 10a shows the distribution of red blood cell size characteristics in another pathological case
  • Figure 10b shows the distribution of red blood cell chromaticity characteristics in another pathological case. It can be seen that the size and chromaticity characteristics of red blood cells in the normal population are similar. The ratio is shifted to a larger value and the distribution range is wider. It can be seen from Fig.
  • the sample may be dyed using a staining reagent during the processing of the sample.
  • a staining reagent used during the processing of the sample.
  • the method of processing the sample in step S101 to obtain the size, shape, chroma and texture morphology characteristic parameter values of each red blood cell in the sample is as follows, as shown in FIG.
  • S201 performing microscopic examination and imaging on the sample by using a microscope camera to obtain morphological characteristic parameter information of the red blood cell;
  • S202 using an image digitizer to first perform segmentation and positioning according to the contained cells, and then digitizing the segmented image, that is, extracting morphological characteristic parameter values of each cell, using size, shape, chroma, texture Four types of characteristics to describe various types of cells;
  • the method for expressing erythrocyte morphology analysis results of the present invention further comprises: S106, displaying a scattergram formed by the analysis target of the red blood cells in each sample in the red blood cell quantogram. As shown in Figure 8c, Figure 9c and Figure 10c.
  • the red blood cell morphological analysis result representation method further comprises the following steps:
  • step 107 and 108 the percentage of scatter points in each region of the red blood cell quartogram is calculated by the analysis target of the sample, and then the percentage of each partition is displayed.
  • the examiner can directly understand the distribution state of red blood cells in the sample, which is convenient for clinical pathological analysis.
  • wrinkled red blood cells In the presence of wrinkled red blood cells in the urine, it may be caused by nephritis or kidney stones; and in the cerebrospinal fluid, wrinkled red blood cells may be old bleeding.
  • the scatter distribution is shifted to the lower left corner of the erythrocyte nine-point map, as shown in Fig. 9c, if it is a blood sample, it may be small.
  • Cell hypopigmentation anemia if it is a urine sample, may be caused by renal hematuria.
  • the analysis target is the size feature and the chromaticity feature
  • the different distributions of the sample to be tested in the sample erythrocyte nine-point map reflect different pathological features.
  • the sample to be tested is iron deficiency anemia
  • the erythrocyte morphology is characterized by small cell hypopigmentation, and the red blood cell scatter distribution in the sample to be tested shifts to d, and the cell hypopigment direction shifts, as shown in Fig. 9c.
  • the sample to be tested is megaloblastic anemia caused by folic acid and vitamin B 12 deficiency
  • the morphological characteristics of red blood cells are large cell hyperpigmentation, and the erythrocyte scatter distribution in the sample to be tested shifts toward the direction of large cells with high pigmentation, as shown in Fig. 10c. Show.
  • the normal or abnormal condition of the sample is also determined according to the distribution of the scatter of the red blood cells in the sample to be tested.
  • red blood cells in the present technical solution correspond to the volume of red blood cells in the prior art.
  • the average red blood cell volume of red blood cells in each sample is measured; for samples with different red blood cell sizes.
  • the prior art cannot be embodied.
  • the chromaticity characteristics of red blood cells in the present technical solution are correlated with the hemoglobin content of red blood cells in the prior art.
  • the red blood cell hemoglobin content can be expressed by measuring the red blood cell color.
  • the depth of chromaticity corresponds to the level of red blood cell hemoglobin.
  • the average value of all red blood cell hemoglobin in the sample is measured in the prior art. It does not reflect the hemoglobin content of each red blood cell in the blood sample.
  • the shape and texture features of the present solution are capable of reflecting the morphology of each red blood cell in the sample.
  • the anomalies of shape and texture feature parameters are used to reflect the heteromorphism of red blood cells in the sample.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Multimedia (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种红细胞形态学分析结果表示方法,该方法包括:通过对样本进行处理,得到样本中每个红细胞的大小、形状、色度和纹理形态学特征参数值(S101),从中选取至少两个形态学特征参数值,作为分析目标(S102),根据样本中各个红细胞的分析目标在坐标区域中形成的散点区域来确定红细胞九分图的坐标区域(S103);通过调査正常人群红细胞的分析目标在红细胞九分图中形成的散点区域,形成正常红细胞参考范围(S104);最后,根据各类样本中各类红细胞的分析目标在红细胞九分图中形成的散点区域的改变来判断异常红细胞的病理性质(S105)。通过对样本中每个红细胞的色度、大小、形状和纹理特征进行的分析,能够使分析结果更加的准确,更具有临床参考意义。

Description

一种红细胞形态学分析结果表示方法
技术领域 本发明属于红细胞检测技术领域, 更具体地说, 涉及一种红细胞形态学分 析结果表示方法。
背景技术 对血液、尿液、脑脊液等样本中的红细胞形态学分析具有极其重要的临床 诊断价值。
现有技术中,对红细胞各种参数的检测, 主要采用人工和仪器检测几项基 础指标后再进行计算得出。
1、 红细胞形态学检查: 由有经验的临床检验人员通过显微镜观察判断, 描述各种类型红细胞形态。如: 形态异常、 大小异常、 染色异常、 结构异常等;
2、 红细胞大小测定: 由人工在显微镜下用测微计对红细胞的大小进行测 量并记录其数据;
3、 红细胞参数计算: 根据红细胞数量、 血红蛋白浓度和红细胞比容结果, 计算平均红细胞体积、 平均红细胞血红蛋白含量、 平均红细胞血红蛋白浓度。
上述方法都存在其缺陷:人工方法检验结果的正确性主要取决于检验者的 经验和责任心, 因此存在有主观误差, 并且工作量大, 效率低下; 目前无论是 人工或仪器报告的红细胞形态学参数都是间接计算得出的平均值,不能得出每 一类型单个红细胞的形态学结果, 因此检验结果不精确。
人工和仪器检测不能体现单个红细胞的体积及血红蛋白浓度。则对于血液 中红细胞大小不一的情况, 无法体现。
由于这些参数都是间接求取的一个样本中所有红细胞的平均值,故不能真 实反映样本中每个红细胞的形态学参数。例如平均红细胞体积,反映一个样本 中红细胞体积的平均值。 当为混合性贫血时, 样本中红细胞大小不均, 而平均 红细胞体积无法反映这种情况, 则检测出的平均红细胞体积则无临床参考意 义。 另外, 对于红细胞形态, 除了大小不一, 还有形状各异的情况, 例如椭圓 形红细胞、 镰刀形红细胞、 口形红细胞、 棘形红细胞、 芽孢状红细胞、 鞋扣状 红细胞、 靶形红细胞等, 都代表着红细胞的异常, 但是仪器无法检测出此类红 细胞情况。
综上所述,现有技术不能对待检测样品中每个红细胞的形态学特征进行单 独检测, 从而使得对待检测样品的检测结果不精确。
发明内容
有鉴于此, 本发明提供一种红细胞形态学分析结果表示方法, 以实现能够 对样本中每个红细胞特征进行单独分析,得出样本中每个红细胞的形态学特征 值检测结果。 为解决上述技术问题, 本发明采用的技术方案为: 一种红细胞形 态学分析结果表示方法, 包括以下步骤:
S101、 处理样本, 得到所述样本中每个红细胞的大小、 形状、 色度和纹 理形态学特征参数值;
5102、 选取所述样本中各个红细胞的大小、 形状、 色度和纹理特征中的至 少两个形态学特征参数值, 作为分析目标;
5103、根据所述样本中各个红细胞的分析目标在坐标区域中形成的散点区 域来确定红细胞九分图的坐标区域;
5104、通过调查正常人群红细胞的分析目标在红细胞九分图中形成的散点 区域, 形成正常红细胞参考范围;
S105、根据各类异常样本中各类红细胞的分析目标在红细胞九分图中形成 的散点区域的改变来判断异常红细胞的病理性质。
优选地, 所述红细胞九分图具有九个分区、 或三十六分区、 或九的平方个 分区。
优选地, 所述步骤 S103具体为:
根据所述样本中每个红细胞的分析目标在坐标区域中形成的散点区域,统 计得到每个分析目标的最小值和最大值,所述分析目标的最小值确定红细胞九 分图的左下角的边界,所以分析目标的最大值确定红细胞九分图的右上角的边 界。 优选地,根据所述样本中每个红细胞的分析目标在坐标区域中形成的散点 区域, 统计得到每个分析目标的最小值和最大值,将所述分析目标的最小值均 减去第一固定值得到第一边界值,利用第一边界值确定红细胞九分图的左下角 的边界,将所述分析目标的最大值均加上第二固定值得到第二边界值, 利用第 二边界值确定红细胞九分图右上角的边界。
优选地, 当选取所述样本中每个红细胞的大小、 形状、 色度和纹理特征中 的二个形态学特征参数值,作为样本的分析目标时, 则得到样本的第一分析目 标和第二分析目标。
优选地, 当选取所述正常人群样本和病理性病例样本中每个红细胞的大 小、 形状、 色度和纹理特征中的三个形态学特征参数值, 作为样本的分析目标 时; 则得到样本的第一分析目标、 第二分析目标和第三分析目标。
优选地, 当选取所述样本中每个红细胞的大小、 形状、 色度和纹理特征中 的四个形态学特征参数值,作为样本的分析目标时; 则在四个分析目标中任选 两个目标,作为样本的第一分析目标和第二分析目标, 剩余两个作为第三分析 目标和第四分析目标。
优选地, 所述红细胞九分图的表现形式为坐标区域图或坐标数值范围。 优选地, 所述红细胞形态学分析结果表示方法还包括样本前处理步骤: 在所述处理过程之前对所述样本采用染色试剂进行染色。
优选地, 所述步骤 S101具体如下:
S201、用显微镜摄像装置对样本进行镜检摄像采图,获取红细胞形态学特 征参数信息;
S202、用图像数字转换器对采集的图像先根据所含细胞进行分割定位,再 对分割后的图像进行数字化处理,即提取各细胞的形态学特征参数值,用大小、 形状、 色度、 纹理四类特征来描述各类细胞;
S203、 将取得的各细胞的大小、 形状、 色度、 纹理四类形态学特征参数值 输入建立在神经网络基础上的分类器, 由该分类器从各类细胞中分离出红细 胞;
S204、 将分离出的红细胞的大小、 形状、 色度、 纹理形态学特征参数值输 入建立在模糊聚类基石出上的特征融合器, 由该特征融合器进行归一化处理,得 到大小、 形状、 色度、 纹理的一维特征向量值。
优选地, 所述红细胞形态学分析结果表示方法还包括如下步骤:
5106、显示每个样本中红细胞的分析目标在所述红细胞九分图中形成的散 点图。
优选地, 所述红细胞形态学分析结果表示方法还包括如下步骤:
5107、统计每个样本中红细胞的分析目标在所述红细胞九分图中每个区域 的百分比; 分图中每个区域的百分比数值。
从上述的技术方案可以看出,本发明公开的一种红细胞形态学分析结果表 示方法, 首先, 处理样本, 得到所述样本中每个红细胞的大小、 形状、 色度和 纹理形态学特征参数值; 其次, 选取所述样本中每个红细胞的大小、 形状、 色 度和纹理特征中的至少两个形态学特征参数值, 作为分析目标; 其次, 根据所 述样本中各个红细胞的分析目标在坐标区域中形成的散点区域来确定红细胞 九分图的坐标区域; 其次,通过调查正常人群红细胞的分析目标在红细胞九分 图中形成的散点区域, 形成正常红细胞参考范围; 最后, 根据各类异常样本中 各类红细胞的分析目标在红细胞九分图中形成的散点区域的改变来判断异常 红细胞的病理性质。 由此可见, 本发明对待测样本的分析是通过对样本中的每 个红细胞的色度、 大小、 形状和纹理特征进行的分析, 并将样本形成在红细胞 九分图中, 能够使得对样本的分析结果更加的准确, 更具有临床的参考意义。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1为本发明公开的一种红细胞形态学分析结果表示方法的流程图; 图 2为本发明公开的样本的大小、色度形态学参数值在二维坐标中的散点 分布图; 图 3 为本发明公开的一种以选取样本中红细胞大小和色度形态学特征参 数值作为分析目标确定红细胞九分图边界的示意图; 图 4 为本发明公开的另一种以选取样本中红细胞大小和色度形态学特征 参数值作为分析目标确定红细胞九分图边界的示意图; 图 5为本发明公开的具有九个分区的红细胞九分图; 图 6为本发明公开的具有三十六个分区的红细胞九分图; 图 7为本发明公开的具有九的平方个分区的红细胞九分图; 图 8a 为本发明公开的正常人群样本中红细胞的大小形态学特征分布情 况; 图 8b 为本发明公开的正常人群样本中红细胞的色度形态学特征分布情 况; 图 8c本发明公开的正常人群样本中红细胞的大小、 色度形态学特征在红 细胞九分图中的散点分布图; 图 9a为本发明公开的一种病理性病例样本中红细胞的大小形态学特征分 布情况,虚线部分为正常人群样本大小形态学特征分布情况, 实线部分为该病 理性病例样本中红细胞的大小形态学特征分布情况; 图 9b为本发明公开的一种病理性病例样本中红细胞的色度形态学特征分 布情况,虚线部分为正常人群样本色度形态学特征分布情况, 实线部分为该病 理性病例样本中红细胞的色度形态学特征分布情况; 图 9c本发明公开的一种病理性病例样本中红细胞的大小、 色度形态学特 征在红细胞九分图中的散点分布图; 图 10a 为本发明公开的另一种病理性病例样本中红细胞的大小形态学特 征分布情况,虚线部分为正常人群样本大小形态学特征分布情况, 实线部分为 该病理性病例样本中红细胞的大小形态学特征分布情况; 图 10b 为本发明公开的另一种病理性病例样本中红细胞的色度形态学特 征分布情况,虚线部分为正常人群样本色度形态学特征分布情况, 实线部分为 该病理性病例样本中红细胞的色度形态学特征分布情况; 图 10c本发明公开的另一种病理性病例样本中红细胞的大小、色度形态学 特征在红细胞九分图中的散点分布图;
图 11为本发明公开的样本中每个红细胞的大小、 形状、 色度和纹理形态 学特征参数值的提取方法流程图。
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明的一部分实施例, 而不 是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例公开了一种红细胞形态学分析结果表示方法,以实现能够对 样本中每个红细胞特征进行单独分析,并对样本中每个红细胞的特征进行统计 和分析, 得出样本的分析结果。
如图 1所示, 为本发明公开的一种红细胞形态学分析结果表示方法, 包括:
5101、 处理样本, 得到所述样本中每个红细胞的大小、 形状、 色度和纹理 形态学特征参数值;
5102、 选取所述样本中每个红细胞的大小、 形状、 色度和纹理特征中的至 少两个形态学特征参数值, 作为分析目标;
5103、根据所述样本中各个红细胞的分析目标在坐标区域中形成的散点区 域来确定红细胞九分图的坐标区域;
S104、通过调查正常人群红细胞的分析目标在红细胞九分图中形成的散点 区域, 形成正常红细胞参考范围; S105、根据各类异常样本中各类红细胞的分析目标在红细胞九分图中形成 的散点区域的改变来判断异常红细胞的病理性质。
在上述方法中, 需要说明的是, 由于不同年龄、 性别、 地区、 红细胞形态 特征的分布可能会有差异, 样本的不同的来源(如尿液、 血液、 脑脊液) , 其 红细胞特征分布的临床意义也不同, 故针对样本进行统计形成红细胞九分图 时, 需要考虑这些造成差异的因素。
上述的样本可以包括: 多例正常人群样本, 多例病理性病例样本。 例如, 如果统计样本为血液样本, 则病理性病例样本包括: 小细胞低色素贫血样本、 大细胞高色素贫血样本、单纯小细胞性贫血样本等; 还可以包括含有形态异常 红细胞的样本, 形态异常的红细胞包括皱缩状红细胞、 芽孢性红细胞、 口状红 细胞、 花环状红细胞、 扭曲状红细胞、 泡状红细胞、 碎裂状红细胞、 菠萝状红 细胞、 泪滴状红细胞、 回形红细胞等.样本的例数可自行确定, 只要符合统计 学的要求即可。
对于样本中红细胞形态学特征参数值的来源,除了用本方案中对样本进行 检测获取外, 还可以根据现有的临床经验值进行获取。
由于样本的大小、形状、色度和纹理形态学特征参数值均在一定的范围内, 参数值不会太大,也不会为零。 为了使图中能充分显示细胞的形态学特征参数 值的分布范围, 则将坐标区域进行截取, 只显示关注的坐标区域。 步骤 S 103 具体如下:根据所述样本中每个红细胞的分析目标在坐标区域中形成的散点区 域, 统计得到每个分析目标的最小值和最大值, 所述分析目标的最小值确定红 细胞九分图的左下角的边界,所述分析目标的最大值确定红细胞九分图的右上 角的边界。
以选取样本每个红细胞的大小、 色度形态学特征参数值作为分析目标为 例, 详细描述此类红细胞九分图的形成过程。 具体步骤如下:
a、 选取样本中每个红细胞的大小、 色度两个形态学特征参数值作为分析 目标;
b、 将样本中每个红细胞的大小、 色度两个形态学特征参数值在坐标区域 形成散点分布, 如图 2所示; c、统计步骤 b中的散点,得到大小特征和色度特征各自的最小值和最大值, 并采用红细胞大小特征和色度特征的最小值确定红细胞九分图的左下角边界, 采用红细胞大小特征和色度特征的最大值确定红细胞九分图的右上角边界;如 图 3所示;
d、 对形成的区域进行划分成九个区域, 从而得到红细胞九分图, 如图 5 所示。
另夕卜,为了使各种样本红细胞的形态学特征参数值构成的散点不至于落入 到红细胞九分图以外的区域, 在形成红细胞九分图的边界时, 采用如下方法: 根据所述样本中每个红细胞的分析目标在坐标区域中形成的散点区域,统计得 到每个分析目标的最小值和最大值,将所述分析目标的最小值均减去第一固定 值得到第一边界值, 利用第一边界值确定红细胞九分图的左下角的边界,将所 述分析目标的最大值均加上第二固定值得到第二边界值,利用第二边界值确定 红细胞九分图右上角的边界。
以选取样本每个红细胞的大小、 色度形态学特征参数值作为分析目标为 例, 详细描述此类红细胞九分图的形成过程。 具体步骤如下:
a、 选取样本中每个红细胞的大小、 色度两个形态学特征参数值作为分析 目标;
b、 将样本中每个红细胞的大小、 色度两个形态学特征参数值在坐标区域 形成散点分布, 如图 2所示;
c、统计步骤 b中的散点,得到大小特征和色度特征各自的最小值和最大值, 并采用红细胞大小特征和色度特征的最小值均减去第一固定值得到第一边界 值, 利用第一边界值确定红细胞九分图的左下角边界, 采用红细胞大小特征和 色度特征的最大值均加上第二固定值得到第二边界值,利用第二边界值确定红 细胞九分图的右上角边界; 如图 4所示; 此步骤中, 第一固定值和第二固定值 可以相同, 也可以不同。 例如, 可以均取 3、 或 4, 也可以第一固定值取 3 , 第 二固定值取 4。 另外, 大小特征的最小值减去的第一固定值和色度特征的最小 值减去的第一固定值可以相同, 也可以不同, 例如, 大小特征的最小值减去的 第一固定值为 3 , 色度特征的最小值减去的第一固定值为 4, 同理, 大小特征的 最大值加上的第二固定值和色度特征的最大值加上的第二固定值可以相同,也 可以不同。
d、 对形成的区域进行划分成九个区域, 从而得到红细胞九分图, 如图 5 所示。
另夕卜, 上述无论哪种方式形成的红细胞九分图区域, 均可根据需要划分为 三十六个分区、 九的平方个分区等。 如图 6所示, 为划分为三十六个区域的红 细胞九分图; 如图 7所示, 为划分为九的平方个分区的红细胞九分图, 当然, 分区数不限于此列举的类型。
发明的实施例,在上述方法中, 当选取所述正常人群样本和病理性病例样 本中每个红细胞的大小、 形状、 色度和纹理特征中的二个形态学特征参数值, 分别作为正常人群样本及病理性病理样本的分析目标时,则得到正常人群样本 和病理性病例样本的第一分析目标和第二分析目标; 步骤 S103具体为:根据所 述样本中每个红细胞的第一分析目标和第二分析目标在坐标区域中形成的散 点区域, 统计得到每个分析目标的最小值和最大值, 所述分析目标的最小值确 定红细胞九分图左下角的边界,所述分析目标的最大值确定红细胞九分图右上 角的边界。
具体的, 第一分析目标和第二分析目标的选择方案可以为以下几种情况: a、 第一分析目标为大小, 第二分析目标为色度;
b、 第一分析目标为大小, 第二分析目标为形状;
c、 第一分析目标为大小, 第二分析目标为纹理;
d、 第一分析目标为色度, 第二分析目标为形状;
e、 第一分析目标为色度, 第二分析目标为纹理;
f、 第一分析目标为形状, 第二分析目标为纹理。
作为本发明的实施例,在上述方法中, 当选取所述样本中每个红细胞的大 小、 形状、 色度和纹理特征中的三个形态学特征参数值, 作为样本的分析目标 时, 则得到样本的第一分析目标、 第二分析目标和第三分析目标; 步骤 S103 具体为:
根据所述样本中每个红细胞的第一分析目标、第二分析目标和第三分析目 标在三维坐标区域中形成的散点, 统计得到每个分析目标的最小值和最大值, 所述分析目标的最小值确定红细胞九分图最下角的边界,所述分析目标的最大 值确定红细胞九分图右上角的边界。
具体的, 第一分析目标、 第二分析目标和第三分析目标的选择方案可以为 以下几种情况:
a、 第一分析目标为大小, 第二分析目标为色度, 第三分析目标为形状; b、 第一分析目标为大小, 第二分析目标为色度, 第三分析目标为纹理; c、 第一分析目标为大小, 第二分析目标为形状, 第三分析目标为纹理; d、 第一分析目标为色度, 第二分析目标为形状, 第三分析目标为纹理。 作为本发明的实施例,在上述方法中, 当选取所述样本中每个红细胞的大 小、 形状、 色度和纹理特征中的四个形态学特征参数值, 作为样本的分析目标 时; 则在四个分析目标中任选两个目标,作为样本的第一分析目标和第二分析 目标, 剩余两个作为第三分析目标和第四分析目标;
根据所述样本中每个红细胞的第一分析目标和第二分析目标在二维坐标 区域中形成的散点区域,统计得到第一分析目标和第二分析目标各自的最小值 和最大值, 所述分析目标的最小值确定红细胞九分图左下角的边界, 所述分析 目标的最大值确定红细胞九分图右上角的边界。
根据所述样本中的第三分析目标和第四分析目标在二维坐标区域中形成 的散点区域, 统计得到第三分析目标和第四分析目标各自的最小值和最大值, 所述分析目标的最小值确定红细胞九分图左下角的边界,所述分析目标的最大 值确定红细胞九分图右上角的边界。
具体的, 第一分析目标、 第二分析目标、 第三分析目标和第四分析目标的 选择方案可以为以下几种情况:
a、 第一分析目标为大小, 第二分析目标为色度, 第三分析目标为形状, 第四分析目标为纹理;
b、 第一分析目标为大小, 第二分析目标为形状, 第三分析目标为纹理, 第四分析目标为色度;
c、 第一分析目标为大小, 第二分析目标为纹理, 第三分析目标为色度, 第四分析目标为形状; d、 第一分析目标为色度, 第二分析目标为形状, 第三分析目标为纹理, 第四分析目标为大小。
上述红细胞九分图及正常人群样本及病理性病例样本的形态学特征在红 细胞九分图中的散点分布可以为如图 5、 或图 6、 或图 7、 或图 8c、 或图 9c、 或 图 10c中的坐标区域图表示, 还可以利用坐标数值范围表示这些区域范围。 例 如, 用(xl,yl)〜(x2,y2)表示红细胞九分图中一个分区的范围。
对于形成的红细胞九分图,正常人群样本及病理性病例样本在九分图中分 布区域的不同, 代表样本的分析结果不同。 如图 8c、 图 9c、 图 10c所示, 为正 常人群样本及两类病理性病例样本的大小和色度形态学特征参数值在红细胞 九分图中形成散点分布。 图 8a为正常人群样本红细胞大小特征的分布情况、 图 8b为正常人群样本红细胞色度特征的分布情况, 可以看出, 大小及色度的分布 均比较集中。 图 8c为正常人群样本中每个红细胞的大小、 色度形态学特征参数 值在二维红细胞九分图中的散点分布图,从图 8c可以看出样本中红细胞在红细 胞九分图中形成的散点大部分分布在中间区域。极少数分布在边缘区域; 图 9a 为一种病理性病例样本红细胞大小特征的分布情况,图 9b为一种病理性病例样 本红细胞色度特征的分布情况, 可以看出, 与正常人群红细胞的大小、 色度特 征相比, 均往数值偏小的方向偏移, 且分布范围更宽。 从图 9c可以看出样本中 红细胞在红细胞九分图中形成的散点往左下角偏移,证明样本中小细胞低色素 的红细胞比较多, 则该样本所在的病人可能犯有小细胞低色素性贫血。 图 10a 为另一种病理性病例样本红细胞大小特征的分布情况, 图 10b为另一种病理性 病例样本红细胞色度特征的分布情况, 可以看出, 与正常人群红细胞的大小、 色度特征相比, 均往数值偏大的方向偏移, 且分布范围更宽。 从图 10c可以看 出样本中红细胞在红细胞九分图中形成的散点往右上角偏移,证明样本中大细 胞高色素的红细胞比较多, 则该样本所在的病人可能犯有大细胞高色素性贫 血。
在上述方法中,在对样本进行处理的过程中,还可以采用染色试剂对样本 进行染色。 此处, 如果对样本进行染色, 则需要对同时对正常人群样本和病理 性病例样本进行染色, 否则, 均不染色。 避免由染色造成的差异。 在上述方法中,步骤 S101中处理样本,得到所述样本中每个红细胞的大小、 形状、 色度和纹理形态学特征参数值的方法具体如下, 如图 11所示。
S201、用显微镜摄像装置对样本进行镜检摄像采图,获取红细胞形态学特 征参数信息;
S202、用图像数字转换器对采集的图像先根据所含细胞进行分割定位,再 对分割后的图像进行数字化处理,即提取各细胞的形态学特征参数值,用大小、 形状、 色度、 纹理四类特征来描述各类细胞;
5203、 将取得的各细胞的大小、 形状、 色度、 纹理四类形态学特征参数值 输入建立在神经网络基础上的分类器, 由该分类器从各类细胞中分离出红细 胞;
5204、 将分离出的红细胞的大小、 形状、 色度、 纹理形态学特征参数值输 入建立在模糊聚类基石出上的特征融合器, 由该特征融合器进行归一化处理,得 到大小、 形状、 色度、 纹理的一维特征向量值。
在上述方法的基础上, 本发明红细胞形态学分析结果表示方法还包括: S106、显示每个样本中的红细胞的分析目标在所述红细胞九分图中形成的 散点图。 如图 8c、 图 9c图 10c所示。
所述红细胞形态学分析结果表示方法还包括如下步骤:
S107、统计每个样本中红细胞的分析目标在所述红细胞九分图中每个区域 的百分比; 分图中每个区域的百分比数值。
步骤 107和 108中统计得出样本的分析目标在红细胞九分图中每个区域的 散点百分比, 然后显示各分区的百分比,检验人员能够直接了解样本中红细胞 的分布状态, 便于临床病理分析。
在上述方法中, 针对不同来源的样本, 例如尿液、 血液、 脑脊液等。 对待 测样本检测后, 同样的检测结果对临床的意义各不相同。
例如: 在尿液中出现皱缩红细胞, 则可能是犯有肾炎或肾结石; 而在脑脊 液中发现皱缩红细胞, 则可能为陈旧性出血。 例如:以红细胞的大小形态学特征和色度形态学特征作为分析目标为例, 散点分布往红细胞九分图的左下角偏移, 如图 9c所示, 如果为血液样本, 则可 能是小细胞低色素贫血, 如果为尿液样本, 则可能是肾性血尿所致。
针对分析目标为大小特征和色度特征时,待测样本在样本红细胞九分图中 不同的分布情况, 体现出不同的病理特征。
例如针对血液样本,如待测样本为缺铁性贫血, 红细胞形态特征为小细胞 低色素,待测样本中红细胞散点分布往 d、细胞低色素的方向偏移,如图 9c所示。
如待测样本为叶酸及维生素 B 12缺乏引起的巨幼红细胞贫血, 则红细胞形 态特征为大细胞高色素,待测样本中红细胞散点分布往大细胞高色素的方向偏 移, 如图 10c所示。
针对分析目标为形状特征和纹理特征时,同样根据待测样本中红细胞的散 点分布情况, 判断样本的正常或异常状况。
本技术方案中红细胞的大小特征与现有技术中红细胞的体积对应。但是现 有技术中, 测得的是每个样本中红细胞的平均红细胞体积; 针对红细胞大小不 一的样本。 现有技术无法体现。
本技术方案中红细胞的色度特征与现有技术中红细胞的血红蛋白含量具 有相关性。 通过对红细胞色度的测量, 可体现红细胞血红蛋白含量。 色度的深 浅与红细胞血红蛋白含量的高低相对应。但是现有技术中测得的是样本中所有 红细胞血红蛋白的平均值。 不能体现血液样本中每个红细胞的血红蛋白含量。
本技术方案中的形状和纹理特征能够体现样本中每个红细胞的形态。利用 形状及纹理特征参数的异常来体现样本中红细胞的异形性。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处, 各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见 的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在 其它实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求
1、 一种红细胞形态学分析结果表示方法, 其特征在于, 包括以下步骤: S101、 处理样本, 得到所述样本中每个红细胞的大小、 形状、 色度和纹理 形态学特征参数值;
S102、 选取所述样本中每个红细胞的大小、 形状、 色度和纹理特征中的至 少两个形态学特征参数值, 作为分析目标;
5103、根据所述样本中各个红细胞的分析目标在坐标区域中形成的散点区 域来确定红细胞九分图的坐标区域;
5104、通过调查正常人群红细胞的分析目标在红细胞九分图中形成的散点 区域, 形成正常红细胞参考范围;
5105、根据各类异常样本中各类红细胞的分析目标在红细胞九分图中形成 的散点区域的改变来判断异常红细胞的病理性质。
2、 根据权利要求 1所述的方法, 其特征在于, 所述红细胞九分图具有九 个分区、 或三十六分区、 或九的平方个分区。
3、 根据权利要求 1所述的方法, 其特征在于, 步骤 S103具体为: 根据所述样本中每个红细胞的分析目标在坐标区域中形成的散点区域,统 计得到每个分析目标的最小值和最大值,所述分析目标的最小值确定红细胞九 分图的左下角的边界,所述分析目标的最大值确定红细胞九分图的右上角的边 界。
4、 根据权利要求 1所述的方法, 其特征在于, 步骤 S103具体为: 根据所述样本中每个红细胞的分析目标在坐标区域中形成的散点区域,统 计得到每个分析目标的最小值和最大值,将所述分析目标的最小值均减去第一 固定值得到第一边界值, 利用第一边界值确定红细胞九分图的左下角的边界, 将所述分析目标的最大值均加上第二固定值得到第二边界值,利用第二边界值 确定红细胞九分图右上角的边界。
5、 根据权利要求 1所述的方法, 其特征在于, 当选取所述样本中每个红 细胞的大小、 形状、 色度和纹理特征中的二个形态学特征参数值, 作为样本的 分析目标时, 则得到样本的第一分析目标和第二分析目标。
6、 根据权利要求 1所述的方法, 其特征在于, 当选取所述正常人群样本 和病理性病例样本中每个红细胞的大小、形状、 色度和纹理特征中的三个形态 学特征参数值, 作为样本的分析目标时; 则得到样本的第一分析目标、 第二分 析目标和第三分析目标。
7、 根据权利要求 1所述的方法, 其特征在于, 当选取所述样本中每个红 细胞的大小、 形状、 色度和纹理特征中的四个形态学特征参数值, 作为样本的 分析目标时; 则在四个分析目标中任选两个目标,作为样本的第一分析目标和 第二分析目标, 剩余两个作为第三分析目标和第四分析目标。
8、 根据权利要求 1所述的方法, 其特征在于, 所述红细胞九分图的表现 形式为坐标区域图或坐标数值范围。
9、 根据权利要求 1所述的方法, 其特征在于, 所述红细胞形态学分析结 果表示方法还包括样本前处理步骤:
在所述处理过程之前对所述样本采用染色试剂进行染色。
10、 根据权利要求 1所述的方法, 其特征在于, 所述步骤 S101具体如下:
5201、用显微镜摄像装置对样本进行镜检摄像采图,获取红细胞形态学特 征参数信息;
5202、用图像数字转换器对采集的图像先根据所含细胞进行分割定位,再 对分割后的图像进行数字化处理,即提取各细胞的形态学特征参数值,用大小、 形状、 色度、 纹理四类特征来描述各类细胞;
5203、 将取得的各细胞的大小、 形状、 色度、 纹理四类形态学特征参数值 输入建立在神经网络基础上的分类器, 由该分类器从各类细胞中分离出红细 胞;
5204、 将分离出的红细胞的大小、 形状、 色度、 纹理形态学特征参数值输 入建立在模糊聚类基石出上的特征融合器, 由该特征融合器进行归一化处理,得 到大小、 形状、 色度、 纹理的一维特征向量值。
11、 根据权利要求 1所述的方法, 其特征在于, 所述红细胞形态学分析结 果表示方法还包括如下步骤:
S106、显示每个样本中红细胞的分析目标在所述红细胞九分图中形成的散 点图。
12、 根据权利要求 1所述的方法, 其特征在于, 所述红细胞形态学分析结 果表示方法还包括如下步骤:
S107、统计每个样本中红细胞的分析目标在所述红细胞九分图中每个区域 的百分比; 分图中每个区域的百分比数值。
+
PCT/CN2013/085659 2013-10-22 2013-10-22 一种红细胞形态学分析结果表示方法 WO2015058353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/085659 WO2015058353A1 (zh) 2013-10-22 2013-10-22 一种红细胞形态学分析结果表示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/085659 WO2015058353A1 (zh) 2013-10-22 2013-10-22 一种红细胞形态学分析结果表示方法

Publications (1)

Publication Number Publication Date
WO2015058353A1 true WO2015058353A1 (zh) 2015-04-30

Family

ID=52992121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085659 WO2015058353A1 (zh) 2013-10-22 2013-10-22 一种红细胞形态学分析结果表示方法

Country Status (1)

Country Link
WO (1) WO2015058353A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596464A (en) * 1983-10-14 1986-06-24 Ortho Diagnostic Systems, Inc. Screening method for red cell abnormality
CN1237707A (zh) * 1998-04-08 1999-12-08 希森美康株式会社 尿中红细胞的鉴定装置及其方法
US20100248347A1 (en) * 2009-03-31 2010-09-30 Yousuke Tanaka Diagnostic support apparatus for renal disease and computer program product
CN102076841A (zh) * 2008-06-27 2011-05-25 古河电气工业株式会社 细胞的识别和分选方法及其装置
CN102359938A (zh) * 2011-09-16 2012-02-22 长沙高新技术产业开发区爱威科技实业有限公司 红细胞形态学分析装置及其方法
CN202393695U (zh) * 2011-09-16 2012-08-22 长沙高新技术产业开发区爱威科技实业有限公司 红细胞形态学分析装置
WO2013037119A1 (zh) * 2011-09-16 2013-03-21 长沙高新技术产业开发区爱威科技实业有限公司 红细胞形态学分析装置及其方法
CN103499580A (zh) * 2013-10-22 2014-01-08 爱威科技股份有限公司 一种红细胞形态学分析结果表示方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596464A (en) * 1983-10-14 1986-06-24 Ortho Diagnostic Systems, Inc. Screening method for red cell abnormality
CN1237707A (zh) * 1998-04-08 1999-12-08 希森美康株式会社 尿中红细胞的鉴定装置及其方法
CN102076841A (zh) * 2008-06-27 2011-05-25 古河电气工业株式会社 细胞的识别和分选方法及其装置
US20100248347A1 (en) * 2009-03-31 2010-09-30 Yousuke Tanaka Diagnostic support apparatus for renal disease and computer program product
CN102359938A (zh) * 2011-09-16 2012-02-22 长沙高新技术产业开发区爱威科技实业有限公司 红细胞形态学分析装置及其方法
CN202393695U (zh) * 2011-09-16 2012-08-22 长沙高新技术产业开发区爱威科技实业有限公司 红细胞形态学分析装置
WO2013037119A1 (zh) * 2011-09-16 2013-03-21 长沙高新技术产业开发区爱威科技实业有限公司 红细胞形态学分析装置及其方法
CN103499580A (zh) * 2013-10-22 2014-01-08 爱威科技股份有限公司 一种红细胞形态学分析结果表示方法

Similar Documents

Publication Publication Date Title
JP7253014B2 (ja) 試料に対する光学測定の実施
CN105136795B (zh) 血液样本检测装置、方法和系统
CN108107197B (zh) 用于检测和/或分类细胞样品中的癌细胞的方法和系统
JP4266813B2 (ja) ステイン吸収の物理学的モデルに基づいて組織学的標本におけるステインを検出および定量化する頑強な方法
JP6163152B2 (ja) 細胞におけるバイオマーカーの発現の積率による解析
JP6772066B2 (ja) 画像を処理して解析するための検査装置
JPH0475463B2 (zh)
JP5762523B2 (ja) 血液サンプルを分析するための方法およびシステム
WO2014131013A1 (en) Cell-based tissue analysis
PT1334461E (pt) Processo e dispositivo de análise de células
MX2014002843A (es) Sistema y metodo para la deteccion de anormalidades en una muestra biologica.
López et al. Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression
US20100279341A1 (en) Methods and system for analyzing cells
US9658214B2 (en) Method and apparatus for analyzing cells
US20180040120A1 (en) Methods for quantitative assessment of mononuclear cells in muscle tissue sections
CN108133754B (zh) 一种溶栓后出血风险的预测系统
EP2332073B1 (en) Shape parameter for hematology instruments
US8512977B2 (en) Analyzing reticulocytes
WO2015058353A1 (zh) 一种红细胞形态学分析结果表示方法
CN103499580A (zh) 一种红细胞形态学分析结果表示方法
Baak et al. Use of biomarkers in the evaluation of CIN grade and progression of early CIN
JP2006330001A (ja) 尿中赤血球の鑑別装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896137

Country of ref document: EP

Kind code of ref document: A1