WO2015057113A2 - Футеровка стенки металлургической печи - Google Patents

Футеровка стенки металлургической печи Download PDF

Info

Publication number
WO2015057113A2
WO2015057113A2 PCT/RU2014/000926 RU2014000926W WO2015057113A2 WO 2015057113 A2 WO2015057113 A2 WO 2015057113A2 RU 2014000926 W RU2014000926 W RU 2014000926W WO 2015057113 A2 WO2015057113 A2 WO 2015057113A2
Authority
WO
WIPO (PCT)
Prior art keywords
lining
furnace
refractory
heat
melt
Prior art date
Application number
PCT/RU2014/000926
Other languages
English (en)
French (fr)
Other versions
WO2015057113A3 (ru
Inventor
Сергей Александрович ЯКОРНОВ
Константин Валерьевич БУЛАТОВ
Дмитрий Юрьевич СКОПИН
Ильфат Ильдусович ИСХАКОВ
Сергей Александрович ЛЕПИН
Николай Михайлович БАРСУКОВ
Original Assignee
Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат" filed Critical Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат"
Priority to AU2014334965A priority Critical patent/AU2014334965B2/en
Priority to EA201600267A priority patent/EA029948B1/ru
Publication of WO2015057113A2 publication Critical patent/WO2015057113A2/ru
Publication of WO2015057113A3 publication Critical patent/WO2015057113A3/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls

Definitions

  • the invention relates to metallurgy, namely, to the lining of metallurgical furnaces located in the melt zone, in the zones of melt sparging with gaseous media, where the greatest thermal loads on the refractory and the maximum rate of lining erosion are observed, and can also be used in other furnaces where high thermal impact on the refractory in the areas where the melt is located or the impact of a high-speed stream of exhaust gases on the lining - in metallurgy, chemical industry and energy.
  • a lining is known in the bath of a melting furnace (USSR author's certificate l 681629), where, to reduce the thermal resistance of the lining, metal plates are introduced into the masonry to a depth of 0.2-0.25 lengths of the refractory. The plates are in contact with the casing of the furnace.
  • This method of lining ensures the work of the refractory at a low level of thermal influence of the melt on the refractory and cannot be used in furnaces with a high speed of movement of the melt.
  • a device for cooling the wall of a metallurgical shaft furnace (RF patent N ° 2001114), according to which, upon contact of a refractory, for example, heat-resistant concrete, with solid products, elements with transverse ribs assembled that are cooled by heat carrier (water) under pressure are installed in the concrete from the inside of the casing in one package.
  • a refractory for example, heat-resistant concrete
  • heat carrier water
  • This ensures that the lining operates in the exhaust gas zone and does not guarantee cooling operation in the melt region.
  • This is especially true for furnaces with types of melts that are explosive with respect to the coolant (matte, slag-matte emulsion, metals).
  • Such a device cannot be used in furnaces with a high-intensity refractory heating rate.
  • the cooling circuit of the element is installed outside the furnace (US patent No. 849587). This design allows you to reduce the failure rate of the furnace, but does not completely exclude the likelihood of an accident in the presence of melt leaks from the metallurgical furnace.
  • the closest technical solution adopted as the closest analogue is a patent of the Russian Federation ZhP34393.
  • the main disadvantage of this patent is that the highly conductive material introduced into the refractory lining does not reach the fire surface, and the effect of unsteady heat flow leads to overheating of the fire outer layer. As a result of this, thermal stresses and cleavage of the protective refractory occur.
  • the local introduction of a highly heat-conducting material into the refractory lining leads to a non-uniform temperature field of the refractory lining, which also causes thermal stresses and destruction (cleavage) of the protective refractory layer.
  • Cooling can provide heat dissipation from the highly conductive material, but introducing pressurized water cooling into the furnace can always create a risk of accident.
  • an external cooled circuit is created on the furnace, which significantly complicates the design of the furnace and increases the cost of its creation, but does not exclude burnout of the cooling casing due to leaks of an aggressive melt in relation to the coolant and the possibility of an accident.
  • RF patent N ° 2134393 for cooling the lining of the roof of the furnace confirms that the possibility of melt leakage cannot be excluded, and this patent is suitable for cooling lining, where the penetration of the melt into the furnace zone is excluded.
  • the total thermal resistance of the wall is influenced not only by the thickness and thermal conductivity of the layer, but also by the external thermal resistance of the layer, determined by the conditions of external heat transfer - the Biot criterion (Bi), and, in particular, the heat transfer coefficient from the melt to the wall a ⁇ .
  • Bi Biot criterion
  • the objective of the proposed technical solution is the creation of a lining of the wall of a metallurgical furnace operating in the zone of contact with the melt or with a high-speed gas stream, which increases the durability of the furnace wall.
  • the cooled element is installed in the tuyere zone inside the metallurgical furnace.
  • An alloy based on copper, nickel, and iron is used as a heat-conducting material.
  • the alloy is selected in such a way that its melting temperature is not lower than the melting temperature of copper.
  • the present invention provides a refractory lining of a metallurgical furnace, which is capable of being operated in the tuyere zone inside the furnace, where there is sparging of the melt by blast, or in the area of intense movement of exhaust gases.
  • the fire surface of the refractory and heat-conducting fins 6 (Figure 1) is exposed to high temperature of the melt or the gas phase of the furnace.
  • a cooled element 3 is installed directly at the furnace casing 1.
  • the voids between the casing, the cooled element and refractory material are filled with heat-conducting material 2.
  • the number of installed cooled elements can be varied in the furnace.
  • the cooled elements are made of a highly conductive material - an alloy, the alloy being selected in such a way that its melting temperature is not lower than the melting temperature of copper.
  • the number of cooled elements is determined by the design features, operating conditions of the refractory lining of the metallurgical furnace - the dimensions of the zone of maximum heat of the refractory, where there is a high-intensity heat and mass transfer.
  • the elements are cooled from the cooling system, which provides explosion safety conditions upon contact of the coolant with the melt that is explosive with respect to water or with the gas atmosphere 7 of furnace 1 (if the wall of the element is destroyed, water will not enter the explosive melt).
  • the outer surface of the cooled element 3 (FIG. 1) is in close contact with the highly thermally conductive material 4 by means of clamps 8.
  • the outer the surface of the refractory 5 is in contact with the heat-conducting material 4, which provides heat removal from the refractory 5 from the maximum temperature zone to the cooled element 3, thereby reducing the temperature of the fire surface below the melting temperature of the skull, which leads to the formation of refractory and material on the fire surface 6 a skull.
  • the resulting skull ensures protection of the refractory and material from wear.
  • is the thickness of the layer
  • is the thermal conductivity of the layer
  • is the heat transfer coefficient from the melt.
  • the ratio of internal ⁇ / ⁇ to external thermal resistance 1 / a1 for a layer of heat-conducting material is determined by the thickness of the material, its thermal conductivity and external heat transfer conditions ⁇ .
  • the maximum Bi value of the material layer corresponds to a maximum thickness of the heat-conducting layer of 5.0 mm, and a minimum of 2.0 mm.
  • a layer of heat-conducting material with a thickness of 5.0 mm is intended to be installed in the zone of bubbling of the melt with gas, and a thickness of 2.0 mm in the gas, slag and slag-matte space of the furnace.
  • the refractory brick Before installing the lining in a metallurgical furnace, the refractory brick is preliminarily crimped with a heat-conducting material. The fastening of the heat-conducting material to the cooled element is checked. Inside the metallurgical furnace, cooled elements are first installed.
  • Elements pass inside the furnace behind its casing ( Figure 1).
  • the lining of the wall begins with the installation of a layer of heat-conducting material 4, and then of refractory brick 5, and then again a layer of heat-conducting material 4. After this, a layer of material 4 (Fig. 1) is fastened to the cooled element 3. After this, the lining operations are repeated.
  • the gaps between the casing, the element and the refractory material are filled with heat-conducting backfill, paste or mastic. Gap filling is checked by a probe.
  • the cooled elements are connected to an explosion-proof cooling system.
  • the lining was tested on a Noranda-type melting furnace and a horizontal converter for processing matte.
  • the lining ( Figure 1) was installed in the tuyere zone, where the melt is bubbled with oxygen-enriched blast.
  • the cooled elements were placed inside the furnace below, above the axis of the tuyeres and in the gas space of the furnace in the zone of movement of a high-speed, high-temperature gas flow.
  • 12 cooled elements were installed inside it at the casing.
  • the fins of the warm-water material 4 (FIG. 1) were preliminarily crimped on the refractory 5 and the cooled element 3.
  • the lining began, as shown in FIG.
  • the gaps between the casing, the cooled element and the fins were filled with heat-conducting mastic. The filling of the gaps was checked by a probe.
  • the cooled elements were connected to an explosion-proof water cooling system under vacuum. The life of the wall has doubled, despite the use of oxygen-rich blast, which was previously absent.
  • a horizontal converter for processing matte in the tuyere zone 6 cooled elements were installed (2 below and 4 above the axis of the tuyeres).
  • the lining of the wall of the horizontal converter is similar to the lining of the wall of a Noranda melting furnace.
  • the thickness of the refractory brick in front of the cooled elements in the Noranda type furnace and horizontal converter was 520 mm.
  • the invention can be used in metallurgy, chemical industry and energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

Изобретение относится к металлургии и может быть использовано в других отраслях техники, где требуется снижение скорости разгара футеровки. Охлаждаемый элемент установлен в фурменной зоне внутри металлургической печи. Элемент контактирует с футеровкой, содержащей элементы из теплопроводного материала и примыкающий к охлаждаемому элементу. Футеровку по всей толщине и высоте выполняют послойно материалами с различной теплопроводностью. Футеровка контактирует с расплавом или газовой атмосферой печи. В качестве теплопроводного материала используют сплав меди, никеля, железа. Сплав выбран таким образом, что температура его плавления не ниже температуры плавления меди. Использование футеровки обеспечивает увеличение срока эксплуатации огнеупорной стенки печи в зонах барботажа расплава и в газовой атмосфере печи.

Description

ФУТЕРОВКА СТЕНКИ МЕТАЛЛУРГИЧЕСКОЙ ПЕЧИ
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к металлургии, а именно, к футеровке металлургических печей, расположенной в зоне расплава, в зонах барботажа расплава газообразными средами, где наблюдаются наибольшие тепловые нагрузки на огнеупор и максимальная скорость эрозии футеровки, а также может быть использовано в других печах, где имеет место высокое тепловое воздействие на огнеупор в областях нахождения расплава или воздействия высокоскоростного потока отходящих газов на футеровку - в металлургии, химической промышленности и энергетике.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Известна футеровка в ванне плавильной печи (авторское свидетельство СССР l 681629), где для уменьшения теплового сопротивления футеровки в кладку на глубину 0,2-0,25 длины огнеупора вводят металлические пластины. Пластины контактируют с кожухом печи. Такой способ футеровки обеспечивает работу огнеупора при невысоком уровне теплового воздействия расплава на огнеупор и не может быть использован в печах с высокой скоростью движения расплава.
Также известно устройство для охлаждения стенки металлургической шахтной печи (патент РФ N°2001114), согласно которому при контакте огнеупора, например жаростойкого бетона, с твердыми продуктами в бетон с внутренней стороны кожуха устанавливают охлаждаемые теплоносителем (водой) под давлением элементы с поперечными ребрами, собранными в один пакет. Это обеспечивает работу футеровки в зоне отходящих газов и не гарантирует работу охлаждения в области расплава. Особенно это относится к печам с взрывоопасными в отношении теплоносителя типами расплавов (штейн, шлако-штейновая эмульсия, металлы). Такое устройство не может быть использовано в печах с высокоинтенсивной скоростью нагрева огнеупора.
Большинство металлургических печей имеют наружный кожух, к которому примыкает огнеупорная футеровка. Пустоты между кожухом и футеровкой заполняются специальной засыпкой или материалами, обладающими высокой теплопроводностью. Для снижения температуры огнеупора в шлаковой ванне рудно-термической печи в футеровку устанавливают водоохлаждаемые под давлением элементы (кессоны) (Я.Л. Серебренный. «Электроплавка медно-никелевых руд и концентратов», М.: Металлургия, 1974, стр. 82). Элементы в шлаковом поясе печи устанавливают через ряд огнеупорного кирпича на глубину 230-460 мм. При разрушении элемента контакт теплоносителя (воды под давлением), как правило, не приводит к взрывам, но намокание кладки, ее вымывание приводят к авариям печей.
Для исключения протечек теплоносителя из охлаждаемого элемента в футеровку, контур охлаждения элемента устанавливают снаружи печи (патент США З 849587). Данная конструкция позволяет снизить аварийность работы печи, но полностью не исключает вероятность аварии при наличии протечек расплава из металлургической печи.
Наиболее близким техническим решением, принятым в качестве ближайшего аналога (прототипа) является патент РФ ЖП34393. Основной недостаток указанного патента состоит в том, что вводимый в огнеупорную футеровку высокотеплопроводный материал, не достигает огневой поверхности, а воздействие нестационарного теплового потока приводит к перегреву огневого наружного слоя. Вследствие этого возникают термические напряжения и скол защитного огнеупора. Кроме того, локальное введение в огнеупорную футеровку высокотеплопроводного материала приводит к неравномерности температурного поля огнеупорной футеровки, что также обусловливает возникновение термических напряжений и разрушение (скол) защитного огнеупорного слоя. Обеспечить теплоотвод от высокотеплопроводного материала может охлаждение, но введение внутрь печи водяного охлаждения под давлением всегда может создать опасность аварии. В прототипе создают на печи внешний охлаждаемый контур, что значительно усложняет конструкцию печи и повышает затраты на её создание, но не исключает прогар кожуха охлаждения вследствие протечек агрессивного в отношении теплоносителя расплава и возможность аварии. Использование патента РФ N°2134393 для охлаждения футеровки свода печи подтверждает, что возможность протечки расплава исключить нельзя, и данный патент пригоден для охлаждения футеровки, где исключено проникновение расплава в зону печи. Локальное охлаждение футеровки за счет введения в нее охлаждаемых с внешней стороны медных стержней обусловливает возникновение градиента температуры от конца стержня к огневой поверхности огнеупора до 17°С/мм, что приводит к возникновению термических напряжений в огнеупоре и его сколу в моменты нестационарного теплового воздействия. Таким образом, указанный патент не обеспечивает взрывобезопасность охлаждения, не исключает возможность возникновения термических напряжений в огнеупоре и его скола, а образующаяся на поверхности огнеупора настыль (гарнисаж) оказывает вредное воздействие на режим охлаждения вследствие падения коэффициента теплоотдачи. На суммарное тепловое сопротивление стенки оказывает влияние не только толщина и теплопроводность слоя, но и внешнее термическое сопротивление слоя, определяемое условиями внешнего теплообмена - критерий Био (Bi), и, в частности, коэффициентом теплоотдачи от расплава к стенке а\. Для условий, когда ои> 250 ккал/м "С, внешний теплообмен становится доминирующим, и работа стенки в этих условиях определяется критерием Bi, а регулирование температуры стенки невозможно без периодического возникновения слоя гарнисажа.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей предлагаемого технического решения является создание футеровки стенки металлургической печи, работающей в зоне контакта с расплавом или с высокоскоростным газовым потоком, увеличивающей срок стойкости стенки печи.
Технический результат предлагаемого изобретения заключается в том, что футеровка стенки металлургической печи, включающая огнеупорную футеровку, теплопроводную засыпку, содержащую элементы из теплопроводного материала, примыкающую к охлаждаемому элементу, при этом огнеупорная футеровка контактирует с расплавом или газовой атмосферой печи, а внутренняя сторона стенки футеровки содержит элементы из высокотеплопроводного материала, согласно изобретению футеровку ниже и выше оси фурм по всей толщине и высоте выполняют послойно материалами с различной теплопроводностью при отношении внутреннего термического сопротивления к внешнему для слоя теплопроводного материала Bi=(l,67- 16,81)10"3, а огнеупора Bi=l,67-7,5.
Охлаждаемый элемент установлен в фурменной зоне внутри металлургической печи.
В качестве теплопроводного материала используют сплав на основе меди, никеля, железа.
При этом сплав выбран таким образом, что температура его плавления не ниже температуры плавления меди.
Настоящее изобретение предусматривает огнеупорную футеровку металлургической печи, которая способна эксплуатироваться в фурменной зоне внутри печи, где имеет место барботаж расплава дутьем, или в области интенсивного движения отходящих газов.
КРАТКОЕ ОПИСАНИЕ ФИГУР ЧЕРТЕЖЕЙ
Огневая поверхность огнеупора и теплопроводных ребер 6 (Фиг.1) подвергается воздействию высокой температуры расплава или газовой фазы печи. Внутри металлургической печи в зоне максимального теплового воздействия непосредственно у кожуха печи 1 устанавливается охлаждаемый элемент 3. Пустоты между кожухом, охлаждаемым элементом, огнеупором заполняются теплопроводным материалом 2. В печи количество установленных охлаждаемых элементов может быть разнообразно. Охлаждаемые элементы выполнены из высокотеплопроводного материала - сплава, причем сплав выбран таким образом, что температура его плавления не ниже температуры плавления меди. Количество охлаждаемых элементов определяется конструктивными особенностями, условиями эксплуатации огнеупорной футеровки металлургической печи - размерами зоны максимального разгара огнеупора, т.е. где имеет место высокоинтенсивный тепло-массообмен. Элементы охлаждаются от системы охлаждения, которая обеспечивает условия взрывобезопасности при контакте теплоносителя с взрывоопасным в отношении воды расплавом или газовой атмосферой 7 печи 1 (при разрушении стенки элемента исключается попадание воды во взрывоопасный расплав). Наружная поверхность охлаждаемого элемента 3 (Фиг.1) имеет тесный контакт с высокотеплопроводным материалом 4 с помощью зажимов 8. Наружная поверхность огнеупора 5 находится в контакте с теплопроводным материалом 4, что обеспечивает отвод тепла от огнеупора 5 из зоны максимальных температур к охлаждаемому элементу 3, тем самым обеспечивает снижение температуры огневой поверхности ниже температуры плавления гарнисажа, что приводит к образованию на огневой поверхности 6 огнеупора и материала гарнисажа. Образовавшийся гарнисаж обеспечивает защиту огнеупора и материала от износа. При незапланированном увеличении внешних условий теплообмена возможен режим, когда весь слой гарнисажа расплавится и будет иметь место уменьшение толщины защитного слоя футеровки, но скорость этого уменьшения намного ниже скорости разгара огнеупора без охлаждения, что увеличивает срок эксплуатации металлургической печи.
Выбор толщины слоев футеровки определяется из условий критерия Bi: Bi = (δ/λ) : (1/си),
где:
δ -толщина слоя;
λ- теплопроводность слоя;
\ - коэффициент теплоотдачи от расплава.
Отношение внутреннего δ/λ к внешнему тепловому сопротивлению 1/а\ для слоя теплопроводного материала определяется толщиной материала, его теплопроводностью и условиями внешнего теплообмена \. Максимальная величина Bi слоя материала отвечает максимальной толщине теплопроводного слоя 5,0 мм, а минимальная 2,0 мм. Слой теплопроводного материала толщиной 5,0 мм предназначен для установки его в зоне барботажа расплава газом, а толщиной 2,0 мм - в газовом, шлаковом и шлако-штейновом пространстве печи. Минимальная величина Bi огнеупорного материала отвечает минимальной толщине огнеупора с его максимальной теплопроводностью λ=6,98Βτ/Μ°0, а максимальная величина Bi - огнеупору с теплопроводностью 3,95Вт/м°С.
ПРИМЕР ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Перед установкой футеровки в металлургическую печь огнеупорный кирпич предварительно обжимается теплопроводным материалом. Проверяется крепление теплопроводного материала к охлаждаемому элементу. Внутрь металлургической печи сначала устанавливают охлаждаемые элементы. б
Элементы проходят внутри печи за ее кожухом (Фиг.1). Футеровку стенки начинают с установки слоя теплопроводного материала 4, а затем огнеупорного кирпича 5, а затем опять слой теплопроводного материала 4. После этого происходит крепление слоя материала 4 (Фиг.1) на охлаждаемом элементе 3. После этого операции футеровки повторяются. Зазоры между кожухом, элементом и огнеупором заполняются теплопроводной засыпкой, пастой или мастикой. Заполнение зазоров проверяется щупом. Охлаждаемые элементы после монтажа футеровки подключаются к взрывобезопасной системе охлаждения.
Проверка футеровки осуществлялась на плавильной печи типа «Норанда» и горизонтальном конвертере для переработки медных штейнов. В печи футеровка (Фиг.1) устанавливалась в фурменной зоне, где имеет место барботаж расплава обогащенным по кислороду дутьем. Охлаждаемые элементы размещались внутри печи ниже, выше оси фурм и в газовом пространстве печи в зоне движения высокоскоростного, высокотемпературного потока газа. После выбивки огнеупорной кладки через боковую поверхность печи, внутри ее у кожуха устанавливались 12 охлаждаемых элементов. Оребрение тепловодным материалом 4 (Фиг.1) предварительно обжималось на огнеупоре 5 и охлаждаемом элементе 3. После установки охлаждаемых элементов начиналась футеровка, как показано на Фиг.1. Зазоры между кожухом, охлаждаемым элементом и оребрением заливались теплопроводной мастикой. Заполнение зазоров проверялось щупом. После монтажа стенки, охлаждаемые элементы подключались к взрывобезопасной системе водяного охлаждения под разрежением. Срок эксплуатации стенки увеличился в два раза, несмотря на использование обогащенного по кислороду дутья, что отсутствовало ранее. В горизонтальном конвертере для переработки медных штейнов в фурменной зоне устанавливалось 6 охлаждаемых элементов (2 - ниже и 4 - выше оси фурм). Футеровка стенки горизонтального конвертера аналогична футеровке стенки плавильной печи типа «Норанда». Толщина огнеупорного кирпича перед охлаждаемыми элементами в печи типа «Норанда» и горизонтальном конвертере составила 520 мм. После окончания футеровки, охлаждаемые элементы подключались к взрывобезопасной системе. ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
Изобретение может быть использовано в металлургии, химической промышленности и энергетике

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Футеровка стенки металлургической печи, включающая огнеупорную футеровку, теплопроводную засыпку, содержащую элементы из теплопроводного материала, примыкающую к охлаждаемому элементу, при этом огнеупорная футеровка контактирует с расплавом или газовой атмосферой печи, а внутренняя сторона стенки футеровки содержит элементы из высокотеплопроводного материала, отличающаяся тем, что футеровку ниже и выше оси фурм по всей толщине и высоте выполняют послойно материалами с различной теплопроводностью при отношении внутреннего термического сопротивления к внешнему для слоя теплопроводного материала Bi=(l,67- 16,81)10"3, а огнеупора Bi=l,67-7,5.
2. Футеровка по п.1, отличающаяся тем, что охлаждаемый элемент установлен в фурменной зоне внутри металлургической печи.
3. Футеровка по п.1 или п.2, отличающаяся тем, что в качестве теплопроводного материала используют сплав на основе меди, никеля, железа.
4. Футеровка по п.З, отличающаяся тем, что сплав выбран таким образом, что температура его плавления не ниже температуры плавления меди.
PCT/RU2014/000926 2013-10-15 2014-12-10 Футеровка стенки металлургической печи WO2015057113A2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2014334965A AU2014334965B2 (en) 2013-10-15 2014-12-10 Wall lining for a metallurgical furnace
EA201600267A EA029948B1 (ru) 2013-10-15 2014-12-10 Футеровка стенки металлургической печи

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013146135 2013-10-15
RU2013146135/02A RU2555697C2 (ru) 2013-10-15 2013-10-15 Футеровка стенки металлургической печи

Publications (2)

Publication Number Publication Date
WO2015057113A2 true WO2015057113A2 (ru) 2015-04-23
WO2015057113A3 WO2015057113A3 (ru) 2015-07-16

Family

ID=52828827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000926 WO2015057113A2 (ru) 2013-10-15 2014-12-10 Футеровка стенки металлургической печи

Country Status (5)

Country Link
AU (1) AU2014334965B2 (ru)
CL (1) CL2016000889A1 (ru)
EA (1) EA029948B1 (ru)
RU (1) RU2555697C2 (ru)
WO (1) WO2015057113A2 (ru)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285004A (en) * 1976-01-09 1977-07-15 Sanyo Special Steel Co Ltd Furnace wall for superhighhpower arc furnace for steel making
JP2875413B2 (ja) * 1990-07-09 1999-03-31 川崎製鉄株式会社 溶融金属容器
AUPM393094A0 (en) * 1994-02-16 1994-03-10 University Of Melbourne, The Internal refractory cooler
WO1998054367A1 (en) * 1997-05-30 1998-12-03 Hoogovens Staal B.V. Refractory wall structure
US6280681B1 (en) * 2000-06-12 2001-08-28 Macrae Allan J. Furnace-wall cooling block
DE10119034A1 (de) * 2001-04-18 2002-10-24 Sms Demag Ag Kühlelement zur Kühlung eines metallurgischen Ofens
LU91142B1 (fr) * 2005-02-28 2006-08-29 Wurth Paul Sa Electric arc furnace
CH699405B1 (de) * 2008-08-26 2021-06-15 Mokesys Ag Feuerfeste Wand, insbesondere für einen Verbrennungsofen.

Also Published As

Publication number Publication date
CL2016000889A1 (es) 2016-09-23
WO2015057113A3 (ru) 2015-07-16
RU2013146135A (ru) 2015-04-20
RU2555697C2 (ru) 2015-07-10
EA201600267A1 (ru) 2016-07-29
AU2014334965A1 (en) 2016-05-05
AU2014334965B2 (en) 2018-02-22
EA029948B1 (ru) 2018-06-29

Similar Documents

Publication Publication Date Title
US3849587A (en) Cooling devices for protecting refractory linings of furnaces
JP4482276B2 (ja) 冷却エレメント
US11747084B2 (en) Self-crucible wall submerged burner furnace
AU2003281723A1 (en) Cooling element
FI126540B (en) Blast furnace for metallurgical processes
RU2281974C2 (ru) Охлаждающий элемент для охлаждения металлургической печи
RU2555697C2 (ru) Футеровка стенки металлургической печи
CN105509475B (zh) 一种高密封性耐高温闸门及其使用方法
EP2960608A1 (en) Method for cooling housing of melting unit and melting unit
Kennedy et al. Alternative coolants and cooling system designs for safer freeze lined furnace operation
JP5963655B2 (ja) 三相交流電極式円形電気炉及びその冷却方法
KR101159968B1 (ko) 전기로용 냉각 패널
Mc Dougall Water-cooled tap-hole blocks
SU943510A1 (ru) Секци свода дуговой печи
JP2013127352A (ja) 三相交流電極式円形電気炉の冷却方法及びその三相交流電極式円形電気炉
CN108253787A (zh) 电磁浸没燃烧冶炼装置
EP3456849B1 (en) Tuyere for bottom and side blowing and method for cooling the same
SU1079988A2 (ru) Способ защиты отражающей поверхности свода электрического миксера от отложений
Kyllo et al. Composite furnace module cooling systems in the electric slag cleaning furnace
KR100562958B1 (ko) 로체 냉각장치 및 냉각공법
UA120814C2 (uk) Плавильний агрегат, що містить плавильну ємність, та спосіб плавки з його використанням
Kennedy et al. High intensity slag resistance furnace design
KR100851188B1 (ko) 고로 스테이브 수명 연장방법
Shima et al. Refractories of Flash Furnaces in Japan
Coetzee et al. Application of UCAR® Chill Kote™ lining to ilmenite smelting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853856

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201600267

Country of ref document: EA

ENP Entry into the national phase in:

Ref document number: 2014334965

Country of ref document: AU

Date of ref document: 20141210

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14853856

Country of ref document: EP

Kind code of ref document: A2