WO2015057045A1 - Composites de sistemas termoplásticos que emplean polvo de cascara de coco, almidón de maíz y aditivos oxo-degradativos para formular artículos de plástico espumado biodegradables - Google Patents

Composites de sistemas termoplásticos que emplean polvo de cascara de coco, almidón de maíz y aditivos oxo-degradativos para formular artículos de plástico espumado biodegradables Download PDF

Info

Publication number
WO2015057045A1
WO2015057045A1 PCT/MX2014/000159 MX2014000159W WO2015057045A1 WO 2015057045 A1 WO2015057045 A1 WO 2015057045A1 MX 2014000159 W MX2014000159 W MX 2014000159W WO 2015057045 A1 WO2015057045 A1 WO 2015057045A1
Authority
WO
WIPO (PCT)
Prior art keywords
additives
coconut shell
polymer
oxo
composites
Prior art date
Application number
PCT/MX2014/000159
Other languages
English (en)
French (fr)
Inventor
Jaime Alfonso GOMEZ FLORES
Ignacio REYES GONZALEZ
Original Assignee
Gomez Flores Jaime Alfonso
Reyes Gonzalez Ignacio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gomez Flores Jaime Alfonso, Reyes Gonzalez Ignacio filed Critical Gomez Flores Jaime Alfonso
Publication of WO2015057045A1 publication Critical patent/WO2015057045A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/012Additives activating the degradation of the macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0033Additives activating the degradation of the macromolecular compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin

Definitions

  • the present invention is located in the field of the plastics industry, particularly in the composites or reinforced plastics industry, in its facet of biodegradable plastics. It consists of both the product obtained and the process to prepare a composite consisting of: thermoplastic polymers, containing coconut husk, corn starch, oxo-degradative additives, as well as other additives incorporated into the polymer matrix, to increase the mechanical properties of the resulting composite, compared to those of the original thermoplastic, and also give it the characteristic of being biodegradable.
  • Composites are synthetic materials that form a heterogeneous mixture, which nevertheless presents such consistency, which forms a solid material of suitable properties for use in utilitarian parts.
  • a composite consists of two types of components: cohesion and reinforcement.
  • the cohesion components wrap and join the reinforcement components (or simply reinforcements) rigidly maintaining their position within the cohesion material.
  • This combination of materials imparts to the composite mechanical properties significantly superior to those of the raw materials from which it comes.
  • the adobe, formed by clay and straw is the oldest composite we know, even today it is still used in the construction of houses. In a macroscopic view, clay (cohesion material) differs from straw (reinforcement), but the heterogeneous mixture has better mechanical properties than its respective components.
  • individual Another clear example is found in concrete reinforced with corrugated steel.
  • thermoplastic system The homogeneous mixture of thermoplastic polymers, whether homopolymers or copolymers, with a variety of additives that modify their properties, is known as thermoplastic system.
  • thermoplastic system The homogeneous mixture of a thermoplastic system with reinforcement of the coconut shell is a composite, in which the cohesion component is the thermoplastic system and the reinforcement of the coconut shell.
  • polymers have been generated from natural sources, particularly vegetables, such as polylactic acid, but to date, for various reasons, their production has not been able to displace traditional polymers and they are not manufactured. Foamed with them.
  • Another option that has also been addressed is the modification or formulation of the polymers to reduce the impact that their accumulation on the environment causes, through granting them degradation characteristics by environmental factors such as: solar radiation, temperature, humidity and microbiological activity.
  • additives have been created that favor the degradation of polymers by the mechanisms already mentioned, being a group of them called oxo-degrantes.
  • This process requires oxygen so it does not occur under anaerobic conditions.
  • the degradation process can be regulated to periods of 2 to 3 years, something suitable for the needs of the end user of a product, such as plastic bags, so that the object is not useless even before being used in the desired application, if not until it is disposed of in the trash, avoiding significant economic losses.
  • What happens when placing the polymer system containing the oxo-degradative additive in the garbage is the breaking of the chains that make up the polymer reducing the molecular weight and returning to the shorter molecules and with the presence of coconut shell powder and of cornstarch, the composite is capable of developing and promoting the growth of microorganisms, both on its surface and in foam bubbles, which will eventually degrade the plastic.
  • aliphatic polyhydroxy carboxylic acid means an aliphatic acid having one or more hydroxyl groups and one or more carboxyl groups.
  • aliphatic dihydroxy monocarboxylic acids such as glyoxylic and glyceric acid
  • polycarboxylic monohydroxy acids such as eric, arabic or manic acid
  • monohydroxy polycarboxylic acids such as methyl acid
  • dihydroxy dicarboxylic acids such as tartaric acid.
  • these additives may include calcium oxide and other relevant additives.
  • Some of the trademarks of oxo-degrading additives described in the previous paragraph are: Envirocare® from Ciba Specialty Chemicals, Addiflex® from Add-X Biotech AB, TDPA® from EPI Environmental Technologies and Celspan® from Phoenix Plastics, and It is particularly preferred in the present invention.
  • WO 2009/087425 describes the production of scented garbage bags and containing oxo-degrading additives and antibacterial agents to give it degradability and better control over the bacterial population that can grow in the garbage.
  • they only use the oxo-degradative additive as a promoter of their degradation. Therefore, it is desirable to have a better system for promoting and controlling the degradation of plastic products such as the present invention.
  • agave wastes and oxo-degrading additives are used, but it does not imply the use of coconut shell, and The fibers they use retain only mechanical properties, they do not increase them, as is the case with our invention.
  • Figure 1 is a graph showing the Young Module Variation
  • Figure 2 is a graph showing the Weight variation by biodegradation
  • the coconut shell is dried by some conventional method, such as drying in the sun, by lots in trays with forced circulation, infrared radiation, under vacuum, in continuous rotary dryer, continuous drying tunnels and others, known in the industry and described in the technical literature widely.
  • the shell dries, its size is reduced either in a conventional hammer mill, one with rotating balls, or one with blades, all of them with an exit mesh 70 or smaller.
  • the powder obtained cannot be mixed spontaneously with thermoplastic polymers because it has hydrophilic polar characteristics that make it superficially incompatible with thermoplastics, which have non-polar hydrophobic characteristics, given the above, the use of coupling agents or compatibilizers is necessary, improving even more the properties of the composite, being able to use those that are available in the market. It is possible to employ dispersing agents, which reduce energy between dissimilar phases for better mixing and obtaining a uniform composition in the resulting compound. In this sense, stearic acid and metal stearates of calcium, magnesium, zinc are typical examples.
  • High temperature mixing is best performed in a twin-screw extruder of the types known in the plastics industry, without the obstacle of using a single-screw extruder suitable for mixing.
  • the components of the mixture are mixed in a convenient mixer such as those widely known in the plastics industry: One or more homopolymers, instead one or more copolymers, or a combination of homopolymers and copolymers, all thermoplastic of any nature ; the usual additives in polymer systems, such as pigments, stabilizers, antioxidants, dispersants, fillers, compatibilizers, etc., the oxo-degradative additive and coconut shell powder.
  • This mixture is fed to the extruder, which melts the polymer and thanks to its mixing capacity, generates the composite, in the form of a cylindrical profile that is subsequently cut, forming pellets that can be used to make the foaming.
  • the foamed product it is possible to use two different methods: The first consists of incorporating wet corn starch and a foaming agent such as azo di carbonamide into any commercial mixing equipment, or any other available in the market.
  • the second method consists in injecting a gas into the equipment where the desired foamed product is being manufactured, feeding the equipment the wet corn starch mixed with the already prepared pellets.
  • the polymeric system may be formed by one or more homopolymers, instead one or more copolymers, or a combination of homopolymers and copolymers, all of them thermoplastic of any nature, virgin or recycled, in solid state or in solution or in emulsion.
  • additives are the usual ones in polymer systems already backed by use, such as dispersants, pigments, fillers, humectants, rheology modifiers, compatibilizers, coupling agents, plasticizers, stabilizers, antioxidants, etc.
  • any thermoplastic system and any foaming system can be used, provided that it is necessarily used wet starch, coconut shell powder of any mesh and an oxo-degrading additive in any proportion, within the ranges mentioned above, regarding the polymer system.
  • the composites obtained with coconut shell powder have better mechanical properties than their corresponding polymer systems, such as larger Flexion and Young's modules.
  • both cases it can be seen that between 30% and 40% by weight of coconut shell compared to the polymer system, in this case pure high density polyethylene (HDPE), provides a notable increase in both modules.
  • the mixture of HDPE and coconut shell powder was carried out in a Leistritz double spindle extruder model MICRO 27 GI / GG 32D, running with 27 mm diameter spindles with integrated gear, the processing temperature was a ramp from 170 ° C to 200 ° C at the exit of the extruder, the spindle speed was 260 rev / min.
  • the composite was pelletized and then obtained by pressing specimens for the performance of mechanical tests, the processed pellets were dried for 48 hours at 60 ° C in a temperature controlled oven, this to remove the moisture that the material obtained during processing cooling.
  • a Schwabethan Polystad 200 T brand thermo-compression press with controlled temperature and pressure was used to Prepare the specimens for tensile tests.
  • the same extruder to which the composite pellets were mixed with the wet starch and with azo di carbonamide (ADC) was fed to manufacture the foam, obtaining a profile 1 cm thick by 5 cm wide, from which they cut 10 cm long specimens for biodegradability tests.
  • HDPE High density polyethylene
  • the HDPE used was PADMEX 65050 from Pemex and the azo di carbonamide from Akzo Nobel.
  • the proportions of each component may range as follows:
  • the tests were carried out with 140 specimens, 28 of each system, according to ISO 14855-2, which is a composting test with activated sludge.
  • the test consists of submerging the already weighed specimens in the activated sludge prepared according to the standard, and removing them at certain times, in this case, by previous results, a year divided into 4 parts was chosen, in each period 7 specimens are removed of each composting system, they are washed and dried for 72 hours at 50 ° C in a drying oven, weighed and averaged, discarding the specimens with drastic variations in weight, which could be due to inhomogeneities or ruptures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Esta invención se refiere al empleo de polvo de cáscara de coco con almidón húmedo y un aditivo oxo-degradativo, en la obtención de composites de sistemas poliméricos termoplásticos de cualquier naturaleza, para fabricar espumados biodegradables para empaque con buenas propiedades mecánicas respecto de los espumados del polímero puro.

Description

COMPOSITES DE SISTEMAS TERMOPLÁSTICOS QUE EMPLEAN POLVO DE CASCARA DE COCO, ALMIDÓN DE MAÍZ Y ADITIVOS OXO- DEG R AD ATI VOS PARA FORMULAR ARTÍCULOS DE PLÁSTICO ESPUMADO BIODEGRADABLES
CAMPO TÉCNICO
La presente invención se ubica en el ámbito de la industria del plástico particularmente en la industria de los composites o plásticos reforzados, en su faceta de plásticos biodegradables. Consiste tanto en el producto obtenido como en el proceso para preparar un composite formado por: polímeros termoplásticos, que contienen de cáscara de coco, almidón de maíz, aditivos oxo-degradativos, así como otros aditivos incorporados a la matriz de polímero, para aumentar las propiedades mecánicas del composite resultante, en comparación con las del termoplástico original, y darle además la característica de ser biodegradable.
ANTECEDENTES DE LA INVENCIÓN Los composites son materiales sintéticos que forman una mezcla heterogénea, la cual sin embargo presenta tal coherencia, que forma un material sólido de propiedades adecuadas para su empleo en piezas utilitarias. Un composite está constituido por componentes de dos tipos: los de cohesión y los de refuerzo. Los componentes de cohesión envuelven y unen a los componentes de refuerzo (o simplemente refuerzos) manteniendo con rigidez la posición de éstos dentro del material de cohesión. Así, esta combinación de materiales le imparte al composite unas propiedades mecánicas notablemente superiores a las de las materias primas de las que procede. El adobe, formado por arcilla y paja es el composite más antiguo que conocemos, aún hoy día se sigue utilizando en la construcción de viviendas. En una vista macroscópica la arcilla (material de cohesión) se distingue de la paja (refuerzo), pero la mezcla heterogénea tiene unas propiedades mecánicas mejores que las de sus respectivos componentes individuales. Otro ejemplo claro lo encontramos en el hormigón reforzado con acero corrugado.
La mezcla homogénea de polímeros termoplásticos, ya sean homopolímeros o en su caso copolímeros, con una variedad de aditivos que modifican sus propiedades, se conoce como sistema termoplástico. Así, la mezcla heterogénea de un sistema termoplástico con refuerzo de la de cáscara de coco es un composite, en el que el componente de cohesión es el sistema termoplástico y el refuerzo de la cáscara de coco.
La abundante producción de diversos sistemas poliméricos en la actualidad, ha causado un problema con la disposición de los mismos, pues objetos manufacturados con ellos se acumulan a lo largo y ancho del planeta, generando problemas de contaminación, pues se preparan estos sistemas poliméricos para resistir lo más posible el la acción del medio ambiente. Un caso particular que no se ha atendido adecuadamente, son los espumados con que se empacan los artículos electrónicos, desde circuitos aislados para ensamblaje de equipos, hasta los mismos equipos electrónicos para su uso final. Estos empaques actualmente hechos de poliestireno expandido o de espuma de polietileno, tienen el grave problema de que no pueden reciclarse, pues dado que su densidad oscila entre 0.2 y 0.01 gr/cm3 no resulta conveniente su acopio ni su transporte por el gran volumen y poco peso que representan; de manera que finalmente terminan en la basura. Intentando combatir este problema, se han generado polímeros a partir de fuentes naturales, en particular vegetales, como el poli ácido láctico, pero a la fecha, por diversas razones, su producción no ha sido capaz de desplazar a los polímeros tradicionales y no se fabrican espumados con ellos. Otra opción que también se ha abordado es la modificación o formulación de los polímeros para disminuir el impacto que su acumulación en el ambiente ocasiona, a través de otorgarles características de degradación por factores ambientales como: radiación solar, temperatura, humedad y actividad microbiológica. Como resultado del desarrollo de la técnica, se han creado aditivos que favorezcan la degradación de los polímeros por los mecanismos ya citados, siendo un grupo de ellos los llamados oxo- degradantés. Además como el objeto de la presente patente es fabricar espumas, adicionalmente se emplea como ayuda de espumado almidón de maíz con un contenido de 15% de humedad, dado que este material a temperaturas superiores a 100 °C pierde la humedad, produciendo vapor de agua que si bien se pierde en el proceso de peletizado empleado para producir el composite, genera espuma y su presencia en el composite favorece la biodegradabilidad. En el proceso de la elaboración del de esta invención, se introduce un aditivo oxo-degradativo que rompe enlaces de las moléculas grandes reduciendo la fortaleza de las mismas, de manera que serán una fuente de nutrientes para microorganismos al disponerse como desecho el objeto plástico, terminando la degradación del plástico hasta agua, dióxido de carbono y biomasa reusable, proceso que con la presencia del polvo de cáscara de coco y del almidón de maíz, se ve altamente favorecido. Este proceso requiere oxígeno por lo que no ocurre en condiciones anaeróbicas. El proceso de degradación puede regularse a períodos de 2 a 3 años, algo adecuado para las necesidades del usuario final de un producto, como las bolsas de plástico, de manera que el objeto no sea inútil aún antes de ser empleado en la aplicación deseada, si no hasta que se desecha en la basura, evitando pérdidas económicas importantes. Lo que ocurre al colocar el sistema polimérico conteniendo el aditivo oxo-degradativo en la basura, es el rompimiento de las cadenas que conforman el polímero reduciéndose el peso molecular y volviendo a las moléculas más cortas y con la presencia del polvo de cáscara de coco y del almidón de maíz, el composite es susceptible de desarrollar y favorecer el crecimiento de microorganismos, tanto en su superficie como en las burbujas de la espuma, mismos que terminarán por degradar el plástico. Se ha determinado que en la degradación de las cadenas poliméricas a pesos moleculares menores a 10 kilodaltons y con un índice de carbonilo mayor a 0.10, el material es susceptible de iniciar su biodegradación, independientemente de la presencia de material orgánico, en este caso del polvo de cáscara de coco y del almidón de maíz, y con mayor velocidad en presencia de dicho material. Si el oxígeno no está presente, las cadenas de polímero no se degradarán. Esto representa una ventaja sobre otras alternativas biodegradables las cuales continúan su degradación sin la presencia de oxígeno y emiten gas metano. Los aditivos oxo- degradativos son conocidos en el estado actual de la técnica. Son una combinación de una sal metálica de un ácido carboxílico y un ácido alifático poli hidroxi-carboxílico, tal como se describe en las patentes US 5565503 y US 5854304, y que se citan aquí de forma ilustrativa. Las sales metálicas de ácidos carboxílicos usuales son los estearatos, tanto de metales ligeros como pesados y de transición, incluso las tierras raras. Como ácido alifático poli hidroxi- carboxílico se entiende un ácido alifático que tiene uno o más grupos hidroxilo y uno o más grupos carboxilo. Entre ellos encontramos los ácidos alifáticos dihidroxi monocarboxílicos, tales como el ácido glioxílico y glicérico; los ácidos poli hidroxi monocarboxílicos, tales como el ácido erítrico, arábico o manitico; los ácidos monohidroxi poli carboxílicos, tales como el ácido mélico, y los ácidos dihidroxi dicarboxílicos, tales como el tartárico. Adicionalmente, estos aditivos pueden incluir óxido de calcio y otros aditivos pertinentes. Algunas de las marcas comerciales de los aditivos oxo-degradativos descritos en el párrafo anterior son: Envirocare® de Ciba Specialty Chemicals, Addiflex® de Add-X Biotech AB, TDPA® de EPI Environmental Technologies y Celspan® de la empresa Phoenix Plastics, y es en particular el preferido en la presente invención.
La patente WO 2009/087425 describe la elaboración de bolsas para basura perfumadas y conteniendo aditivos oxo-degradativos y agentes antibacterianos para otorgarle degradabilidad y un mejor control sobre la población bacteriana que pueda crecer en la basura. Sin embargo, solamente usan el aditivo oxo- degradativo como promotor de su degradación. Por lo tanto, es deseable tener un mejor sistema de promoción y control de la degradación de productos plásticos como la presente invención. En el caso de la patente WO 2011155814 A1 se emplean desechos de agave y aditivos oxo- degradativos, pero no implica el uso de cáscara de coco, y las fibras que usan sólo conservan propiedades mecánicas, no las aumentan, como sí es el caso de nuestra invención.
Existe una gran cantidad de patentes más que emplean el polvo de cáscara de coco como reforzante, incluso en sistemas biodegradables, pero ninguna emplea aditivos oxo-degradativos en adición al sistema, como es nuestro caso; misma situación del empleo de almidón para facilitar la biodegradación de polímeros, no se emplea en conjunto con aditivos oxo-degradativos en el sistema.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción y en las figuras que se acompañan, así como una descripción de aquella, donde se siguen los mismos signos dé referencia para indicar las partes y figuras mostradas.
Breve descripción de las figuras:
La figura 1 es una gráfica que muestra la Variación del Módulo de Young
La figura 2 es una gráfica que muestra la Variación de peso por biodegradación
En primera instancia y tal como se recibe de las empresas que procesan la pulpa de coco, la cáscara de coco se seca por algún método convencional, tal como secado al sol, por lotes en bandejas con circulación forzada, radiación infrarroja, al vacío, en secador continuo rotatorio, túneles de secado continuo y otros también, conocidos en la industria y descritos en la literatura técnica ampliamente.
Ya seca la cáscara, se procede a reducir su tamaño ya sea en un molino de martillos convencional, uno de bolas rotatorio, o uno de cuchillas, todos ellos con una malla 70 de salida o menor. El polvo obtenido no puede mezclarse espontáneamente con los polímeros termoplásticos debido a que tiene características polares hidrofílicas que lo hacen incompatible superficialmente con los termoplásticos, que tienen características no polares hidrofóbicas, dado lo anterior, el empleo de agentes de acoplamiento o compatibilizantes es necesario, mejorando más aún las propiedades del composite, pudiendo emplearse los que se encuentran disponibles en el mercado. Es posible emplear agentes dispersantes, que reducen la energía entre las fases disímiles para un mejor mezclado y obtención de una composición uniforme en el compuesto resultante. En este sentido, el ácido esteárico y los estearatos metálicos de calcio, magnesio, zinc, son ejemplos típicos. El mezclado a alta temperatura es mejor realizado en un extrusor de doble husillo de los tipos conocidos en la industria de los plásticos, sin que sea obstáculo emplear un extrusor de un sólo husillo adecuado para mezclar. Previamente se mezclan en un mezclador conveniente como los conocidos ampliamente en la industria del plástico, los componentes de la mezcla: Uno o varios homopolímeros, en su lugar uno o varios copolímeros, o una combinación de homopolímeros y copolímeros, todos ellos termoplásticos de cualquier naturaleza; los aditivos usuales en los sistemas poliméricos, como son pigmentos, estabilizadores, antioxidantes, dispersantes, cargas, compatibilizantes, etcétera, el aditivo oxo - degradativo y el polvo de cáscara de coco. Esta mezcla se alimenta al extrusor, el cual al fundir el polímero y gracias a su capacidad de mezclado, genera el composite, en forma de un perfil cilindrico que se corta posteriormente, formando pelets que pueden usarse para fabricar el espumado.
Para obtener el producto espumado, es posible emplear dos diferentes métodos: El primero consiste en incorporar a los pelets del composite, en cualquier equipo de mezclado comercial el almidón de maíz húmedo y un espumante como la azo di carbonamida, o algún otro de los disponibles en el mercado. El segundo método consiste en inyectar un gas al equipo donde se esté fabricando el producto espumado deseado, alimentándose al equipo el almidón de maíz húmedo mezclado con los pelets ya preparados. El sistema polimérico, puede estar formado por uno o varios homopolímeros, en su lugar uno o varios copolímeros, o una combinación de homopolímeros y copolímeros, todos ellos termoplásticos de cualquier naturaleza, vírgenes o reciclados, en estado sólido o en solución o en emulsión. Por otros aditivos se entienden los usuales en sistemas poliméricos ya avalados por el uso, como son dispersantes, pigmentos, cargas, humectantes, modificadores reológicos, compatibilizadores, agentes de acoplamiento, plastificantes, estabilizadores, antioxidantes, etc. Para el objeto de esta patente pueden ser empleados cualquier sistema termoplástico y cualquier espumante, a condición de emplear forzosamente almidón húmedo, polvo de cáscara de coco de cualquier malla y un aditivo oxo-degradativo en cualquier proporción, dentro de los márgenes citados líneas arriba, respecto del sistema polimérico. EL MEJOR METODO PARA REALIZACION DE LA INVENCION
Los composites obtenidos con el polvo de la cáscara de coco presentan mejores propiedades mecánicas que sus correspondientes sistemas poliméricos, como mayores módulos d Flexión y de Young. En ambos casos se aprecia que entre un 30% y un 40% en peso de cáscara de coco respecto del sistema polimérico, en este caso Polietileno de alta densidad (HDPE) puro, proporciona un notable aumento en ambos módulos. Para estas pruebas la mezcla del HDPE y el polvo de cáscara de coco se efectuó en un extrusor de doble husillo marca Leistritz modelo MICRO 27 GI/GG 32D, funcionando con husillos de 27 mm de diámetro corrotativos con ínterengranaje, la temperatura de procesado fue una rampa desde 170 °C hasta 200 °C a la salida del extrusor, la velocidad de los husillos fue de 260 rev/min. En este equipo se peletizó el composite para obtener luego por prensado probetas para la realización de las pruebas mecánicas, los pelets elaborados se secaron durante 48 horas a 60 °C en una estufa de temperatura controlada, esto para retirar la humedad que el material obtuvo durante el enfriamiento del procesado. Se utilizó una prensa de termo-compresión marca Schwabethan Polystad 200 T con temperatura y presión controladas para elaborar las probetas para los ensayos de tracción. Las pruebas de tracción para el Módulo de Young, según la norma ASTM D 638-96, se realizaron en una máquina de pruebas universales United ASFM-100. Para la fabricación del espumado se empleó la misma extrusora a la que se alimentaron los pelets del composite mezclados con el almidón húmedo y con azo di carbonamida (ADC), obteniéndose un perfil de 1 cm de espesor por 5 cm de ancho, de donde se cortaron probetas de 10 cm de largo para las pruebas de biodegradabilidad. La formulación global del espumado, en porciento en peso, fue la siguiente:
Polietileno de alta densidad (HDPE) 68.0%
Azo di carbonamida (ADC) 0.5%
Almidón de maíz con 15% de humedad 3.5%
Polvo de cáscara de coco que pasa malla 70 27.0%
Aditivo oxo-degradativo Celspan 481® 1 .0 %
El HDPE empleado fue el PADMEX 65050 de Pemex y la azo di carbonamida de Akzo Nobel. Para los fines de esta invención, las proporciones de cada componente pueden oscilar de la siguiente manera:
Sistema polimérico 50.0% al 80.0% Espumante 0.0% al 5.0%
Almidón de maíz húmedo 0.5% al 30.0%
(según la humedad)
Polvo de cáscara de 10.0% al 50.0% coco cualquier malla
Aditivo oxo-degradativo 0.1 % al 5.0%
Otros aditivos 0.0% al 30.0%
Se realizaron pruebas de aumento de propiedades, formando un composite de cáscara de coco que pasa malla 70 y PADMEX 65050, de acuerdo al procedimiento y con los equipos ya detallados, cuyos resultados se aprecian en la figura 1 , donde se puede ver que a composiciones de cáscara de coco del 20% y mayores se incrementa el valor del Módulo de Young por encima del correspondiente al valor del polímero puro. En lo que corresponde a las pruebas de biodegradabilidad, se realizaron con las probetas previamente mencionadas, formuladas según: PADMEX 65050 (68.0%), Azo di carbonamida (0.5%), almidón de maíz con 15% de humedad (3.5%), de cáscara de coco que pasa malla 70 (27.0%), Celspan 481 (1.0 %), e identificadas como "Composite"; y para efectos de comparación se corrieron pruebas paralelas con probetas de iguales dimensiones de las siguientes mezclas: HDPE con 20% de almidón de maíz seco identificadas como "Almidón", HDPE con 20% de cáscara de coco identificadas como "Polvo", HDPE con 1 % de Celspan 481 identificadas como "Oxo-D", finalmente HDPE puro; todas las mezclas contenían 0.5% de espumante ADC. Las pruebas se realizaron con 140 probetas, 28 de cada sistema, de acuerdo a la norma ISO 14855-2, que es una prueba de composteo con lodos activados. La prueba consiste en sumergir las probetas ya pesadas en los lodos activados preparados de acuerdo a la norma, y retirarlas a ciertos tiempos, en este caso, por previos resultados, se escogió un año dividido en 4 partes, en cada período se retiran 7 probetas de cada sistema del composteo, se lavan y secan por 72 horas a 50 °C en una estufa desecadora, se pesan y se promedia el peso, descartándose las probetas con variaciones drásticas de peso, que se pudieran deber a inhomogeneidades o rupturas. Los resultados se muestran en la figura 2, en la que se puede apreciar que el composite duplica la cantidad de material degradado respecto del sistema que le sigue, que es el del almidón y si bien resulta claro que el composite tenía 30.5% de material orgánico total, su degradación es del 50% de su peso, obteniendo un índice al restarle la unidad al resultado de dividir lo degradado entre el contenido de material orgánico, de manera que así se obtiene 1 - 50/30.5 = 0.64 para el composite, y 1 - 25/20 = 0.25 para el almidón, lo cual indica más del doble de eficiencia del composite respecto del almidón. La cáscara de coco y el aditivo oxodegradativo dan índices bastante menores aún; en tanto el HDPE puro no presentó pérdida de peso por lo que no aparece en la gráfica. Así mismo se puede observar que alrededor de los 250 días sólo el composite sigue en actividad de degradación y su pérdida de peso presenta tendencia a elevarse aún después de un año; no sucede así con los demás sistemas cuyos pesos tienden a la asíntota después de medio año. Estos resultados confirman la eficiencia en la biodegradabilidad del composite objeto de la presente patente.

Claims

REIVINDICACIONES Habiendo descrito suficientemente mi invención, considero como una novedad y por tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:
1. Con el objeto de mejorar las propiedades mecánicas de los composites generados y facilitar su biodegradabilidad, el empleo en composites de sistemas termoplásticos de cualquier naturaleza, de almidón húmedo, de cáscara de coco de cualquier malla y un aditivo oxo-degradativo, combinados en el rango de proporciones señalado líneas abajo; sistema cuyo componente principal es el polímero, formado por uno o varios homopolímeros, en su lugar uno o varios copolímeros, o una combinación de homopolímeros y copolímeros, todos ellos termoplásticos de cualquier naturaleza, vírgenes o reciclados, en estado sólido o en solución o en emulsión.
Polímero 50.0% al 80.0% Espumante 0.0% al 0.09%
Almidón de maíz húmedo 0.5% al 30.0%
(según la humedad)
Cáscara de coco cualquier malla 10.0% al 50.0% Aditivo oxo-degradativo 0.1 % al 5.0% Otros aditivos 0.0% al 30.0%
Por otros aditivos se entienden los usuales en sistemas poliméricos ya avalados por el uso, como son dispersantes, pigmentos, cargas, humectantes, modificadores reológicos, compatibilizadores, agentes de acoplamiento, plastificantes, estabilizadores, antioxidantes, etc.
Con el objeto de mejorar las propiedades mecánicas de los composites generados y facilitar su biodegradabilidad, el empleo en productos espumados de sistemas termoplásticos de cualquier naturaleza, de almidón húmedo, de cáscara de coco de cualquier malla y un aditivo oxo-degradativo, combinados en el rango de proporciones señalado líneas abajo; sistema cuyo componente principal es el polímero, formado por uno o varios homopolímeros, en su lugar uno o varios copolímeros, o una combinación de homopolímeros y copolímeros, todos ellos termoplásticos de cualquier naturaleza, vírgenes o reciclados, en estado sólido o en solución o en emulsión.
Polímero 50.0% al 80.0%
Espumante 0.1% al 5.0%
Almidón de maíz húmedo 0.5% al 30.0%
(según la humedad)
Cáscara de coco cualquier malla 10.0% al 50.0%
Aditivo oxo-degradativo 0.1 % al 5.0%
Otros aditivos 0.0% al 30.0%
Por otros aditivos se entienden los usuales en sistemas poliméricos ya avalados por el uso, como son dispersantes, pigmentos, cargas, humectantes, modificadores reológicos, compatibilizadores, agentes de acoplamiento, plastificantes, estabilizadores, antioxidantes, etc.
PCT/MX2014/000159 2013-10-15 2014-10-09 Composites de sistemas termoplásticos que emplean polvo de cascara de coco, almidón de maíz y aditivos oxo-degradativos para formular artículos de plástico espumado biodegradables WO2015057045A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2013012010A MX2013012010A (es) 2013-10-15 2013-10-15 Composites de sistemas termopasticos que emplean polvo de cascara de coco, almidon de maiz y aditivos oxo-degradativos para formular articulos de plastico espumado biodegradables.
MXMX/A/2013/012010 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015057045A1 true WO2015057045A1 (es) 2015-04-23

Family

ID=52828411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2014/000159 WO2015057045A1 (es) 2013-10-15 2014-10-09 Composites de sistemas termoplásticos que emplean polvo de cascara de coco, almidón de maíz y aditivos oxo-degradativos para formular artículos de plástico espumado biodegradables

Country Status (2)

Country Link
MX (1) MX2013012010A (es)
WO (1) WO2015057045A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094444A1 (en) * 1998-05-30 2002-07-18 Koji Nakata Biodegradable polyester resin composition, biodisintegrable resin composition, and molded objects of these
CN101386709A (zh) * 2007-09-13 2009-03-18 上海国成塑料有限公司 木塑复合材料及其制备方法
CN102108213A (zh) * 2010-12-24 2011-06-29 上海国成塑料有限公司 提高木塑复合材料强度的制备方法
CN103059397A (zh) * 2012-12-18 2013-04-24 滁州凯凯建筑节能有限公司 聚乙烯/sebs包覆椰壳粉颗粒粒子共混发泡材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094444A1 (en) * 1998-05-30 2002-07-18 Koji Nakata Biodegradable polyester resin composition, biodisintegrable resin composition, and molded objects of these
CN101386709A (zh) * 2007-09-13 2009-03-18 上海国成塑料有限公司 木塑复合材料及其制备方法
CN102108213A (zh) * 2010-12-24 2011-06-29 上海国成塑料有限公司 提高木塑复合材料强度的制备方法
CN103059397A (zh) * 2012-12-18 2013-04-24 滁州凯凯建筑节能有限公司 聚乙烯/sebs包覆椰壳粉颗粒粒子共混发泡材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200932, Derwent World Patents Index; AN 2009-H01052 *
DATABASE WPI Week 201162, Derwent World Patents Index; AN 2011-J93099 *
DATABASE WPI Week 201408, Derwent World Patents Index; AN 2013-P81495 *

Also Published As

Publication number Publication date
MX2013012010A (es) 2015-04-15

Similar Documents

Publication Publication Date Title
US11149144B2 (en) Marine biodegradable plastics comprising a blend of polyester and a carbohydrate-based polymeric material
CN103339195B (zh) 聚酯树脂组合物
ES2333382T3 (es) Nueva composicion polimerica biodegradable util para la preparacion de plastico biodegradable y proceso para la preparacion de dicha composicion.
US11674018B2 (en) Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
JP2020531672A (ja) 生物学的実体を含む液体組成物及びその使用
WO2020134850A1 (zh) 一种可降解生物基母粒及其制备方法与应用
WO1999046332A1 (fr) Composition de resine contenant de la lactone, objet moule dans cette composition, et film
CN102277005A (zh) 一种高填充的全生物降解包装材料
CN101747605A (zh) 一种可完全生物降解发泡材料及其制备方法
CN112513168A (zh) 将生物降解性助剂添加到塑料材料中
CN115433443A (zh) 能够生物降解的薄膜
JP2009221337A (ja) 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
ES2673023T3 (es) Plástico biodigestible, biocompostable y biodegradable
CA2841130A1 (en) Compostable or biobased foams, method of manufacture and use
JP2022539870A (ja) 強度及び他の特性を向上させるための、小粒子デンプン及びデンプンベースの材料と合成高分子とのブレンド
CN103205045A (zh) 一种隔氧且可降解塑料薄膜的制备方法
Singh et al. Green and sustainable packaging materials using thermoplastic starch
JP4064747B2 (ja) 生分解性樹脂発泡体及びそれよりなる緩衝材
JP2022539869A (ja) Pbat、pla、および炭水化物系ポリマー材料のブレンドを含むポリマー物品
KR101612429B1 (ko) 바이오매스를 이용한 수지 조성물
WO2015057045A1 (es) Composites de sistemas termoplásticos que emplean polvo de cascara de coco, almidón de maíz y aditivos oxo-degradativos para formular artículos de plástico espumado biodegradables
JP2013049760A (ja) 樹脂組成物の製造方法、並びに、成形体、フィルム及び袋の製造方法
CN114836012A (zh) 一种完全生物降解垃圾袋薄膜材料及垃圾袋薄膜的制备方法
WO2014136746A1 (ja) 脂肪族ポリエステル発泡体及びその製造方法
EP3562878B1 (en) Carbohyrate-based polymeric materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853498

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 14853498

Country of ref document: EP

Kind code of ref document: A1