WO2015056985A1 - Environmentally friendly chemical conversion treatment method of magnesium cast material, and magnesium cast material prepared thereby - Google Patents

Environmentally friendly chemical conversion treatment method of magnesium cast material, and magnesium cast material prepared thereby Download PDF

Info

Publication number
WO2015056985A1
WO2015056985A1 PCT/KR2014/009713 KR2014009713W WO2015056985A1 WO 2015056985 A1 WO2015056985 A1 WO 2015056985A1 KR 2014009713 W KR2014009713 W KR 2014009713W WO 2015056985 A1 WO2015056985 A1 WO 2015056985A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
magnesium
magnesium casting
casting material
fluoride
Prior art date
Application number
PCT/KR2014/009713
Other languages
French (fr)
Korean (ko)
Inventor
박화영
유형조
백승관
서만석
Original Assignee
주식회사 대동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대동 filed Critical 주식회사 대동
Publication of WO2015056985A1 publication Critical patent/WO2015056985A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/22Acidic compositions for etching magnesium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals

Definitions

  • the present invention relates to a surface treatment method, and more particularly to an environmentally friendly chemical conversion treatment method of magnesium castings and magnesium castings produced thereby.
  • Magnesium is a light metal with a density of 1.73-1.95 g / cm 3 , about 1/4 of iron and about 2/3 of aluminum. Magnesium has excellent absorbency against vibration and shock, and is widely used as an automotive part or an aircraft part requiring heat reduction because steel has superior thermal conductivity, and its utilization in the global material market is increasing.
  • Magnesium is used in the form of wrought materials, which can be subdivided into thin plates, thick plates, platens and forgings, and cast materials, which can be produced by die casting or sand casting, especially in castings. It is understood as a challenge to overcome.
  • the surface treatment method of magnesium is metal plating method, anodizing, chemical conversion method, etc., and chemical conversion method is mainly used for productivity and unit price.
  • the present invention is to solve the various problems including the above problems, to reduce the wastewater treatment costs, to improve the quality of the coating, to provide an environmentally friendly chemical conversion treatment method of magnesium casting material, further manufactured by such a method It is an object to provide a magnesium casting material.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • the pretreatment step for the surface of the magnesium casting material comprising etching the surface of the magnesium casting by immersing the magnesium casting.
  • the magnesium casting material may be a magnesium alloy casting material containing aluminum, the magnesium alloy casting material containing aluminum may further contain zinc or manganese. That is, the magnesium casting may include an aluminum-containing Mg-Al-based alloy casting, an Mg-Al-Zn-based alloy casting or an Mg-Al-Mn-based alloy casting.
  • the magnesium casting material is AM60 series main alloy, AS41 series main alloy, AZ91 series main alloy, AM100 series main alloy, AZ63 series main alloy, AZ81 series main alloy, AZ92 series main alloy, AM20 series It can be a cast material comprising a main alloy, an AM50 series main alloy, or an AM60 series main alloy.
  • the solution containing the acidic ammonium fluoride is 7% by mass to 15% by mass of acidic ammonium fluoride, 5% by mass to 10% by mass of hydrogen peroxide (H 2 O 2 ), 3 It may be a solution containing from 7% by mass of sulfuric acid (sulfuric acid, H 2 SO 4 ), 0.005% by mass to 1% by mass of a fluorine-based surfactant, and the rest water (H 2 O).
  • the solution containing sodium fluoride is 5% by mass to 10% by mass of hydrofluoric acid (HF), 10% by mass to 15% by mass sodium fluoride, 3% by mass to 7% by mass fluoride It may be a solution containing potassium (Potassium fluoride (KF)), 0.005% by mass to 1% by mass of a fluorine-based surfactant and water (H 2 O) as the remainder.
  • HF hydrofluoric acid
  • KF potassium
  • H 2 O water
  • the pretreatment step includes degreasing the surface of the magnesium casting material, first cleaning the surface of the degreased magnesium casting material, and etching the surface of the first magnesium casting material.
  • a second cleaning of the surface of the etched magnesium casting material, a desmuting of the surface of the second magnesium casting material, and a third cleaning of the surface of the immersed magnesium casting material can do.
  • a magnesium casting material comprising a fluorinated film formed by the above-described chemical conversion treatment method of the magnesium casting material.
  • the present invention is environmentally friendly because it does not use phosphorus (P), which caused water pollution by accelerating eutrophication and red tide in the water quality during wastewater treatment.
  • P phosphorus
  • the brightness is higher than that of the magnesium cast material on which the phosphate film is formed, and the color is close to white, it is easy to express the primary color of the coating.
  • the fluoride coating was formed on the surface of the magnesium casting to improve the corrosion resistance and environmental resistance of the magnesium casting.
  • Environmentally friendly chemical conversion treatment and magnesium casting material produced thereby can be implemented.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a flowchart illustrating a chemical conversion treatment of a magnesium casting material according to an embodiment of the present invention.
  • Figure 2 is a flow chart illustrating in more detail the pretreatment step of the magnesium casting material according to an embodiment of the present invention.
  • Figure 3 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to an embodiment of the present invention.
  • Figure 4 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
  • Figure 5 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
  • Figure 6 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
  • FIG. 7 is a photograph comparing the surface of the magnesium casting material formed with a phosphate coating and the surface of the magnesium casting material formed by immersing in a solution containing an acidic ammonium fluoride according to an embodiment of the present invention.
  • FIG. 8 is a photograph comparing the surface of the magnesium casting material formed with a phosphate coating and the surface of the magnesium casting material formed by immersion in a solution containing sodium fluoride according to another embodiment of the present invention.
  • FIG. 9 is a photograph showing the surface of the magnesium casting material according to each step in the pretreatment step of FIG.
  • the pure magnesium casting or magnesium alloy casting may be referred to as magnesium casting.
  • pure magnesium may further include impurities (hereinafter, inevitable impurities) that are intentionally added but inevitably contained during the manufacturing process, even if not specifically mentioned.
  • the magnesium alloy may refer to an alloy containing one or more additional elements in magnesium as the main element, but such magnesium alloy may further include unavoidable impurities in addition to the main element and the additive elements even when not specifically mentioned. Can be.
  • FIG. 1 is a flowchart illustrating a chemical conversion treatment of a magnesium casting material according to an embodiment of the present invention.
  • the method for chemically treating a magnesium casting includes pretreatment of the magnesium casting (S100) and forming a fluoride film on the surface of the magnesium casting (S200).
  • pretreatment step S100 foreign matter or segregation on the surface of the magnesium casting material may be removed.
  • the magnesium casting material tends to naturally form a passivation film (protective film) of 1 ⁇ m or less mainly composed of an oxide component formed of Mg (OH) 2, which is magnesium hydroxide.
  • the protective coating naturally formed on the surface of the magnesium casting is not stable. Looking at the ratio called the PB ratio (Pilling-Bedworth ratio), if a value of less than 1 is obtained, it means that the underlying metal layer is not completely covered.
  • the passivation film of magnesium oxide has a value of 0.81, so the lower metal layer is not completely covered. It can be seen that.
  • the PB ratio of the oxide is 1.65 and is completely covered by the oxide layer formed on the nickel. Magnesium protective coatings are not dense, so that corrosion of magnesium castings may accelerate over time.
  • the corrosion resistance of the magnesium casting is greatly reduced.
  • the corrosion resistance and / or paint adhesion of the magnesium casting may not be greatly improved due to the wettability of the interface with the protective coating. Therefore, it is necessary to form another film after strengthening the interfacial bonding force with the surface of the magnesium casting.
  • the interfacial force is strengthened and the film is formed through other treatments, the adhesion to the magnesium casting material is improved, and thus it may have excellent surface properties.
  • Such strengthening of the interfacial bonding force with the magnesium casting material may be achieved through a pretreatment step of the magnesium casting material described later.
  • the magnesium casting may comprise a magnesium alloy casting.
  • the magnesium alloy casting material may be composed of a magnesium main alloy including aluminum in order to secure strength, castability and corrosion resistance.
  • the magnesium master alloy containing aluminum may further contain zinc or manganese. That is, the magnesium main alloy containing aluminum may include, for example, Mg-Al main alloy, Mg-Al-Zn main alloy, Mg-Al-Mn main alloy, and the composition and manufacturing method (die casting, Sand mold and mold casting), AM60 series, AS41 series, AZ91 series, AM100 series, AZ63 series, AZ81 series, AZ92 series, AM20 series, AM50 series casting. Alloys and AM60 series main alloys.
  • the magnesium casting material including the Mg-Al-based alloy casting material, the Mg-Al-Zn-based alloy casting material or the Mg-Al-Mn-based alloy casting material described above does not include an active element such as lithium, It is known that it is not easy to form a fluoride film on the surface of the said magnesium casting material.
  • the pre-treatment step (S100) of the magnesium casting to remove the surface defects of the magnesium casting and to flatten the surface by immersing the magnesium casting in a solution containing a fluorine-based surfactant (Surfactant)
  • a fluorine-based surfactant Surfactant
  • the fluorinated film can be easily formed on the surface of the magnesium casting including the Mg-Al-based alloy casting, the Mg-Al-Zn-based alloy casting, or the Mg-Al-Mn-based alloy casting.
  • FIG. 2 is a flow chart illustrating in more detail the pre-treatment step (S100) of the magnesium casting material according to an embodiment of the present invention.
  • the surface of the magnesium casting may be degreased to remove oil and contaminants on the surface of the magnesium casting (S110).
  • Degreasing treatment consists of 5% by mass to 10% by mass of sodium hydroxide (NaOH), 1% by mass to 5% by mass of sodium gluconate (C 6 H 11 NaO 7 ), and 1% by mass to 3% by mass of sodium carbonate (Na 2 CO). 3 ), 0.1% by mass to 0.3% by mass of the surfactant and the rest can be achieved by immersing in a mixed solution containing water (H 2 O), after the degreasing treatment to remove the degreasing solution remaining on the surface of the magnesium casting In order to perform the first cleaning (S120).
  • a photograph related to the degreased magnesium casting material is shown in FIG.
  • the surface of the first cleaned magnesium casting may have a release agent and an impurity oxide film.
  • the surface of the magnesium casting material may be etched (S130).
  • Etching of the magnesium casting material is a mixed solution containing 1% by mass to 3% by mass of hydrofluoric acid (HF), 3% by mass to 10% by mass of organic acid, 0.1% by mass or less of fluorine-based surfactant, and the remainder with water (H 2 O).
  • the organic acid may include at least one selected from the group consisting of oxalic acid (citric acid), citric acid (citric acid), malonic acid (Malonic acid).
  • the organic acid may be replaced with an inorganic acid, and the inorganic acid may include sulfuric acid, nitric acid, hydrochloric acid, and the like.
  • the etching removes the oxide film (combined with oxygen in the air) on the surface of the magnesium casting material to form a target film (eg, chemical film, anodizing film or plating film) for a later process.
  • a target film eg, chemical film, anodizing film or plating film
  • the amount of change in the size of the magnesium casting material varies from as few tens of microns to as many as hundreds of microns, it is very important to obtain a suitable composition.
  • etching using the above-described composition according to an embodiment of the present invention shows a dimensional change of about 10 ⁇ 30 ⁇ m when treated for 30 seconds, and also the surface of the magnesium casting material by adding the fluorine-based surfactant of 0.1% by mass or less It was confirmed that it can provide excellent wettability and penetration while protecting.
  • the surface of the magnesium casting may be secondly cleaned to remove the etching solution remaining on the surface of the etched magnesium casting (S140).
  • S140 A photograph relating to the etched magnesium casting is shown in FIG. 9 (b).
  • the dispersing step (S150) may include 30% by mass to 40% by mass of sodium hydroxide (NaOH), 3% by mass to 5% by mass of sodium gluconate (C 6 H 11 NaO 7 ), and 5% by mass to 10% by mass.
  • % Sodium carbonate (Na 2 CO 3 ) and the rest can be implemented by immersing the magnesium casting in a solution containing water (water) it can be removed insoluble impurity metal and the like. Photographs related to the discontinued magnesium casting are shown in FIG. 9 (c).
  • a fluorinated film may be formed on the surface of the magnesium casting material (S200, see FIG. 1).
  • the fluoride film may be formed on the surface of the magnesium casting material by immersing in a solution containing at least one selected from the group consisting of acidic ammonium fluoride (NH 4 HF 2 ) and sodium fluoride (NaF).
  • Figure 3 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to an embodiment of the present invention.
  • the forming of the fluoride film (S200) may include immersing the magnesium casting material in a solution containing acidic ammonium fluoride (NH 4 HF 2 ) (S210). Immersion in a solution containing acidic ammonium fluoride (S210) is 7 to 15% by mass of acidic ammonium fluoride, 5 to 10% by mass of hydrogen peroxide (hydrogen peroxide, H 2 O 2 ), 3% by mass to Magnesium castings may be immersed in a solution comprising 7 mass% sulfuric acid (H 2 SO 4 ), 0.005 mass% to 1 mass% fluorine-based surfactant, and the remainder water (H 2 O).
  • H 2 SO 4 7 mass% sulfuric acid
  • H 2 O 2 O 0.005 mass% to 1 mass% fluorine-based surfactant
  • the 0.005% by mass to 1% by mass of the fluorine-based surfactant is, for example, a perfluoroalkyl chain represented by F- (CF 2 -CF 2 ) n (n has a range of 3 to 8).
  • Surfactant or fluorine (fluorine) comprising a may include a surfactant that forms a strong covalent bond with carbon (carbon).
  • the solution containing the acidic ammonium fluoride reduces the surface tension of the solution containing the acidic ammonium fluoride by containing the fluorine-based surfactant to impart excellent wetting capacity to give a fine portion of the surface of the magnesium casting material. It can play an important role in forming a conversion coating, which is a fluoride coating.
  • the metal oxide produced by Formulas 1 and 2 may include a material such as magnesium fluoride (MgF 2 ), and the layer containing the metal oxide may be called a fluoride coating.
  • the fluoride film is generated on the surface of the magnesium casting material after the pretreatment step (S100) can further improve the interfacial bonding force and adhesion with the magnesium casting material.
  • Magnesium fluoride (MgF 2 ) produced in the embodiments of the present invention is poorly soluble in water, and may be resistant to various organic materials such as hydrocarbons, alcohols, aromatic compounds and esters. Therefore, the fluoride coating containing magnesium fluoride with improved interfacial bonding force and adhesion can protect magnesium castings in the long term.
  • FIG. 7 is a photograph comparing the surface of the magnesium casting material formed with a phosphate coating and the surface of the magnesium casting material formed by immersing in a solution containing an acidic ammonium fluoride according to an embodiment of the present invention.
  • fluoride is immersed in a solution containing ammonium fluoride in acid compared to (b), which is a magnesium casting material in which a phosphate coating is formed using a phosphate solution containing phosphorus (P) that causes eutrophication in conventional wastewater treatment.
  • (b) is a magnesium casting material in which a phosphate coating is formed using a phosphate solution containing phosphorus (P) that causes eutrophication in conventional wastewater treatment.
  • P phosphate solution containing phosphorus
  • Figure 4 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
  • the forming of the fluoride film (S200) may include immersing the magnesium casting material in a solution containing sodium fluoride (NaF) (S220).
  • a solution containing sodium fluoride 5% by mass to 10% by mass of hydrofluoric acid (HF), 10% by mass to 15% by mass sodium fluoride, 3% by mass to 7% by mass of potassium fluoride (Potassium fluoride, KF), from 0.005% by mass to 1% by mass of a fluorine-based surfactant and, as a remainder, water (H 2 O)
  • HF hydrofluoric acid
  • KF potassium fluoride
  • H 2 O water
  • the fluoride film including the metal oxide is formed on the surface of the magnesium casting after the pretreatment step (S100), it is excellent in the interfacial bonding force and adhesion with the magnesium casting material, it is possible to effectively
  • the 0.005% by mass to 1% by mass of the fluorine-based surfactant is, for example, perfluoroalkyl chain represented by F- (CF 2 -CF 2 ) n (n has a range of 3 to 8)
  • Surfactant containing a chain or fluorine (fluorine) may include a surfactant in which a strong covalent bond with carbon (carbon).
  • the solution containing sodium fluoride (NaF) lowers the surface tension of the solution containing sodium fluoride (NaF) by containing the fluorine-based surfactant to impart excellent wetting capacity to give magnesium casting material. It can play an important role in forming a conversion coating, which is a fluoride coating, even to a minute portion of the surface.
  • FIG. 8 is a surface photograph of a magnesium casting material in which a fluoride film is formed by immersion in a solution containing sodium fluoride according to another embodiment of the present invention.
  • the chemical conversion treatment having much higher brightness and excellent corrosion resistance and environmental resistance can be performed as compared with the magnesium casting material of (b) in which the phosphate film was formed.
  • Figure 5 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
  • the formation of the fluoride film may include a step (S230) of immersion in a solution containing sodium fluoride after the step (S210) of sequentially immersing in a solution containing acidic ammonium fluoride.
  • a layer including magnesium fluoride (MgF 2 ) is formed on the surface of the magnesium casting by the reaction of Formulas 1 and 2, a metal oxide layer including NaMgF 3 may be further formed.
  • Figure 6 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
  • the step of forming a fluoride film (S200) after the step of immersing in a solution containing the sodium fluoride (S220), the step of immersing in a solution containing the acidic ammonium fluoride (S240) may include sequentially. Therefore, a metal oxide layer including NaMgF 3 may be first formed on the surface of the magnesium casting material, and then a layer including magnesium fluoride (MgF 2 ) may be formed.
  • the metal oxide layer is a fluoride coating of magnesium casting material, which improves corrosion resistance and paint adhesion, and has a higher coating quality than the surface of a magnesium casting material formed by immersing only in a solution containing acidic ammonium fluoride or sodium fluoride to form a fluoride coating film. It can be excellent, and the corrosion resistance and environmental resistance can be significantly increased.
  • a fluoride film is formed by the above-described chemical conversion treatment methods of the magnesium casting material, and a magnesium casting material including such a fluoride film can be provided.
  • a coating layer containing a metal may be further formed on the fluorinated coating film formed on the surface of the magnesium casting material as necessary, and the metal forming the coating layer may include Mn, Zr, V, Al, Zn, Ca, and Ce. It may include one or more selected from the group consisting of, and may react with magnesium ions on the surface of the magnesium casting to form a coating layer.
  • a magnesium casting material having excellent paint quality and corrosion resistance and a method for manufacturing the magnesium casting material in an environmentally friendly manner can be provided to reduce wastewater treatment costs.

Abstract

The present invention provides an environmentally friendly chemical conversion treatment method of a magnesium cast material for reducing wastewater treatment costs, facilitating the expression of the original color of a paint during painting and improving corrosion resistance and environmental resistance, comprising: a pretreatment step of removing impurities or segregation from the surface of a magnesium cast material; and a step of forming a fluoride film on the surface of the magnesium cast material, which has passed through the pretreatment step, by dipping the magnesium cast material into a solution containing at least one selected from the group consisting of ammonium hydrogen difluoride (NH4HF2) and sodium fluoride (NaF).

Description

마그네슘 주조재의 친환경적 화성처리 방법 및 이에 의해 제조된 마그네슘 주조재Environmentally Friendly Chemical Treatment of Magnesium Castings and Magnesium Castings Prepared thereby
본 발명은 표면처리 방법에 관한 것으로서, 더 상세하게는 마그네슘 주조재의 친환경적 화성처리 방법 및 이에 의해 제조된 마그네슘 주조재에 관한 것이다.The present invention relates to a surface treatment method, and more particularly to an environmentally friendly chemical conversion treatment method of magnesium castings and magnesium castings produced thereby.
마그네슘은 밀도가 1.73-1.95g/cm3로, 철에 비해서는 약 1/4 정도 이고, 알루미늄에 비해서는 약 2/3 정도인 경량금속이다. 이러한 마그네슘은 진동 및 충격 등에 대한 흡수성이 탁월하고, 열전도도가 강철(steel)보다 뛰어나 경량화가 요구되는 자동차 부품이나 항공기 부품으로 많이 사용되고 있으며, 세계 소재시장에서 그 활용성이 증가하고 있다. Magnesium is a light metal with a density of 1.73-1.95 g / cm 3 , about 1/4 of iron and about 2/3 of aluminum. Magnesium has excellent absorbency against vibration and shock, and is widely used as an automotive part or an aircraft part requiring heat reduction because steel has superior thermal conductivity, and its utilization in the global material market is increasing.
하지만, 이러한 여러 가지 장점에도 불구하고, 화학적 활성이 크고, 내부식성이 약해 표면처리가 수반되지 않으면 대기 중에서 빠르게 부식이 진행된다는 단점을 가지고 있다. 마그네슘은 박판재, 후판재, 압판재 및 단조품으로 세분화될 수 있는 단련(wrought)재와 다이캐스팅이나 사형주조로 제조될 수 있는 주조(cast)재의 형태로 사용되고 있는바, 특히, 주조재에서 이러한 단점들은 극복해야 할 과제로 이해되고 있다. 현재 마그네슘의 표면처리 방법으로는 금속도금방법, 아노다이징, 화성처리방법 등이 있으며, 화성처리 방법이 생산성과 단가적인 이유로 주로 사용되고 있다. However, in spite of these various advantages, the chemical activity is large and the corrosion resistance is weak, so that the corrosion progresses rapidly in the air unless surface treatment is involved. Magnesium is used in the form of wrought materials, which can be subdivided into thin plates, thick plates, platens and forgings, and cast materials, which can be produced by die casting or sand casting, especially in castings. It is understood as a challenge to overcome. Currently, the surface treatment method of magnesium is metal plating method, anodizing, chemical conversion method, etc., and chemical conversion method is mainly used for productivity and unit price.
그러나 이러한 종래의 마그네슘 주조재의 표면처리에 사용되는 화성처리 방법에는 인산염피막(Phosphating)을 형성하는 공정이 수반되므로 전처리 과정과 불화피막 공정에서 필연적으로 인(Phosphorus)의 사용이 이루어지며, 이러한 인은 폐수처리시의 수질에 부영양화 및 적조를 가속화 시켜 수질오염을 가중시키는 원인을 제공하는 문제점이 있었다. 또한, 인산염피막을 형성한 마그네슘 주조재의 경우 어두운 회색으로 도장품질이 좋지 않다는 문제점이 있었다.However, since the conventional chemical treatment method used for surface treatment of magnesium castings involves the process of forming phosphate coating, phosphorus (Phosphorus) is inevitably used in the pretreatment process and the fluoride coating process. There was a problem of providing a cause of water pollution by accelerating eutrophication and red tide in the water quality during wastewater treatment. In addition, in the case of the magnesium casting material in which the phosphate coating is formed, there is a problem that the coating quality is not good as dark gray.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 폐수처리 비용을 절감하고, 도장의 품질을 향상시키기 위하여, 마그네슘 주조재의 친환경적 화성처리 방법을 제공하고, 나아가 이러한 방법에 의해 제조된 마그네슘 주조재를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is to solve the various problems including the above problems, to reduce the wastewater treatment costs, to improve the quality of the coating, to provide an environmentally friendly chemical conversion treatment method of magnesium casting material, further manufactured by such a method It is an object to provide a magnesium casting material. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 실시예에 따르면, 마그네슘 주조재의 표면에 대한 전처리 단계; 및 상기 전처리 단계를 거친 상기 마그네슘 주조재를 산성불화암모늄(NH4HF2) 또는 불화나트륨(NaF)을 포함하는 용액에 침지하여 상기 마그네슘 주조재의 표면에 불화피막을 형성하는 단계;를 포함하고, 상기 전처리 단계는 1 질량% 내지 3 질량%의 불산(HF), 3 질량% 내지 10 질량%의 유기산, 0.1 질량% 이하의 불소계 계면활성제(Surfactant) 및 나머지는 물(Water)을 포함하는 용액에 상기 마그네슘 주조재를 침지함으로써 상기 마그네슘 주조재의 표면을 에칭하는 단계를 포함하는, 마그네슘 주조재의 화성처리 방법이 제공된다.According to one embodiment of the invention, the pretreatment step for the surface of the magnesium casting material; And immersing the magnesium casting material subjected to the pretreatment step in a solution containing acidic ammonium fluoride (NH 4 HF 2 ) or sodium fluoride (NaF) to form a fluoride film on the surface of the magnesium casting material. The pretreatment step may be performed in a solution containing 1% by mass to 3% by mass of hydrofluoric acid (HF), 3% by mass to 10% by mass of organic acid, 0.1% by mass or less of fluorine-based surfactant (Surfactant), and the remainder in water. Provided is a method for chemically treating a magnesium casting, comprising etching the surface of the magnesium casting by immersing the magnesium casting.
상기 마그네슘 주조재의 화성처리 방법에서, 상기 마그네슘 주조재는 알루미늄을 함유하는 마그네슘 합금 주조재일 수 있으며, 상기 알루미늄을 함유하는 마그네슘 합금 주조재는 아연 또는 망간을 더 함유할 수 있다. 즉, 상기 마그네슘 주조재는 알루미늄을 함유하는 Mg-Al계열 합금 주조재, Mg-Al-Zn계열 합금 주조재 또는 Mg-Al-Mn계열 합금 주조재를 포함할 수 있다. In the chemical conversion treatment method of the magnesium casting material, the magnesium casting material may be a magnesium alloy casting material containing aluminum, the magnesium alloy casting material containing aluminum may further contain zinc or manganese. That is, the magnesium casting may include an aluminum-containing Mg-Al-based alloy casting, an Mg-Al-Zn-based alloy casting or an Mg-Al-Mn-based alloy casting.
상기 마그네슘 주조재의 화성처리 방법에서, 상기 마그네슘 주조재는 AM60계열 주조합금, AS41계열 주조합금, AZ91계열 주조합금, AM100계열 주조합금, AZ63계열 주조합금, AZ81계열 주조합금, AZ92계열 주조합금, AM20계열 주조합금, AM50계열 주조합금, 또는 AM60계열 주조합금을 포함하는 주조재일 수 있다. In the chemical conversion treatment method of the magnesium casting material, the magnesium casting material is AM60 series main alloy, AS41 series main alloy, AZ91 series main alloy, AM100 series main alloy, AZ63 series main alloy, AZ81 series main alloy, AZ92 series main alloy, AM20 series It can be a cast material comprising a main alloy, an AM50 series main alloy, or an AM60 series main alloy.
상기 마그네슘 주조재의 화성처리 방법에서, 상기 산성불화암모늄을 포함하는 용액은 7 질량% 내지 15 질량%의 산성불화암모늄, 5 질량% 내지 10 질량%의 과산화수소(hydrogen peroxide, H2O2), 3 질량% 내지 7 질량%의 황산(sulfuric acid, H2SO4), 0.005 질량% 내지 1 질량%의 불소계 계면활성제 및 나머지로서 물(H2O)을 포함하는 용액일 수 있다. In the chemical conversion treatment method of the magnesium casting material, the solution containing the acidic ammonium fluoride is 7% by mass to 15% by mass of acidic ammonium fluoride, 5% by mass to 10% by mass of hydrogen peroxide (H 2 O 2 ), 3 It may be a solution containing from 7% by mass of sulfuric acid (sulfuric acid, H 2 SO 4 ), 0.005% by mass to 1% by mass of a fluorine-based surfactant, and the rest water (H 2 O).
상기 마그네슘 주조재의 화성처리 방법에서, 상기 불화나트륨을 포함하는 용액은 5 질량% 내지 10 질량%의 불산(HF), 10 질량% 내지 15 질량%의 불화 나트륨, 3 질량% 내지 7 질량%의 불화 칼륨(Potassium fluoride, KF), 0.005 질량% 내지 1 질량%의 불소계 계면활성제 및 나머지로서 물(H2O)을 포함하는 용액일 수 있다. In the chemical conversion treatment method of the magnesium casting material, the solution containing sodium fluoride is 5% by mass to 10% by mass of hydrofluoric acid (HF), 10% by mass to 15% by mass sodium fluoride, 3% by mass to 7% by mass fluoride It may be a solution containing potassium (Potassium fluoride (KF)), 0.005% by mass to 1% by mass of a fluorine-based surfactant and water (H 2 O) as the remainder.
상기 마그네슘 주조재의 화성처리 방법에서, 상기 전처리 단계는, 상기 마그네슘 주조재의 표면을 탈지하는 단계, 탈지된 상기 마그네슘 주조재의 표면을 제1세정하는 단계, 제1세정된 상기 마그네슘 주조재의 표면을 에칭하는 단계, 에칭된 상기 마그네슘 주조재의 표면을 제2세정하는 단계, 제2세정된 상기 마그네슘 주조재의 표면을 디스머트(Desmut)하는 단계 및 디스머트된 상기 마그네슘 주조재의 표면을 제3세정하는 단계를 포함할 수 있다. In the chemical conversion treatment method of the magnesium casting material, the pretreatment step includes degreasing the surface of the magnesium casting material, first cleaning the surface of the degreased magnesium casting material, and etching the surface of the first magnesium casting material. A second cleaning of the surface of the etched magnesium casting material, a desmuting of the surface of the second magnesium casting material, and a third cleaning of the surface of the immersed magnesium casting material can do.
본 발명의 다른 실시예에 따르면, 상술한 마그네슘 주조재의 화성처리 방법에 의해 형성된 불화피막을 포함하는, 마그네슘 주조재가 제공된다.According to another embodiment of the present invention, there is provided a magnesium casting material comprising a fluorinated film formed by the above-described chemical conversion treatment method of the magnesium casting material.
상기한 바와 같이 이루어진 본 발명의 실시예들에 따르면, 폐수처리시 수질에 부영양화 및 적조를 가속화 시켜 수질오염을 가중시키는 원인이었던 인(P)을 사용하지 않으므로 친환경적이다. 또한, 인산염 피막을 형성한 마그네슘 주조재에 비하여 명도가 높고, 색상이 백색에 가까워 도장시 도료 원색의 표현이 용이하다. 마그네슘 주조재의 표면에 불화피막을 형성시켜 마그네슘 주조재의 내식성 및 내환경성을 개선하였다. 친환경적인 화성처리 방법 및 이에 의해 제조된 마그네슘 주조재를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to the embodiments of the present invention made as described above, it is environmentally friendly because it does not use phosphorus (P), which caused water pollution by accelerating eutrophication and red tide in the water quality during wastewater treatment. In addition, since the brightness is higher than that of the magnesium cast material on which the phosphate film is formed, and the color is close to white, it is easy to express the primary color of the coating. The fluoride coating was formed on the surface of the magnesium casting to improve the corrosion resistance and environmental resistance of the magnesium casting. Environmentally friendly chemical conversion treatment and magnesium casting material produced thereby can be implemented. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 마그네슘 주조재의 화성처리를 도해하는 순서도이다.1 is a flowchart illustrating a chemical conversion treatment of a magnesium casting material according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 마그네슘 주조재의 전처리 단계를 보다 상세하게 도해하는 순서도이다.Figure 2 is a flow chart illustrating in more detail the pretreatment step of the magnesium casting material according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 3 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to an embodiment of the present invention.
도 4는 본 발명의 다른 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 4 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 5 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 6 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 산성불화암모늄을 포함하는 용액에 침지하여 불화피막이 형성된 마그네슘 주조재의 표면과 인산염피막을 형성한 마그네슘 주조재의 표면을 비교한 사진이다.7 is a photograph comparing the surface of the magnesium casting material formed with a phosphate coating and the surface of the magnesium casting material formed by immersing in a solution containing an acidic ammonium fluoride according to an embodiment of the present invention.
도 8은 본 발명의 다른 일 실시예에 따른 불화나트륨을 포함하는 용액에 침지하여 불화피막이 형성된 마그네슘 주조재의 표면과 인산염피막을 형성한 마그네슘 주조재의 표면을 비교한 사진이다.8 is a photograph comparing the surface of the magnesium casting material formed with a phosphate coating and the surface of the magnesium casting material formed by immersion in a solution containing sodium fluoride according to another embodiment of the present invention.
도 9는 도 2의 전처리 단계에서 각 단계에 따른 마그네슘 주조재의 표면을 나타낸 사진이다.9 is a photograph showing the surface of the magnesium casting material according to each step in the pretreatment step of FIG.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms, and the following embodiments are intended to complete the disclosure of the present invention, the scope of the invention to those skilled in the art It is provided to inform you completely. In addition, the components may be exaggerated or reduced in size in the drawings for convenience of description.
본 발명의 실시예들에서, 순수 마그네슘 주조재 또는 마그네슘 합금 주조재는 마그네슘 주조재로 불릴 수 있다. 다만, 순수 마그네슘은 특별하게 언급되지 않는 경우에도, 제조과정 중에 의도적으로 첨가되지 않지만 불가피하게 함유되는 불순물(이하, 불가피 불순물)을 더 포함할 수 있다. 또한, 마그네슘 합금은 주원소인 마그네슘에 하나 또는 그 이상의 첨가원소들을 함유하는 합금을 지칭할 수 있으나, 이러한 마그네슘 합금은 특별하게 언급되지 않는 경우에도 주원소와 첨가원소들 외에 불가피 불순물을 더 포함할 수 있다.In embodiments of the invention, the pure magnesium casting or magnesium alloy casting may be referred to as magnesium casting. However, pure magnesium may further include impurities (hereinafter, inevitable impurities) that are intentionally added but inevitably contained during the manufacturing process, even if not specifically mentioned. In addition, the magnesium alloy may refer to an alloy containing one or more additional elements in magnesium as the main element, but such magnesium alloy may further include unavoidable impurities in addition to the main element and the additive elements even when not specifically mentioned. Can be.
도 1은 본 발명의 일 실시예에 따른 마그네슘 주조재의 화성처리를 도해하는 순서도이다.1 is a flowchart illustrating a chemical conversion treatment of a magnesium casting material according to an embodiment of the present invention.
도 1을 참조하면, 마그네슘 주조재의 화성처리 방법은, 마그네슘 주조재의 전처리 단계(S100) 및 마그네슘 주조재의 표면에 불화피막을 형성하는 단계(S200)를 포함한다. 전처리 단계(S100)에서는, 마그네슘 주조재의 표면의 이물질 또는 편석을 제거할 수 있다. Referring to FIG. 1, the method for chemically treating a magnesium casting includes pretreatment of the magnesium casting (S100) and forming a fluoride film on the surface of the magnesium casting (S200). In the pretreatment step S100, foreign matter or segregation on the surface of the magnesium casting material may be removed.
습윤한 공기 중에서 마그네슘 주조재는 마그네슘 수산화물인 Mg(OH)2로 형성된 산화물 성분으로 주로 이루어진 1um이하의 부동태막(보호 피막)을 자연스럽게 형성하는 경향이 있다. 그러나 다른 금속재와는 달리, 마그네슘 주조재의 표면 위에 자연적으로 형성되는 보호 피막은 안정하지 못하다. PB비율(Pilling-Bedworth ratio)이라 불리는 비율을 살펴보면 1보다 작은 값이 얻어지면, 하부의 금속층이 완전히 덮이지 않았다는 것을 의미하는데, 산화 마그네슘의 부동태막은 0.81이라는 값을 갖기 때문에 하부 금속층이 완전히 덮이지 않았다는 것을 알 수 있다. 다른 예로, 니켈의 경우 산화물의 PB비율이 1.65이고, 니켈에 형성된 산화물층에 의해 완전히 덮여진다는 것을 알 수 있다. 마그네슘의 보호 피막은 치밀하지 못하므로 시간 경과에 따라 마그네슘 주조재의 부식이 가속될 수 있다. In wet air, the magnesium casting material tends to naturally form a passivation film (protective film) of 1 μm or less mainly composed of an oxide component formed of Mg (OH) 2, which is magnesium hydroxide. However, unlike other metal materials, the protective coating naturally formed on the surface of the magnesium casting is not stable. Looking at the ratio called the PB ratio (Pilling-Bedworth ratio), if a value of less than 1 is obtained, it means that the underlying metal layer is not completely covered.The passivation film of magnesium oxide has a value of 0.81, so the lower metal layer is not completely covered. It can be seen that. As another example, it can be seen that in the case of nickel, the PB ratio of the oxide is 1.65 and is completely covered by the oxide layer formed on the nickel. Magnesium protective coatings are not dense, so that corrosion of magnesium castings may accelerate over time.
또한, 마그네슘 주조재를 다른 금속과 동일한 방법으로 코팅하는 경우, 마그네슘 주조재의 내식성이 크게 저하된다. 특히, 마그네슘 주조재에 형성된 보호 피막 위에 다른 물질로 된 피막을 바로 형성하는 경우, 보호 피막과의 계면의 젖음성으로 인해 마그네슘 주조재의 내식성 및/또는 도장 부착성 크게 향상되지 않을 수 있다. 따라서 마그네슘 주조재의 표면과 계면결합력을 강화시킨 후 또 다른 피막을 형성하여야 한다. 이렇게 계면결합력을 강화시킨 후 다른 처리를 통하여 피막을 형성하게 되면, 마그네슘 주조재와의 밀착성이 향상됨으로써, 우수한 표면특성을 가질 수 있다. 이러한, 마그네슘 주조재와의 계면결합력의 강화는 후술하는 마그네슘 주조재의 전처리 단계를 통해 이룰 수 있다.In addition, when the magnesium casting is coated in the same manner as other metals, the corrosion resistance of the magnesium casting is greatly reduced. In particular, in the case of directly forming a coating made of another material on the protective coating formed on the magnesium casting, the corrosion resistance and / or paint adhesion of the magnesium casting may not be greatly improved due to the wettability of the interface with the protective coating. Therefore, it is necessary to form another film after strengthening the interfacial bonding force with the surface of the magnesium casting. Thus, when the interfacial force is strengthened and the film is formed through other treatments, the adhesion to the magnesium casting material is improved, and thus it may have excellent surface properties. Such strengthening of the interfacial bonding force with the magnesium casting material may be achieved through a pretreatment step of the magnesium casting material described later.
본 발명의 일 실시예에서, 마그네슘 주조재는 마그네슘 합금 주조재를 포함할 수 있다. 마그네슘 합금 주조재는 강도, 주조성 및 내식성을 확보하기 위하여 알루미늄을 포함하는 마그네슘 주조합금으로 구성될 수 있다. 나아가, 알루미늄을 포함하는 마그네슘 주조합금은 아연이나 망간을 더 함유할 수 있다. 즉, 알루미늄을 포함하는 마그네슘 주조합금으로는, 예를 들어, Mg-Al 주조합금, Mg-Al-Zn 주조합금, Mg-Al-Mn 주조합금을 포함할 수 있으며, 조성과 제조방법(다이캐스팅, 사형 및 금형 주물)에 따라 AM60계열 주조합금, AS41계열 주조합금, AZ91계열 주조합금, AM100계열 주조합금, AZ63계열 주조합금, AZ81계열 주조합금, AZ92계열 주조합금, AM20계열 주조합금, AM50계열 주조합금, AM60계열 주조합금 등으로 분류할 수 있다. In one embodiment of the invention, the magnesium casting may comprise a magnesium alloy casting. The magnesium alloy casting material may be composed of a magnesium main alloy including aluminum in order to secure strength, castability and corrosion resistance. Furthermore, the magnesium master alloy containing aluminum may further contain zinc or manganese. That is, the magnesium main alloy containing aluminum may include, for example, Mg-Al main alloy, Mg-Al-Zn main alloy, Mg-Al-Mn main alloy, and the composition and manufacturing method (die casting, Sand mold and mold casting), AM60 series, AS41 series, AZ91 series, AM100 series, AZ63 series, AZ81 series, AZ92 series, AM20 series, AM50 series casting. Alloys and AM60 series main alloys.
상술한 Mg-Al계열 합금 주조재, Mg-Al-Zn계열 합금 주조재 또는 Mg-Al-Mn계열 합금 주조재를 포함하는 마그네슘 주조재는, 예를 들어, 리튬과 같은 활성원소를 포함하지 않으므로, 상기 마그네슘 주조재의 표면에 불화피막을 형성하는 것이 용이하지 않는 것으로 알려져 있다. 본 발명의 실시예들에서는, 불소계 계면활성제(Surfactant)를 포함하는 용액에 마그네슘 주조재를 침지함으로써 상기 마그네슘 주조재의 표면 결함을 제거하고 표면을 평탄하게 구현하는 마그네슘 주조재의 전처리 단계(S100)를 수행하여 Mg-Al계열 합금 주조재, Mg-Al-Zn계열 합금 주조재 또는 Mg-Al-Mn계열 합금 주조재를 포함하는 마그네슘 주조재의 표면에 불화피막을 용이하게 형성할 수 있다. Since the magnesium casting material including the Mg-Al-based alloy casting material, the Mg-Al-Zn-based alloy casting material or the Mg-Al-Mn-based alloy casting material described above does not include an active element such as lithium, It is known that it is not easy to form a fluoride film on the surface of the said magnesium casting material. In the embodiments of the present invention, the pre-treatment step (S100) of the magnesium casting to remove the surface defects of the magnesium casting and to flatten the surface by immersing the magnesium casting in a solution containing a fluorine-based surfactant (Surfactant) Thus, the fluorinated film can be easily formed on the surface of the magnesium casting including the Mg-Al-based alloy casting, the Mg-Al-Zn-based alloy casting, or the Mg-Al-Mn-based alloy casting.
도 2는 본 발명의 일 실시예에 따른 마그네슘 주조재의 전처리 단계(S100)를 보다 상세하게 도해하는 순서도이다.Figure 2 is a flow chart illustrating in more detail the pre-treatment step (S100) of the magnesium casting material according to an embodiment of the present invention.
도 2를 참조하면, 마그네슘 주조재의 표면의 유분 및 오염물 등을 제거하기 위하여 마그네슘 주조재의 표면을 탈지할 수 있다(S110). 탈지처리는 5 질량% 내지 10 질량%의 수산화나트륨(NaOH), 1 질량% 내지 5 질량%의 글루콘산나트륨(C6H11NaO7), 1 질량% 내지 3 질량%의 탄산나트륨(Na2CO3), 0.1 질량% 내지 0.3 질량%의 계면활성제 및 나머지는 물(H2O)을 포함하는 혼합용액에 침지함으로써 구현할 수 있으며, 탈지처리가 끝나면 마그네슘 주조재의 표면에 남아있는 탈지용액을 제거하기 위하여 제1세정을 할 수 있다(S120). 탈지된 마그네슘 주조재와 관련된 사진은 도 9의 (a)에 나타내었다.Referring to FIG. 2, the surface of the magnesium casting may be degreased to remove oil and contaminants on the surface of the magnesium casting (S110). Degreasing treatment consists of 5% by mass to 10% by mass of sodium hydroxide (NaOH), 1% by mass to 5% by mass of sodium gluconate (C 6 H 11 NaO 7 ), and 1% by mass to 3% by mass of sodium carbonate (Na 2 CO). 3 ), 0.1% by mass to 0.3% by mass of the surfactant and the rest can be achieved by immersing in a mixed solution containing water (H 2 O), after the degreasing treatment to remove the degreasing solution remaining on the surface of the magnesium casting In order to perform the first cleaning (S120). A photograph related to the degreased magnesium casting material is shown in FIG.
제1세정된 마그네슘 주조재의 표면은 이형제(Release agent) 및 불순 산화피막이 남아 있을 수 있다. 이러한 이형제 및 불순 산화피막을 제거하기 위해 마그네슘 주조재의 표면을 에칭하는 단계를 거칠 수 있다(S130). 마그네슘 주조재의 에칭은 1 질량% 내지 3 질량%의 불산(HF), 3 질량% 내지 10 질량%의 유기산, 0.1 질량% 이하의 불소계 계면활성제 및 나머지는 물(H2O)을 포함하는 혼합용액에 침지함으로써 구현할 수 있고, 상기 유기산은 옥살산(oxalic acid), 시트르산(citric acid), 말론산(Malonic acid)으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 한편, 유기산은 무기산으로 대체될 수도 있으며 무기산은 황산, 질산 및 염산 등을 포함할 수 있다. The surface of the first cleaned magnesium casting may have a release agent and an impurity oxide film. In order to remove the release agent and the impurity oxide film, the surface of the magnesium casting material may be etched (S130). Etching of the magnesium casting material is a mixed solution containing 1% by mass to 3% by mass of hydrofluoric acid (HF), 3% by mass to 10% by mass of organic acid, 0.1% by mass or less of fluorine-based surfactant, and the remainder with water (H 2 O). It can be implemented by immersion in, the organic acid may include at least one selected from the group consisting of oxalic acid (citric acid), citric acid (citric acid), malonic acid (Malonic acid). Meanwhile, the organic acid may be replaced with an inorganic acid, and the inorganic acid may include sulfuric acid, nitric acid, hydrochloric acid, and the like.
본 발명의 일 실시예에서 상기 에칭은 마그네슘 주조재 표면의 산화막(대기중의 산소와 결합한)을 제거하여 후공정의 목적한 피막(예를 들어, 화성피막,아노다이징피막 또는 도금막)을 형성하기위한 중요한 준비단계이다. 하지만 에칭 단계에서 침지를 위한 혼합용액의 조성에 따라 마그네슘 주조재의 치수의 변화량은 적게는 수십 미크론에서 많게는 수백 미크론까지 변화하기 때문에 적절한 조성물을 확보하는 것이 매우 중요하다. 본 발명의 일 실시예에 따른 상술한 조성물을 사용하여 에칭할 경우 30초 처리시 약 10~30㎛ 의 치수 변화량을 보이며, 또한 상기 0.1 질량% 이하의 불소계 계면활성제가 첨가됨으로써 마그네슘 주조재의 표면을 보호함과 동시에 우수한 젖음성과 침투력을 제공할 수 있음을 확인하였다. In one embodiment of the present invention, the etching removes the oxide film (combined with oxygen in the air) on the surface of the magnesium casting material to form a target film (eg, chemical film, anodizing film or plating film) for a later process. It is an important preparation step. However, according to the composition of the mixed solution for immersion in the etching step, the amount of change in the size of the magnesium casting material varies from as few tens of microns to as many as hundreds of microns, it is very important to obtain a suitable composition. When etching using the above-described composition according to an embodiment of the present invention shows a dimensional change of about 10 ~ 30㎛ when treated for 30 seconds, and also the surface of the magnesium casting material by adding the fluorine-based surfactant of 0.1% by mass or less It was confirmed that it can provide excellent wettability and penetration while protecting.
일반적인 경우 탈지 및/또는 에칭시에도 인산(Phosphoric acid)을 사용하여 폐수처리시 부영양화 및 적조현상을 유발하는 인(P)의 영향으로 인해 환경오염의 문제가 있었으나 본 발명의 일 실시예에 따르면, 인(P)을 포함하지 않는 친환경성의 불산, 유기산 및 무기산으로 이루어진 군으로부터 선택된 하나 이상을 포함하므로, 자동차, 항공기 소재, 휴대용 기기의 내ㅇ외장 케이스, 스포츠용품 및 의료 기기 등을 친환경적으로 제조할 수 있다.In general, there was a problem of environmental pollution due to the effect of phosphorus (P), which causes eutrophication and red tide during wastewater treatment using phosphoric acid (Phosphoric acid) even during degreasing and / or etching according to an embodiment of the present invention, Since it contains at least one selected from the group consisting of environmentally friendly hydrofluoric acid, organic acid and inorganic acid that does not contain phosphorus (P), it is possible to eco-friendly manufacture of automobiles, aircraft materials, interior and exterior cases of portable devices, sporting goods and medical devices. Can be.
에칭 처리를 마치고 나면 에칭된 마그네슘 주조재의 표면에 남아 있는 에칭 용액을 제거하기 위해 마그네슘 주조재의 표면을 제2세정 하는 단계를 거칠 수 있다(S140). 에칭된 마그네슘 주조재와 관련된 사진은 도 9의 (b)에 나타내었다. After the etching process, the surface of the magnesium casting may be secondly cleaned to remove the etching solution remaining on the surface of the etched magnesium casting (S140). A photograph relating to the etched magnesium casting is shown in FIG. 9 (b).
제2세정된 마그네슘 주조재의 표면에는 에칭 시 표면에 치환 부착된 불용성 불순 금속이 남아있을 수 있다. 이러한 불용성 불순 금속 등을 제거하기 위해 마그네슘 주조재의 표면을 디스머트(Desmut)하는 단계를 거칠 수 있다(S150). 상기 디스머트 하는 단계(S150)는, 30 질량% 내지 40 질량%의 수산화 나트륨(NaOH), 3 질량% 내지 5 질량%의 글루콘산 나트륨(C6H11NaO7), 5 질량% 내지 10 질량%의 탄산 나트륨(Na2CO3) 및 나머지는 물(Water)을 포함하는 용액에 상기 마그네슘 주조재를 침지함으로써 구현될 수 있으며 이에 의하여 불용성 불순 금속 등을 제거할 수 있다. 디스머트된 마그네슘 주조재와 관련된 사진은 도 9의 (c)에 나타내었다.On the surface of the second cleaned magnesium casting, there may be left an insoluble impurity metal substituted on the surface during etching. In order to remove such an insoluble impurity metal, the surface of the magnesium casting material may be desmuted (S150). The dispersing step (S150) may include 30% by mass to 40% by mass of sodium hydroxide (NaOH), 3% by mass to 5% by mass of sodium gluconate (C 6 H 11 NaO 7 ), and 5% by mass to 10% by mass. % Sodium carbonate (Na 2 CO 3 ) and the rest can be implemented by immersing the magnesium casting in a solution containing water (water) it can be removed insoluble impurity metal and the like. Photographs related to the discontinued magnesium casting are shown in FIG. 9 (c).
계속하여, 마그네슘 주조재의 표면에 남아 있는 디스머트 용액을 제거하기 위해 마그네슘 주조재의 표면을 제3세정 하는 단계(S160)를 거치고 나면, 후에 화성처리를 통한 피막을 형성하는데 있어서, 마그네슘 주조재와 화성처리를 통해 형성된 피막 간의 계면결합력 및 밀착성이 향상될 수 있다. 따라서 내식성 및/또는 도장 부착성이 강한 피막을 형성할 수 있게 된다.Subsequently, after the third step of washing the surface of the magnesium casting material (S160) to remove the dismist solution remaining on the surface of the magnesium casting material (S160), in forming a film through a chemical conversion treatment, Interfacial bonding force and adhesion between the coatings formed through the treatment can be improved. Therefore, a film with strong corrosion resistance and / or paint adhesion can be formed.
상기 마그네슘 주조재의 전처리 단계(S100)가 끝나면, 마그네슘 주조재의 표면에 불화피막을 형성할 수 있다(S200, 도 1참조). 불화피막은 산성불화암모늄(NH4HF2) 및 불화나트륨(NaF)으로 이루어진 군으로부터 선택된 하나 이상을 포함하는 용액에 침지하여 상기 마그네슘 주조재의 표면 상에 형성할 수 있다.After the pretreatment step S100 of the magnesium casting material is finished, a fluorinated film may be formed on the surface of the magnesium casting material (S200, see FIG. 1). The fluoride film may be formed on the surface of the magnesium casting material by immersing in a solution containing at least one selected from the group consisting of acidic ammonium fluoride (NH 4 HF 2 ) and sodium fluoride (NaF).
도 3은 본 발명의 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 3 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to an embodiment of the present invention.
도 3을 참조하면, 불화피막을 형성하는 단계(S200)는 마그네슘 주조재를 산성불화암모늄(NH4HF2)을 포함하는 용액에 침지하는 단계(S210)를 포함할 수 있다. 산성불화암모늄을 포함하는 용액에 침지하는 단계(S210)는 7 질량% 내지 15 질량%의 산성불화암모늄, 5 질량% 내지 10 질량%의 과산화수소(hydrogen peroxide, H2O2), 3 질량% 내지 7 질량%의 황산(sulfuric acid, H2SO4), 0.005 질량% 내지 1 질량%의 불소계 계면활성제 및 나머지로서 물(H2O)을 포함하는 용액에 마그네슘 주조재를 침지할 수 있다. 상기 0.005 질량% 내지 1 질량%의 불소계 계면활성제는, 예를 들어, F-(CF2-CF2)n(n은 3 내지 8의 범위를 가짐)으로 표현되는 퍼플루오르 알킬사슬(perfluoroalkyl chain)을 포함하는 계면활성제 또는 플루오린(fluorine)이 탄소(carbon)와 강력한 공유결합을 형성한 계면활성제를 포함할 수 있다. 상기 산성불화암모늄을 포함하는 용액은 상기 불소계 계면활성제를 함유함으로써 산성불화암모늄을 포함하는 용액의 표면장력(surface tension)을 저하시켜 우수한 습윤능력(wetting capacity)을 부여하여 마그네슘 주조재 표면의 미세부위까지 불화피막인 화성피막(conversion coating)을 형성하는데 중요한 역할을 할 수 있다. Referring to FIG. 3, the forming of the fluoride film (S200) may include immersing the magnesium casting material in a solution containing acidic ammonium fluoride (NH 4 HF 2 ) (S210). Immersion in a solution containing acidic ammonium fluoride (S210) is 7 to 15% by mass of acidic ammonium fluoride, 5 to 10% by mass of hydrogen peroxide (hydrogen peroxide, H 2 O 2 ), 3% by mass to Magnesium castings may be immersed in a solution comprising 7 mass% sulfuric acid (H 2 SO 4 ), 0.005 mass% to 1 mass% fluorine-based surfactant, and the remainder water (H 2 O). The 0.005% by mass to 1% by mass of the fluorine-based surfactant is, for example, a perfluoroalkyl chain represented by F- (CF 2 -CF 2 ) n (n has a range of 3 to 8). Surfactant or fluorine (fluorine) comprising a may include a surfactant that forms a strong covalent bond with carbon (carbon). The solution containing the acidic ammonium fluoride reduces the surface tension of the solution containing the acidic ammonium fluoride by containing the fluorine-based surfactant to impart excellent wetting capacity to give a fine portion of the surface of the magnesium casting material. It can play an important role in forming a conversion coating, which is a fluoride coating.
마그네슘 주조재를 산성불화암모늄을 포함하는 용액에 침지하게 되면, 다음과 같은 화학식 1 및 화학식 2 에 의해 마그네슘 주조재의 표면에 금속산화물을 형성할 수 있다. When the magnesium casting material is immersed in a solution containing acidic ammonium fluoride, it is possible to form a metal oxide on the surface of the magnesium casting material by the following formula (1) and formula (2).
화학식 1
Figure PCTKR2014009713-appb-C000001
Formula 1
Figure PCTKR2014009713-appb-C000001
화학식 2
Figure PCTKR2014009713-appb-C000002
Formula 2
Figure PCTKR2014009713-appb-C000002
화학식 1 및 2에 의해 생성된 금속산화물은 불화 마그네슘(MgF2)과 같은 물질을 포함할 수 있고, 이러한 금속산화물을 포함하는 층은 불화피막으로 불릴 수 있다. 또한, 불화피막은 전처리 단계(S100)를 거친 후 마그네슘 주조재의 표면에 생성되어 상기 마그네슘 주조재와의 계면결합력 및 밀착성이 더욱 향상될 수 있다.The metal oxide produced by Formulas 1 and 2 may include a material such as magnesium fluoride (MgF 2 ), and the layer containing the metal oxide may be called a fluoride coating. In addition, the fluoride film is generated on the surface of the magnesium casting material after the pretreatment step (S100) can further improve the interfacial bonding force and adhesion with the magnesium casting material.
본 발명의 실시예들에서 생산된 불화 마그네슘(MgF2)은 물에 잘 녹지 않으며, 탄화수소, 알콜, 방향족 화합물 및 에스테르와 같은 다양한 유기물에 저항성을 가질 수 있다. 따라서 이러한 계면결합력 및 밀착성이 향상된 불화 마그네슘을 포함하는 불화피막은 장기적으로 마그네슘 주조재를 보호해줄 수 있다.Magnesium fluoride (MgF 2 ) produced in the embodiments of the present invention is poorly soluble in water, and may be resistant to various organic materials such as hydrocarbons, alcohols, aromatic compounds and esters. Therefore, the fluoride coating containing magnesium fluoride with improved interfacial bonding force and adhesion can protect magnesium castings in the long term.
도 7은 본 발명의 일 실시예에 따른 산성불화암모늄을 포함하는 용액에 침지하여 불화피막이 형성된 마그네슘 주조재의 표면과 인산염피막을 형성한 마그네슘 주조재의 표면을 비교한 사진이다.7 is a photograph comparing the surface of the magnesium casting material formed with a phosphate coating and the surface of the magnesium casting material formed by immersing in a solution containing an acidic ammonium fluoride according to an embodiment of the present invention.
도 7을 참조하면, 종래의 폐수처리시 부영양화를 일으키는 인(P)을 포함하는 인산염 용액을 사용하여 인산염 피막을 형성한 마그네슘 주조재인 (b)에 비하여 산성불화암모늄을 포함하는 용액에 침지하여 불화피막이 형성된 마그네슘 주조재의 표면인 (a)의 명도가 훨씬 높고, 흰색 또는 회백색의 계열인 것을 알 수 있다. 따라서, 이러한 화성 처리로 인해서 내식성 및 내환경성 향상과 더불어 도장 품질이 향상될 수 있다.Referring to FIG. 7, fluoride is immersed in a solution containing ammonium fluoride in acid compared to (b), which is a magnesium casting material in which a phosphate coating is formed using a phosphate solution containing phosphorus (P) that causes eutrophication in conventional wastewater treatment. It can be seen that the brightness of (a), which is the surface of the magnesium casting material on which the film was formed, is much higher, and is white or grayish white. Therefore, due to such chemical treatment, the coating quality may be improved while improving the corrosion resistance and environmental resistance.
도 4는 본 발명의 다른 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 4 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
도 4를 참조하면, 불화피막을 형성하는 단계(S200)는 마그네슘 주조재를 불화나트륨(NaF)을 포함하는 용액에 침지하는 단계를 포함할 수 있다(S220). 불화나트륨을 포함하는 용액에 침지하는 단계에서는, 5 질량% 내지 10 질량%의 불산(HF), 10 질량% 내지 15 질량%의 불화 나트륨, 3 질량% 내지 7 질량%의 불화 칼륨(Potassium fluoride, KF), 0.005 질량% 내지 1 질량%의 불소계 계면활성제 및 및 나머지로서 물(H2O)을 포함하는 용액에 마그네슘 주조재를 침지할 수 있으며, 마그네슘 주조재의 표면에 불화 마그네슘(MgF2) 및/또는 NaMgF3와 같은 물질을 포함하는 금속산화물 층을 형성할 수 있다. 이러한 금속산화물을 포함하는 불화피막은 전처리 단계(S100)를 거친 후 마그네슘 주조재의 표면에 형성되므로 마그네슘 주조재와의 계면결합력 및 밀착성이 뛰어나 마그네슘 주조재의 보호를 효과적으로 할 수 있다. Referring to FIG. 4, the forming of the fluoride film (S200) may include immersing the magnesium casting material in a solution containing sodium fluoride (NaF) (S220). In the step of immersion in a solution containing sodium fluoride, 5% by mass to 10% by mass of hydrofluoric acid (HF), 10% by mass to 15% by mass sodium fluoride, 3% by mass to 7% by mass of potassium fluoride (Potassium fluoride, KF), from 0.005% by mass to 1% by mass of a fluorine-based surfactant and, as a remainder, water (H 2 O), can be immersed in the magnesium casting material, magnesium fluoride (MgF 2 ) and And / or a metal oxide layer comprising a material such as NaMgF 3 . Since the fluoride film including the metal oxide is formed on the surface of the magnesium casting after the pretreatment step (S100), it is excellent in the interfacial bonding force and adhesion with the magnesium casting material, it is possible to effectively protect the magnesium casting material.
한편, 상기 0.005 질량% 내지 1 질량%의 불소계 계면활성제는, 예를 들어, F-(CF2-CF2)n(n은 3 내지 8의 범위를 가짐)으로 표현되는 퍼플루오르 알킬사슬(perfluoroalkyl chain)을 포함하는 계면활성제 또는 플루오린(fluorine)이 탄소(carbon)와 강력한 공유결합을 형성한 계면활성제를 포함할 수 있다. 상기 불화나트륨(NaF)을 포함하는 용액은 상기 불소계 계면활성제를 함유함으로써 불화나트륨(NaF)을 포함하는 용액의 표면장력(surface tension)을 저하시켜 우수한 습윤능력(wetting capacity)을 부여하여 마그네슘 주조재 표면의 미세부위까지 불화피막인 화성피막(conversion coating)을 형성하는데 중요한 역할을 할 수 있다. On the other hand, the 0.005% by mass to 1% by mass of the fluorine-based surfactant is, for example, perfluoroalkyl chain represented by F- (CF 2 -CF 2 ) n (n has a range of 3 to 8) Surfactant containing a chain or fluorine (fluorine) may include a surfactant in which a strong covalent bond with carbon (carbon). The solution containing sodium fluoride (NaF) lowers the surface tension of the solution containing sodium fluoride (NaF) by containing the fluorine-based surfactant to impart excellent wetting capacity to give magnesium casting material. It can play an important role in forming a conversion coating, which is a fluoride coating, even to a minute portion of the surface.
도 8은 본 발명의 다른 일 실시예에 따른 불화나트륨을 포함하는 용액에 침지하여 불화피막이 형성된 마그네슘 주조재의 표면 사진이다. 도 8을 참조하면, 도 7을 참조하여 설명한 것과 마찬가지로, 인산염 피막을 형성한 (b)의 마그네슘 주조재에 비하여 명도가 훨씬 높고, 내식성 및 내환경성 우수한 화성처리를 할 수 있다.8 is a surface photograph of a magnesium casting material in which a fluoride film is formed by immersion in a solution containing sodium fluoride according to another embodiment of the present invention. Referring to FIG. 8, similar to that described with reference to FIG. 7, the chemical conversion treatment having much higher brightness and excellent corrosion resistance and environmental resistance can be performed as compared with the magnesium casting material of (b) in which the phosphate film was formed.
도 5는 본 발명의 또 다른 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 5 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
도 5를 참조하면, 불화피막의 형성은 순차적으로 산성불화암모늄을 포함하는 용액에 침지하는 단계(S210)를 거친 후, 불화나트륨을 포함하는 용액에 침지하는 단계(S230)를 포함할 수 있다. 화학식 1 및 화학식 2의 반응에 의해 마그네슘 주조재의 표면에는 불화 마그네슘(MgF2)을 포함하는 층이 형성되고 난 후, NaMgF3을 포함하는 금속 산화물 층이 더 형성될 수 있다. 이러한 단계별로 불화피막을 형성하게 되면, 화성처리를 두 번하는 효과를 얻을 수 있으며, 자연 산화된 부동태층과 비교하여 도장의 품질이 우수하고 다양한 유기물에 저항성을 가지며, 내식성, 내환경성 및 도장 부착성을 부여할 수 있다.Referring to FIG. 5, the formation of the fluoride film may include a step (S230) of immersion in a solution containing sodium fluoride after the step (S210) of sequentially immersing in a solution containing acidic ammonium fluoride. After a layer including magnesium fluoride (MgF 2 ) is formed on the surface of the magnesium casting by the reaction of Formulas 1 and 2, a metal oxide layer including NaMgF 3 may be further formed. Forming the fluorinated coating in such a step, it is possible to obtain the effect of double chemical conversion treatment, compared to the natural oxidized passivation layer, the quality of the coating is excellent and resistant to various organic substances, corrosion resistance, environmental resistance and coating adhesion You can give it a surname.
도 6은 본 발명의 또 다른 일 실시예에 따른 마그네슘 주조재의 표면에 불화피막을 형성하는 단계를 보다 상세하게 도해하는 순서도이다.Figure 6 is a flow chart illustrating in more detail the step of forming a fluoride film on the surface of the magnesium casting material according to another embodiment of the present invention.
도 6을 참조하면, 불화피막을 형성하는 단계(S200)는 상기 불화나트륨을 포함하는 용액에 침지하는 단계(S220)를 거친 후, 상기 산성불화암모늄을 포함하는 용액에 침지하는 단계(S240)를 순차적으로 포함할 수 있다. 따라서 마그네슘 주조재의 표면에는 NaMgF3을 포함하는 금속 산화물 층이 먼저 형성되고 난 후, 불화 마그네슘(MgF2)을 포함하는 층이 형성될 수 있다. 이러한 금속 산화물 층은 마그네슘 주조재의 불화피막으로써 내식성 및 도장 부착성이 향상되고, 산성불화암모늄 또는 불화나트륨을 포함하는 용액 중 어느 하나에만 침지하여 불화피막을 형성한 마그네슘 주조재의 표면보다 도장의 품질이 뛰어날 수 있으며, 내식성 및 내환경성이 현저하게 증가할 수 있다.Referring to Figure 6, the step of forming a fluoride film (S200) after the step of immersing in a solution containing the sodium fluoride (S220), the step of immersing in a solution containing the acidic ammonium fluoride (S240) It may include sequentially. Therefore, a metal oxide layer including NaMgF 3 may be first formed on the surface of the magnesium casting material, and then a layer including magnesium fluoride (MgF 2 ) may be formed. The metal oxide layer is a fluoride coating of magnesium casting material, which improves corrosion resistance and paint adhesion, and has a higher coating quality than the surface of a magnesium casting material formed by immersing only in a solution containing acidic ammonium fluoride or sodium fluoride to form a fluoride coating film. It can be excellent, and the corrosion resistance and environmental resistance can be significantly increased.
나아가, 본 발명의 또 다른 일 실시예에 의하면 상술한 마그네슘 주조재의 화성처리 방법들에 의하여 불화피막이 형성되고, 이러한 불화피막을 포함하는 마그네슘 주조재를 제공할 수 있다.Furthermore, according to another embodiment of the present invention, a fluoride film is formed by the above-described chemical conversion treatment methods of the magnesium casting material, and a magnesium casting material including such a fluoride film can be provided.
한편, 이렇게 마그네슘 주조재의 표면에 형성된 불화피막 상에는 필요에 따라 금속을 포함하는 도장층을 더 형성할 수 있고, 이때 도장층을 형성하는 금속으로는 Mn, Zr, V, Al, Zn, Ca 및 Ce 로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있으며, 마그네슘 주조재의 표면에서 마그네슘 이온과 반응하여 도장층을 형성할 수 있다.On the other hand, a coating layer containing a metal may be further formed on the fluorinated coating film formed on the surface of the magnesium casting material as necessary, and the metal forming the coating layer may include Mn, Zr, V, Al, Zn, Ca, and Ce. It may include one or more selected from the group consisting of, and may react with magnesium ions on the surface of the magnesium casting to form a coating layer.
본 발명의 실시예들에 따르면, 도장의 품질과 내식성이 뛰어난 마그네슘 주조재 및 이러한 마그네슘 주조재를 친환경적으로 제조할 수 있는 방법이 제공되어 폐수처리 비용을 절감할 수 있다. According to the embodiments of the present invention, a magnesium casting material having excellent paint quality and corrosion resistance and a method for manufacturing the magnesium casting material in an environmentally friendly manner can be provided to reduce wastewater treatment costs.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (8)

  1. 마그네슘 주조재의 표면에 대한 전처리 단계; 및Pretreatment of the surface of the magnesium casting; And
    상기 전처리 단계를 거친 상기 마그네슘 주조재를 산성불화암모늄(NH4HF2) 또는 불화나트륨(NaF)을 포함하는 용액에 침지하여 상기 마그네슘 주조재의 표면에 불화피막을 형성하는 단계;를 포함하고,And immersing the magnesium casting material subjected to the pretreatment in a solution containing acidic ammonium fluoride (NH 4 HF 2 ) or sodium fluoride (NaF) to form a fluoride film on the surface of the magnesium casting material.
    상기 전처리 단계는 1 질량% 내지 3 질량%의 불산(HF), 3 질량% 내지 10 질량%의 유기산, 0.1 질량% 이하의 불소계 계면활성제(Surfactant) 및 나머지는 물(Water)을 포함하는 용액에 상기 마그네슘 주조재를 침지함으로써 상기 마그네슘 주조재의 표면을 에칭하는 단계를 포함하는, The pretreatment step may be performed in a solution containing 1% by mass to 3% by mass of hydrofluoric acid (HF), 3% by mass to 10% by mass of organic acid, 0.1% by mass or less of fluorine-based surfactant (Surfactant), and the remainder in water. Etching the surface of the magnesium casting by immersing the magnesium casting;
    마그네슘 주조재의 화성처리 방법.Process for chemical conversion of magnesium castings.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 마그네슘 주조재는 알루미늄을 함유하는 Mg-Al계열 합금 주조재, Mg-Al-Zn계열 합금 주조재 또는 Mg-Al-Mn계열 합금 주조재를 포함하는, 마그네슘 주조재의 화성처리 방법.The magnesium casting material includes an Mg-Al-based alloy casting, an Mg-Al-Zn-based alloy casting or an Mg-Al-Mn-based alloy casting containing aluminum.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 마그네슘 주조재는 AM60계열 주조합금, AS41계열 주조합금, AZ91계열 주조합금, AM100계열 주조합금, AZ63계열 주조합금, AZ81계열 주조합금, AZ92계열 주조합금, AM20계열 주조합금, AM50계열 주조합금, 또는 AM60계열 주조합금을 포함하는 주조재인, 마그네슘 주조재의 화성처리 방법.The magnesium casting material is the AM60 series, AS41 series, AZ91 series, AM100 series, AZ63 series, AZ81 series, AZ92 series, AM20 series, AM50 series, or A method for chemical conversion of a magnesium casting, which is a casting containing an AM60 series main alloy.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 전처리 단계는,The pretreatment step,
    상기 마그네슘 주조재의 표면을 에칭하는 단계 이전에,Prior to etching the surface of the magnesium casting,
    상기 마그네슘 주조재의 표면을 탈지하는 단계; 및  Degreasing the surface of the magnesium casting material; And
    탈지된 상기 마그네슘 주조재의 표면을 제1세정하는 단계;  First cleaning the surface of the degreased magnesium casting material;
    를 더 포함하고,More,
    상기 마그네슘 주조재의 표면을 에칭하는 단계 이후에,After etching the surface of the magnesium casting,
    에칭된 상기 마그네슘 주조재의 표면을 제2세정하는 단계;  Second cleaning the etched surface of the magnesium casting;
    제2세정된 상기 마그네슘 주조재의 표면을 디스머트(Desmut)하는 단계; 및  Desmuting a surface of the second cleaned magnesium casting material; And
    디스머트된 상기 마그네슘 주조재의 표면을 제3세정하는 단계;  Third cleaning the surface of the magnesium sintered cast material;
    를 더 포함하는, Further comprising,
    마그네슘 주조재의 화성처리 방법.Process for chemical conversion of magnesium castings.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 산성불화암모늄을 포함하는 용액은 7 질량% 내지 15 질량%의 산성불화암모늄, 5 질량% 내지 10 질량%의 과산화수소(hydrogen peroxide, H2O2), 3 질량% 내지 7 질량%의 황산(sulfuric acid, H2SO4), 0.005 질량% 내지 1 질량%의 불소계 계면활성제 및 나머지로서 물(H2O)을 포함하는 용액인, 마그네슘 주조재의 화성처리 방법.The solution containing the acidic ammonium fluoride is 7% by mass to 15% by mass of acid ammonium fluoride, 5% by mass to 10% by mass of hydrogen peroxide (hydrogen peroxide, H 2 O 2 ), 3% by mass to 7% by mass of sulfuric acid ( sulfuric acid, H 2 SO 4 ), 0.005% by mass to 1% by mass of a fluorine-based surfactant, the remainder is a solution containing water (H 2 O), the method for chemical conversion of magnesium castings.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 불화나트륨을 포함하는 용액은 5 질량% 내지 10 질량%의 불산(HF), 10 질량% 내지 15 질량%의 불화 나트륨, 3 질량% 내지 7 질량%의 불화 칼륨(Potassium fluoride, KF), 0.005 질량% 내지 1 질량%의 불소계 계면활성제 및 나머지로서 물(H2O)을 포함하는 용액인, 마그네슘 주조재의 화성처리 방법.The solution containing sodium fluoride includes 5% by mass to 10% by mass of hydrofluoric acid (HF), 10% by mass to 15% by mass sodium fluoride, 3% by mass to 7% by mass of potassium fluoride (KF), 0.005 A method for chemically treating a magnesium casting, which is a solution containing from 1% by mass to 1% by mass of a fluorine-based surfactant and water (H 2 O) as the remainder.
  7. 제 5 항 또는 제 6 항에 있어서,The method according to claim 5 or 6,
    상기 0.005 질량% 내지 1 질량%의 불소계 계면활성제는, F-(CF2-CF2)n(n은 3 내지 8의 범위를 가짐)으로 표현되는 퍼플루오르 알킬사슬(perfluoroalkyl chain)을 포함하는 계면활성제 또는 플루오린이 탄소와 공유결합을 형성한 계면활성제를 포함하는, 마그네슘 주조재의 화성처리 방법. The 0.005% by mass to 1% by mass of the fluorine-based surfactant is an interface including a perfluoroalkyl chain represented by F- (CF 2 -CF 2 ) n (n has a range of 3 to 8). A method for chemically treating a magnesium casting, wherein the activator or fluorine comprises a surfactant in which a covalent bond with carbon is formed.
  8. 제 1 항 내지 제 6 항 중 어느 한 항의 마그네슘 주조재의 화성처리 방법에 의해 형성된 불화피막을 포함하는, 마그네슘 주조재.Magnesium casting material containing the fluoride film formed by the chemical conversion treatment method of the magnesium casting material of any one of Claims 1-6.
PCT/KR2014/009713 2013-10-18 2014-10-16 Environmentally friendly chemical conversion treatment method of magnesium cast material, and magnesium cast material prepared thereby WO2015056985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130124476A KR101502915B1 (en) 2013-10-18 2013-10-18 The eco-friendly chemical conversion method for magnesium cast material and magnesium cast material manufactured by the same
KR10-2013-0124476 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056985A1 true WO2015056985A1 (en) 2015-04-23

Family

ID=52828362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009713 WO2015056985A1 (en) 2013-10-18 2014-10-16 Environmentally friendly chemical conversion treatment method of magnesium cast material, and magnesium cast material prepared thereby

Country Status (2)

Country Link
KR (1) KR101502915B1 (en)
WO (1) WO2015056985A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540653A (en) * 2022-02-24 2022-05-27 惠州云海镁业有限公司 High-corrosion-resistance magnesium alloy processing technology
WO2023115680A1 (en) * 2021-12-23 2023-06-29 滨州学院 Preparation method for hierarchical structure namgf3 coating on surface of biodegradable magnesium alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077150A (en) * 2001-03-28 2002-10-11 닛뽕 뻬인또 가부시키가이샤 Chemical conversion reagent for magnesium alloy, surface treating method, and magnesium alloy substrate
JP2004218074A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion treatment agent and surface-treated metal
JP2009179860A (en) * 2008-01-31 2009-08-13 Isobe Toso Kk Surface preparation process
KR20120081128A (en) * 2009-09-11 2012-07-18 가부시키가이샤 산도쿠 Magnesium-lithium alloy and surface treatment method therefor
JP5096685B2 (en) * 2006-03-30 2012-12-12 本田技研工業株式会社 Antifreeze / coolant composition for magnesium or magnesium alloy
KR20130076540A (en) * 2011-12-28 2013-07-08 재단법인 포항산업과학연구원 Surface treatments method of magnesium alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077150A (en) * 2001-03-28 2002-10-11 닛뽕 뻬인또 가부시키가이샤 Chemical conversion reagent for magnesium alloy, surface treating method, and magnesium alloy substrate
JP2004218074A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion treatment agent and surface-treated metal
JP5096685B2 (en) * 2006-03-30 2012-12-12 本田技研工業株式会社 Antifreeze / coolant composition for magnesium or magnesium alloy
JP2009179860A (en) * 2008-01-31 2009-08-13 Isobe Toso Kk Surface preparation process
KR20120081128A (en) * 2009-09-11 2012-07-18 가부시키가이샤 산도쿠 Magnesium-lithium alloy and surface treatment method therefor
KR20130076540A (en) * 2011-12-28 2013-07-08 재단법인 포항산업과학연구원 Surface treatments method of magnesium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023115680A1 (en) * 2021-12-23 2023-06-29 滨州学院 Preparation method for hierarchical structure namgf3 coating on surface of biodegradable magnesium alloy
CN114540653A (en) * 2022-02-24 2022-05-27 惠州云海镁业有限公司 High-corrosion-resistance magnesium alloy processing technology
CN114540653B (en) * 2022-02-24 2022-11-25 惠州云海镁业有限公司 High-corrosion-resistance magnesium alloy processing technology

Also Published As

Publication number Publication date
KR101502915B1 (en) 2015-03-16

Similar Documents

Publication Publication Date Title
CN104593793B (en) A kind of aluminium and aluminum alloy surface pre-process neutralizer
CN101268214B (en) Process for forming a well visible non-chromate conversion coating for magnesium and magnesium alloys
CN102212812B (en) Chromium-free rare-earth environment-friendly chemical conversion treatment method of die casting aluminium alloy part
KR101195458B1 (en) Method for treating the surface of metal
CN1837407A (en) Method for treating surface of magnesium or alloy thereof
JP6083020B2 (en) Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy
CN114351211B (en) Processing technology of aluminum alloy base material
WO2015056985A1 (en) Environmentally friendly chemical conversion treatment method of magnesium cast material, and magnesium cast material prepared thereby
CN1386902A (en) Chemical conversion reagent for Mg-alloy, surface treatment method and Mg-alloy matrix
JPH11193478A (en) Surface treating method, sliding member and piston
WO2014203919A1 (en) Method for manufacturing magnesium alloy product
JP4112219B2 (en) Surface treatment method for lithium-based magnesium alloy material
JP7298889B2 (en) Composite chrome plated article
JP5428105B2 (en) Black chemical conversion treatment liquid, chemical conversion treatment method and chemical conversion treatment member for magnesium alloy
WO2013157760A1 (en) Environmentally friendly conversion treatment method of magnesium material, and magnesium material prepared thereby
CN1226459C (en) Magnesium alloy surface chemical cleaning process and cleaning liquid
KR101598572B1 (en) Composition for desmut treatment and method of desmut treatment of aluminum alloy using the same
CN114351212B (en) Antifouling paint material
JP4583408B2 (en) Surface treatment method of aluminum material
KR100783006B1 (en) Copper-plated of magnesium compound and surface treat method thterof
JP5292195B2 (en) Method for tin plating on magnesium alloy and etching solution for magnesium alloy
CN114351156A (en) Dedusting agent and application thereof
JP2003171793A (en) Method of forming anodic oxidation film onto aluminum alloy
CN1229518C (en) Method for surface treatment of aluminium or aluminium alloy and treatment liquid used therefor
JPH06116740A (en) Surface treatment of magnesium alloy product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853725

Country of ref document: EP

Kind code of ref document: A1