WO2015056863A1 - 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법 - Google Patents

특정 파장에 대한 형광 특성을 갖는 미생물 검사방법 Download PDF

Info

Publication number
WO2015056863A1
WO2015056863A1 PCT/KR2014/005610 KR2014005610W WO2015056863A1 WO 2015056863 A1 WO2015056863 A1 WO 2015056863A1 KR 2014005610 W KR2014005610 W KR 2014005610W WO 2015056863 A1 WO2015056863 A1 WO 2015056863A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
pixels
unit
screen
Prior art date
Application number
PCT/KR2014/005610
Other languages
English (en)
French (fr)
Inventor
임효혁
최규용
이영진
송태윤
Original Assignee
주식회사 한국해양기상기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국해양기상기술 filed Critical 주식회사 한국해양기상기술
Priority to US15/028,811 priority Critical patent/US10140547B2/en
Priority to EP14853844.0A priority patent/EP3059578A4/en
Publication of WO2015056863A1 publication Critical patent/WO2015056863A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • G01N15/01
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/693Acquisition

Definitions

  • the present invention relates to a test method for determining the population of a microorganism included in a sample, and more particularly, to a specific wavelength capable of accurately calculating the population of microorganisms having a fluorescence characteristic for a specific wavelength included in the sample. It relates to a microbiological test method having fluorescence properties.
  • the present invention relates to a microbiological test method.
  • the identification of the population is carried out from contamination by ballast water or the like, with specific identification and study on the green algae or red tide phenomena. It is very important for marine ecosystem protection.
  • ballast water contained in ships reciprocating between countries. If a ship departing from one area discharges ballast water for anchoring in another area, Treatment of plankton contained in ballast water, which may endanger the ecosystem, should be carried out first.
  • ballast water there are two broad categories of methods that can be used to treat ballast water in accordance with the criteria of the adopted convention.
  • the first is in-line treatment and the second is in-tank treatment.
  • the pipeline treatment method is a treatment method at the time of inflow and outflow of ballast water
  • the tank treatment method is a treatment method while sailing after the ballast water is introduced.
  • Current international ballast water treatment technologies are pipeline treatment methods, and tank treatment methods can be smaller in size compared to pipeline treatment methods, but in reality, efficiency should be reconsidered because the treatment speed should be considered in consideration of the navigation time. have.
  • the number of problem plankton contained in the ballast water can be identified and the appropriate treatment can be selected, and the final inspection of the ballast water discharged prior to discharge of the treated ballast water is carried out.
  • inspection should be carried out to ensure that the plankton, which is a problem for the ballast water discharged, has been treated in accordance with the standards.
  • the conventional microbiological test method including plankton is difficult to distinguish between various foreign substances, etc., and also very difficult to distinguish between the active microorganism and inactive microorganisms, it is difficult to determine the exact number of microorganisms.
  • An object of the present invention devised to solve the above problems is to collect the light reflected by a microorganism having a fluorescence characteristic for a specific wavelength to generate the image and the (a) and (b) (C) classifying the plurality of pixels continuously emitting light as one object by analyzing and classifying the total number of the classified objects, and (d) calculating the fluorescence characteristics of specific wavelengths included in the sample. It is to provide a microbiological test method having a fluorescence characteristic for a specific wavelength to accurately calculate the population of microorganisms having.
  • the method further includes classifying a plurality of pixels that emit light continuously into a single object, thereby allowing accurate determination of the number of microorganisms included in the sample.
  • the method may further include classifying the object into one object only for a plurality of pixels continuously emitting within the range of the preset number of pixels in step (c), thereby more accurately performing filtering on various foreign substances included in the sample. It is to provide a microbiological test method having a fluorescence characteristic for a specific wavelength to enable the identification of the population of the microorganism.
  • the present invention is a light source unit for supplying light to a sample containing a microorganism of the fluorescent characteristic reflecting only light of a specific wavelength range, and the light reflected from the microorganism
  • step (c) includes: (c-1) the image processing unit displaying an image generated by the image acquisition unit on a screen and performing edge detection; (c-2) scanning the image of the boundary detection process in the step (c-1), and for each of the boundary lines included in the boundary detection processed image, the plurality of pixels included in each boundary line to emit light continuously Categorizing into objects of; Characterized in that it comprises a.
  • the image processing unit classifies only the target object in which the number of pixels constituting the one object among the objects is within a preset number range, and in step (d), the image.
  • the total number of the objects included in the screen calculated by the processor is a total number of the target objects.
  • the image processing unit classifies the plurality of pixels that emit light continuously into one object, and continuously targets one or more pixels of all adjacent pixels for each pixel constituting the screen. Only a plurality of pixels emitting light within a preset contrast ratio range may be determined as one object.
  • according to the present invention can provide a microbiological test method having a fluorescence characteristic for a specific wavelength capable of accurately determining the number of microorganisms contained in the sample.
  • FIG. 1 is a schematic block diagram of an optical apparatus for performing a microorganism inspection method having a fluorescence characteristic for a specific wavelength according to the present invention.
  • FIG. 2 is a perspective view for illustrating an internal configuration of the optical device.
  • FIG. 3 is an explanatory diagram for illustrating the structure of an optical device.
  • FIG. 4 is a block diagram of a detector.
  • 5 and 6 are a flow chart for a microbiological test method having a fluorescence characteristic for a specific wavelength according to the present invention.
  • FIG. 1 is a schematic block diagram of an optical apparatus for performing a microorganism inspection method having a fluorescence characteristic for a specific wavelength according to the present invention
  • Figure 2 is a perspective view for showing the internal configuration of the optical apparatus
  • Figure 3 4 is an explanatory diagram for illustrating the structure of an optical device
  • FIG. 4 is a block diagram of the detection unit.
  • 5 and 6 are flowcharts of a microbiological test method having fluorescence characteristics for specific wavelengths according to the present invention.
  • a method for inspecting microorganisms having a fluorescence characteristic for a specific wavelength includes a light source unit 150 for supplying light to a sample containing microorganisms having fluorescence characteristics reflecting only light of a specific wavelength range, and from the microorganisms.
  • the optical device 100 includes an image acquisition unit 121 for collecting the reflected light to generate an image and a detection unit 120 including an image processing unit 122 for processing the generated image. It relates to a method of determining the number of objects of the microorganisms contained.
  • the optical device 100 includes a light source unit 150, an optical filter unit 110, a material stage 190, and a detection unit 120.
  • the light source unit 150 is a means for performing a function of a light source used in an optical microscope or the like, and is a means for emitting light of most visible light or a specific wavelength region.
  • the optical filter unit 110 passes only the light in the wavelength region in which the microorganisms exhibit fluorescence characteristics among the light in the visible light region. It may include an excitation filter 111 to be delivered to the rich stage 190 side.
  • the light source unit 150 may be a light source that emits only light of a specific wavelength region in which the microorganism exhibits fluorescence characteristics, in which case the excitation filter will be excluded.
  • microorganisms exhibiting fluorescence properties with respect to light in the specific wavelength region include plankton including chlorophyll.
  • the plankton is a microorganism having fluorescence properties for red light having a wavelength of 620 nm to 780 nm.
  • the phytoplankton will be described as an example.
  • the rich stage 190 is a support on which a sample such as ballast water or seawater is disposed, and the sample is preferably disposed on the stage in a state of filtering the ballast water or seawater.
  • the detection unit 120 collects reflected light reflected by the light placed on the light source unit 150 by the sample disposed on the stage 190 and detects an image thereof, and includes a camera used in an optical microscope. do.
  • the camera used in the detector 120 is capable of observing an object having a minimum of 10 ⁇ m, and has a resolution of 1250 * 1250 pixels or more.
  • the detection unit 120 collects the light reflected from the sample disposed on the stage 190 and detects the image.
  • the detection unit 120 receives the light emitted from the light source unit 150 and includes plankton included in the sample.
  • the light reflected by the light is collected and disposed at a position opposite to the stage 190 to detect an image of plankton included in the sample.
  • the optical filter unit 110 is a means for transmitting the light provided from the light source unit 150 to the sample side disposed on the stage 190, and the light reflected by the sample to the detection unit 120 side.
  • the light of the light source unit 150 does not interfere with the external light and passes through the optical filter unit 110. It is preferable that the light reflected from the sample on the 190 and the light reflected from the sample can be moved back to the detection unit 120 through the optical filter unit 110 without interference.
  • the optical filter unit 110 includes an excitation filter 111 and a dichroic mirror 112.
  • the excitation filter 111 is a filter for passing only the light of the blue series of 380nm to 480nm of the light emitted from the light source unit 150.
  • the excitation filter when the microorganism is configured to emit only light of a specific wavelength exhibiting fluorescence characteristics in the light source unit, the excitation filter will be excluded.
  • the double filter 112 is a means for transmitting the light of the blue series passing through the excitation filter 111 to the sample side disposed on the stage, and also to transmit the light reflected from the sample to the detection unit 120 side. .
  • the rich stage 190 and the detector 120 are disposed in a straight line, and the light source unit 150 is disposed in a direction crossing the straight line connecting the detector 120 and the rich stage 190.
  • the double filter 112 reflects the light of the blue series, which is the light passing through the excitation filter 111, to the sample side on the stage 190, and the light of the red series reflected by the sample is intact. It is an optical filter to pass through as it is without refraction or reflection to focus on the detection unit (120).
  • the excitation filter 111 passes only blue light having a wavelength of 380 nm to 480 nm, and the double filter 112 refracts the blue light to the sample side of the material stage 190.
  • the red light having a wavelength of 620 nm to 780 nm, which is the reflected light, passes through the detection unit 120 in the traveling direction.
  • the double filter 112 is an optical filter that reflects light of 380 nm to 480 nm and passes light of 620 nm to 780 nm as it is.
  • the optical filter unit 110 is disposed between the light source unit 150 and the detector unit 120 so that the excitation filter 111 and the double filter 112 can perform the above-described function.
  • the optical filter unit 110 has side surfaces facing the light source unit 150, the material stage 190, and the detection unit 120, respectively, and an optical path through which light passes through each of the side surfaces. It includes an optical box formed with).
  • the excitation filter 111 is coupled to the light path of the side of the optical path of the optical box facing the light source unit 150, the double filter 112 is the light passing through the excitation filter to the stage ( It will be installed inside the optical box to reflect to the sample side of the 190, and to pass the light reflected by the plankton contained in the sample to the detection unit 120 side.
  • an emission filter 113 on the side of the optical box facing the detection unit 120.
  • the emission filter 113 is an optical filter that passes only light of 600 nm or more wavelength, and is a filter for minimizing the transmission of light corresponding to the noise to the detection unit.
  • the light guide member 130 performs a function of allowing the light of the light source unit 150 to pass through the excitation filter 111 of the optical filter unit 110 without interference with external light.
  • a separate light guide member for connecting the optical filter unit 110 and the material stage 190 and the detection unit 120.
  • the detection unit 120 includes an image acquisition unit 121 that detects light reflected by plankton included in the sample and generates an image of plankton included in the sample, and is included in a screen on which the generated image is displayed. And an image processor 122 for analyzing the pixels to determine the number of plankton included in the sample.
  • the light of the light source unit 150 is transmitted to the microorganisms included in the sample reflecting only the light of the specific wavelength range of the stage through the optical filter unit 110, the microorganism after reflecting the light
  • the light is collected by the image acquisition unit 121 of the detection unit 120 through the optical filter unit 110 to generate an image of the microorganism, and the image processing unit 122 processes the generated image and includes it in the sample.
  • the number of microorganisms produced is calculated.
  • Microbiological test method having a fluorescence characteristic for a specific wavelength according to the present invention
  • the light source unit 150 for supplying light to a sample containing a microorganism of the fluorescence characteristics reflecting only light of a specific wavelength range, and the reflected light from the microorganism Determining the number of objects of the microorganism included in the sample by using an optical device including an image acquisition unit 121 for collecting light to generate an image and a detection unit including an image processing unit 122 for processing the generated image
  • a method comprising: (a) collecting light reflected from a microorganism included in the sample reflecting only light of a specific wavelength range by the image obtaining unit, and the image obtaining unit collecting an image of the collected light.
  • Step (b) of generating the image processing unit displays the image generated by the image acquisition unit on the screen and configures the screen on which the image is displayed (C) classifying a plurality of pixels continuously emitting among the pixels included in the screen into one object by analyzing each pixel, and the total number of the objects classified in the screen by the image processor Comprising (d) step of calculating.
  • the image acquisition unit 121 collects the light emitted from the microorganisms included in the sample to emit only light of a specific wavelength range ( (a) step) and the image obtaining unit generating an image of the collected light (step (b)).
  • the microorganism is phytoplankton
  • the blue light having a wavelength of 380 nm to 480 nm passed through the excitation filter 111 is reflected by the double filter 112 to the sample side, light having a wavelength of 380 nm to 480 nm
  • the energy level is changed and emitted by light of 620 nm to 780 nm wavelength through photosynthesis of chloroplasts contained in phytoplankton.
  • the double filter 112 passes the emitted light of 620nm to 780nm wavelength to the detection unit as it is to generate an image of phytoplankton included in the sample to be inspected by the image acquisition unit of the detection unit.
  • the image processor 122 displays an image generated by the image acquisition unit on a screen, and analyzes each pixel constituting the screen on which the image is displayed to continuously emit a plurality of pixels among the pixels included on the screen. Pixels are classified into one object (step (c)).
  • first object when there are two pixels (first object), five pixels (second object), twelve pixels (third object), and twenty pixels (four objects) each of which continuously emits light on the screen, Four objects are classified as being present on the screen.
  • the image processing unit 122 calculates the total number of objects included in the screen (step (d)).
  • the screen for the sample is calculated to include four objects.
  • step (c) the method of distinguishing the plurality of pixels continuously emitting light by the image processor 122 in step (c) may be easily extracted from information on the pixels emitting light.
  • the image processing unit 122 may be configured to discriminate pixels that emit light continuously by using an edge detection process for the image.
  • An edge that is, an outline, means a line that is a feature that represents a boundary of an area in an image.
  • the edge detection is a method of obtaining a pixel corresponding to an outline as a discontinuity point of the edge (edge) image brightness, and a conventional edge detection processing method may be applied.
  • the step (c) includes the step (c-1) of the image processing unit 122 performing edge detection on the generated image, and the image of the edge detection process of the step (c-1). Scanning the plurality of pixels, and classifying a plurality of pixels included in each boundary line and continuously emitting light for each boundary line included in the boundary detection processed image into the one object.
  • the objects included in the image can be extracted more accurately.
  • the image processor 122 may limit the classification to the target object only that the number of pixels constituting the one object among the objects is within a range of a preset number.
  • the total number of the objects included in the screen calculated by the image processor 122 will be the total number of the target objects.
  • the first object and the fourth object are excluded from the microorganism in question, and only the second object and the third object are the same. Will be extracted as the target object.
  • the image processing unit classifies the plurality of pixels that emit light continuously into one object, and continuously targets one or more pixels of all adjacent pixels for each pixel constituting the screen. Only a plurality of pixels emitting light within a preset contrast ratio range may be determined as one object.
  • Microbiological test method having a fluorescence characteristic for a specific wavelength having the above-described configuration, it can be configured to be able to extract and test only the microorganisms that are actually alive and active, that is, active among the microorganisms contained in the sample.
  • the microorganism inspection method having the fluorescence characteristic for a specific wavelength in the step (c) of the image processing unit 122 for each of the classified objects, the brightness of the pixels forming the object
  • the method may further include extracting only an object whose average value corresponds to a predetermined brightness range as the active object.
  • the intensity range for the brightness of the light for the microorganism that is actually being activated, that is, acting as a real life, is set in advance in the image processing unit, for example, in the range of 10 lux to 20 lux.
  • the range of brightness is set to 10 lux to 20 lux
  • the average brightness of the pixels constituting the first object is 8 lux
  • the average brightness of the pixels constituting the second object is 10 lux
  • the image processor 122 may generate a second object and a second object among the first to fourth objects. Only 3 objects will be extracted as active objects.
  • the screen is treated as having two active objects.
  • the predetermined range for the brightness to the intensity of the preset light using a variety of units for the intensity or brightness of the existing light, such as lumen (Luminous flux) or lux (illuminance) or candela (cd) could be set.
  • the detector digitizes the image by the collected light, so that the brightness of each pixel constituting the image has a value between 0 and 256, which is treated as the brightness of the brightest light, which is treated as if no actual light is detected.
  • the predetermined range for the brightness to intensity of the preset light may be preset to a range of appropriate values among the values between 0 and 256.
  • the total number of microorganisms calculated in step (d) will be the number of the active objects.
  • the image processing unit 122 further includes the step of classifying the target object only that the number of pixels constituting the one object among the objects is within a preset number range.
  • the target object finally calculated in step (d) will be the total number of active target objects, which are microorganisms that satisfy both the active object and the conditions of the target object.
  • the microorganisms having a fluorescence characteristic for a light of a specific wavelength for example, the foreign matter other than the microorganism is filtered from the sample containing the plankton pure The effect of accurately grasping the population of the microorganism is exerted.
  • Microbial inspection apparatus having a fluorescence characteristic for a specific wavelength, the light source unit 150 for emitting light;
  • the light emitted from the light source unit 150 is disposed at a position opposite to the stage 190 to collect the light reflected by the microorganisms included in the sample to generate an image of the microorganisms included in the sample Detection unit 120; And transmitting the light emitted from the light source unit 150 to the sample side disposed on the stage 190 and transmitting the light reflected by the sample to the detection unit 120, wherein the light emitted from the light source unit 150 is included.
  • An excitation filter 111 for passing only blue light having a wavelength of 380 nm to 480 nm, and a wavelength of light reflected from the excitation filter to the sample side of the stage 190 and reflected by the microorganisms included in the sample.
  • the optical filter unit 110 has side surfaces facing the light source unit 150, the stage 190, and the detection unit 120, respectively, and an optical box having an optical path through which light passes.
  • the excitation filter 111 is coupled to the light path of the side of the optical path of the optical box opposite to the light source unit 150, the double filter 112 the light passing through the excitation filter It is characterized in that it is installed inside the optical box to reflect to the sample side of 190, and to pass the light reflected by the plankton contained in the sample to the detection unit 120 side.
  • the light guide member 130 of the tubular form connecting the light source unit 150 and the excitation filter coupled to the optical box so that the light emitted from the light source unit 150 is concentrated to the excitation filter coupled to the optical box. It further comprises.
  • the detection unit 120 the image acquisition unit 121 for detecting the light reflected by the plankton contained in the sample to generate an image of the microorganism included in the sample and to display on the screen; Analyze each pixel included in the screen on which the generated image is displayed to determine the number of microorganisms included in the sample, and identify as one object a plurality of pixels that emit light continuously among the pixels included in the screen.
  • An image processor 122 for calculating the total number of the objects included in the screen and determining the total number of target microorganisms included in the screen; Characterized in that it comprises a.
  • the image processor 122 recognizes only the object corresponding to the number of the plurality of continuously emitting pixels among the objects within a preset number range as a target microorganism, which is a microorganism to be actually inspected, and includes it on the screen.
  • the total number of target microorganisms included in the screen may be determined by determining the total number of target microorganisms included in the screen.
  • the image processor 122 may exclude the target microorganism from the target microorganism when the average value of the light intensity of the entire pixel constituting one of the objects identified as the target microorganism is outside the preset light intensity range. do.
  • the image processing unit 122 may be configured to process each of the plurality of pixels that emit light continuously as one object to include only pixels that emit light continuously within a predetermined contrast ratio with adjacent pixels.
  • the microbial inspection apparatus is connected to the detection unit 120, and receives information about the total number of plankton images generated by the image acquisition unit 121 and / or the total number of target planktons calculated by the image processing unit 122 to separate them. It may further include a communication unit 148 that can be transmitted to the inspection confirmation system.
  • the display unit 149 is connected to the detector 120 to display information on the total number of plankton images generated by the image acquisition unit 121 and / or the target plankton calculated by the image processing unit 122. It may further include.
  • optical filter section 111 excitation filter

Abstract

본 발명은 시료에 포함된 미생물에 관한 개체수를 파악하기 위한 검사방법에 관한 것으로, 보다 상세하게는 시료에 포함된 특정 파장에 대한 형광 특성을 갖는 미생물의 개체수를 정확하게 산출할 수 있는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법에 관한 것이다.

Description

특정 파장에 대한 형광 특성을 갖는 미생물 검사방법
본 발명은 시료에 포함된 미생물에 관한 개체수를 파악하기 위한 검사방법에 관한 것으로, 보다 상세하게는 시료에 포함된 특정 파장에 대한 형광 특성을 갖는 미생물의 개체수를 정확하게 산출할 수 있는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법에 관한 것이다.
본 발명은 미생물 검사방법에 관한 것이다.
특히, 380nm 내지 480nm의 파장을 갖는 파랑계열의 빛에 대한 형광 특성을 갖는 플랑크톤과 같은 미생물의 경우, 그 개체수 파악은 녹조 또는 적조 현상에 대한 구체적인 파악 및 연구와 함께, 선박 평형수 등에 의한 오염으로부터 해양생태계 보호를 위해 매우 중요하게 취급되고 있다.
국가간을 왕복하는 선박에 포함된 선박 평형수의 배출에 의한 해양생태계 파괴를 막기 위한 조치로서, 일정 지역에서 출항한 선박이 다른 지역에 정박하기 위해 선박 평형수를 배출하는 경우, 다른 지역의 해양생태계를 위협할 수 있는 선박 평형수에 포함된 플랑크톤에 대한 처리를 우선적으로 수행하여야 한다.
특히, 선박 평형수 이동에 의해 발생될 수 있는 생태적, 경제적 피해를 막고, 생물 다양성을 보전하기 위해 국제해사기구(IMO)는 2004년 2월 ‘선박의 선박평형수와 침전물의 통제 및 관리를 위한 국제협약’을 채택하였다.
구체적으로, 선박 평형수를 채택된 협약의 기준에 맞춰 처리하기 위해서 사용할 수 있는 방식은 크게 두 가지로 분류할 수 있다. 첫 번째는 관로(in-line) 처리방식이며, 두 번째는 탱크(in-tank) 처리방식이다. 관로 처리방법은 선박평형수의 유입 배출 시점에 처리하는 방법이며, 탱크 처리방법은 선박평형수가 유입된 이후, 항해 중에 처리하는 방법이다. 현재 국제적인 평형수 처리 기술들은 관로 처리방법이며, 탱크 처리방법은 관로 처리방법에 비해, 처리장치의 크기는 작아질 수 있지만, 항해시간을 고려하여 처리속도가 조건되어야 하므로 사실적으로는 효율이 재고 되고 있다.
위 두 가지 방식 모두, 선박 평형수에 포함된 문제 플랑크톤의 개체수를 파악하고 그에 적절한 처리 방법을 선택할 수 있도록 하며, 처리된 선박 평형수를 배출하기 전 배출되는 선박 평형수에 대한 최종 검사를 수행하여, 배출되는 선박 평형수에 문제되는 플랑크톤 등이 기준에 맞게 처리되었는가에 관한 검사가 이루어져야만 한다.
그러나, 현재까지 선박 평형수에 포함된 문제 플랑크톤 등의 미생물 개체수 파악에 대한 전문적인 검사방법이 제공되지 못하고 있는 실정이다.
선박 평형수 등에 포함된 플랑크톤과 같은 기존의 미생물 검사방법은 시료를 촬영하고 그 촬영된 시료에 대한 이미지를 전문가가 육안으로 판단하여 시료에 포함된 문제 플랑크톤의 개체수를 판단하는 방식만이 시행되고 있고, 이러한 기존의 방식은 시료에 포함된 문제 플랑크톤 등 미생물의 개체수에 대한 정확한 산출이 매우 곤란한 문제가 있다.
또한, 기존의 플랑크톤을 포함하는 미생물 검사방법은 각종 이물질 등에 대한 구별이 곤란하고, 활성 중인 미생물과 비활성 중인 미생물에 대한 구별 역시 매우 곤란하여 정확한 미생물 개체수에 대한 파악이 어려운 문제가 있다.
본 발명의 배경이 되는 기술은 대한민국 공개특허공보 제10-1995-7001601호 등에 개시되어 있으나, 상술한 문제점에 대한 해결책은 제시하고 있지 못하는 실정이다.
상술한 문제점을 해결하기 위해 안출된 본 발명의 목적은 특정 파장에 대한 형광 특성을 갖는 미생물에 의해 반사된 빛을 수집하여 그 이미지를 생성하는 (a) 및 (b) 단계와 상기 생성된 이미지를 분석하여 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하는 (c) 단계와, 그 분류된 객체의 총 개수를 산출하는 (d) 단계를 포함함으로써, 시료에 포함된 특정 파장에 대한 형광 특성을 갖는 미생물의 개체수를 정확하게 산출할 수 있도록 하는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 제공하기 위함이다.
또한, (c) 단계에 경계검출 처리방식을 도입하여 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하는 더 포함함으로써, 시료에 포함된 미생물에 대한 정밀한 개체수 파악이 가능하도록 하는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 제공하기 위함이다.
또한, (c) 단계에 기 설정된 픽셀 개수의 범위 이내에서 연속적으로 발광하는 복수 개의 픽셀에 대해서만 하나의 객체로 분류하는 단계를 더 포함함으로써, 시료에 포함된 각종 이물질에 대한 필터링 과정에 의해 보다 정확한 해당 미생물의 개체수 파악이 가능하도록 하는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 제공하기 위함이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 특정 파장 범위의 빛만을 반사하는 형광 특성의 미생물이 포함된 시료에 빛을 공급하는 광원부와, 상기 미생물로부터 반사된 상기 빛을 수집하여 이미지를 생성하는 이미지 획득부와 생성된 이미지를 처리하는 이미지 처리부를 포함하는 검출부를 포함하는 광학장치를 이용하여 상기 시료에 포함된 미생물의 객체 수를 판단하는 방법에 있어서, (a) 상기 이미지 획득부가 특정 파장 범위의 빛만을 방사(radiation, 放射)하는 상기 시료에 포함된 미생물로부터 반사된 빛을 수집하는 단계; (b) 상기 이미지 획득부가 상기 수집된 빛에 대한 이미지를 생성하는 단계; (c) 상기 이미지 처리부가 상기 이미지 획득부에서 생성된 이미지를 화면에 표시하고 상기 이미지가 표시된 화면을 구성하는 각 픽셀을 분석하여, 상기 화면 상에 포함된 각 픽셀 중 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하는 단계; (d) 상기 이미지 처리부가 상기 화면에서 분류된 상기 객체의 총 개수를 산출하는 단계; 를 포함한다.
이때, 상기 (c) 단계는, (c-1) 상기 이미지 처리부가 상기 이미지 획득부에서 생성된 이미지를 화면에 표시하고 경계검출(edge ditection) 처리하는 단계; (c-2) 상기 (c-1) 단계에서 경계검출 처리된 이미지를 스캔하며, 상기 경계검출 처리된 이미지에 포함된 경계선 각각에 대하여 각 경계선에 포함되어 연속적으로 발광하는 복수 개의 픽셀을 상기 하나의 객체로 분류하는 단계; 를 포함하는 것을 특징으로 한다.
또한, 상기 (c) 단계에서 상기 이미지 처리부는, 상기 객체 중 상기 하나의 객체를 이루는 픽셀의 개수가 기 설정된 개수의 범위 이내에 포함되는 것만을 타겟객체로 분류하고, 상기 (d) 단계에서 상기 이미지 처리부가 산출하는 상기 화면에 포함된 상기 객체의 총 개수는 상기 타겟객체의 총 개수인 것을 특징으로 한다.
또한, 상기 (c) 단계에서 상기 이미지 처리부는, 상기 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하되, 상기 화면을 구성하는 픽셀 각각을 대상으로 하여 인접한 모든 픽셀 중 하나 이상의 픽셀과 연속적으로 기 설정된 명암비 범위 이내에서 발광하는 복수 개의 픽셀만을 하나의 객체로 판단하는 것을 특징으로 한다.
이상 살펴본 바와 같은 본 발명에 따르면, 시료에 포함된 특정 파장에 대한 형광 특성을 갖는 미생물의 개체수를 정확하게 산출할 수 있는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 제공할 수 있다.
또한, 본 발명에 따르면 시료에 포함된 미생물에 대한 정밀한 개체수 파악이 가능한 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 제공할 수 있다.
또한, 시료에 포함된 각종 이물질에 대한 필터링 과정에 의해 보다 정확한 해당 미생물의 개체수 파악이 가능한 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 제공할 수 있다.
도 1은 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 수행하는 광학장치에 관한 개략적인 블록 구성도이다.
도 2는 상기 광학장치의 내부 구성을 나타내기 위한 사시도이다.
도 3은 광학장치의 구조를 나타내기 위한 설명도이다.
도 4는 검출부의 블록 구성도이다.
도 5 및 도 6은 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법에 대한 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다
이하, 본 발명의 실시예들에 의하여 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.
도 1은 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법을 수행하는 광학장치에 관한 개략적인 블록 구성도이고, 도 2는 상기 광학장치의 내부 구성을 나타내기 위한 사시도이며, 도 3은 광학장치의 구조를 나타내기 위한 설명도이고, 도 4는 검출부의 블록 구성도이다.
또한, 도 5 및 도 6은 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법에 대한 순서도이다.
본 발명의 바람직한 실시예에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법은 특정 파장 범위의 빛만을 반사하는 형광 특성의 미생물이 포함된 시료에 빛을 공급하는 광원부(150)와, 상기 미생물로부터 반사된 상기 빛을 수집하여 이미지를 생성하는 이미지 획득부(121)와 생성된 이미지를 처리하는 이미지 처리부(122)를 포함하는 검출부(120)를 포함하는 광학장치(100)를 이용하여 상기 시료에 포함된 미생물의 객체 수를 판단하는 방법에 관한 것이다.
우선, 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법에 사용되는 광학장치(100)의 구성에 대해 설명하도록 한다.
상기 광학장치(100)는 도 1 내지 도 3에 도시된 바와 같이 광원부(150), 광학필터부(110), 재물대(190) 및 검출부(120)를 포함한다.
상기 광원부(150)는 광학 현미경 등에서 사용되는 광원의 기능을 수행하는 수단으로, 대부분의 가시광선 또는 특정 파장 영역의 빛을 발광하는 수단이다.
상기 광원부(150)에서 가시광선 전체 영역의 빛을 발광하는 경우, 상기 광학필터부(110)에는 상기 발광된 가시광선 영역의 빛 중 상기 미생물이 형광 특성을 나타내는 파장 영역대의 빛만을 필터링을 통해 통과시켜 상기 재물대(190) 측으로 전달될 수 있도록 하는 여기 필터(111)를 포함할 수 있다.
이때, 상기 광원부(150)는 상기 미생물이 형광 특성을 나타내는 특정 파장 영역대의 빛만을 발광하도록 하는 광원이 사용될 수도 있으며, 이 경우 상술한 여기 필터는 제외될 것이다.
상기 특정 파장 영역의 빛에 대하여 형광 특성을 나타내는 미생물에 대한 예로서, 엽록소를 포함하는 플랑크톤 등이 있다.
상기 플랑크톤은 620nm 내지 780nm의 파장을 갖는 붉은계열의 빛에 대한 형광특성을 갖는 미생물로서, 이하 본 명세서에서는 상기 식물성 플랑크톤을 예시로 설명하도록 한다.
상기 재물대(190)는 선박 평형수 또는 해수 등의 시료가 배치되는 지지대로서, 상기 시료는 선박 평형수 또는 해수 등을 여과 시킨 상태로 상기 재물대 상에 배치되는 것이 바람직하다.
상기 검출부(120)는 상기 재물대(190) 상에 배치된 시료가 상기 광원부(150)의 빛을 전달받아 반사하는 반사 빛을 수집하여 그 이미지를 검출하는 수단으로서, 광학 현미경에 사용되는 카메라를 포함한다.
이때, 상기 검출부(120)에서 사용되는 카메라는 최소 10㎛의 대상에 대한 관찰이 가능한 것이 사용되는 것이 바람직하고, 1250*1250 픽셀(pixel) 이상의 해상도를 갖는 것이 바람직하다.
즉, 상기 검출부(120)는 상기 재물대(190)에 배치된 시료로부터 반사된 빛을 집광하여 그 이미지를 검출하는 수단으로서, 상기 광원부(150)에서 방출된 빛을 전달받아 상기 시료에 포함된 플랑크톤에 의해 반사된 빛을 집광하여 시료에 포함된 플랑크톤의 이미지를 검출하도록 상기 재물대(190)와 대향되는 위치에 배치된다.
상기 광학필터부(110)는 상기 광원부(150)에서 제공된 빛을 상기 재물대(190)에 배치된 시료 측으로 전달하고, 상기 시료에 의해 반사된 빛을 상기 검출부(120) 측으로 전달하는 수단이다.
이때, 상기 광원부(150), 광학필터부(110), 검출부(120) 및 재물대(190) 사이는 상기 광원부(150)의 빛이 외부 빛과 간섭되지 않고 광학 필터부(110)를 통해 재물대(190) 상의 시료 측으로, 그리고 시료에서 반사된 빛이 다시 광학 필터부(110)를 통해 검출부(120) 측으로 간섭없이 이동될 수 있도록 하는 광로(光路)로 연결되는 것이 바람직하다.
상기 광학필터부(110)에는 여기 필터(excitation filter, 111)와 이중 필터(dichroic mirror, 112)를 포함한다.
상기 여기 필터(111)는 상기 광원부(150)에서 방출된 빛 중 380nm 내지 480nm의 파랑계열의 빛만을 통과시키는 필터이다.
이때, 상기 광원부에서 상기 미생물이 형광 특성을 나타내는 특정 파장의 빛만을 발광하도록 구성된 경우, 상기 여기 필터는 제외될 것이다.
상기 이중 필터(112)는 상기 여기 필터(111)를 통과한 파랑계열의 빛을 상기 재물대 상에 배치된 시료 측으로 전달하고, 또한 상기 시료에서 반사된 빛을 상기 검출부(120) 측으로 전달하는 수단이다.
상기 재물대(190)와 검출부(120)는 일직선 상에 배치되고 상기 광원부(150)는 상기 검출부(120)와 재물대(190)를 잇는 일직선에 교차되는 방향에 배치된다.
이때, 상기 이중 필터(112)는 상기 여기 필터(111)를 통과한 빛인 파랑계열의 빛에 대해서는 재물대(190) 상의 시료 측으로 반사시키고, 상기 시료에 의해 반사된 붉은계열의 빛만을 그대로(즉, 굴절 내지 반사 없이 그대로) 통과시켜 상기 검출부(120)에 집광되도록 하는 광학 필터이다.
즉, 상기 여기 필터(111)는 380nm 내지 480nm의 파장을 갖는 파랑계열의 빛만을 통과 시키고, 상기 이중 필터(112)는 상기 파랑계열의 빛을 재물대(190)의 시료 측으로 굴절시키고 또한 상기 시료에 의해 반사된 빛인 620nm 내지 780nm의 파장을 갖는 붉은계열의 빛은 진행방향 그대로 상기 검출부(120) 측으로 통과시키게 된다.
즉, 상기 이중 필터(112)는 380nm 내지 480nm의 빛은 반사시키고, 620nm 내지 780nm의 빛은 그대로 통과시키는 광학 필터이다.
즉, 상기 광학필터부(110)는 상기 광원부(150)와 검출부(120) 사이에 배치되어 상기 여기 필터(111)와 이중 필터(112)가 상술한 기능을 수행할 수 있도록 모듈화된 구성이다.
상기 광학필터부(110)는 상기 광원부(150)와 재물대(190) 및 검출부(120)에 각각 대향되는 측면들이 형성되고, 상기 측면들 각각에는 관통홀 형태로서 빛이 통과되는 광통로(光通路)가 형성된 광학박스를 포함한다.
이때, 상기 여기 필터(111)는 상기 광학박스의 광통로 중 상기 광원부(150)와 대향되는 측면의 광통로에 결합되고, 상기 이중 필터(112)는 상기 여기 필터를 통과한 빛을 상기 재물대(190)의 시료측으로 반사시키고, 상기 시료에 포함된 플랑크톤에 의해 반사된 빛을 상기 검출부(120)측으로 통과시키도록 상기 광학박스 내부에 설치될 것이다.
이때, 상기 광학박스의 측면들 중 상기 검출부(120)와 대향되는 측면에는 방사 필터(emission filter, 113)를 더 포함하는 것이 바람직하다.
상기 방사 필터(113)은 600nm 파장 이상의 빛만을 통과시키는 광학 필터로서, 상기 노이즈에 해당되는 빛이 상기 검출부 측으로 전달되는 것을 최소화하기 위한 필터이다.
상기 광원부(150)에서 방출된 빛이 상기 광학박스에 결합된 여기 필터로 집중되도록 상기 광원부(150)와 상기 광학박스에 결합된 여기 필터를 연결하는 관 형태의 광 유도부재(130)를 더 포함하는 것이 바람직하다.
상기 광 유도부재(130)는 광원부(150)의 빛이 외부 빛에 대한 간섭없이 순수하게 상기 광학필터부(110)의 여기 필터(111)를 통과할 수 있도록 하는 기능을 수행한다.
또한, 상기 광학필터부(110)와 상기 재물대(190) 및 검출부(120)를 연결하는 별도의 광 유도부재를 더 포함하는 것이 바람직하다.
상기 검출부(120)는, 상기 시료에 포함된 플랑크톤에 의해 반사된 빛을 감지하여 상기 시료에 포함된 플랑크톤의 이미지를 생성하는 이미지 획득부(121)와, 상기 생성된 이미지가 표시되는 화면에 포함된 각 픽셀을 분석하여 상기 시료에 포함된 플랑크톤의 개수를 판단하는 이미지 처리부(122)를 포함한다.
즉, 상기 광원부(150)의 빛이 상기 광학필터부(110)를 통해 상기 재물대의 특정 파장 범위의 빛만을 반사하는 상기 시료에 포함된 미생물에 전달되고, 상기 미생물이 그 빛을 반사한 후 상기 광학필터부(110)를 통해 상기 검출부(120)의 이미지 획득부(121)로 집광되어 상기 미생물에 대한 이미지를 생성하고, 상기 이미지 처리부(122)가 상기 생성된 이미지를 처리하여 상기 시료에 포함된 미생물의 개수를 산출하게 된다.
이하는 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법에 관하여 설명하도록 한다.
본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법은, 특정 파장 범위의 빛만을 반사하는 형광 특성의 미생물이 포함된 시료에 빛을 공급하는 광원부(150)와, 상기 미생물로부터 반사된 상기 빛을 수집하여 이미지를 생성하는 이미지 획득부(121)와 생성된 이미지를 처리하는 이미지 처리부(122)를 포함하는 검출부를 포함하는 광학장치를 이용하여 상기 시료에 포함된 미생물의 객체 수를 판단하는 방법에 있어서, (a) 상기 이미지 획득부가 특정 파장 범위의 빛만을 반사하는 상기 시료에 포함된 미생물로부터 반사된 빛을 수집하는 (a) 단계와, 상기 이미지 획득부가 상기 수집된 빛에 대한 이미지를 생성하는 (b) 단계와, 상기 이미지 처리부가 상기 이미지 획득부에서 생성된 이미지를 화면에 표시하고 상기 이미지가 표시된 화면을 구성하는 각 픽셀을 분석하여, 상기 화면 상에 포함된 각 픽셀 중 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하는 (c) 단계, 및 상기 이미지 처리부가 상기 화면에서 분류된 상기 객체의 총 개수를 산출하는 (d) 단계를 포함한다.
즉, 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법은 먼저, 이미지 획득부(121)가 특정 파장 범위의 빛만을 방사하는 상기 시료에 포함된 미생물로부터 방사된 빛을 수집하는 단계((a) 단계)와, 상기 이미지 획득부가 상기 수집된 빛에 대한 이미지를 생성하는 단계((b) 단계)를 포함한다.
예컨대, 상기 미생물이 식물성 플랑크톤인 경우, 상기 여기 필터(111)에서 통과된 380nm 내지 480nm의 파장을 갖는 파랑계열의 빛이 상기 이중 필터(112)에 의해 시료 측으로 반사되면, 380nm 내지 480nm 파장의 빛은 식물성 플랑크톤에 포함된 엽록체의 광합성 작용 등을 통해 620nm 내지 780nm 파장의 빛으로 에너지 준위가 변화되어 방사된다. 이때, 상기 이중 필터(112)는 상기 방사된 620nm 내지 780nm 파장의 빛을 그대로 상기 검출부 측으로 통과시킴으로써 상기 검출부의 이미지 획득부에서 검사 대상이 되는 시료에 포함된 식물성 플랑크톤의 이미지를 생성하게 된다.
그 다음, 상기 이미지 처리부(122)가 상기 이미지 획득부에서 생성된 이미지를 화면에 표시하고 상기 이미지가 표시된 화면을 구성하는 각 픽셀을 분석하여 상기 화면 상에 포함된 각 픽셀 중 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류한다((c) 단계).
예컨대, 상기 화면에 연속적으로 각각 발광하는 2개의 픽셀(제1 객체)과 5개의 픽셀(제2 객체)과 12개의 픽셀(제3 객체) 및 20개 픽셀(제4 객체)이 존재하는 경우, 상기 화면에 4개의 객체가 존재하는 것으로 분류된다.
마지막으로, 상기 이미지 처리부(122)가 상기 화면에 포함된 객체의 개수의 총 개수를 산출한다((d) 단계).
즉, 상술한 바와 같이, 상기 예에서 상기 시료에 대한 화면에는 4 개의 객체가 포함된 것으로 산출된다.
상기 (c) 단계에서의 이미지 처리부(122)가 연속적으로 발광하는 복수 개의 픽셀을 구별하는 방식은 발광하는 픽셀에 대한 정보로부터 용이하게 추출될 수 있음은 당연하다.
이때, 본 발명에서는 이미지 처리부(122)가 상기 이미지에 대한 경계검출(Edge Ditection) 처리를 이용하여 연속적으로 발광하는 픽셀에 대한 구분을 수행하도록 할 수 있다.
경계(edge), 즉 윤곽선이란 영상 안에서의 영역의 경계를 나타내는 특징이되는 선을 의미한다.
이때, 상기 경계검출이란, 상기 경계(윤곽선, edge) 영상 밝기의 불연속점으로 윤곽선에 해당하는 픽셀을 구하는 방법으로, 기존에 사용되는 경계검출 처리방법이 적용될 수 있다.
즉, 상기 (c) 단계는, 상기 이미지 처리부(122)가 상기 생성된 이미지를 경계검출(edge ditection) 처리하는 (c-1) 단계와, 상기 (c-1) 단계에서 경계검출 처리된 이미지를 스캔하며, 상기 경계검출 처리된 이미지에 포함된 경계선 각각에 대하여 각 경계선 포함되어 연속적으로 발광하는 복수 개의 픽셀을 상기 하나의 객체로 분류하는 (c-2) 단계를 포함할 수 있다.
상기의 경계검출 방법을 이용하여 객체를 분류함으로써, 상기 이미지에 포함된 객체를 보다 정확하게 추출할 수 있게 된다.
이때, 상기 (c) 단계에서 상기 이미지 처리부(122)는, 상기 객체 중 상기 하나의 객체를 이루는 픽셀의 개수가 기 설정된 개수의 범위 이내에 포함되는 것만을 타겟객체로 분류하도록 제한할 수 있다.
이때, 상기 (d) 단계에서 상기 이미지 처리부(122)가 산출하는 상기 화면에 포함된 상기 객체의 총 개수는 상기 타겟객체의 총 개수가 될 것이다.
이는, 실제 문제되는 목표 플랑크톤의 크기에 대응되는 연속적인 픽셀 개수의 범위를 미리 설정함으로써, 실제 파악되어야 할 플랑크톤 이외의 부유물 등을 제외시키기 위함이다.
상기 예에서 실제 문제가 되는 미생물이 4개 ~ 13개의 픽셀 개수 범위를 갖는 경우, 상기 제1 객체와 제4 객체는 실제 문제가 되는 미생물에서 제외되고, 상기 제2 객체와 제3 객체만이 상기 타겟객체로 추출될 것이다.
또한, 상기 (c) 단계에서 상기 이미지 처리부는, 상기 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하되, 상기 화면을 구성하는 픽셀 각각을 대상으로 하여 인접한 모든 픽셀 중 하나 이상의 픽셀과 연속적으로 기 설정된 명암비 범위 이내에서 발광하는 복수 개의 픽셀만을 하나의 객체로 판단하도록 설정될 수 있다.
즉, 10개의 픽셀이 연속적으로 발광하는 경우라도, 그 중 2개의 픽셀은 인접한 모든 픽셀들과 기 설정된 명암비를 벗어나도록 발광하는 경우에는 그 2개의 픽셀이 제외된 8개의 픽셀만으로 하나의 객체를 이루는 것으로 판단된다.
이는 하나의 객체를 이루는 픽셀의 개수를 정확하게 추출하여 정확한 상기 타겟활성객체를 추출할 수 있도록 하기 위함이다.
상술한 구성을 갖는 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법은, 시료에 포함된 미생물 중 실제 생존하여 활동하는, 즉 활성 중인 미생물만을 추출하여 검사할 수 있도록 구성될 수 있다.
즉, 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법은, 상기 (c) 단계에서 상기 이미지 처리부(122)가 상기 분류된 각 객체에 대하여, 상기 객체를 이루는 픽셀들에 대한 밝기의 평균 값이 기 설정된 밝기 범위에 해당되는 객체만을 활성객체로 추출하는 단계를 더 포함시킬 수 있다.
즉, 상기 예에서 실제 활성화 중인, 즉 실제 생명체로서 활동중인 상기 미생물에 대한 빛의 밝기에 대한 세기 범위가 예컨대, 10룩스(lux) 내지 20룩스(lux)의 범위로서 상기 이미지 처리부에 기 설정되는 밝기의 범위는 10룩스(lux) 내지 20룩스(lux)로 설정될 경우, 상기 제1 객체를 이루는 픽셀들의 평균 밝기는 8룩스이고, 상기 제2 객체를 이루는 픽셀들의 평균 밝기는 10룩스이며, 상기 제3 객체를 이루는 픽셀들의 평균 밝기는 16룩스이고, 상기 제4 객체를 이루는 픽셀들의 평균 밝기는 25룩스라면, 상기 이미지 처리부(122)는 상기 제1 내지 제4 객체 중 제2 객체와 제3 객체만을 활성객체로 추출하게 된다.
즉, 상기 화면에는 2개의 활성 객체가 존재하는 것으로 취급된다.
이때, 상기 기 설정되는 빛의 밝기 내지 세기에 대한 일정 범위는, 루멘(lumen. 광속) 또는 룩스(lux. 조도) 또는 칸델라 (cd) 등 기존의 빛의 세기 내지 밝기에 대한 다양한 단위들을 이용하여 설정될 수 있을 것이다.
또한, 상기 검출부는 수집된 빛에 의한 이미지를 디지털화 하되, 그 이미지를 구성하는 각 픽셀의 밝기가 실제 빛이 감지되지 않은 것으로 취급되는 0 내지 가장 밝은 빛의 밝기로 취급되는 256 사이의 값을 갖도록 표현되고, 상기 기 설정되는 빛의 밝기 내지 세기에 대한 일정 범위는 상기 0 내지 256 사이 값들 중 적절한 값의 범위로 기 설정될 수 있을 것이다.
이때, 상기 (d) 단계에서 산출되는 미생물의 총 개수는 상기 활성객체의 개수가 될 것이다.
이때, 상기 (c) 단계에서 상기 이미지 처리부(122)는, 상기 객체 중 상기 하나의 객체를 이루는 픽셀의 개수가 기 설정된 개수의 범위 이내에 포함되는 것만을 타겟객체로 분류하는 단계를 더 포함하는 경우, 상기 (d) 단계에서 최종 산출하는 타겟객체는 상기 활성객체 및 타겟객체의 조건을 모두 만족하는 미생물인 활성타겟객체의 총 개수가 될 것이다.
본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법은 상술한 구성에 의하여, 특정 파장의 빛에 대한 형광 특성을 갖는 미생물, 예컨대 플랑크톤이 포함된 시료로부터 해당 미생물 이외의 이물질들이 필터링된 순수한 해당 미생물의 개체수만을 정확하게 파악할 수 있도록 하는 효과가 발휘된다.
이하에서는, 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사장치에 관하여 설명하도록 한다.
특정 파장에 대한 형광 특성을 갖는 미생물 검사장치는, 빛을 방출하는 광원부(150); 검사 대상인 특정 파장에 대한 형광 특성을 갖는 미생물이 포함된 시료가 배치되는 재물대(190); 상기 광원부(150)에서 방출된 빛을 전달받아 상기 시료에 포함된 상기 미생물에 의해 반사된 빛을 집광하여 시료에 포함된 상기 미생물의 이미지를 생성하도록 상기 재물대(190)와 대향되는 위치에 배치된 검출부(120); 및 상기 광원부(150)에서 방출된 빛을 상기 재물대(190)에 배치된 시료 측으로 전달하고 상기 시료에 의해 반사된 빛을 상기 검출부(120) 측으로 전달하되, 상기 광원부(150)에서 방출된 빛 중 파장이 380nm 내지 480nm인 파랑계열의 빛만을 통과시키는 여기 필터(111)와, 상기 여기 필터에서 통과된 빛을 상기 재물대(190)의 시료측으로 반사시키고 상기 시료에 포함된 상기 미생물에 의해 반사된 파장이 620nm 내지 780nm인 붉은계열의 빛만을 상기 검출부(120)측으로 통과시키는 광학 필터(112) 를 포함하는 광학필터부(110); 를 포함한다.
이때, 상기 광학필터부(110)는 상기 광원부(150), 재물대(190) 및 검출부(120)에 각각 대향되는 측면들이 형성되고, 상기 측면들 각각에는 빛이 통과되는 광통로가 형성된 광학박스를 포함하되, 상기 여기 필터(111)는 상기 광학박스의 광통로 중 상기 광원부(150)와 대향되는 측면의 광통로에 결합되고, 상기 이중 필터(112)는 상기 여기 필터를 통과한 빛을 상기 재물대(190)의 시료측으로 반사시키고, 상기 시료에 포함된 플랑크톤에 의해 반사된 빛을 상기 검출부(120)측으로 통과시키도록 상기 광학박스 내부에 설치된 것을 특징으로 한다.
또한, 상기 광원부(150)에서 방출된 빛이 상기 광학박스에 결합된 여기 필터로 집중되도록 상기 광원부(150)와 상기 광학박스에 결합된 여기 필터를 연결하는 관 형태의 광 유도부재(130)를 더 포함하는 것을 특징으로 한다.
또한, 상기 검출부(120)는, 상기 시료에 포함된 플랑크톤에 의해 반사된 빛을 감지하여 상기 시료에 포함된 상기 미생물의 이미지를 생성하고 화면에 표시하는 이미지 획득부(121); 상기 생성된 이미지가 표시되는 화면에 포함된 각 픽셀을 분석하여 상기 시료에 포함된 상기 미생물의 개수를 판단하되, 상기 화면에 포함된 각 픽셀 중 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 파악하고 상기 화면에 포함된 상기 객체의 총 개수를 산출하여 상기 화면에 포함된 목표 미생물의 총 개수로 판단하는 이미지 처리부(122); 를 포함하는 것을 특징으로 한다.
또한, 상기 이미지 처리부(122)는, 상기 객체 중 상기 연속적으로 발광하는 복수 개의 픽셀의 개수가 기 설정된 개수 범위 이내에 해당되는 객체만을 실제 검사 대상이 되는 미생물인 표적 미생물로 파악하고, 상기 화면에 포함된 상기 표적 미생물의 총 개수를 산출하여 상기 화면에 포함된 표적 미생물의 총 개수를 판단하는 것을 특징으로 한다.
또한, 상기 이미지 처리부(122)는, 상기 표적 미생물로 파악된 객체 중 하나의 객체를 이루는 픽셀 전체의 빛의 세기 평균값이 기 설정된 빛의 세기 범위를 벗어나는 경우에는 상기 목표 미생물에서 제외하는 것을 특징으로 한다.
또한, 상기 이미지 처리부(122)는, 상기 하나의 객체로 파악되는 연속적으로 발광하는 복수 개의 픽셀 각각이 인접한 픽셀과 기 설정된 명암비 이내에서 연속적으로 발광하는 픽셀들로만 이루어지도록 처리하는 것을 특징으로 한다.
상기 미생물 검사장치는 상기 검출부(120)와 연결되어, 상기 이미지 획득부(121)에서 생성된 플랑크톤 이미지 및/또는 상기 이미지 처리부(122)에서 산출된 목표 플랑크톤의 총 개수에 관한 정보를 전달받아 별도의 검사확인 시스템으로 전송할 수 있는 통신부(148)를 더 포함할 수 있다.
또한, 상기 검출부(120)와 연결되어, 상기 이미지 획득부(121)에서 생성된 플랑크톤 이미지 및/또는 상기 이미지 처리부(122)에서 산출된 목표 플랑크톤의 총 개수에 관한 정보를 표시하는 표시부(149)를 더 포함할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
* 부호의 설명 *
100: 본 발명에 따른 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법에 적용되는 광학장치
110: 광학필터부 111: 여기 필터
112: 이중 필터 120: 검출부
121: 이미지 획득부 122: 이미지 처리부
130: 광 유도부재 141, 142, 143: 지지부재
148: 통신부 149: 표시부
150: 광원부 190: 재물대

Claims (4)

  1. 특정 파장 범위의 빛만을 반사하는 형광 특성의 미생물이 포함된 시료에 빛을 공급하는 광원부와, 상기 미생물로부터 반사된 상기 빛을 수집하여 이미지를 생성하는 이미지 획득부와 생성된 이미지를 처리하는 이미지 처리부를 포함하는 검출부를 포함하는 광학장치를 이용하여 상기 시료에 포함된 미생물의 객체 수를 판단하는 방법에 있어서,
    (a) 상기 이미지 획득부가 특정 파장 범위의 빛만을 방사(radiation, 放射)하는 상기 시료에 포함된 미생물로부터 반사된 빛을 수집하는 단계;
    (b) 상기 이미지 획득부가 상기 수집된 빛에 대한 이미지를 생성하는 단계;
    (c) 상기 이미지 처리부가 상기 이미지 획득부에서 생성된 이미지를 화면에 표시하고 상기 이미지가 표시된 화면을 구성하는 각 픽셀을 분석하여, 상기 화면 상에 포함된 각 픽셀 중 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하는 단계;
    (d) 상기 이미지 처리부가 상기 화면에서 분류된 상기 객체의 총 개수를 산출하는 단계; 를 포함하는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법.
  2. 제 1 항에 있어서, 상기 (c) 단계는,
    (c-1) 상기 이미지 처리부가 상기 이미지 획득부에서 생성된 이미지를 화면에 표시하고 경계검출(edge ditection) 처리하는 단계;
    (c-2) 상기 (c-1) 단계에서 경계검출 처리된 이미지를 스캔하며, 상기 경계검출 처리된 이미지에 포함된 경계선 각각에 대하여 각 경계선에 포함되어 연속적으로 발광하는 복수 개의 픽셀을 상기 하나의 객체로 분류하는 단계; 를 포함하는 것을 특징으로 하는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법.
  3. 제 1 항에 있어서,
    상기 (c) 단계에서 상기 이미지 처리부는,
    상기 객체 중 상기 하나의 객체를 이루는 픽셀의 개수가 기 설정된 개수의 범위 이내에 포함되는 것만을 타겟객체로 분류하고,
    상기 (d) 단계에서 상기 이미지 처리부가 산출하는 상기 화면에 포함된 상기 객체의 총 개수는 상기 타겟객체의 총 개수인 것을 특징으로 하는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법.
  4. 제 1 항에 있어서,
    상기 (c) 단계에서 상기 이미지 처리부는,
    상기 연속적으로 발광하는 복수 개의 픽셀을 하나의 객체로 분류하되, 상기 화면을 구성하는 픽셀 각각을 대상으로 하여 인접한 모든 픽셀 중 하나 이상의 픽셀과 연속적으로 기 설정된 명암비 범위 이내에서 발광하는 복수 개의 픽셀만을 하나의 객체로 판단하는 것을 특징으로 하는 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법.
PCT/KR2014/005610 2013-10-15 2014-06-25 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법 WO2015056863A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/028,811 US10140547B2 (en) 2013-10-15 2014-06-25 Method for detecting microorganism having fluorescent characteristics with respect to specific wavelength
EP14853844.0A EP3059578A4 (en) 2013-10-15 2014-06-25 Method for detecting microorganism having fluorescent characteristics with respect to specific wavelength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0122582 2013-10-15
KR1020130122582A KR101463005B1 (ko) 2013-10-15 2013-10-15 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법

Publications (1)

Publication Number Publication Date
WO2015056863A1 true WO2015056863A1 (ko) 2015-04-23

Family

ID=52290852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005610 WO2015056863A1 (ko) 2013-10-15 2014-06-25 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법

Country Status (4)

Country Link
US (1) US10140547B2 (ko)
EP (1) EP3059578A4 (ko)
KR (1) KR101463005B1 (ko)
WO (1) WO2015056863A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10740292B2 (en) 2015-05-18 2020-08-11 Interactive Data Pricing And Reference Data Llc Data conversion and distribution systems
JP6767981B2 (ja) * 2015-08-26 2020-10-14 倉敷紡績株式会社 細胞測定方法
KR101967671B1 (ko) * 2016-11-08 2019-04-11 한국전자통신연구원 필터 상태 모니터링 방법 및 그 방법을 수행하는 필터 상태 모니터링 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097845A (en) * 1976-11-01 1978-06-27 Rush-Presbyterian-St. Luke's Medical Center Method of and an apparatus for automatic classification of red blood cells
US5556764A (en) * 1993-02-17 1996-09-17 Biometric Imaging, Inc. Method and apparatus for cell counting and cell classification
JP2007071742A (ja) * 2005-09-08 2007-03-22 Matsushita Electric Ind Co Ltd 蛍光読取装置および微生物計数装置
KR20120112890A (ko) * 2011-04-04 2012-10-12 윤홍철 미생물 활성을 발견할 수 있는 휴대용 관측 장치 및 이를 이용한 자가 평가 방법

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972258A (en) * 1989-07-31 1990-11-20 E. I. Du Pont De Nemours And Company Scanning laser microscope system and methods of use
CA2042075C (en) * 1991-05-08 2001-01-23 Branko Palcic Endoscopic imaging system
WO1994026870A1 (en) * 1993-05-14 1994-11-24 Minnesota Mining And Manufacturing Company Method for rapid quantification of microorganism growth
JP2815045B2 (ja) * 1996-12-16 1998-10-27 日本電気株式会社 画像特徴抽出装置,画像特徴解析装置,および画像照合システム
US6539115B2 (en) * 1997-02-12 2003-03-25 Fujitsu Limited Pattern recognition device for performing classification using a candidate table and method thereof
EP0983499B1 (en) * 1997-05-23 2005-10-26 Becton, Dickinson and Company Automated microbiological testing apparatus and methods therefor
US6780581B2 (en) * 2001-09-12 2004-08-24 Btf Pty Ltd Products comprising quantum of bioparticles and method for production thereof
AUPR750501A0 (en) * 2001-09-05 2001-09-27 Gauci, Mark Products comprising quantum of bioparticles and method for production thereof
DK1432786T3 (da) * 2001-09-06 2009-10-26 Rapid Micro Biosystems Inc Hurtig detektion af replikerede celler
US7616320B2 (en) * 2006-03-15 2009-11-10 Bahram Javidi Method and apparatus for recognition of microorganisms using holographic microscopy
WO2007121454A1 (en) * 2006-04-18 2007-10-25 Ge Healthcare Bio-Sciences Corp. System for preparing an image for segmentation
JP4890096B2 (ja) * 2006-05-19 2012-03-07 浜松ホトニクス株式会社 画像取得装置、画像取得方法、及び画像取得プログラム
US7531319B2 (en) * 2006-08-31 2009-05-12 Kimberly-Clark Worldwide, Inc. Array for rapid detection of a microorganism
US7763442B2 (en) * 2006-08-31 2010-07-27 Kimberly-Clark Worldwide, Inc. Method for detecting candida on skin
US8852504B2 (en) * 2006-10-11 2014-10-07 The Board Of Trustees Of The University Of Illinois Apparatus and method for detecting and identifying microorganisms
KR100889997B1 (ko) * 2007-04-05 2009-03-25 (주)월드이엔지 영상처리를 이용한 선박 밸러스트 워터 검사 장치 및 그방법
EP3144672B1 (en) * 2007-11-21 2018-08-22 Cosmosid Inc. Genome identification system
JP5152077B2 (ja) * 2009-04-01 2013-02-27 ソニー株式会社 生体像提示装置、生体像提示方法及びプログラム並びに生体像提示システム
EP2421651A4 (en) * 2009-04-21 2013-06-12 Advandx Inc MULTIPLEX ANALYSIS OF CELLS, PARTICLES AND OTHER ANALYTES
JP2011223924A (ja) * 2010-04-20 2011-11-10 Panasonic Corp プランクトン計数方法およびプランクトン計数装置
JP5703609B2 (ja) * 2010-07-02 2015-04-22 ソニー株式会社 顕微鏡及び領域判定方法
US9034593B2 (en) * 2010-11-22 2015-05-19 Kimberly-Clark Worldwide, Inc. Vaginal indicator to detect biomarkers of good health
US8388891B2 (en) * 2010-12-28 2013-03-05 Sakura Finetek U.S.A., Inc. Automated system and method of processing biological specimens
DE102013102988A1 (de) * 2013-03-22 2014-09-25 Leica Microsystems Cms Gmbh Lichtmikroskopisches Verfahren zur Lokalisierung von Punktobjekten
KR101429172B1 (ko) * 2014-04-11 2014-08-13 대한민국 카메라에 의해 획득된 영상으로부터 목표물의 위치를 추정하는 방법, 이를 사용한 기기 및 컴퓨터 판독 가능한 기록 매체
US10112194B2 (en) * 2014-04-14 2018-10-30 Q-Linea Ab Detection of microscopic objects
CN107407551B (zh) * 2015-02-18 2020-06-09 雅培实验室 用于使显微镜自动聚焦到基片上的方法、系统及装置
AU2016243656A1 (en) * 2015-03-30 2017-11-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
KR101660865B1 (ko) * 2015-06-30 2016-09-28 대한민국 기상 센서를 이용한 기상 관측 장치
JP2017222450A (ja) * 2016-06-14 2017-12-21 キヤノン・コンポーネンツ株式会社 搬送検出装置、搬送装置、記録装置、搬送検出方法およびプログラム
US9838614B1 (en) * 2016-06-20 2017-12-05 Amazon Technologies, Inc. Multi-camera image data generation
KR20180055070A (ko) * 2016-11-16 2018-05-25 삼성전자주식회사 재질 인식 및 재질 트레이닝을 수행하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097845A (en) * 1976-11-01 1978-06-27 Rush-Presbyterian-St. Luke's Medical Center Method of and an apparatus for automatic classification of red blood cells
US5556764A (en) * 1993-02-17 1996-09-17 Biometric Imaging, Inc. Method and apparatus for cell counting and cell classification
JP2007071742A (ja) * 2005-09-08 2007-03-22 Matsushita Electric Ind Co Ltd 蛍光読取装置および微生物計数装置
KR20120112890A (ko) * 2011-04-04 2012-10-12 윤홍철 미생물 활성을 발견할 수 있는 휴대용 관측 장치 및 이를 이용한 자가 평가 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, Y ET AL.: "An automatic cell counting method for optical images.", PROCEEDINGS OF THE FIRST JOINT BMES/EMBS CONFERENCE, October 1999 (1999-10-01), pages 819, XP010358372 *
INTERNATIONAL CONVENTION FOR THE CONTROL AND MANAGEMENT OF SHIPS' BALLAST WATER AND SEDIMENTS, February 2004 (2004-02-01)
See also references of EP3059578A4

Also Published As

Publication number Publication date
US20160253572A1 (en) 2016-09-01
US10140547B2 (en) 2018-11-27
KR101463005B1 (ko) 2014-11-18
EP3059578A4 (en) 2017-06-14
EP3059578A1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
Prata et al. Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0)
US10184858B2 (en) Visually inspecting optical fibers
EP3318865A1 (en) Fluorescent microscopic imaging method and apparatus
EP1943502B1 (en) Apparatus and methods for inspecting a composite structure for defects
WO2015056863A1 (ko) 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법
KR101401146B1 (ko) 미세 전도체를 가지는 패터닝된 장치를 검사하는 시스템 및방법
WO2015056864A1 (ko) 플랑크톤 검사장치
Chuena et al. Forensic light sources for detection of biological evidences in crime scene investigation: a review
WO2015056862A1 (ko) 플랑크톤 검사장치
US7105834B2 (en) Fluorescent coating void detection system and method
TW202016529A (zh) 晶圓上黏著劑殘渣偵測
CN112964437A (zh) 一种油液微漏识别方法
CA2487701C (en) Automatic identification of suspended particles
CN114739591A (zh) 一种基于图像处理的液压油渗漏检测预警方法
JP2022501594A (ja) ビジョンベース検査システムの光学構成要素の自律診断検証のためのシステム、方法、および装置
CN105911073B (zh) 一种内窥式缆索锈蚀检测方法及检测装置
ES2500916T3 (es) Procedimiento de análisis celular de una muestra por medio de una placa de análisis virtual
WO2020171652A2 (ko) 버블을 이용한 실시간 수중 파티클 감지시스템
KR101463006B1 (ko) 플랑크톤 검사 시스템
CN205920047U (zh) 一种大功率led的微阵列芯片荧光检测装置
JP2004138417A (ja) 鋼板の疵検査方法およびその装置
WO2016093498A1 (ko) 자외선 광원 유도 형광을 이용한 수중 기름 형광 영상화 장치 및 방법
KR20210145690A (ko) 바이러스 진단 방법 및 장치
KR101478010B1 (ko) 플랑크톤 검사 시스템
CN111784629A (zh) 一种漏油检测方法和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15028811

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014853844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014853844

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853844

Country of ref document: EP

Kind code of ref document: A1