WO2015056720A1 - Method for manufacturing imaging module and device for manufacturing imaging module - Google Patents

Method for manufacturing imaging module and device for manufacturing imaging module Download PDF

Info

Publication number
WO2015056720A1
WO2015056720A1 PCT/JP2014/077455 JP2014077455W WO2015056720A1 WO 2015056720 A1 WO2015056720 A1 WO 2015056720A1 JP 2014077455 W JP2014077455 W JP 2014077455W WO 2015056720 A1 WO2015056720 A1 WO 2015056720A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
imaging
lens
suction
image sensor
Prior art date
Application number
PCT/JP2014/077455
Other languages
French (fr)
Japanese (ja)
Inventor
杉浦 直樹
達也 藤浪
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015056720A1 publication Critical patent/WO2015056720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Definitions

  • the present invention relates to an imaging module manufacturing method and an imaging module manufacturing apparatus.
  • This imaging module has a structure in which a lens unit in which a photographing lens is incorporated and an imaging element unit in which an imaging element such as a CCD image sensor or a CMOS image sensor is incorporated are integrated.
  • the imaging module has an auto-focus (AF) mechanism for adjusting the focus by moving the lens in the lens unit, and the lens unit and the image sensor unit are moved relative to each other in the direction perpendicular to the optical axis to capture an image.
  • AF auto-focus
  • Some have an optical image blur correction mechanism for optically correcting image blur.
  • Patent Documents 1 and 2 describe an imaging module having an AF mechanism.
  • image sensors used in image pickup modules have been widely used having a low pixel number of about 1 million to 2 million pixels to a high number of pixels of 3 million to 10 million pixels or more. ing.
  • Patent Documents 1 to 3 describe techniques for fixing a lens unit and an image sensor unit after aligning the lens unit and the image sensor unit.
  • Patent Document 1 after setting a lens unit and an image sensor unit to an initial position, a chart is imaged by the image sensor while moving the image sensor unit in the optical axis direction, and the lens unit and the image sensor are obtained from the obtained captured image. Adjust the unit position. After this adjustment, the lens unit and the image sensor unit are bonded and fixed.
  • Patent Document 3 describes a method of holding an image pickup element unit by sucking and holding the back surface of a circuit board on which an image pickup element is formed by a suction nozzle.
  • the camera module manufacturing apparatus described in Patent Document 1 holds the side surface of the image sensor unit with a chuck hand when the image sensor unit is held in the manufacturing apparatus. As the image sensor unit becomes thinner, there is a possibility that the image sensor unit will warp in the holding state when the chuck hand holds the side surface.
  • Patent Document 3 it is also conceivable to hold the image sensor unit by suction.
  • a pair of nozzles is applied to a substrate on which an image sensor is formed to adsorb the substrate.
  • the present invention has been made in view of the above circumstances, and a method of manufacturing an imaging module capable of accurately determining the position of the imaging element unit when aligning the imaging element unit and the lens unit and improving imaging quality. And it aims at providing a manufacturing apparatus.
  • the manufacturing method of an imaging module of the present invention is a manufacturing method of an imaging module having a lens unit having a lens group, and an imaging element unit having an imaging element fixed to the lens unit and imaging a subject through the lens group. And changing the relative position in the axial direction of at least one of the image sensor unit, the lens unit, and the measurement chart on an axis orthogonal to the measurement chart, and the image sensor at each relative position.
  • the imaging element unit for the lens unit based on a first step of imaging the measurement chart through the lens group by the imaging element and an imaging signal obtained by imaging the measurement chart by the imaging element At least to adjust the inclination of the image sensor unit.
  • a suction head having a suction surface perpendicular to the axis and a suction hole surrounded by the suction surface, the first step including the suction surface. Air is sucked from the suction hole of the suction head having a straight line passing through the suction hole twice across the suction surface on a plane, and the image sensor unit is sucked to the suction surface to suck the image sensor. The imaging is performed while the unit is held.
  • An imaging module manufacturing apparatus includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit.
  • An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit. At least one of the lens unit holding unit, the measurement chart setting unit, the lens unit holding unit, and the image sensor unit holding unit is changed in the axial direction, and the image sensor is changed at each relative position. The image sensor of the unit is driven, and the measurement is performed through the lens unit by the image sensor.
  • a control unit that images the chart, an adjustment unit that adjusts at least an inclination of the image sensor unit with respect to the lens unit based on an image signal obtained by imaging the measurement chart by the image sensor, and an adjustment by the adjustment unit
  • a unit fixing portion that fixes the subsequent imaging element unit to the lens unit, and the imaging element unit holding portion has a suction surface orthogonal to the axis and a suction hole surrounded by the suction surface And a suction part that sucks air from the suction hole, and the suction head has a straight line passing through the suction hole twice across the suction surface on a plane including the suction surface. is there.
  • the manufacturing method and manufacturing apparatus of an imaging module which can determine the position of an image sensor unit at the time of alignment of an image sensor unit and a lens unit, and can improve imaging quality can be provided. .
  • FIG. 1 is an external perspective view of an imaging module 100.
  • FIG. FIG. 2 is an external perspective view of an image sensor unit 20 in a state where a lens unit 10 is omitted in the image pickup module 100 shown in FIG. 1.
  • FIG. 2 is a cross-sectional view of the imaging module 100 shown in FIG.
  • the figure which shows the electrical connection structure in the lens unit 10 shown in FIG. 2 is a side view illustrating a schematic configuration of a manufacturing apparatus 200 of the imaging module 100. It is a front view of a measurement chart. 6 is an explanatory diagram illustrating a holding state of the lens unit 10 and the imaging element unit 20 by the imaging module manufacturing apparatus 200.
  • FIG. It is a figure which shows the structure of the adsorption
  • FIG. 2 is a block diagram illustrating an internal configuration of an imaging module manufacturing apparatus 200.
  • FIG. 4 is a flowchart for explaining a manufacturing process of an imaging module by the imaging module manufacturing apparatus 200. It is a figure which shows the modification of a structure of the adsorption
  • FIG. 1 is an external perspective view of the imaging module 100.
  • the imaging module 100 includes a lens unit 10 having a lens group 12 and an imaging element unit 20 having an imaging element (not shown in FIG. 1) that is fixed to the lens unit 10 and images a subject through the lens group 12.
  • the direction along the optical axis Ax of the lens group 12 is defined as the z direction, and the two directions orthogonal to the z direction and orthogonal to each other are defined as the x direction and the y direction, respectively.
  • the lens unit 10 includes a casing 11 that accommodates each component described later.
  • an opening 11 b centering on the optical axis Ax of the lens group 12 is formed on the top surface 11 a of the housing 11.
  • the imaging module 100 captures subject light from the opening 11b into the lens group 12 for imaging.
  • concave portions 95A, 95B, and 95C for positioning for holding the lens unit 10 in the manufacturing apparatus when the imaging module 100 is manufactured are formed.
  • Recesses 95A1 and 95C1 smaller than the recesses 95A and 95C are formed on the bottom surfaces of the recesses 95A and 95C arranged on the diagonal line of the top surface 11a.
  • a part of the flexible substrate 13 accommodated in the housing 11 is exposed outside the housing 11.
  • a lens unit terminal portion 14 including terminals 14A to 14F is connected to the tip of the exposed portion of the flexible substrate 13.
  • the lens unit terminal portion 14 includes terminals other than the terminals 14A to 14F. However, in FIG. 1, only the terminals 14A to 14F are illustrated for simplification, and the other terminals are not illustrated. is doing.
  • FIG. 2 is an external perspective view of the imaging module 100 shown in FIG. 1 with the lens unit 10 omitted.
  • the image pickup device unit 20 includes a substrate 21 on which an image pickup device 27 such as a CCD image sensor or a CMOS image sensor is formed, and a flexible substrate 22 that is electrically connected to the substrate 21.
  • an image pickup device 27 such as a CCD image sensor or a CMOS image sensor is formed
  • a flexible substrate 22 that is electrically connected to the substrate 21.
  • the pixel pitch of the image sensor 27 is not particularly limited, but a pixel pitch of 1.0 ⁇ m or less is used.
  • the pixel pitch refers to the smallest distance among the distances between the centers of the photoelectric conversion regions included in the pixels included in the image sensor 27.
  • the pixel pitch of the image sensor has become narrower, but when the pixel pitch becomes narrower, the area per pixel becomes smaller. As a result, the radius of the allowable circle of confusion is reduced and the depth of focus is reduced. Furthermore, since it is necessary to increase the amount of light collected per pixel, the F number of the lens tends to be small.
  • a cylindrical cover holder 25 is formed on the substrate 21, and an image sensor 27 is disposed inside the cover holder 25.
  • a cover glass (not shown) is fitted in the hollow portion of the cover holder 25 above the image sensor 27.
  • an image sensor unit terminal portion including terminals 24A to 24F for electrical connection with the lens unit 10 is provided on the surface of the substrate 21 outside the cover holder 25, an image sensor unit terminal portion including terminals 24A to 24F for electrical connection with the lens unit 10 is provided. Similarly to the lens unit terminal unit 14, only a part of the image sensor unit terminal unit is illustrated.
  • the substrate 21 is provided with an image sensor wiring connected to a data output terminal and a drive terminal of the image sensor 27.
  • the imaging element wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22.
  • the external connection terminal portion 23 functions as an electrical connection portion that is electrically connected to the image sensor 27.
  • the substrate 21 is provided with a lens unit wiring connected to each terminal included in the image sensor unit terminal portion.
  • the lens unit wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22.
  • each terminal of the lens unit terminal unit and each terminal of the image sensor unit terminal unit corresponding thereto are electrically connected.
  • terminal 14A and the terminal 24A are electrically connected, the terminal 14B and the terminal 24B are electrically connected, the terminal 14C and the terminal 24C are electrically connected, and the terminal 14D and the terminal 24D are connected.
  • the terminals 14E and 24E are electrically connected, and the terminals 14F and 24F are electrically connected.
  • FIG. 3 is a cross-sectional view taken along line AA of the imaging module 100 shown in FIG.
  • the image sensor 27 is disposed in a recess provided in the substrate 21 and is sealed by a cover holder 25 provided on the substrate 21 and a cover glass 26 fitted in the cover holder 25. ing.
  • the lens unit 10 includes a lens group 12 including a plurality of lenses (four lenses 12A to 12D in the example of FIG. 3) disposed above the cover glass 26, and supports the lens group 12.
  • a unit terminal portion (only the terminal 14 ⁇ / b> C is shown because of a cross section in FIG. 3) and a lens driving device 16 formed above the flexible substrate 13 are provided.
  • the lens group 12, the lens barrel 15, the bottom block 19, the flexible substrate 13, and the lens driving device 16 are accommodated in the housing 11.
  • the lens driving device 16 includes a first lens driving unit, a second lens driving unit, a third lens driving unit, and a Hall element as a position detection element that detects the position of the lens.
  • the first lens driving unit sets at least a part of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 3) in a first direction along the optical axis Ax of the lens group 12 ( It is a drive unit for performing focus adjustment by moving in the z direction in FIG.
  • the second lens driving unit and the third lens driving unit have at least some of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 3) as the optical axis Ax of the lens group 12. It is a drive unit for correcting blurring of an image picked up by the image sensor 27 by moving in a second direction (x direction in FIG. 1) and a third direction (y direction in FIG. 1) orthogonal to each other.
  • the first lens driving unit, the second lens driving unit, and the third lens driving unit are actuators for moving the lens, respectively.
  • a voice coil motor VCM
  • Other known means may be employed.
  • FIG. 4 is a block diagram showing an electrical connection configuration of the lens unit 10 shown in FIG.
  • the lens driving device 16 detects an x-direction VCM 16A (the second lens driving unit) for moving the lens group 12 in the x direction and a position of the lens group 12 in the x direction.
  • the z-direction VCM 16E (the first lens driving unit) for moving the lens group 12 in the z-direction and the z-direction hall element 16F for detecting the z-direction position of the lens group 12 are provided.
  • the x-direction VCM 16A has two terminals, and each of the two terminals is electrically connected to the terminal 14A and the terminal 14B via a wiring formed on the flexible substrate 13.
  • the x-direction hall element 16B has four terminals, and each of the four terminals is electrically connected to the terminal 14a, the terminal 14b, the terminal 14c, and the terminal 14d through a wiring formed on the flexible substrate 13. ing.
  • the y-direction VCM 16C has two terminals, and each of the two terminals is electrically connected to the terminal 14C and the terminal 14D through wiring formed on the flexible substrate 13.
  • the y-direction hall element 16D has four terminals, and each of the four terminals is electrically connected to the terminal 14e, the terminal 14f, the terminal 14g, and the terminal 14h via wiring formed on the flexible substrate 13. ing.
  • each of the two terminals is electrically connected to the terminal 14E and the terminal 14F via a wiring formed on the flexible substrate 13.
  • the z-direction hall element 16F has four terminals, and each of the four terminals is electrically connected to the terminal 14i, the terminal 14j, the terminal 14k, and the terminal 14l through the wiring formed on the flexible substrate 13. ing.
  • the number of terminals required for each lens driving unit and each Hall element is an example, and is not limited to the above.
  • the lens unit 10 and the imaging element unit 20 are separately manufactured. Then, an adjustment process for aligning the lens unit 10 and the image sensor unit 20 is performed so that the imaging surface of the subject imaged by the lens group 12 coincides with the image pickup surface of the image sensor 27, and then the lens. The unit 10 and the image sensor unit 20 are bonded and fixed.
  • the above adjustment process is performed by moving the image sensor unit 20 in a state where the lens unit 10 is held in a predetermined posture by the manufacturing apparatus.
  • FIG. 5 is a side view showing a schematic configuration of the manufacturing apparatus 200 for the imaging module 100.
  • the imaging module manufacturing apparatus 200 adjusts the position and inclination of the imaging element unit 20 with respect to the lens unit 10, and after the adjustment, fixes the imaging element unit 20 to the lens unit 10 to complete the imaging module 100.
  • the imaging module manufacturing apparatus 200 includes a chart unit 71, a collimator unit 73, a lens positioning plate 75, a lens holding mechanism 77, an imaging element unit holding unit 79, an adhesive supply unit 81, and an ultraviolet lamp 83a as a light source. 83b and a control unit 85 for controlling them. These are supported by a surface 87 parallel to the direction of gravity, and are arranged in one direction on the surface 87.
  • the chart unit 71 includes a box-shaped casing 71a, a measurement chart 89 fitted in the casing 71a, and a light source 91 that is incorporated in the casing 71a and illuminates the measurement chart 89 from the back with parallel light. It is configured.
  • the measurement chart 89 is formed of, for example, a plastic plate having light diffusibility.
  • the chart surface of the measurement chart 89 is perpendicular to the direction of gravity.
  • the chart unit 71 functions as a measurement chart installation unit for installing a measurement chart.
  • the measurement chart 89 may be removable and replaceable with another one.
  • FIG. 6 is a diagram showing a chart surface of the measurement chart 89.
  • the measurement chart 89 has a rectangular shape, and a plurality of chart images CH1, CH2, CH3, CH4, and CH5 are printed on the chart surface on which the chart pattern is provided.
  • the plurality of chart images are all the same image, and are so-called ladder-like chart patterns in which black lines are arranged at predetermined intervals.
  • Each chart image is composed of a horizontal chart image Px arranged in the horizontal direction of the image and a vertical chart image Py arranged in the vertical direction of the image.
  • the collimator unit 73 is arranged to face the chart unit 71 on the Z axis which is a perpendicular to the chart surface of the measurement chart 89 and passes through the chart surface center 89a.
  • the collimator unit 73 includes a bracket 73a fixed to a work table 87 and a collimator lens 73b.
  • the collimator lens 73b collects the light emitted from the chart unit 71, and causes the collected light to enter the lens positioning plate 75 through the opening 73c formed in the bracket 73a.
  • the virtual image position of the measurement chart 89 imaged by the lens unit 10 can be set to an arbitrary distance (for example, a standard suitable for an infinite position or imaging assumed by the lens unit 10). The subject distance).
  • the lens positioning plate 75 and the lens holding mechanism 77 constitute a lens unit holding unit that holds the lens unit 10 on the Z axis between the chart unit 71 and the image sensor unit holding unit 79.
  • the lens positioning plate 75 is formed to have rigidity, for example, by metal, and is provided with an opening 75c through which the light condensed by the collimator unit 73 passes.
  • the lens positioning plate 75 is disposed facing the collimator unit 73 on the Z axis.
  • FIG. 7 is an explanatory diagram showing a holding state of the lens unit 10 and the imaging element unit 20 by the imaging module manufacturing apparatus 200.
  • three contact pins 93A, 93B, and 93C are provided around the opening 75a.
  • insertion pins 93A1, 93C1 having a smaller diameter than the contact pins are provided at the tips of the two contact pins 93A, 93C arranged diagonally. Yes.
  • the contact pins 93A, 93B, and 93C receive the recesses 95A, 95B, and 95C of the lens unit 10 shown in FIG.
  • the Z axis coincides with the optical axis Ax of the lens unit 10. That is, in the lens unit 10, the x direction and the y direction in FIG. 1 are perpendicular to the gravity direction, and the z direction is parallel to the gravity direction.
  • the lens holding mechanism 77 holds the lens unit 10 so that the top surface 11 a of the housing 11 faces the chart unit 71 on the Z axis, and the holding plate 97 in the Z axis direction.
  • the first slide stage 99 is moved.
  • the first slide stage 99 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 99a meshed with the ball screw in the Z-axis direction.
  • the lens unit 10 is held by the manufacturing apparatus 200. Become.
  • a probe unit 113 having six probe pins 113a (only one is shown in FIG. 5) is provided.
  • the probe unit 113 brings the probe pins 113a into contact with the terminals 14A to 14F of the lens unit 10 and energizes the terminals 14A to 14F.
  • the first lens driving unit (z-direction VCM 16E) and the second lens driving unit ( The x-direction VCM 16A) and the third lens driving unit (y-direction VCM 16C) are driven.
  • the image sensor unit holding unit 79 is for holding the image sensor unit 20 on the Z axis. Further, the image sensor unit holding unit 79 can change the position and inclination of the image sensor unit 20 in the Z-axis direction under the control of the control unit 85.
  • the inclination of the imaging element unit 20 means the inclination of the imaging surface 27a of the imaging element 27 with respect to a plane orthogonal to the Z-axis.
  • the imaging element unit holding unit 79 holds the suction head 115, a suction unit 116 (see FIG. 10), which will be described later, connected to the suction head 115 through a pipe 115c, and two suction axes (see FIG. 10) perpendicular to the Z axis.
  • a second slide that moves the Z-axis direction while holding a biaxial rotary stage 119 that adjusts the inclination of the suction head 115 around the horizontal X axis and vertical Y axis) and a bracket 121 to which the biaxial rotary stage 119 is attached.
  • the stage 123 is comprised.
  • FIG. 8 is a view of the suction head 115 as viewed from the lens positioning plate 75 side.
  • the surface on the lens positioning plate 75 side of the suction head 115 is a surface 115a perpendicular to the Z axis.
  • This surface 115a is an adsorption surface for adsorbing the surface opposite to the surface on which the image sensor 27 of the substrate 21 of the image sensor unit 20 is formed (the back surface of the substrate 21).
  • the outer edge of the image sensor unit 20 in a state where the image sensor unit 20 is in contact with the suction surface 115a is indicated by a one-dot chain line.
  • the suction head 115 is provided with two suction holes 115b surrounded by the suction surface 115a.
  • the suction hole 115b is connected to the suction part 116 through a pipe 115c shown in FIG.
  • the suction part 116 is composed of a vacuum source that applies a negative pressure to the suction hole 115b.
  • the suction unit 116 is controlled by the control unit 85.
  • the biaxial rotary stage 119 shown in FIG. 5 is an electric biaxial goniometer stage, and the center position of the imaging surface 27a of the imaging device unit 20 adsorbed by the adsorption head 115 by the rotation of two motors (not shown).
  • the image sensor unit 20 is tilted in the ⁇ x direction around the X axis and the ⁇ y direction around the Y axis orthogonal to the Z axis and the X axis, with the rotation center as the center.
  • the imaging element unit 20 is tilted in each direction, the positional relationship between the center position of the imaging surface 27a and the Z axis does not shift.
  • the second slide stage 123 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 123a engaged with the ball screw in the Z-axis direction.
  • a bracket 121 is fixed to the stage portion 123a.
  • the connector cable 127 connected to the external connection terminal portion 23 provided at the tip of the flexible substrate 22 of the image sensor unit 20 is attached to the biaxial rotation stage 119.
  • the connector cable 127 inputs a drive signal for the image sensor 27 and outputs a captured image signal output from the image sensor 27.
  • the adhesive supply unit 81 and the ultraviolet lamps 83a and 83b as light sources constitute a unit fixing unit that fixes the lens unit 10 and the image sensor unit 20.
  • the adhesive supply unit 81 is an adhesive that cures by light in the gap between the lens unit 10 and the image sensor unit 20 (here as an example) Supply UV curable adhesive.
  • the ultraviolet lamps 83a and 83b cure the adhesive by irradiating the ultraviolet curable adhesive supplied to the gap with ultraviolet rays.
  • the adhesive in addition to the ultraviolet curable adhesive, an instantaneous adhesive, a thermosetting adhesive, a natural curable adhesive, and the like can be used.
  • FIG. 9 is a diagram of a state in which the lens unit 10 is brought into contact with the lens positioning plate 75 as viewed from the imaging element unit holding unit 79 side.
  • the lens unit 10 only the outer edge of the top surface 11a of the housing 11 and the opening 11b. Is indicated by a broken line.
  • ultraviolet light is present on one divided area side.
  • a lamp 83a is disposed, and an ultraviolet lamp 83b is disposed on the other divided area side.
  • the ultraviolet lamps 83a and 83b cure the ultraviolet curable adhesive supplied to the gap by irradiating light from two directions. Thereby, compared with the case of irradiating ultraviolet rays from one direction, the ultraviolet curable adhesive can be cured more uniformly in the entire module, and the lens unit 10 and the imaging element unit 20 can be stably fixed. be able to.
  • the lens unit 10 is divided into four by a straight line L1 and a straight line L2 that pass through the optical axis Ax of the lens group 12 and are orthogonal to the optical axis Ax as viewed in the Z-axis direction. And it is good also as a structure which arrange
  • FIG. 10 is a block diagram showing the internal configuration of the imaging module manufacturing apparatus 200.
  • each unit described above is connected to the control unit 85.
  • the control unit 85 is, for example, a microcomputer including a CPU, a ROM, a RAM, and the like, and controls each unit based on a control program stored in the ROM.
  • the control unit 85 is connected to an input unit 131 such as a keyboard and a mouse for performing various settings, and a display unit 133 that displays setting contents, work contents, work results, and the like.
  • the lens driving driver 145 is a driving circuit for driving each of the first lens driving unit, the second lens driving unit, and the third lens driving unit, and the first lens driving is performed via the probe unit 113.
  • the driving current is supplied to each of the first lens driving unit, the second lens driving unit, and the third lens driving unit.
  • the image sensor driver 147 is a drive circuit for driving the image sensor 27, and inputs a drive signal to the image sensor 27 via the connector cable 127.
  • the in-focus coordinate value acquisition circuit 149 performs Z for a plurality of imaging positions (positions corresponding to the chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89) set on the imaging surface 27a of the imaging element 27. In-focus coordinate values that are positions with a high degree of focus in the axial direction are acquired.
  • the control unit 85 controls the second slide stage 123 when acquiring the in-focus coordinate values of a plurality of imaging positions, and a plurality of measurement positions (Z0, Z1, Z2) discretely set in advance on the Z axis. ,... Are sequentially moved.
  • control unit 85 controls the image sensor driver 147 to display chart images of a plurality of chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89 formed by the lens group 12 at each measurement position. Let's take an image.
  • the focused coordinate value acquisition circuit 149 extracts pixel signals corresponding to the plurality of imaging positions from the imaging signal input via the connector cable 127, and individually focuses evaluation on the plurality of imaging positions from the pixel signals. Each value is calculated.
  • the measurement position when a predetermined focus evaluation value is obtained for each imaging position is set as a focus coordinate value on the Z axis.
  • a contrast transfer function value (hereinafter referred to as CTF value) can be used.
  • the CTF value is a value representing the contrast of the image with respect to the spatial frequency, and when the CTF value is high, the degree of focus is considered high.
  • the in-focus coordinate value acquisition circuit 149 has a plurality of directions set on the XY coordinate plane for each of a plurality of measurement positions (Z0, Z1, Z2,%) Set on the Z axis for each of a plurality of imaging positions. CTF values are calculated for each.
  • the direction in which the CTF value is calculated is, for example, a horizontal direction (X-axis direction) that is the horizontal direction of the imaging surface 27a and a vertical direction (Y-axis direction) orthogonal thereto, and the CTF value in each direction is X -CTF value and Y-CTF value are calculated respectively.
  • the in-focus coordinate value acquisition circuit 149 for a plurality of imaging positions corresponding to each chart image CH1, CH2, CH3, CH4, CH5, coordinates on the Z axis (Zp1, Zp2) of the measurement position where the X-CTF value is maximum , Zp3, Zp4, Zp5) are acquired as the horizontal in-focus coordinate values. Similarly, the coordinate on the Z axis of the measurement position where the Y-CTF value is maximized is acquired as the vertical focus coordinate value.
  • the image plane calculation circuit 151 receives the horizontal focus coordinate value and the vertical focus coordinate value of each imaging position from the focus coordinate value acquisition circuit 149.
  • the imaging plane calculation circuit 151 includes the XY coordinate value of each imaging position when the imaging surface 27a is made to correspond to the XY coordinate plane, the horizontal in-focus coordinate value on the Z axis and the vertical value obtained for each imaging position.
  • a plurality of evaluation points expressed in combination with the in-focus coordinate values are expanded into a three-dimensional coordinate system combining the XY coordinate plane and the Z axis, and the three-dimensional coordinate system is based on the relative positions of these evaluation points.
  • An approximate imaging plane expressed as one plane is calculated.
  • Approximate image plane information is input from the image plane calculation circuit 151 to the adjustment value calculation circuit 153.
  • the adjustment value calculation circuit 153 has an imaging plane coordinate value F1 on the Z axis that is an intersection of the approximate imaging plane and the Z axis, and an inclination about the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane. A certain XY direction rotation angle is calculated and input to the control unit 85.
  • the control unit 85 drives the image sensor unit holding unit 79 based on the imaging plane coordinate value and the XY direction rotation angle input from the adjustment value calculation circuit 153, and adjusts the Z-axis direction position and inclination of the image sensor unit 20. Then, the imaging surface 27a is made to coincide with the approximate imaging surface.
  • the control unit 85 functions as an adjustment unit that adjusts the Z-axis direction position and inclination of the image sensor unit 20 with respect to the lens unit 10.
  • the imaging module manufacturing apparatus 200 described above generally performs the following steps. (1) Step of holding the lens unit 10 and the image sensor unit 20 on the Z axis orthogonal to the chart surface of the measurement chart 89 (2) Changing the position of the image sensor unit 20 held on the Z axis in the Z axis direction Then, at each position, the imaging element 27 is driven while the first to third lens driving units of the lens unit 10 held on the Z-axis are energized, and the measurement chart 89 is imaged by the imaging element 27. Step (3) Based on the imaging signal obtained by imaging the measurement chart 89 by the imaging device 27, the position and inclination of the imaging device unit 20 with respect to the lens unit 10 are adjusted, and the imaging device unit 20 is fixed to the lens unit 10. Process
  • the control unit 85 controls the first slide stage 99 to move the holding plate 97 along the Z-axis direction, thereby providing a space in which the lens unit 10 can be inserted between the lens positioning plate 75 and the holding plate 97.
  • the lens unit 10 is held by a robot (not shown) and transferred between the lens positioning plate 75 and the holding plate 97.
  • the control unit 85 detects the movement of the lens unit 10 with an optical sensor or the like, and moves the stage unit 99a of the first slide stage 99 in a direction approaching the lens positioning plate 75. As a result, the holding plate 97 holds the lens unit 10.
  • the probe pin 113a of the probe unit 113 is in contact with the terminals 14A to 14F of the lens unit 10 to electrically connect the first to third lens driving units and the lens driving driver 145.
  • the holding plate 97 After releasing the holding of the lens unit 10 by a robot (not shown), the holding plate 97 is further moved toward the lens positioning plate 75. Then, the concave portions 95A, 95B, and 95C of the lens unit 10 come into contact with the contact pins 93A, 93B, and 93C, and the insertion pins 93A1 and 93C1 are inserted into the concave portions 95C1 and 95A1. Accordingly, the lens unit 10 is positioned in the Z-axis direction, the X-axis direction, and the Y-axis direction.
  • suction holding (S2) of the image sensor unit 20 by the image sensor unit holding unit 79 will be described.
  • the control unit 85 controls the second slide stage 123 to move the biaxial rotary stage 119 along the Z-axis direction, so that the image sensor unit 20 is located between the lens positioning plate 75 and the biaxial rotary stage 119. Create an insertable space.
  • the image sensor unit 20 is held by a robot (not shown) and transferred between the lens positioning plate 75 and the biaxial rotation stage 119.
  • the control unit 85 detects the movement of the image sensor unit 20 with an optical sensor or the like, and moves the stage unit 123a of the second slide stage 123 in a direction approaching the lens positioning plate 75.
  • the control unit 85 sucks air by the suction unit 116.
  • the focus coordinate value acquisition circuit 149 causes the horizontal focus coordinate value and the vertical focus coordinate value of each image pickup position on the image pickup surface 27a. Is acquired (S3).
  • control unit 85 controls the second slide stage 123 to move the biaxial rotation stage 119 in a direction approaching the lens positioning plate 75, and the first measurement in which the image sensor 27 is closest to the lens unit 10.
  • the image sensor unit 20 is moved to the position.
  • Control unit 85 causes light source 91 of chart unit 71 to emit light.
  • the control unit 85 inputs a drive signal from the lens drive driver 145 to the terminals 14A to 14F and drives the first to third lens drive units to position the optical axis Ax of the lens group 12 in the x direction,
  • the y-direction position and the z-direction position are held at a reference position (for example, an initial position during actual use).
  • control unit 85 controls the image sensor driver 147 to cause the image sensor 27 to capture the chart images CH1, CH2, CH3, CH4, and CH5 formed by the lens unit 10.
  • the image sensor 27 inputs the captured image signal to the focused coordinate value acquisition circuit 149 via the connector cable 127.
  • the in-focus coordinate value acquisition circuit 149 extracts the pixel signal at the imaging position corresponding to each chart image CH1, CH2, CH3, CH4, and CH5 from the input imaging signal, and X for each imaging position from the pixel signal. -Calculate CTF and Y-CTF values.
  • the control unit 85 stores information on the X-CTF value and the Y-CTF value in, for example, a RAM in the control unit 85.
  • the control unit 85 sequentially moves the image sensor unit 20 to a plurality of measurement positions (Z0, Z1, Z2,%) Set along the Z-axis direction, and the optical axis Ax of the lens group 12 at each measurement position.
  • the image sensor 27 is caused to capture the chart image of the measurement chart 89 while maintaining the x-direction position, the y-direction position, and the z-direction position at the reference positions.
  • the focused coordinate value acquisition circuit 149 calculates an X-CTF value and a Y-CTF value at each imaging position at each measurement position.
  • the focused coordinate value acquisition circuit 149 selects the maximum value from among the plurality of calculated X-CTF values and Y-CTF values for each of the imaging positions, and the Z-axis of the measurement position where the maximum value is obtained.
  • the coordinates are acquired as the horizontal focus coordinate value and the vertical focus coordinate value of the imaging position.
  • the horizontal focus coordinate value and the vertical focus coordinate value acquired by the focus coordinate value acquisition circuit 149 are input to the imaging plane calculation circuit 151.
  • the imaging plane calculation circuit 151 calculates the approximate imaging plane F that is approximated by a plane, for example, by the method of least squares (S5).
  • the adjustment value calculation circuit 153 includes an imaging plane coordinate value F1 that is an intersection of the approximate imaging plane F and the Z axis, and an XY direction that is an inclination around the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane.
  • the rotation angle is calculated and input to the controller 85 (S6).
  • the control unit 85 controls the biaxial rotation stage 119 and the second slide stage 123 based on the imaging plane coordinate value F1 and the rotation angle in the XY direction, and the center position of the imaging plane 27a of the imaging element 27 is the imaging plane coordinate.
  • the image sensor unit 20 is moved in the Z-axis direction so as to coincide with the value F1, and the angles of the ⁇ x direction and ⁇ y direction of the image sensor unit 20 are adjusted so that the inclination of the image sensing surface 27a coincides with the approximate imaging plane F. Adjust (S7).
  • the control unit 85 performs a confirmation step of confirming the in-focus position of each imaging position after adjusting the position and inclination of the imaging element unit 20 (S8).
  • each step of S3 described above is executed again. After the adjustment of the position and inclination of the image sensor unit 20, the variation in the evaluation value corresponding to the horizontal direction and the vertical direction becomes small for each of the image pickup positions.
  • control unit 85 moves the imaging element unit 20 in the Z-axis direction so that the center position of the imaging surface 27a coincides with the imaging plane coordinate value F1 (S9). ).
  • control unit 85 supplies UV curing adhesive to the gap between the lens unit 10 and the image sensor unit 20 from the adhesive supply unit 81 (S10), and turns on the UV lamps 83a and 83b, thereby curing the UV curing.
  • the mold adhesive is cured (S11).
  • the control unit 85 stops the suction of air by the suction unit 116. Thereby, the suction of air from the suction hole 115b is stopped, and the suction of the image sensor unit 20 is released (step S12).
  • the completed imaging module 100 is taken out from the imaging module manufacturing apparatus 200 by a robot (not shown) (S13).
  • the lens unit 10 and the image sensor unit 20 can be fixed with an ultraviolet curable adhesive, but curing with the ultraviolet curable adhesive may be used as temporary fixing between the lens unit 10 and the image sensor unit 20.
  • the imaging module 100 is removed from the imaging module manufacturing apparatus 200 in a state where the lens unit 10 and the imaging element unit 20 are temporarily fixed, and after performing a desired process such as a cleaning process, the lens unit 10 and the imaging element unit 20 May be completely fixed by a thermosetting adhesive or the like.
  • the imaging module 100 By manufacturing the imaging module 100 with the manufacturing apparatus 200 described above, it is possible to prevent the substrate of the imaging element unit 20 from being warped when the imaging element unit 20 is held in the manufacturing apparatus 200. For this reason, the lens unit 10 and the image sensor unit 20 can be aligned with high accuracy.
  • the suction head 115 As the suction head 115, as shown in FIG. 8, the suction head 115 is provided with two suction holes 115b surrounded by the suction surface 115a. As described in Patent Document 3, when the back surface of the substrate 21 of the image pickup device unit 20 is attracted by a pair of nozzles, the substrate 21 is supported only by the front end surface of each nozzle. The substrate 21 is warped when concentrated.
  • the suction surface 115a is present between the suction hole 115b and the suction hole 115b. For this reason, the back surface of the substrate 21 of the image pickup device unit 20 can be supported by the portion in between. As a result, even when air is sucked from the suction hole 115b, the substrate 21 of the image sensor unit 20 can be prevented from warping.
  • devices such as a device for fixing the lens unit 10 and the image sensor unit 20 (adhesive supply unit 81, ultraviolet lamps 83a and 83b) and a device for supplying current to the lens unit 10 (probe unit 113) can be freely arranged.
  • the design cost of the manufacturing apparatus 200 can be reduced and the maintainability can be improved.
  • the mechanism inside the housing 11 of the lens unit 10 is complicated. Low profile becomes difficult.
  • the image sensor unit 20 can be reduced in height, but if the thin image sensor unit 20 is held by a chuck hand, warping is likely to occur. Therefore, in such a model, it is particularly effective to adopt the manufacturing method of the present embodiment.
  • the number of probes for energizing the lens unit 10 is at least two, but the second lens driving unit and the third lens driving unit If the model further includes a lens driving unit, at least six probes are required.
  • the in-focus coordinate value is obtained by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed.
  • the lens unit holding portion including the lens positioning plate 75 and the lens holding mechanism 77 is movable in the Z-axis direction, and the position of the image sensor unit holding portion 79 is fixed in the Z-axis direction while the lens unit holding portion is fixed to the Z-axis. It is also possible to change the measurement position by moving the lens unit holding part and the image sensor unit holding part 79 in the Z-axis direction, and acquire the in-focus coordinate value at each measurement position.
  • the coordinate position value may be acquired by changing the measurement position by moving the chart unit 71 in the Z-axis direction while the Z-axis direction positions of the lens unit holding unit and the image sensor unit holding unit 79 are fixed.
  • the focus coordinate value may be acquired by changing the measurement position by changing the Z-axis direction position of each of the lens unit holding unit, the image sensor unit holding unit 79, and the chart unit 71.
  • the measurement position is changed by changing the relative position in the Z-axis direction of the lens unit 10, the image sensor unit 20, and the measurement chart 89, and the measurement chart 89 is imaged by the image sensor 27 at each relative position to be focused. Any configuration that acquires coordinate values may be used.
  • a plurality of measurement positions are realized by changing the relative position, and the measurement chart is imaged when each measurement position is reached.
  • the measurement chart is continuously imaged. (I.e., taking a moving image), and the relative position may be changed so that each measurement position is reached during the imaging.
  • step S7 in FIG. 11 the Z-axis direction position of the image sensor unit 20 with respect to the lens unit 10 is adjusted by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed.
  • the lens unit holding unit is movable in the Z-axis direction, and the image sensor unit holding unit 79 moves the lens unit holding unit while the position is fixed, or the lens unit holding unit and the image sensor unit holding unit. 79 may be moved to adjust the position.
  • the Z-axis direction position and inclination of the image sensor unit 20 with respect to the lens unit 10 are adjusted, but the adjustment of the Z-axis direction position may be omitted.
  • the tilt adjustment of the image sensor unit 20 with respect to the lens unit 10 can be performed with higher accuracy.
  • the measurement chart 89 is imaged while the lens driving unit is energized to obtain the focus evaluation value, but the energization to the lens driving unit may be omitted. By performing energization, alignment with higher accuracy becomes possible.
  • the lens drive units when energization is performed, it is not necessary for the lens drive units to be energized to be all of the first to third lens drive units, and only energize only those necessary according to the alignment accuracy. It may be.
  • the adhesive supply unit 81 and the ultraviolet lamps 83a and 83b as light sources constitute a unit fixing unit that fixes the lens unit 10 and the image sensor unit 20.
  • the unit fixing portion is not limited to this configuration as long as the adhesive supplied to the gap between the lens unit 10 and the imaging element unit 20 can be cured.
  • the bonding is performed.
  • the agent may be cured by the ultraviolet lamps 83a and 83b. That is, the unit fixing portion may be configured only by the ultraviolet lamps 83a and 83b.
  • thermosetting resin when used as the adhesive, a heat source may be used instead of the light source as a means for curing the adhesive.
  • the configuration of the suction head 115 is not limited to that shown in FIG. 8, and may be the configuration shown in FIGS.
  • FIG. 12 is a view of the suction head 115A, which is a modification of the suction head 115, as viewed from the lens positioning plate 75 side.
  • the suction head 115A includes a suction surface 115a and four suction holes 115b surrounded by the suction surface 115a.
  • Each suction hole 115b has an L shape disposed near the four corners of the suction head 115A.
  • the suction surface 115a always exists between two adjacent suction holes 115b. For this reason, this portion of the suction surface 115a supports the substrate 21 of the image sensor unit 20, and warpage of the substrate 21 during suction holding can be prevented.
  • suction head provided with three or five or more suction holes 115b surrounded by the suction surface 115a may be employed.
  • each of innumerable fine holes present in the porous material forms a suction hole 115b.
  • the suction hole 115b is small, the area for supporting the substrate 21 can be increased, and the warpage of the substrate 21 can be effectively prevented.
  • FIG. 13 is a view of a suction head 115B, which is a modification of the suction head 115, as viewed from the lens positioning plate 75 side.
  • the suction head 115B is provided with one suction hole 115b surrounded by the suction surface 115a.
  • the suction hole 115b has a ring shape, and the suction surface 115a is always in contact with the inner edge and the outer edge of the suction hole 115b.
  • suction head configuration shown in FIGS. 8, 12, and 13 and the suction head in which the suction surface 115a is formed of a porous member are all sucked across the suction surface 115a on the plane including the suction surface 115a. It can be said that there is always a straight line (symbol La in the drawing) that passes through the hole 115b twice.
  • the suction surface 115a can be formed of an elastic body such as rubber.
  • the suction surface 115a as an elastic body, the degree of adhesion between the suction hole 115b and the substrate 21 can be increased, and the flow of the sucked air can be prevented from reaching the periphery of the substrate 21.
  • the back surface of the substrate 21 of the image sensor unit 20 has been described as a surface perpendicular to the optical axis Ax of the lens group 12.
  • the term “perpendicular” does not need to be strictly vertical, and if the manufacturing apparatus has a mechanism for adjusting the tilt of the image sensor unit 20 with respect to the lens unit 10, it may be within the stroke of tilt adjustment. When there is no tilt adjustment mechanism, a deviation of about 1 ° is allowed.
  • the disclosed method of manufacturing an imaging module is a method of manufacturing an imaging module having a lens unit having a lens group, and an image sensor unit that is fixed to the lens unit and has an image sensor that images a subject through the lens group. And changing the relative position in the axial direction of at least one of the image sensor unit, the lens unit, and the measurement chart on an axis orthogonal to the measurement chart, and the image sensor at each relative position.
  • the imaging element unit for the lens unit based on a first step of imaging the measurement chart through the lens group by the imaging element and an imaging signal obtained by imaging the measurement chart by the imaging element At least to adjust the inclination of the image sensor unit
  • a suction head having a suction surface perpendicular to the axis and a suction hole surrounded by the suction surface, the first step including the suction surface. Air is sucked from the suction hole of the suction head having a straight line passing through the suction hole twice across the suction surface on a plane, and the image sensor unit is sucked to the suction surface to suck the image sensor. The imaging is performed while the unit is held.
  • the imaging element unit is sucked and held by the suction head having a straight line passing through the suction hole twice across the suction face on the plane including the suction face, the suction hole is sandwiched between the suction faces.
  • the straight line portion that passes twice the back surface of the image sensor unit is supported by the suction surface between the suction holes. For this reason, even when suction is performed, the warp of the image sensor unit can be reliably prevented, and the position adjustment of the image sensor unit and the lens unit can be performed with high accuracy.
  • the disclosed method for manufacturing an imaging module includes a method using a plurality of suction holes provided as the suction head in the first step.
  • the disclosed method for manufacturing an imaging module includes a method in which, in the first step, the suction head is provided with one suction hole.
  • the disclosed method for manufacturing an imaging module includes a method in which, in the first step, the suction head has a suction surface made of a porous material.
  • the disclosed method for manufacturing an imaging module includes a method in which, in the first step, as the suction head, the suction surface is made of an elastic body.
  • the imaging element unit can be stably adsorbed to the adsorption head.
  • Light is irradiated from each of the divided area side and the other divided area side, the photocurable adhesive supplied to the gap between the lens unit and the imaging element unit is cured, and the lens unit and the imaging element unit are It is to be fixed.
  • the adhesive is cured by irradiating light from each divided area when the lens unit is divided into four by the two straight lines orthogonal to each other.
  • the lens unit and the image sensor unit are fixed.
  • the applied adhesive can be cured more uniformly in the entire module. Fixing can be performed more stably.
  • the lens unit includes a first lens driving unit that moves at least a part of the lenses in the first direction along the optical axis of the lens group, and the lens unit. At least one of a second lens driving unit and a third lens driving unit for moving at least some of the lenses in a second direction and a third direction orthogonal to the optical axis of the lens group, respectively. It is what you have.
  • a lens unit equipped with a lens driving unit has a complicated structure and it is difficult to reduce the height, it is necessary to reduce the height of the image sensor unit. For this reason, the image sensor unit tends to warp, and a method of sucking and holding the image sensor unit by the suction head is particularly effective.
  • the disclosed imaging module manufacturing method includes the imaging element unit in which the imaging element is formed in the recess of the substrate in which the recess is formed.
  • the image pickup element unit in which the image pickup element is formed in the concave portion of the substrate in which the concave portion is formed is easy to warp the substrate, a method of sucking and holding the image pickup element unit by the suction head is particularly effective.
  • the disclosed imaging module manufacturing apparatus includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit.
  • An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit. At least one of the lens unit holding unit, the measurement chart setting unit, the lens unit holding unit, and the image sensor unit holding unit is changed in the axial direction, and the image sensor is changed at each relative position.
  • the image sensor of the unit is driven, and the image sensor passes the lens unit through the lens unit.
  • a control unit that images a constant chart, an adjustment unit that adjusts at least an inclination of the imaging element unit with respect to the lens unit based on an imaging signal obtained by imaging the measurement chart by the imaging element, and an adjustment unit.
  • a unit fixing portion for fixing the adjusted image pickup device unit to the lens unit, and the image pickup device unit holding portion has a suction surface orthogonal to the axis and a suction hole surrounded by the suction surface.
  • a suction section for sucking air from the suction hole, and the suction head has a straight line passing through the suction hole twice across the suction surface on a plane including the suction surface. It is.
  • the imaging element unit is sucked and held by the suction head having a straight line passing through the suction hole twice across the suction surface on the plane including the suction surface, the suction hole is straddled across the suction surface.
  • the straight line portion that passes twice the back surface of the image sensor unit is supported by the suction surface between the suction holes. For this reason, even when suction is performed, the warp of the image sensor unit can be prevented, and the position adjustment of the image sensor unit and the lens unit can be performed with high accuracy.
  • the suction head includes a plurality of the suction holes.
  • the image sensor unit can be prevented from warping.
  • the suction head includes one in which one suction hole is provided.
  • this apparatus it is possible to enlarge the surface that supports the image sensor unit when the image sensor unit is attracted to the suction head, and it is possible to prevent the image sensor unit from warping.
  • the disclosed imaging module manufacturing apparatus includes the suction head in which the suction surface is made of a porous material.
  • this apparatus it is possible to enlarge the surface that supports the image sensor unit when the image sensor unit is attracted to the suction head, and it is possible to prevent the image sensor unit from warping.
  • the suction head includes one in which the suction surface is formed of an elastic body.
  • the image sensor unit can be stably adsorbed to the adsorption head.
  • the unit fixing portion is divided into two when the lens unit is divided into two by a straight line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction.
  • a light source that is disposed on each of the divided area side and the other divided area side, irradiates light to the gap between the lens unit and the imaging element unit, and cures the photocurable adhesive supplied to the gap. Is included.
  • this apparatus since light is irradiated from at least two directions between the lens unit and the image sensor unit, it is possible to uniformly cure the applied adhesive throughout the module, and the lens unit and the image sensor unit. Can be stably fixed.
  • the light source is installed in each divided area when the lens unit is divided into four by two straight lines orthogonal to each other.
  • the applied adhesive can be cured more uniformly in the entire module. Fixing can be performed more stably.
  • the unit fixing part includes an adhesive supply part that supplies the photocurable adhesive to a gap between the lens unit and the imaging element unit.
  • the method and apparatus for manufacturing an imaging module according to the present invention is particularly effective when applied to the manufacture of an imaging module mounted on an electronic device such as a mobile phone, a spectacle-type electronic device, or a wristwatch-type electronic device.
  • Imaging module 10 Lens unit 11 Housing
  • casing 12 Lens group 13 Flexible board 14A-14F Lens unit terminal part 16
  • Imaging element unit 21 Substrate 22 Flexible substrate 23 External connection terminals 24A to 24F Imaging element unit terminal section 27 Imaging element 200
  • Imaging module manufacturing apparatus 71 Chart unit 89 Measurement chart 75
  • Adhesive supply part 83a, 83b Ultraviolet lamp 79 Image sensor unit holding part 85 Control part Ax Optical axis z Direction along optical axis x Direction orthogonal to yz direction Direction orthogonal to yz direction

Abstract

 The purpose of the invention is to provide a method and device for manufacturing an imaging module capable of positioning an imaging element unit and a lens unit in a highly accurate manner. In the manufacturing device (200), in a state in which the back surface of a substrate (21) of the imaging element unit (20) is attached to the attachment surface (115a) of an attachment head (115) and the imaging element unit (20) is held on a Z-axis, and the lens unit (10) is held on the Z-axis, the Z-axis position of the imaging element unit (20) is changed relative to the lens unit (10), and a measurement chart (89) is imaged using an imaging element (27). The position and the tilt of the imaging element unit (20) relative to the lens unit (10) is adjusted on the basis of an imaging signal obtained by the above imaging.

Description

撮像モジュールの製造方法及び撮像モジュールの製造装置Imaging module manufacturing method and imaging module manufacturing apparatus
 本発明は、撮像モジュールの製造方法及び撮像モジュールの製造装置に関する。 The present invention relates to an imaging module manufacturing method and an imaging module manufacturing apparatus.
 撮影機能を有する携帯電話機等の携帯用電子機器には、小型で薄型の撮像モジュールが搭載されている。この撮像モジュールは、撮影用のレンズが組み込まれたレンズユニットと、CCDイメージセンサやCMOSイメージセンサ等の撮像素子が組み込まれた撮像素子ユニットとが一体化された構造を有する。 In portable electronic devices such as a mobile phone having a photographing function, a small and thin imaging module is mounted. This imaging module has a structure in which a lens unit in which a photographing lens is incorporated and an imaging element unit in which an imaging element such as a CCD image sensor or a CMOS image sensor is incorporated are integrated.
 撮像モジュールには、レンズユニット内のレンズを動かしてフォーカス調整をするためのオートフォーカス(AF)機構を有するもの、レンズユニットと撮像素子ユニットを光軸に直交する方向に相対移動させて、撮像される像のブレを光学的に補正するための光学式像ブレ補正機構を有するものがある。 The imaging module has an auto-focus (AF) mechanism for adjusting the focus by moving the lens in the lens unit, and the lens unit and the image sensor unit are moved relative to each other in the direction perpendicular to the optical axis to capture an image. Some have an optical image blur correction mechanism for optically correcting image blur.
 例えば、特許文献1,2には、AF機構を有する撮像モジュールが記載されている。 For example, Patent Documents 1 and 2 describe an imaging module having an AF mechanism.
 近年、撮像モジュールに使用される撮像素子は、100万~200万画素程度の低画素数から、300万~1000万画素、或いはそれ以上の高画素数を有するものが広く使用されるようになっている。 In recent years, image sensors used in image pickup modules have been widely used having a low pixel number of about 1 million to 2 million pixels to a high number of pixels of 3 million to 10 million pixels or more. ing.
 低画素数の撮像素子を用いる場合、レンズユニットと撮像素子ユニットとの位置合わせに特に高い精度は要求されなかったが、高画素数の撮像素子を用いる場合には、高い精度での位置合わせが必要となる。 When using an image sensor with a low number of pixels, high accuracy was not required for alignment between the lens unit and the image sensor unit. However, when using an image sensor with a high number of pixels, alignment with high accuracy was not required. Necessary.
 特許文献1~3には、レンズユニットと撮像素子ユニットの位置合わせをしてから、レンズユニットと撮像素子ユニットの固定を行う技術が記載されている。 Patent Documents 1 to 3 describe techniques for fixing a lens unit and an image sensor unit after aligning the lens unit and the image sensor unit.
 特許文献1では、レンズユニットと撮像素子ユニットとを初期位置にセットした後、撮像素子ユニットを光軸方向に移動させながら撮像素子にチャートを撮像させ、得られた撮像画像からレンズユニットと撮像素子ユニットの位置を調整する。この調整後、レンズユニットと撮像素子ユニットを接着固定している。 In Patent Document 1, after setting a lens unit and an image sensor unit to an initial position, a chart is imaged by the image sensor while moving the image sensor unit in the optical axis direction, and the lens unit and the image sensor are obtained from the obtained captured image. Adjust the unit position. After this adjustment, the lens unit and the image sensor unit are bonded and fixed.
 特許文献3では、撮像素子ユニットの保持方法として、撮像素子が形成される回路基板の背面を吸込ノズルによって吸着保持することが記載されている。 Patent Document 3 describes a method of holding an image pickup element unit by sucking and holding the back surface of a circuit board on which an image pickup element is formed by a suction nozzle.
日本国特開2010-21985号公報Japanese Unexamined Patent Publication No. 2010-21985 日本国特開2011-133509号公報Japanese Unexamined Patent Publication No. 2011-133509 日本国特開2008-46630号公報Japanese Unexamined Patent Publication No. 2008-46630
 特許文献1に記載のカメラモジュール製造装置は、撮像素子ユニットを製造装置に保持する際に、撮像素子ユニットの側面をチャックハンドによって挟んで保持する。撮像素子ユニットの薄型化が進むと、チャックハンドによって側面を挟んで保持する場合には、保持状態において撮像素子ユニットが反り返ってしまう可能性がある。 The camera module manufacturing apparatus described in Patent Document 1 holds the side surface of the image sensor unit with a chuck hand when the image sensor unit is held in the manufacturing apparatus. As the image sensor unit becomes thinner, there is a possibility that the image sensor unit will warp in the holding state when the chuck hand holds the side surface.
 特許文献3に記載されているように、撮像素子ユニットを吸着保持することも考えられる。しかし、特許文献3では、撮像素子が形成される基板に一対のノズルを当てて、基板を吸着している。 As described in Patent Document 3, it is also conceivable to hold the image sensor unit by suction. However, in Patent Document 3, a pair of nozzles is applied to a substrate on which an image sensor is formed to adsorb the substrate.
 この方法では、撮像素子ユニットに反りが発生する可能性が高く、レンズユニットと撮像素子ユニットの位置合わせを精度良く行うことが難しい。特に、多画素化で画素ピッチが狭くなっている撮像素子においては、少しの反りが画質に与える影響が大きいため、反りに対する対策が重要となる。 In this method, there is a high possibility that the image sensor unit is warped, and it is difficult to accurately align the lens unit and the image sensor unit. In particular, in an image pickup device in which the pixel pitch is narrow due to the increase in the number of pixels, a slight warp has a large influence on the image quality, and thus countermeasures against the warp are important.
 本発明は、上記事情に鑑みてなされたものであり、撮像素子ユニットとレンズユニットの位置合わせ時における撮像素子ユニットの位置を正確に決めて撮像品質を向上させることが可能な撮像モジュールの製造方法及び製造装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a method of manufacturing an imaging module capable of accurately determining the position of the imaging element unit when aligning the imaging element unit and the lens unit and improving imaging quality. And it aims at providing a manufacturing apparatus.
 本発明の撮像モジュールの製造方法は、レンズ群を有するレンズユニットと、上記レンズユニットに固定され、上記レンズ群を通して被写体を撮像する撮像素子を有する撮像素子ユニットと、を有する撮像モジュールの製造方法であって、測定チャートに直交する軸上において、上記撮像素子ユニット、上記レンズユニット、及び上記測定チャートの少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子を駆動して上記撮像素子により上記レンズ群を通して上記測定チャートを撮像させる第一工程と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの傾きを少なくとも調整し、上記撮像素子ユニットを上記レンズユニットに固定する第二工程と、を備え、上記第一工程では、上記軸に垂直な吸着面と上記吸着面に囲まれた吸引孔とを有する吸着ヘッドであって、上記吸着面を含む平面上に、上記吸着面を跨いで上記吸引孔を2回通る直線が存在する吸着ヘッド、の上記吸引孔から空気を吸引して、上記撮像素子ユニットを上記吸着面に吸着させて上記撮像素子ユニットを保持した状態で、上記撮像を行わせるものである。 The manufacturing method of an imaging module of the present invention is a manufacturing method of an imaging module having a lens unit having a lens group, and an imaging element unit having an imaging element fixed to the lens unit and imaging a subject through the lens group. And changing the relative position in the axial direction of at least one of the image sensor unit, the lens unit, and the measurement chart on an axis orthogonal to the measurement chart, and the image sensor at each relative position. The imaging element unit for the lens unit based on a first step of imaging the measurement chart through the lens group by the imaging element and an imaging signal obtained by imaging the measurement chart by the imaging element At least to adjust the inclination of the image sensor unit. A suction head having a suction surface perpendicular to the axis and a suction hole surrounded by the suction surface, the first step including the suction surface. Air is sucked from the suction hole of the suction head having a straight line passing through the suction hole twice across the suction surface on a plane, and the image sensor unit is sucked to the suction surface to suck the image sensor. The imaging is performed while the unit is held.
 本発明の撮像モジュールの製造装置は、測定チャートを設置するための測定チャート設置部と、上記測定チャート設置部に設置された上記測定チャートに直交する軸上に、レンズ群を有するレンズユニットを通して被写体を撮像する撮像素子を有する撮像素子ユニットを保持するための撮像素子ユニット保持部と、上記測定チャート設置部と上記撮像素子ユニット保持部との間の上記軸上で上記レンズユニットを保持するためのレンズユニット保持部と、上記測定チャート設置部、上記レンズユニット保持部、及び上記撮像素子ユニット保持部の少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子ユニットの上記撮像素子を駆動して、上記撮像素子により上記レンズユニットを通して上記測定チャートを撮像させる制御部と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの傾きを少なくとも調整する調整部と、上記調整部により調整後の上記撮像素子ユニットを上記レンズユニットに固定するユニット固定部と、を備え、上記撮像素子ユニット保持部は、上記軸に直交する吸着面及び上記吸着面に囲まれた吸引孔を有する吸着ヘッドと、上記吸引孔から空気を吸引する吸引部と、を含み、上記吸着ヘッドは、上記吸着面を含む平面上に、上記吸着面を跨いで上記吸引孔を2回通る直線が存在するものである。 An imaging module manufacturing apparatus according to the present invention includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit. An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit. At least one of the lens unit holding unit, the measurement chart setting unit, the lens unit holding unit, and the image sensor unit holding unit is changed in the axial direction, and the image sensor is changed at each relative position. The image sensor of the unit is driven, and the measurement is performed through the lens unit by the image sensor. A control unit that images the chart, an adjustment unit that adjusts at least an inclination of the image sensor unit with respect to the lens unit based on an image signal obtained by imaging the measurement chart by the image sensor, and an adjustment by the adjustment unit A unit fixing portion that fixes the subsequent imaging element unit to the lens unit, and the imaging element unit holding portion has a suction surface orthogonal to the axis and a suction hole surrounded by the suction surface And a suction part that sucks air from the suction hole, and the suction head has a straight line passing through the suction hole twice across the suction surface on a plane including the suction surface. is there.
 本発明によれば、撮像素子ユニットとレンズユニットの位置合わせ時における撮像素子ユニットの位置を正確に決めて撮像品質を向上させることが可能な撮像モジュールの製造方法及び製造装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and manufacturing apparatus of an imaging module which can determine the position of an image sensor unit at the time of alignment of an image sensor unit and a lens unit, and can improve imaging quality can be provided. .
撮像モジュール100の外観斜視図である。1 is an external perspective view of an imaging module 100. FIG. 図1に示す撮像モジュール100においてレンズユニット10を省略した状態の撮像素子ユニット20の外観斜視図である。FIG. 2 is an external perspective view of an image sensor unit 20 in a state where a lens unit 10 is omitted in the image pickup module 100 shown in FIG. 1. 図1に示す撮像モジュール100のA-A線断面図である。FIG. 2 is a cross-sectional view of the imaging module 100 shown in FIG. 図2に示すレンズユニット10内の電気接続構成を示す図The figure which shows the electrical connection structure in the lens unit 10 shown in FIG. 撮像モジュール100の製造装置200の概略構成を示す側面図である。2 is a side view illustrating a schematic configuration of a manufacturing apparatus 200 of the imaging module 100. 測定チャートの正面図である。It is a front view of a measurement chart. 撮像モジュール製造装置200によるレンズユニット10と撮像素子ユニット20の保持状態を示す説明図である。6 is an explanatory diagram illustrating a holding state of the lens unit 10 and the imaging element unit 20 by the imaging module manufacturing apparatus 200. FIG. 撮像モジュール製造装置200の吸着ヘッドの構成を示す図である。It is a figure which shows the structure of the adsorption | suction head of the imaging module manufacturing apparatus. 撮像モジュール製造装置200の紫外線ランプの配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the ultraviolet lamp of the imaging module manufacturing apparatus. 撮像モジュール製造装置200の内部構成を示すブロック図である。2 is a block diagram illustrating an internal configuration of an imaging module manufacturing apparatus 200. FIG. 撮像モジュール製造装置200による撮像モジュールの製造工程を説明するためのフローチャートである。4 is a flowchart for explaining a manufacturing process of an imaging module by the imaging module manufacturing apparatus 200. 撮像モジュール製造装置200の吸着ヘッドの構成の変形例を示す図である。It is a figure which shows the modification of a structure of the adsorption | suction head of the imaging module manufacturing apparatus. 撮像モジュール製造装置200の吸着ヘッドの構成の変形例を示す図である。It is a figure which shows the modification of a structure of the adsorption | suction head of the imaging module manufacturing apparatus.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、撮像モジュール100の外観斜視図である。 FIG. 1 is an external perspective view of the imaging module 100.
 撮像モジュール100は、レンズ群12を有するレンズユニット10と、レンズユニット10に固定され、レンズ群12を通して被写体を撮像する撮像素子(図1では不図示)を有する撮像素子ユニット20と、を備える。 The imaging module 100 includes a lens unit 10 having a lens group 12 and an imaging element unit 20 having an imaging element (not shown in FIG. 1) that is fixed to the lens unit 10 and images a subject through the lens group 12.
 図1では、レンズ群12の光軸Axに沿う方向をz方向とし、z方向に直交する2方向であって互いに直交する2つの方向をそれぞれx方向、y方向としている。 In FIG. 1, the direction along the optical axis Ax of the lens group 12 is defined as the z direction, and the two directions orthogonal to the z direction and orthogonal to each other are defined as the x direction and the y direction, respectively.
 レンズユニット10は、後述する各構成部材を内部に収容する筐体11を備える。 The lens unit 10 includes a casing 11 that accommodates each component described later.
 筐体11の天面11aには、レンズ群12の光軸Axを中心とする開口11bが形成されている。撮像モジュール100は、被写体光をこの開口11bからレンズ群12に取り込んで撮像を行う。 On the top surface 11 a of the housing 11, an opening 11 b centering on the optical axis Ax of the lens group 12 is formed. The imaging module 100 captures subject light from the opening 11b into the lens group 12 for imaging.
 また、筐体11の天面11aには、撮像モジュール100の製造時にレンズユニット10を製造装置に保持するための位置決め用の凹部95A,95B,95Cが形成されている。天面11aの対角線上に配置される凹部95A,95Cの底面には、凹部95A,95Cよりも小さい凹部95A1,95C1が形成されている。 Further, on the top surface 11a of the casing 11, concave portions 95A, 95B, and 95C for positioning for holding the lens unit 10 in the manufacturing apparatus when the imaging module 100 is manufactured are formed. Recesses 95A1 and 95C1 smaller than the recesses 95A and 95C are formed on the bottom surfaces of the recesses 95A and 95C arranged on the diagonal line of the top surface 11a.
 筐体11の外部には、筐体11に収容されるフレキシブル基板13の一部が露出している。このフレキシブル基板13の露出部分の先端には、端子14A~14Fを含むレンズユニット端子部14が接続されている。 A part of the flexible substrate 13 accommodated in the housing 11 is exposed outside the housing 11. A lens unit terminal portion 14 including terminals 14A to 14F is connected to the tip of the exposed portion of the flexible substrate 13.
 なお、レンズユニット端子部14は、後述するように、端子14A~14F以外の端子も含むが、図1では、簡略化のために端子14A~14Fのみを図示し、その他の端子の図示を省略している。 As will be described later, the lens unit terminal portion 14 includes terminals other than the terminals 14A to 14F. However, in FIG. 1, only the terminals 14A to 14F are illustrated for simplification, and the other terminals are not illustrated. is doing.
 図2は、図1に示す撮像モジュール100においてレンズユニット10を省略した状態の外観斜視図である。 FIG. 2 is an external perspective view of the imaging module 100 shown in FIG. 1 with the lens unit 10 omitted.
 図2に示すように、撮像素子ユニット20は、CCDイメージセンサ又はCMOSイメージセンサ等の撮像素子27が形成される基板21と、基板21と電気的に接続されるフレキシブル基板22と、を備える。 As shown in FIG. 2, the image pickup device unit 20 includes a substrate 21 on which an image pickup device 27 such as a CCD image sensor or a CMOS image sensor is formed, and a flexible substrate 22 that is electrically connected to the substrate 21.
 撮像素子27の画素ピッチは特に限定されないが、1.0μm以下のものが用いられる。ここで、画素ピッチとは、撮像素子27が有する画素に含まれる光電変換領域の中心間距離のうち、最も小さい距離のことをいう。 The pixel pitch of the image sensor 27 is not particularly limited, but a pixel pitch of 1.0 μm or less is used. Here, the pixel pitch refers to the smallest distance among the distances between the centers of the photoelectric conversion regions included in the pixels included in the image sensor 27.
 近年、画素数の増加に伴い、撮像素子の画素ピッチは狭くなっているが、画素ピッチが狭くなると、1画素あたりの面積が小さくなる。これにより、許容錯乱円の半径が小さくなり、焦点深度が浅くなる。更に、1画素あたりの集光量を多くする必要があるため、レンズのFナンバーも小さくなる傾向にある。 In recent years, with the increase in the number of pixels, the pixel pitch of the image sensor has become narrower, but when the pixel pitch becomes narrower, the area per pixel becomes smaller. As a result, the radius of the allowable circle of confusion is reduced and the depth of focus is reduced. Furthermore, since it is necessary to increase the amount of light collected per pixel, the F number of the lens tends to be small.
 これらのことから、近年の撮像モジュールは、非常に焦点深度が浅く、レンズユニットと撮像素子ユニットの位置合わせ精度は高いものが要求されている。 For these reasons, recent imaging modules are required to have a very small depth of focus and high alignment accuracy between the lens unit and the imaging element unit.
 基板21上には筒状のカバーホルダ25が形成され、カバーホルダ25内部に撮像素子27が配置されている。カバーホルダ25の中空部には撮像素子27上方において図示省略のカバーガラスが嵌め込まれる。 A cylindrical cover holder 25 is formed on the substrate 21, and an image sensor 27 is disposed inside the cover holder 25. A cover glass (not shown) is fitted in the hollow portion of the cover holder 25 above the image sensor 27.
 カバーホルダ25の外側における基板21表面には、レンズユニット10との電気的接続をとるための端子24A~24Fを含む撮像素子ユニット端子部が設けられている。この撮像素子ユニット端子部も、レンズユニット端子部14と同様に、一部の端子のみ図示している。 On the surface of the substrate 21 outside the cover holder 25, an image sensor unit terminal portion including terminals 24A to 24F for electrical connection with the lens unit 10 is provided. Similarly to the lens unit terminal unit 14, only a part of the image sensor unit terminal unit is illustrated.
 基板21には、撮像素子27のデータ出力用端子及び駆動用端子等と接続される撮像素子用配線が設けられている。撮像素子用配線は、フレキシブル基板22に設けられた配線を経由して、フレキシブル基板22端部に設けられた外部接続用端子部23に接続されている。外部接続用端子部23は、撮像素子27と電気的に接続された電気接続部として機能する。 The substrate 21 is provided with an image sensor wiring connected to a data output terminal and a drive terminal of the image sensor 27. The imaging element wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22. The external connection terminal portion 23 functions as an electrical connection portion that is electrically connected to the image sensor 27.
 また、基板21には、撮像素子ユニット端子部に含まれる各端子と接続されるレンズユニット用配線が設けられている。レンズユニット用配線は、フレキシブル基板22に設けられた配線を経由して、フレキシブル基板22端部に設けられた外部接続用端子部23に接続されている。 In addition, the substrate 21 is provided with a lens unit wiring connected to each terminal included in the image sensor unit terminal portion. The lens unit wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22.
 レンズユニット10と撮像素子ユニット20を固定した状態では、レンズユニット端子部の各端子とこれに対応する撮像素子ユニット端子部の各端子とが電気的に接続される。 In a state where the lens unit 10 and the image sensor unit 20 are fixed, each terminal of the lens unit terminal unit and each terminal of the image sensor unit terminal unit corresponding thereto are electrically connected.
 図1では、端子14Aと端子24Aとが電気的に接続され、端子14Bと端子24Bとが電気的に接続され、端子14Cと端子24Cとが電気的に接続され、端子14Dと端子24Dとが電気的に接続され、端子14Eと端子24Eとが電気的に接続され、端子14Fと端子24Fとが電気的に接続されている。 In FIG. 1, the terminal 14A and the terminal 24A are electrically connected, the terminal 14B and the terminal 24B are electrically connected, the terminal 14C and the terminal 24C are electrically connected, and the terminal 14D and the terminal 24D are connected. The terminals 14E and 24E are electrically connected, and the terminals 14F and 24F are electrically connected.
 図3は、図1に示す撮像モジュール100のA-A線断面図である。 FIG. 3 is a cross-sectional view taken along line AA of the imaging module 100 shown in FIG.
 図3に示すように、撮像素子27は、基板21に設けられた凹部に配置されるとともに、基板21上に設けられたカバーホルダ25及びカバーホルダ25に嵌め込まれたカバーガラス26によって封止されている。 As shown in FIG. 3, the image sensor 27 is disposed in a recess provided in the substrate 21 and is sealed by a cover holder 25 provided on the substrate 21 and a cover glass 26 fitted in the cover holder 25. ing.
 また、図3に示すように、レンズユニット10は、カバーガラス26上方に配置された複数(図3の例では12A~12Dの4つ)のレンズを含むレンズ群12と、レンズ群12を支持する筒状のレンズバレル15と、撮像素子ユニット20のカバーホルダ25の上面に載置された底部ブロック19と、底部ブロック19上に固定されたフレキシブル基板13と、フレキシブル基板13に接続されたレンズユニット端子部(図3では断面のため端子14Cのみが図示)と、フレキシブル基板13上方に形成されたレンズ駆動装置16と、を備える。 As shown in FIG. 3, the lens unit 10 includes a lens group 12 including a plurality of lenses (four lenses 12A to 12D in the example of FIG. 3) disposed above the cover glass 26, and supports the lens group 12. A cylindrical lens barrel 15, a bottom block 19 placed on the upper surface of the cover holder 25 of the image sensor unit 20, a flexible substrate 13 fixed on the bottom block 19, and a lens connected to the flexible substrate 13 A unit terminal portion (only the terminal 14 </ b> C is shown because of a cross section in FIG. 3) and a lens driving device 16 formed above the flexible substrate 13 are provided.
 レンズ群12、レンズバレル15、底部ブロック19、フレキシブル基板13、及びレンズ駆動装置16は、筐体11に収容されている。 The lens group 12, the lens barrel 15, the bottom block 19, the flexible substrate 13, and the lens driving device 16 are accommodated in the housing 11.
 レンズ駆動装置16は、第一のレンズ駆動部と、第二のレンズ駆動部と、第三のレンズ駆動部と、レンズの位置を検出する位置検出素子としてのホール素子と、を備える。 The lens driving device 16 includes a first lens driving unit, a second lens driving unit, a third lens driving unit, and a Hall element as a position detection element that detects the position of the lens.
 第一のレンズ駆動部は、レンズ群12のうち少なくとも一部のレンズ(図3の例ではレンズ群12の全てのレンズとしている)を、レンズ群12の光軸Axに沿う第一の方向(図1のz方向)に移動させてフォーカス調整を行うための駆動部である。 The first lens driving unit sets at least a part of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 3) in a first direction along the optical axis Ax of the lens group 12 ( It is a drive unit for performing focus adjustment by moving in the z direction in FIG.
 第二のレンズ駆動部及び第三のレンズ駆動部は、レンズ群12のうち少なくとも一部のレンズ(図3の例ではレンズ群12の全てのレンズとしている)をレンズ群12の光軸Axに直交する第二の方向(図1のx方向)及び第三の方向(図1のy方向)に移動させて、撮像素子27によって撮像される像のブレを補正するための駆動部である。 The second lens driving unit and the third lens driving unit have at least some of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 3) as the optical axis Ax of the lens group 12. It is a drive unit for correcting blurring of an image picked up by the image sensor 27 by moving in a second direction (x direction in FIG. 1) and a third direction (y direction in FIG. 1) orthogonal to each other.
 第一のレンズ駆動部と第二のレンズ駆動部と第三のレンズ駆動部は、それぞれ、レンズを移動させるためのアクチュエータであり、本実施形態ではボイスコイルモータ(VCM)を使用しているが、周知の他の手段を採用してもよい。 The first lens driving unit, the second lens driving unit, and the third lens driving unit are actuators for moving the lens, respectively. In this embodiment, a voice coil motor (VCM) is used. Other known means may be employed.
 図4は、図1に示すレンズユニット10の電気的接続構成を示すブロック図である。 FIG. 4 is a block diagram showing an electrical connection configuration of the lens unit 10 shown in FIG.
 図4に示すように、レンズ駆動装置16は、レンズ群12をx方向に移動させるためのx方向VCM16A(上記第二のレンズ駆動部)と、レンズ群12のx方向位置を検出するためのx方向ホール素子16Bと、レンズ群12をy方向に移動させるためのy方向VCM16C(上記第三のレンズ駆動部)と、レンズ群12のy方向位置を検出するためのy方向ホール素子16Dと、レンズ群12をz方向に移動させるためのz方向VCM16E(上記第一のレンズ駆動部)と、レンズ群12のz方向位置を検出するためのz方向ホール素子16Fと、を備える。 As shown in FIG. 4, the lens driving device 16 detects an x-direction VCM 16A (the second lens driving unit) for moving the lens group 12 in the x direction and a position of the lens group 12 in the x direction. an x-direction hall element 16B, a y-direction VCM 16C (the third lens driving unit) for moving the lens group 12 in the y-direction, and a y-direction hall element 16D for detecting the y-direction position of the lens group 12; The z-direction VCM 16E (the first lens driving unit) for moving the lens group 12 in the z-direction and the z-direction hall element 16F for detecting the z-direction position of the lens group 12 are provided.
 x方向VCM16Aには2つの端子があり、この2つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14A、端子14Bと電気的に接続されている。 The x-direction VCM 16A has two terminals, and each of the two terminals is electrically connected to the terminal 14A and the terminal 14B via a wiring formed on the flexible substrate 13.
 x方向ホール素子16Bには4つの端子があり、この4つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14a、端子14b、端子14c、端子14dと電気的に接続されている。 The x-direction hall element 16B has four terminals, and each of the four terminals is electrically connected to the terminal 14a, the terminal 14b, the terminal 14c, and the terminal 14d through a wiring formed on the flexible substrate 13. ing.
 y方向VCM16Cには2つの端子があり、この2つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14C、端子14Dと電気的に接続されている。 The y-direction VCM 16C has two terminals, and each of the two terminals is electrically connected to the terminal 14C and the terminal 14D through wiring formed on the flexible substrate 13.
 y方向ホール素子16Dには4つの端子があり、この4つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14e、端子14f、端子14g、端子14hと電気的に接続されている。 The y-direction hall element 16D has four terminals, and each of the four terminals is electrically connected to the terminal 14e, the terminal 14f, the terminal 14g, and the terminal 14h via wiring formed on the flexible substrate 13. ing.
 z方向VCM16Eには2つの端子があり、この2つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14E、端子14Fと電気的に接続されている。 There are two terminals in the z-direction VCM 16E, and each of the two terminals is electrically connected to the terminal 14E and the terminal 14F via a wiring formed on the flexible substrate 13.
 z方向ホール素子16Fには4つの端子があり、この4つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14i、端子14j、端子14k、端子14lと電気的に接続されている。 The z-direction hall element 16F has four terminals, and each of the four terminals is electrically connected to the terminal 14i, the terminal 14j, the terminal 14k, and the terminal 14l through the wiring formed on the flexible substrate 13. ing.
 なお、各レンズ駆動部と各ホール素子について必要な端子の数は一例であり、上述したものには限定されない。 The number of terminals required for each lens driving unit and each Hall element is an example, and is not limited to the above.
 以上の構成の撮像モジュール100は、まず、レンズユニット10と撮像素子ユニット20が別々に製造される。そして、レンズ群12によって結像される被写体の結像面が撮像素子27の撮像面と一致するように、レンズユニット10と撮像素子ユニット20の位置合わせをする調整工程が行われ、その後、レンズユニット10と撮像素子ユニット20が接着固定される。 In the imaging module 100 having the above configuration, first, the lens unit 10 and the imaging element unit 20 are separately manufactured. Then, an adjustment process for aligning the lens unit 10 and the image sensor unit 20 is performed so that the imaging surface of the subject imaged by the lens group 12 coincides with the image pickup surface of the image sensor 27, and then the lens. The unit 10 and the image sensor unit 20 are bonded and fixed.
 上記調整工程は、レンズユニット10を製造装置によって所定の姿勢で保持した状態で、撮像素子ユニット20を動かして行われる。 The above adjustment process is performed by moving the image sensor unit 20 in a state where the lens unit 10 is held in a predetermined posture by the manufacturing apparatus.
 図5は、撮像モジュール100の製造装置200の概略構成を示す側面図である。 FIG. 5 is a side view showing a schematic configuration of the manufacturing apparatus 200 for the imaging module 100.
 撮像モジュール製造装置200は、レンズユニット10に対する撮像素子ユニット20の位置及び傾きを調整し、調整後に撮像素子ユニット20をレンズユニット10に固定して撮像モジュール100を完成させる。 The imaging module manufacturing apparatus 200 adjusts the position and inclination of the imaging element unit 20 with respect to the lens unit 10, and after the adjustment, fixes the imaging element unit 20 to the lens unit 10 to complete the imaging module 100.
 撮像モジュール製造装置200は、チャートユニット71と、コリメータユニット73と、レンズ位置決めプレート75と、レンズ保持機構77と、撮像素子ユニット保持部79と、接着剤供給部81と、光源としての紫外線ランプ83a,83bと、これらを制御する制御部85と、を備える。これらは、重力方向に平行な面87に支持され、面87上で一方向に並べて配置されている。 The imaging module manufacturing apparatus 200 includes a chart unit 71, a collimator unit 73, a lens positioning plate 75, a lens holding mechanism 77, an imaging element unit holding unit 79, an adhesive supply unit 81, and an ultraviolet lamp 83a as a light source. 83b and a control unit 85 for controlling them. These are supported by a surface 87 parallel to the direction of gravity, and are arranged in one direction on the surface 87.
 チャートユニット71は、箱状の筐体71aと、筐体71a内に嵌合される測定チャート89と、筐体71a内に組み込まれて測定チャート89を背面から平行光で照明する光源91とから構成されている。測定チャート89は、例えば、光拡散性を有するプラスチック板で形成されている。測定チャート89のチャート面は重力方向に垂直となっている。チャートユニット71は、測定チャートを設置するための測定チャート設置部として機能する。測定チャート89は取り外し可能として別のものに交換できるようにしてもよい。 The chart unit 71 includes a box-shaped casing 71a, a measurement chart 89 fitted in the casing 71a, and a light source 91 that is incorporated in the casing 71a and illuminates the measurement chart 89 from the back with parallel light. It is configured. The measurement chart 89 is formed of, for example, a plastic plate having light diffusibility. The chart surface of the measurement chart 89 is perpendicular to the direction of gravity. The chart unit 71 functions as a measurement chart installation unit for installing a measurement chart. The measurement chart 89 may be removable and replaceable with another one.
 図6は測定チャート89のチャート面を示す図である。測定チャート89は矩形状であり、チャートパターンが設けられたチャート面には、複数のチャート画像CH1,CH2,CH3,CH4,CH5がそれぞれ印刷されている。 FIG. 6 is a diagram showing a chart surface of the measurement chart 89. The measurement chart 89 has a rectangular shape, and a plurality of chart images CH1, CH2, CH3, CH4, and CH5 are printed on the chart surface on which the chart pattern is provided.
 複数のチャート画像は、全て同一の画像であり、黒色の線を所定の一定間隔で配列させた、いわゆるラダー状のチャートパターンである。各チャート画像は、それぞれ画像の水平方向に配列させた水平チャート画像Pxと、画像の垂直方向に配列させた垂直チャート画像Pyから構成されている。 The plurality of chart images are all the same image, and are so-called ladder-like chart patterns in which black lines are arranged at predetermined intervals. Each chart image is composed of a horizontal chart image Px arranged in the horizontal direction of the image and a vertical chart image Py arranged in the vertical direction of the image.
 コリメータユニット73は、測定チャート89のチャート面の垂線であって、チャート面中心89aを通る線であるZ軸上において、チャートユニット71に対面配置されている。 The collimator unit 73 is arranged to face the chart unit 71 on the Z axis which is a perpendicular to the chart surface of the measurement chart 89 and passes through the chart surface center 89a.
 コリメータユニット73は、作業台87に固定されたブラケット73aとコリメータレンズ73bから構成されている。 The collimator unit 73 includes a bracket 73a fixed to a work table 87 and a collimator lens 73b.
 コリメータレンズ73bは、チャートユニット71から放射された光を集光し、集光した光をブラケット73aに形成された開口73cを通して、レンズ位置決めプレート75に入射させる。チャートユニット71とコリメータユニット73の間隔を調整することで、レンズユニット10が撮像する測定チャート89の虚像位置を任意の距離(たとえば無限遠の位置やレンズユニット10の想定する撮影に適した標準的な被写体距離)に配置することができる。 The collimator lens 73b collects the light emitted from the chart unit 71, and causes the collected light to enter the lens positioning plate 75 through the opening 73c formed in the bracket 73a. By adjusting the distance between the chart unit 71 and the collimator unit 73, the virtual image position of the measurement chart 89 imaged by the lens unit 10 can be set to an arbitrary distance (for example, a standard suitable for an infinite position or imaging assumed by the lens unit 10). The subject distance).
 レンズ位置決めプレート75とレンズ保持機構77は、チャートユニット71と撮像素子ユニット保持部79との間のZ軸上でレンズユニット10を保持するレンズユニット保持部を構成する。 The lens positioning plate 75 and the lens holding mechanism 77 constitute a lens unit holding unit that holds the lens unit 10 on the Z axis between the chart unit 71 and the image sensor unit holding unit 79.
 レンズ位置決めプレート75は、例えば金属によって剛性を有するように形成されており、コリメータユニット73により集光された光を通過させる開口75cが設けられている。レンズ位置決めプレート75は、Z軸上においてコリメータユニット73に対面配置されている。 The lens positioning plate 75 is formed to have rigidity, for example, by metal, and is provided with an opening 75c through which the light condensed by the collimator unit 73 passes. The lens positioning plate 75 is disposed facing the collimator unit 73 on the Z axis.
 図7は、撮像モジュール製造装置200によるレンズユニット10と撮像素子ユニット20の保持状態を示す説明図である。 FIG. 7 is an explanatory diagram showing a holding state of the lens unit 10 and the imaging element unit 20 by the imaging module manufacturing apparatus 200.
 図7に示すように、レンズ位置決めプレート75のレンズ保持機構77側の面には、開口75aの周囲に3個の当接ピン93A,93B,93Cが設けられている。 As shown in FIG. 7, on the lens holding mechanism 77 side surface of the lens positioning plate 75, three contact pins 93A, 93B, and 93C are provided around the opening 75a.
 3個の当接ピン93A,93B,93Cのうち、対角線上に配置された2個の当接ピン93A,93Cの先端には、当接ピンよりも小径の挿入ピン93A1,93C1が設けられている。 Of the three contact pins 93A, 93B, 93C, insertion pins 93A1, 93C1 having a smaller diameter than the contact pins are provided at the tips of the two contact pins 93A, 93C arranged diagonally. Yes.
 当接ピン93A,93B,93Cは、図1に示すレンズユニット10の凹部95A,95B,95Cを受け、挿入ピン93A1,93C1は、凹部95A1,95C1に挿入されてレンズユニット10を位置決めする。 The contact pins 93A, 93B, and 93C receive the recesses 95A, 95B, and 95C of the lens unit 10 shown in FIG.
 このようにしてレンズユニット10が位置決めされた状態では、Z軸がレンズユニット10の光軸Axと一致する。つまり、レンズユニット10において図1のx方向及びy方向は重力方向と垂直になり、z方向は重力方向と平行になる。 In the state where the lens unit 10 is positioned in this way, the Z axis coincides with the optical axis Ax of the lens unit 10. That is, in the lens unit 10, the x direction and the y direction in FIG. 1 are perpendicular to the gravity direction, and the z direction is parallel to the gravity direction.
 図5に戻り、レンズ保持機構77は、Z軸上でチャートユニット71に筐体11の天面11aが向くようにレンズユニット10を保持する保持プレート97と、この保持プレート97をZ軸方向に移動させる第1スライドステージ99とから構成されている。 Returning to FIG. 5, the lens holding mechanism 77 holds the lens unit 10 so that the top surface 11 a of the housing 11 faces the chart unit 71 on the Z axis, and the holding plate 97 in the Z axis direction. The first slide stage 99 is moved.
 第1スライドステージ99は、電動式の精密ステージであって、図示しないモータの回転によってボールネジを回転させ、このボールネジに噛合されたステージ部99aをZ軸方向に移動させるものである。 The first slide stage 99 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 99a meshed with the ball screw in the Z-axis direction.
 保持プレート97をZ軸方向に移動させて、レンズ位置決めプレート75によって位置決めされたレンズユニット10の底部ブロック19に保持プレート97を押し当てることで、レンズユニット10は製造装置200に保持された状態となる。 By moving the holding plate 97 in the Z-axis direction and pressing the holding plate 97 against the bottom block 19 of the lens unit 10 positioned by the lens positioning plate 75, the lens unit 10 is held by the manufacturing apparatus 200. Become.
 第1スライドステージ99のステージ部99a上には、6つのプローブピン113a(図5では1つのみ図示)を有するプローブユニット113が設けられている。 On the stage part 99a of the first slide stage 99, a probe unit 113 having six probe pins 113a (only one is shown in FIG. 5) is provided.
 プローブユニット113は、レンズユニット10の各端子14A~14Fにプローブピン113aを接触させて各端子14A~14Fに通電し、第一のレンズ駆動部(z方向VCM16E)、第二のレンズ駆動部(x方向VCM16A)、及び第三のレンズ駆動部(y方向VCM16C)を駆動する。 The probe unit 113 brings the probe pins 113a into contact with the terminals 14A to 14F of the lens unit 10 and energizes the terminals 14A to 14F. The first lens driving unit (z-direction VCM 16E) and the second lens driving unit ( The x-direction VCM 16A) and the third lens driving unit (y-direction VCM 16C) are driven.
 撮像素子ユニット保持部79は、撮像素子ユニット20をZ軸上に保持するためのものである。また、撮像素子ユニット保持部79は、制御部85の制御により、撮像素子ユニット20のZ軸方向位置及び傾きが変更可能となっている。 The image sensor unit holding unit 79 is for holding the image sensor unit 20 on the Z axis. Further, the image sensor unit holding unit 79 can change the position and inclination of the image sensor unit 20 in the Z-axis direction under the control of the control unit 85.
 ここで、撮像素子ユニット20の傾きは、Z軸に直交する平面に対する撮像素子27の撮像面27aの傾きを意味する。 Here, the inclination of the imaging element unit 20 means the inclination of the imaging surface 27a of the imaging element 27 with respect to a plane orthogonal to the Z-axis.
 撮像素子ユニット保持部79は、吸着ヘッド115と、吸着ヘッド115に配管115cを通して連結された後述する吸引部116(図10参照)と、吸着ヘッド115を保持し、Z軸に直交する2軸(水平X軸、垂直Y軸)の回りで吸着ヘッド115の傾きを調整する2軸回転ステージ119と、2軸回転ステージ119が取り付けられたブラケット121を保持してZ軸方向に移動させる第2スライドステージ123とから構成されている。 The imaging element unit holding unit 79 holds the suction head 115, a suction unit 116 (see FIG. 10), which will be described later, connected to the suction head 115 through a pipe 115c, and two suction axes (see FIG. 10) perpendicular to the Z axis. A second slide that moves the Z-axis direction while holding a biaxial rotary stage 119 that adjusts the inclination of the suction head 115 around the horizontal X axis and vertical Y axis) and a bracket 121 to which the biaxial rotary stage 119 is attached. The stage 123 is comprised.
 図8は、吸着ヘッド115をレンズ位置決めプレート75側から見た図である。吸着ヘッド115のレンズ位置決めプレート75側の面は、Z軸に垂直な面115aとなっている。 FIG. 8 is a view of the suction head 115 as viewed from the lens positioning plate 75 side. The surface on the lens positioning plate 75 side of the suction head 115 is a surface 115a perpendicular to the Z axis.
 この面115aは、撮像素子ユニット20の基板21の撮像素子27が形成される面の反対面(基板21の背面)を吸着するための吸着面となっている。図8には、この吸着面115aに撮像素子ユニット20を接触させた状態での撮像素子ユニット20の外縁を一点鎖線で示してある。 This surface 115a is an adsorption surface for adsorbing the surface opposite to the surface on which the image sensor 27 of the substrate 21 of the image sensor unit 20 is formed (the back surface of the substrate 21). In FIG. 8, the outer edge of the image sensor unit 20 in a state where the image sensor unit 20 is in contact with the suction surface 115a is indicated by a one-dot chain line.
 吸着ヘッド115には、吸着面115aに囲まれた吸引孔115bが2つ設けられている。吸引孔115bは、図5に示す配管115cを介して吸引部116と連結されている。 The suction head 115 is provided with two suction holes 115b surrounded by the suction surface 115a. The suction hole 115b is connected to the suction part 116 through a pipe 115c shown in FIG.
 吸引部116は、吸引孔115bに負圧を作用させる真空源から構成されている。吸引部116が吸引孔115bに負圧を作用させることで、吸引孔115bから空気が吸引され、吸着面115aに接触している物体がその吸引力によって吸着面115aに吸着する。吸引部116は制御部85によって制御される。 The suction part 116 is composed of a vacuum source that applies a negative pressure to the suction hole 115b. When the suction part 116 applies a negative pressure to the suction hole 115b, air is sucked from the suction hole 115b, and an object in contact with the suction surface 115a is attracted to the suction surface 115a by the suction force. The suction unit 116 is controlled by the control unit 85.
 図5に示す2軸回転ステージ119は、電動式の2軸ゴニオステージであって、図示しない2つのモータの回転により、吸着ヘッド115に吸着された撮像素子ユニット20の撮像面27aの中心位置を回転中心にして、撮像素子ユニット20を、X軸の回りのθx方向と、Z軸及びX軸に直交するY軸の回りのθy方向に傾ける。これにより、撮像素子ユニット20を各方向に傾けた際に、撮像面27aの中心位置とZ軸との位置関係がずれることがない。 The biaxial rotary stage 119 shown in FIG. 5 is an electric biaxial goniometer stage, and the center position of the imaging surface 27a of the imaging device unit 20 adsorbed by the adsorption head 115 by the rotation of two motors (not shown). The image sensor unit 20 is tilted in the θx direction around the X axis and the θy direction around the Y axis orthogonal to the Z axis and the X axis, with the rotation center as the center. Thereby, when the imaging element unit 20 is tilted in each direction, the positional relationship between the center position of the imaging surface 27a and the Z axis does not shift.
 第2スライドステージ123は、電動式の精密ステージであって、図示しないモータの回転によってボールネジを回転させ、このボールネジに噛合されたステージ部123aをZ軸方向に移動させるものである。ステージ部123aにはブラケット121が固定されている。 The second slide stage 123 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 123a engaged with the ball screw in the Z-axis direction. A bracket 121 is fixed to the stage portion 123a.
 2軸回転ステージ119には、撮像素子ユニット20のフレキシブル基板22の先端に設けられた外部接続用端子部23と接続されるコネクタケーブル127が取り付けられている。このコネクタケーブル127は撮像素子27の駆動信号を入力したり、撮像素子27から出力される撮像画像信号を出力したりする。 The connector cable 127 connected to the external connection terminal portion 23 provided at the tip of the flexible substrate 22 of the image sensor unit 20 is attached to the biaxial rotation stage 119. The connector cable 127 inputs a drive signal for the image sensor 27 and outputs a captured image signal output from the image sensor 27.
 接着剤供給部81と光源としての紫外線ランプ83a,83bは、レンズユニット10と撮像素子ユニット20を固定するユニット固定部を構成する。 The adhesive supply unit 81 and the ultraviolet lamps 83a and 83b as light sources constitute a unit fixing unit that fixes the lens unit 10 and the image sensor unit 20.
 接着剤供給部81は、レンズユニット10に対する撮像素子ユニット20の位置及び傾きの調整が終了した後、レンズユニット10と撮像素子ユニット20との隙間に、光によって硬化する接着剤(ここでは一例として紫外線硬化型接着剤)を供給する。 After the adjustment of the position and inclination of the image sensor unit 20 with respect to the lens unit 10 is finished, the adhesive supply unit 81 is an adhesive that cures by light in the gap between the lens unit 10 and the image sensor unit 20 (here as an example) Supply UV curable adhesive.
 紫外線ランプ83a,83bは、上記隙間に供給された紫外線硬化型接着剤に紫外線を照射することで、接着剤を硬化させる。なお、接着剤としては、紫外線硬化型接着剤の他、瞬間接着剤、熱硬化接着剤、自然硬化接着剤等も利用可能である。 The ultraviolet lamps 83a and 83b cure the adhesive by irradiating the ultraviolet curable adhesive supplied to the gap with ultraviolet rays. As the adhesive, in addition to the ultraviolet curable adhesive, an instantaneous adhesive, a thermosetting adhesive, a natural curable adhesive, and the like can be used.
 図9は、レンズ位置決めプレート75にレンズユニット10を接触させた状態を撮像素子ユニット保持部79側からみた図であり、レンズユニット10については、筐体11の天面11aの外縁と開口11bのみを破線で示している。 FIG. 9 is a diagram of a state in which the lens unit 10 is brought into contact with the lens positioning plate 75 as viewed from the imaging element unit holding unit 79 side. As for the lens unit 10, only the outer edge of the top surface 11a of the housing 11 and the opening 11b. Is indicated by a broken line.
 図9に示したように、Z軸方向に見てレンズ群12の光軸Axを通りかつ光軸Axに直交する直線L2でレンズユニット10を2分割したときの一方の分割エリア側には紫外線ランプ83aが配置され、他方の分割エリア側には紫外線ランプ83bが配置されている。 As shown in FIG. 9, when the lens unit 10 is divided into two by a straight line L2 that passes through the optical axis Ax of the lens group 12 and is orthogonal to the optical axis Ax when viewed in the Z-axis direction, ultraviolet light is present on one divided area side. A lamp 83a is disposed, and an ultraviolet lamp 83b is disposed on the other divided area side.
 すなわち、紫外線ランプ83a,83bは、上記隙間に供給された紫外線硬化型接着剤を2方向から光を照射して硬化させる。これにより、1方向から紫外線を照射する場合と比較して、紫外線硬化型接着剤の硬化をモジュール全体でより均一に行うことができ、レンズユニット10と撮像素子ユニット20の固定を安定的に行うことができる。 That is, the ultraviolet lamps 83a and 83b cure the ultraviolet curable adhesive supplied to the gap by irradiating light from two directions. Thereby, compared with the case of irradiating ultraviolet rays from one direction, the ultraviolet curable adhesive can be cured more uniformly in the entire module, and the lens unit 10 and the imaging element unit 20 can be stably fixed. be able to.
 なお、図9に示すように、Z軸方向に見てレンズ群12の光軸Axを通りかつ光軸Axに直交する直線L1及び直線L2(これらは互いに直交する)でレンズユニット10を4分割し、各分割エリア側に紫外線ランプを配置して、4方向から紫外線を照射する構成としてもよい。この構成によれば、レンズユニット10と撮像素子ユニット20の固定を更に安定的に行うことができる。 As shown in FIG. 9, the lens unit 10 is divided into four by a straight line L1 and a straight line L2 that pass through the optical axis Ax of the lens group 12 and are orthogonal to the optical axis Ax as viewed in the Z-axis direction. And it is good also as a structure which arrange | positions an ultraviolet lamp in each division area side, and irradiates an ultraviolet-ray from four directions. According to this configuration, the lens unit 10 and the image sensor unit 20 can be more stably fixed.
 図10は撮像モジュール製造装置200の内部構成を示すブロック図である。 FIG. 10 is a block diagram showing the internal configuration of the imaging module manufacturing apparatus 200.
 図10に示すように、上記説明した各部は制御部85に接続されている。制御部85は、例えば、CPUやROM、RAM等を備えたマイクロコンピュータであり、ROMに記憶されている制御プログラムに基づいて各部を制御している。また、制御部85には、各種設定を行うキーボードやマウス等の入力部131と、設定内容や作業内容、作業結果等が表示される表示部133とが接続されている。 As shown in FIG. 10, each unit described above is connected to the control unit 85. The control unit 85 is, for example, a microcomputer including a CPU, a ROM, a RAM, and the like, and controls each unit based on a control program stored in the ROM. The control unit 85 is connected to an input unit 131 such as a keyboard and a mouse for performing various settings, and a display unit 133 that displays setting contents, work contents, work results, and the like.
 レンズ駆動ドライバ145は、第一のレンズ駆動部、第二のレンズ駆動部、及び第三のレンズ駆動部の各々を駆動するための駆動回路であり、プローブユニット113を介して第一のレンズ駆動部、第二のレンズ駆動部、及び第三のレンズ駆動部の各々に駆動電流を供給する。 The lens driving driver 145 is a driving circuit for driving each of the first lens driving unit, the second lens driving unit, and the third lens driving unit, and the first lens driving is performed via the probe unit 113. The driving current is supplied to each of the first lens driving unit, the second lens driving unit, and the third lens driving unit.
 撮像素子ドライバ147は、撮像素子27を駆動するための駆動回路であり、コネクタケーブル127を介して撮像素子27に駆動信号を入力する。 The image sensor driver 147 is a drive circuit for driving the image sensor 27, and inputs a drive signal to the image sensor 27 via the connector cable 127.
 合焦座標値取得回路149は、撮像素子27の撮像面27a上に設定された複数の撮像位置(測定チャート89の各チャート画像CH1,CH2,CH3,CH4,CH5に対応する位置)について、Z軸方向における合焦度合の高い位置である合焦座標値をそれぞれ取得する。 The in-focus coordinate value acquisition circuit 149 performs Z for a plurality of imaging positions (positions corresponding to the chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89) set on the imaging surface 27a of the imaging element 27. In-focus coordinate values that are positions with a high degree of focus in the axial direction are acquired.
 制御部85は、複数の撮像位置の合焦座標値を取得する際に、第2スライドステージ123を制御し、Z軸上に予め離散的に設定された複数の測定位置(Z0,Z1,Z2,…)に撮像素子ユニット20を順次に移動させる。 The control unit 85 controls the second slide stage 123 when acquiring the in-focus coordinate values of a plurality of imaging positions, and a plurality of measurement positions (Z0, Z1, Z2) discretely set in advance on the Z axis. ,... Are sequentially moved.
 また、制御部85は、撮像素子ドライバ147を制御し、各測定位置でレンズ群12が結像した測定チャート89の複数のチャート画像CH1,CH2,CH3,CH4,CH5のチャート像を撮像素子27に撮像させる。 Further, the control unit 85 controls the image sensor driver 147 to display chart images of a plurality of chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89 formed by the lens group 12 at each measurement position. Let's take an image.
 合焦座標値取得回路149は、コネクタケーブル127を介して入力された撮像信号から上記複数の撮像位置に対応する画素の信号を抽出し、その画素信号から複数の撮像位置に対する個別の合焦評価値をそれぞれ算出する。そして、各撮像位置について所定の合焦評価値が得られたときの測定位置をZ軸上の合焦座標値としている。 The focused coordinate value acquisition circuit 149 extracts pixel signals corresponding to the plurality of imaging positions from the imaging signal input via the connector cable 127, and individually focuses evaluation on the plurality of imaging positions from the pixel signals. Each value is calculated. The measurement position when a predetermined focus evaluation value is obtained for each imaging position is set as a focus coordinate value on the Z axis.
 合焦評価値としては、例えばコントラスト伝達関数値(Contrast Transfer Function:以下、CTF値と呼称する)を用いることができる。CTF値は、空間周波数に対する像のコントラストを表す値であり、CTF値が高いときに合焦度が高いものとみなす。 As the focus evaluation value, for example, a contrast transfer function value (hereinafter referred to as CTF value) can be used. The CTF value is a value representing the contrast of the image with respect to the spatial frequency, and when the CTF value is high, the degree of focus is considered high.
 合焦座標値取得回路149は、複数の撮像位置の各々について、Z軸上に設定された複数の測定位置(Z0,Z1,Z2,…)毎に、XY座標平面上で設定した複数方向のそれぞれに対してCTF値を算出している。 The in-focus coordinate value acquisition circuit 149 has a plurality of directions set on the XY coordinate plane for each of a plurality of measurement positions (Z0, Z1, Z2,...) Set on the Z axis for each of a plurality of imaging positions. CTF values are calculated for each.
 CTF値が算出される方向としては、例えば、撮像面27aの横方向である水平方向(X軸方向)と、これに直交する垂直方向(Y軸方向)とし、各方向のCTF値であるX-CTF値及びY-CTF値をそれぞれ算出する。 The direction in which the CTF value is calculated is, for example, a horizontal direction (X-axis direction) that is the horizontal direction of the imaging surface 27a and a vertical direction (Y-axis direction) orthogonal thereto, and the CTF value in each direction is X -CTF value and Y-CTF value are calculated respectively.
 合焦座標値取得回路149は、各チャート画像CH1,CH2,CH3,CH4,CH5に対応する複数の撮像位置について、X-CTF値が最大となる測定位置のZ軸上の座標(Zp1、Zp2,Zp3,Zp4,Zp5)を水平合焦座標値として取得する。また同様に、Y-CTF値が最大となる測定位置のZ軸上の座標を垂直合焦座標値として取得する。 The in-focus coordinate value acquisition circuit 149, for a plurality of imaging positions corresponding to each chart image CH1, CH2, CH3, CH4, CH5, coordinates on the Z axis (Zp1, Zp2) of the measurement position where the X-CTF value is maximum , Zp3, Zp4, Zp5) are acquired as the horizontal in-focus coordinate values. Similarly, the coordinate on the Z axis of the measurement position where the Y-CTF value is maximized is acquired as the vertical focus coordinate value.
 結像面算出回路151には、合焦座標値取得回路149から各撮像位置の水平合焦座標値及び垂直合焦座標値が入力される。 The image plane calculation circuit 151 receives the horizontal focus coordinate value and the vertical focus coordinate value of each imaging position from the focus coordinate value acquisition circuit 149.
 結像面算出回路151は、撮像面27aをXY座標平面に対応させたときの各撮像位置のXY座標値と、それぞれの撮像位置毎に得られたZ軸上の水平合焦座標値及び垂直合焦座標値との組み合わせで表される複数の評価点を、XY座標平面とZ軸とを組み合わせた三次元座標系に展開し、これらの評価点の相対位置に基づいて三次元座標系で一平面として表される近似結像面を算出する。 The imaging plane calculation circuit 151 includes the XY coordinate value of each imaging position when the imaging surface 27a is made to correspond to the XY coordinate plane, the horizontal in-focus coordinate value on the Z axis and the vertical value obtained for each imaging position. A plurality of evaluation points expressed in combination with the in-focus coordinate values are expanded into a three-dimensional coordinate system combining the XY coordinate plane and the Z axis, and the three-dimensional coordinate system is based on the relative positions of these evaluation points. An approximate imaging plane expressed as one plane is calculated.
 調整値算出回路153には、結像面算出回路151から近似結像面の情報が入力される。 Approximate image plane information is input from the image plane calculation circuit 151 to the adjustment value calculation circuit 153.
 調整値算出回路153は、近似結像面とZ軸との交点であるZ軸上の結像面座標値F1と、XY座標平面に対する近似結像面のX軸回り及びY軸回りの傾きであるXY方向回転角度とを算出し、制御部85に入力する。 The adjustment value calculation circuit 153 has an imaging plane coordinate value F1 on the Z axis that is an intersection of the approximate imaging plane and the Z axis, and an inclination about the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane. A certain XY direction rotation angle is calculated and input to the control unit 85.
 制御部85は、調整値算出回路153から入力された結像面座標値及びXY方向回転角度に基づいて撮像素子ユニット保持部79を駆動し、撮像素子ユニット20のZ軸方向位置及び傾きを調整して、撮像面27aを近似結像面に一致させる。制御部85は、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置及び傾きを調整する調整部として機能する。 The control unit 85 drives the image sensor unit holding unit 79 based on the imaging plane coordinate value and the XY direction rotation angle input from the adjustment value calculation circuit 153, and adjusts the Z-axis direction position and inclination of the image sensor unit 20. Then, the imaging surface 27a is made to coincide with the approximate imaging surface. The control unit 85 functions as an adjustment unit that adjusts the Z-axis direction position and inclination of the image sensor unit 20 with respect to the lens unit 10.
 以上の撮像モジュール製造装置200は、概略的には以下の工程を実施するものである。
 (1)測定チャート89のチャート面に直交するZ軸上に、レンズユニット10と撮像素子ユニット20を保持する工程
 (2)Z軸上に保持された撮像素子ユニット20のZ軸方向位置を変化させ、各位置において、Z軸上に保持されたレンズユニット10の第一~第三のレンズ駆動部の各々に通電した状態で撮像素子27を駆動して撮像素子27により測定チャート89を撮像させる工程
 (3)撮像素子27により測定チャート89を撮像して得られる撮像信号に基づいて、レンズユニット10に対する撮像素子ユニット20の位置及び傾きを調整し、撮像素子ユニット20をレンズユニット10に固定する工程
The imaging module manufacturing apparatus 200 described above generally performs the following steps.
(1) Step of holding the lens unit 10 and the image sensor unit 20 on the Z axis orthogonal to the chart surface of the measurement chart 89 (2) Changing the position of the image sensor unit 20 held on the Z axis in the Z axis direction Then, at each position, the imaging element 27 is driven while the first to third lens driving units of the lens unit 10 held on the Z-axis are energized, and the measurement chart 89 is imaged by the imaging element 27. Step (3) Based on the imaging signal obtained by imaging the measurement chart 89 by the imaging device 27, the position and inclination of the imaging device unit 20 with respect to the lens unit 10 are adjusted, and the imaging device unit 20 is fixed to the lens unit 10. Process
 以下、撮像モジュール製造装置200による撮像モジュール100の製造工程の詳細について、図11のフローチャートに沿って説明する。 Hereinafter, details of the manufacturing process of the imaging module 100 by the imaging module manufacturing apparatus 200 will be described with reference to the flowchart of FIG.
 まず、レンズ保持機構77によるレンズユニット10の保持(S1)について説明する。 First, the holding (S1) of the lens unit 10 by the lens holding mechanism 77 will be described.
 制御部85は、第1スライドステージ99を制御して保持プレート97をZ軸方向に沿って移動させることにより、レンズ位置決めプレート75と保持プレート97との間にレンズユニット10が挿入可能なスペースを形成する。レンズユニット10は、図示しないロボットにより保持されて、レンズ位置決めプレート75と保持プレート97との間に移送される。 The control unit 85 controls the first slide stage 99 to move the holding plate 97 along the Z-axis direction, thereby providing a space in which the lens unit 10 can be inserted between the lens positioning plate 75 and the holding plate 97. Form. The lens unit 10 is held by a robot (not shown) and transferred between the lens positioning plate 75 and the holding plate 97.
 制御部85は、光学センサ等でレンズユニット10の移動を検知し、第1スライドステージ99のステージ部99aをレンズ位置決めプレート75に近付ける方向に移動させる。これにより、保持プレート97はレンズユニット10を保持する。プローブユニット113のプローブピン113aは、レンズユニット10の端子14A~14Fに接触して、第一~第三のレンズ駆動部とレンズ駆動ドライバ145とを電気的に接続する。 The control unit 85 detects the movement of the lens unit 10 with an optical sensor or the like, and moves the stage unit 99a of the first slide stage 99 in a direction approaching the lens positioning plate 75. As a result, the holding plate 97 holds the lens unit 10. The probe pin 113a of the probe unit 113 is in contact with the terminals 14A to 14F of the lens unit 10 to electrically connect the first to third lens driving units and the lens driving driver 145.
 図示しないロボットによるレンズユニット10の保持を解除した後、保持プレート97は更にレンズ位置決めプレート75に向けて移動される。そして、レンズユニット10の凹部95A,95B,95Cが当接ピン93A,93B,93Cに当接し、凹部95C1,95A1に挿入ピン93A1,93C1が挿入される。これにより、レンズユニット10は、Z軸方向と、X軸方向及びY軸方向とで位置決めされる。 After releasing the holding of the lens unit 10 by a robot (not shown), the holding plate 97 is further moved toward the lens positioning plate 75. Then, the concave portions 95A, 95B, and 95C of the lens unit 10 come into contact with the contact pins 93A, 93B, and 93C, and the insertion pins 93A1 and 93C1 are inserted into the concave portions 95C1 and 95A1. Accordingly, the lens unit 10 is positioned in the Z-axis direction, the X-axis direction, and the Y-axis direction.
 次に、撮像素子ユニット保持部79による撮像素子ユニット20の吸着保持(S2)について説明する。 Next, suction holding (S2) of the image sensor unit 20 by the image sensor unit holding unit 79 will be described.
 制御部85は、第2スライドステージ123を制御して2軸回転ステージ119をZ軸方向に沿って移動させることにより、レンズ位置決めプレート75と2軸回転ステージ119との間に撮像素子ユニット20が挿入可能なスペースを形成する。撮像素子ユニット20は、図示しないロボットにより保持されて、レンズ位置決めプレート75と2軸回転ステージ119との間に移送される。 The control unit 85 controls the second slide stage 123 to move the biaxial rotary stage 119 along the Z-axis direction, so that the image sensor unit 20 is located between the lens positioning plate 75 and the biaxial rotary stage 119. Create an insertable space. The image sensor unit 20 is held by a robot (not shown) and transferred between the lens positioning plate 75 and the biaxial rotation stage 119.
 制御部85は、光学センサ等で撮像素子ユニット20の移動を検知し、第2スライドステージ123のステージ部123aをレンズ位置決めプレート75に近付ける方向に移動させる。そして、撮像素子ユニット20の基板21の背面が吸着ヘッド115の吸着面115aに接触した状態になると、制御部85は、吸引部116によって空気の吸引を行う。 The control unit 85 detects the movement of the image sensor unit 20 with an optical sensor or the like, and moves the stage unit 123a of the second slide stage 123 in a direction approaching the lens positioning plate 75. When the back surface of the substrate 21 of the image sensor unit 20 is in contact with the suction surface 115 a of the suction head 115, the control unit 85 sucks air by the suction unit 116.
 これにより、吸引孔115bから空気が吸引されて、吸着面115aに撮像素子ユニット20の基板21が吸着されて、撮像素子ユニット20が保持される。その後、図示しないロボットによる撮像素子ユニット20の保持が解除される。 Thereby, air is sucked from the suction hole 115b, the substrate 21 of the image sensor unit 20 is sucked to the suction surface 115a, and the image sensor unit 20 is held. Thereafter, the holding of the image sensor unit 20 by a robot (not shown) is released.
 このようにしてレンズユニット10及び撮像素子ユニット20がZ軸上に保持された後、合焦座標値取得回路149によって、撮像面27aの各撮像位置の水平合焦座標値及び垂直合焦座標値が取得される(S3)。 After the lens unit 10 and the image sensor unit 20 are held on the Z axis in this way, the focus coordinate value acquisition circuit 149 causes the horizontal focus coordinate value and the vertical focus coordinate value of each image pickup position on the image pickup surface 27a. Is acquired (S3).
 具体的には、制御部85は、第2スライドステージ123を制御して2軸回転ステージ119をレンズ位置決めプレート75に近づく方向に移動させ、撮像素子27がレンズユニット10に最も近くなる最初の測定位置に撮像素子ユニット20を移動させる。 Specifically, the control unit 85 controls the second slide stage 123 to move the biaxial rotation stage 119 in a direction approaching the lens positioning plate 75, and the first measurement in which the image sensor 27 is closest to the lens unit 10. The image sensor unit 20 is moved to the position.
 制御部85は、チャートユニット71の光源91を発光させる。また、制御部85は、レンズ駆動ドライバ145からの駆動信号を端子14A~14Fに入力し、第一~第三のレンズ駆動部を駆動して、レンズ群12の光軸Axのx方向位置、y方向位置、z方向位置を基準位置(例えば実使用時の初期位置)に保持する。 Control unit 85 causes light source 91 of chart unit 71 to emit light. In addition, the control unit 85 inputs a drive signal from the lens drive driver 145 to the terminals 14A to 14F and drives the first to third lens drive units to position the optical axis Ax of the lens group 12 in the x direction, The y-direction position and the z-direction position are held at a reference position (for example, an initial position during actual use).
 次に、制御部85は、撮像素子ドライバ147を制御して、レンズユニット10により結像したチャート画像CH1,CH2,CH3,CH4,CH5を撮像素子27に撮像させる。撮像素子27は、撮像した撮像信号を、コネクタケーブル127を介して合焦座標値取得回路149に入力する。 Next, the control unit 85 controls the image sensor driver 147 to cause the image sensor 27 to capture the chart images CH1, CH2, CH3, CH4, and CH5 formed by the lens unit 10. The image sensor 27 inputs the captured image signal to the focused coordinate value acquisition circuit 149 via the connector cable 127.
 合焦座標値取得回路149は、入力された撮像信号から各チャート画像CH1,CH2,CH3,CH4,CH5に対応する撮像位置における画素の信号を抽出し、その画素信号から各撮像位置についてのX-CTF値及びY-CTF値を算出する。制御部85は、X-CTF値及びY-CTF値の情報を、例えば、制御部85内のRAMに記憶する。 The in-focus coordinate value acquisition circuit 149 extracts the pixel signal at the imaging position corresponding to each chart image CH1, CH2, CH3, CH4, and CH5 from the input imaging signal, and X for each imaging position from the pixel signal. -Calculate CTF and Y-CTF values. The control unit 85 stores information on the X-CTF value and the Y-CTF value in, for example, a RAM in the control unit 85.
 制御部85は、撮像素子ユニット20をZ軸方向に沿って設定された複数の測定位置(Z0,Z1,Z2,…)に順次に移動させ、各測定位置において、レンズ群12の光軸Axのx方向位置、y方向位置、z方向位置を基準位置に維持した状態で、撮像素子27に測定チャート89のチャート像を撮像させる。合焦座標値取得回路149は、各測定位置でそれぞれの撮像位置におけるX-CTF値及びY-CTF値を算出する。 The control unit 85 sequentially moves the image sensor unit 20 to a plurality of measurement positions (Z0, Z1, Z2,...) Set along the Z-axis direction, and the optical axis Ax of the lens group 12 at each measurement position. The image sensor 27 is caused to capture the chart image of the measurement chart 89 while maintaining the x-direction position, the y-direction position, and the z-direction position at the reference positions. The focused coordinate value acquisition circuit 149 calculates an X-CTF value and a Y-CTF value at each imaging position at each measurement position.
 合焦座標値取得回路149は、撮像位置の各々について、算出された複数のX-CTF値、及びY-CTF値の中から最大値を選択し、最大値が得られた測定位置のZ軸座標をその撮像位置の水平合焦座標値及び垂直合焦座標値として取得する。 The focused coordinate value acquisition circuit 149 selects the maximum value from among the plurality of calculated X-CTF values and Y-CTF values for each of the imaging positions, and the Z-axis of the measurement position where the maximum value is obtained. The coordinates are acquired as the horizontal focus coordinate value and the vertical focus coordinate value of the imaging position.
 合焦座標値取得回路149において取得された水平合焦座標値及び垂直合焦座標値は、結像面算出回路151に入力される。結像面算出回路151は、例えば最小自乗法により、平面近似された近似結像面Fを算出する(S5)。 The horizontal focus coordinate value and the vertical focus coordinate value acquired by the focus coordinate value acquisition circuit 149 are input to the imaging plane calculation circuit 151. The imaging plane calculation circuit 151 calculates the approximate imaging plane F that is approximated by a plane, for example, by the method of least squares (S5).
 結像面算出回路151で算出された近似結像面Fの情報は、調整値算出回路153に入力される。調整値算出回路153は、近似結像面FとZ軸との交点である結像面座標値F1と、XY座標平面に対する近似結像面のX軸回り及びY軸回りの傾きであるXY方向回転角度とを算出し、制御部85に入力する(S6)。 Information on the approximate image plane F calculated by the image plane calculation circuit 151 is input to the adjustment value calculation circuit 153. The adjustment value calculation circuit 153 includes an imaging plane coordinate value F1 that is an intersection of the approximate imaging plane F and the Z axis, and an XY direction that is an inclination around the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane. The rotation angle is calculated and input to the controller 85 (S6).
 制御部85は、結像面座標値F1とXY方向回転角度に基づいて、2軸回転ステージ119及び第2スライドステージ123を制御し、撮像素子27の撮像面27aの中心位置が結像面座標値F1に一致するように、撮像素子ユニット20をZ軸方向に移動させ、撮像面27aの傾きが近似結像面Fに一致するように、撮像素子ユニット20のθx方向及びθy方向の角度を調整させる(S7)。 The control unit 85 controls the biaxial rotation stage 119 and the second slide stage 123 based on the imaging plane coordinate value F1 and the rotation angle in the XY direction, and the center position of the imaging plane 27a of the imaging element 27 is the imaging plane coordinate. The image sensor unit 20 is moved in the Z-axis direction so as to coincide with the value F1, and the angles of the θx direction and θy direction of the image sensor unit 20 are adjusted so that the inclination of the image sensing surface 27a coincides with the approximate imaging plane F. Adjust (S7).
 制御部85は、撮像素子ユニット20の位置及び傾き調整後に、各撮像位置の合焦位置を確認する確認工程を実施する(S8)。 The control unit 85 performs a confirmation step of confirming the in-focus position of each imaging position after adjusting the position and inclination of the imaging element unit 20 (S8).
 この確認工程では、上述したS3の各工程が再び実行される。撮像素子ユニット20の位置及び傾き調整後には、撮像位置の各々について、水平方向及び垂直方向で対応する評価値のバラツキが小さくなる。 In this confirmation step, each step of S3 described above is executed again. After the adjustment of the position and inclination of the image sensor unit 20, the variation in the evaluation value corresponding to the horizontal direction and the vertical direction becomes small for each of the image pickup positions.
 制御部85は、確認工程(S8)の終了後(S4:YES)、撮像面27aの中心位置が結像面座標値F1に一致するように撮像素子ユニット20をZ軸方向に移動させる(S9)。 After the confirmation step (S8) is completed (S4: YES), the control unit 85 moves the imaging element unit 20 in the Z-axis direction so that the center position of the imaging surface 27a coincides with the imaging plane coordinate value F1 (S9). ).
 また、制御部85は、接着剤供給部81から、レンズユニット10と撮像素子ユニット20との隙間に紫外線硬化接着剤を供給させ(S10)、紫外線ランプ83a,83bを点灯させることで、紫外線硬化型接着剤を硬化させる(S11)。 Further, the control unit 85 supplies UV curing adhesive to the gap between the lens unit 10 and the image sensor unit 20 from the adhesive supply unit 81 (S10), and turns on the UV lamps 83a and 83b, thereby curing the UV curing. The mold adhesive is cured (S11).
 接着剤が硬化して、レンズユニット10と撮像素子ユニット20とが固定された後、図示しないロボットにより撮像モジュールが把持されると、制御部85は、吸引部116による空気の吸引を停止する。これにより、吸引孔115bから空気の吸引が停止されて、撮像素子ユニット20の吸着が解除される(ステップS12)。そして、完成した撮像モジュール100は、図示しないロボットにより撮像モジュール製造装置200から取り出される(S13)。 After the adhesive is cured and the lens unit 10 and the imaging element unit 20 are fixed, when the imaging module is gripped by a robot (not shown), the control unit 85 stops the suction of air by the suction unit 116. Thereby, the suction of air from the suction hole 115b is stopped, and the suction of the image sensor unit 20 is released (step S12). The completed imaging module 100 is taken out from the imaging module manufacturing apparatus 200 by a robot (not shown) (S13).
 なお、レンズユニット10と撮像素子ユニット20は、紫外線硬化型接着剤により固定できるが、紫外線硬化型接着剤による硬化を、レンズユニット10と撮像素子ユニット20との仮固定として利用してもよい。 The lens unit 10 and the image sensor unit 20 can be fixed with an ultraviolet curable adhesive, but curing with the ultraviolet curable adhesive may be used as temporary fixing between the lens unit 10 and the image sensor unit 20.
 例えば、撮像モジュール100は、レンズユニット10と撮像素子ユニット20とを仮固定した状態で撮像モジュール製造装置200から取り出し、清浄処理等の所望の工程を行った後にレンズユニット10と撮像素子ユニット20とを、熱硬化型接着剤等によって完全に固定するようにしてもよい。 For example, the imaging module 100 is removed from the imaging module manufacturing apparatus 200 in a state where the lens unit 10 and the imaging element unit 20 are temporarily fixed, and after performing a desired process such as a cleaning process, the lens unit 10 and the imaging element unit 20 May be completely fixed by a thermosetting adhesive or the like.
 以上の製造装置200によって撮像モジュール100を製造することで、撮像素子ユニット20を製造装置200に保持したときに、撮像素子ユニット20の基板が反ってしまうのを防ぐことができる。このため、レンズユニット10と撮像素子ユニット20の位置合わせを高精度に行うことができる。 By manufacturing the imaging module 100 with the manufacturing apparatus 200 described above, it is possible to prevent the substrate of the imaging element unit 20 from being warped when the imaging element unit 20 is held in the manufacturing apparatus 200. For this reason, the lens unit 10 and the image sensor unit 20 can be aligned with high accuracy.
 特に本実施形態の製造方法では、吸着ヘッド115として、図8に示したように、吸着ヘッド115に、吸着面115aに囲まれた吸引孔115bが2つ設けられたものを用いている。特許文献3に記載のように、一対のノズルで撮像素子ユニット20の基板21背面を吸着しようとすると、基板21を支えるのは各ノズルの先端面だけとなるため、吸引力が基板21に部分的に集中することで基板21が反り返ってしまう。 In particular, in the manufacturing method of this embodiment, as the suction head 115, as shown in FIG. 8, the suction head 115 is provided with two suction holes 115b surrounded by the suction surface 115a. As described in Patent Document 3, when the back surface of the substrate 21 of the image pickup device unit 20 is attracted by a pair of nozzles, the substrate 21 is supported only by the front end surface of each nozzle. The substrate 21 is warped when concentrated.
 図8の構成によれば、吸引孔115bと吸引孔115bの間には吸着面115aが存在することになる。このため、この間の部分で撮像素子ユニット20の基板21背面を支持することができる。この結果、吸引孔115bから空気を吸引した場合でも、撮像素子ユニット20の基板21が反ってしまうのを防ぐことができる。 8, the suction surface 115a is present between the suction hole 115b and the suction hole 115b. For this reason, the back surface of the substrate 21 of the image pickup device unit 20 can be supported by the portion in between. As a result, even when air is sucked from the suction hole 115b, the substrate 21 of the image sensor unit 20 can be prevented from warping.
 また、本実施形態の製造方法によれば、撮像素子ユニット20の周囲には撮像素子ユニット20を保持するための手段(従来技術で言うところのチャックハンド等)を配置する必要がなくなる。 Further, according to the manufacturing method of the present embodiment, it is not necessary to arrange means (such as a chuck hand in the conventional art) for holding the image sensor unit 20 around the image sensor unit 20.
 この結果、レンズユニット10と撮像素子ユニット20を固定するための装置(接着剤供給部81、紫外線ランプ83a,83b)やレンズユニット10に通電するための装置(プローブユニット113)等の配置の自由度を上げることができ、製造装置200の設計コスト削減及びメンテナンス性向上を実現することができる。 As a result, devices such as a device for fixing the lens unit 10 and the image sensor unit 20 (adhesive supply unit 81, ultraviolet lamps 83a and 83b) and a device for supplying current to the lens unit 10 (probe unit 113) can be freely arranged. Thus, the design cost of the manufacturing apparatus 200 can be reduced and the maintainability can be improved.
 ここまでは、撮像モジュールとして、レンズユニット10が第一~第三のレンズ駆動部を有する機種を製造する製造装置について説明した。レンズユニット10が第一のレンズ駆動部しか搭載していない機種、レンズユニット10が第二のレンズ駆動部及び第三のレンズ駆動部しか搭載していない機種であっても、上述してきた方法で撮像素子ユニット20を吸着保持することで、精度の高い位置合わせが可能となる。 Up to this point, a manufacturing apparatus for manufacturing a model in which the lens unit 10 has first to third lens driving units as an imaging module has been described. Even if the lens unit 10 is a model in which only the first lens driving unit is mounted and the lens unit 10 is a model in which only the second lens driving unit and the third lens driving unit are mounted, the method described above is used. By attracting and holding the image sensor unit 20, high-accuracy positioning is possible.
 撮像モジュール100のように、レンズユニット10が第二のレンズ駆動部及び第三のレンズ駆動部を搭載する機種では、レンズユニット10の筐体11内部の機構が複雑になるため、レンズユニット10の低背化が難しくなる。 In a model in which the lens unit 10 includes the second lens driving unit and the third lens driving unit, such as the imaging module 100, the mechanism inside the housing 11 of the lens unit 10 is complicated. Low profile becomes difficult.
 そのため、撮像素子ユニット20の低背化で対応することになるが、薄い撮像素子ユニット20をチャックハンドによって保持すると、反りが生じやすい。したがって、このような機種においては、本実施形態の製造方法を採用することが特に有効となる。 For this reason, the image sensor unit 20 can be reduced in height, but if the thin image sensor unit 20 is held by a chuck hand, warping is likely to occur. Therefore, in such a model, it is particularly effective to adopt the manufacturing method of the present embodiment.
 また、レンズユニット10が第一のレンズ駆動部だけを有する機種である場合は、レンズユニット10に通電するためのプローブの数が最低でも2本となるが、第二のレンズ駆動部及び第三のレンズ駆動部を更に有する機種になると、最低でも6本のプローブが必要になる。 Further, when the lens unit 10 is a model having only the first lens driving unit, the number of probes for energizing the lens unit 10 is at least two, but the second lens driving unit and the third lens driving unit If the model further includes a lens driving unit, at least six probes are required.
 また、レンズ駆動装置16に含まれるホール素子にも通電する場合には、18本のプローブが必要になる。つまり、レンズユニット10が第一~第三のレンズ駆動部を有するものである場合には、レンズユニット10の周囲のスペースを確保することが非常に難しい。このことからも、撮像素子ユニット20を吸着して保持する方法が有効となる。 Also, when energizing the Hall element included in the lens driving device 16, 18 probes are required. That is, when the lens unit 10 has the first to third lens driving units, it is very difficult to secure a space around the lens unit 10. Also from this, the method of attracting and holding the image sensor unit 20 is effective.
 図11のS3の工程では、レンズユニット10のZ軸方向位置は固定のまま、撮像素子ユニット20を動かしていくことで、合焦座標値を取得するものとした。 In the step S3 in FIG. 11, the in-focus coordinate value is obtained by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed.
 しかし、レンズ位置決めプレート75とレンズ保持機構77からなるレンズユニット保持部をZ軸方向に移動可能にしておき、撮像素子ユニット保持部79のZ軸方向位置は固定のままレンズユニット保持部をZ軸方向に移動させたり、レンズユニット保持部と撮像素子ユニット保持部79をそれぞれZ軸方向に移動させたりすることで測定位置を変えて、各測定位置で合焦座標値を取得してもよい。 However, the lens unit holding portion including the lens positioning plate 75 and the lens holding mechanism 77 is movable in the Z-axis direction, and the position of the image sensor unit holding portion 79 is fixed in the Z-axis direction while the lens unit holding portion is fixed to the Z-axis. It is also possible to change the measurement position by moving the lens unit holding part and the image sensor unit holding part 79 in the Z-axis direction, and acquire the in-focus coordinate value at each measurement position.
 また、レンズユニット保持部と撮像素子ユニット保持部79のZ軸方向位置は固定のまま、チャートユニット71をZ軸方向に移動させることで測定位置を変えて合焦座標値を取得してもよい。また、レンズユニット保持部と撮像素子ユニット保持部79とチャートユニット71のそれぞれのZ軸方向位置を変えることで測定位置を変えて、合焦座標値を取得してもよい。 In addition, the coordinate position value may be acquired by changing the measurement position by moving the chart unit 71 in the Z-axis direction while the Z-axis direction positions of the lens unit holding unit and the image sensor unit holding unit 79 are fixed. . Further, the focus coordinate value may be acquired by changing the measurement position by changing the Z-axis direction position of each of the lens unit holding unit, the image sensor unit holding unit 79, and the chart unit 71.
 つまり、レンズユニット10、撮像素子ユニット20、及び測定チャート89のZ軸方向の相対位置を変えることで測定位置を変え、各相対位置において、撮像素子27により測定チャート89を撮像させて、合焦座標値を取得する構成であればよい。 That is, the measurement position is changed by changing the relative position in the Z-axis direction of the lens unit 10, the image sensor unit 20, and the measurement chart 89, and the measurement chart 89 is imaged by the image sensor 27 at each relative position to be focused. Any configuration that acquires coordinate values may be used.
 また、図11の説明では、上記相対位置を変えることで、複数の測定位置を実現し、各測定位置となったときに測定チャートを撮像するものとしたが、測定チャートの撮像は継続的に行い(つまり動画撮像を行い)、その撮像中に各測定位置となるように、上記相対位置を変化させていくようにしてもよい。 In the description of FIG. 11, a plurality of measurement positions are realized by changing the relative position, and the measurement chart is imaged when each measurement position is reached. However, the measurement chart is continuously imaged. (I.e., taking a moving image), and the relative position may be changed so that each measurement position is reached during the imaging.
 また、図11のS7の工程では、レンズユニット10のZ軸方向位置は固定のまま、撮像素子ユニット20を動かしていくことで、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置を調整している。この変形例として、レンズユニット保持部をZ軸方向に移動可能にしておき、撮像素子ユニット保持部79は位置固定のままレンズユニット保持部を移動させたり、レンズユニット保持部と撮像素子ユニット保持部79をそれぞれ移動させたりして、位置調整を行ってもよい。 In step S7 in FIG. 11, the Z-axis direction position of the image sensor unit 20 with respect to the lens unit 10 is adjusted by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed. ing. As a modified example, the lens unit holding unit is movable in the Z-axis direction, and the image sensor unit holding unit 79 moves the lens unit holding unit while the position is fixed, or the lens unit holding unit and the image sensor unit holding unit. 79 may be moved to adjust the position.
 また、図11のS7の工程では、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置と傾きを調整しているが、Z軸方向位置の調整は省略してもよい。 In the step S7 in FIG. 11, the Z-axis direction position and inclination of the image sensor unit 20 with respect to the lens unit 10 are adjusted, but the adjustment of the Z-axis direction position may be omitted.
 このように、レンズユニット10に対する撮像素子ユニット20の傾きを少なくとも調整する工程を実施する製造装置においては、上述してきたように撮像素子ユニット20を吸着保持することで、高精度の位置合わせが可能になる。 In this way, in the manufacturing apparatus that performs the step of adjusting at least the inclination of the image sensor unit 20 with respect to the lens unit 10, high-accuracy alignment is possible by sucking and holding the image sensor unit 20 as described above. become.
 なお、図11のS7の工程において、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置と傾きを調整する場合は、測定チャート89のチャート面に設けるチャート画像は少なくとも3つあればよい。 In the process of S7 in FIG. 11, when adjusting the position and inclination of the image sensor unit 20 with respect to the lens unit 10 in the Z-axis direction, it is sufficient that there are at least three chart images provided on the chart surface of the measurement chart 89.
 上述してきたように、4つ以上のチャート画像を用いた場合には、レンズユニット10に対する撮像素子ユニット20の傾き調整をより高精度に行うことができる。 As described above, when four or more chart images are used, the tilt adjustment of the image sensor unit 20 with respect to the lens unit 10 can be performed with higher accuracy.
 また、ここまでは、レンズ駆動部に通電した状態で測定チャート89を撮像して合焦評価値を得るものとしたが、レンズ駆動部への通電は省略してもよい。通電を行うことでより精度の高い位置合わせが可能になる。 Further, so far, the measurement chart 89 is imaged while the lens driving unit is energized to obtain the focus evaluation value, but the energization to the lens driving unit may be omitted. By performing energization, alignment with higher accuracy becomes possible.
 また、通電を行う場合、通電を行う対象となるレンズ駆動部は第一~第三のレンズ駆動部の全てとする必要はなく、位置合わせの精度に応じて必要なものにだけ通電を行うようにしてもよい。 In addition, when energization is performed, it is not necessary for the lens drive units to be energized to be all of the first to third lens drive units, and only energize only those necessary according to the alignment accuracy. It may be.
 以上の説明では、接着剤供給部81と光源としての紫外線ランプ83a,83bが、レンズユニット10と撮像素子ユニット20を固定するユニット固定部を構成するものとした。しかし、ユニット固定部は、レンズユニット10と撮像素子ユニット20の隙間に供給された接着剤を硬化させられればよく、この構成に限らない。 In the above description, the adhesive supply unit 81 and the ultraviolet lamps 83a and 83b as light sources constitute a unit fixing unit that fixes the lens unit 10 and the image sensor unit 20. However, the unit fixing portion is not limited to this configuration as long as the adhesive supplied to the gap between the lens unit 10 and the imaging element unit 20 can be cured.
 例えば、撮像素子ユニット20の撮像素子ユニット端子部に接着剤を塗布した状態で撮像素子ユニット20を製造装置200に保持させ、レンズユニット10と撮像素子ユニット20の位置合わせを行った後に、この接着剤を紫外線ランプ83a,83bによって硬化させるようにしてもよい。つまり、紫外線ランプ83a,83bのみによってユニット固定部が構成されていてもよい。 For example, after the imaging device unit 20 is held by the manufacturing apparatus 200 in a state where an adhesive is applied to the imaging device unit terminal portion of the imaging device unit 20 and the lens unit 10 and the imaging device unit 20 are aligned, the bonding is performed. The agent may be cured by the ultraviolet lamps 83a and 83b. That is, the unit fixing portion may be configured only by the ultraviolet lamps 83a and 83b.
 また、接着剤として熱硬化性樹脂を用いた場合には、接着剤を硬化させる手段として光源の代わりに熱源を用いればよい。 Further, when a thermosetting resin is used as the adhesive, a heat source may be used instead of the light source as a means for curing the adhesive.
 吸着ヘッド115の構成は、図8に示したものに限らず、以下の図12、図13に示す構成としてもよい。 The configuration of the suction head 115 is not limited to that shown in FIG. 8, and may be the configuration shown in FIGS.
 図12は、吸着ヘッド115の変形例である吸着ヘッド115Aをレンズ位置決めプレート75側から見た図である。 FIG. 12 is a view of the suction head 115A, which is a modification of the suction head 115, as viewed from the lens positioning plate 75 side.
 吸着ヘッド115Aは、吸着面115aと吸着面115aによって囲まれた4つの吸引孔115bとを備える。各吸引孔115bは、吸着ヘッド115Aの4隅付近に配置されたL字形状となっている。 The suction head 115A includes a suction surface 115a and four suction holes 115b surrounded by the suction surface 115a. Each suction hole 115b has an L shape disposed near the four corners of the suction head 115A.
 吸着ヘッド115Aによれば、隣り合う2つの吸引孔115bの間には必ず吸着面115aが存在する。このため、この部分の吸着面115aが撮像素子ユニット20の基板21を支持することになり、吸着保持時の基板21の反りを防ぐことができる。 According to the suction head 115A, the suction surface 115a always exists between two adjacent suction holes 115b. For this reason, this portion of the suction surface 115a supports the substrate 21 of the image sensor unit 20, and warpage of the substrate 21 during suction holding can be prevented.
 このように、吸引孔115bの数を図8のときよりも多くし、更に吸引孔115bの平面積を図8のときよりも小さくすることで、基板21を支持する面積を増やすことができ、基板21の反りを効果的に防ぐことができる。 Thus, by increasing the number of suction holes 115b as compared with FIG. 8 and further reducing the plane area of the suction holes 115b as compared with FIG. 8, the area for supporting the substrate 21 can be increased. Warpage of the substrate 21 can be effectively prevented.
 なお、吸着面115aに囲まれた吸引孔115bを3つ又は5つ以上設けた吸着ヘッドを採用してもよい。 Note that a suction head provided with three or five or more suction holes 115b surrounded by the suction surface 115a may be employed.
 例えば、吸着面115aとして多孔質材を利用すると、多孔質材に存在する無数の微細な孔の各々が吸引孔115bを形成する。この場合、吸引孔115bが小さいため、基板21を支持する面積を大きくすることができ、基板21の反りを効果的に防ぐことができる。 For example, when a porous material is used as the adsorption surface 115a, each of innumerable fine holes present in the porous material forms a suction hole 115b. In this case, since the suction hole 115b is small, the area for supporting the substrate 21 can be increased, and the warpage of the substrate 21 can be effectively prevented.
 図13は、吸着ヘッド115の変形例である吸着ヘッド115Bをレンズ位置決めプレート75側から見た図である。 FIG. 13 is a view of a suction head 115B, which is a modification of the suction head 115, as viewed from the lens positioning plate 75 side.
 吸着ヘッド115Bは、吸着面115aに囲まれた吸引孔115bが1つ設けられている。この吸引孔115bはリング状となっており、吸引孔115bの内縁と外縁には必ず吸着面115aが接している。 The suction head 115B is provided with one suction hole 115b surrounded by the suction surface 115a. The suction hole 115b has a ring shape, and the suction surface 115a is always in contact with the inner edge and the outer edge of the suction hole 115b.
 このような吸着ヘッド115Bでは、吸着面115aと吸着面115aで挟まれる場所に吸引孔115bが存在するため、撮像素子ユニット20の基板21を支持する面が多くなり、吸着保持時の基板21の反りを防ぐことができる。 In such a suction head 115B, since the suction hole 115b exists at a location sandwiched between the suction surface 115a and the suction surface 115a, the number of surfaces that support the substrate 21 of the image sensor unit 20 is increased, and the substrate 21 during suction holding is held. Warpage can be prevented.
 図8,図12,図13に示す吸着ヘッドの構成や、吸着面115aが多孔質部材により構成された吸着ヘッドは、いずれも、吸着面115aを含む平面上に、吸着面115aを跨いで吸引孔115bを2回通る直線(図中の符号La)が必ず存在するものということができる。 The suction head configuration shown in FIGS. 8, 12, and 13 and the suction head in which the suction surface 115a is formed of a porous member are all sucked across the suction surface 115a on the plane including the suction surface 115a. It can be said that there is always a straight line (symbol La in the drawing) that passes through the hole 115b twice.
 このように、吸着面115aを含む平面上に、吸着面115aを跨いで吸引孔115bを2回通る直線Laが存在することで、吸引孔115b間に跨る吸着面115aが基板21を支持する面となり、基板21の反りを防ぐことができる。 Thus, on the plane including the suction surface 115a, there is a straight line La that passes through the suction hole 115b twice across the suction surface 115a, so that the suction surface 115a straddling the suction holes 115b supports the substrate 21. Thus, warping of the substrate 21 can be prevented.
 ここまで説明した構成の吸着ヘッド(吸着面115aが多孔質部材により構成されたものは除く)において、吸着面115aをゴム等の弾性体で形成することもできる。 In the suction head having the configuration described so far (except for the case where the suction surface 115a is formed of a porous member), the suction surface 115a can be formed of an elastic body such as rubber.
 吸着面115aを弾性体とすることで、吸引孔115bと基板21との密着度を上げることができ、吸引する空気の流れが基板21周囲に及んでしまうのを防ぐことができる。 By using the suction surface 115a as an elastic body, the degree of adhesion between the suction hole 115b and the substrate 21 can be increased, and the flow of the sucked air can be prevented from reaching the periphery of the substrate 21.
 ここまでは、撮像素子ユニット20の基板21の背面が、レンズ群12の光軸Axに垂直な面として説明した。この垂直とは、厳密に垂直である必要はなく、レンズユニット10に対して撮像素子ユニット20の傾きを調整する機構を製造装置に持たせる場合には、傾き調整のストローク内であればよい。傾き調整機構が無い場合には、1°程度のずれは許容される。 Up to this point, the back surface of the substrate 21 of the image sensor unit 20 has been described as a surface perpendicular to the optical axis Ax of the lens group 12. The term “perpendicular” does not need to be strictly vertical, and if the manufacturing apparatus has a mechanism for adjusting the tilt of the image sensor unit 20 with respect to the lens unit 10, it may be within the stroke of tilt adjustment. When there is no tilt adjustment mechanism, a deviation of about 1 ° is allowed.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示された撮像モジュールの製造方法は、レンズ群を有するレンズユニットと、上記レンズユニットに固定され、上記レンズ群を通して被写体を撮像する撮像素子を有する撮像素子ユニットと、を有する撮像モジュールの製造方法であって、測定チャートに直交する軸上において、上記撮像素子ユニット、上記レンズユニット、及び上記測定チャートの少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子を駆動して上記撮像素子により上記レンズ群を通して上記測定チャートを撮像させる第一工程と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの傾きを少なくとも調整し、上記撮像素子ユニットを上記レンズユニットに固定する第二工程と、を備え、上記第一工程では、上記軸に垂直な吸着面と上記吸着面に囲まれた吸引孔とを有する吸着ヘッドであって、上記吸着面を含む平面上に、上記吸着面を跨いで上記吸引孔を2回通る直線が存在する吸着ヘッド、の上記吸引孔から空気を吸引して、上記撮像素子ユニットを上記吸着面に吸着させて上記撮像素子ユニットを保持した状態で、上記撮像を行わせるものである。 The disclosed method of manufacturing an imaging module is a method of manufacturing an imaging module having a lens unit having a lens group, and an image sensor unit that is fixed to the lens unit and has an image sensor that images a subject through the lens group. And changing the relative position in the axial direction of at least one of the image sensor unit, the lens unit, and the measurement chart on an axis orthogonal to the measurement chart, and the image sensor at each relative position. The imaging element unit for the lens unit based on a first step of imaging the measurement chart through the lens group by the imaging element and an imaging signal obtained by imaging the measurement chart by the imaging element At least to adjust the inclination of the image sensor unit A suction head having a suction surface perpendicular to the axis and a suction hole surrounded by the suction surface, the first step including the suction surface. Air is sucked from the suction hole of the suction head having a straight line passing through the suction hole twice across the suction surface on a plane, and the image sensor unit is sucked to the suction surface to suck the image sensor. The imaging is performed while the unit is held.
 この方法によれば、吸着面を含む平面上に、吸着面を跨いで吸引孔を2回通る直線が存在する吸着ヘッドに撮像素子ユニットを吸着させて保持するため、吸着面を挟んで吸引孔を2回通る直線の部分では、吸引孔同士の間の吸着面によって撮像素子ユニットの背面が支えられることになる。このため、吸引を行った場合でも撮像素子ユニットの反りを確実に防ぐことができ、撮像素子ユニットとレンズユニットの位置調整を高精度に行うことができる。 According to this method, since the imaging element unit is sucked and held by the suction head having a straight line passing through the suction hole twice across the suction face on the plane including the suction face, the suction hole is sandwiched between the suction faces. In the straight line portion that passes twice, the back surface of the image sensor unit is supported by the suction surface between the suction holes. For this reason, even when suction is performed, the warp of the image sensor unit can be reliably prevented, and the position adjustment of the image sensor unit and the lens unit can be performed with high accuracy.
 開示された撮像モジュールの製造方法は、上記第一工程では、上記吸着ヘッドとして上記吸引孔が複数設けられたものを用いるものを含む。 The disclosed method for manufacturing an imaging module includes a method using a plurality of suction holes provided as the suction head in the first step.
 この方法によれば、吸着面を含む平面上に、吸着面を挟んで吸引孔を2回通る直線が必ず存在することになり、吸引を行った場合でも撮像素子ユニットの反りを防ぐことができる。 According to this method, there is always a straight line that passes through the suction hole twice with the suction surface interposed therebetween on the plane including the suction surface, and thus the warp of the image sensor unit can be prevented even when suction is performed. .
 開示された撮像モジュールの製造方法は、上記第一工程では、上記吸着ヘッドとして上記吸引孔が1つ設けられたものを用いるものを含む。 The disclosed method for manufacturing an imaging module includes a method in which, in the first step, the suction head is provided with one suction hole.
 この方法によれば、吸着ヘッドに撮像素子ユニットを吸着させたときの撮像素子ユニットを支える面を大きくすることが可能となり、撮像素子ユニットの反りを防ぐことができる。 According to this method, it is possible to enlarge the surface that supports the image sensor unit when the image sensor unit is attracted to the suction head, and it is possible to prevent the image sensor unit from warping.
 開示された撮像モジュールの製造方法は、上記第一工程では、上記吸着ヘッドとして上記吸着面が多孔質材によって構成されているものを用いるものを含む。 The disclosed method for manufacturing an imaging module includes a method in which, in the first step, the suction head has a suction surface made of a porous material.
 この方法によれば、吸着ヘッドに撮像素子ユニットを吸着させたときの撮像素子ユニットを支える面を大きくすることが可能となり、撮像素子ユニットの反りを防ぐことができる。 According to this method, it is possible to enlarge the surface that supports the image sensor unit when the image sensor unit is attracted to the suction head, and it is possible to prevent the image sensor unit from warping.
 開示された撮像モジュールの製造方法は、上記第一工程では、上記吸着ヘッドとして上記吸着面が弾性体によって構成されているものを用いるものを含む。 The disclosed method for manufacturing an imaging module includes a method in which, in the first step, as the suction head, the suction surface is made of an elastic body.
 この方法によれば、吸着ヘッドに撮像素子ユニットを安定して吸着させることができる。 According to this method, the imaging element unit can be stably adsorbed to the adsorption head.
 開示された撮像モジュールの製造方法は、上記第二工程では、上記軸方向に見て上記レンズ群の光軸を通りかつ上記光軸に直交する直線で上記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれから光を照射し、上記レンズユニットと上記撮像素子ユニットの隙間に供給された光硬化性接着剤を硬化させて、上記レンズユニットと上記撮像素子ユニットを固定するものである。 According to the disclosed imaging module manufacturing method, in the second step, one of the lens units divided into two by a straight line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction. Light is irradiated from each of the divided area side and the other divided area side, the photocurable adhesive supplied to the gap between the lens unit and the imaging element unit is cured, and the lens unit and the imaging element unit are It is to be fixed.
 この方法によれば、レンズユニットと撮像素子ユニットの間に少なくとも2方向から光が照射されるため、塗布された接着剤をモジュール全体で均一に硬化させることが可能となり、レンズユニットと撮像素子ユニットの固定を安定的に行うことができる。 According to this method, since light is irradiated from at least two directions between the lens unit and the image sensor unit, it is possible to uniformly cure the applied adhesive throughout the module, and the lens unit and the image sensor unit. Can be stably fixed.
 開示された撮像モジュールの製造方法は、上記第二工程では、互いに直交する2つの上記直線で上記レンズユニットを4分割したときのそれぞれの分割エリア側から光を照射して上記接着剤を硬化させて、上記レンズユニットと上記撮像素子ユニットを固定するものである。 In the disclosed imaging module manufacturing method, in the second step, the adhesive is cured by irradiating light from each divided area when the lens unit is divided into four by the two straight lines orthogonal to each other. The lens unit and the image sensor unit are fixed.
 この方法によれば、レンズユニットと撮像素子ユニットの間に4方向から光が照射されるため、塗布された接着剤をモジュール全体でより均一に硬化させることができ、レンズユニットと撮像素子ユニットの固定をより安定的に行うことができる。 According to this method, since light is irradiated from four directions between the lens unit and the image sensor unit, the applied adhesive can be cured more uniformly in the entire module. Fixing can be performed more stably.
 開示された撮像モジュールの製造方法は、上記レンズユニットは、上記レンズ群のうち少なくとも一部のレンズを上記レンズ群の光軸に沿う第一の方向に移動させる第一のレンズ駆動部と、上記レンズ群のうち少なくとも一部のレンズを上記レンズ群の光軸に直交する第二の方向及び第三の方向にそれぞれ移動させる第二のレンズ駆動部及び第三のレンズ駆動部との少なくとも一方を有するものである。 In the disclosed imaging module manufacturing method, the lens unit includes a first lens driving unit that moves at least a part of the lenses in the first direction along the optical axis of the lens group, and the lens unit. At least one of a second lens driving unit and a third lens driving unit for moving at least some of the lenses in a second direction and a third direction orthogonal to the optical axis of the lens group, respectively. It is what you have.
 レンズユニットとしてレンズ駆動部を搭載するものは構造が複雑であり低背化が難しいため、撮像素子ユニットの低背化が求められる。このため、撮像素子ユニットが反りやすい傾向にあり、吸着ヘッドによって撮像素子ユニットを吸着保持する方法が特に有効となる。 Since a lens unit equipped with a lens driving unit has a complicated structure and it is difficult to reduce the height, it is necessary to reduce the height of the image sensor unit. For this reason, the image sensor unit tends to warp, and a method of sucking and holding the image sensor unit by the suction head is particularly effective.
 開示された撮像モジュールの製造方法は、上記撮像素子ユニットは、凹部が形成された基板の上記凹部に上記撮像素子が形成されたものであるものを含む。 The disclosed imaging module manufacturing method includes the imaging element unit in which the imaging element is formed in the recess of the substrate in which the recess is formed.
 凹部が形成された基板の凹部に撮像素子が形成された撮像素子ユニットは、基板が反りやすくなっているため、吸着ヘッドによって撮像素子ユニットを吸着保持する方法が特に有効となる。 Since the image pickup element unit in which the image pickup element is formed in the concave portion of the substrate in which the concave portion is formed is easy to warp the substrate, a method of sucking and holding the image pickup element unit by the suction head is particularly effective.
 開示された撮像モジュールの製造装置は、測定チャートを設置するための測定チャート設置部と、上記測定チャート設置部に設置された上記測定チャートに直交する軸上に、レンズ群を有するレンズユニットを通して被写体を撮像する撮像素子を有する撮像素子ユニットを保持するための撮像素子ユニット保持部と、上記測定チャート設置部と上記撮像素子ユニット保持部との間の上記軸上で上記レンズユニットを保持するためのレンズユニット保持部と、上記測定チャート設置部、上記レンズユニット保持部、及び上記撮像素子ユニット保持部の少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子ユニットの上記撮像素子を駆動して、上記撮像素子により上記レンズユニットを通して上記測定チャートを撮像させる制御部と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの傾きを少なくとも調整する調整部と、上記調整部により調整後の上記撮像素子ユニットを上記レンズユニットに固定するユニット固定部と、を備え、上記撮像素子ユニット保持部は、上記軸に直交する吸着面及び上記吸着面に囲まれた吸引孔を有する吸着ヘッドと、上記吸引孔から空気を吸引する吸引部と、を含み、上記吸着ヘッドは、上記吸着面を含む平面上に、上記吸着面を跨いで上記吸引孔を2回通る直線が存在するものである。 The disclosed imaging module manufacturing apparatus includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit. An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit. At least one of the lens unit holding unit, the measurement chart setting unit, the lens unit holding unit, and the image sensor unit holding unit is changed in the axial direction, and the image sensor is changed at each relative position. The image sensor of the unit is driven, and the image sensor passes the lens unit through the lens unit. A control unit that images a constant chart, an adjustment unit that adjusts at least an inclination of the imaging element unit with respect to the lens unit based on an imaging signal obtained by imaging the measurement chart by the imaging element, and an adjustment unit. A unit fixing portion for fixing the adjusted image pickup device unit to the lens unit, and the image pickup device unit holding portion has a suction surface orthogonal to the axis and a suction hole surrounded by the suction surface. A suction section for sucking air from the suction hole, and the suction head has a straight line passing through the suction hole twice across the suction surface on a plane including the suction surface. It is.
 この装置によれば、吸着面を含む平面上に、吸着面を跨いで吸引孔を2回通る直線が存在する吸着ヘッドに撮像素子ユニットを吸着させて保持するため、吸着面を跨いで吸引孔を2回通る直線の部分では、吸引孔同士の間の吸着面によって撮像素子ユニットの背面が支えられることになる。このため、吸引を行った場合でも撮像素子ユニットの反りを防ぐことができ、撮像素子ユニットとレンズユニットの位置調整を高精度に行うことができる。 According to this apparatus, since the imaging element unit is sucked and held by the suction head having a straight line passing through the suction hole twice across the suction surface on the plane including the suction surface, the suction hole is straddled across the suction surface. In the straight line portion that passes twice, the back surface of the image sensor unit is supported by the suction surface between the suction holes. For this reason, even when suction is performed, the warp of the image sensor unit can be prevented, and the position adjustment of the image sensor unit and the lens unit can be performed with high accuracy.
 開示された撮像モジュールの製造装置は、上記吸着ヘッドは、上記吸引孔が複数設けられているものを含む。 In the disclosed imaging module manufacturing apparatus, the suction head includes a plurality of the suction holes.
 この装置によれば、吸着面を含む平面上に、吸着面を跨いで吸引孔を2回通る直線が必ず存在することになり、吸引を行った場合でも撮像素子ユニットの反りを防ぐことができる。 According to this apparatus, there is always a straight line that passes through the suction hole twice across the suction surface on the plane including the suction surface, and even when suction is performed, the image sensor unit can be prevented from warping. .
 開示された撮像モジュールの製造装置は、上記吸着ヘッドは、上記吸引孔が1つ設けられているものを含む。 In the disclosed imaging module manufacturing apparatus, the suction head includes one in which one suction hole is provided.
 この装置によれば、吸着ヘッドに撮像素子ユニットを吸着させたときの撮像素子ユニットを支える面を大きくすることが可能となり、撮像素子ユニットの反りを防ぐことができる。 According to this apparatus, it is possible to enlarge the surface that supports the image sensor unit when the image sensor unit is attracted to the suction head, and it is possible to prevent the image sensor unit from warping.
 開示された撮像モジュールの製造装置は、上記吸着ヘッドは、上記吸着面が多孔質材によって構成されているものを含む。 The disclosed imaging module manufacturing apparatus includes the suction head in which the suction surface is made of a porous material.
 この装置によれば、吸着ヘッドに撮像素子ユニットを吸着させたときの撮像素子ユニットを支える面を大きくすることが可能となり、撮像素子ユニットの反りを防ぐことができる。 According to this apparatus, it is possible to enlarge the surface that supports the image sensor unit when the image sensor unit is attracted to the suction head, and it is possible to prevent the image sensor unit from warping.
 開示された撮像モジュールの製造装置は、上記吸着ヘッドは、上記吸着面が弾性体によって構成されているものを含む。 In the disclosed imaging module manufacturing apparatus, the suction head includes one in which the suction surface is formed of an elastic body.
 この装置によれば、吸着ヘッドに撮像素子ユニットを安定して吸着させることができる。 According to this apparatus, the image sensor unit can be stably adsorbed to the adsorption head.
 開示された撮像モジュールの製造装置は、上記ユニット固定部は、上記軸方向に見て上記レンズ群の光軸を通りかつ上記光軸に直交する直線で上記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれに配置され、上記レンズユニットと上記撮像素子ユニットの隙間に対して光を照射して、上記隙間に供給された光硬化性接着剤を硬化させる光源を含むものである。 In the disclosed imaging module manufacturing apparatus, the unit fixing portion is divided into two when the lens unit is divided into two by a straight line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction. A light source that is disposed on each of the divided area side and the other divided area side, irradiates light to the gap between the lens unit and the imaging element unit, and cures the photocurable adhesive supplied to the gap. Is included.
 この装置によれば、レンズユニットと撮像素子ユニットの間に少なくとも2方向から光が照射されるため、塗布された接着剤をモジュール全体で均一に硬化させることが可能となり、レンズユニットと撮像素子ユニットの固定を安定的に行うことができる。 According to this apparatus, since light is irradiated from at least two directions between the lens unit and the image sensor unit, it is possible to uniformly cure the applied adhesive throughout the module, and the lens unit and the image sensor unit. Can be stably fixed.
 開示された撮像モジュールの製造装置は、上記光源は、互いに直交する2つの上記直線で上記レンズユニットを4分割したときのそれぞれの分割エリアに設置されているものである。 In the disclosed imaging module manufacturing apparatus, the light source is installed in each divided area when the lens unit is divided into four by two straight lines orthogonal to each other.
 この装置によれば、レンズユニットと撮像素子ユニットの間に4方向から光が照射されるため、塗布された接着剤をモジュール全体でより均一に硬化させることができ、レンズユニットと撮像素子ユニットの固定をより安定的に行うことができる。 According to this apparatus, since light is irradiated from four directions between the lens unit and the image sensor unit, the applied adhesive can be cured more uniformly in the entire module. Fixing can be performed more stably.
 開示された撮像モジュールの製造装置は、上記ユニット固定部は、上記レンズユニットと上記撮像素子ユニットの隙間に対して上記光硬化性接着剤を供給する接着剤供給部を含むものである。 In the disclosed imaging module manufacturing apparatus, the unit fixing part includes an adhesive supply part that supplies the photocurable adhesive to a gap between the lens unit and the imaging element unit.
 本発明の撮像モジュールの製造方法及び製造装置は、特に携帯電話機、眼鏡型電子機器、腕時計型電子機器等の電子機器に搭載される撮像モジュールの製造に適用して有効である。 The method and apparatus for manufacturing an imaging module according to the present invention is particularly effective when applied to the manufacture of an imaging module mounted on an electronic device such as a mobile phone, a spectacle-type electronic device, or a wristwatch-type electronic device.
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2013年10月15日出願の日本特許出願(特願2013-214731)に基づくものであり、その内容はここに取り込まれる。
As mentioned above, although this invention was demonstrated by specific embodiment, this invention is not limited to this embodiment, A various change is possible in the range which does not deviate from the technical idea of the disclosed invention.
This application is based on a Japanese patent application filed on October 15, 2013 (Japanese Patent Application No. 2013-214731), the contents of which are incorporated herein.
100 撮像モジュール
10 レンズユニット
11 筐体
12 レンズ群
13 フレキシブル基板
14A~14F レンズユニット端子部
16 レンズ駆動装置
16A x方向VCM
16B x方向ホール素子
16C y方向VCM
16D y方向ホール素子
16E z方向VCM
16F z方向ホール素子
20 撮像素子ユニット
21 基板
22 フレキシブル基板
23 外部接続用端子
24A~24F 撮像素子ユニット端子部
27 撮像素子
200 撮像モジュール製造装置
71 チャートユニット
89 測定チャート
75 レンズ位置決めプレート
115 吸着ヘッド
115a 吸着面
115b 吸引孔
115c 配管
81 接着剤供給部
83a,83b 紫外線ランプ
79 撮像素子ユニット保持部
85 制御部
Ax 光軸
z 光軸に沿う方向
x z方向に直交する方向
y z方向に直交する方向
DESCRIPTION OF SYMBOLS 100 Imaging module 10 Lens unit 11 Housing | casing 12 Lens group 13 Flexible board 14A-14F Lens unit terminal part 16 Lens drive device 16A X direction VCM
16B x direction hall element 16C y direction VCM
16D y-direction Hall element 16E z-direction VCM
16F z-direction Hall element 20 Imaging element unit 21 Substrate 22 Flexible substrate 23 External connection terminals 24A to 24F Imaging element unit terminal section 27 Imaging element 200 Imaging module manufacturing apparatus 71 Chart unit 89 Measurement chart 75 Lens positioning plate 115 Suction head 115a Suction Surface 115b Suction hole 115c Pipe 81 Adhesive supply part 83a, 83b Ultraviolet lamp 79 Image sensor unit holding part 85 Control part Ax Optical axis z Direction along optical axis x Direction orthogonal to yz direction Direction orthogonal to yz direction

Claims (17)

  1.  レンズ群を有するレンズユニットと、前記レンズユニットに固定され、前記レンズ群を通して被写体を撮像する撮像素子を有する撮像素子ユニットと、を有する撮像モジュールの製造方法であって、
     測定チャートに直交する軸上において、前記撮像素子ユニット、前記レンズユニット、及び前記測定チャートの少なくともいずれか1ヶ所の前記軸方向の相対位置を変化させ、各相対位置において、前記撮像素子を駆動して前記撮像素子により前記レンズ群を通して前記測定チャートを撮像させる第一工程と、
     前記撮像素子により前記測定チャートを撮像して得られる撮像信号に基づいて、前記レンズユニットに対する前記撮像素子ユニットの傾きを少なくとも調整し、前記撮像素子ユニットを前記レンズユニットに固定する第二工程と、を備え、
     前記第一工程では、前記軸に垂直な吸着面と前記吸着面に囲まれた吸引孔とを有する吸着ヘッドであって、前記吸着面を含む平面上に、前記吸着面を跨いで前記吸引孔を2回通る直線が存在する吸着ヘッド、の前記吸引孔から空気を吸引して、前記撮像素子ユニットを前記吸着面に吸着させて前記撮像素子ユニットを保持した状態で、前記撮像を行わせる撮像モジュールの製造方法。
    A method of manufacturing an imaging module, comprising: a lens unit having a lens group; and an imaging element unit having an imaging element fixed to the lens unit and imaging a subject through the lens group,
    On the axis orthogonal to the measurement chart, the relative position in the axial direction of at least one of the image sensor unit, the lens unit, and the measurement chart is changed, and the image sensor is driven at each relative position. A first step of imaging the measurement chart through the lens group by the imaging element;
    A second step of adjusting at least an inclination of the imaging element unit with respect to the lens unit based on an imaging signal obtained by imaging the measurement chart by the imaging element, and fixing the imaging element unit to the lens unit; With
    In the first step, a suction head having a suction surface perpendicular to the axis and a suction hole surrounded by the suction surface, the suction hole straddling the suction surface on a plane including the suction surface An image that causes the imaging to be performed in a state in which air is sucked from the suction hole of the suction head having a straight line that passes twice, and the imaging device unit is sucked to the suction surface and the imaging device unit is held. Module manufacturing method.
  2.  請求項1記載の撮像モジュールの製造方法であって、
     前記第一工程では、前記吸着ヘッドとして前記吸引孔が複数設けられたものを用いる撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to claim 1,
    In the first step, an imaging module manufacturing method using a suction head provided with a plurality of suction holes.
  3.  請求項1記載の撮像モジュールの製造方法であって、
     前記第一工程では、前記吸着ヘッドとして前記吸引孔が1つ設けられたものを用いる撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to claim 1,
    In the first step, an imaging module manufacturing method using a suction head provided with one suction hole.
  4.  請求項1記載の撮像モジュールの製造方法であって、
     前記第一工程では、前記吸着ヘッドとして前記吸着面が多孔質材によって構成されているものを用いる撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to claim 1,
    In the first step, an imaging module manufacturing method using the suction head in which the suction surface is made of a porous material.
  5.  請求項1~3のいずれか1項記載の撮像モジュールの製造方法であって、
     前記第一工程では、前記吸着ヘッドとして前記吸着面が弾性体によって構成されているものを用いる撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to any one of claims 1 to 3,
    In the first step, an imaging module manufacturing method using the suction head in which the suction surface is made of an elastic body.
  6.  請求項1~5のいずれか1項記載の撮像モジュールの製造方法であって、
     前記第二工程では、前記軸方向に見て前記レンズ群の光軸を通りかつ前記光軸に直交する直線で前記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれから光を照射し、前記レンズユニットと前記撮像素子ユニットの隙間に供給された光硬化性接着剤を硬化させて、前記レンズユニットと前記撮像素子ユニットを固定する撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to any one of claims 1 to 5,
    In the second step, when the lens unit is divided into two by a straight line that passes through the optical axis of the lens group and is orthogonal to the optical axis when viewed in the axial direction, the one division area side and the other division area side A method of manufacturing an imaging module that irradiates light from each of them, cures a photocurable adhesive supplied to a gap between the lens unit and the imaging element unit, and fixes the lens unit and the imaging element unit.
  7.  請求項6記載の撮像モジュールの製造方法であって、
     前記第二工程では、互いに直交する2つの前記直線で前記レンズユニットを4分割したときのそれぞれの分割エリア側から光を照射して前記光硬化性接着剤を硬化させて、前記レンズユニットと前記撮像素子ユニットを固定する撮像モジュールの製造方法。
    It is a manufacturing method of the imaging module according to claim 6,
    In the second step, the lens unit and the lens unit are formed by irradiating light from each divided area side when the lens unit is divided into four by the two straight lines orthogonal to each other to cure the photocurable adhesive. An imaging module manufacturing method for fixing an imaging element unit.
  8.  請求項1~7のいずれか1項記載の撮像モジュールの製造方法であって、
     前記レンズユニットは、前記レンズ群のうち少なくとも一部のレンズを前記レンズ群の光軸に沿う第一の方向に移動させる第一のレンズ駆動部と、前記レンズ群のうち少なくとも一部のレンズを前記レンズ群の光軸に直交する第二の方向及び第三の方向にそれぞれ移動させる第二のレンズ駆動部及び第三のレンズ駆動部との少なくとも一方を有する撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to any one of claims 1 to 7,
    The lens unit includes: a first lens driving unit that moves at least a part of the lenses in the first direction along an optical axis of the lens group; and at least a part of the lenses in the lens group. A method for manufacturing an imaging module, comprising at least one of a second lens driving unit and a third lens driving unit that respectively move in a second direction and a third direction orthogonal to the optical axis of the lens group.
  9.  請求項1~8のいずれか1項記載の撮像モジュールの製造方法であって、
     前記撮像素子ユニットは、凹部が形成された基板の前記凹部に前記撮像素子が形成されたものである撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to any one of claims 1 to 8,
    The imaging device unit is a manufacturing method of an imaging module in which the imaging device is formed in the recess of the substrate in which the recess is formed.
  10.  測定チャートを設置するための測定チャート設置部と、
     前記測定チャート設置部に設置された前記測定チャートに直交する軸上に、レンズ群を有するレンズユニットを通して被写体を撮像する撮像素子を有する撮像素子ユニットを保持するための撮像素子ユニット保持部と、
     前記測定チャート設置部と前記撮像素子ユニット保持部との間の前記軸上で前記レンズユニットを保持するためのレンズユニット保持部と、
     前記測定チャート設置部、前記レンズユニット保持部、及び前記撮像素子ユニット保持部の少なくともいずれか1ヶ所の前記軸方向の相対位置を変化させ、各相対位置において、前記撮像素子ユニットの前記撮像素子を駆動して、前記撮像素子により前記レンズユニットを通して前記測定チャートを撮像させる制御部と、
     前記撮像素子により前記測定チャートを撮像して得られる撮像信号に基づいて、前記レンズユニットに対する前記撮像素子ユニットの傾きを少なくとも調整する調整部と、
     前記調整部により調整後の前記撮像素子ユニットを前記レンズユニットに固定するユニット固定部と、を備え、
     前記撮像素子ユニット保持部は、前記軸に直交する吸着面及び前記吸着面に囲まれた吸引孔を有する吸着ヘッドと、前記吸引孔から空気を吸引する吸引部と、を含み、
     前記吸着ヘッドは、前記吸着面を含む平面上に、前記吸着面を跨いで前記吸引孔を2回通る直線が存在するものである撮像モジュールの製造装置。
    A measurement chart setting part for setting a measurement chart;
    An image sensor unit holding unit for holding an image sensor unit having an image sensor that images a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit;
    A lens unit holding unit for holding the lens unit on the axis between the measurement chart setting unit and the imaging element unit holding unit;
    The relative position in the axial direction of at least one of the measurement chart setting unit, the lens unit holding unit, and the image sensor unit holding unit is changed, and the image sensor of the image sensor unit is changed at each relative position. A controller that drives and images the measurement chart through the lens unit by the imaging element;
    An adjustment unit that adjusts at least an inclination of the imaging element unit with respect to the lens unit based on an imaging signal obtained by imaging the measurement chart by the imaging element;
    A unit fixing unit that fixes the image sensor unit after adjustment by the adjustment unit to the lens unit;
    The imaging element unit holding unit includes a suction surface orthogonal to the axis and a suction head having a suction hole surrounded by the suction surface, and a suction unit that sucks air from the suction hole,
    The apparatus for manufacturing an imaging module, wherein the suction head has a straight line passing through the suction hole twice across the suction surface on a plane including the suction surface.
  11.  請求項10記載の撮像モジュールの製造装置であって、
     前記吸着ヘッドは、前記吸引孔が複数設けられているものである撮像モジュールの製造装置。
    An apparatus for manufacturing an imaging module according to claim 10,
    The suction module is an imaging module manufacturing apparatus in which a plurality of suction holes are provided.
  12.  請求項10記載の撮像モジュールの製造装置であって、
     前記吸着ヘッドは、前記吸引孔が1つ設けられているものである撮像モジュールの製造装置。
    An apparatus for manufacturing an imaging module according to claim 10,
    The suction head is an imaging module manufacturing apparatus in which one suction hole is provided.
  13.  請求項10記載の撮像モジュールの製造装置であって、
     前記吸着ヘッドは、前記吸着面が多孔質材によって構成されているものである撮像モジュールの製造装置。
    An apparatus for manufacturing an imaging module according to claim 10,
    The suction head is an imaging module manufacturing apparatus in which the suction surface is made of a porous material.
  14.  請求項10~12のいずれか1項記載の撮像モジュールの製造装置であって、
     前記吸着ヘッドは、前記吸着面が弾性体によって構成されているものである撮像モジュールの製造装置。
    An imaging module manufacturing apparatus according to any one of claims 10 to 12,
    The suction head is an imaging module manufacturing apparatus in which the suction surface is configured by an elastic body.
  15.  請求項10~14のいずれか1項記載の撮像モジュールの製造装置であって、
     前記ユニット固定部は、前記軸方向に見て前記レンズ群の光軸を通りかつ前記光軸に直交する直線で前記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれに配置され、前記レンズユニットと前記撮像素子ユニットの隙間に対して光を照射して、前記隙間に供給された光硬化性接着剤を硬化させる光源を含む撮像モジュールの製造装置。
    The imaging module manufacturing apparatus according to any one of claims 10 to 14,
    The unit fixing portion is provided on one divided area side and the other divided area side when the lens unit is divided into two by a straight line that passes through the optical axis of the lens group and is orthogonal to the optical axis when viewed in the axial direction. An imaging module manufacturing apparatus including a light source that is disposed in each of the light sources and irradiates light to a gap between the lens unit and the imaging element unit to cure the photocurable adhesive supplied to the gap.
  16.  請求項15記載の撮像モジュールの製造装置であって、
     前記光源は、互いに直交する2つの前記直線で前記レンズユニットを4分割したときのそれぞれの分割エリアに設置されている撮像モジュールの製造装置。
    An apparatus for manufacturing an imaging module according to claim 15,
    The light source is an imaging module manufacturing apparatus installed in each divided area when the lens unit is divided into four by two straight lines orthogonal to each other.
  17.  請求項15又は16記載の撮像モジュールの製造装置であって、
     前記ユニット固定部は、前記レンズユニットと前記撮像素子ユニットの隙間に対して前記光硬化性接着剤を供給する接着剤供給部を含む撮像モジュールの製造装置。
    An imaging module manufacturing apparatus according to claim 15 or 16,
    The unit fixing unit is an imaging module manufacturing apparatus including an adhesive supply unit that supplies the photocurable adhesive to a gap between the lens unit and the imaging element unit.
PCT/JP2014/077455 2013-10-15 2014-10-15 Method for manufacturing imaging module and device for manufacturing imaging module WO2015056720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013214731 2013-10-15
JP2013-214731 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015056720A1 true WO2015056720A1 (en) 2015-04-23

Family

ID=52828163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077455 WO2015056720A1 (en) 2013-10-15 2014-10-15 Method for manufacturing imaging module and device for manufacturing imaging module

Country Status (2)

Country Link
TW (1) TW201517621A (en)
WO (1) WO2015056720A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263526A (en) * 1994-03-17 1995-10-13 Hitachi Ltd Method of cooling wafer chuck and semiconductor device
JP2002314295A (en) * 2001-04-16 2002-10-25 Murata Mfg Co Ltd Component mounter
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2004063776A (en) * 2002-07-29 2004-02-26 Sony Corp Imaging device and its manufacturing method
JP2004147007A (en) * 2002-10-23 2004-05-20 Fuji Photo Film Co Ltd Solid-state image pickup device and method and device for manufacturing the same
JP2005086659A (en) * 2003-09-10 2005-03-31 Sony Corp Camera module manufacturing method and assembling apparatus employing the method
JP2006081007A (en) * 2004-09-10 2006-03-23 Sony Corp Solid-state imaging unit
JP2006329816A (en) * 2005-05-26 2006-12-07 Sanyo Electric Co Ltd Probe inspection device
JP2010217207A (en) * 2009-03-13 2010-09-30 Nikon Corp Transfer device, transfer method and method for manufacturing device
JP2011151551A (en) * 2010-01-20 2011-08-04 Fujifilm Corp Method of manufacturing camera module and device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263526A (en) * 1994-03-17 1995-10-13 Hitachi Ltd Method of cooling wafer chuck and semiconductor device
JP2002314295A (en) * 2001-04-16 2002-10-25 Murata Mfg Co Ltd Component mounter
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2004063776A (en) * 2002-07-29 2004-02-26 Sony Corp Imaging device and its manufacturing method
JP2004147007A (en) * 2002-10-23 2004-05-20 Fuji Photo Film Co Ltd Solid-state image pickup device and method and device for manufacturing the same
JP2005086659A (en) * 2003-09-10 2005-03-31 Sony Corp Camera module manufacturing method and assembling apparatus employing the method
JP2006081007A (en) * 2004-09-10 2006-03-23 Sony Corp Solid-state imaging unit
JP2006329816A (en) * 2005-05-26 2006-12-07 Sanyo Electric Co Ltd Probe inspection device
JP2010217207A (en) * 2009-03-13 2010-09-30 Nikon Corp Transfer device, transfer method and method for manufacturing device
JP2011151551A (en) * 2010-01-20 2011-08-04 Fujifilm Corp Method of manufacturing camera module and device

Also Published As

Publication number Publication date
TW201517621A (en) 2015-05-01

Similar Documents

Publication Publication Date Title
JP5879461B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
JP6262536B2 (en) Manufacturing method of camera module
KR100915592B1 (en) Focusing apparatus of high resolution camera module and focusing method using the same
WO2015060256A1 (en) Image pickup module manufacturing method and image pickup module manufacturing apparatus
JP5957621B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
JP5851075B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
JP5990655B2 (en) Imaging module, imaging module manufacturing method, electronic device
WO2015060188A1 (en) Image pickup module manufacturing method and image pickup module manufacturing apparatus
JP5895105B2 (en) Imaging module manufacturing method, imaging module, and electronic apparatus
JP5961770B2 (en) Imaging module, imaging module manufacturing method, electronic device
WO2015056720A1 (en) Method for manufacturing imaging module and device for manufacturing imaging module
JP5887468B2 (en) Imaging module and electronic device
JP5857163B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
WO2014141497A1 (en) Positional adjustment device for imaging component
WO2014203611A1 (en) Position adjustment mechanism for imaging elements
WO2014203612A1 (en) Image capture element position adjustment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14853467

Country of ref document: EP

Kind code of ref document: A1