WO2015060188A1 - Image pickup module manufacturing method and image pickup module manufacturing apparatus - Google Patents

Image pickup module manufacturing method and image pickup module manufacturing apparatus Download PDF

Info

Publication number
WO2015060188A1
WO2015060188A1 PCT/JP2014/077534 JP2014077534W WO2015060188A1 WO 2015060188 A1 WO2015060188 A1 WO 2015060188A1 JP 2014077534 W JP2014077534 W JP 2014077534W WO 2015060188 A1 WO2015060188 A1 WO 2015060188A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
lens
lens unit
imaging
probe
Prior art date
Application number
PCT/JP2014/077534
Other languages
French (fr)
Japanese (ja)
Inventor
卓郎 浅岡
達也 藤浪
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015060188A1 publication Critical patent/WO2015060188A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an imaging module manufacturing method and an imaging module manufacturing apparatus.
  • This imaging module has a structure in which a lens unit in which a photographing lens is incorporated and an imaging element unit in which an imaging element such as a CCD image sensor or a CMOS image sensor is incorporated are integrated.
  • the imaging module has an auto-focus (AF) mechanism for adjusting the focus by moving the lens in the lens unit, and the lens unit and the image sensor unit are moved relative to each other in the direction perpendicular to the optical axis to capture an image.
  • AF auto-focus
  • Some have an optical image blur correction mechanism for optically correcting image blur.
  • Patent Documents 1 and 2 describe an imaging module having an AF mechanism.
  • image sensors used in image pickup modules have been widely used having a low pixel number of about 1 million to 2 million pixels to a high number of pixels of 3 million to 10 million pixels or more. ing.
  • Patent Document 1 describes a technique for fixing a lens unit and an image sensor unit after aligning the lens unit and the image sensor unit.
  • the present invention has been made in view of the above circumstances, and an imaging module manufacturing method capable of accurately determining the position of a lens unit at the time of alignment between an imaging element unit and a lens unit and improving imaging quality, and An object is to provide a manufacturing apparatus.
  • the manufacturing method of an imaging module of the present invention is a manufacturing method of an imaging module having a lens unit having a lens group, and an imaging element unit having an imaging element fixed to the lens unit and imaging a subject through the lens group.
  • the lens unit includes a lens driving device including a lens driving unit that moves at least a part of the lenses of the lens group, and the imaging element unit and the lens unit are on an axis orthogonal to the measurement chart. And at least one of the measurement charts, the relative position in the axial direction is changed, and at each relative position, the imaging element is driven and the imaging chart is imaged through the lens group by the imaging element. Process and an imaging signal obtained by imaging the measurement chart with the imaging element.
  • the lens unit is held on the shaft, the first probe is pressed against an electrical connection portion provided in the lens unit and electrically connected to the lens driving device, and the lens driving device is energized,
  • the measurement chart is displayed by the imaging device. The image is taken.
  • An imaging module manufacturing apparatus includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit.
  • An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit.
  • the member pressing portion that applies a force in the opposite direction by pressing a member against the lens unit, the measurement chart setting portion, the lens unit holding portion, and the imaging element unit holding portion at least one of the above
  • a control unit that changes the relative position in the axial direction, drives the image sensor of the image sensor unit at each relative position, and images the measurement chart through the lens unit by the image sensor, and the image sensor by the image sensor.
  • An adjustment unit that adjusts at least one of the axial position and inclination of the image sensor unit with respect to the lens unit based on an image signal obtained by imaging the measurement chart, and the image sensor unit that has been adjusted by the adjustment unit And a unit fixing portion that fixes the lens unit to the lens unit.
  • an imaging module capable of improving the imaging quality by accurately determining the position of the lens unit when aligning the imaging element unit and the lens unit.
  • FIG. 1 is an external perspective view of an imaging module 100.
  • FIG. 1 is an external perspective view of an imaging module 100.
  • FIG. FIG. 2 is an external perspective view of an image sensor unit 20 in a state where a lens unit 10 is omitted in the image pickup module 100 shown in FIG. 1.
  • FIG. 2 is a cross-sectional view of the imaging module 100 shown in FIG.
  • FIG. 1 is an external perspective view of an imaging module 100.
  • FIG. 1 is an external perspective view of an imaging module 100.
  • FIG. FIG. 2 is an external perspective view of an image sensor unit 20 in a state where a lens unit 10 is omitted in the image pickup module 100 shown
  • FIG. 4 is a diagram illustrating a relationship between an opening 75c formed in the suction head 75a of the lens unit holding unit 75 and an opening 11b formed in the top surface 11a of the housing 11 of the lens unit 10.
  • FIG. It is a figure for demonstrating the flow of air when the lens unit 10 is adsorbed-held by the lens unit holding part 75.
  • FIG. 10 it is a figure for demonstrating the flow of air when the area of the opening 75c is smaller than the area of the opening 11a.
  • 2 is a block diagram illustrating an internal configuration of an imaging module manufacturing apparatus 200.
  • FIG. 4 is a flowchart for explaining a manufacturing process of an imaging module by the imaging module manufacturing apparatus 200. It is a figure which shows the modification of the probe unit. It is a figure which shows the modification of the probe unit.
  • FIG. 1 and 2 are external perspective views of the imaging module 100.
  • FIG. 1 and 2 are external perspective views of the imaging module 100.
  • the imaging module 100 includes a lens unit 10 having a lens group 12 and an imaging element unit 20 having an imaging element (not shown in FIG. 1) that is fixed to the lens unit 10 and images a subject through the lens group 12.
  • the direction along the optical axis Ax of the lens group 12 is defined as the z direction, and the two directions orthogonal to the z direction and orthogonal to each other are defined as the x direction and the y direction, respectively.
  • 1 and 2 are perspective views when viewed from one direction in the y direction and the direction opposite to the one direction.
  • the lens unit 10 includes, for example, a metal housing 11 that accommodates each component described later.
  • the housing 11 has a cubic shape, and the top surface 11 a of the housing 11 is a surface perpendicular to the optical axis Ax of the lens group 12.
  • the side surface 11c and the side surface 11d are opposed to each other across the optical axis Ax
  • the side surface 11e and the side surface 11f are opposed to each other across the optical axis Ax. It is a surface to do.
  • an opening 11b centered on the optical axis Ax of the lens group 12 is formed.
  • the imaging module 100 captures subject light from the opening 11b into the lens group 12 for imaging.
  • a part of the flexible substrate 13 accommodated in the housing 11 is exposed from the side surface 11e and the side surface 11f of the housing 11.
  • a lens unit terminal portion 14 including terminals 14A to 14F and terminals 14a to 14l as electrical connection portions is connected to the tip of the exposed portion of the flexible substrate 13.
  • An exposed surface of each terminal included in the lens unit terminal portion 14 from the housing 11 is perpendicular to the y direction.
  • each terminal exposed from the side surface 11e of the housing 11 and the center of the exposed surface of each terminal exposed from the side surface 11f of the housing 11 are on a plane orthogonal to the optical axis Ax.
  • Each terminal exposed from the side surface 11e of the housing 11 corresponds to any terminal exposed from the side surface 11f of the housing 11, and a straight line connecting the centers of the exposed surfaces of the corresponding two terminals is , And parallel to the y direction orthogonal to the optical axis Ax.
  • FIG. 3 is an external perspective view of the imaging module 100 shown in FIGS. 1 and 2 with the lens unit 10 omitted.
  • the image sensor unit 20 includes a substrate 21 on which an image sensor 27 such as a CCD image sensor or a CMOS image sensor is formed, and a flexible substrate 22 that is electrically connected to the substrate 21.
  • an image sensor 27 such as a CCD image sensor or a CMOS image sensor is formed
  • a flexible substrate 22 that is electrically connected to the substrate 21.
  • the pixel pitch of the image sensor 27 is not particularly limited, but a pixel pitch of 1.0 ⁇ m or less is used.
  • the pixel pitch refers to the smallest distance among the distances between the centers of the photoelectric conversion regions included in the pixels included in the image sensor 27.
  • the pixel pitch of the image sensor has become narrower, but when the pixel pitch becomes narrower, the area per pixel becomes smaller. As a result, the radius of the allowable circle of confusion is reduced and the depth of focus is reduced. Furthermore, since it is necessary to increase the amount of light collected per pixel, the F number of the lens tends to be small.
  • a cylindrical cover holder 25 is formed on the substrate 21, and an image sensor 27 is disposed inside the cover holder 25.
  • a cover glass (not shown) is fitted in the hollow portion of the cover holder 25 above the image sensor 27.
  • an image sensor unit terminal portion 24 including a plurality of terminals for electrical connection with the lens unit 10 is provided on the surface of the substrate 21 outside the cover holder 25, an image sensor unit terminal portion 24 including a plurality of terminals for electrical connection with the lens unit 10 is provided.
  • the image sensor unit terminal portion 24 is also provided on the surface of the substrate 21 on the opposite side across the image sensor 27.
  • the substrate 21 is provided with an image sensor wiring connected to a data output terminal and a drive terminal of the image sensor 27.
  • the imaging element wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22.
  • the external connection terminal portion 23 functions as an electrical connection portion that is electrically connected to the image sensor 27.
  • the substrate 21 is provided with a lens unit wiring connected to each terminal included in the image sensor unit terminal portion.
  • the lens unit wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22.
  • each terminal of the lens unit terminal unit 14 and each terminal of the image sensor unit terminal unit 24 corresponding thereto are electrically connected.
  • FIG. 4 is a cross-sectional view of the imaging module 100 shown in FIGS.
  • the image sensor 27 is arranged in a recess provided in the substrate 21 and is sealed by a cover holder 25 provided on the substrate 21 and a cover glass 26 fitted in the cover holder 25. ing.
  • the lens unit 10 includes a lens group 12 including a plurality of lenses (four lenses 12A to 12D in the example of FIG. 4) disposed above the cover glass 26, and supports the lens group 12.
  • a unit terminal portion (only terminals 14c and 14F are shown in FIG. 4 because of the cross section) and a lens driving device 16 formed above the flexible substrate 13 are provided.
  • the lens group 12, the lens barrel 15, the bottom block 19, the flexible substrate 13, and the lens driving device 16 are accommodated in the housing 11.
  • the lens driving device 16 includes a first lens driving unit, a second lens driving unit, a third lens driving unit, and a Hall element as a position detection element that detects the position of the lens.
  • the first lens driving unit sets at least a part of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 4) in a first direction along the optical axis Ax of the lens group 12 ( It is a drive unit for performing focus adjustment by moving in the z direction in FIG.
  • the second lens driving unit and the third lens driving unit use at least a part of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 4) as the optical axis Ax of the lens group 12. It is a drive unit for correcting blurring of an image picked up by the image sensor 27 by moving in a second direction (x direction in FIG. 1) and a third direction (y direction in FIG. 1) orthogonal to each other.
  • the first lens driving unit, the second lens driving unit, and the third lens driving unit are actuators for moving the lens, respectively.
  • a voice coil motor VCM
  • Other known means may be employed.
  • FIG. 5 is a block diagram showing an electrical connection configuration of the lens unit 10 shown in FIG.
  • the lens driving device 16 detects the x-direction VCM 16A (the second lens driving unit) for moving the lens group 12 in the x-direction and the x-direction position of the lens group 12.
  • the z-direction VCM 16E (the first lens driving unit) for moving the lens group 12 in the z-direction and the z-direction hall element 16F for detecting the z-direction position of the lens group 12 are provided.
  • the x-direction VCM 16A has two terminals, and each of the two terminals is electrically connected to the terminal 14A and the terminal 14B via a wiring formed on the flexible substrate 13.
  • the x-direction hall element 16B has four terminals, and each of the four terminals is electrically connected to the terminal 14a, the terminal 14b, the terminal 14c, and the terminal 14d through a wiring formed on the flexible substrate 13. ing.
  • the y-direction VCM 16C has two terminals, and each of the two terminals is electrically connected to the terminal 14C and the terminal 14D through wiring formed on the flexible substrate 13.
  • the y-direction hall element 16D has four terminals, and each of the four terminals is electrically connected to the terminal 14e, the terminal 14f, the terminal 14g, and the terminal 14h via wiring formed on the flexible substrate 13. ing.
  • each of the two terminals is electrically connected to the terminal 14E and the terminal 14F via a wiring formed on the flexible substrate 13.
  • the z-direction hall element 16F has four terminals, and each of the four terminals is electrically connected to the terminal 14i, the terminal 14j, the terminal 14k, and the terminal 14l through the wiring formed on the flexible substrate 13. ing.
  • the number of terminals required for each lens driving unit and each Hall element is an example, and is not limited to the above.
  • the lens unit 10 and the imaging element unit 20 are separately manufactured. Then, an adjustment process for aligning the lens unit 10 and the image sensor unit 20 is performed so that the imaging surface of the subject imaged by the lens group 12 coincides with the image pickup surface of the image sensor 27, and then the lens. The unit 10 and the image sensor unit 20 are bonded and fixed.
  • the above adjustment process is performed by moving the image sensor unit 20 in a state where the lens unit 10 is held in a predetermined posture by the manufacturing apparatus.
  • FIG. 6 is a side view showing a schematic configuration of the manufacturing apparatus 200 for the imaging module 100.
  • the imaging module manufacturing apparatus 200 adjusts the position and inclination of the imaging element unit 20 with respect to the lens unit 10, and after the adjustment, fixes the imaging element unit 20 to the lens unit 10 to complete the imaging module 100.
  • the imaging module manufacturing apparatus 200 includes a chart unit 71, a collimator unit 73, a lens unit holding unit 75, an energization mechanism 77, an imaging element unit holding unit 79, an adhesive supply unit 81, and an ultraviolet lamp 83a as a light source. 83b and a control unit 85 for controlling them.
  • the chart unit 71, the collimator unit 73, the lens unit holding unit 75, the energization mechanism 77, and the image sensor unit holding unit 79 are supported by a surface 87 parallel to the gravitational direction, and are arranged side by side on the surface 87. .
  • the chart unit 71 includes a box-shaped casing 71a, a measurement chart 89 fitted in the casing 71a, and a light source 91 that is incorporated in the casing 71a and illuminates the measurement chart 89 from the back with parallel light. It is configured.
  • the measurement chart 89 is formed of, for example, a plastic plate having light diffusibility.
  • the chart surface of the measurement chart 89 is perpendicular to the direction of gravity.
  • the measurement chart 89 may be removable and replaceable with another one.
  • the chart unit 71 functions as a measurement chart installation unit for installing the measurement chart 89 on the Z axis, which is a perpendicular to the chart surface of the measurement chart 89 and passes through the chart surface center 89a.
  • FIG. 7 is a diagram showing a chart surface of the measurement chart 89.
  • the measurement chart 89 has a rectangular shape, and a plurality of chart images CH1, CH2, CH3, CH4, and CH5 are printed on the chart surface on which the chart pattern is provided.
  • the plurality of chart images are all the same image, and are so-called ladder-like chart patterns in which black lines are arranged at predetermined intervals.
  • Each chart image is composed of a horizontal chart image Px arranged in the horizontal direction of the image and a vertical chart image Py arranged in the vertical direction of the image.
  • the collimator unit 73 is arranged to face the chart unit 71 on the Z axis which is a perpendicular to the chart surface of the measurement chart 89 and passes through the chart surface center 89a.
  • the collimator unit 73 includes a bracket 73a fixed to a work table 87 and a collimator lens 73b.
  • the collimator lens 73b condenses the light emitted from the chart unit 71, and causes the collected light to enter the lens unit holding portion 75 through the opening 73c formed in the bracket 73a.
  • the virtual image position of the measurement chart 89 imaged by the lens unit 10 can be set to an arbitrary distance (for example, a standard suitable for an infinite position or imaging assumed by the lens unit 10). The subject distance).
  • FIG. 8 is an explanatory diagram showing a holding state of the lens unit 10 and the imaging element unit 20 by the imaging module manufacturing apparatus 200.
  • the lens unit holding part 75 is for holding the lens unit 10 on the Z axis between the chart unit 71 and the image sensor unit holding part 79.
  • the lens unit holding part 75 includes a suction head 75a having a suction surface 75d for sucking the lens unit 10, and suction holes 75b formed in the suction surface 75d (four in the example of FIG. 8).
  • a suction hole) and a suction part 75e (see FIG. 13, not shown in FIGS. 6 and 8) for sucking air from the suction hole 75b.
  • the suction head 75a is formed to be rigid with metal, for example, and is provided with an opening 75c through which the light collected by the collimator unit 73 passes.
  • the suction head 75a is arranged to face the collimator unit 73 on the Z axis, and the center of the opening 75c coincides with the Z axis.
  • the suction surface 75d of the suction head 75a is a surface perpendicular to the Z axis.
  • the suction head 75 a is disposed with the suction surface 75 d facing away from the measurement chart 89.
  • the four suction holes 75b formed in the suction surface 75d of the suction head 75a are connected to the suction part 75e via a pipe (not shown).
  • the suction part 75e is composed of a vacuum source that applies a negative pressure to the suction hole 75b.
  • the suction unit 75e is controlled by the control unit 85.
  • a frame indicated by reference numeral 75f on the suction surface 75d in FIG. 8 indicates a range where the outer edge of the top surface 11a of the casing 11 of the lens unit 10 contacts.
  • the top surface 11a of the housing 11 blocks all four suction holes. Thereby, when air is sucked from the suction hole 75b, the lens unit 10 can be stably sucked to the suction surface 75d.
  • FIG. 9 is a diagram showing the relationship between the opening 75c formed in the suction head 75a of the lens unit holding portion 75 and the opening 11b formed in the top surface 11a of the housing 11 of the lens unit 10.
  • FIG. 9 is a view of the state in which the lens unit 10 is brought into contact with the suction surface 75d as seen from the image sensor unit holding unit 79 side.
  • the lens unit 10 only the outer edge of the top surface 11a of the housing 11 and the opening 11b are provided. It is indicated by a broken line.
  • FIG. 9 the positions of the ultraviolet lamps 83a and 83b are also shown for use in later explanation.
  • the area when the opening 75c is viewed in the Z-axis direction is larger than the area when the opening 11b is viewed in the Z-axis direction.
  • the entire region of the opening 11b overlaps the opening 75c.
  • FIG. 10 is a diagram for explaining the flow of air when the lens unit 10 is held by suction by the lens unit holding portion 75.
  • FIG. 10 also illustrates a state in which a lens unit terminal portion 14 exposed from the housing 11 is in contact with probes 113a and 113b described later.
  • FIG. 11 is a diagram for explaining the air flow when the area of the opening 75c when viewed in the Z-axis direction in FIG. 10 is smaller than the area of the opening 11a when viewed in the Z-axis direction.
  • At least some of the lenses in the lens group 12 are movable in the x, y, and z directions, respectively. For this reason, when an air flow is generated inside the housing 11, the lens moves in an unintended direction, and it is difficult to accurately align the lens unit 10 and the image sensor unit 20. Therefore, as shown in FIG. 10, it is preferable to make the area of the opening 75c larger than the area of the opening 11b.
  • the suction surface 75d of the suction head 75a of the lens unit holding portion 75 is made of an elastic body such as rubber, the suction is performed. Since the air flow in the gap between the surface 75d and the top surface 11a of the housing 11 can be reduced, the generation of air flow in the housing 11 can be suppressed.
  • the energization mechanism 77 is fixed to the first slide stage 99 and the stage portion 99a of the first slide stage 99, and includes nine probes 113a (only one is shown in FIG. 6) and nine probes 113b. And a probe unit 113 (only one is shown in FIG. 6).
  • the first slide stage 99 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 99a meshed with the ball screw in the Z-axis direction.
  • the movement of the stage unit 99a is controlled by the control unit 85.
  • FIG. 12 is a view of the probe unit 113 of FIG. 6 as viewed in the Z-axis direction from the chart unit 71 side.
  • FIG. 12 shows a state in which the lens unit 10 is held by the lens unit holding portion 75.
  • the probe unit 113 includes stage portions 113A and 113B supported by the stage portion 99a.
  • the stage portion 113A is provided with nine probes 113a extending in one direction in the y direction (right to left in FIG. 12), and the stage portion 113B is provided in a direction opposite to the one direction in the y direction (from the left in FIG. 12).
  • Nine probes 113b extending in the right direction) are provided.
  • the stage portions 113A and 113B are supported so as to be movable in the y direction on the stage portion 99a.
  • the movement of the stage units 113A and 113B is controlled by the control unit 85.
  • the stage portion 113A and the nine probes 113a provided on the stage portion 113A have probes 113a on the exposed surfaces of the terminals 14A to 14D and 14a to 14e exposed from the side surface 11f of the lens unit 10 held by the lens unit holding portion 75. It functions as a probe pressing part that presses. When the probe 113a comes into contact with each of the terminals 14A to 14D and 14a to 14e, the terminals can be energized.
  • the stage portion 113B and the nine probes 113b provided on the stage portion 113B have the probes 113b on the exposed surfaces of the terminals 14f to 14l, 14E, and 14F exposed from the side surface 11e of the lens unit 10 held by the lens unit holding portion 75. Press. When the probe 113b comes into contact with each of the terminals 14f to 14l, 14E, and 14F, the terminals can be energized.
  • the direction opposite to the one direction in the y direction with respect to the terminals 14f to 14l, 14E, and 14F At least the power to add.
  • the stage unit 113B and the nine probes 113b provided on the stage unit 113B apply a force in a direction opposite to the force in one direction y applied to the terminals 14A to 14D and 14a to 14e by the probe 113a. It functions as a member pressing part to be added.
  • the probes 113a and 113b are brought into contact with the respective terminals constituting the lens unit terminal portion 14, so that the first lens driving portion (z-direction VCM 16E) and the second lens driving portion (x It is possible to drive the lens driving device 16 including the direction VCM 16A) and the third lens driving unit (y direction VCM 16C).
  • the image sensor unit holding unit 79 is for holding the image sensor unit 20 on the Z axis. Further, the image sensor unit holding unit 79 can change the position and inclination of the image sensor unit 20 in the Z-axis direction under the control of the control unit 85.
  • the inclination of the imaging element unit 20 means the inclination of the imaging surface 27a of the imaging element 27 with respect to a plane orthogonal to the Z-axis.
  • the imaging element unit holding unit 79 holds a chuck hand 115 that holds the imaging element unit 20 so that the imaging surface 27a faces the chart unit 71 on the Z axis, and a substantially crank-shaped bracket 117 to which the chuck hand 115 is attached.
  • the two-axis rotary stage 119 that adjusts the inclination around two axes orthogonal to the Z-axis (horizontal X-axis and vertical Y-axis) and the bracket 121 to which the two-axis rotary stage 119 is attached are held in the Z-axis direction. And a second slide stage 123 to be moved.
  • the chuck hand 115 includes a pair of sandwiching members 115a bent in a substantially crank shape, and an actuator 115b that moves these sandwiching members 115a in the X-axis direction orthogonal to the Z-axis (see FIG. 6). It consists of and.
  • the sandwiching member 115 a sandwiches the outer frame of the image sensor unit 20 and holds the image sensor unit 20.
  • the chuck hand 115 holds the image sensor unit 20 held by the holding member 115a so that the optical axis Ax of the lens unit 10 held by the lens unit holding unit 75 and the center position of the image pickup surface 27a substantially coincide with each other. Position.
  • the chuck hand 115 overlaps each terminal of the image sensor unit terminal portion 24 of the image sensor unit 20 with each terminal of the lens unit terminal portion 14 of the held lens unit 10.
  • the image sensor unit 20 held between the holding members 115a is positioned.
  • the two-axis rotary stage 119 is an electric two-axis goniometer stage, and the rotation of two motors (not shown) causes the image sensor unit 20 to move around the X axis about the center position of the image pickup surface 27a. It is inclined in the ⁇ x direction and the ⁇ y direction around the Y axis perpendicular to the Z axis and the X axis. Thereby, when the imaging element unit 20 is tilted in each direction, the positional relationship between the center position of the imaging surface 27a and the Z axis does not shift.
  • the second slide stage 123 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 123a engaged with the ball screw in the Z-axis direction.
  • a bracket 121 is fixed to the stage portion 123a.
  • the connector cable 127 connected to the external connection terminal portion 23 provided at the tip of the flexible substrate 22 of the image sensor unit 20 is attached to the biaxial rotation stage 119.
  • the connector cable 127 inputs a drive signal for the image sensor 27 and outputs a captured image signal output from the image sensor 27.
  • the adhesive supply unit 81 and the ultraviolet lamps 83a and 83b constitute a unit fixing unit that fixes the lens unit 10 and the imaging element unit 20.
  • the adhesive supply unit 81 is an adhesive that cures by light in the gap between the lens unit 10 and the image sensor unit 20 (here as an example) Supply UV curable adhesive.
  • the ultraviolet lamps 83a and 83b cure the adhesive by irradiating the ultraviolet curable adhesive supplied to the gap with ultraviolet rays.
  • the adhesive in addition to the ultraviolet curable adhesive, an instantaneous adhesive, a thermosetting adhesive, a natural curable adhesive, and the like can be used.
  • ultraviolet light is present on one divided area side.
  • a lamp 83a is disposed, and an ultraviolet lamp 83b is disposed on the other divided area side.
  • the ultraviolet lamps 83a and 83b cure the ultraviolet curable adhesive supplied to the gap by irradiating light from two directions. Thereby, compared with the case of irradiating ultraviolet rays from one direction, the ultraviolet curable adhesive can be cured more uniformly in the entire module, and the lens unit 10 and the imaging element unit 20 can be stably fixed. be able to.
  • the lens unit 10 is divided into four by a straight line L1 and a straight line L2 that pass through the optical axis Ax of the lens group 12 and are orthogonal to the optical axis Ax as viewed in the Z-axis direction. And it is good also as a structure which arrange
  • FIG. 13 is a block diagram showing an internal configuration of the imaging module manufacturing apparatus 200. As shown in FIG. 13
  • each unit described above is connected to the control unit 85.
  • the control unit 85 is, for example, a microcomputer including a CPU, a ROM, a RAM, and the like, and controls each unit based on a control program stored in the ROM.
  • the control unit 85 is connected to an input unit 131 such as a keyboard and a mouse for performing various settings, and a display unit 133 that displays setting contents, work contents, work results, and the like.
  • the lens driving driver 145 is a driving circuit for driving the lens driving device 16, and the first lens driving unit, the second lens driving unit, the third lens driving unit, and the x direction via the probe unit 113.
  • a drive current is supplied to each of the hall element 16B, the y-direction hall element 16D, and the z-direction hall element 16F.
  • the image sensor driver 147 is a drive circuit for driving the image sensor 27, and inputs a drive signal to the image sensor 27 via the connector cable 127.
  • the in-focus coordinate value acquisition circuit 149 performs Z for a plurality of imaging positions (positions corresponding to the chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89) set on the imaging surface 27a of the imaging element 27. In-focus coordinate values that are positions with a high degree of focus in the axial direction are acquired.
  • the control unit 85 controls the second slide stage 123 when acquiring the in-focus coordinate values of a plurality of imaging positions, and a plurality of measurement positions (Z0, Z1, Z2) discretely set in advance on the Z axis. ,... Are sequentially moved.
  • control unit 85 controls the image sensor driver 147 to display chart images of a plurality of chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89 formed by the lens group 12 at each measurement position. Let's take an image.
  • the focused coordinate value acquisition circuit 149 extracts pixel signals corresponding to the plurality of imaging positions from the imaging signal input via the connector cable 127, and individually focuses evaluation on the plurality of imaging positions from the pixel signals. Each value is calculated.
  • the measurement position when a predetermined focus evaluation value is obtained for each imaging position is set as a focus coordinate value on the Z axis.
  • a contrast transfer function value (hereinafter referred to as CTF value) can be used.
  • the CTF value is a value representing the contrast of the image with respect to the spatial frequency, and when the CTF value is high, the degree of focus is considered high.
  • the in-focus coordinate value acquisition circuit 149 has a plurality of directions set on the XY coordinate plane for each of a plurality of measurement positions (Z0, Z1, Z2,%) Set on the Z axis for each of a plurality of imaging positions. CTF values are calculated for each.
  • the direction in which the CTF value is calculated is, for example, a horizontal direction (X-axis direction) that is the horizontal direction of the imaging surface 27a and a vertical direction (Y-axis direction) orthogonal thereto, and the CTF value in each direction is X -CTF value and Y-CTF value are calculated respectively.
  • the in-focus coordinate value acquisition circuit 149 for a plurality of imaging positions corresponding to each chart image CH1, CH2, CH3, CH4, CH5, coordinates on the Z axis (Zp1, Zp2) of the measurement position where the X-CTF value is maximum , Zp3, Zp4, Zp5) are acquired as the horizontal in-focus coordinate values. Similarly, the coordinate on the Z axis of the measurement position where the Y-CTF value is maximized is acquired as the vertical focus coordinate value.
  • the image plane calculation circuit 151 receives the horizontal focus coordinate value and the vertical focus coordinate value of each imaging position from the focus coordinate value acquisition circuit 149.
  • the imaging plane calculation circuit 151 includes the XY coordinate value of each imaging position when the imaging surface 27a is made to correspond to the XY coordinate plane, the horizontal in-focus coordinate value on the Z axis and the vertical value obtained for each imaging position.
  • a plurality of evaluation points expressed in combination with the in-focus coordinate values are expanded into a three-dimensional coordinate system combining the XY coordinate plane and the Z axis, and the three-dimensional coordinate system is based on the relative positions of these evaluation points.
  • An approximate imaging plane expressed as one plane is calculated.
  • Approximate image plane information is input from the image plane calculation circuit 151 to the adjustment value calculation circuit 153.
  • the adjustment value calculation circuit 153 has an imaging plane coordinate value F1 on the Z axis that is an intersection of the approximate imaging plane and the Z axis, and an inclination about the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane. A certain XY direction rotation angle is calculated and input to the control unit 85.
  • the control unit 85 drives the image sensor unit holding unit 79 based on the imaging plane coordinate value and the XY direction rotation angle input from the adjustment value calculation circuit 153, and adjusts the Z-axis direction position and inclination of the image sensor unit 20. Then, the imaging surface 27a is made to coincide with the approximate imaging surface.
  • the control unit 85 functions as an adjustment unit that adjusts the Z-axis direction position and inclination of the image sensor unit 20 with respect to the lens unit 10 based on an image signal obtained by imaging the measurement chart 89 by the image sensor 27.
  • the imaging module manufacturing apparatus 200 described above generally performs the following steps. (1) Step of holding the lens unit 10 and the image sensor unit 20 on the Z axis orthogonal to the chart surface of the measurement chart 89 (2) Changing the position of the image sensor unit 20 held on the Z axis in the Z axis direction In each position, the image pickup device 27 is driven while the lens drive device 16 of the lens unit 10 held on the Z-axis is energized, and the measurement chart 89 is picked up by the image pickup device 27. (3) The image pickup device 27 A step of adjusting the position and inclination of the image pickup device unit 20 with respect to the lens unit 10 based on the image pickup signal obtained by picking up the image of the measurement chart 89 and fixing the image pickup device unit 20 to the lens unit 10.
  • a robot transport unit (not shown) transports the lens unit 10 and brings the top surface 11a of the lens unit 10 into contact with the suction surface 75d of the lens unit holding unit 75. In this state, the frame 75f and the outer edge of the top surface 11a of the housing 11 coincide.
  • the control unit 85 When the top surface 11a of the lens unit 10 comes into contact with the suction surface 75d of the lens unit holding unit 75, the control unit 85 performs air suction by the suction unit 75e. Thereby, air is sucked from the suction hole 75b, the top surface 11a of the lens unit 10 is sucked to the suction surface 75d, and the lens unit 10 is held.
  • control unit 85 moves the stage unit 99a of the first slide stage 99 in a direction to approach the lens unit holding unit 75. Further, the control unit 85 brings the stage unit 113A and the stage unit 113B close to the lens unit holding unit 75, presses the probe 113a against each of the terminals 14A to 14D and 14a to 14e of the lens unit 10, and The probe 113b is pressed against each of the terminals 14E to 14F and 14f to 14l (S2). Thereby, the lens driving device 16 and the lens driving driver 145 are electrically connected.
  • the control unit 85 controls the second slide stage 123 to move the biaxial rotary stage 119 along the Z-axis direction, so that the image sensor unit 20 is interposed between the lens unit holding unit 75 and the biaxial rotary stage 119. Forms an insertable space.
  • the image sensor unit 20 is held by a robot (not shown) and transferred between the lens unit holding unit 75 and the biaxial rotary stage 119.
  • the control unit 85 detects the movement of the image sensor unit 20 with an optical sensor or the like, and moves the stage unit 123a of the second slide stage 123 in a direction to approach the lens unit holding unit 75. Then, the operator holds the image sensor unit 20 using the clamping member 115 a of the chuck hand 115.
  • the connector cable 127 is connected to the external connection terminal portion 23 of the image sensor unit 20. Thereby, the image sensor 27 and the control unit 85 are electrically connected. Thereafter, the holding of the image sensor unit 20 by a robot (not shown) is released.
  • the focus coordinate value acquisition circuit 149 causes the horizontal focus coordinate value and the vertical focus coordinate value of each image pickup position on the image pickup surface 27a. Is acquired (S4).
  • control unit 85 controls the second slide stage 123 to move the biaxial rotation stage 119 in a direction approaching the lens unit holding unit 75, and the first imaging device 27 is closest to the lens unit 10.
  • the image sensor unit 20 is moved to the measurement position.
  • Control unit 85 causes light source 91 of chart unit 71 to emit light.
  • the control unit 85 inputs a drive signal from the lens drive driver 145 to the terminals 14A to 14F and drives the first to third lens drive units to position the optical axis Ax of the lens group 12 in the x direction,
  • the y-direction position and the z-direction position are held at a reference position (for example, an initial position during actual use).
  • control unit 85 acquires the output signals of the x-direction hall element 16B, the y-direction hall element 16D, and the z-direction hall element 16F from the lens driving driver 145, and uses the output signals to Control of the x-direction position, the y-direction position, and the z-direction position of the optical axis Ax is performed.
  • control unit 85 controls the image sensor driver 147 to cause the image sensor 27 to capture the chart images CH1, CH2, CH3, CH4, and CH5 formed by the lens unit 10.
  • the image sensor 27 inputs the captured image signal to the focused coordinate value acquisition circuit 149 via the connector cable 127.
  • the in-focus coordinate value acquisition circuit 149 extracts the pixel signal at the imaging position corresponding to each chart image CH1, CH2, CH3, CH4, and CH5 from the input imaging signal, and X for each imaging position from the pixel signal. -Calculate CTF and Y-CTF values.
  • the control unit 85 stores information on the X-CTF value and the Y-CTF value in, for example, a RAM in the control unit 85.
  • the control unit 85 sequentially moves the image sensor unit 20 to a plurality of measurement positions (Z0, Z1, Z2,%) Set along the Z-axis direction, and drives the lens driving device 16 at each measurement position.
  • the image sensor 27 is caused to capture the chart image of the measurement chart 89 while maintaining the x-direction position, the y-direction position, and the z-direction position of the optical axis Ax of the lens group 12 at the reference position.
  • the focused coordinate value acquisition circuit 149 calculates an X-CTF value and a Y-CTF value at each imaging position at each measurement position.
  • the focused coordinate value acquisition circuit 149 selects the maximum value from among the plurality of calculated X-CTF values and Y-CTF values for each of the imaging positions, and the Z-axis of the measurement position where the maximum value is obtained.
  • the coordinates are acquired as the horizontal focus coordinate value and the vertical focus coordinate value of the imaging position.
  • the horizontal focus coordinate value and the vertical focus coordinate value acquired by the focus coordinate value acquisition circuit 149 are input to the imaging plane calculation circuit 151.
  • the imaging plane calculation circuit 151 calculates an approximate imaging plane F that is approximated in a plane by, for example, the least square method (S6).
  • the adjustment value calculation circuit 153 includes an imaging plane coordinate value F1 that is an intersection of the approximate imaging plane F and the Z axis, and an XY direction that is an inclination around the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane.
  • the rotation angle is calculated and input to the control unit 85 (S7).
  • the control unit 85 controls the biaxial rotation stage 119 and the second slide stage 123 based on the imaging plane coordinate value F1 and the rotation angle in the XY direction, and the center position of the imaging plane 27a of the imaging element 27 is the imaging plane coordinate.
  • the image sensor unit 20 is moved in the Z-axis direction so as to coincide with the value F1, and the angles of the ⁇ x direction and ⁇ y direction of the image sensor unit 20 are adjusted so that the inclination of the image sensing surface 27a coincides with the approximate imaging plane F. Adjust (S8).
  • the control unit 85 performs a confirmation step of confirming the in-focus position of each imaging position after adjusting the position and inclination of the imaging element unit 20 (S9).
  • step S4 is executed again. After the adjustment of the position and inclination of the image sensor unit 20, the variation in the evaluation value corresponding to the horizontal direction and the vertical direction becomes small for each of the image pickup positions.
  • the control unit 85 moves the imaging element unit 20 in the Z-axis direction so that the center position of the imaging surface 27a coincides with the imaging plane coordinate value F1 after the confirmation step (S5: YES) (S10).
  • control unit 85 supplies ultraviolet curing adhesive from the adhesive supply unit 81 to the gap between the lens unit 10 and the imaging element unit 20 (S11), and turns on the ultraviolet lamps 83a and 83b, thereby curing the ultraviolet curing.
  • the mold adhesive is cured (S12).
  • the control unit 85 stops the suction of air by the suction unit 75e,
  • the stage portions 113A and 113B are moved away from the lens unit 10. Thereby, the adsorption
  • the completed imaging module 100 is taken out from the imaging module manufacturing apparatus 200 by a robot (not shown) (S14).
  • the lens unit 10 and the image sensor unit 20 can be fixed with an ultraviolet curable adhesive, but curing with the ultraviolet curable adhesive may be used as temporary fixing between the lens unit 10 and the image sensor unit 20.
  • the imaging module 100 is removed from the imaging module manufacturing apparatus 200 in a state where the lens unit 10 and the imaging element unit 20 are temporarily fixed, and after performing a desired process such as a cleaning process, the lens unit 10 and the imaging element unit 20 May be completely fixed by a thermosetting adhesive or the like.
  • the manufacturing apparatus 200 described above pushes the probe 113a to the nine terminals exposed from the side surface 11f of the housing 11 of the lens unit 10 to energize the lens driving device 16 of the lens unit 10 held by the lens unit holding part 75.
  • the probe 113b is pressed against nine terminals exposed from the side surface 11e of the housing 11 facing the side surface 11f.
  • the focus evaluation value is obtained by imaging the measurement chart 89 while energizing each lens driving unit and each Hall element included in the lens driving device.
  • the components in the lens driving device 16 to be energized do not need to be the lens driving units and the hall elements, and only energize those necessary according to the alignment accuracy. Also good.
  • the first to third lens driving may be energized, and the x-direction hall element 16B, the y-direction hall element 16D, and the z-direction hall element 16F may not be energized.
  • the x-direction VCM 16A, the x-direction hall element 16B, the y-direction VCM 16C, and the y-direction hall element 16D may be energized, and the z-direction VCM 16E and the z-direction hall element 16F may not be energized.
  • the arrangement of the terminals electrically connected to the components of the lens driving device 16 to be energized at the time of manufacture is such that the force in the y direction applied to the lens unit 10 by the pressing of the probe 113a and the lens unit by the pressing of the probe 113b. It is only necessary to be able to counteract even a little by the force in the y direction applied to.
  • one of the two terminals is provided at a position exposed from the side surface 11e of the housing 11, and the other of the two terminals is exposed from the side surface 11f of the housing 11.
  • the lens unit 10 provided at the position to be manufactured is manufactured.
  • the probe unit 113 of the manufacturing apparatus 200 presses one probe 113b against the exposed surface of one of the two terminals, and places one probe 113b on the exposed surface of the other of the two terminals. Press. Even when the straight line connecting the centers of the exposed surfaces of the two terminals is not parallel to the y direction, a force in the y direction applied to the lens unit 10 by pressing the probe 113a is applied to the lens unit 10 by pressing the probe 113b. You can counteract even a little by the force of direction.
  • the moment acting on the lens unit 10 when the probes 113a and 113b are pressed is zero. It is possible to prevent the positional deviation of the optical axis Ax.
  • the probe 113 b is not electrically connected to the lens driving driver 145, or is connected to the lens driving driver 145, but is a dummy that is not supplied with electricity when the imaging module 100 is manufactured.
  • a probe may be used.
  • the probe unit 113 is configured as shown in FIG.
  • probes 113a are provided on the stage portion 113A, and four dummy probes 113b are provided on the stage portion 113B.
  • the four probes 113a are pressed against the terminal 14D, the terminal 14C, the terminal 14B, and the terminal 14A, respectively.
  • the uppermost probe among the four dummy probes 113b is pressed against the terminal 14g having the exposed surface center on a straight line extending in the y direction from the exposed surface center of the terminal 14D.
  • the second probe from the top is pressed against the terminal 14h having the exposed surface center on a straight line extending in the y direction from the center of the exposed surface of the terminal 14C.
  • the third probe from the top is pressed against the terminal 14k having the exposed surface center on a straight line extending in the y direction from the exposed surface center of the terminal 14B.
  • the bottom probe is pressed against the terminal 14l having the exposed surface center on a straight line extending in the y direction from the center of the exposed surface of the terminal 14A.
  • the y-direction force applied to the terminal to be energized by the probe 113a is canceled by the y-direction force applied to the terminal by the dummy probe 113b that is not used for driving the lens driving device 16, thereby the lens unit.
  • the positional deviation of the ten optical axes Ax can be prevented.
  • the number of dummy probes 113b provided on the stage portion 113B and the position of the dummy probes 113b are determined by the force in the y direction applied to the lens unit 10 by the pressing of the probes 113a. It only needs to be able to cancel even a little by the force in the y direction applied to the lens unit 10 by the contact, and can be changed as appropriate.
  • the dummy probe 113b is shown in FIG. 15, since the dummy probe 113b does not need to be electrically connected to the lens driving device 16, a member of any material and shape may be used. That is, it is not necessary to be a probe, and it may be constituted by some member that can apply a force to the terminal of the lens unit 10.
  • the dummy probe 113b (or other member) is pressed against the terminal provided in the lens unit 10, but the pressing portion of the dummy probe 113b may be a portion other than the terminal.
  • pressing the four dummy probes 113b against the side surface 11e of the casing 11 can also cancel the force in the y direction applied from the probe 113a to the terminal to be energized.
  • the probe unit 113 has a housing as shown in FIG. The probe 113a is pressed against each of the terminals 14E, 14F, 14i to 14l exposed from the side surface 11f of the eleventh side.
  • the probe unit 113 is a dummy probe 113b with respect to the intersection of the straight line extending in the y direction from the center of the exposed surface of each terminal on the side surface 11f and the side surface 11e of the housing 11 when viewed from the optical axis Ax direction. Press down. With such a configuration, the force in the y direction applied by the probe 113a to the terminal to be energized can be canceled by the pressing force against the side surface 11e of the dummy probe 113b. As described above, the number of dummy probes 113b and the positions where they are pressed can be changed as appropriate.
  • means for holding the lens unit 10 (such as a holding arm in the prior art) around the side surface of the housing 11 of the lens unit 10 is provided. There is no need to place them.
  • a device for fixing the lens unit 10 and the image sensor unit 20 adheresive supply unit 81, ultraviolet lamps 83a and 83b), a device for energizing the lens unit 10 (energization mechanism 77), and the like can be freely arranged.
  • the design cost of the manufacturing apparatus 200 can be reduced and the maintainability can be improved.
  • the lens group 12 is easily moved in the x direction and the y direction.
  • the mechanism inside the housing 11 of the lens unit 10 becomes complicated, and the rigidity of the housing 11 tends to decrease.
  • the inclination of the optical axis Ax is likely to occur. Accordingly, in such a model, it is effective to employ a method of holding the lens unit 10 by suction of the top surface 11a.
  • the number of terminals provided in the lens unit 10 is 18 at the maximum as illustrated in FIG. For this reason, there is a tendency that the number of terminals to be energized is larger than that of a model having few terminals.
  • the number of terminals to be energized increases, when the probe is pressed against the lens unit in one direction in the conventional method, the force applied to the lens unit 10 increases, and the position of the optical axis Ax of the lens unit 10 tends to shift. Become. In particular, in the case where there are four or more terminals to be energized on one side surface 11f as in the lens unit 10 shown in FIG. For this reason, the method described in this embodiment is effective.
  • the lens unit holding unit 75 holds the lens unit 10 by suction.
  • the lens unit 10 may be held by holding the side surface.
  • the lens unit 10 may be held by sandwiching the top surface 11a and the bottom block 19 of the lens unit 10 with some member.
  • the lens unit 10 is held by suction as in the manufacturing apparatus 200, since the holding is performed only by air suction as compared with holding by gripping or the like, the lens unit 10 is displaced with respect to the pressing force of the probe. Is likely to occur. For this reason, it is effective to adopt the configuration of the energization mechanism 77.
  • step S4 in FIG. 14 the in-focus coordinate value is acquired by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed.
  • the lens unit holding part 75 can be moved in the Z-axis direction, the lens unit holding part 75 can be moved in the Z-axis direction while the position of the image sensor unit holding part 79 is fixed, or the lens unit holding part can be held.
  • the coordinate position may be acquired at each measurement position by changing the measurement position by moving the unit 75 and the image sensor unit holding unit 79 in the Z-axis direction.
  • the chart unit 71 is moved in the Z-axis direction to change the measurement position and acquire the in-focus coordinate value.
  • the focus coordinate value may be acquired by changing the measurement position by changing the Z-axis direction position of each of the lens unit holding unit 75, the imaging element unit holding unit 79, and the chart unit 71.
  • the measurement position is changed by changing the relative position in the Z-axis direction of the lens unit 10, the image sensor unit 20, and the measurement chart 89, and the measurement chart 89 is imaged by the image sensor 27 at each relative position to be focused. Any configuration that acquires coordinate values may be used.
  • a plurality of measurement positions are realized by changing the relative position, and the measurement chart is imaged when each measurement position is reached, but the measurement chart is continuously imaged. (I.e., taking a moving image), and the relative position may be changed so that each measurement position is reached during the imaging.
  • step S8 in FIG. 14 the Z-axis direction position of the image sensor unit 20 relative to the lens unit 10 is adjusted by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed.
  • the lens unit holding part 75 is movable in the Z-axis direction, and the image sensor unit holding part 79 moves the lens unit holding part 75 while the position is fixed, or the lens unit holding part 75 and the image sensor unit.
  • the position adjustment may be performed by moving each of the holding portions 79.
  • the tilt adjustment of the image sensor unit 20 with respect to the lens unit 10 can be performed with higher accuracy.
  • the top surface 11a of the housing 11 of the lens unit 10 has been described as a surface perpendicular to the optical axis Ax of the lens group 12.
  • the term “perpendicular” does not need to be strictly vertical, and if the manufacturing apparatus has a mechanism for adjusting the tilt of the image sensor unit 20 with respect to the lens unit 10, it may be within the stroke of tilt adjustment. When there is no tilt adjustment mechanism, a deviation of about 1 ° is allowed.
  • the disclosed method of manufacturing an imaging module is a method of manufacturing an imaging module having a lens unit having a lens group, and an image sensor unit that is fixed to the lens unit and has an image sensor that images a subject through the lens group.
  • the lens unit includes a lens driving device including a lens driving unit that moves at least a part of the lenses of the lens group, and the imaging element unit and the lens unit are on an axis orthogonal to the measurement chart. And at least one of the measurement charts, the relative position in the axial direction is changed, and at each relative position, the imaging element is driven and the imaging chart is imaged through the lens group by the imaging element.
  • Imaging obtained by imaging the measurement chart with the imaging device A second step of adjusting at least one of the axial position and the inclination of the image sensor unit with respect to the lens unit based on the number, and fixing the image sensor unit to the lens unit, the first step Then, the lens unit is held on the shaft, the first probe is pressed against an electrical connection portion provided in the lens unit and electrically connected to the lens driving device, and the lens driving device is energized, In the state where a force in a direction opposite to the direction perpendicular to the optical axis of the lens group applied to the electrical connection portion by pressing the first probe is applied to the lens unit, the measurement chart is used by the imaging device. Is taken.
  • the pressing force of the first probe for energizing the lens driving device can be canceled by the force in the direction opposite to the pressing force of the first probe, and the holding posture of the lens unit Can be maintained in a desired state.
  • the lens unit and the image sensor unit can be accurately aligned.
  • the housing of the lens unit has two surfaces facing each other across the optical axis of the lens group, and the electrical connection portion is exposed from each of the two surfaces.
  • the lens unit is held on the shaft, and the first probe is pressed against the electrical connection portion exposed from one of the two surfaces to drive the lens.
  • the measurement chart is displayed by the imaging element in a state where the second probe is pressed against the electrical connection portion exposed from the other surface of the two surfaces and the lens driving device is energized. The image is taken.
  • the pressing force of the first probe for energizing the lens driving unit can be offset by the pressing force of the second probe for energizing the lens driving unit.
  • the holding posture can be maintained in a desired state. As a result, the lens unit and the image sensor unit can be accurately aligned.
  • the first step in the first step, four or more first probes are pressed against the electrical connection portion exposed from one of the two surfaces.
  • the pressing force increases, so it is particularly effective to apply the force in the opposite direction to the lens unit.
  • the lens unit includes a housing that houses the lens group and has a surface on the subject side that is perpendicular to the optical axis of the lens group. Air is sucked from a suction hole provided in the suction surface of the suction head having a suction surface perpendicular to the suction head, and the surface of the housing is sucked by the suction surface to hold the lens unit.
  • the surface of the lens unit housing on the subject side is attracted by the suction head and the lens unit is held, so that the optical axis of the lens group in the lens unit is relative to the axis orthogonal to the measurement chart. It is possible to prevent the camera from tilting, and it is possible to accurately determine the position of the lens unit when aligning the imaging element unit and the lens unit, thereby improving the imaging quality.
  • the lens unit is attracted and held on the surface of the lens unit housing on the subject side, and thus the tilt of the housing is likely to occur when the first probe is applied. It is particularly effective to apply a directional force.
  • Light is irradiated from each of the divided area side and the other divided area side, the photocurable adhesive supplied to the gap between the lens unit and the imaging element unit is cured, and the lens unit and the imaging element unit are It is to be fixed.
  • the lens driving device includes a first lens driving unit that moves at least a part of the lenses in the first direction along the optical axis of the lens group; A second lens driving unit and a third lens driving unit for moving at least some of the lenses in a second direction and a third direction orthogonal to the optical axis of the lens group, respectively; It is.
  • the number of lens drive parts to be energized increases and the number of electrical connection parts to which the probe is applied increases.
  • the inclination of the lens unit due to contact with the probe is likely to occur, and it is particularly effective to apply a force in the direction opposite to the one direction to the lens unit.
  • the disclosed method for manufacturing an imaging module includes a method in which the pixel pitch of the imaging element is 1.0 ⁇ m or less.
  • the pixel pitch of the image sensor is 1.0 ⁇ m or less, since alignment accuracy is particularly required, it is particularly effective to apply a force in a direction opposite to the one direction to the lens unit.
  • the disclosed imaging module manufacturing apparatus includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit.
  • An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit.
  • the pressing force of the first probe for energizing the lens driving device can be offset by a force in the direction opposite to the pressing force of the first probe, and the holding posture of the lens unit Can be maintained in a desired state.
  • the lens unit and the image sensor unit can be accurately aligned.
  • the probe pressing portion is one of two surfaces facing each other across the optical axis of the lens group in the lens unit housing held by the lens unit holding portion.
  • the first probe is pressed against the electrical connection portion exposed from the surface
  • the member pressing portion is a second member as the member with respect to the electrical connection portion exposed from the other surface of the two surfaces. The probe is pressed against it.
  • the pressing force of the first probe for energizing the lens driving unit can be canceled by the pressing force of the second probe, and the holding posture of the lens unit is maintained in a desired state. can do.
  • the lens unit and the image sensor unit can be accurately aligned.
  • the disclosed imaging module manufacturing apparatus is configured such that the first probe and the second probe are in contact with the lens unit, the contact point between the lens unit and the first probe, the lens unit, and the lens unit.
  • a plane including a contact point with the second probe is perpendicular to the optical axis.
  • the pressing force of the first probe for energizing the lens driving unit can be surely offset by the pressing force of the second probe.
  • the disclosed imaging module manufacturing apparatus includes the same number of the first probe and the second probe, and the optical axis in a state where the first probe and the second probe are in contact with the lens unit.
  • a pair of contact points between the lens unit and one first probe and a contact point between the lens unit and one second probe are arranged on a straight line extending in a direction perpendicular to A plurality are arranged in a direction orthogonal to the straight line.
  • the pressing force of the first probe for energizing the lens driving unit can be surely offset by the pressing force of the second probe.
  • the probe pressing unit includes four or more first probes.
  • the pressing force increases, so it is particularly effective to apply a force in the opposite direction to the lens unit.
  • the lens unit holding portion includes a suction head having a suction surface orthogonal to the axis, a suction hole formed in the suction surface, and suction for sucking air from the suction hole.
  • the surface of the housing of the lens unit that has a surface perpendicular to the optical axis of the lens group on the subject side, in which air is sucked from the suction hole by the suction portion, and the lens group is accommodated Is held by the suction surface to hold the lens unit on the shaft.
  • the unit fixing portion is divided into two when the lens unit is divided into two by a straight line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction.
  • a light source that is disposed on each of the divided area side and the other divided area side, irradiates light to the gap between the lens unit and the imaging element unit, and cures the photocurable adhesive supplied to the gap. Is included.
  • the method for manufacturing an imaging module according to the present invention is particularly effective when applied to the manufacture of an imaging module mounted on an electronic device such as a mobile phone, a spectacle-type electronic device, or a wristwatch-type electronic device.
  • Imaging module 10 Lens unit 11 Housing
  • Image sensor unit 21 Substrate 22 Flexible substrate 23 External connection terminal unit 24 Image sensor unit terminal unit 27 Image sensor 200 Imaging module manufacturing apparatus 71 Chart unit 89 Measurement chart 75 Lens unit holding unit 75a Suction head 75b Suction Hole 75c Opening 75d Suction surface 75e Suction part 81 Adhesive supply part 83a, 83b Ultraviolet lamp 79 Imaging element unit holding part 85 Control part 113 Probe unit 113a, 113b Probe Ax Optical axis z A direction along the optical axis xz direction orthogonal to the optical axi

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

Provided are an image pickup module manufacturing apparatus and an image pickup module manufacturing method, whereby alignment between an image pickup element unit and a lens unit can be highly accurately performed. A manufacturing apparatus (200) presses a probe (113a) to each of terminals exposed from a side surface (11f) of a housing (11) of a lens unit (10) held by means of a lens unit holding section (75), presses a probe (113b) to each of terminals exposed from a side surface (11e) of the housing (11) of the lens unit (10), and carries a current to a lens drive apparatus (16) in the lens unit (10). In such state, an image of a measurement chart (89) is picked up by means of an image pickup element (27) through the lens unit (10), and on the basis of the picked up image, alignment between the lens unit (10) and an image pickup element unit (20) is performed.

Description

撮像モジュールの製造方法及び撮像モジュールの製造装置Imaging module manufacturing method and imaging module manufacturing apparatus
 本発明は、撮像モジュールの製造方法及び撮像モジュールの製造装置に関する。 The present invention relates to an imaging module manufacturing method and an imaging module manufacturing apparatus.
 撮影機能を有する携帯電話機等の携帯用電子機器には、小型で薄型の撮像モジュールが搭載されている。この撮像モジュールは、撮影用のレンズが組み込まれたレンズユニットと、CCDイメージセンサやCMOSイメージセンサ等の撮像素子が組み込まれた撮像素子ユニットとが一体化された構造を有する。 In portable electronic devices such as a mobile phone having a photographing function, a small and thin imaging module is mounted. This imaging module has a structure in which a lens unit in which a photographing lens is incorporated and an imaging element unit in which an imaging element such as a CCD image sensor or a CMOS image sensor is incorporated are integrated.
 撮像モジュールには、レンズユニット内のレンズを動かしてフォーカス調整をするためのオートフォーカス(AF)機構を有するもの、レンズユニットと撮像素子ユニットを光軸に直交する方向に相対移動させて、撮像される像のブレを光学的に補正するための光学式像ブレ補正機構を有するものがある。 The imaging module has an auto-focus (AF) mechanism for adjusting the focus by moving the lens in the lens unit, and the lens unit and the image sensor unit are moved relative to each other in the direction perpendicular to the optical axis to capture an image. Some have an optical image blur correction mechanism for optically correcting image blur.
 例えば、特許文献1,2には、AF機構を有する撮像モジュールが記載されている。 For example, Patent Documents 1 and 2 describe an imaging module having an AF mechanism.
 近年、撮像モジュールに使用される撮像素子は、100万~200万画素程度の低画素数から、300万~1000万画素、或いはそれ以上の高画素数を有するものが広く使用されるようになっている。 In recent years, image sensors used in image pickup modules have been widely used having a low pixel number of about 1 million to 2 million pixels to a high number of pixels of 3 million to 10 million pixels or more. ing.
 低画素数の撮像素子を用いる場合、レンズユニットと撮像素子ユニットとの位置合わせに特に高い精度は要求されなかったが、高画素数の撮像素子を用いる場合には、高い精度での位置合わせが必要となる。 When using an image sensor with a low number of pixels, high accuracy was not required for alignment between the lens unit and the image sensor unit. However, when using an image sensor with a high number of pixels, alignment with high accuracy was not required. Necessary.
 特許文献1には、レンズユニットと撮像素子ユニットの位置合わせをしてから、レンズユニットと撮像素子ユニットの固定を行う技術が記載されている。 Patent Document 1 describes a technique for fixing a lens unit and an image sensor unit after aligning the lens unit and the image sensor unit.
日本国特開2010-88088号公報Japanese Unexamined Patent Publication No. 2010-88088 日本国特開2005-86659号公報Japanese Unexamined Patent Publication No. 2005-86659
 特許文献1に記載のカメラモジュール製造装置は、レンズユニットを製造装置に保持する際に、レンズユニットの筐体における対向する2つの側面を支持板によって挟んで保持する。この2つの側面に当たる支持板のうちの一方にはプローブが設けられており、このプローブがレンズユニットの筐体から露出した端子に接触する。このプローブの押し当て力が、2つの支持板による筐体の把持力のバランスを崩すと、レンズユニットの光軸が傾いた状態で装置に保持されることになり、位置合わせを精度良く行うことができなくなる。 In the camera module manufacturing apparatus described in Patent Document 1, when the lens unit is held in the manufacturing apparatus, two opposing side surfaces of the lens unit casing are held between support plates. A probe is provided on one of the support plates that contact the two side surfaces, and the probe contacts a terminal exposed from the housing of the lens unit. If the pressing force of this probe breaks the balance of the gripping force of the housing by the two support plates, the optical axis of the lens unit will be held by the device in an inclined state, and positioning will be performed with high accuracy. Can not be.
 本発明は、上記事情に鑑みてなされたものであり、撮像素子ユニットとレンズユニットの位置合わせ時におけるレンズユニットの位置を正確に決めて撮像品質を向上させることが可能な撮像モジュールの製造方法及び製造装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an imaging module manufacturing method capable of accurately determining the position of a lens unit at the time of alignment between an imaging element unit and a lens unit and improving imaging quality, and An object is to provide a manufacturing apparatus.
 本発明の撮像モジュールの製造方法は、レンズ群を有するレンズユニットと、上記レンズユニットに固定され、上記レンズ群を通して被写体を撮像する撮像素子を有する撮像素子ユニットと、を有する撮像モジュールの製造方法であって、上記レンズユニットは、上記レンズ群のうち少なくとも一部のレンズを移動させるレンズ駆動部を含むレンズ駆動装置を有し、測定チャートに直交する軸上において、上記撮像素子ユニット、上記レンズユニット、及び上記測定チャートの少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子を駆動して上記撮像素子により上記レンズ群を通して上記測定チャートを撮像させる第一工程と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの上記軸方向位置及び傾きの少なくとも一方を調整し、上記撮像素子ユニットを上記レンズユニットに固定する第二工程と、を備え、上記第一工程では、上記軸上に上記レンズユニットを保持し、上記レンズユニットに設けられ上記レンズ駆動装置と電気的に接続された電気接続部に第一のプローブを押し当てて上記レンズ駆動装置に通電し、上記第一のプローブの押し当てによって上記電気接続部に加わる上記レンズ群の光軸に直交する方向の力とは反対方向の力を上記レンズユニットに加えた状態で、上記撮像素子により上記測定チャートを撮像させるものである。 The manufacturing method of an imaging module of the present invention is a manufacturing method of an imaging module having a lens unit having a lens group, and an imaging element unit having an imaging element fixed to the lens unit and imaging a subject through the lens group. The lens unit includes a lens driving device including a lens driving unit that moves at least a part of the lenses of the lens group, and the imaging element unit and the lens unit are on an axis orthogonal to the measurement chart. And at least one of the measurement charts, the relative position in the axial direction is changed, and at each relative position, the imaging element is driven and the imaging chart is imaged through the lens group by the imaging element. Process and an imaging signal obtained by imaging the measurement chart with the imaging element. A second step of adjusting at least one of the axial position and the inclination of the image sensor unit with respect to the lens unit, and fixing the image sensor unit to the lens unit. In the first step, The lens unit is held on the shaft, the first probe is pressed against an electrical connection portion provided in the lens unit and electrically connected to the lens driving device, and the lens driving device is energized, In the state where a force in a direction opposite to the direction perpendicular to the optical axis of the lens group applied to the electrical connection portion by pressing the first probe is applied to the lens unit, the measurement chart is displayed by the imaging device. The image is taken.
 本発明の撮像モジュールの製造装置は、測定チャートを設置するための測定チャート設置部と、上記測定チャート設置部に設置された上記測定チャートに直交する軸上に、レンズ群を有するレンズユニットを通して被写体を撮像する撮像素子を有する撮像素子ユニットを保持するための撮像素子ユニット保持部と、上記測定チャート設置部と上記撮像素子ユニット保持部との間の上記軸上で上記レンズユニットを保持するためのレンズユニット保持部と、上記レンズユニット保持部により保持された上記レンズユニットに第一のプローブを押し当てるプローブ押し当て部と、上記プローブ押し当て部によって上記第一のプローブを上記レンズユニットに押し当てた状態で上記レンズユニットに加わる上記レンズ群の光軸に直交する方向の力と反対方向に向かう力を、上記レンズユニットに部材を押し当てて加える部材押し当て部と、上記測定チャート設置部、上記レンズユニット保持部、及び上記撮像素子ユニット保持部の少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子ユニットの上記撮像素子を駆動して、上記撮像素子により上記レンズユニットを通して上記測定チャートを撮像させる制御部と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの上記軸方向位置及び傾きの少なくとも一方を調整する調整部と、上記調整部により調整後の上記撮像素子ユニットを上記レンズユニットに固定するユニット固定部と、を備えるものである。 An imaging module manufacturing apparatus according to the present invention includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit. An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit. A lens unit holding portion; a probe pressing portion that presses the first probe against the lens unit held by the lens unit holding portion; and the first probe is pressed against the lens unit by the probe pressing portion. Force in a direction perpendicular to the optical axis of the lens group applied to the lens unit in the The member pressing portion that applies a force in the opposite direction by pressing a member against the lens unit, the measurement chart setting portion, the lens unit holding portion, and the imaging element unit holding portion at least one of the above A control unit that changes the relative position in the axial direction, drives the image sensor of the image sensor unit at each relative position, and images the measurement chart through the lens unit by the image sensor, and the image sensor by the image sensor. An adjustment unit that adjusts at least one of the axial position and inclination of the image sensor unit with respect to the lens unit based on an image signal obtained by imaging the measurement chart, and the image sensor unit that has been adjusted by the adjustment unit And a unit fixing portion that fixes the lens unit to the lens unit.
 本発明によれば、撮像素子ユニットとレンズユニットの位置合わせ時におけるレンズユニットの位置を正確に決めて撮像品質を向上させることが可能な撮像モジュールの製造方法及び製造装置を提供することができる。 According to the present invention, it is possible to provide a method and an apparatus for manufacturing an imaging module capable of improving the imaging quality by accurately determining the position of the lens unit when aligning the imaging element unit and the lens unit.
撮像モジュール100の外観斜視図である。1 is an external perspective view of an imaging module 100. FIG. 撮像モジュール100の外観斜視図である。1 is an external perspective view of an imaging module 100. FIG. 図1に示す撮像モジュール100においてレンズユニット10を省略した状態の撮像素子ユニット20の外観斜視図である。FIG. 2 is an external perspective view of an image sensor unit 20 in a state where a lens unit 10 is omitted in the image pickup module 100 shown in FIG. 1. 図1に示す撮像モジュール100のA-A線断面図である。FIG. 2 is a cross-sectional view of the imaging module 100 shown in FIG. 図2に示すレンズユニット10内の電気接続構成を示す図The figure which shows the electrical connection structure in the lens unit 10 shown in FIG. 撮像モジュール100の製造装置200の概略構成を示す側面図である。2 is a side view illustrating a schematic configuration of a manufacturing apparatus 200 of the imaging module 100. 測定チャートの正面図である。It is a front view of a measurement chart. 撮像モジュール製造装置200によるレンズユニット10と撮像素子ユニット20の保持状態を示す説明図である。6 is an explanatory diagram illustrating a holding state of the lens unit 10 and the imaging element unit 20 by the imaging module manufacturing apparatus 200. FIG. レンズユニット保持部75の吸着ヘッド75aに形成された開口75cとレンズユニット10の筐体11の天面11aに形成された開口11bの関係を示す図である。4 is a diagram illustrating a relationship between an opening 75c formed in the suction head 75a of the lens unit holding unit 75 and an opening 11b formed in the top surface 11a of the housing 11 of the lens unit 10. FIG. レンズユニット保持部75によってレンズユニット10を吸着保持しているときの空気の流れを説明するための図である。It is a figure for demonstrating the flow of air when the lens unit 10 is adsorbed-held by the lens unit holding part 75. 図10において、開口75cの面積が開口11aの面積よりも小さい場合の空気の流れを説明するための図である。In FIG. 10, it is a figure for demonstrating the flow of air when the area of the opening 75c is smaller than the area of the opening 11a. プローブユニット113を撮像素子ユニット保持部79側から見た図である。It is the figure which looked at the probe unit 113 from the image pick-up element unit holding part 79 side. 撮像モジュール製造装置200の内部構成を示すブロック図である。2 is a block diagram illustrating an internal configuration of an imaging module manufacturing apparatus 200. FIG. 撮像モジュール製造装置200による撮像モジュールの製造工程を説明するためのフローチャートである。4 is a flowchart for explaining a manufacturing process of an imaging module by the imaging module manufacturing apparatus 200. プローブユニット113の変形例を示す図である。It is a figure which shows the modification of the probe unit. プローブユニット113の変形例を示す図である。It is a figure which shows the modification of the probe unit.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1及び図2は、撮像モジュール100の外観斜視図である。 1 and 2 are external perspective views of the imaging module 100. FIG.
 撮像モジュール100は、レンズ群12を有するレンズユニット10と、レンズユニット10に固定され、レンズ群12を通して被写体を撮像する撮像素子(図1では不図示)を有する撮像素子ユニット20と、を備える。 The imaging module 100 includes a lens unit 10 having a lens group 12 and an imaging element unit 20 having an imaging element (not shown in FIG. 1) that is fixed to the lens unit 10 and images a subject through the lens group 12.
 図1及び図2では、レンズ群12の光軸Axに沿う方向をz方向とし、z方向に直交する2方向であって互いに直交する2つの方向をそれぞれx方向、y方向としている。図1と図2は、y方向における一方向とこの一方向の反対方向とからそれぞれみたときの斜視図となっている。 1 and 2, the direction along the optical axis Ax of the lens group 12 is defined as the z direction, and the two directions orthogonal to the z direction and orthogonal to each other are defined as the x direction and the y direction, respectively. 1 and 2 are perspective views when viewed from one direction in the y direction and the direction opposite to the one direction.
 レンズユニット10は、後述する各構成部材を内部に収容する例えば金属製の筐体11を備える。筐体11は立方体形状であり、筐体11の天面11aはレンズ群12の光軸Axに垂直な面となっている。筐体11の4つの側面11c,11d,11e,11fのうち、側面11cと側面11dは光軸Axを挟んで対向する面となっており、側面11eと側面11fは光軸Axを挟んで対向する面となっている。 The lens unit 10 includes, for example, a metal housing 11 that accommodates each component described later. The housing 11 has a cubic shape, and the top surface 11 a of the housing 11 is a surface perpendicular to the optical axis Ax of the lens group 12. Of the four side surfaces 11c, 11d, 11e, and 11f of the housing 11, the side surface 11c and the side surface 11d are opposed to each other across the optical axis Ax, and the side surface 11e and the side surface 11f are opposed to each other across the optical axis Ax. It is a surface to do.
 天面11aには、レンズ群12の光軸Axを中心とする開口11bが形成されている。撮像モジュール100は、被写体光をこの開口11bからレンズ群12に取り込んで撮像を行う。 In the top surface 11a, an opening 11b centered on the optical axis Ax of the lens group 12 is formed. The imaging module 100 captures subject light from the opening 11b into the lens group 12 for imaging.
 筐体11の側面11e及び側面11fからは、筐体11に収容されるフレキシブル基板13の一部が露出している。このフレキシブル基板13の露出部分の先端には、電気接続部としての端子14A~14F及び端子14a~14lを含むレンズユニット端子部14が接続されている。レンズユニット端子部14に含まれる各端子の筐体11からの露出面はy方向に垂直となっている。 A part of the flexible substrate 13 accommodated in the housing 11 is exposed from the side surface 11e and the side surface 11f of the housing 11. A lens unit terminal portion 14 including terminals 14A to 14F and terminals 14a to 14l as electrical connection portions is connected to the tip of the exposed portion of the flexible substrate 13. An exposed surface of each terminal included in the lens unit terminal portion 14 from the housing 11 is perpendicular to the y direction.
 筐体11の側面11eから露出する各端子の露出面の中心と、筐体11の側面11fから露出する各端子の露出面の中心は、光軸Axに直交する平面上にある。また、筐体11の側面11eから露出する各端子には、筐体11の側面11fから露出するいずれかの端子が対応しており、対応する2つの端子の露出面の中心同士を結ぶ直線は、光軸Axに直交するy方向と平行になっている。 The center of the exposed surface of each terminal exposed from the side surface 11e of the housing 11 and the center of the exposed surface of each terminal exposed from the side surface 11f of the housing 11 are on a plane orthogonal to the optical axis Ax. Each terminal exposed from the side surface 11e of the housing 11 corresponds to any terminal exposed from the side surface 11f of the housing 11, and a straight line connecting the centers of the exposed surfaces of the corresponding two terminals is , And parallel to the y direction orthogonal to the optical axis Ax.
 図3は、図1,2に示す撮像モジュール100においてレンズユニット10を省略した状態の外観斜視図である。 FIG. 3 is an external perspective view of the imaging module 100 shown in FIGS. 1 and 2 with the lens unit 10 omitted.
 図3に示すように、撮像素子ユニット20は、CCDイメージセンサ又はCMOSイメージセンサ等の撮像素子27が形成される基板21と、基板21と電気的に接続されるフレキシブル基板22と、を備える。 As shown in FIG. 3, the image sensor unit 20 includes a substrate 21 on which an image sensor 27 such as a CCD image sensor or a CMOS image sensor is formed, and a flexible substrate 22 that is electrically connected to the substrate 21.
 撮像素子27の画素ピッチは特に限定されないが、1.0μm以下のものが用いられる。ここで、画素ピッチとは、撮像素子27が有する画素に含まれる光電変換領域の中心間距離のうち、最も小さい距離のことをいう。 The pixel pitch of the image sensor 27 is not particularly limited, but a pixel pitch of 1.0 μm or less is used. Here, the pixel pitch refers to the smallest distance among the distances between the centers of the photoelectric conversion regions included in the pixels included in the image sensor 27.
 近年、画素数の増加に伴い、撮像素子の画素ピッチは狭くなっているが、画素ピッチが狭くなると、1画素あたりの面積が小さくなる。これにより、許容錯乱円の半径が小さくなり、焦点深度が浅くなる。更に、1画素あたりの集光量を多くする必要があるため、レンズのFナンバーも小さくなる傾向にある。 In recent years, with the increase in the number of pixels, the pixel pitch of the image sensor has become narrower, but when the pixel pitch becomes narrower, the area per pixel becomes smaller. As a result, the radius of the allowable circle of confusion is reduced and the depth of focus is reduced. Furthermore, since it is necessary to increase the amount of light collected per pixel, the F number of the lens tends to be small.
 これらのことから、近年の撮像モジュールは、非常に焦点深度が浅く、レンズユニットと撮像素子ユニットの位置合わせ精度は高いものが要求されている。画素ピッチが1μm以下になると、特に高い位置合わせ精度が要求される。 For these reasons, recent imaging modules are required to have a very small depth of focus and high alignment accuracy between the lens unit and the imaging element unit. When the pixel pitch is 1 μm or less, particularly high alignment accuracy is required.
 基板21上には筒状のカバーホルダ25が形成され、カバーホルダ25内部に撮像素子27が配置されている。カバーホルダ25の中空部には撮像素子27上方において図示省略のカバーガラスが嵌め込まれる。 A cylindrical cover holder 25 is formed on the substrate 21, and an image sensor 27 is disposed inside the cover holder 25. A cover glass (not shown) is fitted in the hollow portion of the cover holder 25 above the image sensor 27.
 カバーホルダ25の外側における基板21表面には、レンズユニット10との電気的接続をとるための複数の端子を含む撮像素子ユニット端子部24が設けられている。撮像素子ユニット端子部24は、撮像素子27を挟んで反対側の基板21表面にも設けられている。 On the surface of the substrate 21 outside the cover holder 25, an image sensor unit terminal portion 24 including a plurality of terminals for electrical connection with the lens unit 10 is provided. The image sensor unit terminal portion 24 is also provided on the surface of the substrate 21 on the opposite side across the image sensor 27.
 基板21には、撮像素子27のデータ出力用端子及び駆動用端子等と接続される撮像素子用配線が設けられている。撮像素子用配線は、フレキシブル基板22に設けられた配線を経由して、フレキシブル基板22端部に設けられた外部接続用端子部23に接続されている。外部接続用端子部23は、撮像素子27と電気的に接続された電気接続部として機能する。 The substrate 21 is provided with an image sensor wiring connected to a data output terminal and a drive terminal of the image sensor 27. The imaging element wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22. The external connection terminal portion 23 functions as an electrical connection portion that is electrically connected to the image sensor 27.
 また、基板21には、撮像素子ユニット端子部に含まれる各端子と接続されるレンズユニット用配線が設けられている。レンズユニット用配線は、フレキシブル基板22に設けられた配線を経由して、フレキシブル基板22端部に設けられた外部接続用端子部23に接続されている。 In addition, the substrate 21 is provided with a lens unit wiring connected to each terminal included in the image sensor unit terminal portion. The lens unit wiring is connected to the external connection terminal portion 23 provided at the end of the flexible substrate 22 via the wiring provided on the flexible substrate 22.
 レンズユニット10と撮像素子ユニット20を固定した状態では、レンズユニット端子部14の各端子とこれに対応する撮像素子ユニット端子部24の各端子とが電気的に接続される。 In a state where the lens unit 10 and the image sensor unit 20 are fixed, each terminal of the lens unit terminal unit 14 and each terminal of the image sensor unit terminal unit 24 corresponding thereto are electrically connected.
 図4は、図1,2に示す撮像モジュール100のA-A線断面図である。 FIG. 4 is a cross-sectional view of the imaging module 100 shown in FIGS.
 図4に示すように、撮像素子27は、基板21に設けられた凹部に配置されるとともに、基板21上に設けられたカバーホルダ25及びカバーホルダ25に嵌め込まれたカバーガラス26によって封止されている。 As shown in FIG. 4, the image sensor 27 is arranged in a recess provided in the substrate 21 and is sealed by a cover holder 25 provided on the substrate 21 and a cover glass 26 fitted in the cover holder 25. ing.
 また、図4に示すように、レンズユニット10は、カバーガラス26上方に配置された複数(図4の例では12A~12Dの4つ)のレンズを含むレンズ群12と、レンズ群12を支持する筒状のレンズバレル15と、撮像素子ユニット20のカバーホルダ25の上面に載置された底部ブロック19と、底部ブロック19上に固定されたフレキシブル基板13と、フレキシブル基板13に接続されたレンズユニット端子部(図4では断面のため端子14c,14Fのみが図示)と、フレキシブル基板13上方に形成されたレンズ駆動装置16と、を備える。 As shown in FIG. 4, the lens unit 10 includes a lens group 12 including a plurality of lenses (four lenses 12A to 12D in the example of FIG. 4) disposed above the cover glass 26, and supports the lens group 12. A cylindrical lens barrel 15, a bottom block 19 placed on the upper surface of the cover holder 25 of the image sensor unit 20, a flexible substrate 13 fixed on the bottom block 19, and a lens connected to the flexible substrate 13 A unit terminal portion (only terminals 14c and 14F are shown in FIG. 4 because of the cross section) and a lens driving device 16 formed above the flexible substrate 13 are provided.
 レンズ群12、レンズバレル15、底部ブロック19、フレキシブル基板13、及びレンズ駆動装置16は、筐体11に収容されている。 The lens group 12, the lens barrel 15, the bottom block 19, the flexible substrate 13, and the lens driving device 16 are accommodated in the housing 11.
 レンズ駆動装置16は、第一のレンズ駆動部と、第二のレンズ駆動部と、第三のレンズ駆動部と、レンズの位置を検出する位置検出素子としてのホール素子と、を備える。 The lens driving device 16 includes a first lens driving unit, a second lens driving unit, a third lens driving unit, and a Hall element as a position detection element that detects the position of the lens.
 第一のレンズ駆動部は、レンズ群12のうち少なくとも一部のレンズ(図4の例ではレンズ群12の全てのレンズとしている)を、レンズ群12の光軸Axに沿う第一の方向(図1のz方向)に移動させてフォーカス調整を行うための駆動部である。 The first lens driving unit sets at least a part of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 4) in a first direction along the optical axis Ax of the lens group 12 ( It is a drive unit for performing focus adjustment by moving in the z direction in FIG.
 第二のレンズ駆動部及び第三のレンズ駆動部は、レンズ群12のうち少なくとも一部のレンズ(図4の例ではレンズ群12の全てのレンズとしている)をレンズ群12の光軸Axに直交する第二の方向(図1のx方向)及び第三の方向(図1のy方向)に移動させて、撮像素子27によって撮像される像のブレを補正するための駆動部である。 The second lens driving unit and the third lens driving unit use at least a part of the lenses in the lens group 12 (all the lenses in the lens group 12 in the example of FIG. 4) as the optical axis Ax of the lens group 12. It is a drive unit for correcting blurring of an image picked up by the image sensor 27 by moving in a second direction (x direction in FIG. 1) and a third direction (y direction in FIG. 1) orthogonal to each other.
 第一のレンズ駆動部と第二のレンズ駆動部と第三のレンズ駆動部は、それぞれ、レンズを移動させるためのアクチュエータであり、本実施形態ではボイスコイルモータ(VCM)を使用しているが、周知の他の手段を採用してもよい。 The first lens driving unit, the second lens driving unit, and the third lens driving unit are actuators for moving the lens, respectively. In this embodiment, a voice coil motor (VCM) is used. Other known means may be employed.
 図5は、図1に示すレンズユニット10の電気的接続構成を示すブロック図である。 FIG. 5 is a block diagram showing an electrical connection configuration of the lens unit 10 shown in FIG.
 図5に示すように、レンズ駆動装置16は、レンズ群12をx方向に移動させるためのx方向VCM16A(上記第二のレンズ駆動部)と、レンズ群12のx方向位置を検出するためのx方向ホール素子16Bと、レンズ群12をy方向に移動させるためのy方向VCM16C(上記第三のレンズ駆動部)と、レンズ群12のy方向位置を検出するためのy方向ホール素子16Dと、レンズ群12をz方向に移動させるためのz方向VCM16E(上記第一のレンズ駆動部)と、レンズ群12のz方向位置を検出するためのz方向ホール素子16Fと、を備える。 As shown in FIG. 5, the lens driving device 16 detects the x-direction VCM 16A (the second lens driving unit) for moving the lens group 12 in the x-direction and the x-direction position of the lens group 12. an x-direction hall element 16B, a y-direction VCM 16C (the third lens driving unit) for moving the lens group 12 in the y-direction, and a y-direction hall element 16D for detecting the y-direction position of the lens group 12; The z-direction VCM 16E (the first lens driving unit) for moving the lens group 12 in the z-direction and the z-direction hall element 16F for detecting the z-direction position of the lens group 12 are provided.
 x方向VCM16Aには2つの端子があり、この2つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14A、端子14Bと電気的に接続されている。 The x-direction VCM 16A has two terminals, and each of the two terminals is electrically connected to the terminal 14A and the terminal 14B via a wiring formed on the flexible substrate 13.
 x方向ホール素子16Bには4つの端子があり、この4つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14a、端子14b、端子14c、端子14dと電気的に接続されている。 The x-direction hall element 16B has four terminals, and each of the four terminals is electrically connected to the terminal 14a, the terminal 14b, the terminal 14c, and the terminal 14d through a wiring formed on the flexible substrate 13. ing.
 y方向VCM16Cには2つの端子があり、この2つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14C、端子14Dと電気的に接続されている。 The y-direction VCM 16C has two terminals, and each of the two terminals is electrically connected to the terminal 14C and the terminal 14D through wiring formed on the flexible substrate 13.
 y方向ホール素子16Dには4つの端子があり、この4つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14e、端子14f、端子14g、端子14hと電気的に接続されている。 The y-direction hall element 16D has four terminals, and each of the four terminals is electrically connected to the terminal 14e, the terminal 14f, the terminal 14g, and the terminal 14h via wiring formed on the flexible substrate 13. ing.
 z方向VCM16Eには2つの端子があり、この2つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14E、端子14Fと電気的に接続されている。 There are two terminals in the z-direction VCM 16E, and each of the two terminals is electrically connected to the terminal 14E and the terminal 14F via a wiring formed on the flexible substrate 13.
 z方向ホール素子16Fには4つの端子があり、この4つの端子の各々は、フレキシブル基板13に形成された配線を介して、端子14i、端子14j、端子14k、端子14lと電気的に接続されている。 The z-direction hall element 16F has four terminals, and each of the four terminals is electrically connected to the terminal 14i, the terminal 14j, the terminal 14k, and the terminal 14l through the wiring formed on the flexible substrate 13. ing.
 なお、各レンズ駆動部と各ホール素子について必要な端子の数は一例であり、上述したものには限定されない。 The number of terminals required for each lens driving unit and each Hall element is an example, and is not limited to the above.
 以上の構成の撮像モジュール100は、まず、レンズユニット10と撮像素子ユニット20が別々に製造される。そして、レンズ群12によって結像される被写体の結像面が撮像素子27の撮像面と一致するように、レンズユニット10と撮像素子ユニット20の位置合わせをする調整工程が行われ、その後、レンズユニット10と撮像素子ユニット20が接着固定される。 In the imaging module 100 having the above configuration, first, the lens unit 10 and the imaging element unit 20 are separately manufactured. Then, an adjustment process for aligning the lens unit 10 and the image sensor unit 20 is performed so that the imaging surface of the subject imaged by the lens group 12 coincides with the image pickup surface of the image sensor 27, and then the lens. The unit 10 and the image sensor unit 20 are bonded and fixed.
 上記調整工程は、レンズユニット10を製造装置によって所定の姿勢で保持した状態で、撮像素子ユニット20を動かして行われる。 The above adjustment process is performed by moving the image sensor unit 20 in a state where the lens unit 10 is held in a predetermined posture by the manufacturing apparatus.
 図6は、撮像モジュール100の製造装置200の概略構成を示す側面図である。 FIG. 6 is a side view showing a schematic configuration of the manufacturing apparatus 200 for the imaging module 100.
 撮像モジュール製造装置200は、レンズユニット10に対する撮像素子ユニット20の位置及び傾きを調整し、調整後に撮像素子ユニット20をレンズユニット10に固定して撮像モジュール100を完成させる。 The imaging module manufacturing apparatus 200 adjusts the position and inclination of the imaging element unit 20 with respect to the lens unit 10, and after the adjustment, fixes the imaging element unit 20 to the lens unit 10 to complete the imaging module 100.
 撮像モジュール製造装置200は、チャートユニット71と、コリメータユニット73と、レンズユニット保持部75と、通電機構77と、撮像素子ユニット保持部79と、接着剤供給部81と、光源としての紫外線ランプ83a,83bと、これらを制御する制御部85と、を備える。チャートユニット71、コリメータユニット73、レンズユニット保持部75、通電機構77、及び撮像素子ユニット保持部79は、重力方向に平行な面87に支持され、面87上で一方向に並べて配置されている。 The imaging module manufacturing apparatus 200 includes a chart unit 71, a collimator unit 73, a lens unit holding unit 75, an energization mechanism 77, an imaging element unit holding unit 79, an adhesive supply unit 81, and an ultraviolet lamp 83a as a light source. 83b and a control unit 85 for controlling them. The chart unit 71, the collimator unit 73, the lens unit holding unit 75, the energization mechanism 77, and the image sensor unit holding unit 79 are supported by a surface 87 parallel to the gravitational direction, and are arranged side by side on the surface 87. .
 チャートユニット71は、箱状の筐体71aと、筐体71a内に嵌合される測定チャート89と、筐体71a内に組み込まれて測定チャート89を背面から平行光で照明する光源91とから構成されている。測定チャート89は、例えば、光拡散性を有するプラスチック板で形成されている。測定チャート89のチャート面は重力方向に垂直となっている。測定チャート89は取り外し可能として別のものに交換できるようにしてもよい。チャートユニット71は、測定チャート89のチャート面の垂線であって、チャート面中心89aを通る線であるZ軸上に測定チャート89を設置するための測定チャート設置部として機能する。 The chart unit 71 includes a box-shaped casing 71a, a measurement chart 89 fitted in the casing 71a, and a light source 91 that is incorporated in the casing 71a and illuminates the measurement chart 89 from the back with parallel light. It is configured. The measurement chart 89 is formed of, for example, a plastic plate having light diffusibility. The chart surface of the measurement chart 89 is perpendicular to the direction of gravity. The measurement chart 89 may be removable and replaceable with another one. The chart unit 71 functions as a measurement chart installation unit for installing the measurement chart 89 on the Z axis, which is a perpendicular to the chart surface of the measurement chart 89 and passes through the chart surface center 89a.
 図7は測定チャート89のチャート面を示す図である。測定チャート89は矩形状であり、チャートパターンが設けられたチャート面には、複数のチャート画像CH1,CH2,CH3,CH4,CH5がそれぞれ印刷されている。 FIG. 7 is a diagram showing a chart surface of the measurement chart 89. The measurement chart 89 has a rectangular shape, and a plurality of chart images CH1, CH2, CH3, CH4, and CH5 are printed on the chart surface on which the chart pattern is provided.
 複数のチャート画像は、全て同一の画像であり、黒色の線を所定の一定間隔で配列させた、いわゆるラダー状のチャートパターンである。各チャート画像は、それぞれ画像の水平方向に配列させた水平チャート画像Pxと、画像の垂直方向に配列させた垂直チャート画像Pyから構成されている。 The plurality of chart images are all the same image, and are so-called ladder-like chart patterns in which black lines are arranged at predetermined intervals. Each chart image is composed of a horizontal chart image Px arranged in the horizontal direction of the image and a vertical chart image Py arranged in the vertical direction of the image.
 コリメータユニット73は、測定チャート89のチャート面の垂線であって、チャート面中心89aを通る線であるZ軸上において、チャートユニット71に対面配置されている。 The collimator unit 73 is arranged to face the chart unit 71 on the Z axis which is a perpendicular to the chart surface of the measurement chart 89 and passes through the chart surface center 89a.
 コリメータユニット73は、作業台87に固定されたブラケット73aとコリメータレンズ73bから構成されている。 The collimator unit 73 includes a bracket 73a fixed to a work table 87 and a collimator lens 73b.
 コリメータレンズ73bは、チャートユニット71から放射された光を集光し、集光した光をブラケット73aに形成された開口73cを通して、レンズユニット保持部75に入射させる。チャートユニット71とコリメータユニット73の間隔を調整することで、レンズユニット10が撮像する測定チャート89の虚像位置を任意の距離(たとえば無限遠の位置やレンズユニット10の想定する撮影に適した標準的な被写体距離)に配置することができる。 The collimator lens 73b condenses the light emitted from the chart unit 71, and causes the collected light to enter the lens unit holding portion 75 through the opening 73c formed in the bracket 73a. By adjusting the distance between the chart unit 71 and the collimator unit 73, the virtual image position of the measurement chart 89 imaged by the lens unit 10 can be set to an arbitrary distance (for example, a standard suitable for an infinite position or imaging assumed by the lens unit 10). The subject distance).
 図8は、撮像モジュール製造装置200によるレンズユニット10と撮像素子ユニット20の保持状態を示す説明図である。 FIG. 8 is an explanatory diagram showing a holding state of the lens unit 10 and the imaging element unit 20 by the imaging module manufacturing apparatus 200.
 レンズユニット保持部75は、チャートユニット71と撮像素子ユニット保持部79との間のZ軸上でレンズユニット10を保持するためのものである。 The lens unit holding part 75 is for holding the lens unit 10 on the Z axis between the chart unit 71 and the image sensor unit holding part 79.
 図8に示すように、レンズユニット保持部75は、レンズユニット10を吸着するための吸着面75dを有する吸着ヘッド75aと、吸着面75dに形成された吸引孔75b(図8の例では4つの吸引孔)と、吸引孔75bから空気を吸引する吸引部75e(図13参照、図6,8では不図示)と、を備える。 As shown in FIG. 8, the lens unit holding part 75 includes a suction head 75a having a suction surface 75d for sucking the lens unit 10, and suction holes 75b formed in the suction surface 75d (four in the example of FIG. 8). A suction hole) and a suction part 75e (see FIG. 13, not shown in FIGS. 6 and 8) for sucking air from the suction hole 75b.
 吸着ヘッド75aは、例えば金属によって剛性を有するように形成されており、コリメータユニット73により集光された光を通過させる開口75cが設けられている。吸着ヘッド75aは、Z軸上においてコリメータユニット73に対面配置されており、開口75cの中心はZ軸と一致している。 The suction head 75a is formed to be rigid with metal, for example, and is provided with an opening 75c through which the light collected by the collimator unit 73 passes. The suction head 75a is arranged to face the collimator unit 73 on the Z axis, and the center of the opening 75c coincides with the Z axis.
 吸着ヘッド75aの吸着面75dは、Z軸に垂直な面となっている。吸着ヘッド75aは、この吸着面75dが測定チャート89とは反対側に向けて配置されている。 The suction surface 75d of the suction head 75a is a surface perpendicular to the Z axis. The suction head 75 a is disposed with the suction surface 75 d facing away from the measurement chart 89.
 吸着ヘッド75aの吸着面75dに形成された4つの吸引孔75bは、図示しない配管を介して吸引部75eと連結されている。 The four suction holes 75b formed in the suction surface 75d of the suction head 75a are connected to the suction part 75e via a pipe (not shown).
 吸引部75eは、吸引孔75bに負圧を作用させる真空源から構成されている。吸引部75eが吸引孔75bに負圧を作用させることで、吸引孔75bから空気が吸引され、吸着面75dに接触している物体がその吸引力によって吸着面75dに吸着する。吸引部75eは制御部85によって制御される。 The suction part 75e is composed of a vacuum source that applies a negative pressure to the suction hole 75b. When the suction part 75e applies a negative pressure to the suction hole 75b, air is sucked from the suction hole 75b, and an object in contact with the suction surface 75d is attracted to the suction surface 75d by the suction force. The suction unit 75e is controlled by the control unit 85.
 図8の吸着面75dにおいて符号75fで示す枠は、レンズユニット10の筐体11の天面11aの外縁が接触する範囲を示している。枠75fとレンズユニット10の天面11aの外縁とが一致するように、吸着面75dにレンズユニット10を接触させることで、レンズユニット10の光軸AxとZ軸とが一致するようになっている。 A frame indicated by reference numeral 75f on the suction surface 75d in FIG. 8 indicates a range where the outer edge of the top surface 11a of the casing 11 of the lens unit 10 contacts. By bringing the lens unit 10 into contact with the suction surface 75d so that the frame 75f and the outer edge of the top surface 11a of the lens unit 10 coincide with each other, the optical axis Ax and the Z axis of the lens unit 10 coincide with each other. Yes.
 枠75fとレンズユニット10の天面11aの外縁とが一致するように、吸着面75dにレンズユニット10を接触させた状態では、筐体11の天面11aが4つの吸引孔を全て塞ぐ。これにより、吸引孔75bから空気が吸引されたときに、レンズユニット10を吸着面75dに安定して吸着させることができる。 When the lens unit 10 is in contact with the suction surface 75d so that the frame 75f and the outer edge of the top surface 11a of the lens unit 10 coincide with each other, the top surface 11a of the housing 11 blocks all four suction holes. Thereby, when air is sucked from the suction hole 75b, the lens unit 10 can be stably sucked to the suction surface 75d.
 図9は、レンズユニット保持部75の吸着ヘッド75aに形成された開口75cとレンズユニット10の筐体11の天面11aに形成された開口11bの関係を示す図である。 FIG. 9 is a diagram showing the relationship between the opening 75c formed in the suction head 75a of the lens unit holding portion 75 and the opening 11b formed in the top surface 11a of the housing 11 of the lens unit 10.
 図9は、吸着面75dにレンズユニット10を接触させた状態を撮像素子ユニット保持部79側からみた図であり、レンズユニット10については、筐体11の天面11aの外縁と開口11bのみを破線で示している。 FIG. 9 is a view of the state in which the lens unit 10 is brought into contact with the suction surface 75d as seen from the image sensor unit holding unit 79 side. As for the lens unit 10, only the outer edge of the top surface 11a of the housing 11 and the opening 11b are provided. It is indicated by a broken line.
 なお、図9には、後の説明で用いるために、紫外線ランプ83a,83bの位置についても図示してある。 In FIG. 9, the positions of the ultraviolet lamps 83a and 83b are also shown for use in later explanation.
 図9に示すように、開口75cをZ軸方向にみたときの面積は、開口11bをZ軸方向にみたときの面積よりも大きくなっている。そして、図9の状態では、Z軸方向にみたときに、開口11bの全ての領域が開口75cと重なっている。 As shown in FIG. 9, the area when the opening 75c is viewed in the Z-axis direction is larger than the area when the opening 11b is viewed in the Z-axis direction. In the state shown in FIG. 9, when viewed in the Z-axis direction, the entire region of the opening 11b overlaps the opening 75c.
 図10は、レンズユニット保持部75によってレンズユニット10を吸着保持しているときの空気の流れを説明するための図である。図10には、筐体11から露出するレンズユニット端子部14と後述のプローブ113a,113bとが接触した状態をあわせて図示している。 FIG. 10 is a diagram for explaining the flow of air when the lens unit 10 is held by suction by the lens unit holding portion 75. FIG. 10 also illustrates a state in which a lens unit terminal portion 14 exposed from the housing 11 is in contact with probes 113a and 113b described later.
 図11は、図10において、Z軸方向にみたときの開口75cの面積が、Z軸方向にみたときの開口11aの面積よりも小さい場合の空気の流れを説明するための図である。 FIG. 11 is a diagram for explaining the air flow when the area of the opening 75c when viewed in the Z-axis direction in FIG. 10 is smaller than the area of the opening 11a when viewed in the Z-axis direction.
 図10,11に示した符号17は、レンズユニット10の筐体11に収容される部材を模式的に示したものである。 10 and 11 schematically indicate members accommodated in the casing 11 of the lens unit 10.
 図10に示すように、開口75cの面積が開口11bの面積より大きくなっていれば、吸引孔75bから空気を吸引した場合でも、黒矢印で示すように空気の流れが生じるため、筐体11内部に空気の流れが生じるのを防ぐことができる。 As shown in FIG. 10, if the area of the opening 75c is larger than the area of the opening 11b, even when air is sucked from the suction hole 75b, an air flow is generated as shown by the black arrow, and thus the housing 11 Air flow can be prevented from occurring inside.
 一方、図11に示すように、開口75cの面積が開口11bの面積よりも小さくなっていると、吸引孔75bから空気を吸引した場合に、黒矢印で示すように空気の流れが生じるため、筐体11内部に空気の流れが生じてしまう。 On the other hand, as shown in FIG. 11, when the area of the opening 75c is smaller than the area of the opening 11b, when air is sucked from the suction hole 75b, an air flow is generated as indicated by the black arrow. An air flow is generated inside the housing 11.
 レンズ群12の少なくとも一部のレンズは、x方向、y方向、及びz方向にそれぞれ移動可能である。このため、筐体11内部に空気の流れが生じると、このレンズが意図せぬ方向に動いてしまい、レンズユニット10と撮像素子ユニット20の位置合わせを精度良く行うことが難しくなる。したがって、図10に示すように、開口75cの面積を開口11bの面積よりも大きくしておくことが好ましい。 At least some of the lenses in the lens group 12 are movable in the x, y, and z directions, respectively. For this reason, when an air flow is generated inside the housing 11, the lens moves in an unintended direction, and it is difficult to accurately align the lens unit 10 and the image sensor unit 20. Therefore, as shown in FIG. 10, it is preferable to make the area of the opening 75c larger than the area of the opening 11b.
 なお、図11のように開口75cの面積が開口11bの面積より小さい装置構成であっても、レンズユニット保持部75の吸着ヘッド75aの吸着面75dをゴム等の弾性体で構成すれば、吸着面75dと筐体11の天面11aとの隙間における空気の流れを減らすことができるため、筐体11内での空気の流れの発生を抑制することが可能である。 Even if the area of the opening 75c is smaller than the area of the opening 11b as shown in FIG. 11, if the suction surface 75d of the suction head 75a of the lens unit holding portion 75 is made of an elastic body such as rubber, the suction is performed. Since the air flow in the gap between the surface 75d and the top surface 11a of the housing 11 can be reduced, the generation of air flow in the housing 11 can be suppressed.
 図6の説明に戻り、通電機構77は、第1スライドステージ99と、第1スライドステージ99のステージ部99aに固定され、9つのプローブ113a(図6では1つのみ図示)及び9つのプローブ113b(図6では1つのみ図示)を有するプローブユニット113とから構成されている。 Returning to the description of FIG. 6, the energization mechanism 77 is fixed to the first slide stage 99 and the stage portion 99a of the first slide stage 99, and includes nine probes 113a (only one is shown in FIG. 6) and nine probes 113b. And a probe unit 113 (only one is shown in FIG. 6).
 第1スライドステージ99は、電動式の精密ステージであって、図示しないモータの回転によってボールネジを回転させ、このボールネジに噛合されたステージ部99aをZ軸方向に移動させるものである。ステージ部99aの移動は制御部85によって制御される。 The first slide stage 99 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 99a meshed with the ball screw in the Z-axis direction. The movement of the stage unit 99a is controlled by the control unit 85.
 図12は、図6のプローブユニット113をチャートユニット71側からZ軸方向に見た図である。図12には、レンズユニット保持部75にレンズユニット10が保持されている状態を示している。 12 is a view of the probe unit 113 of FIG. 6 as viewed in the Z-axis direction from the chart unit 71 side. FIG. 12 shows a state in which the lens unit 10 is held by the lens unit holding portion 75.
 図12に示すように、プローブユニット113は、ステージ部99aに支持されたステージ部113A,113Bを備える。ステージ部113Aにはy方向における一方向(図12の右から左方向)に伸びるプローブ113aが9本設けられ、ステージ部113Bにはy方向における上記一方向とは反対方向(図12の左から右方向)に伸びるプローブ113bが9本設けられる。 As shown in FIG. 12, the probe unit 113 includes stage portions 113A and 113B supported by the stage portion 99a. The stage portion 113A is provided with nine probes 113a extending in one direction in the y direction (right to left in FIG. 12), and the stage portion 113B is provided in a direction opposite to the one direction in the y direction (from the left in FIG. 12). Nine probes 113b extending in the right direction) are provided.
 ステージ部113A,113Bは、それぞれ、ステージ部99a上をy方向に移動可能に支持されている。ステージ部113A,113Bの移動は制御部85によって制御される。 The stage portions 113A and 113B are supported so as to be movable in the y direction on the stage portion 99a. The movement of the stage units 113A and 113B is controlled by the control unit 85.
 ステージ部113A及びこれに設けられる9本のプローブ113aは、レンズユニット保持部75に保持されたレンズユニット10の側面11fから露出する端子14A~14D,14a~14eの各々の露出面にプローブ113aを押し当てるプローブ押し当て部として機能する。端子14A~14D,14a~14eの各々にプローブ113aが接触することで、これら各端子に通電可能な状態になる。 The stage portion 113A and the nine probes 113a provided on the stage portion 113A have probes 113a on the exposed surfaces of the terminals 14A to 14D and 14a to 14e exposed from the side surface 11f of the lens unit 10 held by the lens unit holding portion 75. It functions as a probe pressing part that presses. When the probe 113a comes into contact with each of the terminals 14A to 14D and 14a to 14e, the terminals can be energized.
 端子14A~14D,14a~14eの各々にプローブ113aが押し当てられた状態では、端子14A~14D,14a~14eに対し、y方向における一方向(図12の左から右方向)への力が少なくとも加わる。 When the probe 113a is pressed against each of the terminals 14A to 14D and 14a to 14e, a force in one direction in the y direction (from left to right in FIG. 12) is applied to the terminals 14A to 14D and 14a to 14e. At least join.
 ステージ部113B及びこれに設けられる9本のプローブ113bは、レンズユニット保持部75に保持されたレンズユニット10の側面11eから露出する端子14f~14l,14E,14Fの各々の露出面にプローブ113bを押し当てる。端子14f~14l,14E,14Fの各々にプローブ113bが接触することで、これら各端子に通電可能な状態になる。 The stage portion 113B and the nine probes 113b provided on the stage portion 113B have the probes 113b on the exposed surfaces of the terminals 14f to 14l, 14E, and 14F exposed from the side surface 11e of the lens unit 10 held by the lens unit holding portion 75. Press. When the probe 113b comes into contact with each of the terminals 14f to 14l, 14E, and 14F, the terminals can be energized.
 端子14f~14l,14E,14Fの各々にプローブ113bが押し当てられた状態では、端子14f~14l,14E,14Fに対し、y方向における一方向とは反対方向(図12の左から右方向)への力が少なくとも加わる。 When the probe 113b is pressed against each of the terminals 14f to 14l, 14E, and 14F, the direction opposite to the one direction in the y direction with respect to the terminals 14f to 14l, 14E, and 14F (from left to right in FIG. 12) At least the power to add.
 したがって、ステージ部113B及びこれに設けられる9本のプローブ113bは、プローブ113aによって端子14A~14D,14a~14eに加えられたy方向の一方向への力とは反対方向の力をレンズユニット10に加える部材押し当て部として機能する。 Accordingly, the stage unit 113B and the nine probes 113b provided on the stage unit 113B apply a force in a direction opposite to the force in one direction y applied to the terminals 14A to 14D and 14a to 14e by the probe 113a. It functions as a member pressing part to be added.
 このように、レンズユニット端子部14を構成する各端子にプローブ113a,113bが接触することで、プローブユニット113を通して、第一のレンズ駆動部(z方向VCM16E)、第二のレンズ駆動部(x方向VCM16A)、及び第三のレンズ駆動部(y方向VCM16C)を含むレンズ駆動装置16を駆動することが可能となる。 As described above, the probes 113a and 113b are brought into contact with the respective terminals constituting the lens unit terminal portion 14, so that the first lens driving portion (z-direction VCM 16E) and the second lens driving portion (x It is possible to drive the lens driving device 16 including the direction VCM 16A) and the third lens driving unit (y direction VCM 16C).
 なお、プローブ113a,113bが各端子の露出面の中心に接触した状態では、レンズユニット10の筐体11の側面11fから露出する各端子とプローブ113aとの接触点、及び、レンズユニット10の筐体11の側面11eから露出する各端子とプローブ113bとの接触点は、光軸Axに垂直な平面上に含まれる。 In the state where the probes 113a and 113b are in contact with the center of the exposed surface of each terminal, the contact point between each terminal exposed from the side surface 11f of the housing 11 of the lens unit 10 and the probe 113a, and the housing of the lens unit 10. A contact point between each terminal exposed from the side surface 11e of the body 11 and the probe 113b is included on a plane perpendicular to the optical axis Ax.
 撮像素子ユニット保持部79は、撮像素子ユニット20をZ軸上に保持するためのものである。また、撮像素子ユニット保持部79は、制御部85の制御により、撮像素子ユニット20のZ軸方向位置及び傾きが変更可能となっている。 The image sensor unit holding unit 79 is for holding the image sensor unit 20 on the Z axis. Further, the image sensor unit holding unit 79 can change the position and inclination of the image sensor unit 20 in the Z-axis direction under the control of the control unit 85.
 ここで、撮像素子ユニット20の傾きは、Z軸に直交する平面に対する撮像素子27の撮像面27aの傾きを意味する。 Here, the inclination of the imaging element unit 20 means the inclination of the imaging surface 27a of the imaging element 27 with respect to a plane orthogonal to the Z-axis.
 撮像素子ユニット保持部79は、Z軸上でチャートユニット71に撮像面27aが向くように撮像素子ユニット20を保持するチャックハンド115と、チャックハンド115が取り付けられた略クランク状のブラケット117を保持し、Z軸に直交する2軸(水平X軸、垂直Y軸)の回りで傾きを調整する2軸回転ステージ119と、2軸回転ステージ119が取り付けられたブラケット121を保持してZ軸方向に移動させる第2スライドステージ123とから構成されている。 The imaging element unit holding unit 79 holds a chuck hand 115 that holds the imaging element unit 20 so that the imaging surface 27a faces the chart unit 71 on the Z axis, and a substantially crank-shaped bracket 117 to which the chuck hand 115 is attached. The two-axis rotary stage 119 that adjusts the inclination around two axes orthogonal to the Z-axis (horizontal X-axis and vertical Y-axis) and the bracket 121 to which the two-axis rotary stage 119 is attached are held in the Z-axis direction. And a second slide stage 123 to be moved.
 チャックハンド115は、図8に示すように、略クランク状に屈曲された一対の挟持部材115aと、これらの挟持部材115aをZ軸に直交するX軸方向で移動させるアクチュエータ115b(図6参照)とから構成されている。挟持部材115aは、撮像素子ユニット20の外枠を挟み込み、撮像素子ユニット20を保持する。 As shown in FIG. 8, the chuck hand 115 includes a pair of sandwiching members 115a bent in a substantially crank shape, and an actuator 115b that moves these sandwiching members 115a in the X-axis direction orthogonal to the Z-axis (see FIG. 6). It consists of and. The sandwiching member 115 a sandwiches the outer frame of the image sensor unit 20 and holds the image sensor unit 20.
 また、チャックハンド115は、レンズユニット保持部75によって保持されたレンズユニット10の光軸Axと撮像面27aの中心位置とが略一致するように、挟持部材115aに挟持された撮像素子ユニット20を位置決めする。 Further, the chuck hand 115 holds the image sensor unit 20 held by the holding member 115a so that the optical axis Ax of the lens unit 10 held by the lens unit holding unit 75 and the center position of the image pickup surface 27a substantially coincide with each other. Position.
 また、チャックハンド115は、Z軸方向にみたときに、撮像素子ユニット20の撮像素子ユニット端子部24の各端子と、保持されたレンズユニット10のレンズユニット端子部14の各端子とが重なるように、挟持部材115aに挟持された撮像素子ユニット20を位置決めする。 Further, when viewed in the Z-axis direction, the chuck hand 115 overlaps each terminal of the image sensor unit terminal portion 24 of the image sensor unit 20 with each terminal of the lens unit terminal portion 14 of the held lens unit 10. In addition, the image sensor unit 20 held between the holding members 115a is positioned.
 2軸回転ステージ119は、電動式の2軸ゴニオステージであって、図示しない2つのモータの回転により、撮像面27aの中心位置を回転中心にして、撮像素子ユニット20を、X軸の回りのθx方向と、Z軸及びX軸に直交するY軸の回りのθy方向に傾ける。これにより、撮像素子ユニット20を各方向に傾けた際に、撮像面27aの中心位置とZ軸との位置関係がずれることがない。 The two-axis rotary stage 119 is an electric two-axis goniometer stage, and the rotation of two motors (not shown) causes the image sensor unit 20 to move around the X axis about the center position of the image pickup surface 27a. It is inclined in the θx direction and the θy direction around the Y axis perpendicular to the Z axis and the X axis. Thereby, when the imaging element unit 20 is tilted in each direction, the positional relationship between the center position of the imaging surface 27a and the Z axis does not shift.
 第2スライドステージ123は、電動式の精密ステージであって、図示しないモータの回転によってボールネジを回転させ、このボールネジに噛合されたステージ部123aをZ軸方向に移動させるものである。ステージ部123aにはブラケット121が固定されている。 The second slide stage 123 is an electric precision stage that rotates a ball screw by rotation of a motor (not shown) and moves a stage portion 123a engaged with the ball screw in the Z-axis direction. A bracket 121 is fixed to the stage portion 123a.
 2軸回転ステージ119には、撮像素子ユニット20のフレキシブル基板22の先端に設けられた外部接続用端子部23と接続されるコネクタケーブル127が取り付けられている。このコネクタケーブル127は撮像素子27の駆動信号を入力したり、撮像素子27から出力される撮像画像信号を出力したりする。 The connector cable 127 connected to the external connection terminal portion 23 provided at the tip of the flexible substrate 22 of the image sensor unit 20 is attached to the biaxial rotation stage 119. The connector cable 127 inputs a drive signal for the image sensor 27 and outputs a captured image signal output from the image sensor 27.
 接着剤供給部81と紫外線ランプ83a,83bは、レンズユニット10と撮像素子ユニット20を固定するユニット固定部を構成する。 The adhesive supply unit 81 and the ultraviolet lamps 83a and 83b constitute a unit fixing unit that fixes the lens unit 10 and the imaging element unit 20.
 接着剤供給部81は、レンズユニット10に対する撮像素子ユニット20の位置及び傾きの調整が終了した後、レンズユニット10と撮像素子ユニット20との隙間に、光によって硬化する接着剤(ここでは一例として紫外線硬化型接着剤)を供給する。 After the adjustment of the position and inclination of the image sensor unit 20 with respect to the lens unit 10 is finished, the adhesive supply unit 81 is an adhesive that cures by light in the gap between the lens unit 10 and the image sensor unit 20 (here as an example) Supply UV curable adhesive.
 紫外線ランプ83a,83bは、上記隙間に供給された紫外線硬化型接着剤に紫外線を照射することで、接着剤を硬化させる。なお、接着剤としては、紫外線硬化型接着剤の他、瞬間接着剤、熱硬化接着剤、自然硬化接着剤等も利用可能である。 The ultraviolet lamps 83a and 83b cure the adhesive by irradiating the ultraviolet curable adhesive supplied to the gap with ultraviolet rays. As the adhesive, in addition to the ultraviolet curable adhesive, an instantaneous adhesive, a thermosetting adhesive, a natural curable adhesive, and the like can be used.
 図9に示したように、Z軸方向に見てレンズ群12の光軸Axを通りかつ光軸Axに直交する直線L2でレンズユニット10を2分割したときの一方の分割エリア側には紫外線ランプ83aが配置され、他方の分割エリア側には紫外線ランプ83bが配置されている。 As shown in FIG. 9, when the lens unit 10 is divided into two by a straight line L2 that passes through the optical axis Ax of the lens group 12 and is orthogonal to the optical axis Ax when viewed in the Z-axis direction, ultraviolet light is present on one divided area side. A lamp 83a is disposed, and an ultraviolet lamp 83b is disposed on the other divided area side.
 すなわち、紫外線ランプ83a,83bは、上記隙間に供給された紫外線硬化型接着剤を2方向から光を照射して硬化させる。これにより、1方向から紫外線を照射する場合と比較して、紫外線硬化型接着剤の硬化をモジュール全体でより均一に行うことができ、レンズユニット10と撮像素子ユニット20の固定を安定的に行うことができる。 That is, the ultraviolet lamps 83a and 83b cure the ultraviolet curable adhesive supplied to the gap by irradiating light from two directions. Thereby, compared with the case of irradiating ultraviolet rays from one direction, the ultraviolet curable adhesive can be cured more uniformly in the entire module, and the lens unit 10 and the imaging element unit 20 can be stably fixed. be able to.
 なお、図9に示すように、Z軸方向に見てレンズ群12の光軸Axを通りかつ光軸Axに直交する直線L1及び直線L2(これらは互いに直交する)でレンズユニット10を4分割し、各分割エリア側に紫外線ランプを配置して、4方向から紫外線を照射する構成としてもよい。この構成によれば、レンズユニット10と撮像素子ユニット20の固定を更に安定的に行うことができる。 As shown in FIG. 9, the lens unit 10 is divided into four by a straight line L1 and a straight line L2 that pass through the optical axis Ax of the lens group 12 and are orthogonal to the optical axis Ax as viewed in the Z-axis direction. And it is good also as a structure which arrange | positions an ultraviolet lamp in each division area side, and irradiates an ultraviolet-ray from four directions. According to this configuration, the lens unit 10 and the image sensor unit 20 can be more stably fixed.
 図13は、撮像モジュール製造装置200の内部構成を示すブロック図である。 FIG. 13 is a block diagram showing an internal configuration of the imaging module manufacturing apparatus 200. As shown in FIG.
 図13に示すように、上記説明した各部は制御部85に接続されている。制御部85は、例えば、CPUやROM、RAM等を備えたマイクロコンピュータであり、ROMに記憶されている制御プログラムに基づいて各部を制御している。また、制御部85には、各種設定を行うキーボードやマウス等の入力部131と、設定内容や作業内容、作業結果等が表示される表示部133とが接続されている。 As shown in FIG. 13, each unit described above is connected to the control unit 85. The control unit 85 is, for example, a microcomputer including a CPU, a ROM, a RAM, and the like, and controls each unit based on a control program stored in the ROM. The control unit 85 is connected to an input unit 131 such as a keyboard and a mouse for performing various settings, and a display unit 133 that displays setting contents, work contents, work results, and the like.
 レンズ駆動ドライバ145は、レンズ駆動装置16を駆動するための駆動回路であり、プローブユニット113を介して、第一のレンズ駆動部、第二のレンズ駆動部、第三のレンズ駆動部、x方向ホール素子16B、y方向ホール素子16D、及びz方向ホール素子16Fの各々に駆動電流を供給する。 The lens driving driver 145 is a driving circuit for driving the lens driving device 16, and the first lens driving unit, the second lens driving unit, the third lens driving unit, and the x direction via the probe unit 113. A drive current is supplied to each of the hall element 16B, the y-direction hall element 16D, and the z-direction hall element 16F.
 撮像素子ドライバ147は、撮像素子27を駆動するための駆動回路であり、コネクタケーブル127を介して撮像素子27に駆動信号を入力する。 The image sensor driver 147 is a drive circuit for driving the image sensor 27, and inputs a drive signal to the image sensor 27 via the connector cable 127.
 合焦座標値取得回路149は、撮像素子27の撮像面27a上に設定された複数の撮像位置(測定チャート89の各チャート画像CH1,CH2,CH3,CH4,CH5に対応する位置)について、Z軸方向における合焦度合の高い位置である合焦座標値をそれぞれ取得する。 The in-focus coordinate value acquisition circuit 149 performs Z for a plurality of imaging positions (positions corresponding to the chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89) set on the imaging surface 27a of the imaging element 27. In-focus coordinate values that are positions with a high degree of focus in the axial direction are acquired.
 制御部85は、複数の撮像位置の合焦座標値を取得する際に、第2スライドステージ123を制御し、Z軸上に予め離散的に設定された複数の測定位置(Z0,Z1,Z2,…)に撮像素子ユニット20を順次に移動させる。 The control unit 85 controls the second slide stage 123 when acquiring the in-focus coordinate values of a plurality of imaging positions, and a plurality of measurement positions (Z0, Z1, Z2) discretely set in advance on the Z axis. ,... Are sequentially moved.
 また、制御部85は、撮像素子ドライバ147を制御し、各測定位置でレンズ群12が結像した測定チャート89の複数のチャート画像CH1,CH2,CH3,CH4,CH5のチャート像を撮像素子27に撮像させる。 Further, the control unit 85 controls the image sensor driver 147 to display chart images of a plurality of chart images CH1, CH2, CH3, CH4, and CH5 of the measurement chart 89 formed by the lens group 12 at each measurement position. Let's take an image.
 合焦座標値取得回路149は、コネクタケーブル127を介して入力された撮像信号から上記複数の撮像位置に対応する画素の信号を抽出し、その画素信号から複数の撮像位置に対する個別の合焦評価値をそれぞれ算出する。そして、各撮像位置について所定の合焦評価値が得られたときの測定位置をZ軸上の合焦座標値としている。 The focused coordinate value acquisition circuit 149 extracts pixel signals corresponding to the plurality of imaging positions from the imaging signal input via the connector cable 127, and individually focuses evaluation on the plurality of imaging positions from the pixel signals. Each value is calculated. The measurement position when a predetermined focus evaluation value is obtained for each imaging position is set as a focus coordinate value on the Z axis.
 合焦評価値としては、例えばコントラスト伝達関数値(Contrast Transfer Function:以下、CTF値と呼称する)を用いることができる。CTF値は、空間周波数に対する像のコントラストを表す値であり、CTF値が高いときに合焦度が高いものとみなす。 As the focus evaluation value, for example, a contrast transfer function value (hereinafter referred to as CTF value) can be used. The CTF value is a value representing the contrast of the image with respect to the spatial frequency, and when the CTF value is high, the degree of focus is considered high.
 合焦座標値取得回路149は、複数の撮像位置の各々について、Z軸上に設定された複数の測定位置(Z0,Z1,Z2,…)毎に、XY座標平面上で設定した複数方向のそれぞれに対してCTF値を算出している。 The in-focus coordinate value acquisition circuit 149 has a plurality of directions set on the XY coordinate plane for each of a plurality of measurement positions (Z0, Z1, Z2,...) Set on the Z axis for each of a plurality of imaging positions. CTF values are calculated for each.
 CTF値が算出される方向としては、例えば、撮像面27aの横方向である水平方向(X軸方向)と、これに直交する垂直方向(Y軸方向)とし、各方向のCTF値であるX-CTF値及びY-CTF値をそれぞれ算出する。 The direction in which the CTF value is calculated is, for example, a horizontal direction (X-axis direction) that is the horizontal direction of the imaging surface 27a and a vertical direction (Y-axis direction) orthogonal thereto, and the CTF value in each direction is X -CTF value and Y-CTF value are calculated respectively.
 合焦座標値取得回路149は、各チャート画像CH1,CH2,CH3,CH4,CH5に対応する複数の撮像位置について、X-CTF値が最大となる測定位置のZ軸上の座標(Zp1、Zp2,Zp3,Zp4,Zp5)を水平合焦座標値として取得する。また同様に、Y-CTF値が最大となる測定位置のZ軸上の座標を垂直合焦座標値として取得する。 The in-focus coordinate value acquisition circuit 149, for a plurality of imaging positions corresponding to each chart image CH1, CH2, CH3, CH4, CH5, coordinates on the Z axis (Zp1, Zp2) of the measurement position where the X-CTF value is maximum , Zp3, Zp4, Zp5) are acquired as the horizontal in-focus coordinate values. Similarly, the coordinate on the Z axis of the measurement position where the Y-CTF value is maximized is acquired as the vertical focus coordinate value.
 結像面算出回路151には、合焦座標値取得回路149から各撮像位置の水平合焦座標値及び垂直合焦座標値が入力される。 The image plane calculation circuit 151 receives the horizontal focus coordinate value and the vertical focus coordinate value of each imaging position from the focus coordinate value acquisition circuit 149.
 結像面算出回路151は、撮像面27aをXY座標平面に対応させたときの各撮像位置のXY座標値と、それぞれの撮像位置毎に得られたZ軸上の水平合焦座標値及び垂直合焦座標値との組み合わせで表される複数の評価点を、XY座標平面とZ軸とを組み合わせた三次元座標系に展開し、これらの評価点の相対位置に基づいて三次元座標系で一平面として表される近似結像面を算出する。 The imaging plane calculation circuit 151 includes the XY coordinate value of each imaging position when the imaging surface 27a is made to correspond to the XY coordinate plane, the horizontal in-focus coordinate value on the Z axis and the vertical value obtained for each imaging position. A plurality of evaluation points expressed in combination with the in-focus coordinate values are expanded into a three-dimensional coordinate system combining the XY coordinate plane and the Z axis, and the three-dimensional coordinate system is based on the relative positions of these evaluation points. An approximate imaging plane expressed as one plane is calculated.
 調整値算出回路153には、結像面算出回路151から近似結像面の情報が入力される。 Approximate image plane information is input from the image plane calculation circuit 151 to the adjustment value calculation circuit 153.
 調整値算出回路153は、近似結像面とZ軸との交点であるZ軸上の結像面座標値F1と、XY座標平面に対する近似結像面のX軸回り及びY軸回りの傾きであるXY方向回転角度とを算出し、制御部85に入力する。 The adjustment value calculation circuit 153 has an imaging plane coordinate value F1 on the Z axis that is an intersection of the approximate imaging plane and the Z axis, and an inclination about the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane. A certain XY direction rotation angle is calculated and input to the control unit 85.
 制御部85は、調整値算出回路153から入力された結像面座標値及びXY方向回転角度に基づいて撮像素子ユニット保持部79を駆動し、撮像素子ユニット20のZ軸方向位置及び傾きを調整して、撮像面27aを近似結像面に一致させる。制御部85は、撮像素子27により測定チャート89を撮像して得られる撮像信号に基づいて、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置及び傾きを調整する調整部として機能する。 The control unit 85 drives the image sensor unit holding unit 79 based on the imaging plane coordinate value and the XY direction rotation angle input from the adjustment value calculation circuit 153, and adjusts the Z-axis direction position and inclination of the image sensor unit 20. Then, the imaging surface 27a is made to coincide with the approximate imaging surface. The control unit 85 functions as an adjustment unit that adjusts the Z-axis direction position and inclination of the image sensor unit 20 with respect to the lens unit 10 based on an image signal obtained by imaging the measurement chart 89 by the image sensor 27.
 以上の撮像モジュール製造装置200は、概略的には以下の工程を実施するものである。
 (1)測定チャート89のチャート面に直交するZ軸上に、レンズユニット10と撮像素子ユニット20を保持する工程
 (2)Z軸上に保持された撮像素子ユニット20のZ軸方向位置を変化させ、各位置において、Z軸上に保持されたレンズユニット10のレンズ駆動装置16に通電した状態で撮像素子27を駆動して撮像素子27により測定チャート89を撮像させる工程
 (3)撮像素子27により測定チャート89を撮像して得られる撮像信号に基づいて、レンズユニット10に対する撮像素子ユニット20の位置及び傾きを調整し、撮像素子ユニット20をレンズユニット10に固定する工程
The imaging module manufacturing apparatus 200 described above generally performs the following steps.
(1) Step of holding the lens unit 10 and the image sensor unit 20 on the Z axis orthogonal to the chart surface of the measurement chart 89 (2) Changing the position of the image sensor unit 20 held on the Z axis in the Z axis direction In each position, the image pickup device 27 is driven while the lens drive device 16 of the lens unit 10 held on the Z-axis is energized, and the measurement chart 89 is picked up by the image pickup device 27. (3) The image pickup device 27 A step of adjusting the position and inclination of the image pickup device unit 20 with respect to the lens unit 10 based on the image pickup signal obtained by picking up the image of the measurement chart 89 and fixing the image pickup device unit 20 to the lens unit 10.
 以下、撮像モジュール製造装置200による撮像モジュール100の製造工程の詳細について、図14のフローチャートに沿って説明する。 Hereinafter, details of the manufacturing process of the imaging module 100 by the imaging module manufacturing apparatus 200 will be described with reference to the flowchart of FIG.
 まず、レンズ保持機構77によるレンズユニット10の吸着保持(S1)について説明する。 First, the suction holding (S1) of the lens unit 10 by the lens holding mechanism 77 will be described.
 図示しないロボット(搬送部)が、レンズユニット10を搬送し、レンズユニット保持部75の吸着面75dにレンズユニット10の天面11aを接触させる。この状態では、枠75fと筐体11の天面11aの外縁とが一致する。 A robot (transport unit) (not shown) transports the lens unit 10 and brings the top surface 11a of the lens unit 10 into contact with the suction surface 75d of the lens unit holding unit 75. In this state, the frame 75f and the outer edge of the top surface 11a of the housing 11 coincide.
 レンズユニット保持部75の吸着面75dにレンズユニット10の天面11aが接触すると、制御部85は、吸引部75eによって空気の吸引を行う。これにより、吸引孔75bから空気が吸引されて、吸着面75dにレンズユニット10の天面11aが吸着されて、レンズユニット10が保持される。 When the top surface 11a of the lens unit 10 comes into contact with the suction surface 75d of the lens unit holding unit 75, the control unit 85 performs air suction by the suction unit 75e. Thereby, air is sucked from the suction hole 75b, the top surface 11a of the lens unit 10 is sucked to the suction surface 75d, and the lens unit 10 is held.
 次に、制御部85は、第1スライドステージ99のステージ部99aをレンズユニット保持部75に近付ける方向に移動させる。更に、制御部85は、ステージ部113Aとステージ部113Bをそれぞれレンズユニット保持部75に近づけて、レンズユニット10の端子14A~14D,14a~14eの各々にプローブ113aを押し当て、レンズユニット10の端子14E~14F,14f~14lの各々にプローブ113bを押し当てる(S2)。これにより、レンズ駆動装置16とレンズ駆動ドライバ145とが電気的に接続される。 Next, the control unit 85 moves the stage unit 99a of the first slide stage 99 in a direction to approach the lens unit holding unit 75. Further, the control unit 85 brings the stage unit 113A and the stage unit 113B close to the lens unit holding unit 75, presses the probe 113a against each of the terminals 14A to 14D and 14a to 14e of the lens unit 10, and The probe 113b is pressed against each of the terminals 14E to 14F and 14f to 14l (S2). Thereby, the lens driving device 16 and the lens driving driver 145 are electrically connected.
 次に、撮像素子ユニット保持部79による撮像素子ユニット20の保持(S3)について説明する。 Next, the holding (S3) of the image sensor unit 20 by the image sensor unit holding unit 79 will be described.
 制御部85は、第2スライドステージ123を制御して2軸回転ステージ119をZ軸方向に沿って移動させることにより、レンズユニット保持部75と2軸回転ステージ119との間に撮像素子ユニット20が挿入可能なスペースを形成する。撮像素子ユニット20は、図示しないロボットにより保持されて、レンズユニット保持部75と2軸回転ステージ119との間に移送される。 The control unit 85 controls the second slide stage 123 to move the biaxial rotary stage 119 along the Z-axis direction, so that the image sensor unit 20 is interposed between the lens unit holding unit 75 and the biaxial rotary stage 119. Forms an insertable space. The image sensor unit 20 is held by a robot (not shown) and transferred between the lens unit holding unit 75 and the biaxial rotary stage 119.
 制御部85は、光学センサ等で撮像素子ユニット20の移動を検知し、第2スライドステージ123のステージ部123aをレンズユニット保持部75に近付ける方向に移動させる。そして、作業者は、チャックハンド115の挟持部材115aを用いて、撮像素子ユニット20を保持させる。また、コネクタケーブル127を撮像素子ユニット20の外部接続用端子部23に接続する。これにより、撮像素子27と制御部85とが電気的に接続された状態になる。その後、図示しないロボットによる撮像素子ユニット20の保持が解除される。 The control unit 85 detects the movement of the image sensor unit 20 with an optical sensor or the like, and moves the stage unit 123a of the second slide stage 123 in a direction to approach the lens unit holding unit 75. Then, the operator holds the image sensor unit 20 using the clamping member 115 a of the chuck hand 115. The connector cable 127 is connected to the external connection terminal portion 23 of the image sensor unit 20. Thereby, the image sensor 27 and the control unit 85 are electrically connected. Thereafter, the holding of the image sensor unit 20 by a robot (not shown) is released.
 このようにしてレンズユニット10及び撮像素子ユニット20がZ軸上に保持された後、合焦座標値取得回路149によって、撮像面27aの各撮像位置の水平合焦座標値及び垂直合焦座標値が取得される(S4)。 After the lens unit 10 and the image sensor unit 20 are held on the Z axis in this way, the focus coordinate value acquisition circuit 149 causes the horizontal focus coordinate value and the vertical focus coordinate value of each image pickup position on the image pickup surface 27a. Is acquired (S4).
 具体的には、制御部85は、第2スライドステージ123を制御して2軸回転ステージ119をレンズユニット保持部75に近づく方向に移動させ、撮像素子27がレンズユニット10に最も近くなる最初の測定位置に撮像素子ユニット20を移動させる。 Specifically, the control unit 85 controls the second slide stage 123 to move the biaxial rotation stage 119 in a direction approaching the lens unit holding unit 75, and the first imaging device 27 is closest to the lens unit 10. The image sensor unit 20 is moved to the measurement position.
 制御部85は、チャートユニット71の光源91を発光させる。また、制御部85は、レンズ駆動ドライバ145からの駆動信号を端子14A~14Fに入力し、第一~第三のレンズ駆動部を駆動して、レンズ群12の光軸Axのx方向位置、y方向位置、z方向位置を基準位置(例えば実使用時の初期位置)に保持する。 Control unit 85 causes light source 91 of chart unit 71 to emit light. In addition, the control unit 85 inputs a drive signal from the lens drive driver 145 to the terminals 14A to 14F and drives the first to third lens drive units to position the optical axis Ax of the lens group 12 in the x direction, The y-direction position and the z-direction position are held at a reference position (for example, an initial position during actual use).
 このとき、制御部85は、x方向ホール素子16B、y方向ホール素子16D、及びz方向ホール素子16Fの出力信号をレンズ駆動ドライバ145から取得し、この出力信号を利用して、レンズ群12の光軸Axのx方向位置、y方向位置、z方向位置の制御を行う。 At this time, the control unit 85 acquires the output signals of the x-direction hall element 16B, the y-direction hall element 16D, and the z-direction hall element 16F from the lens driving driver 145, and uses the output signals to Control of the x-direction position, the y-direction position, and the z-direction position of the optical axis Ax is performed.
 次に、制御部85は、撮像素子ドライバ147を制御して、レンズユニット10により結像したチャート画像CH1,CH2,CH3,CH4,CH5を撮像素子27に撮像させる。撮像素子27は、撮像した撮像信号を、コネクタケーブル127を介して合焦座標値取得回路149に入力する。 Next, the control unit 85 controls the image sensor driver 147 to cause the image sensor 27 to capture the chart images CH1, CH2, CH3, CH4, and CH5 formed by the lens unit 10. The image sensor 27 inputs the captured image signal to the focused coordinate value acquisition circuit 149 via the connector cable 127.
 合焦座標値取得回路149は、入力された撮像信号から各チャート画像CH1,CH2,CH3,CH4,CH5に対応する撮像位置における画素の信号を抽出し、その画素信号から各撮像位置についてのX-CTF値及びY-CTF値を算出する。制御部85は、X-CTF値及びY-CTF値の情報を、例えば、制御部85内のRAMに記憶する。 The in-focus coordinate value acquisition circuit 149 extracts the pixel signal at the imaging position corresponding to each chart image CH1, CH2, CH3, CH4, and CH5 from the input imaging signal, and X for each imaging position from the pixel signal. -Calculate CTF and Y-CTF values. The control unit 85 stores information on the X-CTF value and the Y-CTF value in, for example, a RAM in the control unit 85.
 制御部85は、撮像素子ユニット20をZ軸方向に沿って設定された複数の測定位置(Z0,Z1,Z2,…)に順次に移動させ、各測定位置において、レンズ駆動装置16を駆動して、レンズ群12の光軸Axのx方向位置、y方向位置、z方向位置を基準位置に維持した状態で、撮像素子27に測定チャート89のチャート像を撮像させる。合焦座標値取得回路149は、各測定位置でそれぞれの撮像位置におけるX-CTF値及びY-CTF値を算出する。 The control unit 85 sequentially moves the image sensor unit 20 to a plurality of measurement positions (Z0, Z1, Z2,...) Set along the Z-axis direction, and drives the lens driving device 16 at each measurement position. Thus, the image sensor 27 is caused to capture the chart image of the measurement chart 89 while maintaining the x-direction position, the y-direction position, and the z-direction position of the optical axis Ax of the lens group 12 at the reference position. The focused coordinate value acquisition circuit 149 calculates an X-CTF value and a Y-CTF value at each imaging position at each measurement position.
 合焦座標値取得回路149は、撮像位置の各々について、算出された複数のX-CTF値、及びY-CTF値の中から最大値を選択し、最大値が得られた測定位置のZ軸座標をその撮像位置の水平合焦座標値及び垂直合焦座標値として取得する。 The focused coordinate value acquisition circuit 149 selects the maximum value from among the plurality of calculated X-CTF values and Y-CTF values for each of the imaging positions, and the Z-axis of the measurement position where the maximum value is obtained. The coordinates are acquired as the horizontal focus coordinate value and the vertical focus coordinate value of the imaging position.
 合焦座標値取得回路149において取得された水平合焦座標値及び垂直合焦座標値は、結像面算出回路151に入力される。結像面算出回路151は、例えば最小自乗法により、平面近似された近似結像面Fを算出する(S6)。 The horizontal focus coordinate value and the vertical focus coordinate value acquired by the focus coordinate value acquisition circuit 149 are input to the imaging plane calculation circuit 151. The imaging plane calculation circuit 151 calculates an approximate imaging plane F that is approximated in a plane by, for example, the least square method (S6).
 結像面算出回路151で算出された近似結像面Fの情報は、調整値算出回路153に入力される。調整値算出回路153は、近似結像面FとZ軸との交点である結像面座標値F1と、XY座標平面に対する近似結像面のX軸回り及びY軸回りの傾きであるXY方向回転角度とを算出し、制御部85に入力する(S7)。 Information on the approximate image plane F calculated by the image plane calculation circuit 151 is input to the adjustment value calculation circuit 153. The adjustment value calculation circuit 153 includes an imaging plane coordinate value F1 that is an intersection of the approximate imaging plane F and the Z axis, and an XY direction that is an inclination around the X axis and the Y axis of the approximate imaging plane with respect to the XY coordinate plane. The rotation angle is calculated and input to the control unit 85 (S7).
 制御部85は、結像面座標値F1とXY方向回転角度に基づいて、2軸回転ステージ119及び第2スライドステージ123を制御し、撮像素子27の撮像面27aの中心位置が結像面座標値F1に一致するように、撮像素子ユニット20をZ軸方向に移動させ、撮像面27aの傾きが近似結像面Fに一致するように、撮像素子ユニット20のθx方向及びθy方向の角度を調整させる(S8)。 The control unit 85 controls the biaxial rotation stage 119 and the second slide stage 123 based on the imaging plane coordinate value F1 and the rotation angle in the XY direction, and the center position of the imaging plane 27a of the imaging element 27 is the imaging plane coordinate. The image sensor unit 20 is moved in the Z-axis direction so as to coincide with the value F1, and the angles of the θx direction and θy direction of the image sensor unit 20 are adjusted so that the inclination of the image sensing surface 27a coincides with the approximate imaging plane F. Adjust (S8).
 制御部85は、撮像素子ユニット20の位置及び傾き調整後に、各撮像位置の合焦位置を確認する確認工程を実施する(S9)。 The control unit 85 performs a confirmation step of confirming the in-focus position of each imaging position after adjusting the position and inclination of the imaging element unit 20 (S9).
 この確認工程では、上述したS4の工程が再び実行される。撮像素子ユニット20の位置及び傾き調整後には、撮像位置の各々について、水平方向及び垂直方向で対応する評価値のバラツキが小さくなる。 In this confirmation step, the above-described step S4 is executed again. After the adjustment of the position and inclination of the image sensor unit 20, the variation in the evaluation value corresponding to the horizontal direction and the vertical direction becomes small for each of the image pickup positions.
 制御部85は、確認工程の終了後(S5:YES)、撮像面27aの中心位置が結像面座標値F1に一致するように撮像素子ユニット20をZ軸方向に移動させる(S10)。 The control unit 85 moves the imaging element unit 20 in the Z-axis direction so that the center position of the imaging surface 27a coincides with the imaging plane coordinate value F1 after the confirmation step (S5: YES) (S10).
 また、制御部85は、接着剤供給部81から、レンズユニット10と撮像素子ユニット20との隙間に紫外線硬化接着剤を供給させ(S11)、紫外線ランプ83a,83bを点灯させることで、紫外線硬化型接着剤を硬化させる(S12)。 Further, the control unit 85 supplies ultraviolet curing adhesive from the adhesive supply unit 81 to the gap between the lens unit 10 and the imaging element unit 20 (S11), and turns on the ultraviolet lamps 83a and 83b, thereby curing the ultraviolet curing. The mold adhesive is cured (S12).
 接着剤が硬化して、レンズユニット10と撮像素子ユニット20とが固定された後、図示しないロボットにより撮像モジュールが把持されると、制御部85は、吸引部75eによる空気の吸引を停止し、ステージ部113A,113Bをレンズユニット10から遠ざける方向に移動させる。これにより、レンズユニット10の天面11aの吸着が解除され、プローブユニット113の各プローブとレンズユニット10の各端子との接触が解除される(S13)。そして、完成した撮像モジュール100は、図示しないロボットにより撮像モジュール製造装置200から取り出される(S14)。 After the adhesive is cured and the lens unit 10 and the imaging element unit 20 are fixed, when the imaging module is gripped by a robot (not shown), the control unit 85 stops the suction of air by the suction unit 75e, The stage portions 113A and 113B are moved away from the lens unit 10. Thereby, the adsorption | suction of the top | upper surface 11a of the lens unit 10 is cancelled | released, and the contact with each probe of the probe unit 113 and each terminal of the lens unit 10 is cancelled | released (S13). The completed imaging module 100 is taken out from the imaging module manufacturing apparatus 200 by a robot (not shown) (S14).
 なお、レンズユニット10と撮像素子ユニット20は、紫外線硬化型接着剤により固定できるが、紫外線硬化型接着剤による硬化を、レンズユニット10と撮像素子ユニット20との仮固定として利用してもよい。 The lens unit 10 and the image sensor unit 20 can be fixed with an ultraviolet curable adhesive, but curing with the ultraviolet curable adhesive may be used as temporary fixing between the lens unit 10 and the image sensor unit 20.
 例えば、撮像モジュール100は、レンズユニット10と撮像素子ユニット20とを仮固定した状態で撮像モジュール製造装置200から取り出し、清浄処理等の所望の工程を行った後にレンズユニット10と撮像素子ユニット20とを、熱硬化型接着剤等によって完全に固定するようにしてもよい。 For example, the imaging module 100 is removed from the imaging module manufacturing apparatus 200 in a state where the lens unit 10 and the imaging element unit 20 are temporarily fixed, and after performing a desired process such as a cleaning process, the lens unit 10 and the imaging element unit 20 May be completely fixed by a thermosetting adhesive or the like.
 以上の製造装置200は、レンズユニット保持部75に保持されたレンズユニット10のレンズ駆動装置16への通電を、レンズユニット10の筐体11の側面11fから露出する9つの端子にプローブ113aを押し当て、この側面11fに対向する筐体11の側面11eから露出する9つの端子にプローブ113bを押し当てることによって行う。 The manufacturing apparatus 200 described above pushes the probe 113a to the nine terminals exposed from the side surface 11f of the housing 11 of the lens unit 10 to energize the lens driving device 16 of the lens unit 10 held by the lens unit holding part 75. The probe 113b is pressed against nine terminals exposed from the side surface 11e of the housing 11 facing the side surface 11f.
 プローブ113aの押し当てによりレンズユニット10に加わるy方向における一方向の力は、筐体11の側面11eから露出する9つの端子にプローブ113bを押し当てることによって相殺される。このため、プローブをレンズユニット10に押し当てたときの力によってレンズユニット10の光軸AxがZ軸に対して傾いてしまうのを防ぐことができ、レンズユニット10と撮像素子ユニット20の位置合わせを高精度に行うことができる。 The unidirectional force in the y direction applied to the lens unit 10 by the pressing of the probe 113a is canceled by pressing the probe 113b against the nine terminals exposed from the side surface 11e of the housing 11. For this reason, it is possible to prevent the optical axis Ax of the lens unit 10 from being inclined with respect to the Z axis due to the force when the probe is pressed against the lens unit 10, and the alignment of the lens unit 10 and the image sensor unit 20 is achieved. Can be performed with high accuracy.
 なお、ここまでは、レンズ駆動装置に含まれる各レンズ駆動部と各ホール素子に通電した状態で測定チャート89を撮像して合焦評価値を得るものとした。しかし、通電を行う対象となるレンズ駆動装置16内の構成要素は、各レンズ駆動部と各ホール素子とする必要はなく、位置合わせの精度に応じて必要なものにだけ通電を行うようにしてもよい。 Up to this point, the focus evaluation value is obtained by imaging the measurement chart 89 while energizing each lens driving unit and each Hall element included in the lens driving device. However, the components in the lens driving device 16 to be energized do not need to be the lens driving units and the hall elements, and only energize those necessary according to the alignment accuracy. Also good.
 例えば、第一~第三のレンズ駆動には通電し、x方向ホール素子16B、y方向ホール素子16D、及びz方向ホール素子16Fには通電しない構成としてもよい。又は、x方向VCM16Aとx方向ホール素子16Bとy方向VCM16Cとy方向ホール素子16Dには通電し、z方向VCM16E及びz方向ホール素子16Fには通電しない構成としてもよい。 For example, the first to third lens driving may be energized, and the x-direction hall element 16B, the y-direction hall element 16D, and the z-direction hall element 16F may not be energized. Alternatively, the x-direction VCM 16A, the x-direction hall element 16B, the y-direction VCM 16C, and the y-direction hall element 16D may be energized, and the z-direction VCM 16E and the z-direction hall element 16F may not be energized.
 製造時に通電対象とするレンズ駆動装置16の構成要素と電気的に接続される端子の配置は、プローブ113aの押し当てによってレンズユニット10に加わるy方向の力を、プローブ113bの押し当てによってレンズユニット10に加わるy方向の力によって少しでも打ち消すことができるようになっていればよい。 The arrangement of the terminals electrically connected to the components of the lens driving device 16 to be energized at the time of manufacture is such that the force in the y direction applied to the lens unit 10 by the pressing of the probe 113a and the lens unit by the pressing of the probe 113b. It is only necessary to be able to counteract even a little by the force in the y direction applied to.
 例えば、通電対象となる端子が2つである場合は、この2つの端子の一方を筐体11の側面11eから露出する位置に設け、この2つの端子の他方が筐体11の側面11fから露出する位置に設けたレンズユニット10を製造する。そして、製造装置200のプローブユニット113は、上記2つの端子の一方の端子の露出面に1本のプローブ113bを押し当て、上記2つの端子の他方の端子の露出面に1本のプローブ113bを押し当てる。この2つの端子の露出面の中心を結ぶ直線がy方向に平行でない場合でも、プローブ113aの押し当てによってレンズユニット10に加わるy方向の力を、プローブ113bの押し当てによってレンズユニット10に加わるy方向の力によって少しでも打ち消すことができる。 For example, when there are two terminals to be energized, one of the two terminals is provided at a position exposed from the side surface 11e of the housing 11, and the other of the two terminals is exposed from the side surface 11f of the housing 11. The lens unit 10 provided at the position to be manufactured is manufactured. The probe unit 113 of the manufacturing apparatus 200 presses one probe 113b against the exposed surface of one of the two terminals, and places one probe 113b on the exposed surface of the other of the two terminals. Press. Even when the straight line connecting the centers of the exposed surfaces of the two terminals is not parallel to the y direction, a force in the y direction applied to the lens unit 10 by pressing the probe 113a is applied to the lens unit 10 by pressing the probe 113b. You can counteract even a little by the force of direction.
 なお、上記2つの端子の露出面の中心を結ぶ直線がy方向に平行となるように2つの端子を配置することで、プローブ113a,113bが押し当てられることによってレンズユニット10に働くモーメントをゼロにすることができ、光軸Axの位置ずれを確実に防ぐことができる。 In addition, by arranging the two terminals so that the straight line connecting the centers of the exposed surfaces of the two terminals is parallel to the y direction, the moment acting on the lens unit 10 when the probes 113a and 113b are pressed is zero. It is possible to prevent the positional deviation of the optical axis Ax.
 プローブユニット113において、プローブ113bはレンズ駆動ドライバ145とは電気的に接続されていない、又は、レンズ駆動ドライバ145と電気的に接続されてはいるが撮像モジュール100の製造時には電気が流されないダミーのプローブとしてもよい。 In the probe unit 113, the probe 113 b is not electrically connected to the lens driving driver 145, or is connected to the lens driving driver 145, but is a dummy that is not supplied with electricity when the imaging module 100 is manufactured. A probe may be used.
 例えば、レンズユニット10において、x方向VCM16Aとy方向VCM16Cだけを通電対象とする場合には、プローブユニット113を図15に示したような構成とする。 For example, in the lens unit 10, when only the x direction VCM 16A and the y direction VCM 16C are to be energized, the probe unit 113 is configured as shown in FIG.
 図15に示すプローブユニット113は、ステージ部113Aに4つのプローブ113aが設けられ、ステージ部113Bに4つのダミーのプローブ113bが設けられる。 In the probe unit 113 shown in FIG. 15, four probes 113a are provided on the stage portion 113A, and four dummy probes 113b are provided on the stage portion 113B.
 4つのプローブ113aは、それぞれ、端子14D、端子14C、端子14B、端子14Aに押し当てられる。 The four probes 113a are pressed against the terminal 14D, the terminal 14C, the terminal 14B, and the terminal 14A, respectively.
 4つのダミーのプローブ113bのうちの一番上のプローブは、端子14Dの露出面の中心からy方向に伸びる直線上に露出面中心がある端子14gに押し当てられる。 The uppermost probe among the four dummy probes 113b is pressed against the terminal 14g having the exposed surface center on a straight line extending in the y direction from the exposed surface center of the terminal 14D.
 4つのダミーのプローブ113bのうちの上から2番目のプローブは、端子14Cの露出面の中心からy方向に伸びる直線上に露出面中心がある端子14hに押し当てられる。 Of the four dummy probes 113b, the second probe from the top is pressed against the terminal 14h having the exposed surface center on a straight line extending in the y direction from the center of the exposed surface of the terminal 14C.
 4つのダミーのプローブ113bのうちの上から3番目のプローブは、端子14Bの露出面の中心からy方向に伸びる直線上に露出面中心がある端子14kに押し当てられる。 Of the four dummy probes 113b, the third probe from the top is pressed against the terminal 14k having the exposed surface center on a straight line extending in the y direction from the exposed surface center of the terminal 14B.
 4つのダミーのプローブ113bのうちの一番下のプローブは、端子14Aの露出面の中心からy方向に伸びる直線上に露出面中心がある端子14lに押し当てられる。 Of the four dummy probes 113b, the bottom probe is pressed against the terminal 14l having the exposed surface center on a straight line extending in the y direction from the center of the exposed surface of the terminal 14A.
 このように、通電対象となる端子にプローブ113aによって加わるy方向の力を、レンズ駆動装置16の駆動には用いないダミーのプローブ113bによって端子に加えるy方向の力によって相殺することで、レンズユニット10の光軸Axの位置ずれを防ぐことができる。 In this way, the y-direction force applied to the terminal to be energized by the probe 113a is canceled by the y-direction force applied to the terminal by the dummy probe 113b that is not used for driving the lens driving device 16, thereby the lens unit. The positional deviation of the ten optical axes Ax can be prevented.
 なお、図15において、ステージ部113Bに設けるダミーのプローブ113bの数や、ダミーのプローブ113bの位置は、プローブ113aの押し当てによってレンズユニット10に加わるy方向の力を、ダミーのプローブ113bの押し当てによってレンズユニット10に加わるy方向の力によって少しでも打ち消すことができるようになっていればよく、適宜変更可能である。 In FIG. 15, the number of dummy probes 113b provided on the stage portion 113B and the position of the dummy probes 113b are determined by the force in the y direction applied to the lens unit 10 by the pressing of the probes 113a. It only needs to be able to cancel even a little by the force in the y direction applied to the lens unit 10 by the contact, and can be changed as appropriate.
 また、図15ではダミーのプローブ113bとしたが、ダミーのプローブ113bはレンズ駆動装置16との電気的接続は不要なものであるため、どのような材質及び形状の部材を用いてもよい。つまり、プローブである必要はなく、レンズユニット10の端子に対して力を加えることができる何らかの部材で構成してあればよい。 Further, although the dummy probe 113b is shown in FIG. 15, since the dummy probe 113b does not need to be electrically connected to the lens driving device 16, a member of any material and shape may be used. That is, it is not necessary to be a probe, and it may be constituted by some member that can apply a force to the terminal of the lens unit 10.
 また、図15では、ダミーのプローブ113b(又はその他の部材)をレンズユニット10に設けられた端子に押し当てるものとしたが、ダミーのプローブ113bの押し当て部分は端子以外の部分としてもよい。例えば、筐体11の側面11eに対して4つのダミーのプローブ113bを押し当てることでも、通電対象となる端子に対してプローブ113aから加わるy方向の力を打ち消すことが可能である。 In FIG. 15, the dummy probe 113b (or other member) is pressed against the terminal provided in the lens unit 10, but the pressing portion of the dummy probe 113b may be a portion other than the terminal. For example, pressing the four dummy probes 113b against the side surface 11e of the casing 11 can also cancel the force in the y direction applied from the probe 113a to the terminal to be energized.
 例えば、レンズ駆動装置16にz方向VCM16E及びz方向ホール素子16Fのみを搭載するレンズユニット10を搭載する撮像モジュールを製造する製造装置においては、プローブユニット113は、図16に示すように、筐体11の側面11fから露出する端子14E,14F,14i~14lの各々にプローブ113aを押し当てる。 For example, in a manufacturing apparatus that manufactures an imaging module in which the lens unit 10 in which only the z-direction VCM 16E and the z-direction hall element 16F are mounted on the lens driving device 16 is provided, the probe unit 113 has a housing as shown in FIG. The probe 113a is pressed against each of the terminals 14E, 14F, 14i to 14l exposed from the side surface 11f of the eleventh side.
 また、プローブユニット113は、光軸Ax方向からみたときの、側面11f側の各端子の露出面の中心からy方向に伸びる直線と筐体11の側面11eとの交点に対し、ダミーのプローブ113bを押し当てる。このような構成により、通電対象となる端子にプローブ113aによって加わるy方向の力を、ダミーのプローブ113bの側面11eへの押し当て力によって打ち消すことが可能である。なお、上述しているように、ダミーのプローブ113bの数やこれを押し当てる位置は適宜変更可能である。 The probe unit 113 is a dummy probe 113b with respect to the intersection of the straight line extending in the y direction from the center of the exposed surface of each terminal on the side surface 11f and the side surface 11e of the housing 11 when viewed from the optical axis Ax direction. Press down. With such a configuration, the force in the y direction applied by the probe 113a to the terminal to be energized can be canceled by the pressing force against the side surface 11e of the dummy probe 113b. As described above, the number of dummy probes 113b and the positions where they are pressed can be changed as appropriate.
 製造装置200によれば、レンズユニット10を吸着によって保持するため、レンズユニット10の筐体11側面の周囲にはレンズユニット10を保持するための手段(従来技術で言うところの保持アーム等)を配置する必要がなくなる。 According to the manufacturing apparatus 200, in order to hold the lens unit 10 by suction, means for holding the lens unit 10 (such as a holding arm in the prior art) around the side surface of the housing 11 of the lens unit 10 is provided. There is no need to place them.
 この結果、レンズユニット10と撮像素子ユニット20を固定するための装置(接着剤供給部81、紫外線ランプ83a,83b)やレンズユニット10に通電するための装置(通電機構77)等の配置の自由度を上げることができ、製造装置200の設計コスト削減及びメンテナンス性向上を実現することができる。 As a result, a device for fixing the lens unit 10 and the image sensor unit 20 (adhesive supply unit 81, ultraviolet lamps 83a and 83b), a device for energizing the lens unit 10 (energization mechanism 77), and the like can be freely arranged. Thus, the design cost of the manufacturing apparatus 200 can be reduced and the maintainability can be improved.
 撮像モジュール100のように、レンズユニット10が第二のレンズ駆動部及び第三のレンズ駆動部を搭載する機種では、レンズ群12がx方向及びy方向に移動しやすい状態にある。また、このような機種では、レンズユニット10の筐体11内部の機構が複雑になり、筐体11の剛性が下がる傾向にある。このため、従来の方法でレンズユニット10の筐体側面をアームによって保持すると、光軸Axの傾きが生じやすい。したがって、このような機種においては、天面11aの吸着によってレンズユニット10保持する方法を採用することが有効となる。 In a model in which the lens unit 10 is equipped with the second lens driving unit and the third lens driving unit like the imaging module 100, the lens group 12 is easily moved in the x direction and the y direction. In such a model, the mechanism inside the housing 11 of the lens unit 10 becomes complicated, and the rigidity of the housing 11 tends to decrease. For this reason, if the case side surface of the lens unit 10 is held by an arm by a conventional method, the inclination of the optical axis Ax is likely to occur. Accordingly, in such a model, it is effective to employ a method of holding the lens unit 10 by suction of the top surface 11a.
 また、このような機種においては、レンズユニット10に設けられる端子の数は、図5で例示したように最大で18個となる。このため、端子が少ない機種よりも、通電対象となる端子が増える傾向にある。通電対象となる端子が増えると、従来方式でレンズユニットに対して一方向に向かってプローブを押し当てると、レンズユニット10に加わる力が大きくなり、レンズユニット10の光軸Axの位置がずれやすくなる。特に、図1に示すレンズユニット10のように、1つの側面11f側に4つ以上の通電対象となる端子があるケースでは、位置ずれが顕著となる。このため、本実施形態で説明した方法が有効となる。 Further, in such a model, the number of terminals provided in the lens unit 10 is 18 at the maximum as illustrated in FIG. For this reason, there is a tendency that the number of terminals to be energized is larger than that of a model having few terminals. As the number of terminals to be energized increases, when the probe is pressed against the lens unit in one direction in the conventional method, the force applied to the lens unit 10 increases, and the position of the optical axis Ax of the lens unit 10 tends to shift. Become. In particular, in the case where there are four or more terminals to be energized on one side surface 11f as in the lens unit 10 shown in FIG. For this reason, the method described in this embodiment is effective.
 製造装置200は、レンズユニット保持部75がレンズユニット10を吸着によって保持するものとしたが、特許文献1に記載されているように、レンズユニット10を側面の把持によって保持する構成としてもよい。又は、レンズユニット10の天面11aと底部ブロック19を何らかの部材によって挟むことでレンズユニット10を保持する構成としてもよい。 In the manufacturing apparatus 200, the lens unit holding unit 75 holds the lens unit 10 by suction. However, as described in Patent Document 1, the lens unit 10 may be held by holding the side surface. Alternatively, the lens unit 10 may be held by sandwiching the top surface 11a and the bottom block 19 of the lens unit 10 with some member.
 製造装置200のように、レンズユニット10を吸着によって保持する構成では、把持等による保持と比較すると、空気の吸引のみによって保持を行っているため、プローブの押し当て力に対するレンズユニット10の位置ずれが生じやすい。このため、通電機構77の構成を採用することが有効となる。 In the configuration in which the lens unit 10 is held by suction as in the manufacturing apparatus 200, since the holding is performed only by air suction as compared with holding by gripping or the like, the lens unit 10 is displaced with respect to the pressing force of the probe. Is likely to occur. For this reason, it is effective to adopt the configuration of the energization mechanism 77.
 図14のS4の工程では、レンズユニット10のZ軸方向位置は固定のまま、撮像素子ユニット20を動かしていくことで、合焦座標値を取得するものとした。しかし、レンズユニット保持部75をZ軸方向に移動可能にしておき、撮像素子ユニット保持部79のZ軸方向位置は固定のままレンズユニット保持部75をZ軸方向に移動させたり、レンズユニット保持部75と撮像素子ユニット保持部79をそれぞれZ軸方向に移動させたりすることで測定位置を変えて、各測定位置で合焦座標値を取得してもよい。 In step S4 in FIG. 14, the in-focus coordinate value is acquired by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed. However, the lens unit holding part 75 can be moved in the Z-axis direction, the lens unit holding part 75 can be moved in the Z-axis direction while the position of the image sensor unit holding part 79 is fixed, or the lens unit holding part can be held. The coordinate position may be acquired at each measurement position by changing the measurement position by moving the unit 75 and the image sensor unit holding unit 79 in the Z-axis direction.
 また、レンズユニット保持部75と撮像素子ユニット保持部79のZ軸方向位置は固定のまま、チャートユニット71をZ軸方向に移動させることで測定位置を変えて合焦座標値を取得してもよい。また、レンズユニット保持部75と撮像素子ユニット保持部79とチャートユニット71のそれぞれのZ軸方向位置を変えることで測定位置を変えて、合焦座標値を取得してもよい。 Further, even if the lens unit holding unit 75 and the image sensor unit holding unit 79 are fixed in the Z-axis direction position, the chart unit 71 is moved in the Z-axis direction to change the measurement position and acquire the in-focus coordinate value. Good. Further, the focus coordinate value may be acquired by changing the measurement position by changing the Z-axis direction position of each of the lens unit holding unit 75, the imaging element unit holding unit 79, and the chart unit 71.
 つまり、レンズユニット10、撮像素子ユニット20、及び測定チャート89のZ軸方向の相対位置を変えることで測定位置を変え、各相対位置において、撮像素子27により測定チャート89を撮像させて、合焦座標値を取得する構成であればよい。 That is, the measurement position is changed by changing the relative position in the Z-axis direction of the lens unit 10, the image sensor unit 20, and the measurement chart 89, and the measurement chart 89 is imaged by the image sensor 27 at each relative position to be focused. Any configuration that acquires coordinate values may be used.
 また、図14の説明では、上記相対位置を変えることで、複数の測定位置を実現し、各測定位置となったときに測定チャートを撮像するものとしたが、測定チャートの撮像は継続的に行い(つまり動画撮像を行い)、その撮像中に各測定位置となるように、上記相対位置を変化させていくようにしてもよい。 Further, in the description of FIG. 14, a plurality of measurement positions are realized by changing the relative position, and the measurement chart is imaged when each measurement position is reached, but the measurement chart is continuously imaged. (I.e., taking a moving image), and the relative position may be changed so that each measurement position is reached during the imaging.
 また、図14のS8の工程では、レンズユニット10のZ軸方向位置は固定のまま、撮像素子ユニット20を動かしていくことで、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置を調整しているが、レンズユニット保持部75をZ軸方向に移動可能にしておき、撮像素子ユニット保持部79は位置固定のままレンズユニット保持部75を移動させたり、レンズユニット保持部75と撮像素子ユニット保持部79をそれぞれ移動させたりして、位置調整を行ってもよい。 In step S8 in FIG. 14, the Z-axis direction position of the image sensor unit 20 relative to the lens unit 10 is adjusted by moving the image sensor unit 20 while the Z-axis direction position of the lens unit 10 is fixed. However, the lens unit holding part 75 is movable in the Z-axis direction, and the image sensor unit holding part 79 moves the lens unit holding part 75 while the position is fixed, or the lens unit holding part 75 and the image sensor unit. The position adjustment may be performed by moving each of the holding portions 79.
 また、図14のS8の工程では、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置だけでなく、傾きも調整しているが、この傾きの調整は省略してもよい。例えば、撮像素子27の画素数が少ない場合には、この傾きの調整を行わずとも撮像品質を維持できる。また、Z軸方向位置は周知の方法によって予め調整しておき、製造装置200では傾きだけを調整してもよい。 Further, in the process of S8 in FIG. 14, not only the position of the image sensor unit 20 with respect to the lens unit 10 in the Z-axis direction but also the inclination is adjusted, but this adjustment of the inclination may be omitted. For example, when the number of pixels of the image sensor 27 is small, the image quality can be maintained without adjusting the inclination. Further, the Z-axis direction position may be adjusted in advance by a known method, and the manufacturing apparatus 200 may adjust only the inclination.
 また、図14のS8の工程において、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置だけを調整するのであれば、測定チャート89のチャート面に設けるチャート画像は少なくとも1つあればよい。 Further, if only the position in the Z-axis direction of the image sensor unit 20 with respect to the lens unit 10 is adjusted in the process of S8 in FIG. 14, there may be at least one chart image provided on the chart surface of the measurement chart 89.
 また、図14のS8の工程において、レンズユニット10に対する撮像素子ユニット20のZ軸方向位置と傾きを調整するのであれば、測定チャート89のチャート面に設けるチャート画像は少なくとも3つあればよい。 Further, in the process of S8 in FIG. 14, if the Z-axis direction position and inclination of the image sensor unit 20 with respect to the lens unit 10 are adjusted, it is sufficient that at least three chart images are provided on the chart surface of the measurement chart 89.
 上述してきたように、4つ以上のチャート画像を用いた場合には、レンズユニット10に対する撮像素子ユニット20の傾き調整をより高精度に行うことができる。 As described above, when four or more chart images are used, the tilt adjustment of the image sensor unit 20 with respect to the lens unit 10 can be performed with higher accuracy.
 また、レンズユニット保持部75の吸着面75dには、開口75cの中心とレンズユニット10の開口11bの中心とを一致させるための位置決め部を設けておくのが好ましい。 In addition, it is preferable to provide a positioning portion for matching the center of the opening 75c with the center of the opening 11b of the lens unit 10 on the suction surface 75d of the lens unit holding portion 75.
 ここまでは、レンズユニット10の筐体11の天面11aが、レンズ群12の光軸Axに垂直な面として説明した。この垂直とは、厳密に垂直である必要はなく、レンズユニット10に対して撮像素子ユニット20の傾きを調整する機構を製造装置に持たせる場合には、傾き調整のストローク内であればよい。傾き調整機構が無い場合には、1°程度のずれは許容される。 Up to this point, the top surface 11a of the housing 11 of the lens unit 10 has been described as a surface perpendicular to the optical axis Ax of the lens group 12. The term “perpendicular” does not need to be strictly vertical, and if the manufacturing apparatus has a mechanism for adjusting the tilt of the image sensor unit 20 with respect to the lens unit 10, it may be within the stroke of tilt adjustment. When there is no tilt adjustment mechanism, a deviation of about 1 ° is allowed.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示された撮像モジュールの製造方法は、レンズ群を有するレンズユニットと、上記レンズユニットに固定され、上記レンズ群を通して被写体を撮像する撮像素子を有する撮像素子ユニットと、を有する撮像モジュールの製造方法であって、上記レンズユニットは、上記レンズ群のうち少なくとも一部のレンズを移動させるレンズ駆動部を含むレンズ駆動装置を有し、測定チャートに直交する軸上において、上記撮像素子ユニット、上記レンズユニット、及び上記測定チャートの少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子を駆動して上記撮像素子により上記レンズ群を通して上記測定チャートを撮像させる第一工程と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの上記軸方向位置及び傾きの少なくとも一方を調整し、上記撮像素子ユニットを上記レンズユニットに固定する第二工程と、を備え、上記第一工程では、上記軸上に上記レンズユニットを保持し、上記レンズユニットに設けられ上記レンズ駆動装置と電気的に接続された電気接続部に第一のプローブを押し当てて上記レンズ駆動装置に通電し、上記第一のプローブの押し当てによって上記電気接続部に加わる上記レンズ群の光軸に直交する方向の力とは反対方向の力を上記レンズユニットに加えた状態で、上記撮像素子により上記測定チャートを撮像させるものである。 The disclosed method of manufacturing an imaging module is a method of manufacturing an imaging module having a lens unit having a lens group, and an image sensor unit that is fixed to the lens unit and has an image sensor that images a subject through the lens group. The lens unit includes a lens driving device including a lens driving unit that moves at least a part of the lenses of the lens group, and the imaging element unit and the lens unit are on an axis orthogonal to the measurement chart. And at least one of the measurement charts, the relative position in the axial direction is changed, and at each relative position, the imaging element is driven and the imaging chart is imaged through the lens group by the imaging element. Imaging obtained by imaging the measurement chart with the imaging device A second step of adjusting at least one of the axial position and the inclination of the image sensor unit with respect to the lens unit based on the number, and fixing the image sensor unit to the lens unit, the first step Then, the lens unit is held on the shaft, the first probe is pressed against an electrical connection portion provided in the lens unit and electrically connected to the lens driving device, and the lens driving device is energized, In the state where a force in a direction opposite to the direction perpendicular to the optical axis of the lens group applied to the electrical connection portion by pressing the first probe is applied to the lens unit, the measurement chart is used by the imaging device. Is taken.
 この方法によれば、レンズ駆動装置に通電するための第一のプローブの押し当て力を、第一のプローブの押し当て力とは反対方向の力によって相殺することができ、レンズユニットの保持姿勢を所望の状態に維持することができる。この結果、レンズユニットと撮像素子ユニットの位置合わせを精度よく行うことができる。 According to this method, the pressing force of the first probe for energizing the lens driving device can be canceled by the force in the direction opposite to the pressing force of the first probe, and the holding posture of the lens unit Can be maintained in a desired state. As a result, the lens unit and the image sensor unit can be accurately aligned.
 開示された撮像モジュールの製造方法は、上記レンズユニットの筐体は上記レンズ群の光軸を挟んで対向する2つの面を有し、上記2つの面の各々からは上記電気接続部が露出しており、上記第一工程では、上記軸上に上記レンズユニットを保持し、上記2つの面の一方の面から露出する上記電気接続部に対して上記第一のプローブを押し当てて上記レンズ駆動装置に通電し、かつ、上記2つの面の他方の面から露出する上記電気接続部に対して第二のプローブを押し当てて上記レンズ駆動装置に通電した状態で上記撮像素子により上記測定チャートを撮像させるものである。 In the disclosed method for manufacturing an imaging module, the housing of the lens unit has two surfaces facing each other across the optical axis of the lens group, and the electrical connection portion is exposed from each of the two surfaces. In the first step, the lens unit is held on the shaft, and the first probe is pressed against the electrical connection portion exposed from one of the two surfaces to drive the lens. The measurement chart is displayed by the imaging element in a state where the second probe is pressed against the electrical connection portion exposed from the other surface of the two surfaces and the lens driving device is energized. The image is taken.
 この方法によれば、レンズ駆動部に通電するための第一のプローブの押し当て力を、レンズ駆動部に通電するための第二のプローブの押し当て力によって相殺することができ、レンズユニットの保持姿勢を所望の状態に維持することができる。この結果、レンズユニットと撮像素子ユニットの位置合わせを精度よく行うことができる。 According to this method, the pressing force of the first probe for energizing the lens driving unit can be offset by the pressing force of the second probe for energizing the lens driving unit. The holding posture can be maintained in a desired state. As a result, the lens unit and the image sensor unit can be accurately aligned.
 開示された撮像モジュールの製造方法は、上記第一工程では、上記2つの面の一方の面から露出する上記電気接続部に対して4つ以上の上記第一のプローブを押し当てるものである。 In the disclosed imaging module manufacturing method, in the first step, four or more first probes are pressed against the electrical connection portion exposed from one of the two surfaces.
 4つ以上の第一のプローブが電気接続部に押し当てられた場合、押圧力が大きくなるため、レンズユニットに対し上記反対方向の力を加えることが特に有効となる。 When four or more first probes are pressed against the electrical connection portion, the pressing force increases, so it is particularly effective to apply the force in the opposite direction to the lens unit.
 開示された撮像モジュールの製造方法は、上記レンズユニットは、上記レンズ群を収容しかつ上記レンズ群の光軸に垂直な面を被写体側に有する筐体を備え、上記第一工程では、上記軸に垂直な吸着面を有する吸着ヘッドの上記吸着面に設けられた吸引孔から空気を吸引して、上記吸着面に上記筐体の上記面を吸着させて上記レンズユニットを保持するものである。 In the disclosed imaging module manufacturing method, the lens unit includes a housing that houses the lens group and has a surface on the subject side that is perpendicular to the optical axis of the lens group. Air is sucked from a suction hole provided in the suction surface of the suction head having a suction surface perpendicular to the suction head, and the surface of the housing is sucked by the suction surface to hold the lens unit.
 この方法によれば、レンズユニットの筐体の被写体側の面が吸着ヘッドに吸着されてレンズユニットが保持されるため、レンズユニット内のレンズ群の光軸が、測定チャートに直交する軸に対して傾くのを防ぐことができ、撮像素子ユニットとレンズユニットの位置合わせ時におけるレンズユニットの位置を正確に決めて撮像品質を向上させることが可能となる。 According to this method, the surface of the lens unit housing on the subject side is attracted by the suction head and the lens unit is held, so that the optical axis of the lens group in the lens unit is relative to the axis orthogonal to the measurement chart. It is possible to prevent the camera from tilting, and it is possible to accurately determine the position of the lens unit when aligning the imaging element unit and the lens unit, thereby improving the imaging quality.
 また、この方法によれば、レンズユニットの筐体側面の周囲にはレンズユニットを保持するための手段を配置する必要がなくなるため、レンズユニット周囲のスペースを確保しやすくなる。この結果、例えば、レンズユニットと撮像素子ユニットを固定するための装置やレンズユニットに通電するための装置等の配置を容易に行うことができ、製造装置の設計コスト削減及びメンテナンス性向上を実現することができる。 In addition, according to this method, it is not necessary to arrange a means for holding the lens unit around the side surface of the housing of the lens unit, so that it is easy to secure a space around the lens unit. As a result, for example, an apparatus for fixing the lens unit and the image pickup element unit, an apparatus for energizing the lens unit, and the like can be easily arranged, and the design cost of the manufacturing apparatus can be reduced and the maintainability can be improved. be able to.
 また、この方法では、レンズユニットの筐体の被写体側の面でレンズユニットが吸着保持されるため、第一のプローブを当てることによる筐体の傾きが発生しやすくなり、レンズユニットに対し上記反対方向の力を加えることが特に有効となる。 In this method, the lens unit is attracted and held on the surface of the lens unit housing on the subject side, and thus the tilt of the housing is likely to occur when the first probe is applied. It is particularly effective to apply a directional force.
 開示された撮像モジュールの製造方法は、上記第二工程では、上記軸方向に見て上記レンズ群の光軸を通りかつ上記光軸に直交する直線で上記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれから光を照射し、上記レンズユニットと上記撮像素子ユニットの隙間に供給された光硬化性接着剤を硬化させて、上記レンズユニットと上記撮像素子ユニットを固定するものである。 According to the disclosed imaging module manufacturing method, in the second step, one of the lens units divided into two by a straight line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction. Light is irradiated from each of the divided area side and the other divided area side, the photocurable adhesive supplied to the gap between the lens unit and the imaging element unit is cured, and the lens unit and the imaging element unit are It is to be fixed.
 この方法によれば、レンズユニットと撮像素子ユニットの間に少なくとも2方向から光が照射されるため、塗布された接着剤をモジュール全体で均一に硬化させることが可能となり、レンズユニットと撮像素子ユニットの固定を安定的に行うことができる。また、この方法では、レンズユニットの筐体側面の周囲は、少なくとも2つの光源等を配置する必要があるが、レンズユニットは、被写体側の天面が吸着によって保持されるため、レンズユニットの筐体側面の周囲にはこの光源等を容易に配置することができる。 According to this method, since light is irradiated from at least two directions between the lens unit and the image sensor unit, it is possible to uniformly cure the applied adhesive throughout the module, and the lens unit and the image sensor unit. Can be stably fixed. In this method, it is necessary to arrange at least two light sources around the side surface of the housing of the lens unit. However, since the top surface of the object side is held by suction, the lens unit is held by the housing of the lens unit. This light source or the like can be easily arranged around the side of the body.
 開示された撮像モジュールの製造方法は、上記レンズ駆動装置は、上記レンズ群のうち少なくとも一部のレンズを上記レンズ群の光軸に沿う第一の方向に移動させる第一のレンズ駆動部と、上記レンズ群のうち少なくとも一部のレンズを上記レンズ群の光軸に直交する第二の方向及び第三の方向にそれぞれ移動させる第二のレンズ駆動部及び第三のレンズ駆動部とを有するものである。 In the disclosed method for manufacturing an imaging module, the lens driving device includes a first lens driving unit that moves at least a part of the lenses in the first direction along the optical axis of the lens group; A second lens driving unit and a third lens driving unit for moving at least some of the lenses in a second direction and a third direction orthogonal to the optical axis of the lens group, respectively; It is.
 このようなレンズユニットを用いると、通電対象となるレンズ駆動部が増えてプローブを当てるべき電気接続部の数が増える。この結果、プローブを当てることによるレンズユニットの傾きが発生しやすくなり、レンズユニットに対し上記一方向とは反対方向の力を加えることが特に有効となる。 If such a lens unit is used, the number of lens drive parts to be energized increases and the number of electrical connection parts to which the probe is applied increases. As a result, the inclination of the lens unit due to contact with the probe is likely to occur, and it is particularly effective to apply a force in the direction opposite to the one direction to the lens unit.
 開示された撮像モジュールの製造方法は、上記撮像素子の画素ピッチは1.0μm以下であるものを含む。 The disclosed method for manufacturing an imaging module includes a method in which the pixel pitch of the imaging element is 1.0 μm or less.
 撮像素子の画素ピッチが1.0μm以下である場合は、位置合わせ精度が特に要求されるため、レンズユニットに対し上記一方向とは反対方向の力を加えることが特に有効となる。 When the pixel pitch of the image sensor is 1.0 μm or less, since alignment accuracy is particularly required, it is particularly effective to apply a force in a direction opposite to the one direction to the lens unit.
 開示された撮像モジュールの製造装置は、測定チャートを設置するための測定チャート設置部と、上記測定チャート設置部に設置された上記測定チャートに直交する軸上に、レンズ群を有するレンズユニットを通して被写体を撮像する撮像素子を有する撮像素子ユニットを保持するための撮像素子ユニット保持部と、上記測定チャート設置部と上記撮像素子ユニット保持部との間の上記軸上で上記レンズユニットを保持するためのレンズユニット保持部と、上記レンズユニット保持部により保持された上記レンズユニットに第一のプローブを押し当てるプローブ押し当て部と、上記プローブ押し当て部によって上記第一のプローブを上記レンズユニットに押し当てた状態で上記レンズユニットに加わる上記レンズ群の光軸に直交する方向の力と反対方向に向かう力を、上記レンズユニットに部材を押し当てて加える部材押し当て部と、上記測定チャート設置部、上記レンズユニット保持部、及び上記撮像素子ユニット保持部の少なくともいずれか1ヶ所の上記軸方向の相対位置を変化させ、各相対位置において、上記撮像素子ユニットの上記撮像素子を駆動して、上記撮像素子により上記レンズユニットを通して上記測定チャートを撮像させる制御部と、上記撮像素子により上記測定チャートを撮像して得られる撮像信号に基づいて、上記レンズユニットに対する上記撮像素子ユニットの上記軸方向位置及び傾きの少なくとも一方を調整する調整部と、上記調整部により調整後の上記撮像素子ユニットを上記レンズユニットに固定するユニット固定部と、を備えるものである。 The disclosed imaging module manufacturing apparatus includes a measurement chart installation unit for installing a measurement chart, and a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit. An image sensor unit holding unit for holding an image sensor unit having an image sensor for imaging, and a lens unit for holding the lens unit on the axis between the measurement chart setting unit and the image sensor unit holding unit. A lens unit holding portion; a probe pressing portion that presses the first probe against the lens unit held by the lens unit holding portion; and the first probe is pressed against the lens unit by the probe pressing portion. In a direction perpendicular to the optical axis of the lens group applied to the lens unit At least one of a member pressing portion that applies a force in the opposite direction to the lens unit by pressing the member against the lens unit, the measurement chart setting portion, the lens unit holding portion, and the imaging element unit holding portion. A control unit that changes the relative position in the axial direction, drives the image sensor of the image sensor unit at each relative position, and images the measurement chart through the lens unit by the image sensor; and the image sensor An adjustment unit that adjusts at least one of the axial position and inclination of the image sensor unit with respect to the lens unit based on an image signal obtained by imaging the measurement chart, and the image sensor that has been adjusted by the adjustment unit A unit fixing portion for fixing the unit to the lens unit.
 この構成によれば、レンズ駆動装置に通電するための第一のプローブの押し当て力を、第一のプローブの押し当て力とは反対方向の力によって相殺することができ、レンズユニットの保持姿勢を所望の状態に維持することができる。この結果、レンズユニットと撮像素子ユニットの位置合わせを精度よく行うことができる。 According to this configuration, the pressing force of the first probe for energizing the lens driving device can be offset by a force in the direction opposite to the pressing force of the first probe, and the holding posture of the lens unit Can be maintained in a desired state. As a result, the lens unit and the image sensor unit can be accurately aligned.
 開示された撮像モジュールの製造装置は、上記プローブ押し当て部は、上記レンズユニット保持部に保持された上記レンズユニットの筐体における上記レンズ群の光軸を挟んで対向する2つの面の一方の面から露出する電気接続部に対して上記第一のプローブを押し当て、上記部材押し当て部は、上記2つの面の他方の面から露出する電気接続部に対して上記部材としての第二のプローブを押し当てるものである。 In the disclosed imaging module manufacturing apparatus, the probe pressing portion is one of two surfaces facing each other across the optical axis of the lens group in the lens unit housing held by the lens unit holding portion. The first probe is pressed against the electrical connection portion exposed from the surface, and the member pressing portion is a second member as the member with respect to the electrical connection portion exposed from the other surface of the two surfaces. The probe is pressed against it.
 この構成によれば、レンズ駆動部に通電するための第一のプローブの押し当て力を、第二のプローブの押し当て力によって相殺することができ、レンズユニットの保持姿勢を所望の状態に維持することができる。この結果、レンズユニットと撮像素子ユニットの位置合わせを精度よく行うことができる。 According to this configuration, the pressing force of the first probe for energizing the lens driving unit can be canceled by the pressing force of the second probe, and the holding posture of the lens unit is maintained in a desired state. can do. As a result, the lens unit and the image sensor unit can be accurately aligned.
 開示された撮像モジュールの製造装置は、上記第一のプローブと上記第二のプローブが上記レンズユニットに接触した状態で、上記レンズユニットと上記第一のプローブとの接触点及び上記レンズユニットと上記第二のプローブとの接触点を含む平面が上記光軸と垂直になっているものである。 The disclosed imaging module manufacturing apparatus is configured such that the first probe and the second probe are in contact with the lens unit, the contact point between the lens unit and the first probe, the lens unit, and the lens unit. A plane including a contact point with the second probe is perpendicular to the optical axis.
 この構成によれば、レンズ駆動部に通電するための第一のプローブの押し当て力を、第二のプローブの押し当て力によって確実に相殺することができる。 According to this configuration, the pressing force of the first probe for energizing the lens driving unit can be surely offset by the pressing force of the second probe.
 開示された撮像モジュールの製造装置は、上記第一のプローブと上記第二のプローブが同じ数あり、上記第一のプローブと上記第二のプローブが上記レンズユニットに接触した状態で、上記光軸に直交する方向に伸びる直線上に、上記レンズユニットと1つの上記第一のプローブとの接触点と上記レンズユニットと1つの上記第二のプローブとの接触点とのペアが並び、上記ペアが上記直線に直交する方向に複数並ぶものである。 The disclosed imaging module manufacturing apparatus includes the same number of the first probe and the second probe, and the optical axis in a state where the first probe and the second probe are in contact with the lens unit. A pair of contact points between the lens unit and one first probe and a contact point between the lens unit and one second probe are arranged on a straight line extending in a direction perpendicular to A plurality are arranged in a direction orthogonal to the straight line.
 この構成によれば、レンズ駆動部に通電するための第一のプローブの押し当て力を、第二のプローブの押し当て力によって確実に相殺することができる。 According to this configuration, the pressing force of the first probe for energizing the lens driving unit can be surely offset by the pressing force of the second probe.
 開示された撮像モジュールの製造装置は、上記プローブ押し当て部は、4つ以上の上記第一のプローブを有するものである。 In the disclosed imaging module manufacturing apparatus, the probe pressing unit includes four or more first probes.
 4つ以上の第一のプローブがレンズユニットに押し当てられた場合、押圧力が大きくなるため、レンズユニットに対し上記反対方向の力を加えることが特に有効となる。 When four or more first probes are pressed against the lens unit, the pressing force increases, so it is particularly effective to apply a force in the opposite direction to the lens unit.
 開示された撮像モジュールの製造装置は、上記レンズユニット保持部は、上記軸に直交する吸着面を有する吸着ヘッドと、上記吸着面に形成された吸引孔と、上記吸引孔から空気を吸引する吸引部と、を備え、上記吸引部によって上記吸引孔から空気を吸引し、上記レンズ群を収容しかつ上記レンズ群の光軸に垂直な面を被写体側に有する上記レンズユニットの筐体の上記面を上記吸着面に吸着させて上記レンズユニットを上記軸上に保持するものである。 In the disclosed imaging module manufacturing apparatus, the lens unit holding portion includes a suction head having a suction surface orthogonal to the axis, a suction hole formed in the suction surface, and suction for sucking air from the suction hole. The surface of the housing of the lens unit that has a surface perpendicular to the optical axis of the lens group on the subject side, in which air is sucked from the suction hole by the suction portion, and the lens group is accommodated Is held by the suction surface to hold the lens unit on the shaft.
 開示された撮像モジュールの製造装置は、上記ユニット固定部は、上記軸方向に見て上記レンズ群の光軸を通りかつ上記光軸に直交する直線で上記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれに配置され、上記レンズユニットと上記撮像素子ユニットの隙間に対して光を照射して、上記隙間に供給される光硬化性接着剤を硬化させる光源を含むものである。 In the disclosed imaging module manufacturing apparatus, the unit fixing portion is divided into two when the lens unit is divided into two by a straight line passing through the optical axis of the lens group and orthogonal to the optical axis when viewed in the axial direction. A light source that is disposed on each of the divided area side and the other divided area side, irradiates light to the gap between the lens unit and the imaging element unit, and cures the photocurable adhesive supplied to the gap. Is included.
 本発明の撮像モジュールの製造方法は、特に携帯電話機、眼鏡型電子機器、腕時計型電子機器等の電子機器に搭載される撮像モジュールの製造に適用して有効である。 The method for manufacturing an imaging module according to the present invention is particularly effective when applied to the manufacture of an imaging module mounted on an electronic device such as a mobile phone, a spectacle-type electronic device, or a wristwatch-type electronic device.
 以上、本発明を特定の実施形態によって説明したが、本発明はこの実施形態に限定されるものではなく、開示された発明の技術思想を逸脱しない範囲で種々の変更が可能である。
 本出願は、2013年10月22日出願の日本特許出願(特願2013-219244)に基づくものであり、その内容はここに取り込まれる。
As mentioned above, although this invention was demonstrated by specific embodiment, this invention is not limited to this embodiment, A various change is possible in the range which does not deviate from the technical idea of the disclosed invention.
This application is based on a Japanese patent application filed on October 22, 2013 (Japanese Patent Application No. 2013-219244), the contents of which are incorporated herein.
100 撮像モジュール
10 レンズユニット
11 筐体
11a 筐体の天面
11c,11d,11e,11f 筐体の側面
12 レンズ群
13 フレキシブル基板
14A~14F,14a~14l レンズユニット端子部
16 レンズ駆動装置
16A x方向VCM
16B x方向ホール素子
16C y方向VCM
16D y方向ホール素子
16E z方向VCM
16F z方向ホール素子
20 撮像素子ユニット
21 基板
22 フレキシブル基板
23 外部接続用端子部
24 撮像素子ユニット端子部
27 撮像素子
200 撮像モジュール製造装置
71 チャートユニット
89 測定チャート
75 レンズユニット保持部
75a 吸着ヘッド
75b 吸引孔
75c 開口
75d 吸着面
75e 吸引部
81 接着剤供給部
83a,83b 紫外線ランプ
79 撮像素子ユニット保持部
85 制御部
113 プローブユニット
113a,113b プローブ
Ax 光軸
z 光軸に沿う方向
x z方向に直交する方向
y z方向に直交する方向
DESCRIPTION OF SYMBOLS 100 Imaging module 10 Lens unit 11 Housing | casing 11a Top surface 11c, 11d, 11e, 11f of housing | casing Side surface 12 Lens group 13 Flexible board 14A-14F, 14a-14l Lens unit terminal part 16 Lens drive device 16A X direction VCM
16B x direction hall element 16C y direction VCM
16D y-direction Hall element 16E z-direction VCM
16F z-direction Hall element 20 Image sensor unit 21 Substrate 22 Flexible substrate 23 External connection terminal unit 24 Image sensor unit terminal unit 27 Image sensor 200 Imaging module manufacturing apparatus 71 Chart unit 89 Measurement chart 75 Lens unit holding unit 75a Suction head 75b Suction Hole 75c Opening 75d Suction surface 75e Suction part 81 Adhesive supply part 83a, 83b Ultraviolet lamp 79 Imaging element unit holding part 85 Control part 113 Probe unit 113a, 113b Probe Ax Optical axis z A direction along the optical axis xz direction orthogonal to the optical axis Direction yz direction orthogonal to z direction

Claims (14)

  1.  レンズ群を有するレンズユニットと、前記レンズユニットに固定され、前記レンズ群を通して被写体を撮像する撮像素子を有する撮像素子ユニットと、を有する撮像モジュールの製造方法であって、
     前記レンズユニットは、前記レンズ群のうち少なくとも一部のレンズを移動させるレンズ駆動部を含むレンズ駆動装置を有し、
     測定チャートに直交する軸上において、前記撮像素子ユニット、前記レンズユニット、及び前記測定チャートの少なくともいずれか1ヶ所の前記軸方向の相対位置を変化させ、各相対位置において、前記撮像素子を駆動して前記撮像素子により前記レンズ群を通して前記測定チャートを撮像させる第一工程と、
     前記撮像素子により前記測定チャートを撮像して得られる撮像信号に基づいて、前記レンズユニットに対する前記撮像素子ユニットの前記軸方向位置及び傾きの少なくとも一方を調整し、前記撮像素子ユニットを前記レンズユニットに固定する第二工程と、を備え、
     前記第一工程では、前記軸上に前記レンズユニットを保持し、前記レンズユニットに設けられ前記レンズ駆動装置と電気的に接続された電気接続部に第一のプローブを押し当てて前記レンズ駆動装置に通電し、前記第一のプローブの押し当てによって前記電気接続部に加わる前記レンズ群の光軸に直交する方向の力とは反対方向の力を前記レンズユニットに加えた状態で、前記撮像素子により前記測定チャートを撮像させる撮像モジュールの製造方法。
    A method of manufacturing an imaging module, comprising: a lens unit having a lens group; and an imaging element unit having an imaging element fixed to the lens unit and imaging a subject through the lens group,
    The lens unit includes a lens driving device including a lens driving unit that moves at least some of the lenses in the lens group,
    On the axis orthogonal to the measurement chart, the relative position in the axial direction of at least one of the image sensor unit, the lens unit, and the measurement chart is changed, and the image sensor is driven at each relative position. A first step of imaging the measurement chart through the lens group by the imaging element;
    Based on an imaging signal obtained by imaging the measurement chart with the imaging device, at least one of the axial position and the inclination of the imaging device unit with respect to the lens unit is adjusted, and the imaging device unit is used as the lens unit. A second step of fixing,
    In the first step, the lens unit is held on the shaft, and the first probe is pressed against an electrical connection portion provided in the lens unit and electrically connected to the lens driving device. In the state where a force in a direction opposite to the direction perpendicular to the optical axis of the lens group applied to the electrical connection portion by pressing the first probe is applied to the lens unit, the imaging element The manufacturing method of the imaging module which images the said measurement chart.
  2.  請求項1記載の撮像モジュールの製造方法であって、
     前記レンズユニットの筐体は前記レンズ群の光軸を挟んで対向する2つの面を有し、
     前記2つの面の各々からは前記電気接続部が露出しており、
     前記第一工程では、前記軸上に前記レンズユニットを保持し、前記2つの面の一方の面から露出する前記電気接続部に対して前記第一のプローブを押し当てて前記レンズ駆動装置に通電し、かつ、前記2つの面の他方の面から露出する前記電気接続部に対して第二のプローブを押し当てて前記レンズ駆動装置に通電した状態で前記撮像素子により前記測定チャートを撮像させる撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to claim 1,
    The housing of the lens unit has two surfaces facing each other across the optical axis of the lens group,
    The electrical connection is exposed from each of the two surfaces,
    In the first step, the lens unit is held on the shaft, and the first probe is pressed against the electrical connection portion exposed from one of the two surfaces to energize the lens driving device. And imaging the measurement chart by the imaging element in a state where the second probe is pressed against the electrical connection portion exposed from the other surface of the two surfaces and the lens driving device is energized. Module manufacturing method.
  3.  請求項2記載の撮像モジュールの製造方法であって、
     前記第一工程では、前記2つの面の一方の面から露出する前記電気接続部に対して4つ以上の前記第一のプローブを押し当てる撮像モジュールの製造方法。
    A method of manufacturing an imaging module according to claim 2,
    In the first step, an imaging module manufacturing method in which four or more first probes are pressed against the electrical connection portion exposed from one surface of the two surfaces.
  4.  請求項1~3のいずれか1項記載の撮像モジュールの製造方法であって、
     前記レンズユニットは、前記レンズ群を収容しかつ前記レンズ群の光軸に垂直な面を被写体側に有する筐体を備え、
     前記第一工程では、前記軸に垂直な吸着面を有する吸着ヘッドの前記吸着面に設けられた吸引孔から空気を吸引して、前記吸着面に前記筐体の前記面を吸着させて前記レンズユニットを保持する撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to any one of claims 1 to 3,
    The lens unit includes a housing that houses the lens group and has a surface on the subject side that is perpendicular to the optical axis of the lens group,
    In the first step, air is sucked from a suction hole provided in the suction surface of the suction head having a suction surface perpendicular to the axis, and the surface of the housing is sucked to the suction surface, thereby the lens. Manufacturing method of imaging module holding unit.
  5.  請求項4記載の撮像モジュールの製造方法であって、
     前記第二工程では、前記軸方向に見て前記レンズ群の光軸を通りかつ前記光軸に直交する直線で前記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれから光を照射し、前記レンズユニットと前記撮像素子ユニットの隙間に供給された光硬化性接着剤を硬化させて、前記レンズユニットと前記撮像素子ユニットを固定する撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to claim 4,
    In the second step, when the lens unit is divided into two by a straight line that passes through the optical axis of the lens group and is orthogonal to the optical axis when viewed in the axial direction, the one division area side and the other division area side A method of manufacturing an imaging module that irradiates light from each of them, cures a photocurable adhesive supplied to a gap between the lens unit and the imaging element unit, and fixes the lens unit and the imaging element unit.
  6.  請求項1~5のいずれか1項記載の撮像モジュールの製造方法であって、
     前記レンズ駆動装置は、前記レンズ群のうち少なくとも一部のレンズを前記レンズ群の光軸に沿う第一の方向に移動させる第一のレンズ駆動部と、前記レンズ群のうち少なくとも一部のレンズを前記レンズ群の光軸に直交する第二の方向及び第三の方向にそれぞれ移動させる第二のレンズ駆動部及び第三のレンズ駆動部とを有する撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to any one of claims 1 to 5,
    The lens driving device includes: a first lens driving unit that moves at least a part of the lenses in a first direction along an optical axis of the lens group; and at least a part of the lenses in the lens group. A method of manufacturing an imaging module having a second lens driving unit and a third lens driving unit that move the lens in a second direction and a third direction orthogonal to the optical axis of the lens group.
  7.  請求項1~6のいずれか1項記載の撮像モジュールの製造方法であって、
     前記撮像素子の画素ピッチは1.0μm以下である撮像モジュールの製造方法。
    A method for manufacturing an imaging module according to any one of claims 1 to 6,
    The manufacturing method of the imaging module whose pixel pitch of the said imaging device is 1.0 micrometer or less.
  8.  測定チャートを設置するための測定チャート設置部と、
     前記測定チャート設置部に設置された前記測定チャートに直交する軸上に、レンズ群を有するレンズユニットを通して被写体を撮像する撮像素子を有する撮像素子ユニットを保持するための撮像素子ユニット保持部と、
     前記測定チャート設置部と前記撮像素子ユニット保持部との間の前記軸上で前記レンズユニットを保持するためのレンズユニット保持部と、
     前記レンズユニット保持部により保持された前記レンズユニットに第一のプローブを押し当てるプローブ押し当て部と、
     前記プローブ押し当て部によって前記第一のプローブを前記レンズユニットに押し当てた状態で前記レンズユニットに加わる前記レンズ群の光軸に直交する方向の力と反対方向に向かう力を、前記レンズユニットに部材を押し当てて加える部材押し当て部と、
     前記測定チャート設置部、前記レンズユニット保持部、及び前記撮像素子ユニット保持部の少なくともいずれか1ヶ所の前記軸方向の相対位置を変化させ、各相対位置において、前記撮像素子ユニットの前記撮像素子を駆動して、前記撮像素子により前記レンズユニットを通して前記測定チャートを撮像させる制御部と、
     前記撮像素子により前記測定チャートを撮像して得られる撮像信号に基づいて、前記レンズユニットに対する前記撮像素子ユニットの前記軸方向位置及び傾きの少なくとも一方を少なくとも調整する調整部と、
     前記調整部により調整後の前記撮像素子ユニットを前記レンズユニットに固定するユニット固定部と、を備える撮像モジュールの製造装置。
    A measurement chart setting part for setting a measurement chart;
    An image sensor unit holding unit for holding an image sensor unit having an image sensor that images a subject through a lens unit having a lens group on an axis orthogonal to the measurement chart installed in the measurement chart installation unit;
    A lens unit holding unit for holding the lens unit on the axis between the measurement chart setting unit and the imaging element unit holding unit;
    A probe pressing unit that presses the first probe against the lens unit held by the lens unit holding unit;
    A force in the direction opposite to the direction perpendicular to the optical axis of the lens group applied to the lens unit in a state in which the first probe is pressed against the lens unit by the probe pressing unit is applied to the lens unit. A member pressing part that presses and adds a member;
    The relative position in the axial direction of at least one of the measurement chart setting unit, the lens unit holding unit, and the image sensor unit holding unit is changed, and the image sensor of the image sensor unit is changed at each relative position. A controller that drives and images the measurement chart through the lens unit by the imaging element;
    An adjustment unit that adjusts at least one of the axial position and the inclination of the imaging element unit with respect to the lens unit based on an imaging signal obtained by imaging the measurement chart by the imaging element;
    An apparatus for manufacturing an imaging module, comprising: a unit fixing unit that fixes the imaging device unit adjusted by the adjustment unit to the lens unit.
  9.  請求項8記載の撮像モジュールの製造装置であって、
     前記プローブ押し当て部は、前記レンズユニット保持部に保持された前記レンズユニットの筐体における前記レンズ群の光軸を挟んで対向する2つの面の一方の面から露出する電気接続部に対して前記第一のプローブを押し当て、
     前記部材押し当て部は、前記2つの面の他方の面から露出する電気接続部に対して前記部材としての第二のプローブを押し当てる撮像モジュールの製造装置。
    An apparatus for manufacturing an imaging module according to claim 8,
    The probe pressing portion is connected to an electrical connection portion exposed from one surface of two surfaces facing each other across the optical axis of the lens group in the lens unit housing held by the lens unit holding portion. Pressing the first probe;
    The said member pressing part is a manufacturing apparatus of the imaging module which presses the 2nd probe as said member with respect to the electrical-connection part exposed from the other surface of said two surfaces.
  10.  請求項9記載の撮像モジュールの製造装置であって、
     前記第一のプローブと前記第二のプローブが前記レンズユニットに接触した状態で、前記レンズユニットと前記第一のプローブとの接触点及び前記レンズユニットと前記第二のプローブとの接触点を含む平面が前記光軸と垂直になっている撮像モジュールの製造装置。
    An imaging module manufacturing apparatus according to claim 9,
    In the state where the first probe and the second probe are in contact with the lens unit, the contact point between the lens unit and the first probe and the contact point between the lens unit and the second probe are included. An imaging module manufacturing apparatus in which a plane is perpendicular to the optical axis.
  11.  請求項9又は10記載の撮像モジュールの製造装置であって、
     前記第一のプローブと前記第二のプローブが同じ数あり、
     前記第一のプローブと前記第二のプローブが前記レンズユニットに接触した状態で、前記光軸に直交する方向に伸びる直線上に、前記レンズユニットと1つの前記第一のプローブとの接触点と前記レンズユニットと1つの前記第二のプローブとの接触点とのペアが並び、前記ペアが前記直線に直交する方向に複数並ぶ撮像モジュールの製造装置。
    An imaging module manufacturing apparatus according to claim 9 or 10,
    There are the same number of the first probe and the second probe,
    In a state where the first probe and the second probe are in contact with the lens unit, a contact point between the lens unit and one of the first probes on a straight line extending in a direction perpendicular to the optical axis; An imaging module manufacturing apparatus in which a pair of contact points between the lens unit and one second probe is arranged, and a plurality of the pairs are arranged in a direction orthogonal to the straight line.
  12.  請求項8~11のいずれか1項記載の撮像モジュールの製造装置であって、
     前記プローブ押し当て部は、4つ以上の前記第一のプローブを有する撮像モジュールの製造装置。
    An imaging module manufacturing apparatus according to any one of claims 8 to 11,
    The probe pressing unit is an imaging module manufacturing apparatus having four or more first probes.
  13.  請求項8~12のいずれか1項記載の撮像モジュールの製造装置であって、
     前記レンズユニット保持部は、前記軸に直交する吸着面を有する吸着ヘッドと、前記吸着面に形成された吸引孔と、前記吸引孔から空気を吸引する吸引部と、を備え、前記吸引部によって前記吸引孔から空気を吸引し、前記レンズ群を収容しかつ前記レンズ群の光軸に垂直な面を被写体側に有する前記レンズユニットの筐体の前記面を前記吸着面に吸着させて前記レンズユニットを前記軸上に保持する撮像モジュールの製造装置。
    An imaging module manufacturing apparatus according to any one of claims 8 to 12,
    The lens unit holding unit includes a suction head having a suction surface orthogonal to the axis, a suction hole formed in the suction surface, and a suction unit for sucking air from the suction hole, and the suction unit Air is sucked from the suction hole, the lens group housing is accommodated and the surface of the lens unit housing having a surface perpendicular to the optical axis of the lens group on the subject side is adsorbed to the adsorption surface, and the lens An imaging module manufacturing apparatus for holding a unit on the shaft.
  14.  請求項13記載の撮像モジュールの製造装置であって、
     前記ユニット固定部は、前記軸方向に見て前記レンズ群の光軸を通りかつ前記光軸に直交する直線で前記レンズユニットを2分割したときの一方の分割エリア側と他方の分割エリア側のそれぞれに配置され、前記レンズユニットと前記撮像素子ユニットの隙間に対して光を照射して、前記隙間に供給される光硬化性接着剤を硬化させる光源を含む撮像モジュールの製造装置。
    An imaging module manufacturing apparatus according to claim 13,
    The unit fixing portion is provided on one divided area side and the other divided area side when the lens unit is divided into two by a straight line that passes through the optical axis of the lens group and is orthogonal to the optical axis when viewed in the axial direction. An imaging module manufacturing apparatus including a light source that is disposed in each of the light sources and that irradiates light to a gap between the lens unit and the imaging element unit to cure a photocurable adhesive supplied to the gap.
PCT/JP2014/077534 2013-10-22 2014-10-16 Image pickup module manufacturing method and image pickup module manufacturing apparatus WO2015060188A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-219244 2013-10-22
JP2013219244 2013-10-22

Publications (1)

Publication Number Publication Date
WO2015060188A1 true WO2015060188A1 (en) 2015-04-30

Family

ID=52992787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077534 WO2015060188A1 (en) 2013-10-22 2014-10-16 Image pickup module manufacturing method and image pickup module manufacturing apparatus

Country Status (2)

Country Link
TW (1) TW201521439A (en)
WO (1) WO2015060188A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076744A (en) * 2017-11-13 2020-06-29 닝보 써니 오포테크 코., 엘티디. Optical assembly assembly equipment and assembly method
CN113805025A (en) * 2020-06-01 2021-12-17 均豪精密工业股份有限公司 Photoelectric detection system and method for detecting crystal grains

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185572U (en) * 1987-05-22 1988-11-29
JPH0550368U (en) * 1991-12-04 1993-07-02 株式会社アイシーティ IC mounting board inspection device
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2004080774A (en) * 2002-08-02 2004-03-11 Rohm Co Ltd Method of manufacturing image sensors module
JP2006081007A (en) * 2004-09-10 2006-03-23 Sony Corp Solid-state imaging unit
JP2010021985A (en) * 2008-01-15 2010-01-28 Fujifilm Corp Method of adjusting position of imaging element, method and apparatus of manufacturing camera module, and camera module
JP2010088088A (en) * 2008-10-03 2010-04-15 Fujifilm Corp Camera module
JP2012088393A (en) * 2010-10-15 2012-05-10 Sumitomo Electric Ind Ltd Collet and method for manufacturing optical device
JP2012122972A (en) * 2010-12-10 2012-06-28 Ngk Spark Plug Co Ltd Electric inspection device, and manufacturing method for wiring board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185572U (en) * 1987-05-22 1988-11-29
JPH0550368U (en) * 1991-12-04 1993-07-02 株式会社アイシーティ IC mounting board inspection device
WO2003085440A1 (en) * 2002-04-11 2003-10-16 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP2004080774A (en) * 2002-08-02 2004-03-11 Rohm Co Ltd Method of manufacturing image sensors module
JP2006081007A (en) * 2004-09-10 2006-03-23 Sony Corp Solid-state imaging unit
JP2010021985A (en) * 2008-01-15 2010-01-28 Fujifilm Corp Method of adjusting position of imaging element, method and apparatus of manufacturing camera module, and camera module
JP2010088088A (en) * 2008-10-03 2010-04-15 Fujifilm Corp Camera module
JP2012088393A (en) * 2010-10-15 2012-05-10 Sumitomo Electric Ind Ltd Collet and method for manufacturing optical device
JP2012122972A (en) * 2010-12-10 2012-06-28 Ngk Spark Plug Co Ltd Electric inspection device, and manufacturing method for wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200076744A (en) * 2017-11-13 2020-06-29 닝보 써니 오포테크 코., 엘티디. Optical assembly assembly equipment and assembly method
EP3711897A4 (en) * 2017-11-13 2021-01-27 Ningbo Sunny Opotech Co., Ltd. Assembly device and assembly method for optical assembly
KR102421830B1 (en) 2017-11-13 2022-07-15 닝보 써니 오포테크 코., 엘티디. Optical assembly assembly equipment and assembly method
US11442239B2 (en) 2017-11-13 2022-09-13 Ningbo Sunny Opotech Co., Ltd. Assembly device and assembly method for optical assembly
CN113805025A (en) * 2020-06-01 2021-12-17 均豪精密工业股份有限公司 Photoelectric detection system and method for detecting crystal grains

Also Published As

Publication number Publication date
TW201521439A (en) 2015-06-01

Similar Documents

Publication Publication Date Title
JP5879461B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
JP6262536B2 (en) Manufacturing method of camera module
WO2015129120A1 (en) Method for manufacturing image-capturing module, and device for manufacturing image-capturing module
WO2015060256A1 (en) Image pickup module manufacturing method and image pickup module manufacturing apparatus
JP5957621B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
JP5851075B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
WO2015060188A1 (en) Image pickup module manufacturing method and image pickup module manufacturing apparatus
JP5990655B2 (en) Imaging module, imaging module manufacturing method, electronic device
JP5895105B2 (en) Imaging module manufacturing method, imaging module, and electronic apparatus
JP5961770B2 (en) Imaging module, imaging module manufacturing method, electronic device
WO2015194396A1 (en) Lens element transfer mechanism, lens drive device, optical axis adjustment device, and equipment and method for manufacturing optical module
WO2015056720A1 (en) Method for manufacturing imaging module and device for manufacturing imaging module
JP5887468B2 (en) Imaging module and electronic device
JP5857163B2 (en) Imaging module manufacturing method and imaging module manufacturing apparatus
WO2014141497A1 (en) Positional adjustment device for imaging component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP