WO2015056649A1 - System for automating specimen inspection, capacity checking module, and method for checking biological sample - Google Patents

System for automating specimen inspection, capacity checking module, and method for checking biological sample Download PDF

Info

Publication number
WO2015056649A1
WO2015056649A1 PCT/JP2014/077228 JP2014077228W WO2015056649A1 WO 2015056649 A1 WO2015056649 A1 WO 2015056649A1 JP 2014077228 W JP2014077228 W JP 2014077228W WO 2015056649 A1 WO2015056649 A1 WO 2015056649A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
sample
unit
biological sample
information
Prior art date
Application number
PCT/JP2014/077228
Other languages
French (fr)
Japanese (ja)
Inventor
孝浩 佐々木
巌 鈴木
元 末成
樹生 中川
佳奈子 江崎
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2015542603A priority Critical patent/JP6470691B2/en
Publication of WO2015056649A1 publication Critical patent/WO2015056649A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/05Investigating sedimentation of particle suspensions in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/05Investigating sedimentation of particle suspensions in blood
    • G01N2015/055Investigating sedimentation of particle suspensions in blood for hematocrite determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00742Type of codes
    • G01N2035/00752Type of codes bar codes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0403Sample carriers with closing or sealing means
    • G01N2035/0405Sample carriers with closing or sealing means manipulating closing or opening means, e.g. stoppers, screw caps, lids or covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0449Combinations of the above using centrifugal transport of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to a sample inspection automation system, a volume check module, and a method for checking a biological sample, which are used for pretreatment before input to an automatic analyzer that analyzes component concentrations.
  • the liquid level of serum is detected based on the amount of change in capacitance in order to detect whether or not the tip of a probe that sucks or discharges liquid has reached the liquid level of liquid.
  • an automatic analyzer provided with a liquid level detection device that detects the true liquid level by referring to the liquid level detection based on a change in pressure in the probe at the time of dispensing.
  • a pretreatment system a technology for automatically performing a pretreatment necessary for introducing a biological sample into the automatic analyzer and a technology for carrying out automatic conveyance to the automatic analyzer.
  • the check of the volume and the state of the biological sample is largely based on visual confirmation (manual work) by the user, and is easily influenced by the user's experience and sense.
  • an automatic determination technique in an automatic analyzer such as Patent Document 1 for the purpose of reducing the burden on the operator and preventing human error.
  • a barcode label with important information such as patient ID, personal information, and parameters necessary for device operation is described on the surface of the blood collection tube, but it depends on the type of blood collection tube and the size of the label. There are many cases where the entire tube wall of the blood collection tube is covered, and in many cases, the contents are obscured by being repeatedly stacked and labeled.
  • Patent Document 1 seems to be able to cope with a container which is covered with a barcode and can not be seen inside.
  • the object of the present invention is to provide a sample automated system for performing pretreatment of a sample to be input to an automatic analyzer for performing qualitative and quantitative analysis of component concentration of a biological sample, the sample capable of achieving improvement in processing capacity
  • An inspection automation system and a capacity check module and a method of checking a biological sample are provided.
  • the present invention includes a plurality of means for solving the above-mentioned problems, and an example thereof is a sample inspection automation system for checking a biological sample stored in a container, which is an upper surface of a sample in the container
  • a measuring unit that detects the contact by a non-contact capacitance method
  • a moving unit that moves the measuring unit up and down with respect to the container, and the moving unit moves the measuring unit up and down with respect to the container
  • a control unit configured to control to detect the upper surface of the sample in the container.
  • FIG. 6 is a flowchart of measurement of a volume of a biological sample in a sample container according to the first embodiment of the present invention. It is a figure which shows the outline of the module provided with the function to measure the capacity
  • FIG. 1 is a block diagram showing the overall configuration of the sample test automation system according to the first embodiment of the present invention and the positional relationship with an automatic analyzer
  • FIG. 2 is the sample test automation system according to the first embodiment of the present invention
  • FIG. 3 shows an example of a sample container to be checked
  • FIG. 3 shows an example of a sample container to be checked by the sample test automation system in the first embodiment of the present invention
  • FIG. 4 shows a first example of the present invention.
  • FIG. 6 is a schematic view of a module
  • FIG. 6 is a schematic view of the front of a configuration for measuring the volume of a biological sample in the specimen test automation system according to the first embodiment of the present invention
  • FIG. 8 The test object in the test
  • FIG. 9 is a measurement of the volume of the living body sample in the sample inspection automation system sample container concerning a 1st embodiment of the present invention
  • a sample test automation system for checking a biological sample stored in a container 101 includes the transfer line 2, the input module 201, the centrifugal separation module 202, the biological sample check module 203 a, the opening module 204, the labeler 205, and the minute
  • the system comprises a sample pretreatment system 200 including a plurality of modules having the injection module 206, the plugging module 207, the classification module 208, and the storage module 209 as basic elements, and a control personal computer 210 for controlling the entire sample pretreatment system 200.
  • a control personal computer 210 for controlling the entire sample pretreatment system 200.
  • Connected to the end of the sample pretreatment system 200 is an automatic analyzer 211 that performs qualitative and quantitative analysis of component concentrations of a biological sample.
  • the loading module 201 is a module for loading the container 101 containing a sample into the sample pretreatment system 200, and includes a camera (container information acquisition unit) 221.
  • the centrifugation module 202 is a module for performing centrifugation on the input sample.
  • the opening module 204 is a module for opening the stopper of the container 101 containing the centrifuged sample.
  • the dispensing module 206 analyzes the uncentrifuged sample by the automatic analyzer 211 or the like based on the information on the sample volume calculated in the volume calculating unit 19d2 described later, or the sample in the centrifuged container 101. It is a module to divide.
  • the labeler 205 is a module for attaching a barcode to the container divided by the dispensing module 206.
  • the plugging module 207 is a module for plugging a stopper into the subdivided container or the container 101 of the dispensing source.
  • the classification module 208 is a module that performs classification of the dispensed containers.
  • the storage module 209 is a module for storing a closed container.
  • the control personal computer 210 controls the operation of each module in the sample pretreatment system 200 and each mechanism in each module.
  • the transport line 2 is a line for transporting the input blood collection tube 1 to each module.
  • blood is taken as an example for a biological sample which is the contents of the container 101.
  • the container 101 For the container 101, one having a separating agent 112 is used.
  • the blood is separated into three layers of serum 111, separating agent 112, and blood clot 113 from the top by centrifugation after blood collection.
  • the container 101 is attached with a stopper 102 and a barcode 103 regardless of the type.
  • the attached state of the bar code the state in which the size of the bar code 103 as shown in FIG. 2 is smaller than the diameter of the container 101 and attached on only one side, that is, the state 104 where the contents can be seen from the gap
  • the container 101 in which the centrifugation process was not performed after blood collection also exists in a measuring object.
  • it becomes a state 106 of a two-layer structure of whole blood 117 and separating agent 112 sunk downward.
  • the present invention can be uniformly adapted to any of the states shown in FIGS. This will be described below with reference to the example of the three-layer structure of FIGS. 2 and 3. The example of FIG. 4 will be described later.
  • the biological sample capacity measuring device 1 is installed in a biological sample check module 203a of a sample pretreatment system 200 as shown in FIG.
  • the transport line 2 related to the biological sample check module 203a is a main line 2d for transporting the container 101 that stops by the biological sample check module 203a, an overtaking line 2c that transports the passing container 101 without stopping at the biological sample check module 203a, and waiting for measurement.
  • buffer line 2b which can be made to stop for measurement
  • container 101 after measurement are constituted by four lines of return line 2a which returns to main line 2d.
  • the device 1 is installed on the buffer line 2 b shown in FIG. 5, and the position of the device 1 is the measurement position 7. Below the measurement position 7, a sensor (for example, an RFID) for detecting the arrival of the holder 4 holding the container 101 and a stopper for stopping the holder 4 at the measurement position 7 are provided.
  • a sensor for example, an RFID
  • the biological sample volume measuring device 1 includes, as main components, a detection mechanism 12, a rotary rod 17 for moving the detection mechanism 12 up and down, and a motor 11 for rotating the rotary rod 17. have.
  • the rotary rod 17 is screwed, and the detection mechanism 12 connected to the rotary rod 17 operates in the direction of the arrow 13.
  • the detection mechanism 12 is symmetrical with respect to the center line of the capacitance sensor 31 with respect to the center line of the irradiation unit 21 and the photodiode 22 as a light receiving unit.
  • an LED light source infrared light with a wavelength range of about 940 nm is used for the irradiation unit 21.
  • the capacitance sensor 31 provided in the device 1 is a sensor that detects the upper surface of the sample in the container 101 from the outside of the container 101 by a non-contact capacitance method, and is excellent in detection of liquid.
  • the non-contacting capacitance method will be briefly described below.
  • the oscillation circuit is used as a detection circuit, and the capacitance C of a terminal (electrode) of the oscillation circuit is used.
  • the oscillation circuit is configured to be an element of the oscillation condition, and oscillation is started or stopped according to the change of C of the electrode to detect an object approaching the electrode.
  • the change in capacitance of the electrode is related to the size and thickness of the object, the relative dielectric constant ⁇ s in the case of a dielectric, etc.
  • the operating distance is also increased.
  • the relative dielectric constant ⁇ s indicates the degree to which the charge in the object is polarized due to electrostatic induction, and assuming that it is 1 based on the case of vacuum, the liquid is relatively large including about 80 in water, and 10 in solid There are many of the following. From this, the capacitance change of the electrode when the object approaches the detection electrode is detected, and the difference in the capacitance is detected, whereby the liquid phase and the other layer (gas phase, solid layer) Detect boundaries
  • the capacitance sensor 31 is used to detect the upper surface 114 of the serum 111 (the boundary between the serum 111 and the air layer).
  • the irradiation unit 21 irradiates the side surface of the container 101 with light.
  • the photodiode 22 measures the amount of light transmitted from the irradiation unit 21 and transmitted through the container 101. That is, the light detection system including the irradiation unit 21 and the photodiode 22 detects the boundary of the layer from the difference in transmitted light, and is excellent in detecting the boundary between the optically thick layer and the layer that is not so. .
  • Infrared light can easily pass through relatively optically thin layers such as serum 111 and separation agent 112.
  • an optically thick layer such as the blood clot 113 is difficult to permeate.
  • this feature is used to detect the interface 116 between the optically thick blood clot 113 and the relatively thin separating agent 112.
  • infrared light passes through the paper relatively well, particularly in the wavelength band of 940 nm selected in the present embodiment. Therefore, it can be used effectively even in the state where the barcode 103 is attached.
  • the performance in the general meaning of the LED light source has also been improved, and even with the LED light source, it is possible to obtain a necessary and sufficient light quantity.
  • the irradiation part 21 does not necessarily need to be limited to LED, and a fluorescent light, a halogen light source, etc. are effective if it is a strong light source of a laser or a beam or a light beam. is there.
  • the wavelength range is not necessarily limited to the infrared range, and the effect can be obtained in a wide range of wavelength ranges such as X-ray, ultraviolet, visible light, near infrared, millimeter wave or white light.
  • the signal amount acquisition unit 19b is provided in advance with a threshold for discriminating the transmitted light amount of the LED (infrared light) for the serum 111 and the separating agent 112 and the transmitted light amount of the LED (infrared light) for the blood clot 113 I have installed it.
  • the amount of light transmitted by the LED (infrared light) to the blood clot 113 is extremely small compared to the amount of light transmitted by the infrared light to the serum 111 or the separating agent 112. Can.
  • the capacitance sensor 31 and the light detection system can stably detect the upper surface 114 and the boundary surface 116.
  • the detection of the upper surface 114 and the boundary surface 116 is performed by moving the detection mechanism 12 including the capacitance sensor 31 and the light detection system from the upper side to the lower side of the container 101.
  • a method of fixing the detection mechanism 12 with a sensor and moving the container 101 up and down is generally used.
  • the serum 111 is shaken, which causes a measurement error. Therefore, in the present invention, without moving the container 101, the detection mechanism 12 is moved up and down for measurement.
  • the distance between the center of the capacitance sensor 31 and the center of the irradiation unit 21 is set to the interval h0 according to the width of the biological sample housed in the container 101.
  • This interval h0 is determined as follows.
  • the detection mechanism 12 is controlled. Therefore, as soon as the detection by the capacitance sensor 31 is completed, the boundary surface 116 is detected, that is, as the scanning time by the irradiation unit 21 is shorter, the processing performance is improved.
  • the irradiation unit 21 be in the vicinity of the boundary surface 116.
  • the container 101 blood collection tube
  • the average volume of blood generally collected in the examination room can be defined with a certain degree of accuracy. From this general amount, the average value of the height of serum 111 can be determined to some extent. A value obtained by adding the average value of the height of the serum 111 and the height of the separating agent 112 is the distance between the serum upper surface 114 and the interface 116. Let this distance be the above-mentioned interval h0.
  • the device 1 includes a control unit 19a, a signal amount acquisition unit 19b, a data storage unit 19c, an analysis operation unit 19d, and a communication line 18 for transmitting and receiving control signals and sensor signals. .
  • the control unit 19a controls the operation of each element in the device 1 described above. Further, when recognizing that the container 101 containing the sample is inserted into the insertion module 201, the control unit 19a controls the camera 221 to perform imaging of the inserted container 101. Furthermore, while moving the capacitance sensor 31 up and down with respect to the container 101, the motor is configured to detect the upper surface of the sample in the container 101 according to the information on the type of the plug 102 specified by the container information specifying unit 19d1. 11 and the capacitance sensor 31 are controlled.
  • An arrow 61 in FIG. 8 is an axis indicating a position, and is drawn toward the bottom of the sample container 101 with a position 68 at the bottom of the stopper as a base point.
  • the capacitance sensor 31 is stationary at a position above the plug 102. In this state, the power supply 64 is off.
  • the control unit 19a moves the detection mechanism 12 downward, and switches the power supply 64 of the sensor from OFF to ON at timing when the capacitance sensor 31 reaches the bottom of the plug 102 (62a).
  • the reason for performing such control is that if the power supply 64 of the capacitance sensor 31 is always turned on, the output 65 may be turned on due to the presence of the plug 102, whereby the position of the plug It is misrecognized as the upper surface of serum. Therefore, in order to prevent this erroneous recognition, a control method is adopted in which the power supply 64 is turned off at first and the power supply 64 is turned on only after the capacitance sensor 31 passes through the plug 102.
  • the position of the bottom of the stopper 102 is determined depending on the container 101, and the information is specified in a container information specification unit 19d1 described later.
  • the capacitance sensor 31 is normally set to be OFF and to be ON with respect to the detection of the serum 111. Therefore, when the capacitance sensor 31 reaches the serum top surface 114, the output 65 of the sensor is switched from OFF to ON (62b). By switching the output, the serum top surface 114 is detected.
  • the control unit 19a turns off the power supply 64 of the electrostatic sensor (63a), and simultaneously turns on the power supply 66 of the irradiation unit 21 from off to on (62c).
  • the output 65 returns to OFF (63b), and since the irradiation unit 21 is at the position of the serum 111, the output of the photodiode 22 is turned ON (62d).
  • the output 67 of the photodiode 22 is the amount of light transmitted through the container 101.
  • a threshold for discriminating the transmitted light amount of the LED (infrared light) to the serum 111 and the separating agent 112 and the transmitted light amount of the infrared light to the blood clot 113 is installed in the data storage unit 19c in advance.
  • the control unit 19a moves the detection mechanism 12 further downward, and when the photodiode 22 reaches the interface 116 between the separating agent 112 and the blood clot 113, the infrared light 23 is blocked by the blood clot 113 and the transmitted light amount is reduced. It becomes smaller than the threshold value, and the output 67 is turned off (63d). By switching the output, the interface 116 between the separating agent 112 and the blood clot 113 is detected.
  • control unit 19a turns off the power of the irradiation unit 21 (63c).
  • control unit 19a When both the electrostatic sensor 31 and the irradiation unit 21 are in the OFF state, the control unit 19a returns the detection mechanism 12 to the original position, that is, the upper position of the plug 102, in preparation for the measurement of the next sample.
  • the signal amount acquisition unit 19b acquires the signal amounts of the capacitance sensor 31 and the photodiode 22 (both collectively referred to as a sensor signal).
  • the data storage unit 19c stores the signal amounts of the capacitance sensor 31 and the photodiode 22 acquired by the signal amount acquisition unit 19b, and the information processed by each unit of the operation analysis unit 19d described later.
  • the analysis operation unit 19 d includes a container information identification unit 19 d 1 and a capacity operation unit 19 d 2.
  • the container information identification unit 19d1 identifies the type of the container 101 loaded into the loading module 201 and the type of the stopper 102 of the container 101.
  • the container information identification unit 19d1 recognizes the type of the container 101 by performing image processing on the photographed image of the container 101 inserted into the insertion module 201 and captured by the camera 221.
  • As a method of recognition for example, there is a method of providing a database obtained by imaging a container to be used in advance, and performing matching with the imaged image.
  • the container information identification unit 19 d 1 acquires, from the type of the container 101, information on the position of the bottom of the stopper 102 attached to the container 101 and the diameter of the container 101. The obtained information is transmitted to the control personal computer 210.
  • This information is also transmitted to the analysis operation unit 19d of the biological sample capacitance measuring device 1 via the biological sample check module 203a, the stage 15b, and the communication line 18.
  • the position of the bottom of the stopper 102 of the container 101 is used as information for determining the position at which the power source 64 of the capacitance sensor 31 in the control unit 19a is turned on.
  • the information of the diameter of the container 101 is combined with the height information of the serum 111 and the whole blood 117 obtained by the measurement of the biological sample volume measuring device 1 to calculate the volume of the serum 111 and the whole blood 117 in the volume calculation unit 19 d 2 Used when
  • the capacity calculating unit 19d2 specifies the diameter of the container 101 and the presence or absence of the separating agent 112 from the type of the container 101 specified by the container information specifying unit 19d1, and obtains the boundary surface 116 between the blood clot 113 and the separating agent 112. Then, the volume of the sample in the container 101 is calculated from the identification result, the information on the interface 116, and the information on the upper surface of the sample in the container 101 detected by the capacitance sensor 31. Specifically, the capacitance calculation unit 19d2 first determines the height of the detection mechanism 12 from the signal amount of the capacitance sensor 31 acquired by the signal amount acquisition unit 19b (whether the capacitance sensor 31 is off or on). Find the information h1.
  • the height (h1) is calculated by subtracting the movement distance corresponding to the number of rotations of the motor 11 from the initial position. Further, the height information h2 of the detection mechanism 12 is obtained from the signal amount of the photodiode 22 (the value at which the value of the transmitted light detected by the photodiode 22 decreases rapidly), and the container 22 is obtained based on the amount of the transmitted light measured by the photodiode 22. The interface 116 between the blood clot 113 and the separating agent 112 in 101 is determined. The height (h2) is calculated by subtracting the movement distance corresponding to the number of rotations of the motor 11 from the initial position.
  • the height hs of the separating agent 112 is calculated as a specific volume value.
  • the device 1 further includes a stage 15 b for physically communicating with other modules of the sample pretreatment system 200 and the control personal computer 210.
  • the user first inserts the container 101 containing blood into the input module 201. There, the camera 221 recognizes the type of the container 101.
  • the container 101 containing the biological sample is placed on a dedicated holder 4 and moved on the transfer line 2 and transferred to the centrifugation module 202 as necessary. For example, if it corresponds to an item such as a blood cell counter, the centrifugation module 202 is skipped and passed without being centrifuged.
  • the container that has been subjected to the centrifugal separation processing is transported to the biological sample check module 203a to measure the volume. The measured capacity is transmitted by the control personal computer 210.
  • control personal computer 210 starts the process of determining the division plan (number of divisions, the amount of division, etc.).
  • the subdivision schedule basically depends on the requested measurement item, but in the present embodiment, the capacity is further taken into consideration. For example, if all the analysis is possible in the measured volume among the requested items, or if it is not possible, the number of items that can be analyzed is appropriately divided with the parameters as parameters.
  • the container 101 whose capacity measurement has been completed in the biological sample check module 203a is carried to the opening module 204 for opening processing.
  • Preparation of the dispensing container based on the above-mentioned schedule is performed by the labeler 205, and then actual dispensing is performed by the dispensing module 206. Thereafter, depending on the application, it is transported to the automatic analyzer 211 and the plugging process by the plugging module 207, and the classification in the classification module 208 or the storage in the storage module 209 is performed.
  • the container 101 transported to the biological sample check module 203a is transported to the measurement position 7 through the buffer line 2b.
  • the sensor detects the holder 4 and transmits the information to the control personal computer 210, and the control personal computer 210 transmits a processing start instruction signal to the control unit 19a of the device 1.
  • the stopper is operated, and the container 101 is stopped at the measurement position 7 during measurement.
  • step S41 when the container 101 is stopped at the center position (measurement position 7) of the detection mechanism 12 in a state where the container 101 is placed on the holder 4, measurement of the container 101 is started (step S41).
  • the height of the detection mechanism 12 from the stage is a fixed position (hereinafter referred to as an initial position) to be taught in advance in the manufacturing stage.
  • step S42 When the motor 11 is operated by the control unit 19a, the rotary rod 17 is rotated in the direction of the arrow 16, and the detection mechanism 12 is lowered (step S42).
  • the power of the capacitance sensor 31 is switched on. This position depends on the type of the stopper 102 of the container 101, and is known in advance by the container information identification unit 19d1.
  • the signal acquisition unit 19b is constantly sent down to the signal acquisition unit 19b through the communication line 18, and it is continuously determined whether the output information of the capacitance sensor 31 is ON or OFF (step S43). Continue to descend until it is turned on.
  • the control unit 19a gives a stop signal to the motor 11 through the communication line 18, and stops the detection mechanism 12 instantaneously (step S46).
  • the motor 11 having received this signal is stopped, and in conjunction with this, the rotary rod 17 and the detection mechanism 12 are stopped.
  • the data storage unit 19c records the height information (h1) of the detection mechanism 12 (step S47).
  • the control unit 19a After the height h1 is recorded, the control unit 19a then sends a light emission signal to the irradiation unit 21 through the communication line 18 for detection of the boundary surface 116 between the separating agent 112 and the blood clot 113, and A signal to turn off the power of the sensor 31 is output.
  • the capacitance sensor 31 receiving this signal is turned off, and the irradiation unit 21 starts infrared light irradiation (step S48).
  • the control unit 19a again gives an operation signal to the motor 11 through the communication line 18, and the motor 11 receiving this signal starts to rotate, and the detection mechanism 12 resumes the lowering interlocking with this (step S49) ).
  • the detection mechanism 12 While the detection mechanism 12 is lowered, the value of the transmitted light is measured by the photodiode 22 on the light receiving side, and this information is constantly transmitted to the signal acquiring unit 19b via the communication line 18, and the value is below the predetermined threshold. It is monitored whether there is any (step S50). When it is larger than the predetermined threshold value, the detection mechanism 12 continues to descend (in the case of NO at step S50).
  • the control unit 19a sends a stop signal to the motor 11 through the communication line 18, and the motor 11 receiving this signal stops, and the rotary rod 17 and the detection mechanism 12 stop in conjunction with this (step S53) .
  • the data storage unit 19c records the height information (h2) of the detection mechanism 12 (step S54).
  • the control unit 19a After the height h2 is recorded, the control unit 19a sends a stop signal to the irradiating unit 21 through the communication line 18, and stops the irradiation of the infrared light by the irradiating unit 21. It is a measure not to shorten the life of the light source.
  • control unit 19a controls the detection mechanism 12 to return to the initial position in preparation for the measurement of the next container 101 (step S55). Specifically, the operation signal is again applied to the motor 11 through the communication line 18. The motor 11 having received this signal starts to rotate, and interlockingly, the detection mechanism 12 starts to ascend. In addition, when raising detection mechanism 12, it is good to operate motor 11 in the reverse direction to the case of descent.
  • the height of the serum 111 is calculated using the information with the height information (h2) of the detection mechanism 12 recorded in step S54.
  • the volume calculating unit 19d2 uses the information on the diameter of the container 101 specified in the container information specifying unit 19d1 and the information on the height of the serum 111 obtained above to obtain the serum volume as a specific volume value. Calculate the capacity.
  • step S56 the acquisition of data for one container 101 is completed.
  • the container 221 is imaged by the camera 221, and the type of the container 101 and the container 101 are measured by the container information identification unit 19d1.
  • the type of plug 102 is identified.
  • the detection mechanism 12 is moved downward, the timing at which the capacitance sensor 31 reaches the bottom of the plug 102 is specified from the specified type information of the plug 102, and the power supply 64 of the sensor is turned on from this timing.
  • the upper surface 114 of the serum 111 is detected by the capacitance sensor 31.
  • the blood clot 113 is detected by the transmitted light amount acquired by the photodiode 22 using a light detection system including the irradiation unit 21 and the photodiode 22.
  • the interface 116 between the and the separating agent 112 is detected. Then, the height and volume of serum 111 are measured from the upper surface 114 and the interface 116.
  • the apparatus for performing the pretreatment of the sample to be input into the automatic analyzer even if the inside of the container 101 is not visible with a bar code label, it is assumed that the container 101 has been inserted without the user being aware in advance. Also, the volume of the serum 111 in the sample in the container 101 can be measured with high accuracy, and the height of the measurement object and hence the volume can be calculated with only one scan, and volume information can be acquired more quickly than in the past. can do. Therefore, while being able to aim at reduction of a manual operation of a user, the information regarding the capacity
  • a sample test automation system and a method of checking a biological sample can be provided which can achieve reduction of burden on the patient and prevention of delay in reporting of the processing result. Furthermore, it can contribute to reduction of burden on patients and prevention of delay in reporting of treatment results because instructions for re-bleeding can be issued promptly as needed. In conjunction with this, the possibility of infection associated with worker contact can be reduced.
  • the capacitance sensor 31, the irradiation unit 21, and the photodiode 22 are disposed at intervals according to the width of the biological sample housed in the container 101, whereby the detection of the capacitance by the sensor 31 is completed. After that, the boundary surface 116 is immediately detected, and the scanning time by the irradiation unit 21 can be shortened, which leads to the improvement of the processing capacity.
  • the holder 4 is transported to the overtaking line 2c according to the instruction of the control PC 210, etc. Can be processed without measurement.
  • the irradiation direction 23 of the infrared light in the irradiation part 21 may be reverse to the direction shown in FIG.
  • FIG. 10 is a view schematically showing a module having a function of measuring the volume of a biological sample in the sample test automation system according to the second embodiment of the present invention.
  • the biological sample check module (capacity check module) 203b is provided with a camera 221b.
  • the camera 221b grasps the shape of the container 102. Specifically, first, the outside diameter of the container 101 is imaged by photographing with the camera 221, and the type of the container 101 is recognized in the container information identification unit 19d1 of the analysis operation unit 19d. Similar to the first embodiment, the method of recognition includes, for example, a method of preparing a database in which a container to be used is photographed in advance and performing matching with the photographed image.
  • the container information identification unit 19d1 After recognizing the type of the container 101 in the container information identification unit 19d1, the diameter of the container 101, the type of the stopper 102, and the position of the bottom of the stopper 102 are identified. These pieces of information are used as information for calculating the position at which the power supply 64 of the capacitance sensor 31 is turned on and the volume of the serum 111. The subsequent operation is substantially the same as that of the first embodiment.
  • volume check module it is possible to grasp the state of the sample in the blood collection tube by the volume check module alone, and it can be made a module suitable for adding to the existing sample pretreatment system.
  • the capacity check module of the present embodiment can be applied to measurement of the remaining amount of the reagent in the reagent container stored in the reagent storage of the automatic analyzer 211.
  • Reagents The reagents stored in the reagent cooler are usually placed in a colored container for light shielding purposes and can not be visually checked for the remaining amount.
  • the capacity check module as in this embodiment in the reagent storage compartment of the automatic analyzer 211 or in the vicinity thereof, even in a situation where visual confirmation of the reagent volume can not be performed, the check of the remaining amount of the reagent in the reagent container is performed. It becomes possible.
  • FIG. 11 is a schematic view of a module having a function of measuring the volume of a biological sample in the specimen test automation system according to the third embodiment of the present invention.
  • the biological sample check module 203c of the third embodiment of the sample test automation system of the present invention is added to the biological sample capacitance measuring device 1 etc., with the camera 5 and the light shielding plate sandwiching the buffer line 2b. 6 are disposed to face each other.
  • the camera 5 picks up an image of the container 101 located in front of the light shielding plate 6.
  • the light shielding plate 6 is disposed at a position facing the camera 5 across the buffer line 2 b for the purpose of making the background uniform in order to acquire color information without variation when imaging with the camera 5.
  • the analysis operation unit 19d has a data analysis unit 19d3.
  • the data analysis unit 19 d 3 determines the color of the biological sample contained in the container 101 based on the image captured by the camera 5. Mainly, color information of serum 111 is requested.
  • the data analysis unit 19d3 determines the height of each component of the sample, mainly the height of the serum 111, from the image captured by the camera 5, and the height of the serum 111 measured by the biological sample capacity measuring device 1 Compare with the information. If the height information obtained by the data analysis unit 19d3 and the height information of the serum 111 measured by the biological sample container measuring device 1 differ from each other by a predetermined amount or more, the measurement result in the biological sample container measuring device 1 is prioritized Do.
  • the dispensing module 206 uses the information on the sample volume calculated in the volume calculator 19d2 and / or the information on the color of the sample determined in the data analyzer 19d3 to use the container 101. Divide the sample inside.
  • the sample inspection automation system provided with the biological sample check module 203c of the present embodiment, when the container 101 is transported to the biological sample check module 203c, first, the holder 4 holding the container 1 in front of the light shielding plate 6 stops. . Next, the container 5 is photographed by the camera 5, and the photographed image data is transmitted to the data analysis unit 19d3 of the analysis operation unit 19d via the communication line 18, and the photographed image data is stored in the data storage unit 19b.
  • the data analysis unit 19 d 3 acquires color information of the biological sample in the container 101 based on the transmitted captured image data. As described above, the volume of the serum 111 is determined by each measurement in the biological sample volume measuring device 1 and the processing of the volume calculator 19 d 2.
  • the color information obtained by the data analysis unit 19 d 3 is stored in the data storage unit 19 d 2 and transmitted to the control personal computer 210, and is used for the division of the sample in the dispensing module 206.
  • the biological sample is blood and reddish, it indicates the possibility of hemolysis, and it is used in such a way as to give priority to flag processing and items not dependent on the degree of hemolysis.
  • the degree of hemolysis is strong, the user can instruct the patient to redraw blood more quickly by notifying the user with an alarm or the like.
  • the data analysis unit 19d3 obtains the height of the target area (serum 111) based on the acquired color information. Further, the obtained height information is compared with the height information of the serum 111 measured by the biological sample volume measuring device 1.
  • the present embodiment by acquiring color information from an image captured by the camera 5 attached to the module 203c, it is possible to acquire information on the state of the serum 111. Therefore, if there is a problem with serum, it is possible to analyze the test item not depending on the problem or to notify the user by an alarm etc. to carry out re-bleeding, and the waste of biological sample or reagent is wasted. Can be implemented to reduce the burden on patients. Further, both the color information and the capacity information can be acquired by one module 203c, and the cost can be reduced.
  • the camera 5 for imaging the container 101 may be configured to also serve as the camera 221 and 221 b when recognizing the shape of the stopper 102 of the container 101. it can. As a result, the imaging mechanism can be reduced, and downsizing and cost reduction of the apparatus can be realized.
  • FIG. 12 is a schematic view of a module having a function of measuring the volume of a biological sample in the specimen test automation system according to the fourth embodiment of the present invention.
  • a lifting mechanism 71 is provided in order to measure the volume by the biological sample volume measuring device 1. Control of each operation of the lifting mechanism 71 is performed by the control unit 19a. Specifically, after the container 101 is gripped by the lifting mechanism 71, the lifting mechanism 71 is raised and stopped in the direction of the arrow 73 until the bottom of the container 101 becomes higher than the rack 72. After that, in the stopped state, the capacity measurement by the biological sample capacity measuring device 1 is performed as in the first embodiment.
  • the target of the check was described on the assumption that the sample was centrifuged and separated into three layers, the sample test automation system, the volume check module and the biological sample of the present embodiment
  • the check method of is applicable.
  • it has a two-layer structure of whole blood 117 and separating agent 112 sunk downward, so that blood clot 113 does not exist.
  • the amount of transmitted light does not decrease and h2 is not detected, or the infrared light 23 descends to the height of the back of the holder 4 by continuing searching for the blood clot 113 and this back interrupts transmission.
  • the back of the holder 4 is erroneously detected as the blood clot 113, and a lower value h2 is detected.
  • a threshold value for example, h2 min
  • the control unit is uniformly regarded as an uncentrifugal sample 19a, a signal amount acquisition unit 19c, and an analysis operation unit 19d are set.
  • the height of the h1-separating agent is taken as the height of the whole blood 117.
  • the volume of the whole blood 117 is calculated as a specific volume value by using the information on the diameter of the container 101 specified in the container information specifying unit 19d1.
  • the sample test automation system the volume check module and the biological sample check method of the present embodiment can be applied. It will be described below.
  • the types of containers 101 include those without a separating agent, and the sample pretreatment system 200 is transported in a mixed state of a container with a separating agent and a container without a separating agent.
  • the sample In the container without separation agent, the sample has a two-layer structure of plasma and clot when centrifuged, or one layer of whole blood when not centrifuged.
  • the upper surface of the plasma is detected by the capacitance sensor 31 to obtain h1 and the boundary between the plasma and the blood clot is detected by the light detection system to obtain h2.
  • the upper surface of whole blood is detected by the capacitance sensor 31 to be h1, but the boundary surface detection by the light detection system is impossible because there is no boundary surface.
  • the type of the inserted container 101 can be specified. Further, since the presence or absence of the separating agent is determined by the type of the container, if the type can be specified, the presence or absence of the separating agent is known.
  • control unit 19a the signal amount acquisition unit 19b, the data storage unit 19c, and the analysis operation unit 19d (the container information identification unit 19d1, the capacity operation unit 19d2, the data analysis unit 19d3) explain an example separate from the control PC 210.
  • these can be provided inside the control personal computer 210.
  • the boundary surface 116 is detected using a light detection system, and the height and volume of the serum 111 are measured from the upper surface 114 and the boundary surface 116
  • the volume of the serum 111 may be determined from the information on the upper surface 114 without detecting the interface 116 by the light detection system.
  • the container information identification unit 19d1 can identify the presence or absence of the separating agent 112 in the container 101, and information on the diameter of the container 101.
  • the amount of blood collected in the container 101 is substantially the same without being largely different for each container 101, and the solid layer (for example, the amount and height of the blood clot 113) in the blood amount should be grasped to some extent Can. Therefore, by detecting the upper surface 114 by the capacitance sensor 31, the amount of liquid in the container 101 (for example, the volume of the serum 111) can be grasped with a certain degree of accuracy by using these pieces of information.
  • the value of the photodiode is below the threshold 53 ... Infrared light irradiation stop, 54 ... position (height h2) recording, 55 ... return to detection mechanism initial position, 56 ... end, 61 ... axis representing position, 62a, 62b, 62c, 62d ...

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

 Provided are a system for automating specimen inspection, a capacity checking module, and a method for checking a biological specimen, whereby enhanced throughput can be achieved. An image is taken of a container (101) by a camera (221), and the type of the container (101) or type of a stopper (102) of the container (101) is specified by a container information specifying unit (19d1). A sensing mechanism (12) is then moved down, a power source (64) of an electrostatic capacity sensor (31) is turned ON at the timing at which the sensor approaches a bottom of the stopper (102) from specified type information of the stopper (102), and a top surface (114) of blood serum (111) is detected. Using a light detection system, a boundary surface (116) between a blood clot (113) and a separating agent (112) is sensed through use of a transmitted light quantity acquired by a photodiode (22). The height and volume of the blood serum (111) are then measured from the top surface (114) and the boundary surface (116).

Description

検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法Specimen test automation system, volume check module and method of checking biological sample
 本発明は、成分濃度を分析する自動分析装置への投入前の前処理に用いられる検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法に関する。 The present invention relates to a sample inspection automation system, a volume check module, and a method for checking a biological sample, which are used for pretreatment before input to an automatic analyzer that analyzes component concentrations.
 特許文献1には、液体の吸引または吐出を行うプローブの先端部が液体の液面に到達したか否かを検知するために、静電容量の変化量に基づいて血清の液面を検知するとともに分注時のプローブ内の圧力の変化による液面検知を参照して真の液面を検知する液面検知装置を備えた自動分析装置が開示されている。 In Patent Document 1, the liquid level of serum is detected based on the amount of change in capacitance in order to detect whether or not the tip of a probe that sucks or discharges liquid has reached the liquid level of liquid. There is also disclosed an automatic analyzer provided with a liquid level detection device that detects the true liquid level by referring to the liquid level detection based on a change in pressure in the probe at the time of dispensing.
特許4898270号公報Patent No. 4898270
 生体試料の成分の濃度を自動で分析する自動分析装置の技術が進歩し、分析項目が増加した。そして、個別の分析項目に対する測定時間の短縮が実現したことにより、各検査室における一日あたりの処理すべき生体試料数、すなわち処理能力が従来と比べ圧倒的に増加している。 Advances in the technology of automatic analyzers that automatically analyze the concentration of components of biological samples have increased the number of analysis items. And, by shortening the measurement time for individual analysis items, the number of biological samples to be processed in each laboratory per day, that is, the processing capacity is overwhelmingly increased as compared with the conventional case.
 ところで、自動分析装置の提供とともに、生体試料を自動分析装置に投入する前に必要な前処理を自動で行う技術や自動分析装置への自動搬送を行う技術が前処理システムとして提供されている。 By the way, together with the provision of the automatic analyzer, there is provided as a pretreatment system a technology for automatically performing a pretreatment necessary for introducing a biological sample into the automatic analyzer and a technology for carrying out automatic conveyance to the automatic analyzer.
 従来は、全生体試料に同一の処理を一律に施したのち、接続された自動分析装置に上流から下流に向かって順番に搬送する、という内容が主流であった。 Heretofore, it has been the mainstream that the same processing is uniformly applied to all the biological samples, and then sequentially conveyed from upstream to downstream to the connected automatic analyzer.
 近年、上述した項目数の増加に伴い、生体試料の容量を考慮した自動分析装置への搬送順序の最適化や、生体試料の状態を考慮した不適切な試料の抽出など、個別に対応するような態様に変化している。処理すべき試料数の増加を受け、生体試料のワークフローが総合的に煩雑になり、またユーザの運用も施設ごとに異なるなど多様化してきている。 In recent years, with the increase in the number of items mentioned above, we will respond individually, such as optimization of the transport order to the automatic analyzer taking into account the volume of the biological sample, and extraction of inappropriate samples taking into account the state of the biological sample. It has been changed to In response to the increase in the number of samples to be processed, the workflow of the biological sample has become comprehensively complicated, and the operation of the user has also been diversified such as being different for each facility.
 しかしながら、生体試料の容量や状態のチェックは、ユーザによる目視確認(マニュアル作業)によるところが大きく、ユーザの経験や感覚に左右されやすい。また、向上した処理能力に同調して適切なタイミングで判断するには、人的な方法では限界があった。 However, the check of the volume and the state of the biological sample is largely based on visual confirmation (manual work) by the user, and is easily influenced by the user's experience and sense. In addition, there is a limit in the human method to judge at the appropriate timing in line with the improved processing power.
 溶血検体等、患者以外の要因で起こる状態でかつ自動分析装置に投入するのにふさわしくない状態は、再採血が必要となる。患者の負担軽減の観点から、できるだけ迅速かつ正確に状態を把握する必要がある。
  このような必要性に対応するために、作業者の負担の軽減と人的ミスの防止目的のため、例えば特許文献1のような自動分析装置における自動判定技術を適用することが考えられる。
A condition that occurs due to factors other than the patient, such as a hemolyzed sample, and a condition not suitable for being input to an automatic analyzer, requires re-bleeding. In order to reduce the burden on patients, it is necessary to grasp the status as quickly and accurately as possible.
In order to cope with such a need, it is conceivable to apply an automatic determination technique in an automatic analyzer such as Patent Document 1 for the purpose of reducing the burden on the operator and preventing human error.
 ところで、容器には、採血管の表面に患者ID・個人情報・装置運用に必要なパラメータ、などの重要情報が記載されたバーコードラベルが貼付されるが、採血管種とラベルの大きさによっては採血管の管壁の全体が被覆されるというケースや、幾重にも重ねてラベルを貼付され、内容物が見えなくなるという場面も多い。 By the way, a barcode label with important information such as patient ID, personal information, and parameters necessary for device operation is described on the surface of the blood collection tube, but it depends on the type of blood collection tube and the size of the label. There are many cases where the entire tube wall of the blood collection tube is covered, and in many cases, the contents are obscured by being repeatedly stacked and labeled.
 確かに、上述した特許文献1に記載の技術では、バーコードが被覆されていて中身が見えない容器にも対応できるように見える。 Certainly, the technique described in the above-mentioned Patent Document 1 seems to be able to cope with a container which is covered with a barcode and can not be seen inside.
 しかしながら、特許文献1に記載された静電容量を用いる技術では、液面は検知できるが、液量を求める方法についての配慮はされていない。
  特許文献1のように液面を事前に検知できることによって、分注の際に分注用プローブが分離剤へ衝突することを防止できる点で利点はある。しかし、上述のような迅速かつ正確に状態を把握するためのワークフローを制御するための情報を提供するという目的は達成できない。
  また、液面を検知するためには採血管の蓋を開封する必要があり、検体の汚染の問題、プローブの洗浄、更には開栓および閉栓の手間が余計にかかるなど、多くの問題を有している。
However, in the technology using the capacitance described in Patent Document 1, although the liquid level can be detected, no consideration is given to the method of determining the liquid amount.
Since the liquid level can be detected in advance as in Patent Document 1, there is an advantage in that collision of the dispensing probe with the separating agent can be prevented during dispensing. However, the purpose of providing information for controlling the workflow for grasping the state quickly and accurately as described above can not be achieved.
In addition, in order to detect the liquid level, it is necessary to open the lid of the blood collection tube, and there are many problems such as contamination of the sample, cleaning of the probe, and extra time for opening and closing the plug. doing.
 本発明の目的は、生体試料の成分濃度の定性・定量分析を行う自動分析装置に投入する検体の前処理を実施するための検体検査自動化システムにおいて、処理能力の向上を達成することができる検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法を提供することにある。 The object of the present invention is to provide a sample automated system for performing pretreatment of a sample to be input to an automatic analyzer for performing qualitative and quantitative analysis of component concentration of a biological sample, the sample capable of achieving improvement in processing capacity An inspection automation system and a capacity check module and a method of checking a biological sample.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、容器に収容された生体試料のチェックを行う検体検査自動化システムであって、前記容器内の試料の上面を非接触の静電容量方式によって検出する計測部と、この計測部を前記容器に対して上下動させる移動部と、前記移動部によって前記計測部を前記容器に対して上下動させながら、前記容器内の試料の上面を検出するよう制御する制御部とを備えたことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-mentioned problems, and an example thereof is a sample inspection automation system for checking a biological sample stored in a container, which is an upper surface of a sample in the container A measuring unit that detects the contact by a non-contact capacitance method, a moving unit that moves the measuring unit up and down with respect to the container, and the moving unit moves the measuring unit up and down with respect to the container And a control unit configured to control to detect the upper surface of the sample in the container.
 本発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
  すなわち、本発明によれば、従来の目視確認の作業を低減することができ、よって、マニュアル作業の低減と、複数の分析項目数からなる複雑な処理フローの最適化に貢献する情報を得るための検出精度の向上を図ることが可能となり、処理能力を向上させることができる。
The effects obtained by typical ones of the present invention will be briefly described as follows.
That is, according to the present invention, it is possible to reduce the conventional visual confirmation work, and thus to obtain information contributing to the reduction of manual work and the optimization of a complex processing flow consisting of a plurality of analysis items. It is possible to improve the detection accuracy of the above, and the processing capacity can be improved.
本発明の第1の実施形態に係る検体検査自動化システムの全体構成および自動分析装置との位置関係を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the whole structure of the test | inspection test automation system which concerns on the 1st Embodiment of this invention, and the positional relationship with an automatic analyzer. 本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図である。It is a figure showing an example of an outline of a sample container checked with a sample examination automation system in a 1st embodiment of the present invention. 本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図である。It is a figure showing an example of an outline of a sample container checked with a sample examination automation system in a 1st embodiment of the present invention. 本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図である。It is a figure showing an example of an outline of a sample container checked with a sample examination automation system in a 1st embodiment of the present invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。It is a figure which shows the outline of a module provided with the function to measure the capacity | capacitance of the biological sample in the specimen test automation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の正面の概略を示す図である。It is a figure which shows the outline of the front of the structure which measures the volume of the biological sample in the specimen test automation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の側面の概略を示す図である。It is a figure which shows the outline of the side of the structure which measures the capacity | capacitance of the biological sample in the specimen test automation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける検体容器中の生体試料の容量の測定のセンサの制御と出力の関係を説明する図である。It is a figure explaining control of a sensor of measurement of a volume of a living body sample in a sample container in a sample examination automation system concerning a 1st embodiment of the present invention, and a relation of an output. 本発明の第1の実施形態に係る検体検査自動化システム検体容器中の生体試料の容量の測定のフローチャート図である。FIG. 6 is a flowchart of measurement of a volume of a biological sample in a sample container according to the first embodiment of the present invention. 本発明の第2の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。It is a figure which shows the outline of the module provided with the function to measure the capacity | capacitance of the biological sample in the specimen test automation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。It is a figure which shows the outline of a module provided with the function to measure the capacity | capacitance of the biological sample in the specimen test automation system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。It is a figure which shows the outline of a module provided with the function to measure the capacity | capacitance of the biological sample in the specimen test automation system which concerns on the 4th Embodiment of this invention.
 以下に本発明の検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法の実施形態を、図面を用いて説明する。なお、以下の実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, an embodiment of a sample test automation system, a volume check module, and a biological sample check method of the present invention will be described using the drawings. Note that, in all the drawings for describing the following embodiments, the same reference numeral is attached to the same member in principle, and the repeated description thereof will be omitted.
 <第1の実施形態> 
 本発明の検体検査自動化システムおよび生体試料のチェック方法の第1の実施形態を、図1乃至図9を用いて説明する。
  図1は本発明の第1の実施形態に係る検体検査自動化システムの全体構成および自動分析装置との位置関係を示す構成図、図2は本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図、図3は本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図、図4は本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図、図5は本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図、図6は本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の正面の概略を示す図、図7は本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の側面の概略を示す図、図8は本発明の第1の実施形態に係る検体検査自動化システムにおける検体容器中の生体試料の容量の測定のセンサの制御と出力の関係を説明する図、図9は本発明の第1の実施形態に係る検体検査自動化システム検体容器中の生体試料の容量の測定のフローチャート図である。
First Embodiment
A first embodiment of the sample test automation system and the biological sample check method of the present invention will be described using FIGS. 1 to 9.
FIG. 1 is a block diagram showing the overall configuration of the sample test automation system according to the first embodiment of the present invention and the positional relationship with an automatic analyzer, and FIG. 2 is the sample test automation system according to the first embodiment of the present invention FIG. 3 shows an example of a sample container to be checked, FIG. 3 shows an example of a sample container to be checked by the sample test automation system in the first embodiment of the present invention, and FIG. 4 shows a first example of the present invention. The figure which shows an example of the outline of the sample container checked by the test | inspection test automation system in embodiment, FIG. 5 was provided with the function to measure the volume of the biological sample in the test | inspection test automation system concerning the 1st Embodiment of this invention. FIG. 6 is a schematic view of a module, FIG. 6 is a schematic view of the front of a configuration for measuring the volume of a biological sample in the specimen test automation system according to the first embodiment of the present invention, and FIG. The figure which shows the outline of the side of the structure which measures the capacity | capacitance of the biological sample in the test | inspection automatic system which concerns on the 1st Embodiment of invention, FIG. 8: The test object in the test | inspection automatic system which concerns on 1st Embodiment of this invention The figure explaining the control of the sensor of measurement of the volume of the living body sample in a container, and the relation of an output, FIG. 9 is a measurement of the volume of the living body sample in the sample inspection automation system sample container concerning a 1st embodiment of the present invention FIG.
 図1において、容器101に収容された生体試料のチェックを行う検体検査自動化システムは、搬送ライン2、投入モジュール201、遠心分離モジュール202、生体試料チェックモジュール203a、開栓モジュール204、ラベラ205、分注モジュール206、閉栓モジュール207、分類モジュール208、収納モジュール209を基本要素とする複数のモジュールを備える検体前処理システム200と、この検体前処理システム200全体を制御する制御用パソコン210とから構成されている。
  検体前処理システム200の先には、生体試料の成分濃度の定性・定量分析を行う自動分析装置211が接続されている。
In FIG. 1, a sample test automation system for checking a biological sample stored in a container 101 includes the transfer line 2, the input module 201, the centrifugal separation module 202, the biological sample check module 203 a, the opening module 204, the labeler 205, and the minute The system comprises a sample pretreatment system 200 including a plurality of modules having the injection module 206, the plugging module 207, the classification module 208, and the storage module 209 as basic elements, and a control personal computer 210 for controlling the entire sample pretreatment system 200. ing.
Connected to the end of the sample pretreatment system 200 is an automatic analyzer 211 that performs qualitative and quantitative analysis of component concentrations of a biological sample.
 投入モジュール201は、検体を収容した容器101を検体前処理システム200内に投入するモジュールであり、カメラ(容器情報取得部)221を備えている。遠心分離モジュール202は、投入された検体に対して遠心分離を行うモジュールである。開栓モジュール204は、遠心分離された検体を収容した容器101の栓を開栓するモジュールである。分注モジュール206は、遠心分離された容器101内の検体を後述する容量演算部19d2において演算された試料の容量に関する情報に基づいて、または未遠心検体を自動分析装置211などで分析するために小分けするモジュールである。ラベラ205は、分注モジュール206で小分けされた容器にバーコードを貼り付けるモジュールである。閉栓モジュール207は、小分けされた容器や分注元の容器101に栓を閉栓するモジュールである。分類モジュール208は、分注された容器の分類を行うモジュールである。収納モジュール209は、閉栓された容器を収納するモジュールである。
  制御用パソコン210は、検体前処理システム200内の各モジュールや各モジュール内の各機構の動作を制御する。
  搬送ライン2は、投入された採血管1を各モジュールに対して搬送するためのラインである。
The loading module 201 is a module for loading the container 101 containing a sample into the sample pretreatment system 200, and includes a camera (container information acquisition unit) 221. The centrifugation module 202 is a module for performing centrifugation on the input sample. The opening module 204 is a module for opening the stopper of the container 101 containing the centrifuged sample. The dispensing module 206 analyzes the uncentrifuged sample by the automatic analyzer 211 or the like based on the information on the sample volume calculated in the volume calculating unit 19d2 described later, or the sample in the centrifuged container 101. It is a module to divide. The labeler 205 is a module for attaching a barcode to the container divided by the dispensing module 206. The plugging module 207 is a module for plugging a stopper into the subdivided container or the container 101 of the dispensing source. The classification module 208 is a module that performs classification of the dispensed containers. The storage module 209 is a module for storing a closed container.
The control personal computer 210 controls the operation of each module in the sample pretreatment system 200 and each mechanism in each module.
The transport line 2 is a line for transporting the input blood collection tube 1 to each module.
 次に、測定対象について説明する。
  容器101の内容物である生体試料について、ここでは血液を例に挙げる。
Next, an object to be measured will be described.
Here, blood is taken as an example for a biological sample which is the contents of the container 101.
 容器101には分離剤112を有するものを用いる。採血後の遠心分離処理により、上から、血清111、分離剤112、血餅113の3層に分離されている。種類は問わないが、容器101には栓102およびバーコード103が付いている。なお、バーコードの貼付状態には、図2に示すようなバーコード103のサイズが容器101の径より小さくかつ片面にのみに貼られた状態、すなわち隙間から内容物が見える状態104と、図3に示すようなバーコード103が容器101を覆い隠すように側面全体に貼られる、あるいはバーコードのシールが2重3重に貼られることにより、内容物が見えない状況になっている状態105とがある。
  また、測定対象には、採血後に遠心分離処理が行われなかった容器101も存在する。この場合、図4に示すように、全血117と下に沈んだ分離剤112の2層構造の状態106となる。
  本発明は図2乃至図4に示すいずれの状態にも一様に対応することが可能である。以下図2および図3の三層構造の例を参照して説明する。図4の例については後述する。
For the container 101, one having a separating agent 112 is used. The blood is separated into three layers of serum 111, separating agent 112, and blood clot 113 from the top by centrifugation after blood collection. The container 101 is attached with a stopper 102 and a barcode 103 regardless of the type. In the attached state of the bar code, the state in which the size of the bar code 103 as shown in FIG. 2 is smaller than the diameter of the container 101 and attached on only one side, that is, the state 104 where the contents can be seen from the gap A state in which the contents can not be viewed by a bar code 103 as shown in FIG. 3 being attached to the entire side so as to cover the container 101 or by attaching a bar code sticker in double and triple. There is.
Moreover, the container 101 in which the centrifugation process was not performed after blood collection also exists in a measuring object. In this case, as shown in FIG. 4, it becomes a state 106 of a two-layer structure of whole blood 117 and separating agent 112 sunk downward.
The present invention can be uniformly adapted to any of the states shown in FIGS. This will be described below with reference to the example of the three-layer structure of FIGS. 2 and 3. The example of FIG. 4 will be described later.
 まず、図5乃至図7を参照して、生体試料の容量の測定を行う機構の構成について説明する。 First, with reference to FIGS. 5 to 7, the configuration of a mechanism for measuring the volume of a biological sample will be described.
 生体試料容量測定機器1は、図5に示すような検体前処理システム200の生体試料チェックモジュール203aに設置されている。 The biological sample capacity measuring device 1 is installed in a biological sample check module 203a of a sample pretreatment system 200 as shown in FIG.
 生体試料チェックモジュール203aに関する搬送ライン2は、生体試料チェックモジュール203aに立ち寄る容器101を搬送する主要ライン2d、生体試料チェックモジュール203aに立ち寄らず、通過する容器101を搬送する追い越しライン2c、測定待ちの容器101を一時的に待機させるとともに、測定のために停止させることが可能なバッファライン2b、および測定後の容器101を主要ライン2dに戻す搬出ライン2aの4つのラインにより構成されている。
  機器1は、図5に示すバッファライン2b上に設置されており、この機器1の位置が測定ポジション7となる。この測定ポジション7の下方には、容器101を保持したホルダ4の到着を検知するセンサ(例えばRFID)と、ホルダ4を測定ポジション7に停止させるストッパが設けられている。
The transport line 2 related to the biological sample check module 203a is a main line 2d for transporting the container 101 that stops by the biological sample check module 203a, an overtaking line 2c that transports the passing container 101 without stopping at the biological sample check module 203a, and waiting for measurement. While making container 101 stand by temporarily, buffer line 2b which can be made to stop for measurement, and container 101 after measurement are constituted by four lines of return line 2a which returns to main line 2d.
The device 1 is installed on the buffer line 2 b shown in FIG. 5, and the position of the device 1 is the measurement position 7. Below the measurement position 7, a sensor (for example, an RFID) for detecting the arrival of the holder 4 holding the container 101 and a stopper for stopping the holder 4 at the measurement position 7 are provided.
 図6および図7に示すように、生体試料容量測定機器1は、主要構成要素として、検知機構12、この検知機構12を上下稼働させるための回転棒17、この回転棒17を回転させるモータ11を有している。回転棒17にはネジがついており、回転棒17に接続した検知機構12が矢印13方向に稼働する仕組みとなっている。 As shown in FIGS. 6 and 7, the biological sample volume measuring device 1 includes, as main components, a detection mechanism 12, a rotary rod 17 for moving the detection mechanism 12 up and down, and a motor 11 for rotating the rotary rod 17. have. The rotary rod 17 is screwed, and the detection mechanism 12 connected to the rotary rod 17 operates in the direction of the arrow 13.
 検知機構12は、図6および図7に示すように、静電容量センサ31をその左右の中心位置に、照射部21および受光部であるフォトダイオード22とをその中心線からみて左右対称の位置にそれぞれ有している。本実施の形態では、照射部21にはLED光源(波長域940nm程度の赤外光)を用いる。 As shown in FIGS. 6 and 7, the detection mechanism 12 is symmetrical with respect to the center line of the capacitance sensor 31 with respect to the center line of the irradiation unit 21 and the photodiode 22 as a light receiving unit. Each has. In the present embodiment, an LED light source (infrared light with a wavelength range of about 940 nm) is used for the irradiation unit 21.
 ここで、本実施形態における測定系統である検知機構12の詳細について図6および図7を用いて以下説明する。 Here, details of the detection mechanism 12 which is a measurement system in the present embodiment will be described below with reference to FIGS. 6 and 7.
 機器1に設けられた静電容量センサ31は、非接触の静電容量方式によって容器101内の試料の上面を容器101の外側から検出するセンサであり、液体の検出に優れている。
  非接触の静電容量方式について以下簡単に説明する。
The capacitance sensor 31 provided in the device 1 is a sensor that detects the upper surface of the sample in the container 101 from the outside of the container 101 by a non-contact capacitance method, and is excellent in detection of liquid.
The non-contacting capacitance method will be briefly described below.
 ある導体(以下電極と称する)に大地に対してプラスの電圧を加えると、電極にはプラスの電荷が生じ、電極と大地間に電界ができる。この電界中に物体が存在すれば静電誘導を受けて、電極に近い側に電極と異種のマイナスの電荷が現われ、反対側にはプラス電荷が現われる。この現象を分極という。物体が電極から遠く離れていれば電界は弱いので分極も小さいが、電極に接近するにしたがって電界は強くなって分極も大きくなる。そうすると、物体に生じたマイナス電荷の誘導を受けて電極側のプラス電荷は増加する。したがってC=Q/Vの関係から電荷Qが増加することは、電極の静電容量Cが増加することになる。 When a positive voltage is applied to a certain conductor (hereinafter referred to as an electrode) with respect to the ground, a positive charge is generated in the electrode and an electric field is generated between the electrode and the ground. If an object is present in this electric field, it receives electrostatic induction, and a negative charge different from that of the electrode appears on the side close to the electrode, and a positive charge appears on the opposite side. This phenomenon is called polarization. If the object is far from the electrode, the electric field is weak and the polarization is also small, but as the electrode approaches the electrode, the electric field becomes stronger and the polarization also becomes larger. Then, the positive charge on the electrode side increases due to the induction of the negative charge generated in the object. Therefore, an increase in charge Q from the relationship of C = Q / V means an increase in capacitance C of the electrode.
 ここで、非接触の静電容量方式において、ある物体の接近を検出するためのスイッチを考えると、検出回路に発振回路を利用しており、発振回路のある端子(電極)の静電容量Cが発振条件の一要素となるように発振回路を構成し、この電極のCの変化にしたがって発振を開始、あるいは停止するようにして電極に接近する物体の検出を行う。 Here, in the non-contact electrostatic capacitance system, considering a switch for detecting the approach of an object, the oscillation circuit is used as a detection circuit, and the capacitance C of a terminal (electrode) of the oscillation circuit is used. The oscillation circuit is configured to be an element of the oscillation condition, and oscillation is started or stopped according to the change of C of the electrode to detect an object approaching the electrode.
 ところで、電極の静電容量の変化は、物体の大きさ、厚さ、誘電体の場合には比誘電率εsなどに関係があり、大きいほど、厚いほど、εsが大きいほど静電容量変化は大きくなり、動作距離も大きくなる。この比誘電率εsは、静電誘導を受けて物体中の電荷が分極する度合を示し、真空の場合を基準にして1とすると、水の約80をはじめ液体は比較的大きく、固体では10以下のものが多い。このことから、検出電極に物体が接近した時の電極の静電容量変化を検出して、静電容量の差異を検出することで、液相と他の層(気相,固層)との境界を検出する。 By the way, the change in capacitance of the electrode is related to the size and thickness of the object, the relative dielectric constant εs in the case of a dielectric, etc. The operating distance is also increased. The relative dielectric constant ε s indicates the degree to which the charge in the object is polarized due to electrostatic induction, and assuming that it is 1 based on the case of vacuum, the liquid is relatively large including about 80 in water, and 10 in solid There are many of the following. From this, the capacitance change of the electrode when the object approaches the detection electrode is detected, and the difference in the capacitance is detected, whereby the liquid phase and the other layer (gas phase, solid layer) Detect boundaries
 ここでは、静電容量センサ31は、血清111の上面114(血清111と空気層との境界)の検出に利用する。 Here, the capacitance sensor 31 is used to detect the upper surface 114 of the serum 111 (the boundary between the serum 111 and the air layer).
 照射部21は容器101の側面に対して光を照射する。フォトダイオード22は、この照射部21から照射されて容器101を通過した透過光の量を測定する。すなわち、照射部21とフォトダイオード22とからなる光検出系は、透過光の差異から層の境界を検出
するものであり、光学的に厚い層とそうでない層との境界の検出に優れている。
The irradiation unit 21 irradiates the side surface of the container 101 with light. The photodiode 22 measures the amount of light transmitted from the irradiation unit 21 and transmitted through the container 101. That is, the light detection system including the irradiation unit 21 and the photodiode 22 detects the boundary of the layer from the difference in transmitted light, and is excellent in detecting the boundary between the optically thick layer and the layer that is not so. .
 赤外光は、血清111、分離剤112のような比較的に光学的に薄い層を容易に透過できる。一方で、血餅113のように光学的に厚い層は透過しにくい。ここでは、この特徴を利用して、光学的に厚い血餅113と、相対的に薄い分離剤112の境界面116の検出に利用する。また、赤外光は、とりわけ本実施の形態で選択している940nmの波長帯は、紙を比較的よく透過する。そのため、バーコード103が貼られている状態でも有効に使用できる。また、近年ではLED光源の一般的な意味での性能も向上しており、LED光源でも必要十分な光量を得ることができる。
  なお、上述の目的を得るには、照射部21は、必ずしもLEDに限定する必要はなく、集光力の強いレーザやビーム光線あるいは光量の強いものであれば蛍光灯やハロゲン光源なども有効である。また波長域についても、必ずしも赤外線帯に限定する必要はなく、X-線、紫外線、可視光、近赤外線、ミリ波あるいは白色光など広い範囲の波長帯で効果が得られる。
Infrared light can easily pass through relatively optically thin layers such as serum 111 and separation agent 112. On the other hand, an optically thick layer such as the blood clot 113 is difficult to permeate. Here, this feature is used to detect the interface 116 between the optically thick blood clot 113 and the relatively thin separating agent 112. In addition, infrared light passes through the paper relatively well, particularly in the wavelength band of 940 nm selected in the present embodiment. Therefore, it can be used effectively even in the state where the barcode 103 is attached. Moreover, in recent years, the performance in the general meaning of the LED light source has also been improved, and even with the LED light source, it is possible to obtain a necessary and sufficient light quantity.
In addition, in order to obtain the above-mentioned purpose, the irradiation part 21 does not necessarily need to be limited to LED, and a fluorescent light, a halogen light source, etc. are effective if it is a strong light source of a laser or a beam or a light beam. is there. The wavelength range is not necessarily limited to the infrared range, and the effect can be obtained in a wide range of wavelength ranges such as X-ray, ultraviolet, visible light, near infrared, millimeter wave or white light.
 そのために、血清111や分離剤112に対するLED(赤外光)の透過光量と、血餅113に対するLED(赤外光)の透過光量を区別するためのしきい値を予め信号量取得部19bにインストールしておく。血餅113に対するLED(赤外光)の透過光量は、血清111または分離剤112に対する赤外光の透過光量と比して極めて小さいため、しきい値に大きく依存せずにバラツキなく検出することができる。 Therefore, the signal amount acquisition unit 19b is provided in advance with a threshold for discriminating the transmitted light amount of the LED (infrared light) for the serum 111 and the separating agent 112 and the transmitted light amount of the LED (infrared light) for the blood clot 113 I have installed it. The amount of light transmitted by the LED (infrared light) to the blood clot 113 is extremely small compared to the amount of light transmitted by the infrared light to the serum 111 or the separating agent 112. Can.
 バーコード103で上面114や境界面116が見えない状態にあっても、静電容量センサ31および光検出系は安定して上面114や境界面116を検出可能である。 Even when the upper surface 114 and the boundary surface 116 can not be seen by the bar code 103, the capacitance sensor 31 and the light detection system can stably detect the upper surface 114 and the boundary surface 116.
 本発明において、上面114および境界面116の検出は、静電容量センサ31や光検出系を備えた検出機構12を容器101の上側から下側に移動させて行う。
  通常、センサのついた検知機構12を固定し容器101を上下させる方法が一般的である。しかし、容器101を上下移動させる場合、血清111に揺れが生じそれが測定誤差を生む要因となる。そこで、本発明では、容器101を動かさずに、検知機構12を上下動させて測定する。
In the present invention, the detection of the upper surface 114 and the boundary surface 116 is performed by moving the detection mechanism 12 including the capacitance sensor 31 and the light detection system from the upper side to the lower side of the container 101.
In general, a method of fixing the detection mechanism 12 with a sensor and moving the container 101 up and down is generally used. However, when the container 101 is moved up and down, the serum 111 is shaken, which causes a measurement error. Therefore, in the present invention, without moving the container 101, the detection mechanism 12 is moved up and down for measurement.
 更に、本実施形態においては、静電容量のセンサ31の中心と、照射部21の中心との距離を、容器101内に収容された生体試料の幅に応じた間隔h0に設定している。この間隔h0は、以下のように決定する。
  本実施形態では、詳しくは後述するが、静電容量センサ31にて血清111の上面114を検出したのちに、照射部21による分離剤112と血餅113の境界面116検出に移行するように検知機構12を制御する。
  従って、静電容量センサ31による検出が終了したらすぐに境界面116が検出される、つまり照射部21による走査時間が短ければ短いほど処理能力は向上する。このため、静電容量のセンサ31が血清111の上面114に到達したときに、照射部21が境界面116の付近にあることが望まれる。
  この点、容器101(採血管)には、採血管の製造者による推奨採血量があることから、検査室で一般的に採血される血液の平均的な量はある程度の精度で定義できる。この一般的な量から、血清111の高さの平均的な値はある程度決定することが可能である。この血清111の高さの平均的な値と、分離剤112の高さを足した値が血清上面114と境界面116の間の距離となる。この距離を上述した間隔h0とする。
Furthermore, in the present embodiment, the distance between the center of the capacitance sensor 31 and the center of the irradiation unit 21 is set to the interval h0 according to the width of the biological sample housed in the container 101. This interval h0 is determined as follows.
In this embodiment, although it will be described in detail later, after the upper surface 114 of the serum 111 is detected by the capacitance sensor 31, detection of the boundary surface 116 of the separating agent 112 and the blood clot 113 by the irradiation unit 21 is performed. The detection mechanism 12 is controlled.
Therefore, as soon as the detection by the capacitance sensor 31 is completed, the boundary surface 116 is detected, that is, as the scanning time by the irradiation unit 21 is shorter, the processing performance is improved. For this reason, when the sensor 31 of the capacitance reaches the upper surface 114 of the serum 111, it is desirable that the irradiation unit 21 be in the vicinity of the boundary surface 116.
In this respect, since the container 101 (blood collection tube) has a recommended blood collection volume by the manufacturer of the blood collection tube, the average volume of blood generally collected in the examination room can be defined with a certain degree of accuracy. From this general amount, the average value of the height of serum 111 can be determined to some extent. A value obtained by adding the average value of the height of the serum 111 and the height of the separating agent 112 is the distance between the serum upper surface 114 and the interface 116. Let this distance be the above-mentioned interval h0.
 図6および図7に戻って、機器1は、制御部19a、信号量取得部19b、データ記憶部19c、解析演算部19d、制御信号とセンサ信号を送受信するための通信線18を備えている。 6 and 7, the device 1 includes a control unit 19a, a signal amount acquisition unit 19b, a data storage unit 19c, an analysis operation unit 19d, and a communication line 18 for transmitting and receiving control signals and sensor signals. .
 制御部19aは、上述した機器1内の各要素の動作を制御する。また、制御部19aは、投入モジュール201に検体を収容した容器101が投入されたことを認識すると、投入された容器101の撮像を行うようカメラ221を制御する。更に、静電容量センサ31を容器101に対して上下動させながら、容器情報特定部19d1によって特定された栓102の種類に関する情報に応じて容器101内の試料の上面を検出するように、モータ11および静電容量センサ31を制御する。 The control unit 19a controls the operation of each element in the device 1 described above. Further, when recognizing that the container 101 containing the sample is inserted into the insertion module 201, the control unit 19a controls the camera 221 to perform imaging of the inserted container 101. Furthermore, while moving the capacitance sensor 31 up and down with respect to the container 101, the motor is configured to detect the upper surface of the sample in the container 101 according to the information on the type of the plug 102 specified by the container information specifying unit 19d1. 11 and the capacitance sensor 31 are controlled.
 本実施形態における制御部19aによる検知機構12の動作の制御の詳細について図8を用いて以下説明する。 Details of the control of the operation of the detection mechanism 12 by the control unit 19a in the present embodiment will be described below using FIG.
 図8の矢印61は位置を表す軸で、栓の底の位置68を基点として、検体容器101の底方向に向かって引いている。 An arrow 61 in FIG. 8 is an axis indicating a position, and is drawn toward the bottom of the sample container 101 with a position 68 at the bottom of the stopper as a base point.
 測定開始前の状態として、静電容量センサ31が栓102の上部の位置で静止している。この状態で電源64はOFFである。 As a state before the start of measurement, the capacitance sensor 31 is stationary at a position above the plug 102. In this state, the power supply 64 is off.
 制御部19aは、検知機構12を下に移動させ、静電容量センサ31が栓102の底に差し掛かったタイミングで、センサの電源64をOFFからONにする(62a)。このような制御をする理由は、もし静電容量センサ31の電源64を常時ONにするような運用をすると、栓102の存在により出力65がONになることがあり、これにより栓の位置を血清の上面と誤認識してしまう。このため、この誤認識を防ぐ目的で、電源64は初めOFFとし、静電容量センサ31が栓102を通過した後に初めて電源64をONにするという制御方式を採用する。なお、栓102の底の位置は、容器101に依存して決まるものであり、その情報については、後述する容器情報特定部19d1において特定する。 The control unit 19a moves the detection mechanism 12 downward, and switches the power supply 64 of the sensor from OFF to ON at timing when the capacitance sensor 31 reaches the bottom of the plug 102 (62a). The reason for performing such control is that if the power supply 64 of the capacitance sensor 31 is always turned on, the output 65 may be turned on due to the presence of the plug 102, whereby the position of the plug It is misrecognized as the upper surface of serum. Therefore, in order to prevent this erroneous recognition, a control method is adopted in which the power supply 64 is turned off at first and the power supply 64 is turned on only after the capacitance sensor 31 passes through the plug 102. The position of the bottom of the stopper 102 is determined depending on the container 101, and the information is specified in a container information specification unit 19d1 described later.
 次いで、検知機構12をさらに下に移動させる。静電容量センサ31は、通常はOFF、血清111の検出に対してONとなるように設定されている。そのため、静電容量センサ31が血清上面114に到達すると、センサの出力65がOFFからONに切り替わる(62b)。この出力の切り替わりによって、血清上面114を検出する。 Then, the detection mechanism 12 is moved further downward. The capacitance sensor 31 is normally set to be OFF and to be ON with respect to the detection of the serum 111. Therefore, when the capacitance sensor 31 reaches the serum top surface 114, the output 65 of the sensor is switched from OFF to ON (62b). By switching the output, the serum top surface 114 is detected.
 血清上面114が認識された後、制御部19aは、静電センサの電源64をOFFにし(63a)、同時に照射部21の電源66をOFFからONにする(62c)。静電センサの電源64をOFFにしたことにより、出力65はOFFに戻る(63b)とともに、照射部21は血清111の位置にあるため、フォトダイオード22の出力はONとなる(62d)。 After the serum top surface 114 is recognized, the control unit 19a turns off the power supply 64 of the electrostatic sensor (63a), and simultaneously turns on the power supply 66 of the irradiation unit 21 from off to on (62c). By turning off the power supply 64 of the electrostatic sensor, the output 65 returns to OFF (63b), and since the irradiation unit 21 is at the position of the serum 111, the output of the photodiode 22 is turned ON (62d).
 ここで、フォトダイオード22の出力67とは、容器101を透過した光の量のことである。血清111、分離剤112に対するLED(赤外光)の透過光量と、血餅113に対する赤外光の透過光量を区別するためのしきい値を予めデータ記憶部19cにインストールしておく。 Here, the output 67 of the photodiode 22 is the amount of light transmitted through the container 101. A threshold for discriminating the transmitted light amount of the LED (infrared light) to the serum 111 and the separating agent 112 and the transmitted light amount of the infrared light to the blood clot 113 is installed in the data storage unit 19c in advance.
 制御部19aは、検知機構12を更に下に移動させ、フォトダイオード22が分離剤112と血餅113との境界面116に到達すると、赤外光23が血餅113に遮られ透過光量がしいき値より小さくなり、出力67がOFFになる(63d)。この出力の切り替わりによって、分離剤112と血餅113との境界面116を検出する。 The control unit 19a moves the detection mechanism 12 further downward, and when the photodiode 22 reaches the interface 116 between the separating agent 112 and the blood clot 113, the infrared light 23 is blocked by the blood clot 113 and the transmitted light amount is reduced. It becomes smaller than the threshold value, and the output 67 is turned off (63d). By switching the output, the interface 116 between the separating agent 112 and the blood clot 113 is detected.
 血餅と分離剤の境界面116が認識された後は、制御部19aは、照射部21の電源をOFFにする(63c)。 After the boundary surface 116 of the clot and the separating agent is recognized, the control unit 19a turns off the power of the irradiation unit 21 (63c).
 制御部19aは、静電センサ31、照射部21がともにOFFの状態となると、次の検体の測定に備えて、元の位置である栓102の上部の位置に検知機構12を戻す。 When both the electrostatic sensor 31 and the irradiation unit 21 are in the OFF state, the control unit 19a returns the detection mechanism 12 to the original position, that is, the upper position of the plug 102, in preparation for the measurement of the next sample.
 図6および図7に戻って、信号量取得部19bは、静電容量センサ31とフォトダイオード22の信号量(両者まとめてセンサ信号と称す)を取得する。 Referring back to FIGS. 6 and 7, the signal amount acquisition unit 19b acquires the signal amounts of the capacitance sensor 31 and the photodiode 22 (both collectively referred to as a sensor signal).
 データ記憶部19cは、信号量取得部19bにおいて取得した静電容量センサ31やフォトダイオード22の信号量、後述する演算解析部19dの各部で処理した情報を記憶する。 The data storage unit 19c stores the signal amounts of the capacitance sensor 31 and the photodiode 22 acquired by the signal amount acquisition unit 19b, and the information processed by each unit of the operation analysis unit 19d described later.
 解析演算部19dは、容器情報特定部19d1、容量演算部19d2を有している。 The analysis operation unit 19 d includes a container information identification unit 19 d 1 and a capacity operation unit 19 d 2.
 容器情報特定部19d1は、投入モジュール201内に投入された容器101の種類、容器101の栓102の種類を特定する。
  この容器情報特定部19d1は、カメラ221によって撮像された、投入モジュール201に投入された容器101の撮影画像を画像処理することにより容器101の種別を認識する。認識の方法には、例えば、予め使用する容器を撮影したデータベースを備え、撮像した画像とマッチングを行う方法などがある。また、容器情報特定部19d1は、容器101の種類から、容器101に取り付けられた栓102の底の位置や容器101の径の情報を取得する。この得られた情報を制御用パソコン210に送信する。この情報はまた、生体試料チェックモジュール203a、ステージ15b、通信線18を経由して、生体試料容量測定機器1の解析演算部19dにも送信される。これらの情報のうち容器101の栓102の底の位置は、制御部19aにおける静電容量センサ31の電源64をONにする位置を決めるための情報として用いられる。また、容器101の径の情報は、生体試料容量測定機器1の測定で得られる血清111や全血117の高さ情報と併せて、容量演算部19d2における血清111や全血117の容量を算出する際に使用される。
The container information identification unit 19d1 identifies the type of the container 101 loaded into the loading module 201 and the type of the stopper 102 of the container 101.
The container information identification unit 19d1 recognizes the type of the container 101 by performing image processing on the photographed image of the container 101 inserted into the insertion module 201 and captured by the camera 221. As a method of recognition, for example, there is a method of providing a database obtained by imaging a container to be used in advance, and performing matching with the imaged image. Further, the container information identification unit 19 d 1 acquires, from the type of the container 101, information on the position of the bottom of the stopper 102 attached to the container 101 and the diameter of the container 101. The obtained information is transmitted to the control personal computer 210. This information is also transmitted to the analysis operation unit 19d of the biological sample capacitance measuring device 1 via the biological sample check module 203a, the stage 15b, and the communication line 18. Among these pieces of information, the position of the bottom of the stopper 102 of the container 101 is used as information for determining the position at which the power source 64 of the capacitance sensor 31 in the control unit 19a is turned on. Further, the information of the diameter of the container 101 is combined with the height information of the serum 111 and the whole blood 117 obtained by the measurement of the biological sample volume measuring device 1 to calculate the volume of the serum 111 and the whole blood 117 in the volume calculation unit 19 d 2 Used when
 容量演算部19d2は、容器情報特定部19d1によって特定された容器101の種類から容器101径および分離剤112の有無を特定するとともに、血餅113と分離剤112との境界面116を求める。その上で、この特定結果と、境界面116に関する情報と、静電容量センサ31で検出した容器101内の試料の上面に関する情報とから容器101内の試料の容量を演算する。
  具体的には、容量演算部19d2は、まず、信号量取得部19bにおいて取得した静電容量センサ31の信号量(静電容量センサ31のOFFかONかの状態)から、検知機構12の高さ情報h1を求める。この高さ(h1)は、初期位置からモータ11の回転数に相当する移動距離を引くことによって算出する。また、フォトダイオード22の信号量(フォトダイオード22で検知する透過光の値が急減する値)から検知機構12の高さ情報h2を求め、フォトダイオード22で測定した透過光の量に基づき、容器101内における血餅113と分離剤112との境界面116を求める。この高さ(h2)は、初期位置からモータ11の回転数に相当する移動距離を引くことによって算出する。その後、h1-h2-分離剤112の高さhsの演算処理を実行することで、血清111の高さを算出する。なお、分離剤112の量は、容器101の種類によってほぼ一定の値であることが知られているため、固定値として予め解析演算部19dに記憶されている。そのため、容器情報特定部19d1において特定された容器情報から、容器101の径の情報と分離剤112の量の情報とから演算することで分離剤112の高さhsは求められる。その後、容器101の径に関する情報を用いることで、具体的な体積値として、血清111の容量を算出する。
The capacity calculating unit 19d2 specifies the diameter of the container 101 and the presence or absence of the separating agent 112 from the type of the container 101 specified by the container information specifying unit 19d1, and obtains the boundary surface 116 between the blood clot 113 and the separating agent 112. Then, the volume of the sample in the container 101 is calculated from the identification result, the information on the interface 116, and the information on the upper surface of the sample in the container 101 detected by the capacitance sensor 31.
Specifically, the capacitance calculation unit 19d2 first determines the height of the detection mechanism 12 from the signal amount of the capacitance sensor 31 acquired by the signal amount acquisition unit 19b (whether the capacitance sensor 31 is off or on). Find the information h1. The height (h1) is calculated by subtracting the movement distance corresponding to the number of rotations of the motor 11 from the initial position. Further, the height information h2 of the detection mechanism 12 is obtained from the signal amount of the photodiode 22 (the value at which the value of the transmitted light detected by the photodiode 22 decreases rapidly), and the container 22 is obtained based on the amount of the transmitted light measured by the photodiode 22. The interface 116 between the blood clot 113 and the separating agent 112 in 101 is determined. The height (h2) is calculated by subtracting the movement distance corresponding to the number of rotations of the motor 11 from the initial position. Thereafter, arithmetic processing of the height hs of the h1-h2- separation agent 112 is performed to calculate the height of the serum 111. In addition, since it is known that the quantity of the separating agent 112 is a substantially constant value according to the kind of container 101, it is memorize | stored in the analysis calculating part 19d as a fixed value previously. Therefore, the height hs of the separating agent 112 can be obtained by calculating from the information on the diameter of the container 101 and the information on the amount of the separating agent 112 from the container information specified in the container information specifying unit 19d1. Thereafter, by using information on the diameter of the container 101, the volume of the serum 111 is calculated as a specific volume value.
 また、機器1は、検体前処理システム200の他のモジュールや制御用パソコン210と物理的に通信するためのステージ15bを備えている。 The device 1 further includes a stage 15 b for physically communicating with other modules of the sample pretreatment system 200 and the control personal computer 210.
 次に、検体の処理手順に沿って、測定順序を説明する。 Next, the measurement order will be described along the sample processing procedure.
 ユーザは、最初に、血液の入った容器101を、投入モジュール201に投入する。そこでは、カメラ221により、容器101の種類を認識する。 The user first inserts the container 101 containing blood into the input module 201. There, the camera 221 recognizes the type of the container 101.
 この後、生体試料の入った容器101は専用のホルダ4に架設されて搬送ライン2上を移動し、必要に応じて遠心分離モジュール202に搬送される。例えば血球カウンタのような項目に対応するのであれば遠心分離モジュール202を飛ばして遠心処理されずに通過させる。遠心分離処理を終えた容器を生体試料チェックモジュール203aに搬送して容量を計測する。計測された容量は制御用パソコン210で送信される。 Thereafter, the container 101 containing the biological sample is placed on a dedicated holder 4 and moved on the transfer line 2 and transferred to the centrifugation module 202 as necessary. For example, if it corresponds to an item such as a blood cell counter, the centrifugation module 202 is skipped and passed without being centrifuged. The container that has been subjected to the centrifugal separation processing is transported to the biological sample check module 203a to measure the volume. The measured capacity is transmitted by the control personal computer 210.
 この時点で、制御用パソコン210は小分けの計画(小分け数、小分け量等)を決めるプロセスを開始する。小分けのスケジュールは基本的には依頼されている測定項目によって決まるが、本実施形態においては更に容量を加味する。例えば、依頼のある項目のうち測定された容量で全ての分析が可能か、あるいは不可能だとした場合に分析可能な項目数はいくらか、などをパラメータとして適正な小分けをする。 At this point, the control personal computer 210 starts the process of determining the division plan (number of divisions, the amount of division, etc.). The subdivision schedule basically depends on the requested measurement item, but in the present embodiment, the capacity is further taken into consideration. For example, if all the analysis is possible in the measured volume among the requested items, or if it is not possible, the number of items that can be analyzed is appropriately divided with the parameters as parameters.
 生体試料チェックモジュール203aにおいて容量計測が終了した容器101を開栓モジュール204に運び、開栓処理を行う。先述のスケジュールに基づいた小分け用容器の準備をラベラ205で行い、続けて実際の小分けを分注モジュール206で実施する。その後は、用途に応じて、自動分析装置211への搬送や、閉栓モジュール207による閉栓処理を経て、分類モジュール208での分類あるいは収納モジュール209への収納を行う。 The container 101 whose capacity measurement has been completed in the biological sample check module 203a is carried to the opening module 204 for opening processing. Preparation of the dispensing container based on the above-mentioned schedule is performed by the labeler 205, and then actual dispensing is performed by the dispensing module 206. Thereafter, depending on the application, it is transported to the automatic analyzer 211 and the plugging process by the plugging module 207, and the classification in the classification module 208 or the storage in the storage module 209 is performed.
 次に、生体試料チェックモジュール203aにおける生体試料容量測定機器1と関連する機構の動作について説明する。 Next, the operation of the mechanism associated with the biological sample capacity measuring device 1 in the biological sample check module 203a will be described.
 生体試料チェックモジュール203aに搬送された容器101は、バッファライン2bを通して測定ポジション7に搬送される。ホルダ4が到着すると、センサがホルダ4を検知し、制御用パソコン210にその情報を送信し、制御用パソコン210は処理開始指示信号を機器1の制御部19aに送信する。それと同時に、ストッパを稼働させ、測定中の間は容器101を測定ポジション7に停止させる。 The container 101 transported to the biological sample check module 203a is transported to the measurement position 7 through the buffer line 2b. When the holder 4 arrives, the sensor detects the holder 4 and transmits the information to the control personal computer 210, and the control personal computer 210 transmits a processing start instruction signal to the control unit 19a of the device 1. At the same time, the stopper is operated, and the container 101 is stopped at the measurement position 7 during measurement.
 次いで、測定の詳細について、図9を参照して以下説明する。 Next, the details of the measurement will be described below with reference to FIG.
 まず、容器101が、ホルダ4に載った状態で検知機構12の中心位置(測定ポジション7)に停止すると、容器101に対する測定が開始する(ステップS41)。なお、検知機構12のステージからの高さは、予め製造段階でティーチングされる固定の位置(以後、初期位置と呼ぶ)とする。 First, when the container 101 is stopped at the center position (measurement position 7) of the detection mechanism 12 in a state where the container 101 is placed on the holder 4, measurement of the container 101 is started (step S41). The height of the detection mechanism 12 from the stage is a fixed position (hereinafter referred to as an initial position) to be taught in advance in the manufacturing stage.
 制御部19aによりモータ11が稼働すると、回転棒17が矢印16の方向に回転して検知機構12が下降する(ステップS42)。 When the motor 11 is operated by the control unit 19a, the rotary rod 17 is rotated in the direction of the arrow 16, and the detection mechanism 12 is lowered (step S42).
 静電容量センサ31が栓102の底の位置まで到達すると、静電容量センサ31の電源をONに切り替える。この位置は、容器101の栓102の種類に依存するもので、予め容器情報特定部19d1により予め既知となっている。その後、常時通信線18を通して信号取得部19bに送信しながら下降させ続け、静電容量センサ31の出力情報がONかOFFかを判定し続ける(ステップS43)。ONになるまでの間は下降を継続する。 When the capacitance sensor 31 reaches the bottom position of the plug 102, the power of the capacitance sensor 31 is switched on. This position depends on the type of the stopper 102 of the container 101, and is known in advance by the container information identification unit 19d1. After that, the signal acquisition unit 19b is constantly sent down to the signal acquisition unit 19b through the communication line 18, and it is continuously determined whether the output information of the capacitance sensor 31 is ON or OFF (step S43). Continue to descend until it is turned on.
 静電容量センサ31が血清上面114まで到達すると、静電容量センサ31が上面検知信号を出力する。この瞬間、血清111の上面を検知したとして、制御部19aは、通信線18を通して停止信号をモータ11に与え、検知機構12を瞬間的に停止させる(ステップS46)。この信号を受信したモータ11は停止し、これに連動して回転棒17および検知機構12が停止する。このとき、データ記憶部19cは、検知機構12の高さ情報(h1)を記録する(ステップS47)。 When the capacitance sensor 31 reaches the serum top surface 114, the capacitance sensor 31 outputs a top surface detection signal. At this moment, assuming that the upper surface of the serum 111 is detected, the control unit 19a gives a stop signal to the motor 11 through the communication line 18, and stops the detection mechanism 12 instantaneously (step S46). The motor 11 having received this signal is stopped, and in conjunction with this, the rotary rod 17 and the detection mechanism 12 are stopped. At this time, the data storage unit 19c records the height information (h1) of the detection mechanism 12 (step S47).
 高さh1が記録された後、制御部19aは、次に、分離剤112と血餅113との境界面116の検知のため、通信線18を通して発光信号を照射部21に送るとともに、静電センサ31の電源をOFFにする信号を出力する。この信号を受信した静電容量センサ31は電源がOFFになるとともに、照射部21は赤外光照射を開始する(ステップS48)。これと同時に、制御部19aは、通信線18を通して動作信号を再びモータ11に与え、この信号を受信したモータ11は回転を始め、これに連動して検知機構12が下降を再開する(ステップS49)。 After the height h1 is recorded, the control unit 19a then sends a light emission signal to the irradiation unit 21 through the communication line 18 for detection of the boundary surface 116 between the separating agent 112 and the blood clot 113, and A signal to turn off the power of the sensor 31 is output. The capacitance sensor 31 receiving this signal is turned off, and the irradiation unit 21 starts infrared light irradiation (step S48). At the same time, the control unit 19a again gives an operation signal to the motor 11 through the communication line 18, and the motor 11 receiving this signal starts to rotate, and the detection mechanism 12 resumes the lowering interlocking with this (step S49) ).
 検知機構12を下降させながら、受光側であるフォトダイオード22で透過光の値を測定してこの情報を、通信線18を介して信号取得部19bに常時送信し、所定のしきい値以下であるか否かを監視する(ステップS50)。所定のしきい値より大きいときは、検知機構12の下降を続ける(ステップS50において、いいえの場合)。 While the detection mechanism 12 is lowered, the value of the transmitted light is measured by the photodiode 22 on the light receiving side, and this information is constantly transmitted to the signal acquiring unit 19b via the communication line 18, and the value is below the predetermined threshold. It is monitored whether there is any (step S50). When it is larger than the predetermined threshold value, the detection mechanism 12 continues to descend (in the case of NO at step S50).
 照射部21が境界面116に達すると、フォトダイオード22で検知する透過光の値が急減し、信号量取得部19bに予めインストールされたしきい値以下となる。この場合、制御部19aは、通信線18を通して停止信号をモータ11に与え、この信号を受信したモータ11は停止し、これに連動して回転棒17および検知機構12が停止する(ステップS53)。このとき、データ記憶部19cは、検知機構12の高さ情報(h2)を記録する(ステップS54)。 When the irradiation unit 21 reaches the boundary surface 116, the value of the transmitted light detected by the photodiode 22 decreases rapidly, and becomes equal to or less than the threshold previously installed in the signal amount acquisition unit 19b. In this case, the control unit 19a sends a stop signal to the motor 11 through the communication line 18, and the motor 11 receiving this signal stops, and the rotary rod 17 and the detection mechanism 12 stop in conjunction with this (step S53) . At this time, the data storage unit 19c records the height information (h2) of the detection mechanism 12 (step S54).
 高さh2が記録された後、制御部19aは、通信線18を通して停止信号を照射部21に送り、照射部21による赤外光照射を停止させる。光源の寿命を縮めないための措置である。 After the height h2 is recorded, the control unit 19a sends a stop signal to the irradiating unit 21 through the communication line 18, and stops the irradiation of the infrared light by the irradiating unit 21. It is a measure not to shorten the life of the light source.
 次いで、制御部19aは、次の容器101の測定に備えて検知機構12を初期位置に戻すよう制御する(ステップS55)。具体的には、通信線18を通して動作信号を再びモータ11に与える。この信号を受信したモータ11は回転を始め、連動して検知機構12が上昇を開始する。なお、検知機構12を上昇させる場合は下降の場合と逆方向にモータ11を稼働させるとよい。 Next, the control unit 19a controls the detection mechanism 12 to return to the initial position in preparation for the measurement of the next container 101 (step S55). Specifically, the operation signal is again applied to the motor 11 through the communication line 18. The motor 11 having received this signal starts to rotate, and interlockingly, the detection mechanism 12 starts to ascend. In addition, when raising detection mechanism 12, it is good to operate motor 11 in the reverse direction to the case of descent.
 この動作の間に、解析演算部19dの容量演算部19d2は、ステップS47において記録した静電容量センサ31の状態(OFFかONか)の情報に基づく検知機構12の高さ情報(h1)と、ステップS54において記録した検知機構12の高さ情報(h2)との情報を用いて血清111の高さを算出する。次いで、容量演算部19d2は、容器情報特定部19d1において特定した容器101の径に関する情報と先に求めた血清111の高さの情報とを用いることで、具体的な体積値として、血清量の容量を算出する。 During this operation, the capacitance operation unit 19d2 of the analysis operation unit 19d and the height information (h1) of the detection mechanism 12 based on the information of the state (OFF or ON) of the capacitance sensor 31 recorded in step S47. The height of the serum 111 is calculated using the information with the height information (h2) of the detection mechanism 12 recorded in step S54. Next, the volume calculating unit 19d2 uses the information on the diameter of the container 101 specified in the container information specifying unit 19d1 and the information on the height of the serum 111 obtained above to obtain the serum volume as a specific volume value. Calculate the capacity.
 以上で、一つの容器101に対するデータの取得は終了する(ステップS56)。 Thus, the acquisition of data for one container 101 is completed (step S56).
 上述したように、本発明の検体検査自動化システムおよび生体試料のチェック方法の第1の実施形態では、カメラ221で容器101を撮像して、容器情報特定部19d1によって容器101の種類や容器101の栓102の種類を特定する。そして、検知機構12を下に移動させ、特定した栓102の種類の情報から静電容量センサ31が栓102の底に差し掛かったタイミングを特定し、このタイミングでセンサの電源64をOFFからONにし、静電容量センサ31によって血清111の上面114を検出する。また、静電容量センサ31によって血清111の上面114を検出することに加えて、照射部21とフォトダイオード22とからなる光検出系を用いて、フォトダイオード22が取得する透過光量によって血餅113と分離剤112との境界面116を検知する。その上で、上面114と境界面116とから血清111の高さおよび容量を計測する。 As described above, in the first embodiment of the sample test automation system and the biological sample check method of the present invention, the container 221 is imaged by the camera 221, and the type of the container 101 and the container 101 are measured by the container information identification unit 19d1. The type of plug 102 is identified. Then, the detection mechanism 12 is moved downward, the timing at which the capacitance sensor 31 reaches the bottom of the plug 102 is specified from the specified type information of the plug 102, and the power supply 64 of the sensor is turned on from this timing. The upper surface 114 of the serum 111 is detected by the capacitance sensor 31. Further, in addition to the detection of the upper surface 114 of the serum 111 by the capacitance sensor 31, the blood clot 113 is detected by the transmitted light amount acquired by the photodiode 22 using a light detection system including the irradiation unit 21 and the photodiode 22. The interface 116 between the and the separating agent 112 is detected. Then, the height and volume of serum 111 are measured from the upper surface 114 and the interface 116.
 よって、自動分析装置に投入する検体の前処理を実施する装置において、容器101内がバーコードラベルで内部が見えない状態であっても、ユーザが予め意識をすることなく容器101を投入したとしても容器101内の検体における血清111の容量を精度よく測定することができ、1度の走査のみで、測定対象物の高さ、ひいては容量を算出できるようになり、従来より素早く容量情報を取得することができる。従って、ユーザのマニュアル作業の低減を図ることができるとともに、生体試料の容量に関する情報が得られることで、測定項目の優先順位づけが可能となり、処理順序の最適化が図ることができる。よって、患者の負担の軽減と処理結果の報告の遅延防止を達成できる検体検査自動化システムおよび生体試料のチェック方法が提供される。さらに、再採血の指示を必要に応じて迅速に出せるため、患者の負担の軽減と処理結果の報告の遅延防止に貢献する。これに付随して作業者の接触に伴う感染の可能性を低減することができる。 Therefore, in the apparatus for performing the pretreatment of the sample to be input into the automatic analyzer, even if the inside of the container 101 is not visible with a bar code label, it is assumed that the container 101 has been inserted without the user being aware in advance. Also, the volume of the serum 111 in the sample in the container 101 can be measured with high accuracy, and the height of the measurement object and hence the volume can be calculated with only one scan, and volume information can be acquired more quickly than in the past. can do. Therefore, while being able to aim at reduction of a manual operation of a user, the information regarding the capacity | capacitance of a biological sample is obtained, the prioritization of measurement items becomes possible, and the optimization of a processing order can be achieved. Therefore, a sample test automation system and a method of checking a biological sample can be provided which can achieve reduction of burden on the patient and prevention of delay in reporting of the processing result. Furthermore, it can contribute to reduction of burden on patients and prevention of delay in reporting of treatment results because instructions for re-bleeding can be issued promptly as needed. In conjunction with this, the possibility of infection associated with worker contact can be reduced.
 更に、静電容量センサ31、照射部21およびフォトダイオード22が、容器101内に収容された生体試料の幅に応じた間隔で配置されたことで、静電容量のセンサ31による検出が終了した後、すぐに境界面116が検出されるような状況となり、照射部21による走査時間を短縮でき、如いては処理能力の向上に繋がる。 Furthermore, the capacitance sensor 31, the irradiation unit 21, and the photodiode 22 are disposed at intervals according to the width of the biological sample housed in the container 101, whereby the detection of the capacitance by the sensor 31 is completed. After that, the boundary surface 116 is immediately detected, and the scanning time by the irradiation unit 21 can be shortened, which leads to the improvement of the processing capacity.
 なお、再検査依頼の場合や、ユーザによる判断を優先させる場合など、生体試料チェックモジュール203aにおける測定が不要な場合は、制御用パソコン210の指示等に従い、ホルダ4を追い越しライン2cに搬送することで測定をせずに処理することができる。 If measurement by the biological sample check module 203a is unnecessary, such as when a reinspection request is made or when the user's judgment is prioritized, the holder 4 is transported to the overtaking line 2c according to the instruction of the control PC 210, etc. Can be processed without measurement.
 照射部21における赤外光の照射方向23は、図6に示した方向と逆でもよい。 The irradiation direction 23 of the infrared light in the irradiation part 21 may be reverse to the direction shown in FIG.
 <第2の実施形態> 
 本発明の検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法の第2の実施形態を図10を用いて説明する。
  第2の実施形態における検体検査自動化システムは、投入モジュールおよび生体試料チェックモジュール以外の構成は第1の実施形態の検体検査自動化システムおよびと略同じであり、詳細は省略する。
  図10は本発明の第2の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。
Second Embodiment
A second embodiment of the sample test automation system, the volume check module, and the biological sample check method of the present invention will be described with reference to FIG.
The configuration of the sample test automation system according to the second embodiment is substantially the same as that of the sample test automation system according to the first embodiment except for the input module and the biological sample check module, and the details will be omitted.
FIG. 10 is a view schematically showing a module having a function of measuring the volume of a biological sample in the sample test automation system according to the second embodiment of the present invention.
 図10に示すように、本発明の検体検査自動化システムの第2の実施形態は、投入モジュール201ではなく、生体試料チェックモジュール(容量チェックモジュール)203bがカメラ221bを備えている。 As shown in FIG. 10, in the second embodiment of the sample test automation system of the present invention, the biological sample check module (capacity check module) 203b, not the input module 201, is provided with a camera 221b.
 本実施形態の生体試料チェックモジュール203bを備えた検体検査自動化システムでは、容器101が生体試料チェックモジュール203b内に立ち寄ると、まずカメラ221bにて、容器102の形状を把握する。
  具体的には、まず、カメラ221の撮影により容器101の外径を撮像し、解析演算部19dの容器情報特定部19d1において容器101の種別を認識する。この認識の方法には、第1の実施形態と同様に、例えば、予め使用する容器を撮影したデータベースを備え、撮像した画像とマッチングを行う方法などがある。その後、容器情報特定部19d1において容器101の種類を認識することにより、容器の101の径、栓102の種類、栓102の底の位置を特定する。これらの情報は、静電容量センサ31の電源64をONにする位置や、血清111の容量を算出する際の情報として用いられる。これ以降の動作は、第1の実施形態と略同じである。
In the sample inspection automation system provided with the biological sample check module 203b of the present embodiment, when the container 101 stops in the biological sample check module 203b, first, the camera 221b grasps the shape of the container 102.
Specifically, first, the outside diameter of the container 101 is imaged by photographing with the camera 221, and the type of the container 101 is recognized in the container information identification unit 19d1 of the analysis operation unit 19d. Similar to the first embodiment, the method of recognition includes, for example, a method of preparing a database in which a container to be used is photographed in advance and performing matching with the photographed image. Thereafter, by recognizing the type of the container 101 in the container information identification unit 19d1, the diameter of the container 101, the type of the stopper 102, and the position of the bottom of the stopper 102 are identified. These pieces of information are used as information for calculating the position at which the power supply 64 of the capacitance sensor 31 is turned on and the volume of the serum 111. The subsequent operation is substantially the same as that of the first embodiment.
 本発明の検体検査自動化システムおよび生体試料のチェック方法の第2の実施形態においても、前述した検体検査自動化システムおよび生体試料のチェック方法の第1の実施形態とほぼ同様な効果が得られる。 Also in the second embodiment of the sample test automation system and the biological sample check method of the present invention, substantially the same effects as the first embodiment of the sample test automation system and the biological sample check method described above can be obtained.
 また、容量チェックモジュール単体で採血管内の試料の状態を把握することが可能であり、既存の検体前処理システムに追加するのに好適なモジュールとすることができる。 In addition, it is possible to grasp the state of the sample in the blood collection tube by the volume check module alone, and it can be made a module suitable for adding to the existing sample pretreatment system.
 更に、本実施形態の容量チェックモジュールは、自動分析装置211の試薬保冷庫に保管されている試薬容器内の試薬の残量測定にも適用できる。
  試薬保冷庫に保管される試薬は、通常、遮光目的のため有色の容器に入れて運用されているため、残量の目視確認はできない。
  しかし、本実施形態のような容量チェックモジュールを自動分析装置211の試薬保冷庫やその付近に備えることで、試薬の容量の目視確認ができない状況でも、試薬容器内の試薬の残量のチェックが可能となる。
Furthermore, the capacity check module of the present embodiment can be applied to measurement of the remaining amount of the reagent in the reagent container stored in the reagent storage of the automatic analyzer 211.
Reagents The reagents stored in the reagent cooler are usually placed in a colored container for light shielding purposes and can not be visually checked for the remaining amount.
However, by providing the capacity check module as in this embodiment in the reagent storage compartment of the automatic analyzer 211 or in the vicinity thereof, even in a situation where visual confirmation of the reagent volume can not be performed, the check of the remaining amount of the reagent in the reagent container is performed. It becomes possible.
 <第3の実施形態> 
 本発明の検体検査自動化システムおよび生体試料のチェック方法の第3の実施形態を図11を用いて説明する。
  第3の実施形態における検体検査自動化システムは、生体試料チェックモジュールおよび分注モジュール以外の構成は第1の実施形態の検体検査自動化システムおよびと略同じであり、詳細は省略する。
  図11は本発明の第3の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。
Third Embodiment
A third embodiment of the sample test automation system and the biological sample check method of the present invention will be described with reference to FIG.
The configuration of the sample test automation system in the third embodiment is substantially the same as that of the sample test automation system in the first embodiment except for the biological sample check module and the dispensing module, and the details will be omitted.
FIG. 11 is a schematic view of a module having a function of measuring the volume of a biological sample in the specimen test automation system according to the third embodiment of the present invention.
 図11に示すように、本発明の検体検査自動化システムの第3の実施形態の生体試料チェックモジュール203cは、生体試料容量測定機器1等に加えて、バッファライン2bを挟んでカメラ5および遮光板6とが対向して配置されている。 As shown in FIG. 11, the biological sample check module 203c of the third embodiment of the sample test automation system of the present invention is added to the biological sample capacitance measuring device 1 etc., with the camera 5 and the light shielding plate sandwiching the buffer line 2b. 6 are disposed to face each other.
 カメラ5は、遮光板6の前に位置する容器101を撮像する。 The camera 5 picks up an image of the container 101 located in front of the light shielding plate 6.
 遮光板6は、カメラ5による撮像の際にバラツキ無く色情報を取得するために、背景を均一にすることを目的として、バッファライン2bを挟んだカメラ5に対向する位置に配置されている。 The light shielding plate 6 is disposed at a position facing the camera 5 across the buffer line 2 b for the purpose of making the background uniform in order to acquire color information without variation when imaging with the camera 5.
 更に、解析演算部19dは、データ解析部19d3を有している。このデータ解析部19d3は、カメラ5で撮像された撮像画像に基づいて、容器101内に収容された生体試料の色を判別する。主には、血清111の色情報を求める。また、データ解析部19d3は、カメラ5で撮像された撮像画像から、試料の各成分の高さ、主には血清111の高さを求め、生体試料容量測定機器1で計測した血清111の高さ情報と比較する。データ解析部19d3で求めた高さ情報と生体試料容器測定機器1で計測した血清111の高さ情報とに所定以上の相違が生じたときは、生体試料容器測定機器1での計測結果を優先する。 Furthermore, the analysis operation unit 19d has a data analysis unit 19d3. The data analysis unit 19 d 3 determines the color of the biological sample contained in the container 101 based on the image captured by the camera 5. Mainly, color information of serum 111 is requested. In addition, the data analysis unit 19d3 determines the height of each component of the sample, mainly the height of the serum 111, from the image captured by the camera 5, and the height of the serum 111 measured by the biological sample capacity measuring device 1 Compare with the information. If the height information obtained by the data analysis unit 19d3 and the height information of the serum 111 measured by the biological sample container measuring device 1 differ from each other by a predetermined amount or more, the measurement result in the biological sample container measuring device 1 is prioritized Do.
 更に、分注モジュール206は、容量演算部19d2において演算された試料の容量に関する情報と、データ解析部19d3において判別された試料の色に関する情報との少なくともいずれか一方の情報を用いて、容器101内の試料を小分けする。 Furthermore, the dispensing module 206 uses the information on the sample volume calculated in the volume calculator 19d2 and / or the information on the color of the sample determined in the data analyzer 19d3 to use the container 101. Divide the sample inside.
 本実施形態の生体試料チェックモジュール203cを備えた検体検査自動化システムでは、容器101が生体試料チェックモジュール203cに搬送されると、最初に、遮光板6前に容器1を保持するホルダ4が停止する。次いで、カメラ5によって容器101の撮影を行い、撮像画像データを通信線18を介して解析演算部19dのデータ解析部19d3に送信するとともに、この撮像画像データをデータ記憶部19bにおいて記憶する。 In the sample inspection automation system provided with the biological sample check module 203c of the present embodiment, when the container 101 is transported to the biological sample check module 203c, first, the holder 4 holding the container 1 in front of the light shielding plate 6 stops. . Next, the container 5 is photographed by the camera 5, and the photographed image data is transmitted to the data analysis unit 19d3 of the analysis operation unit 19d via the communication line 18, and the photographed image data is stored in the data storage unit 19b.
 データ解析部19d3では、送信された撮像画像データを基にして、容器101内の生体試料の色情報を取得する。
  血清111の容量は、上述したように、生体試料容量測定機器1における各測定と容量演算部19d2の処理によって求める。
The data analysis unit 19 d 3 acquires color information of the biological sample in the container 101 based on the transmitted captured image data.
As described above, the volume of the serum 111 is determined by each measurement in the biological sample volume measuring device 1 and the processing of the volume calculator 19 d 2.
 データ解析部19d3で求めたこの色情報は、データ記憶部19d2で記憶するとともに、制御用パソコン210に送信され、分注モジュール206における検体の小分けのスケジュールに利用する。
  例えば、生体試料が血液で赤みがある場合は、溶血の可能性を示唆し、フラグ処理や溶血度合に依存しない項目を優先的に分析する等の使い方をする。また、溶血の度合が強い場合はアラーム等でユーザに知らせることで、より迅速に患者への再採血の指示をする。
The color information obtained by the data analysis unit 19 d 3 is stored in the data storage unit 19 d 2 and transmitted to the control personal computer 210, and is used for the division of the sample in the dispensing module 206.
For example, if the biological sample is blood and reddish, it indicates the possibility of hemolysis, and it is used in such a way as to give priority to flag processing and items not dependent on the degree of hemolysis. In addition, when the degree of hemolysis is strong, the user can instruct the patient to redraw blood more quickly by notifying the user with an alarm or the like.
 また、データ解析部19d3では、取得した色情報を基にして、対象領域(血清111)の高さを求める。更に、この求めた高さ情報と生体試料容量測定機器1で計測した血清111の高さ情報と比較する。 Further, the data analysis unit 19d3 obtains the height of the target area (serum 111) based on the acquired color information. Further, the obtained height information is compared with the height information of the serum 111 measured by the biological sample volume measuring device 1.
 本発明の検体検査自動化システムおよび生体試料のチェック方法の第3の実施形態においても、前述した検体検査自動化システムおよび生体試料のチェック方法の第1の実施形態とほぼ同様な効果が得られる。 Also in the third embodiment of the sample test automation system and the biological sample check method of the present invention, substantially the same effects as in the first embodiment of the sample test automation system and the biological sample check method described above can be obtained.
 これに加えて、本実施形態では、モジュール203cに付属のカメラ5で撮影した画像から色情報を取得することで、血清111の状態に関する情報を取得することが可能となる。このため、もし血清に問題があるときは、問題に依存しない検査項目を分析したり、再採血を実施するようアラームなどでユーザに知らせたりすることが可能となり、生体試料や試薬の無駄な損失の防止や患者への負担低減を実現することができる。また、色情報と容量の両情報を一つのモジュール203cで取得できるようになり、コスト低減が図られる。 In addition to this, in the present embodiment, by acquiring color information from an image captured by the camera 5 attached to the module 203c, it is possible to acquire information on the state of the serum 111. Therefore, if there is a problem with serum, it is possible to analyze the test item not depending on the problem or to notify the user by an alarm etc. to carry out re-bleeding, and the waste of biological sample or reagent is wasted. Can be implemented to reduce the burden on patients. Further, both the color information and the capacity information can be acquired by one module 203c, and the cost can be reduced.
 また、データ解析部19d3において、カメラ5で撮像された撮像画像から試料の各成分の高さを求めることにより、生体試料容量測定機器1で計測した血清111の高さ情報と比較することができ、二重のチェックの役割を果たし、より信頼性の高い容量の算出処理が可能となる。 Further, by obtaining the height of each component of the sample from the image captured by the camera 5 in the data analysis unit 19d3, it can be compared with the height information of the serum 111 measured by the biological sample capacitance measuring device 1 It plays a double check role, and more reliable capacity calculation processing becomes possible.
 なお、本実施形態のように容器101を撮像するカメラ5を備えている場合は、このカメラ5が容器101の栓102の形状を認識する際のカメラ221,221bを兼ねるように構成することができる。これにより、撮像機構を減らすことができ、装置の小型化、低価格化を実現することが可能となる。 In the case where the camera 5 for imaging the container 101 is provided as in the present embodiment, the camera 5 may be configured to also serve as the camera 221 and 221 b when recognizing the shape of the stopper 102 of the container 101. it can. As a result, the imaging mechanism can be reduced, and downsizing and cost reduction of the apparatus can be realized.
 <第4の実施形態> 
 本発明の検体検査自動化システムおよび生体試料のチェック方法の第4の実施形態を説明する。本発明の検体検査自動化システムおよび生体試料のチェック方法は、ホルダ4の代わりに、図12に示すようなラック72を使用する検体検査自動化システムや自動分析装置に対しても採用可能である。以下、5本の検体容器101を搬送するラック72を使用するシステムの例を用いて説明する。
  図12は本発明の第4の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。
Fourth Embodiment
A fourth embodiment of the sample test automation system and the biological sample check method of the present invention will be described. The sample test automation system and the biological sample check method of the present invention can also be adopted for a sample test automation system and an automatic analyzer that use a rack 72 as shown in FIG. 12 instead of the holder 4. The following description will be made using an example of a system that uses a rack 72 for transporting five sample containers 101.
FIG. 12 is a schematic view of a module having a function of measuring the volume of a biological sample in the specimen test automation system according to the fourth embodiment of the present invention.
 ホルダ4と異なり、ラック72では、容器101の全体がラック72の孔に入っている。このため、生体試料容量測定機器1による容量計測のために、持上げ機構71を備えている。この持上げ機構71の各動作の制御は、制御部19aで行う。具体的には、持上げ機構71によって容器101を掴んだのち、容器101の底辺がラック72より高くなるまで矢印73方向に持上げ機構71を上昇させ、停止させる。その後、停止した状態において、第1の実施形態と同様に、生体試料容量測定機器1による容量計測を行う。 Unlike the holder 4, in the rack 72, the entire container 101 is in the hole of the rack 72. For this reason, in order to measure the volume by the biological sample volume measuring device 1, a lifting mechanism 71 is provided. Control of each operation of the lifting mechanism 71 is performed by the control unit 19a. Specifically, after the container 101 is gripped by the lifting mechanism 71, the lifting mechanism 71 is raised and stopped in the direction of the arrow 73 until the bottom of the container 101 becomes higher than the rack 72. After that, in the stopped state, the capacity measurement by the biological sample capacity measuring device 1 is performed as in the first embodiment.
 本発明の検体検査自動化システムおよび生体試料のチェック方法の第4の実施形態においても、前述した検体検査自動化システムおよび生体試料のチェック方法の第1の実施形態とほぼ同様な効果が得られる。 Also in the fourth embodiment of the sample test automation system and the biological sample check method of the present invention, substantially the same effect as the first embodiment of the sample test automation system and the biological sample check method described above can be obtained.
 <その他> 
 なお、本発明は上記の実施形態に限られず、種々の変形、応用が可能なものである。上述の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Others>
The present invention is not limited to the above embodiment, and various modifications and applications are possible. The above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
 例えば、上述の実施形態では、チェックの対象を遠心済みで3層に分離した検体を前提として説明したが、未遠心の血液106にも本実施形態の検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法は適用が可能である。
  この場合、上述した図4に示すように、全血117と下に沈んだ分離剤112の2層構造となり、血餅113が存在しない構造となる。このため、透過光量が低くならずh2が検出されない状況、あるいは血餅113を探して走査し続けて赤外光23がホルダ4の背の高さにまで下降し、この背が透過を遮ることにより、ホルダ4の背を血餅113と誤検知し、より低い値のh2を検出する状況となる。
  これらに対応するために、h2に対するしきい値(例えば、h2min)を予め設けておき、h2<h2minとなった場合、あるいは、h2が見つからなかった場合、一律、未遠心検体とみなすよう制御部19a、信号量取得部19cおよび解析演算部19dを設定しておく。
  また、解析演算部19dの容量演算部19d2におけるデータ解析においては、h1-分離剤の高さ、を全血117の高さとする。そして容器情報特定部19d1において特定した容器101の径に関する情報を用いることで、具体的な体積値として、全血117の容量を算出する。
For example, in the above-mentioned embodiment, although the target of the check was described on the assumption that the sample was centrifuged and separated into three layers, the sample test automation system, the volume check module and the biological sample of the present embodiment The check method of is applicable.
In this case, as shown in FIG. 4 described above, it has a two-layer structure of whole blood 117 and separating agent 112 sunk downward, so that blood clot 113 does not exist. For this reason, the amount of transmitted light does not decrease and h2 is not detected, or the infrared light 23 descends to the height of the back of the holder 4 by continuing searching for the blood clot 113 and this back interrupts transmission. As a result, the back of the holder 4 is erroneously detected as the blood clot 113, and a lower value h2 is detected.
In order to cope with these, a threshold value (for example, h2 min) for h2 is provided in advance, and when h2 <h2 min or h2 is not found, the control unit is uniformly regarded as an uncentrifugal sample 19a, a signal amount acquisition unit 19c, and an analysis operation unit 19d are set.
Further, in the data analysis in the volume operation unit 19d2 of the analysis operation unit 19d, the height of the h1-separating agent is taken as the height of the whole blood 117. Then, the volume of the whole blood 117 is calculated as a specific volume value by using the information on the diameter of the container 101 specified in the container information specifying unit 19d1.
 更に、分離剤の無い容器が混在した場合にも、本実施形態の検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法は適用することができる。
以下説明する。
Furthermore, even when the container without the separating agent is mixed, the sample test automation system, the volume check module and the biological sample check method of the present embodiment can be applied.
It will be described below.
 容器101の種類には、分離剤の無いものが存在し、検体前処理システム200には、分離剤のある容器と無い容器とが混在した状態で搬送される。 The types of containers 101 include those without a separating agent, and the sample pretreatment system 200 is transported in a mixed state of a container with a separating agent and a container without a separating agent.
 分離剤の無い容器では、検体は、遠心分離済みの場合は血漿と血餅の2層構造、あるいは未遠心の場合は全血の1層となっている。 In the container without separation agent, the sample has a two-layer structure of plasma and clot when centrifuged, or one layer of whole blood when not centrifuged.
 そのため、遠心分離済みの場合は、静電容量センサ31で血漿の上面を検出してh1と求め、光検出系で血漿と血餅との境界を検出してh2を求める。 Therefore, when centrifugation has been completed, the upper surface of the plasma is detected by the capacitance sensor 31 to obtain h1 and the boundary between the plasma and the blood clot is detected by the light detection system to obtain h2.
 未遠心の場合は、静電容量センサ31で全血の上面を検出してh1とするが、境界面が存在しないために光検出系による境界面検出は不可能である。 In the case of non-centrifugation, the upper surface of whole blood is detected by the capacitance sensor 31 to be h1, but the boundary surface detection by the light detection system is impossible because there is no boundary surface.
 しかし、投入モジュール201等のカメラ221や容器情報特定部19d1において、投入された容器101の種類は特定できる。また、分離剤の有無は容器の種類で決まっているため、種類が特定できれば分離剤の有無がわかる。 However, in the camera 221 such as the input module 201 or the like and the container information specification unit 19d1, the type of the inserted container 101 can be specified. Further, since the presence or absence of the separating agent is determined by the type of the container, if the type can be specified, the presence or absence of the separating agent is known.
 そこで、分離剤が無い容器と判明した場合は、分離剤の高さを0に置き換えた上で、遠心分離済みに対しては、h1-h2-分離剤の高さ(=0)、を算出する。また、未遠心に対しては、h1-分離剤の高さ(=0)、を算出する。こうすることにより、分離剤の有無に関わらず第1の実施形態と同様のアルゴリズムで対象物の高さを測定することが可能となる。 Therefore, if it is determined that the container does not have a separating agent, replace the height of the separating agent with 0 and calculate the height of h1-h2-separating agent (= 0) for centrifugal separation. Do. Also, for uncentrifugation, calculate the height of h 1-separating agent (= 0). This makes it possible to measure the height of the object with the same algorithm as in the first embodiment regardless of the presence or absence of the separating agent.
 このように、容器情報の特定から、分離剤の有無を判別することで、分離剤の無い条件下でも、同様の測定方法で対応することが可能であり、分離剤のある容器と無い容器とが混在しても対応でき、非常に汎用性が高いシステムとなる。 Thus, by identifying the presence or absence of the separating agent from the specification of the container information, it is possible to cope with the same measuring method even under conditions without the separating agent, and the container with and without the separating agent It is possible to cope with the coexistence, and it becomes a highly versatile system.
 また、制御部19aや信号量取得部19b、データ記憶部19c、解析演算部19d(容器情報特定部19d1、容量演算部19d2、データ解析部19d3)が制御用パソコン210と別体の例を説明したが、これらは制御用パソコン210の内部に設けることができる。 In addition, the control unit 19a, the signal amount acquisition unit 19b, the data storage unit 19c, and the analysis operation unit 19d (the container information identification unit 19d1, the capacity operation unit 19d2, the data analysis unit 19d3) explain an example separate from the control PC 210. However, these can be provided inside the control personal computer 210.
 また、静電容量センサ31によって上面114を検出することに加えて、光検出系を用いて境界面116を検知し、上面114と境界面116とから血清111の高さおよび容量を計測する対応について説明したが、光検出系による境界面116の検知を行わずに、上面114の情報から血清111の容量を求めてもよい。 Further, in addition to the detection of the upper surface 114 by the capacitance sensor 31, the boundary surface 116 is detected using a light detection system, and the height and volume of the serum 111 are measured from the upper surface 114 and the boundary surface 116 However, the volume of the serum 111 may be determined from the information on the upper surface 114 without detecting the interface 116 by the light detection system.
 この場合、容器情報特定部19d1において、容器101内の分離剤112の有り無し、容器101の径に関する情報は特定できる。また、容器101に採取される血液量は容器101毎に大きな違いはなくほぼ同量であること、その血液量における固層(例えば血餅113の量、高さ)についてもある程度は把握することができる。従って、静電容量センサ31によって上面114を検出することによって、これらの情報を基にすることで容器101内の液量(例えば血清111の容量)をある程度の精度で把握することができる。 In this case, the container information identification unit 19d1 can identify the presence or absence of the separating agent 112 in the container 101, and information on the diameter of the container 101. In addition, the amount of blood collected in the container 101 is substantially the same without being largely different for each container 101, and the solid layer (for example, the amount and height of the blood clot 113) in the blood amount should be grasped to some extent Can. Therefore, by detecting the upper surface 114 by the capacitance sensor 31, the amount of liquid in the container 101 (for example, the volume of the serum 111) can be grasped with a certain degree of accuracy by using these pieces of information.
1…生体試料容量測定機器、
2…搬送ライン、
2a…搬出ライン、
2b…バッファライン、
2c…追い越しライン、
2d…主要ライン、
3…搬送方向、
4…ホルダ、
5…カメラ、
6…遮光板、
7…測定位置、
11…モータ、
12…検知機構、
13…矢印(機構版の稼働方向を示す矢印)、
14…背板、
15a…ステージ、
15b…ステージ、
17…回転棒、
18…通信線、
19a…制御部、
19b…信号量取得部、
19c…データ記憶部、
19d…解析演算部、
19d1…容器情報特定部、
19d2…容量演算部、
19d3…データ解析部、
21…照射部、
22…フォトダイオード、
23…赤外光、
31…静電容量センサ、
41…開始、
42…検知機構降下、
43…静電容量センサの状態、
46…検知機構一時停止、
47…位置(高さh1)記録、
48…赤外光照射開始、
49…検知機構下降、
50…フォトダイオードの値がしきい値以下か、
53…赤外光照射停止、
54…位置(高さh2)記録、
55…検知機構初期位置へ戻る、
56…終了、
61…位置を表す軸、
62a,62b,62c,62d…OFFからONへの切替え、
63a,63b,63c,63d…ONからOFFへの切替え、
64…静電センサの電源の状態、
65…静電センサの出力、
66…照射部(LED(赤外光)源)の電源の状態、
67…フォトダイオードの出力、
68…栓の底の位置、
71…持上げ機構、
72…ラック、
73…矢印、
101…容器(採血管)、
102…栓、
103…バーコード、
104…バーコードが側面に被覆された容器、
105…バーコードが全側面被覆された容器、
106…未遠心検体、
111…血清、
112…分離剤、
113…血餅、
114…血清上面、
115…境界面、
116…境界面、
117…全血検体、
200…検体前処理システム、
201…投入モジュール、
202…遠心分離モジュール、
203a,203b,203c…生体試料チェックモジュール、
204…開栓モジュール、
205…ラベラ、
206…分注モジュール、
207…閉栓モジュール、
208…分類モジュール、
209…収納モジュール、
210…制御用パソコン、
211…自動分析装置、
221,221b…カメラ(容器情報取得部)。
1 ... Biological sample capacity measuring device,
2 ... Transport line,
2a ... unloading line,
2b: Buffer line,
2c ... overtaking line,
2d ... main line,
3 ... Transport direction,
4 ... holder,
5 ... Camera,
6 ... shading plate,
7 ... Measurement position,
11: Motor,
12 ... detection mechanism,
13 ... arrow (arrow indicating the operating direction of the mechanical version),
14 ... backboard,
15a ... stage,
15b ... stage,
17 ... rotating rod,
18 ... communication line,
19a ... control unit,
19b: Signal amount acquisition unit,
19c ... data storage unit,
19d ... analysis operation unit,
19d1 ... container information identification unit,
19d2 ... capacity calculation unit,
19d3 ... data analysis unit,
21: Irradiator,
22 ... photodiode,
23 ... infrared light,
31 ... Capacitance sensor,
41 ... start,
42 ... detection mechanism descent,
43 ... State of capacitance sensor,
46 ... detection mechanism pause,
47 ... position (height h1) recording,
48 ... Infrared light irradiation start,
49 ... descent of detection mechanism,
50 ... The value of the photodiode is below the threshold
53 ... Infrared light irradiation stop,
54 ... position (height h2) recording,
55 ... return to detection mechanism initial position,
56 ... end,
61 ... axis representing position,
62a, 62b, 62c, 62d ... switching from OFF to ON,
63a, 63b, 63c, 63d ... switching from ON to OFF,
64 ... State of power supply of electrostatic sensor,
65 ... output of electrostatic sensor,
66 State of power supply of irradiation unit (LED (infrared light) source)
67 ... output of photodiode,
68 ... position of the bottom of the stopper,
71 ... lifting mechanism,
72 ... rack,
73 ... arrow,
101 ... container (blood collection tube),
102 ... stopper,
103 ... bar code,
104 ... a container whose side is coated with a barcode,
105 ... A container in which the barcode is coated on all sides,
106 ... not centrifuged sample,
111 ... serum,
112 ... separation agent,
113 ... blood clot,
114 ... top of serum,
115: interface,
116 ... interface,
117 ... Whole blood sample,
200 ... sample pretreatment system,
201 ... input module,
202 ... centrifuge module,
203a, 203b, 203c ... biological sample check module,
204 ... opening module,
205 ... Labeler,
206 ... dispensing module,
207 ... closing module,
208 ... classification module,
209 ... storage module,
210 ... PC for control,
211: Automatic analyzer,
221, 221 b: Camera (container information acquisition unit).

Claims (15)

  1.  容器に収容された生体試料のチェックを行う検体検査自動化システムであって、
     前記容器内の試料の上面を非接触の静電容量方式によって検出する計測部と、
     この計測部を前記容器に対して上下動させる移動部と、
     前記移動部によって前記計測部を前記容器に対して上下動させながら、前記容器内の試料の上面を検出するよう制御する制御部とを備えた
     ことを特徴とする検体検査自動化システム。
    A sample test automation system for checking a biological sample stored in a container, comprising:
    A measurement unit that detects the upper surface of the sample in the container by a noncontact capacitance method;
    A moving unit for moving the measuring unit up and down with respect to the container;
    And a control unit configured to control to detect the upper surface of the sample in the container while moving the measurement unit up and down with respect to the container by the moving unit.
  2.  請求項1に記載の検体検査自動化システムにおいて、
     この検体検査自動化システム内に投入された前記容器の種類、前記容器の栓種類を特定する特定部と、
     この特定部によって特定された容器種類に関する情報から前記容器径および分離剤の有無を特定して、この特定結果と前記計測部で検出した前記容器内の試料の上面に関する情報とから前記容器内の試料の容量を演算する演算部とを備え、
     前記制御部は、前記移動部によって前記計測部を前記容器に対して上下動させながら、前記特定部によって特定された前記栓種類に関する情報に応じて前記容器内の試料の上面を検出するよう制御する
     ことを特徴とする検体検査自動化システム。
    In the sample test automation system according to claim 1,
    An identifying unit that identifies the type of the container inserted into the sample test automation system and the type of plug of the container;
    The container diameter and the presence or absence of the separating agent are identified from the information on the container type identified by the identification unit, and the information in the container is identified from the identification result and the information on the upper surface of the sample in the container detected by the measuring unit. And an operation unit for calculating the volume of the sample
    The control unit is controlled to detect the upper surface of the sample in the container according to the information on the type of plug specified by the specifying unit while moving the measurement unit up and down with respect to the container by the moving unit. A sample test automation system characterized by:
  3.  請求項2に記載の検体検査自動化システムにおいて、
     前記容器の側面に対して光を照射する照射部と、
     前記容器を通過した透過光の量を測定する受光部とを備え、
     前記移動部は、前記照射部および前記受光部を、前記計測部とともに前記容器に対して上下動させ、
     前記演算部は、前記受光部で測定した前記透過光の量に基づき、前記容器内の試料の固液分離面を求め、この求めた固液分離面と、前記容器径および分離剤の有無の特定結果と、前記計測部で検出した前記容器内の試料の上面に関する情報とから前記容器内の試料の容量を演算する
     ことを特徴とする検体検査自動化システム。
    In the sample test automation system according to claim 2,
    An irradiation unit that irradiates light to the side surface of the container;
    A light receiving unit that measures the amount of transmitted light that has passed through the container;
    The moving unit moves the irradiating unit and the light receiving unit up and down with the measuring unit with respect to the container.
    The calculation unit determines the solid-liquid separation surface of the sample in the container based on the amount of the transmitted light measured by the light receiving unit, and the calculated solid-liquid separation surface, the container diameter, and the presence or absence of the separation agent A sample test automation system, which calculates the volume of a sample in the container from the identification result and the information on the upper surface of the sample in the container detected by the measurement unit.
  4.  請求項2に記載の検体検査自動化システムにおいて、
     前記計測部、前記照射部および前記受光部とが、前記容器内に収容された生体試料の幅に応じた間隔で配置された
     ことを特徴とする検体検査自動化システム。
    In the sample test automation system according to claim 2,
    The sample inspection automation system, wherein the measurement unit, the irradiation unit, and the light receiving unit are arranged at intervals according to the width of the biological sample housed in the container.
  5.  請求項2に記載の検体検査自動化システムにおいて、
     遮光板と、
     この遮光板の前に位置する前記容器を撮像する撮像部と、
     この撮像部で撮像された撮像画像に基づいて、前記容器内の前記試料の色を判別するデータ解析部とを更に備えた
     ことを特徴とする検体検査自動化システム。
    In the sample test automation system according to claim 2,
    A light shield,
    An imaging unit for imaging the container located in front of the light shielding plate;
    And a data analysis unit that determines the color of the sample in the container based on a captured image captured by the imaging unit.
  6.  請求項5に記載の検体検査自動化システムにおいて、
     前記データ解析部は、更に、前記撮像部で撮像された前記撮像画像から、前記試料の各成分の高さを求める
     ことを特徴とする検体検査自動化システム。
    In the sample test automation system according to claim 5,
    The sample inspection automation system, wherein the data analysis unit further determines the height of each component of the sample from the captured image captured by the imaging unit.
  7.  請求項5に記載の検体検査自動化システムにおいて、
     前記演算部において演算された前記試料の容量と前記データ解析部において判別された前記試料の色に関する情報との少なくともいずれか一方を用いて、前記容器内の試料を小分けする分注モジュールを更に備えた
     ことを特徴とする検体検査自動化システム。
    In the sample test automation system according to claim 5,
    The system further comprises a dispensing module for dividing the sample in the container using at least one of the volume of the sample calculated in the calculation unit and the information on the color of the sample determined in the data analysis unit. A sample test automation system characterized by
  8.  容器に収容された試料または試薬のチェックを行う容量チェックモジュールであって、
     前記容器内の試料または試薬の上面を非接触の静電容量方式によって検出する計測部と、
     この計測部を前記容器に対して上下動させる移動部と、
     前記移動部によって前記計測部を前記容器に対して上下動させながら、前記容器内の試料または試薬の上面を検出するよう制御する制御部とを備えた
     ことを特徴とする容量チェックモジュール。
    A volume check module for checking a sample or reagent contained in a container, comprising:
    A measurement unit that detects the upper surface of the sample or reagent in the container by a noncontact capacitance method;
    A moving unit for moving the measuring unit up and down with respect to the container;
    A control unit configured to control to detect an upper surface of a sample or a reagent in the container while moving the measurement unit up and down with respect to the container by the moving unit.
  9.  請求項8に記載の容量チェックモジュールにおいて、
     この容量チェックモジュール内に搬送された前記容器の種類、前記容器の栓種類を特定する特定部と、
     この特定部によって特定された容器種類から前記容器径および分離剤の有無を特定して、この特定結果と前記計測部で検出した前記容器内の試料または試薬の上面に関する情報とから前記容器内の試料または試薬の容量を演算する演算部とを備え、
     前記制御部は、前記移動部によって前記計測部を前記容器に対して上下動させながら、前記特定部によって特定された前記栓種類に関する情報に応じて前記容器内の試料または試薬の上面を検出するよう制御する
     ことを特徴とする容量チェックモジュール。
    In the capacity check module according to claim 8,
    A specification unit that specifies the type of the container transported into the capacity check module and the type of plug of the container;
    The container diameter and the presence or absence of the separating agent are specified from the container type specified by the specifying unit, and the inside of the container is determined from the specification result and the information on the upper surface of the sample or reagent in the container detected by the measuring unit. And an operation unit for calculating the volume of the sample or reagent,
    The control unit detects the upper surface of the sample or the reagent in the container according to the information on the type of plug specified by the specifying unit while moving the measurement unit up and down with respect to the container by the moving unit. A capacity check module characterized by controlling.
  10.  容器に収容された生体試料のチェック方法であって、
     非接触の静電容量方式の計測部を前記容器に対して上下動させることで前記容器内の試料の上面を検出する検出工程を具備する
     ことを特徴とする生体試料のチェック方法。
    A method of checking a biological sample contained in a container, the method comprising:
    A method of checking a biological sample, comprising a detection step of detecting an upper surface of a sample in the container by moving a noncontacting capacitance type measuring unit up and down with respect to the container.
  11.  請求項10に記載の生体試料のチェック方法において、
     前記容器の種類を特定し、この特定された容器種類に関する情報から、前記容器の栓種類を特定する特定工程と、
     前記特定工程によって特定された容器種類から前記容器径および分離剤の有無を特定して、この特定結果と前記検出工程で検出した前記容器内の試料の上面に関する情報とから前記容器内の試料の容量を演算する演算工程とを具備し、
     前記検出工程は、前記特定工程において特定された前記栓種類に関する情報に応じて、非接触の静電容量方式の計測部を前記容器に対して上下動させることで前記容器内の試料の上面を検出する
     ことを特徴とする生体試料のチェック方法。
    In the method for checking a biological sample according to claim 10,
    Identifying the type of the container, and identifying the type of closure of the container from the information on the identified container type;
    The container diameter and the presence or absence of a separating agent are identified from the container type identified in the identification step, and the identification result of the sample in the container from the identification result and the information on the upper surface of the sample in the container detected in the detection step And an operation process for calculating a capacity,
    In the detection step, the upper surface of the sample in the container is moved by moving the non-contact capacitance type measurement unit up and down with respect to the container in accordance with the information on the plug type specified in the identification step. A method of checking a biological sample, comprising detecting the biological sample.
  12.  請求項11に記載の生体試料のチェック方法において、
     前記容器の側面に照射部から光を照射し、前記容器を通過した透過光の量を受光部において測定しながら、前記照射部および前記受光部とを前記容器の長手方向に上下方向に移動させる測定工程とを具備し、
     前記演算工程は、前記照射工程において測定した前記透過光の量に基づき、前記容器内の試料の固液分離面を求め、この求めた固液分離面と、前記容器径および分離剤の有無の特定結果と、前記検出工程で検出した前記容器内の試料の上面に関する情報とから前記容器内の試料の容量を演算する
     ことを特徴とする生体試料のチェック方法。
    In the method for checking a biological sample according to claim 11,
    The side of the container is irradiated with light from the irradiation unit, and the amount of the transmitted light passing through the container is measured by the light receiving unit, and the irradiation unit and the light receiving unit are vertically moved in the longitudinal direction of the container And a measurement process,
    In the calculation step, a solid-liquid separation surface of the sample in the container is determined based on the amount of the transmitted light measured in the irradiation step, and the calculated solid-liquid separation surface, the container diameter, and the presence or absence of a separation agent A method of checking a biological sample, comprising calculating the volume of a sample in the container from the identification result and the information on the upper surface of the sample in the container detected in the detection step.
  13.  請求項11に記載の生体試料のチェック方法において、
     前記計測部、前記照射部および前記受光部とを、前記容器内に収容された生体試料の幅に応じた間隔で配置する
     ことを特徴とする生体試料のチェック方法。
    In the method for checking a biological sample according to claim 11,
    A method of checking a biological sample, comprising: arranging the measuring unit, the irradiating unit, and the light receiving unit at intervals according to the width of the biological sample housed in the container.
  14.  請求項11に記載の生体試料のチェック方法において、
     遮光板の前に位置する前記容器を撮像する撮像工程と、
     この撮像工程で撮像された撮像画像に基づいて、前記容器内の前記試料の色を判別するデータ解析工程とを更に具備する
     ことを特徴とする生体試料のチェック方法。
    In the method for checking a biological sample according to claim 11,
    An imaging step of imaging the container located in front of the light shielding plate;
    And a data analysis step of determining the color of the sample in the container based on the captured image captured in the imaging step.
  15.  請求項14に記載の生体試料のチェック方法において、
     前記データ解析部は、更に、前記撮像工程で撮像された前記撮像画像から、前記試料の各成分の高さを求める
     ことを特徴とする生体試料のチェック方法。
    In the biological sample check method according to claim 14,
    The method for checking a biological sample, wherein the data analysis unit further determines the height of each component of the sample from the captured image captured in the imaging step.
PCT/JP2014/077228 2013-10-17 2014-10-10 System for automating specimen inspection, capacity checking module, and method for checking biological sample WO2015056649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015542603A JP6470691B2 (en) 2013-10-17 2014-10-10 Specimen automation system, volume check module, and biological sample check method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-216610 2013-10-17
JP2013216610 2013-10-17

Publications (1)

Publication Number Publication Date
WO2015056649A1 true WO2015056649A1 (en) 2015-04-23

Family

ID=52828093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077228 WO2015056649A1 (en) 2013-10-17 2014-10-10 System for automating specimen inspection, capacity checking module, and method for checking biological sample

Country Status (2)

Country Link
JP (1) JP6470691B2 (en)
WO (1) WO2015056649A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105224A1 (en) * 2016-12-09 2018-06-14 株式会社日立ハイテクノロジーズ Biological sample analysis device
JP2019184604A (en) * 2018-04-05 2019-10-24 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Laboratory analysis system in which sample pipetting is improved
EP3654039A1 (en) * 2018-11-16 2020-05-20 Roche Diagnostics GmbH Automated tube handling
WO2020162484A1 (en) * 2019-02-05 2020-08-13 株式会社日立ハイテク Specimen treatment system
JP2021063813A (en) * 2020-12-10 2021-04-22 株式会社日立ハイテク Biological sample analyzer
US11125601B2 (en) 2016-07-08 2021-09-21 Roche Diagnostics Operations, Inc. Laboratory automation system including improved processing of a laboratory sample by optical and tip position sensing
CN113569640A (en) * 2021-06-25 2021-10-29 青岛海尔科技有限公司 Delivery device, delivery method, storage medium, and electronic apparatus
CN113646641A (en) * 2019-04-08 2021-11-12 株式会社日立高新技术 Image processing apparatus, automatic analysis system, and image processing method
WO2022000511A1 (en) * 2020-07-03 2022-01-06 深圳迈瑞生物医疗电子股份有限公司 Sample analyzer and sample analysis method
WO2024007403A1 (en) * 2022-07-08 2024-01-11 苏州长光华医生物医学工程有限公司 Liquid level sensing apparatus and method, and method for lowering sampling probe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103967A (en) * 1993-10-05 1995-04-21 Syst Sutatsuku:Kk Sample processing device
JPH0921802A (en) * 1995-07-07 1997-01-21 Matsushita Electric Ind Co Ltd Specimen examining method and device thereof
WO1999028724A1 (en) * 1997-11-27 1999-06-10 A.I. Scientific Pty. Ltd. A sample distribution apparatus/system
JP2001108506A (en) * 1999-10-13 2001-04-20 Aloka Co Ltd Layer boundary surface detecting device
JP2004053497A (en) * 2002-07-23 2004-02-19 Aloka Co Ltd Specimen treating system
JP2007322317A (en) * 2006-06-02 2007-12-13 Olympus Corp Analyzer
JP2008046033A (en) * 2006-08-18 2008-02-28 Sysmex Corp Specimen analyzer
JP2010197047A (en) * 2009-02-20 2010-09-09 Beckman Coulter Inc Dispensation method, dispenser, and analyzer
JP2010216876A (en) * 2009-03-13 2010-09-30 Beckman Coulter Inc Analyzer and dispensing probe washing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208868B2 (en) * 2008-10-31 2013-06-12 シスメックス株式会社 Sample processing equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103967A (en) * 1993-10-05 1995-04-21 Syst Sutatsuku:Kk Sample processing device
JPH0921802A (en) * 1995-07-07 1997-01-21 Matsushita Electric Ind Co Ltd Specimen examining method and device thereof
WO1999028724A1 (en) * 1997-11-27 1999-06-10 A.I. Scientific Pty. Ltd. A sample distribution apparatus/system
JP2001108506A (en) * 1999-10-13 2001-04-20 Aloka Co Ltd Layer boundary surface detecting device
JP2004053497A (en) * 2002-07-23 2004-02-19 Aloka Co Ltd Specimen treating system
JP2007322317A (en) * 2006-06-02 2007-12-13 Olympus Corp Analyzer
JP2008046033A (en) * 2006-08-18 2008-02-28 Sysmex Corp Specimen analyzer
JP2010197047A (en) * 2009-02-20 2010-09-09 Beckman Coulter Inc Dispensation method, dispenser, and analyzer
JP2010216876A (en) * 2009-03-13 2010-09-30 Beckman Coulter Inc Analyzer and dispensing probe washing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125601B2 (en) 2016-07-08 2021-09-21 Roche Diagnostics Operations, Inc. Laboratory automation system including improved processing of a laboratory sample by optical and tip position sensing
US11085913B2 (en) 2016-12-09 2021-08-10 Hitachi High-Tech Corporation Biological sample analyzer
JP2018096740A (en) * 2016-12-09 2018-06-21 株式会社日立ハイテクノロジーズ Biological sample analyzer
CN110050190A (en) * 2016-12-09 2019-07-23 株式会社日立高新技术 Biosample analytical equipment
WO2018105224A1 (en) * 2016-12-09 2018-06-14 株式会社日立ハイテクノロジーズ Biological sample analysis device
EP3553528A4 (en) * 2016-12-09 2020-07-08 Hitachi High-Tech Corporation Biological sample analysis device
JP2019184604A (en) * 2018-04-05 2019-10-24 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Laboratory analysis system in which sample pipetting is improved
JP2020085904A (en) * 2018-11-16 2020-06-04 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Automatic handling of tube
US11511279B2 (en) 2018-11-16 2022-11-29 Roche Diagnostics Operations, Inc. Automatic correction of tube label information
EP3654039A1 (en) * 2018-11-16 2020-05-20 Roche Diagnostics GmbH Automated tube handling
WO2020162484A1 (en) * 2019-02-05 2020-08-13 株式会社日立ハイテク Specimen treatment system
CN112805569A (en) * 2019-02-05 2021-05-14 株式会社日立高新技术 Sample processing system
US12019087B2 (en) 2019-02-05 2024-06-25 Hitachi High-Tech Corporation Specimen treatment system
CN113646641A (en) * 2019-04-08 2021-11-12 株式会社日立高新技术 Image processing apparatus, automatic analysis system, and image processing method
WO2022000511A1 (en) * 2020-07-03 2022-01-06 深圳迈瑞生物医疗电子股份有限公司 Sample analyzer and sample analysis method
JP7041240B2 (en) 2020-12-10 2022-03-23 株式会社日立ハイテク Biological sample analyzer
JP2022066509A (en) * 2020-12-10 2022-04-28 株式会社日立ハイテク Biological sample analyzer
JP2021063813A (en) * 2020-12-10 2021-04-22 株式会社日立ハイテク Biological sample analyzer
CN113569640A (en) * 2021-06-25 2021-10-29 青岛海尔科技有限公司 Delivery device, delivery method, storage medium, and electronic apparatus
CN113569640B (en) * 2021-06-25 2023-12-22 青岛海尔科技有限公司 Throwing equipment, throwing method, storage medium and electronic device
WO2024007403A1 (en) * 2022-07-08 2024-01-11 苏州长光华医生物医学工程有限公司 Liquid level sensing apparatus and method, and method for lowering sampling probe

Also Published As

Publication number Publication date
JP6470691B2 (en) 2019-02-13
JPWO2015056649A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015056649A1 (en) System for automating specimen inspection, capacity checking module, and method for checking biological sample
JP6510420B2 (en) Analyte test automation system, biological sample check module, and biological sample check method
EP3149492B1 (en) Methods and systems for tube inspection and liquid level detection
EP3018482B1 (en) Detection device and biological-sample analysis device
JP5330313B2 (en) Biological sample analyzer
CN109073448B (en) Sample liquid level position measuring device and sample liquid level position measuring method
US20120140230A1 (en) Methods And Apparatus For Ascertaining Interferents And Physical Dimensions In Liquid Samples And Containers To Be Analyzed By A Clinical Analyzer
KR20140091033A (en) Specimen container detection
JP6282060B2 (en) Specimen automation system
US20140064019A1 (en) Sample processing apparatus and sample processing method
JP2008051531A (en) Specimen treatment system
JP6516727B2 (en) Sample test automation system and check module and sample check method
JP5470295B2 (en) Biological sample analyzer and method
JP6522608B2 (en) Sample test automation system and sample check module
US12019087B2 (en) Specimen treatment system
US11933804B2 (en) Automatic analyzer
JP2017173064A (en) Automatic analyzer
JP7171460B2 (en) Laboratory test device and system
JPH07103967A (en) Sample processing device
EP3842768B1 (en) Liquid level detection device
CN112798799B (en) Sample analysis system and sample testing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854019

Country of ref document: EP

Kind code of ref document: A1