WO2015056513A1 - Method for bonding metal powder injection molded bodies - Google Patents

Method for bonding metal powder injection molded bodies Download PDF

Info

Publication number
WO2015056513A1
WO2015056513A1 PCT/JP2014/074514 JP2014074514W WO2015056513A1 WO 2015056513 A1 WO2015056513 A1 WO 2015056513A1 JP 2014074514 W JP2014074514 W JP 2014074514W WO 2015056513 A1 WO2015056513 A1 WO 2015056513A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
powder injection
injection molded
molded bodies
joining
Prior art date
Application number
PCT/JP2014/074514
Other languages
French (fr)
Japanese (ja)
Inventor
吉澤 廣喜
茂征 佐藤
展康 津野
夏樹 米山
修治 池田
敬史 吉野内
雅之 佐竹
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CA2926768A priority Critical patent/CA2926768C/en
Priority to KR1020167012218A priority patent/KR20160098182A/en
Priority to JP2015542549A priority patent/JP6245268B2/en
Priority to EP14854623.7A priority patent/EP3059033A4/en
Priority to CN201480056174.8A priority patent/CN105612015B/en
Publication of WO2015056513A1 publication Critical patent/WO2015056513A1/en
Priority to US15/093,246 priority patent/US20160221081A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • F01D9/044Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators permanently, e.g. by welding, brazing, casting or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/34Rotor-blade aggregates of unitary construction, e.g. formed of sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing

Definitions

  • the present invention relates to a method for joining metal powder injection moldings [method for jointing metal injection molded parts], and in particular, joining metal powder injection moldings for producing a metal product by joining a plurality of metal powder injection moldings. Regarding the method.
  • Metal powder injection molding method is a method of mixing a metal powder and a binder and then injection-molding it so that it has a predetermined shape (green part) in a vacuum or gas atmosphere.
  • a metal product having a density exceeding 95% is manufactured by degreasing and sintering.
  • the binder a mixture of a plurality of resins and waxes is used. The shape of the molded body is maintained by scattering a plurality of binder components in order.
  • a component that does not remain in the metal is used for the binder.
  • waxes such as stearic acid, paraffin wax, carnauba wax, etc., which are easily evaporated at a relatively low temperature of 250 ° C. or less, and polyethylene, polypropylene, polystyrene, EVA (ethylene vinyl acetate) that are easily decomposed and scattered at a temperature of 500 ° C. or less.
  • EEA ethylene-ethyl acrylate copolymer resin
  • the stationary blade of the turbine compressor is disposed between the annular inner shroud and the annular outer shroud as disclosed in Patent Document 1 below.
  • the stationary blade is formed of an alloy mainly composed of Ti or Ni, and is configured by combining a plurality of stationary blade sectors [stator [bladestsectors] divided in the circumferential direction.
  • the stator blade sector is manufactured by separately manufacturing an outer band that forms part of the outer shroud, an inner band that forms part of the inner shroud, and the wing, and brazing the outer band and inner band to the wing. Formed with.
  • the blades are made thinner and the blade surface tends to be a complicated three-dimensional curved surface, but it is difficult to maintain the shape accuracy of the blades by casting or plastic working. For this reason, it has been proposed to use the metal powder injection molding method described above for the blade manufacturing method.
  • the above-described stationary blade sector having a plurality of blades between the outer band and the inner band may be difficult to form by injection molding (one step of the metal powder injection molding method). For this reason, it has been proposed to form a stationary blade sector divided body having one blade between the outer band and the inner band, and to join the plurality of divided bodies to form a stationary blade sector.
  • Patent Document 2 discloses a method for joining metal powder injection-molded bodies, the purpose of which is to suppress the reduction in joining strength.
  • a paste obtained by diluting a metal powder constituting the molded body and the same kind of metal powder and a water-soluble pasty substance [gelatinized soluble material] with water is used.
  • the above-described paste is applied to the joint surface of the molded body before sintering, and the molded bodies are temporarily joined with the paste. Thereafter, the temporarily bonded molded bodies are sintered, and the molded bodies are bonded to each other with metal powder contained in the paste.
  • Patent Document 2 below discloses a case where a paste is applied to a joint surface after degreasing and then sintered, and a case where the paste is applied to the joint surface and then degreased and sintered.
  • a water-soluble pasty substance made from starch is used.
  • Starch is a polymer composed of carbon (C), hydrogen (H) and oxygen (0), and is easily decomposed by heat.
  • the metal powder injection molding method since the molded body is manufactured by scattering the binder from the green body composed of the metal powder and the binder, the size of the molded body shrinks from the size of the green body. Here, it is difficult to control the deformation of the joint surface due to shrinkage.
  • An object of the present invention is to provide a method for joining metal powder injection molded bodies that can improve the joining strength.
  • a feature of the present invention is a method for joining metal powder injection molded bodies, in which at least two metal powder injection molded bodies that are injection molded by kneading metal powder and a binder are brought into contact with each other, and the at least two metal powder injection molding bodies are brought into contact with each other.
  • a coating agent containing nitrogen or chlorine is applied to the joint where the metal powder injection molded body is in contact, and the at least two metal powder injection molded bodies coated with the coating agent are degreased or baked.
  • the decomposition rate of the coating agent can be slowed by using a coating agent containing nitrogen or chlorine, and the adhesion state of the metal powder injection molded body can be more improved at the joint when degreasing or firing the metal powder injection molded body. It can be maintained for a long time, and the joint strength of the joint can be improved.
  • the binder includes a wax that volatilizes in a predetermined temperature range and a resin that scatters in a temperature range higher than the predetermined temperature range, and at least a part of the coating agent is the at least two metal powder injections. It is preferable that when the molded body is degreased or sintered, it evaporates later than the wax and scatters faster than the resin.
  • the coating agent is applied to a contact surface or a peripheral side surface of the joint portion.
  • the at least two metal powder injection molded bodies are degreased or sintered in a state in which a gap at the joint portion is maintained at 0.1 mm or less.
  • the metal product is a wing sector including a plurality of wings and a band portion that supports the plurality of wings, and each of the at least two metal powder injection molded bodies has a single wing. It is preferably a wing sector division.
  • a rib extending in a direction intersecting with the chord line of the wing is formed on the back surface of the surface of the band portion where the wing is erected.
  • the angle ⁇ is larger than 0 ° and not more than the stagger angle of the blade. Is preferred.
  • is an angle between the extending direction of the band portion and the extending direction of the rib in the divided body.
  • FIG. 1 is a front view of an outer band
  • (b) is a graph which shows the relationship between the extending angle (theta) of a rib, and the stability S.
  • FIG. It is a front view of the modification of an outer band. It is explanatory drawing of the clearance test method of a junction part, (a) is a side view which shows a clearance gap adjustment state, (b) is a side view which shows a joining completion state.
  • the metal powder injection molded body 2 obtained by kneading the metal powder and the binder and injection molding are joined together to degrease (debinder) or sinter.
  • degrease debinder
  • sinter sintering
  • the metal product 1 is manufactured.
  • the coating agent 4 containing nitrogen (N) or chlorine (Cl) is applied to the joint portion 3 of the metal powder injection molded body 2, the metal powder injection molded bodies 2 are bonded to each other and degreased or sintered.
  • the metal powder injection-molded bodies 2 are combined and the coating step S3 for applying the coating agent 4 to the joint 3 with a soldering iron or the like, and the metal powder injection-molded body 2 coated with the coating agent 4 is degreased in a heating furnace.
  • the metal product 1 is manufactured through a degreasing step S4 and a sintering step S5 in which the degreased metal powder injection molded body 2 is sintered in a heating furnace.
  • the metal product 1 is a part of a stationary blade unit of a turbine compressor, for example.
  • the stationary blade unit includes an annular inner shroud, an annular outer shroud, and a plurality of stationary blades disposed therebetween.
  • the stationary blade unit is manufactured by combining a plurality of stationary blade sectors divided in the circumferential direction.
  • the metal product 1 is a stationary blade sector.
  • a metal product 1 (stator blade sector) shown in FIG. 2A includes an outer band 11 that is a part of an outer shroud, an inner band 12 that is a part of an inner shroud, and an outer band 11 and an inner band 12. It is comprised by the some stationary blade 13 arrange
  • the outer band 11 has a shroud portion 11a that forms a flow path surface on the outer peripheral side of the stationary blade 13, and hook portions 11b that are formed at both ends of the shroud portion 11a.
  • a step 11d is formed between the hook portion 11b and the shroud portion 11a, and the step 11d is locked to a rail formed in the turbine housing.
  • a concave portion is formed by a shroud portion 11a and a hook portion 11b on the back surface (surface opposite to the flow path surface) of the surface on which the stationary blade 13 of the outer band 11 is erected. In the recess, a rib 11c that connects the pair of hook portions 11b is formed on the shroud portion 11a.
  • the inner band 12 includes a shroud portion 12a that forms the inner peripheral flow path surface of the stationary blade 13, and a slot portion 12b that is formed at each end edge in the axial direction of the shroud portion 12a.
  • the slot portion 12b is formed by folding the side edge of the shroud portion 12a.
  • the metal product 1 is not limited to the configuration described above. As shown in FIG. 2B, the metal product 1 may be a stationary blade sector without the rib 11c. As shown in FIG. 2C, the metal product 1 may be a moving blade sector that is a part of a moving blade unit of a turbine compressor. The metal product 1 as a moving blade sector is constituted by an outer band 11 constituting a part of the outer shroud and a plurality of moving blades 14 coupled to the outer band 11. In addition, the dashed-dotted line in FIG.2 (b) and FIG.2 (c) has shown the junction part 3. FIG.
  • the metal product 1 is not limited to the stationary blade sector or the moving blade sector, and includes all parts manufactured by joining a plurality of metal powder injection molded bodies 2.
  • the structure of the outer band 11 and the inner band 12 mentioned above is an example, and is not limited to the shape mentioned above.
  • the metal product 1 described above has a complicated shape, and it may be difficult to manufacture by one injection molding while maintaining shape accuracy. Further, when the metal product 1 is enlarged, the weight increases and deformation may occur during degreasing or sintering. Therefore, in the present embodiment, as shown in FIG. 3A, by joining a plurality of metal powder injection molded bodies 2 (divided bodies of the blade sector), a metal as shown in FIG. Product 1 is produced.
  • Each metal powder injection molded body 2 is Since it has a relatively simple shape having a single vane 13 between the outer band 11 and the inner band 12, it is manufactured by one injection molding while maintaining the shape accuracy. Can do.
  • a metal product 1 manufactured by joining a plurality of metal powder injection-molded bodies 2 includes a plurality of blades (static blades 13) and band portions (outer band 11 and inner band 12) that support the blades.
  • a sector for example, a stationary blade sector.
  • the metal powder injection molded body 2 is a component obtained by dividing the blade sector into blades. Therefore, even if the metal product 1 has a complicated shape, the metal powder injection-molded body 2 has a shape that can be easily injection-molded, and the shape accuracy can be maintained.
  • the same reference numerals as those of the metal product 1 are used for the metal powder injection-molded body 2 (outer band 11, inner band 12, stationary blade 13 and the like).
  • the metal powder as the raw material of the metal powder injection molded body 2 and the binder are kneaded and pelletized.
  • the metal powder for example, stainless steel (SUS), titanium, various alloys, various ceramics, etc., having a particle diameter of about 10 to 20 ⁇ m are used.
  • the binder contains a wax that volatilizes in a predetermined temperature range and a resin that scatters in a higher temperature range than the wax.
  • the wax is, for example, stearic acid, paraffin wax, carnauba wax, etc., which are easily evaporated at a relatively low temperature of 250 ° C. or lower.
  • the resin is, for example, polyethylene, polypropylene, polystyrene, EVA (ethylene vinyl acetate), EEA (ethylene-ethyl acrylate copolymer resin) and the like which are easily decomposed and scattered at a temperature of 500 ° C. or less. obtain).
  • a lubricant, a surfactant, or the like is added to the binder as necessary.
  • the metal powder injection molded body 2 shown in FIG. 3 (a) is formed.
  • the metal powder injection molded body 2 is also called a green body. Since the metal powder injection molded body 2 contains a binder in addition to the metal powder constituting the metal product 1, the size of the metal powder injection molded body 2 is larger than that of the metal product 1.
  • the plurality of metal powder injection molded bodies 2 are assembled so as to have the shape of the metal product 1, and the coating agent 4 is applied to the joint portion 3.
  • the coating agent 4 is, for example, a wax or resin containing nitrogen (N) or chlorine (Cl).
  • At least a part of the coating agent 4 includes a material that scatters later than the wax contained in the binder during degreasing or sintering, and a material that scatters earlier than the resin contained in the binder during degreasing or sintering.
  • “at least a part of the coating agent 4” means that a part of the component contained in the coating agent 4 scatters earlier than the wax contained in the binder, or scatters later than the resin contained in the binder. It means to do.
  • a wax having a urethane group (—NHCOO—) or an amide group (—CONH 2 ), a chlorinated wax, or the like, or a hot melt adhesive having a urethane group can be used.
  • Products include Hi-Bon (registered trademark: Hitachi Kasei Polymer Co., Ltd.), Macromelt (registered trademark: Henkel AG & Co. KGaA) EMPARA (registered trademark: Ajinomoto Fine-Techno Co., Inc.) and the like.
  • the coating agent 4 is scattered at an early stage of the degreasing step S4 and the sintering step S5, which will be described later, a gap is generated in the joint 3 of the metal powder injection molded body 2, and the strength of the metal product 1 after sintering. Will fall.
  • the coating agent 4 of the present embodiment is a material that is not easily decomposed by heat, that is, a wax or resin containing nitrogen (N) and / or chlorine (Cl)
  • the degreasing step S4 and the sintering step S5 are fast. There will be no splashes in stages.
  • the coating agent 4 may be a mixture of a wax containing nitrogen (N) and / or chlorine (Cl) and a resin containing nitrogen (N) and / or chlorine (Cl).
  • the coating agent 4 By using the coating agent 4 described above, at least a part of the coating agent 4 is scattered later than the wax contained in the binder at the time of degreasing or sintering, or faster than the resin contained in the binder at the time of degreasing or sintering. Can be scattered. Since the coating agent 4 includes a material that scatters later than the wax of the binder to be degreased, scattering of the coating agent 4 in the degreasing step S4 can be suppressed, and the adhesion (temporary bonding) function of the coating agent 4 can be maintained for a long time.
  • the coating agent 4 includes a material that scatters faster than the resin contained in the binder during degreasing or sintering (that is, at least a part of the coating agent 4 remains until before and after the scattering of the binder resin), sintering is performed.
  • the metal powder can be sintered in a well-balanced manner without the binder resin blocking the scattering path.
  • deformation of the metal product 1 can be suppressed.
  • “deformation” does not include shrinkage from the metal powder injection molded body 2 to the metal product 1 due to sintering.
  • the metal powder injection molded body 2 (Brown body) after the degreasing step S4. In other words, the strength of the metal product 1 after sintering can be improved.
  • the above-described coating agent 4 is applied to the joint 3 by being heated and melted by a soldering iron, a brush, a roller, a spraying, an immersion, or the like.
  • a soldering iron when used, the coating agent 4 having a softening point of a soldering iron operating temperature of 330 ° C. or lower is used.
  • the coating agent 4 is applied to the contact surface [contact surface] 3 a or the circumferential surface 3 b of the joint 3.
  • the coating agent 4 is applied to the contact surface 3a.
  • the adhesive force (bonding force) of the bonding portion 3 can be improved.
  • the gap g of the joint portion 3 is maintained at 0.1 mm or less. If the gap g is widened, the strength of the joint 3 of the metal product 1 is reduced and the metal product 1 is deformed.
  • the coating agent 4 is applied to the contact surface 3a and the peripheral side surface 3b.
  • the contact surface 3 a is a facing surface in the joint portion 3 of the metal powder injection molded body 2
  • the peripheral side surface 3 b is a side surface in the joint portion 3 of the metal powder injection molded body 2.
  • the coating agent 4 is applied to the peripheral side surface 3b.
  • the coating agent 4 is applied to the entire periphery of the peripheral side surface 3 b in the joint portion 3.
  • the gap g can be easily adjusted to 0.1 mm or less.
  • the coating agent 4 applied to the peripheral side surface 3b is heated and melted in the degreasing step S4 or the sintering step S5 and naturally permeates the contact surface 3a. Therefore, the adhesive force (joining force) of the joint part 3 can be improved also by the contact surface 3a while maintaining the gap g below a desired value.
  • the coating agent 4 is applied to a part of the peripheral side surface 3b.
  • the coating agent 4 may be applied only to a place where it can be easily applied.
  • the contact surface 3a extends in the vertical direction as shown in FIG. 4D, the coating agent 4 applied to the upper peripheral side surface 3b penetrates the contact surface 3a by gravity.
  • the metal powder injection molded body 2 coated with the coating agent 4 is placed on the support block 5 and sent to the degreasing step S4.
  • the stationary blade 13 is placed horizontally with the step 11 d applied to the corner of the support block 5. Can be placed.
  • the edge of the inner band 12 and the support block 5 are There may be a gap between them.
  • an auxiliary support block (not shown) that fills the gap between the edge of the inner band 12 and the support block 5 may be inserted.
  • the stationary blade 13 is leveled with the end of the inner band 12 in contact with the support block 5, a gap may be generated between the step 11 d of the outer band 11 and the corner of the support block 5.
  • an auxiliary support block (not shown) that fills the gap between the step 11d and the support block 5 (corner thereof) may be inserted.
  • the size of the metal product 1 after the sintering is contracted as a whole than the size of the metal powder injection molded body 2.
  • the stationary blade 13 can be contracted substantially horizontally by placing the stationary blade 13 horizontally.
  • the bonded metal powder injection-molded body 2 can be contracted as a whole in a balanced manner, and deformation due to distortion during contraction can be suppressed.
  • the wax contained in the binder is removed.
  • the heating temperature in the degreasing step S4 is generally lower than the heating temperature in the sintering step S5. For this reason, you may heat the metal powder injection molding 2 with the degreasing apparatus different from the sintering furnace used by sintering process S5.
  • the metal powder injection molded body 2 may be degreased by controlling the temperature of the sintering furnace used also in the sintering step S5.
  • the resin contained in the binder is removed, and the metal powder is sintered.
  • the metal powder is sintered.
  • IN718 IN: Inconel (registered trademark: Special Metals Corporation)
  • sintering is performed in a non-oxidizing atmosphere exceeding 1200 ° C. It is preferable to do.
  • the density may be measured for confirmation of the progress of sintering, press processing may be performed for fine adjustment of the dimensions, or end face processing.
  • electric discharge machining may be performed, or a grinding or polishing treatment may be performed to adjust the surface assembly.
  • ribs 11c are extended on the back surface of the outer band 11 (band part).
  • the extending direction Lr of the rib 11 c intersects the chord line Lc of the stationary blade 13.
  • the angle of the rib 11c with respect to the extending direction Le (vertical direction in the case of FIG.
  • the angle ⁇ of the rib 11c is too large, deformation during sintering due to the weight of the rib 11c may be promoted. Therefore, it is preferable to set an upper limit for the angle ⁇ .
  • the upper limit of the angle ⁇ is a stagger angle ⁇ (> 0: the magnitude of the angle) of the stationary blade 13.
  • the “stagger angle ⁇ ” is an angle of the chord line Lc with respect to the turbine axial direction La (in the case of FIG. 5A, parallel to the extending direction Le).
  • the upper limit of the angle ⁇ is preferably set to a value in the range of 6 ° to 12 ° based on the test results described above.
  • the upper limit of the angle ⁇ is not limited to this value (range) and can be set for each metal powder injection-molded body 2 according to the weight of the rib 11c.
  • the angle ⁇ between the extending direction Le of the outer band 11 and the extending direction Lr of the rib 11c is greater than 0 ° and equal to or less than the stagger angle ⁇ .
  • the angle ⁇ is particularly preferably the same as the stagger angle ⁇ .
  • the stagger angle ⁇ of the stationary blade 13 is determined to some extent, specifically, it is preferable that 0 ° ⁇ ⁇ 12 °.
  • the direction of the angle ⁇ from the extending direction Le of the outer band 11 to the extending direction Lr of the rib 11c is opposite to the direction of the stagger angle ⁇ from the turbine axial direction La to the chord line Lc.
  • FIG. 6 shows a modification in which the end surface of the metal powder injection molded body 2 is inclined with respect to the turbine axial direction La.
  • the rib 11c may be inclined in this way.
  • the extending direction Le of the outer band 11 and the turbine axial direction La are not parallel.
  • the difference between the overhangs OH1 and OH2 of the outer band 11 with respect to the rib 11c can be reduced, and the deformation due to distortion at the time of contraction of the metal powder injection molded body 2 (metal product 1) is effectively suppressed.
  • the gap g (see FIG. 4A) of the joint 3 described above will be described.
  • two metal powder injection molding plates 6 are prepared, and the other metal powder injection molding plate 6 is mounted on one metal powder injection molding plate 6 using a spacer 7.
  • a gap was formed between the two metal powder injection molding plates 6 by inclining. The size of the gap can be adjusted by changing the horizontal position of the spacer 7.
  • the coating agent 4 was apply
  • the gap C that can realize sufficient bonding strength was 0.1 mm. Therefore, it is preferable that the gap g of the joint portion 3 is 0.1 mm or less.
  • the gap C can be changed according to the metal powder, the binder, and the like that are the raw materials of the metal powder injection molding plate 6. That is, the gap g of the joint portion 3 is not necessarily limited to 0.1 mm or less, and is empirically preferably 0.1 mm to 0.5 mm.
  • the coating agent 4 contains nitrogen (N) or chlorine (Cl), the decomposition rate of the coating agent 4 can be slowed. Therefore, the adhesion state between the metal powder injection molded bodies 2 at the time of degreasing or sintering can be maintained for a longer time, and the bonding strength of the bonding portion 3 can be improved.
  • ribs may be formed on the inner band 12. Since the rib 11c is provided for improving the shape accuracy of the metal product 1 (metal powder injection molded body 2) during degreasing or sintering, it may be cut by the time when the stationary blade unit is completed (ribs). Even if 11c is cut, the angle ⁇ of the rib 11c can be determined from the cutting trace). A plurality of ribs 11c may be provided in one metal powder injection molded body 2.

Abstract

According to this method for bonding metal powder injection molded bodies, a metal product is produced by: [1] bringing at least two metal powder injection molded bodies, each of which is obtained by kneading a metal powder and a binder and injection molding the kneaded material, into contact with each other; [2] applying a coating agent that contains nitrogen or chlorine to a bond part where the at least two metal powder injection molded bodies are in contact with each other; and [3] bonding the at least two metal powder injection molded bodies with each other at the bond part by means of degreasing or sintering. This bonding method is capable of improving the bonding strength at the bond part.

Description

金属粉末射出成型体の接合方法Joining method of metal powder injection molding
 本発明は、金属粉末射出成型体の接合方法[method for jointing metal injection molded parts]に関し、特に、複数の金属粉末射出成型体を接合して金属製品を製作するための金属粉末射出成型体の接合方法に関する。 The present invention relates to a method for joining metal powder injection moldings [method for jointing metal injection molded parts], and in particular, joining metal powder injection moldings for producing a metal product by joining a plurality of metal powder injection moldings. Regarding the method.
 金属粉末射出成型法(MIM:Metal Injection Molding)は、金属粉末とバインダを混練して所定形状を持つように射出成型された成型体(グリーン体[green part])を、真空中又はガス雰囲気中で脱脂及び焼結することにより、密度95%を超える金属製品を製作する方法である。バインダとしては複数の樹脂やワックスを混合したものが使用される。複数のバインダ成分を順番に飛散させることで成形体の形状が維持される。 Metal powder injection molding method (MIM: Metal 、 Injection Molding) is a method of mixing a metal powder and a binder and then injection-molding it so that it has a predetermined shape (green part) in a vacuum or gas atmosphere. In this method, a metal product having a density exceeding 95% is manufactured by degreasing and sintering. As the binder, a mixture of a plurality of resins and waxes is used. The shape of the molded body is maintained by scattering a plurality of binder components in order.
 バインダには、金属中に残留しないような成分が使用されることが好ましい。例えば、250℃以下の比較的低温で揮発しやすい、ステアリン酸、パラフィンワックス、カルナバワックス等のワックスと、500℃以下の温度で分解飛散しやすい、ポリエチレン、ポリプロピレン、ポリスチレン、EVA(エチレン酢酸ビニル)、EEA(エチレン-エチルアクリレート共重合樹脂)等の樹脂とを混合して使用することが一般的である。 It is preferable that a component that does not remain in the metal is used for the binder. For example, waxes such as stearic acid, paraffin wax, carnauba wax, etc., which are easily evaporated at a relatively low temperature of 250 ° C. or less, and polyethylene, polypropylene, polystyrene, EVA (ethylene vinyl acetate) that are easily decomposed and scattered at a temperature of 500 ° C. or less. It is common to use a mixture with a resin such as EEA (ethylene-ethyl acrylate copolymer resin).
 ところで、タービン圧縮機の静翼は、下記特許文献1に開示されているように、環状のインナーシュラウドと環状のアウターシュラウドとの間に配置される。また、静翼は、Ti又はNiを主成分とする合金で形成され、周方向に分割された複数の静翼セクタ[stator blade sectors]が組み合わされて構成されている。一般に、静翼セクタは、アウターシュラウドの一部を構成するアウターバンド、インナーシュラウドの一部を構成するインナーバンド、及び、翼をそれぞれ別に製作し、翼にアウターバンド及びインナーバンドをロウ付けすることで形成される。 Incidentally, the stationary blade of the turbine compressor is disposed between the annular inner shroud and the annular outer shroud as disclosed in Patent Document 1 below. Further, the stationary blade is formed of an alloy mainly composed of Ti or Ni, and is configured by combining a plurality of stationary blade sectors [stator [bladestsectors] divided in the circumferential direction. In general, the stator blade sector is manufactured by separately manufacturing an outer band that forms part of the outer shroud, an inner band that forms part of the inner shroud, and the wing, and brazing the outer band and inner band to the wing. Formed with.
 近年、機能向上の観点から、翼はさらに薄くされ、かつ、翼面は複雑な三次元曲面としてされる傾向にあるが、鋳造や塑性加工では翼の形状精度を保つことが難しい。このため、翼の製造方法に上述した金属粉末射出成型法を用いることが提案されている。 Recently, from the viewpoint of functional improvement, the blades are made thinner and the blade surface tends to be a complicated three-dimensional curved surface, but it is difficult to maintain the shape accuracy of the blades by casting or plastic working. For this reason, it has been proposed to use the metal powder injection molding method described above for the blade manufacturing method.
 アウターバンドとインナーバンドとの間に複数の翼を有する上述した静翼セクタは、射出成型(金属粉末射出成型法の一工程)により形成することが困難な場合がある。このため、アウターバンドとインナーバンドとの間に一つの翼を有する静翼セクタの分割体を形成し、複数の分割体を接合して静翼セクタを形成することが提案されている。 The above-described stationary blade sector having a plurality of blades between the outer band and the inner band may be difficult to form by injection molding (one step of the metal powder injection molding method). For this reason, it has been proposed to form a stationary blade sector divided body having one blade between the outer band and the inner band, and to join the plurality of divided bodies to form a stationary blade sector.
 下記特許文献2は、金属粉末射出成型体の接合方法を開示しており、その目的は、接合強度の低下抑止である。この接合方法では、成型体を構成する金属粉末と同種の金属粉末と水溶性糊状物質[gelatinized soluble material]とを水で希釈したペースト用いられる。まず、上述したペーストが焼結前の成型体の接合面に塗布され、成型体同士がペーストによって仮接合される。その後、仮接合された成型体が焼結され、成型体同士がペーストに含まれる金属粉末により接合される。なお、下記特許文献2には、脱脂後にペーストを接合面に塗布し、その後、焼結する場合と、ペーストを接合面に塗布した後に脱脂及び焼結する場合とが開示されている。 The following Patent Document 2 discloses a method for joining metal powder injection-molded bodies, the purpose of which is to suppress the reduction in joining strength. In this joining method, a paste obtained by diluting a metal powder constituting the molded body and the same kind of metal powder and a water-soluble pasty substance [gelatinized soluble material] with water is used. First, the above-described paste is applied to the joint surface of the molded body before sintering, and the molded bodies are temporarily joined with the paste. Thereafter, the temporarily bonded molded bodies are sintered, and the molded bodies are bonded to each other with metal powder contained in the paste. Patent Document 2 below discloses a case where a paste is applied to a joint surface after degreasing and then sintered, and a case where the paste is applied to the joint surface and then degreased and sintered.
日本国特開2004-197622号公報Japanese Unexamined Patent Publication No. 2004-197622 日本国特開2010-236042号公報Japanese Laid-Open Patent Publication No. 2010-236042
 上記特許文献2に記載されたペーストには、澱粉質を原料とする水溶性糊状物質が用いられている。澱粉は、炭素(C)、水素(H)及び酸素(0)からなる高分子であり、熱により分解されやすい。また、金属粉末射出成型法では、金属粉末とバインダとで構成されるグリーン体からバインダを飛散させて成型体を製作するので、成型体の大きさはグリーン体の大きさから収縮する。ここで、収縮による接合面の変形を制御するのは困難である。従って、熱分解しやすいペースト(接着剤)を使用すると、脱脂工程又は焼結工程でペーストが早期に分解・飛散してしまうので収縮した接合面同士の密着状態を維持することが困難である。従って、接合強度の低下抑止効果は不十分であった。 In the paste described in Patent Document 2, a water-soluble pasty substance made from starch is used. Starch is a polymer composed of carbon (C), hydrogen (H) and oxygen (0), and is easily decomposed by heat. In the metal powder injection molding method, since the molded body is manufactured by scattering the binder from the green body composed of the metal powder and the binder, the size of the molded body shrinks from the size of the green body. Here, it is difficult to control the deformation of the joint surface due to shrinkage. Accordingly, when a paste (adhesive) that is easily thermally decomposed is used, the paste is decomposed and scattered at an early stage in the degreasing process or the sintering process, so that it is difficult to maintain the contact state between the contracted joint surfaces. Therefore, the effect of suppressing the decrease in bonding strength is insufficient.
 本発明の目的は、接合強度を向上させることのできる金属粉末射出成型体の接合方法を提供することにある。 An object of the present invention is to provide a method for joining metal powder injection molded bodies that can improve the joining strength.
 本発明の特徴は、金属粉末射出成型体の接合方法であって、それぞれ金属粉末とバインダとを混練して射出成型された少なくとも二つの金属粉末射出成型体を互いに当接させ、前記少なくとも二つの金属粉末射出成型体が当接されている接合部に、窒素又は塩素を含む塗布剤を塗布し、前記接合部に前記塗布剤が塗布された前記少なくとも二つの金属粉末射出成型体を脱脂又は焼結することで、前記少なくとも二つの金属粉末射出成型体を前記接合部で接合させて金属製品を製作する、金属粉末射出成型体の接合方法を提供する。 A feature of the present invention is a method for joining metal powder injection molded bodies, in which at least two metal powder injection molded bodies that are injection molded by kneading metal powder and a binder are brought into contact with each other, and the at least two metal powder injection molding bodies are brought into contact with each other. A coating agent containing nitrogen or chlorine is applied to the joint where the metal powder injection molded body is in contact, and the at least two metal powder injection molded bodies coated with the coating agent are degreased or baked. By joining, the metal powder injection molding body which manufactures a metal product by joining the said at least 2 metal powder injection molding body in the said junction part is provided.
 上記特徴によれば、窒素又は塩素を含む塗布剤を用いることで塗布剤の分解速度を遅くでき、金属粉末射出成型体の脱脂又は焼成時に、接合部において金属粉末射出成型体の密着状態をより長く維持することができ、接合部の接合強度を向上することができる。 According to the above feature, the decomposition rate of the coating agent can be slowed by using a coating agent containing nitrogen or chlorine, and the adhesion state of the metal powder injection molded body can be more improved at the joint when degreasing or firing the metal powder injection molded body. It can be maintained for a long time, and the joint strength of the joint can be improved.
 ここで、前記バインダが、所定温度域で揮発するワックスと、前記所定温度域よりも高い温度域で飛散する樹脂と、を含み、前記塗布剤の少なくとも一部が、前記少なくとも二つの金属粉末射出成型体の脱脂時又は焼結時に、前記ワックスよりも遅く揮発し、前記樹脂よりも早く飛散する、ことが好ましい。 Here, the binder includes a wax that volatilizes in a predetermined temperature range and a resin that scatters in a temperature range higher than the predetermined temperature range, and at least a part of the coating agent is the at least two metal powder injections. It is preferable that when the molded body is degreased or sintered, it evaporates later than the wax and scatters faster than the resin.
 また、前記塗布剤が、前記接合部の接触面又は周側面に塗布される、ことが好ましい。 Further, it is preferable that the coating agent is applied to a contact surface or a peripheral side surface of the joint portion.
 また、前記接合部における隙間が0.1mm以下に保持された状態で、前記少なくとも二つの金属粉末射出成型体を脱脂又は焼結する、ことが好ましい。 Further, it is preferable that the at least two metal powder injection molded bodies are degreased or sintered in a state in which a gap at the joint portion is maintained at 0.1 mm or less.
 また、前記金属製品が、複数の翼と、前記複数の翼を支持するバンド部とを備えた翼セクタであり、前記少なくとも二つの金属粉末射出成型体のそれぞれが、単一の翼を有する前記翼セクタの分割体である、ことが好ましい。 Further, the metal product is a wing sector including a plurality of wings and a band portion that supports the plurality of wings, and each of the at least two metal powder injection molded bodies has a single wing. It is preferably a wing sector division.
 さらに、前記バンド部の前記翼が立設された面の裏面上に、前記翼の翼弦線と交差する方向に延在するリブが形成されている、ことが好ましい。 Furthermore, it is preferable that a rib extending in a direction intersecting with the chord line of the wing is formed on the back surface of the surface of the band portion where the wing is erected.
 ここで、前記分割体における前記バンド部の延在方向と前記リブの延在方向との角度をθとすると、角度θは、0°より大きく、かつ、前記翼のスタガー角以下である、ことが好ましい。 Here, when the angle between the extending direction of the band portion and the extending direction of the rib in the divided body is θ, the angle θ is larger than 0 ° and not more than the stagger angle of the blade. Is preferred.
 あるいは、前記分割体における前記バンド部の延在方向と前記リブの延在方向との間の角度をθとすると、0°<θ≦12°である、ことが好ましい。 Alternatively, it is preferable that 0 ° <θ ≦ 12 °, where θ is an angle between the extending direction of the band portion and the extending direction of the rib in the divided body.
実施形態に係る金属粉末射出成型体の接合方法のフローチャートである。It is a flowchart of the joining method of the metal powder injection molding which concerns on embodiment. 上記金属粉末射出成型体の接合方法により製作される金属製品の斜視図であり、(a)は第一例、(b)は第二例、(c)は第三例、を示している。It is a perspective view of the metal product manufactured by the joining method of the said metal powder injection molding body, (a) shows the 1st example, (b) shows the 2nd example, (c) has shown the 3rd example. (a)は射出成型後の金属粉末射出成型体を示す斜視図であり、(b)は塗布剤が塗布された金属粉末射出成型体を示す斜視図である。(A) is a perspective view which shows the metal powder injection molding after injection molding, (b) is a perspective view which shows the metal powder injection molding to which the coating agent was apply | coated. 塗布剤の塗布方法を示す説明断面図であり、(a)は第一例、(b)は第二例、(c)は第三例、(d)は第四例、を示している。It is explanatory sectional drawing which shows the coating method of a coating agent, (a) is a 1st example, (b) is a 2nd example, (c) is a 3rd example, (d) has shown the 4th example. (a)はアウターバンドの正面図であり、(b)はリブの延設角度θと安定度Sとの関係を示すグラフである。(A) is a front view of an outer band, (b) is a graph which shows the relationship between the extending angle (theta) of a rib, and the stability S. FIG. アウターバンドの変形例の正面図である。It is a front view of the modification of an outer band. 接合部の隙間試験方法の説明図であり、(a)は隙間調整状態を示す側面図であり、(b)は接合完了状態を示す側面図である。It is explanatory drawing of the clearance test method of a junction part, (a) is a side view which shows a clearance gap adjustment state, (b) is a side view which shows a joining completion state.
 以下、金属粉末射出成型体の接合方法の実施形態について、図面を参照しつつ説明する。 Hereinafter, an embodiment of a method for joining metal powder injection molded bodies will be described with reference to the drawings.
 本実施形態の金属粉末射出成型体の接合方法では、金属粉末とバインダを混練して射出成型した金属粉末射出成型体2同士を接合して脱脂[degreasing](脱バインダ[debinding])又は焼結[sintering](焼成[calcining])することで、金属製品1が製作される。ここで、金属粉末射出成型体2の接合部3に窒素(N)又は塩素(Cl)を含む塗布剤4が塗布されてから、金属粉末射出成型体2同士が接合されて脱脂又は焼結される。 In the joining method of the metal powder injection molded body of the present embodiment, the metal powder injection molded body 2 obtained by kneading the metal powder and the binder and injection molding are joined together to degrease (debinder) or sinter. By performing [sintering] (calcining), the metal product 1 is manufactured. Here, after the coating agent 4 containing nitrogen (N) or chlorine (Cl) is applied to the joint portion 3 of the metal powder injection molded body 2, the metal powder injection molded bodies 2 are bonded to each other and degreased or sintered. The
 具体的には、図1に示されるように、金属粉末とバインダとを混練する混練工程S1と、混練した原料を加熱溶融して金型内に射出する射出成型工程S2と、金型から取り出した金属粉末射出成型体2同士を組み合わせて接合部3に塗布剤4を半田ごて等で塗布する塗布工程S3と、塗布剤4が塗布された金属粉末射出成型体2を加熱炉で脱脂する脱脂工程S4と、脱脂された金属粉末射出成型体2を加熱炉で焼結する焼結工程S5と、を経て金属製品1が製作される。 Specifically, as shown in FIG. 1, a kneading step S1 for kneading metal powder and a binder, an injection molding step S2 for heating and melting the kneaded raw material and injecting it into a mold, and taking out from the mold The metal powder injection-molded bodies 2 are combined and the coating step S3 for applying the coating agent 4 to the joint 3 with a soldering iron or the like, and the metal powder injection-molded body 2 coated with the coating agent 4 is degreased in a heating furnace. The metal product 1 is manufactured through a degreasing step S4 and a sintering step S5 in which the degreased metal powder injection molded body 2 is sintered in a heating furnace.
 金属製品1は、例えば、タービン圧縮機の静翼ユニットの一部である。静翼ユニットは、環状のインナーシュラウドと、環状のアウターシュラウドと、これらの間に配された複数の静翼とで構成される。静翼ユニットは、周方向に複数に分割された静翼セクタを組み合わせることで製作される。上記金属製品1は、静翼セクタである。 The metal product 1 is a part of a stationary blade unit of a turbine compressor, for example. The stationary blade unit includes an annular inner shroud, an annular outer shroud, and a plurality of stationary blades disposed therebetween. The stationary blade unit is manufactured by combining a plurality of stationary blade sectors divided in the circumferential direction. The metal product 1 is a stationary blade sector.
 図2(a)に示される金属製品1(静翼セクタ)は、アウターシュラウドの一部であるアウターバンド11、インナーシュラウドの一部であるインナーバンド12、及び、アウターバンド11とインナーバンド12との間に配置された複数の静翼13によって構成されている。なお、図2(a)中の一点鎖線は、接合部3を示している。 A metal product 1 (stator blade sector) shown in FIG. 2A includes an outer band 11 that is a part of an outer shroud, an inner band 12 that is a part of an inner shroud, and an outer band 11 and an inner band 12. It is comprised by the some stationary blade 13 arrange | positioned between. In addition, the dashed-dotted line in FIG.
 アウターバンド11は、静翼13の外周側流路面を形成するシュラウド部11aと、シュラウド部11aの両端縁にそれぞれ形成されたフック部11bと、を有している。フック部11bとシュラウド部11aとの間には段差11dが形成されており、段差11dはタービンハウジングに形成されたレールに係止される。アウターバンド11の静翼13が立設されている面の裏面(流路面に対して反対側の面)には、シュラウド部11a及びフック部11bにより凹部が形成されている。凹部内には、一対のフック部11bを連結するリブ11cがシュラウド部11a上に形成されている。 The outer band 11 has a shroud portion 11a that forms a flow path surface on the outer peripheral side of the stationary blade 13, and hook portions 11b that are formed at both ends of the shroud portion 11a. A step 11d is formed between the hook portion 11b and the shroud portion 11a, and the step 11d is locked to a rail formed in the turbine housing. A concave portion is formed by a shroud portion 11a and a hook portion 11b on the back surface (surface opposite to the flow path surface) of the surface on which the stationary blade 13 of the outer band 11 is erected. In the recess, a rib 11c that connects the pair of hook portions 11b is formed on the shroud portion 11a.
 インナーバンド12は、静翼13の内周側流路面を形成するシュラウド部12aと、シュラウド部12aの軸方向の両端縁にそれぞれ形成されたスロット部12bと、を有している。スロット部12bは、シュラウド部12aの側縁が折り返されて形成されている。一対のスロット部12bの間に板部品を挿通することで複数の静翼セクタの内周端が連結され、複数のシュラウド部12aで形成されたインナーバンド12が環状に保持される。上述したリブ11cは、アウターバンド11を補強して脱脂工程S4や焼結工程S5におけるアウターバンド11の変形を抑制する。リブ11cに関する効果については、後述する。 The inner band 12 includes a shroud portion 12a that forms the inner peripheral flow path surface of the stationary blade 13, and a slot portion 12b that is formed at each end edge in the axial direction of the shroud portion 12a. The slot portion 12b is formed by folding the side edge of the shroud portion 12a. By inserting plate parts between the pair of slot portions 12b, the inner peripheral ends of the plurality of stationary blade sectors are connected, and the inner band 12 formed by the plurality of shroud portions 12a is held in an annular shape. The rib 11c mentioned above reinforces the outer band 11 and suppresses deformation of the outer band 11 in the degreasing step S4 and the sintering step S5. The effect regarding the rib 11c will be described later.
 金属製品1は、上述した構成に限定されない。図2(b)に示されるように、金属製品1はリブ11cを有しない静翼セクタであってもよい。また、図2(c)に示されるように、金属製品1は、タービン圧縮機の動翼ユニットの一部である動翼セクタであってもよい。動翼セクタとしての金属製品1は、アウターシュラウドの一部を構成するアウターバンド11、アウターバンド11に結合された複数の動翼14によって構成されている。なお、図2(b)及び図2(c)中の一点鎖線は、接合部3を示している。 The metal product 1 is not limited to the configuration described above. As shown in FIG. 2B, the metal product 1 may be a stationary blade sector without the rib 11c. As shown in FIG. 2C, the metal product 1 may be a moving blade sector that is a part of a moving blade unit of a turbine compressor. The metal product 1 as a moving blade sector is constituted by an outer band 11 constituting a part of the outer shroud and a plurality of moving blades 14 coupled to the outer band 11. In addition, the dashed-dotted line in FIG.2 (b) and FIG.2 (c) has shown the junction part 3. FIG.
 また、金属製品1は、静翼セクタや動翼セクタに限定されず、複数の金属粉末射出成型体2を接合して製作される全ての部品を含む。また、上述したアウターバンド11やインナーバンド12の構成は一例であり、上述した形状に限定されるものではない。 Further, the metal product 1 is not limited to the stationary blade sector or the moving blade sector, and includes all parts manufactured by joining a plurality of metal powder injection molded bodies 2. Moreover, the structure of the outer band 11 and the inner band 12 mentioned above is an example, and is not limited to the shape mentioned above.
 上述した金属製品1は、複雑な形状を有しており、形状精度を維持しつつ、一回の射出成型で製作することが困難な場合がある。また、金属製品1が大型化された場合、重量が増加して脱脂又は焼結中に変形を生じる場合がある。そこで、本実施形態では、図3(a)に示されるように、複数の金属粉末射出成型体2(翼セクタの分割体)を接合することで、図2(a)に示されるような金属製品1が製作される。各金属粉末射出成型体2は、
アウターバンド11とインナーバンド12との間に単一の静翼13を有している比較的簡素な形状を有しているので、形状精度を維持しつつ、一回の射出成型で製作することができる。
The metal product 1 described above has a complicated shape, and it may be difficult to manufacture by one injection molding while maintaining shape accuracy. Further, when the metal product 1 is enlarged, the weight increases and deformation may occur during degreasing or sintering. Therefore, in the present embodiment, as shown in FIG. 3A, by joining a plurality of metal powder injection molded bodies 2 (divided bodies of the blade sector), a metal as shown in FIG. Product 1 is produced. Each metal powder injection molded body 2 is
Since it has a relatively simple shape having a single vane 13 between the outer band 11 and the inner band 12, it is manufactured by one injection molding while maintaining the shape accuracy. Can do.
 複数の金属粉末射出成型体2を接合して製作された金属製品1は、複数の翼(静翼13)と、翼を支持するバンド部(アウターバンド11及びインナーバンド12)とを備えた翼セクタ(例えば、静翼セクタ)である。金属粉末射出成型体2は、翼セクタを翼毎に分割した部品である。従って、金属製品1が複雑な形状を有していても、金属粉末射出成型体2は射出成型しやすい形状となり、形状精度を維持することができる。なお、以下の説明では、金属粉末射出成型体2についても、金属製品1の各部と同一の符号を用いる(アウターバンド11、インナーバンド12、静翼13等)。 A metal product 1 manufactured by joining a plurality of metal powder injection-molded bodies 2 includes a plurality of blades (static blades 13) and band portions (outer band 11 and inner band 12) that support the blades. A sector (for example, a stationary blade sector). The metal powder injection molded body 2 is a component obtained by dividing the blade sector into blades. Therefore, even if the metal product 1 has a complicated shape, the metal powder injection-molded body 2 has a shape that can be easily injection-molded, and the shape accuracy can be maintained. In the following description, the same reference numerals as those of the metal product 1 are used for the metal powder injection-molded body 2 (outer band 11, inner band 12, stationary blade 13 and the like).
 図1のフローチャートの各工程について説明する。混練工程S1では、金属粉末射出成型体2の原料となる金属粉末とバインダとが混練されてペレット化される。金属粉末としては、例えば、ステンレス鋼(SUS)、チタン、各種合金、各種セラミックス等を粒径10~20μm程度の粉末にしたものであるが使用される。 Each step of the flowchart of FIG. 1 will be described. In the kneading step S1, the metal powder as the raw material of the metal powder injection molded body 2 and the binder are kneaded and pelletized. As the metal powder, for example, stainless steel (SUS), titanium, various alloys, various ceramics, etc., having a particle diameter of about 10 to 20 μm are used.
 また、バインダは、所定温度域で揮発するワックスと、ワックスよりも高い温度域で飛散する樹脂と、を含んでいる。ワックスは、例えば、250℃以下の比較的低温で揮発しやすい、ステアリン酸、パラフィンワックス、カルナバワックス等である。また、樹脂は、例えば、500℃以下の温度で分解飛散しやすい、ポリエチレン、ポリプロピレン、ポリスチレン、EVA(エチレン酢酸ビニル)、EEA(エチレン-エチルアクリレート共重合樹脂)等である(これらは混合使用され得る)。なお、バインダには、ワックス及び樹脂に加えて、必要に応じて滑剤や界面活性剤等が添加される。 The binder contains a wax that volatilizes in a predetermined temperature range and a resin that scatters in a higher temperature range than the wax. The wax is, for example, stearic acid, paraffin wax, carnauba wax, etc., which are easily evaporated at a relatively low temperature of 250 ° C. or lower. The resin is, for example, polyethylene, polypropylene, polystyrene, EVA (ethylene vinyl acetate), EEA (ethylene-ethyl acrylate copolymer resin) and the like which are easily decomposed and scattered at a temperature of 500 ° C. or less. obtain). In addition to the wax and the resin, a lubricant, a surfactant, or the like is added to the binder as necessary.
 射出成型工程S2では、図3(a)に示される金属粉末射出成型体2が形成される。金属粉末射出成型体2は、グリーン体とも呼ばれる。金属粉末射出成型体2には、金属製品1を構成する金属粉末の他にバインダが含まれているので、金属粉末射出成型体2の大きさは金属製品1よりも大きい。 In the injection molding step S2, the metal powder injection molded body 2 shown in FIG. 3 (a) is formed. The metal powder injection molded body 2 is also called a green body. Since the metal powder injection molded body 2 contains a binder in addition to the metal powder constituting the metal product 1, the size of the metal powder injection molded body 2 is larger than that of the metal product 1.
 塗布工程S3では、図3(b)に示されるように、複数の金属粉末射出成型体2が金属製品1の形状となるように組み立てられ、接合部3に塗布剤4が塗布される。塗布剤4は、例えば、窒素(N)や塩素(Cl)を含むワックス又は樹脂である。また、塗布剤4の少なくとも一部は、脱脂又は焼結時にバインダに含まれるワックスよりも遅く飛散する材料や、脱脂又は焼結時にバインダに含まれる樹脂よりも早く飛散する材料を含んでいる。ここで、「塗布剤4の少なくとも一部」とは、塗布剤4に含まれる成分の一部が、バインダに含まれるワックスよりも早く飛散したり、バインダに含まれる樹脂よりも遅く飛散したりすることを意味する。 In the coating step S3, as shown in FIG. 3B, the plurality of metal powder injection molded bodies 2 are assembled so as to have the shape of the metal product 1, and the coating agent 4 is applied to the joint portion 3. The coating agent 4 is, for example, a wax or resin containing nitrogen (N) or chlorine (Cl). At least a part of the coating agent 4 includes a material that scatters later than the wax contained in the binder during degreasing or sintering, and a material that scatters earlier than the resin contained in the binder during degreasing or sintering. Here, “at least a part of the coating agent 4” means that a part of the component contained in the coating agent 4 scatters earlier than the wax contained in the binder, or scatters later than the resin contained in the binder. It means to do.
 具体的には、塗布剤4としては、ウレタン基(-NHCOO-)、アミド基(-CONH)を有するワックスや塩素化ワックス等や、ウレタン基を持つホットメルト接着剤が使用可能である。商品としては、ハイボン[Hi-Bon](登録商標:日立化成ポリマー社[Hitachi Kasei Polymer Co., Ltd.])、マクロメルト[Macromelt](登録商標:ヘンケル社[Henkel AG & Co. KGaA])、エンパラ[EMPARA](登録商標:味の素ファインテクノ社[Ajinomoto Fine-Techno Co., Inc.])等である。 Specifically, as the coating agent 4, a wax having a urethane group (—NHCOO—) or an amide group (—CONH 2 ), a chlorinated wax, or the like, or a hot melt adhesive having a urethane group can be used. Products include Hi-Bon (registered trademark: Hitachi Kasei Polymer Co., Ltd.), Macromelt (registered trademark: Henkel AG & Co. KGaA) EMPARA (registered trademark: Ajinomoto Fine-Techno Co., Inc.) and the like.
 仮に、後述する脱脂工程S4や焼結工程S5の早い段階で塗布剤4が飛散してしまうと、金属粉末射出成型体2の接合部3に隙間が生じ、焼結後の金属製品1の強度が低下してしまう。しかし、本実施形態の塗布剤4は、熱により分解し難い材料、即ち、窒素(N)及び/又は塩素(Cl)を含むワックス又は樹脂であるので、脱脂工程S4や焼結工程S5の早い段階で飛散することはない。なお、塗布剤4は、窒素(N)及び/又は塩素(Cl)を含むワックスと、窒素(N)及び/又は塩素(Cl)を含む樹脂とが混合されたものでもよい。 If the coating agent 4 is scattered at an early stage of the degreasing step S4 and the sintering step S5, which will be described later, a gap is generated in the joint 3 of the metal powder injection molded body 2, and the strength of the metal product 1 after sintering. Will fall. However, since the coating agent 4 of the present embodiment is a material that is not easily decomposed by heat, that is, a wax or resin containing nitrogen (N) and / or chlorine (Cl), the degreasing step S4 and the sintering step S5 are fast. There will be no splashes in stages. The coating agent 4 may be a mixture of a wax containing nitrogen (N) and / or chlorine (Cl) and a resin containing nitrogen (N) and / or chlorine (Cl).
 上述した塗布剤4を使用することで、塗布剤4の少なくとも一部を、脱脂又は焼結時にバインダに含まれるワックスよりも遅く飛散させたり、脱脂又は焼結時にバインダに含まれる樹脂よりも早く飛散させることができる。塗布剤4が、脱脂されるバインダのワックスよりも遅く飛散する材料を含むので、脱脂工程S4における塗布剤4の飛散を抑制でき、塗布剤4の接着(仮接合)機能を長時間維持できる。 By using the coating agent 4 described above, at least a part of the coating agent 4 is scattered later than the wax contained in the binder at the time of degreasing or sintering, or faster than the resin contained in the binder at the time of degreasing or sintering. Can be scattered. Since the coating agent 4 includes a material that scatters later than the wax of the binder to be degreased, scattering of the coating agent 4 in the degreasing step S4 can be suppressed, and the adhesion (temporary bonding) function of the coating agent 4 can be maintained for a long time.
 また、塗布剤4が、脱脂又は焼結時にバインダに含まれる樹脂よりも早く飛散する材料を含む(即ち、塗布剤4の少なくとも一部がバインダの樹脂の飛散前後まで残留する)ので、焼結工程S5において、バインダの樹脂が飛散経路を閉塞することなく、全体的にバランスよく金属粉末を焼結することがでる。この結果、金属製品1の変形を抑制できる。(なお、ここにいう「変形」とは、焼結による、金属粉末射出成型体2から金属製品1への収縮は含まない。)また、脱脂工程S4後の金属粉末射出成型体2(ブラウン体とも呼ばれる)における接合部3が密着状態に保持されるので、焼結後の金属製品1の強度を向上させることができる。 In addition, since the coating agent 4 includes a material that scatters faster than the resin contained in the binder during degreasing or sintering (that is, at least a part of the coating agent 4 remains until before and after the scattering of the binder resin), sintering is performed. In step S5, the metal powder can be sintered in a well-balanced manner without the binder resin blocking the scattering path. As a result, deformation of the metal product 1 can be suppressed. (Note that “deformation” here does not include shrinkage from the metal powder injection molded body 2 to the metal product 1 due to sintering.) Also, the metal powder injection molded body 2 (Brown body) after the degreasing step S4. In other words, the strength of the metal product 1 after sintering can be improved.
 上述した塗布剤4は、加熱溶融された状態で、半田ごて[soldering iron]、刷毛[brush]、ローラ[roller]、吹き付け[spraying]、浸漬[immersion coating]等によって接合部3に塗布される。例えば、半田ごてを使用する場合、半田ごての使用温度330℃以下の軟化点を有する塗布剤4が用いられる。塗布剤4は、接合部3の接触面[contact surfaces]3a又は周側面[circumferential side surface]3bに塗布される。 The above-described coating agent 4 is applied to the joint 3 by being heated and melted by a soldering iron, a brush, a roller, a spraying, an immersion, or the like. The For example, when a soldering iron is used, the coating agent 4 having a softening point of a soldering iron operating temperature of 330 ° C. or lower is used. The coating agent 4 is applied to the contact surface [contact surface] 3 a or the circumferential surface 3 b of the joint 3.
 図4(a)に示される第一例では、接触面3aに塗布剤4が塗布される。接触面3aに塗布剤4を塗布した場合には、接合部3の接着力(接合力)を向上させることができる。ただし、接合部3の隙間gは、0.1mm以下に保持されることが好ましい。隙間gが広くなると、金属製品1の接合部3の強度低下や、金属製品1の変形の要因となる。 In the first example shown in FIG. 4A, the coating agent 4 is applied to the contact surface 3a. When the coating agent 4 is applied to the contact surface 3a, the adhesive force (bonding force) of the bonding portion 3 can be improved. However, it is preferable that the gap g of the joint portion 3 is maintained at 0.1 mm or less. If the gap g is widened, the strength of the joint 3 of the metal product 1 is reduced and the metal product 1 is deformed.
 図4(b)に示される第二例では、接触面3a及び周側面3bに塗布剤4が塗布される。接触面3aは、金属粉末射出成型体2の接合部3における対向面であるが、周側面3bは、金属粉末射出成型体2の接合部3における側面である。接触面3aに加えて周側面3bにも塗布剤4を塗布することで、接触面3aへの塗布量を低減でき、隙間gを0.1mm以下に調整しやすくできる。また、接着(接合)面積を増大させることができるので、接合部3の接着力(接合)を向上させることができる。 In the second example shown in FIG. 4B, the coating agent 4 is applied to the contact surface 3a and the peripheral side surface 3b. The contact surface 3 a is a facing surface in the joint portion 3 of the metal powder injection molded body 2, while the peripheral side surface 3 b is a side surface in the joint portion 3 of the metal powder injection molded body 2. By applying the coating agent 4 to the peripheral surface 3b in addition to the contact surface 3a, the amount of application to the contact surface 3a can be reduced, and the gap g can be easily adjusted to 0.1 mm or less. Moreover, since an adhesion (joining) area can be increased, the adhesive force (joining) of the joining part 3 can be improved.
 図4(c)に示される第三例では、周側面3bに塗布剤4が塗布される。ここでは、塗布剤4は、接合部3における周側面3bの全周に塗布されている。周側面3bのみに塗布剤4を塗布することで、隙間gを0.1mm以下に容易に調整できる。また、周側面3bに塗布された塗布剤4は、脱脂工程S4又は焼結工程S5において加熱溶融され、自然に接触面3aに浸透する。従って、隙間gを所望値以下に維持しつつ、接触面3aによっても接合部3の接着力(接合力)を向上させることができる。 In the third example shown in FIG. 4C, the coating agent 4 is applied to the peripheral side surface 3b. Here, the coating agent 4 is applied to the entire periphery of the peripheral side surface 3 b in the joint portion 3. By applying the coating agent 4 only to the peripheral side surface 3b, the gap g can be easily adjusted to 0.1 mm or less. In addition, the coating agent 4 applied to the peripheral side surface 3b is heated and melted in the degreasing step S4 or the sintering step S5 and naturally permeates the contact surface 3a. Therefore, the adhesive force (joining force) of the joint part 3 can be improved also by the contact surface 3a while maintaining the gap g below a desired value.
 図4(d)に示される第四例では、周側面3bの一部に塗布剤4が塗布される。接合部3が複雑な形状を有している場合には、塗布しやすい場所にのみ塗布剤4が塗布されてもよい。また、図4(d)に示されるように接触面3aが鉛直方向に延在される場合には、上方の周側面3bに塗布された塗布剤4は、重力によって接触面3aに浸透する。 In the fourth example shown in FIG. 4D, the coating agent 4 is applied to a part of the peripheral side surface 3b. When the joining part 3 has a complicated shape, the coating agent 4 may be applied only to a place where it can be easily applied. When the contact surface 3a extends in the vertical direction as shown in FIG. 4D, the coating agent 4 applied to the upper peripheral side surface 3b penetrates the contact surface 3a by gravity.
 図3(b)に示されるように、塗布剤4が塗布された金属粉末射出成型体2は、支持ブロック5上に載置されて脱脂工程S4に送られる。ここで、アウターバンド11の段差11dの高さhとインナーバンド12の端縁の高さhとを一致させることで、段差11dを支持ブロック5の角部に当てた状態で静翼13を水平に載置させることができる。 As shown in FIG. 3B, the metal powder injection molded body 2 coated with the coating agent 4 is placed on the support block 5 and sent to the degreasing step S4. Here, by making the height h of the step 11 d of the outer band 11 coincide with the height h of the edge of the inner band 12, the stationary blade 13 is placed horizontally with the step 11 d applied to the corner of the support block 5. Can be placed.
 また、上述した高さhが一致しない場合、アウターバンド11の段差11dを支持ブロック5の角部に当てた状態で静翼13を水平にすると、インナーバンド12の端縁と支持ブロック5との間には隙間が生じる場合がある。このような場合、インナーバンド12の端縁と支持ブロック5との間に隙間を埋める補助支持ブロック(図示せず)を挿入してもよい。あるいは、インナーバンド12の端縁を支持ブロック5に接触させた状態で静翼13を水平にすると、アウターバンド11の段差11dと支持ブロック5の角部との間に隙間が生じる場合がある。このような場合、段差11dと支持ブロック5(の角部)との間に隙間を埋める補助支持ブロック(図示せず)を挿入してもよい。 Further, when the height h described above does not match, when the stationary blade 13 is leveled with the step 11 d of the outer band 11 applied to the corner of the support block 5, the edge of the inner band 12 and the support block 5 are There may be a gap between them. In such a case, an auxiliary support block (not shown) that fills the gap between the edge of the inner band 12 and the support block 5 may be inserted. Alternatively, if the stationary blade 13 is leveled with the end of the inner band 12 in contact with the support block 5, a gap may be generated between the step 11 d of the outer band 11 and the corner of the support block 5. In such a case, an auxiliary support block (not shown) that fills the gap between the step 11d and the support block 5 (corner thereof) may be inserted.
 脱脂工程S4及び焼結工程S5において、バインダが除去されるので、焼結後の金属製品1の大きさは、金属粉末射出成型体2の大きさよりも全体的に収縮する。このため、静翼13を水平に載置しておくことで静翼13をほぼ水平に収縮させることができる。この結果、接着された金属粉末射出成型体2を全体的にバランスよく収縮させることができ、収縮時の歪みによる変形を抑制できる。 Since the binder is removed in the degreasing step S4 and the sintering step S5, the size of the metal product 1 after the sintering is contracted as a whole than the size of the metal powder injection molded body 2. For this reason, the stationary blade 13 can be contracted substantially horizontally by placing the stationary blade 13 horizontally. As a result, the bonded metal powder injection-molded body 2 can be contracted as a whole in a balanced manner, and deformation due to distortion during contraction can be suppressed.
 脱脂工程S4では、バインダに含まれるワックスが除去される。脱脂工程S4での加熱温度は、一般に、焼結工程S5の加熱温度よりも低い。このため、焼結工程S5で使用される焼結炉とは別の脱脂装置で金属粉末射出成型体2を加熱してもよい。もちろん、焼結工程S5でも使用される焼結炉の温度を制御することで、金属粉末射出成型体2を脱脂してもよい。 In the degreasing step S4, the wax contained in the binder is removed. The heating temperature in the degreasing step S4 is generally lower than the heating temperature in the sintering step S5. For this reason, you may heat the metal powder injection molding 2 with the degreasing apparatus different from the sintering furnace used by sintering process S5. Of course, the metal powder injection molded body 2 may be degreased by controlling the temperature of the sintering furnace used also in the sintering step S5.
 焼結工程S5では、バインダに含まれる樹脂が除去され、金属粉末が焼結される。例えば、Ni基合金であるIN718[IN:インコネル[Inconel](登録商標:スペシャルメタルズ社[Special Metals Corporation])]を金属粉末として用いた場合には、1200℃を越える非酸化雰気で焼結することが好ましい。焼結後の金属製品1については、後処理として、焼結の進行具合の確認のために密度を測定してもよいし、寸法の微調整のためにプレス加工してもよいし、端面処理のために放電加工してもよいし、表面組さを整えるために研削又は研磨処理が施されてもよい。 In the sintering step S5, the resin contained in the binder is removed, and the metal powder is sintered. For example, when IN718 [IN: Inconel (registered trademark: Special Metals Corporation)], which is a Ni-based alloy, is used as a metal powder, sintering is performed in a non-oxidizing atmosphere exceeding 1200 ° C. It is preferable to do. For the metal product 1 after sintering, as post-processing, the density may be measured for confirmation of the progress of sintering, press processing may be performed for fine adjustment of the dimensions, or end face processing. For this purpose, electric discharge machining may be performed, or a grinding or polishing treatment may be performed to adjust the surface assembly.
 上述したリブ11c(図2(a)、図3(a)及び図3(b)参照)について説明する。図5(a)に示されるように、アウターバンド11(バンド部)の裏面にはリブ11cが延設されている。リブ11cの延在方向Lrは、静翼13の翼弦線[chord line]Lcと交差する。アウターバンド11の延在方向Le(図5(a)の場合は鉛直方向)に対するリブ11cの角度をθ(>0:角度の大きさ)、金属粉末射出成型体2のアウターバンド11の横幅をA、その高さをBとすると、金属粉末射出成型体2(金属製品1)の寸法の安定度S(dB:デシベル)は、S=10・log10(B/A)により求めることができる。 The above-described rib 11c (see FIGS. 2A, 3A, and 3B) will be described. As shown in FIG. 5A, ribs 11c are extended on the back surface of the outer band 11 (band part). The extending direction Lr of the rib 11 c intersects the chord line Lc of the stationary blade 13. The angle of the rib 11c with respect to the extending direction Le (vertical direction in the case of FIG. 5A) of the outer band 11 is θ (> 0: the magnitude of the angle), and the width of the outer band 11 of the metal powder injection molded body 2 is When A and its height are B, the dimensional stability S (dB: decibel) of the metal powder injection molded body 2 (metal product 1) can be obtained by S = 10 · log 10 (B / A). .
 リブ11cの上記角度θが、0°,6°及び12°である金属粉末射出成型体2をそれぞれ成型し、焼結後のアウターバンド11の形状を三次元計測し、均一収縮した理想的な金属粉末射出成型体2(金属製品1)の形状と比較した。比較結果を図5(b)に示す。安定度Sが高いと、均一収縮した金属粉末射出成型体2との寸法差が小さい。逆に、安定度Sが低いと、均一収縮した金属粉末射出成型体2との寸法差が大きい。 The metal powder injection molded body 2 in which the angle θ of the rib 11c is 0 °, 6 °, and 12 ° is molded, and the shape of the outer band 11 after the sintering is measured three-dimensionally. It compared with the shape of the metal powder injection molding 2 (metal product 1). The comparison result is shown in FIG. When the stability S is high, the dimensional difference from the uniformly contracted metal powder injection molded body 2 is small. On the contrary, when the stability S is low, the dimensional difference from the uniformly contracted metal powder injection molded body 2 is large.
 図5(b)に示されるように、θ=0°よりもθ=6°又は12°の方が安定度Sが高い。従って、リブ11cは、上記角度θを大きくする(即ち、翼弦線Lcに対する交差角を大きくする)ことが好ましい。ただし、θ=0°の場合であっても、金属粉末射出成型体2の大きさ、形状、重量等の条件によって、金属製品1の形状精度を維持することができる程度に安定度Sが高い場合もあり得る。従って、上記角度θ=0°の場合が除外されるわけではない。 As shown in FIG. 5B, the stability S is higher at θ = 6 ° or 12 ° than at θ = 0 °. Therefore, the rib 11c preferably increases the angle θ (that is, increases the crossing angle with the chord line Lc). However, even when θ = 0 °, the stability S is high enough to maintain the shape accuracy of the metal product 1 depending on conditions such as the size, shape, and weight of the metal powder injection molded body 2. There may be cases. Therefore, the case where the angle θ = 0 ° is not excluded.
 また、リブ11cの角度θが大き過ぎると、リブ11cの自重による焼結時の変形が促進されるおそれがある。従って、上記角度θには上限が設定されることが好ましい。上述したことを考慮すると、上記角度θの上限は、静翼13のスタガー角[stagger angle]λ(>0:角度の大きさ)とされるのが好ましい。「スタガー角λ」とは、図5(a)に示されるように、タービン軸方向La(図5(a)の場合は上記延在方向Leと平行)に対する翼弦線Lcの角度である。具体的には、上記角度θの上限は、上述した試験結果に基づいて、6°~12°の範囲内の値とされることが好ましい。ただし、上記角度θの上限は、この値(範囲)に限定されるものではなく、リブ11cの自重に応じて、金属粉末射出成型体2ごとに設定され得る。 Also, if the angle θ of the rib 11c is too large, deformation during sintering due to the weight of the rib 11c may be promoted. Therefore, it is preferable to set an upper limit for the angle θ. Considering the above, it is preferable that the upper limit of the angle θ is a stagger angle λ (> 0: the magnitude of the angle) of the stationary blade 13. As shown in FIG. 5A, the “stagger angle λ” is an angle of the chord line Lc with respect to the turbine axial direction La (in the case of FIG. 5A, parallel to the extending direction Le). Specifically, the upper limit of the angle θ is preferably set to a value in the range of 6 ° to 12 ° based on the test results described above. However, the upper limit of the angle θ is not limited to this value (range) and can be set for each metal powder injection-molded body 2 according to the weight of the rib 11c.
 即ち、アウターバンド11の延在方向Leとリブ11cの延在方向Lrとの間の角度θは、0°より大きく、かつ、スタガー角λ以下とされることが好ましい。特に、収縮による変形のみを考慮すると、上記角度θは、スタガー角λと同じ大きさとされるのが特に好ましい。ここで、静翼13のスタガー角λはある程度決まっているため、具体的には、0°<θ≦12°とされることが好ましい。なお、アウターバンド11の延在方向Leからリブ11cの延在方向Lrへの上記角度θの向きは、タービン軸方向Laから翼弦線Lcへのスタガー角λの向きとは逆になる。 That is, it is preferable that the angle θ between the extending direction Le of the outer band 11 and the extending direction Lr of the rib 11c is greater than 0 ° and equal to or less than the stagger angle λ. In particular, considering only deformation due to shrinkage, the angle θ is particularly preferably the same as the stagger angle λ. Here, since the stagger angle λ of the stationary blade 13 is determined to some extent, specifically, it is preferable that 0 ° <θ ≦ 12 °. The direction of the angle θ from the extending direction Le of the outer band 11 to the extending direction Lr of the rib 11c is opposite to the direction of the stagger angle λ from the turbine axial direction La to the chord line Lc.
 図6に、金属粉末射出成型体2の端面がタービン軸方向Laに対して傾斜されている変形例を示す。図6に示されるように、静翼13のスタガー角λとの関係によっては、リブ11cがこのように傾斜される場合もある。本変形例では、アウターバンド11の延在方向Leとタービン軸方向Laとは平行とはならない。図6に示されるような場合は、リブ11cに対するアウターバンド11のオーバーハングOH1及びOH2の差を小さくでき、金属粉末射出成型体2(金属製品1)収縮時の歪みによる変形を効果的に抑制することもできる。 FIG. 6 shows a modification in which the end surface of the metal powder injection molded body 2 is inclined with respect to the turbine axial direction La. As shown in FIG. 6, depending on the relationship with the stagger angle λ of the stationary blade 13, the rib 11c may be inclined in this way. In this modification, the extending direction Le of the outer band 11 and the turbine axial direction La are not parallel. In the case as shown in FIG. 6, the difference between the overhangs OH1 and OH2 of the outer band 11 with respect to the rib 11c can be reduced, and the deformation due to distortion at the time of contraction of the metal powder injection molded body 2 (metal product 1) is effectively suppressed. You can also
 次に、上述した接合部3の隙間g(図4(a)参照)について説明する。図7(a)に示されるように、二枚の金属粉末射出成型板6を用意し、一方の金属粉末射出成型板6上で、スペーサ7を用いて、他方の金属粉末射出成型板6を傾斜させて、二枚の金属粉末射出成型板6の間に隙間を形成した。スペーサ7の水平位置を変化させることで、隙間の大きさを調整できる。この隙間に塗布剤4を塗布して金属粉末射出成型板6を脱脂及び焼結させて、二枚の金属粉末射出成型板6を十分な強度で接合可能な隙間Cを測定した。十分な接合強度を実現し得る隙間Cは0.1mmであった。従って、接合部3の隙間gを0.1mm以下とすることが好ましい。 Next, the gap g (see FIG. 4A) of the joint 3 described above will be described. As shown in FIG. 7A, two metal powder injection molding plates 6 are prepared, and the other metal powder injection molding plate 6 is mounted on one metal powder injection molding plate 6 using a spacer 7. A gap was formed between the two metal powder injection molding plates 6 by inclining. The size of the gap can be adjusted by changing the horizontal position of the spacer 7. The coating agent 4 was apply | coated to this clearance gap, the metal powder injection molding board 6 was degreased and sintered, and the clearance gap C which can join the two metal powder injection molding boards 6 with sufficient intensity | strength was measured. The gap C that can realize sufficient bonding strength was 0.1 mm. Therefore, it is preferable that the gap g of the joint portion 3 is 0.1 mm or less.
 なお、金属粉末射出成型板6の原料となる金属粉末及びバインダ等に応じて、上記隙間Cは変化し得る。即ち、接合部3の隙間gは、必ずしも、0.1mm以下に限定されるものではなく、経験的には0.1mm~0.5mm以下であることが好ましい。 It should be noted that the gap C can be changed according to the metal powder, the binder, and the like that are the raw materials of the metal powder injection molding plate 6. That is, the gap g of the joint portion 3 is not necessarily limited to 0.1 mm or less, and is empirically preferably 0.1 mm to 0.5 mm.
 本実施形態の接合方法によれば、塗布剤4が窒素(N)又は塩素(Cl)を含むので、塗布剤4の分解速度を遅くできる。従って、脱脂又は焼結時における金属粉末射出成型体2同士の密着状態をより長く維持することができ、接合部3の接合強度を向上することができる。 According to the bonding method of this embodiment, since the coating agent 4 contains nitrogen (N) or chlorine (Cl), the decomposition rate of the coating agent 4 can be slowed. Therefore, the adhesion state between the metal powder injection molded bodies 2 at the time of degreasing or sintering can be maintained for a longer time, and the bonding strength of the bonding portion 3 can be improved.
 本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能である。例えば、インナーバンド12にリブが形成されてもよい。なお、リブ11cは、脱脂又は焼結時における金属製品1(金属粉末射出成型体2)の形状精度向上のために設けられるので、静翼ユニットの完成時までに切削される場合もある(リブ11cが切削されても、切削跡からリブ11cの角度θは判別し得る)。また、リブ11cは、一つの金属粉末射出成型体2に複数設けられてもよい。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, ribs may be formed on the inner band 12. Since the rib 11c is provided for improving the shape accuracy of the metal product 1 (metal powder injection molded body 2) during degreasing or sintering, it may be cut by the time when the stationary blade unit is completed (ribs). Even if 11c is cut, the angle θ of the rib 11c can be determined from the cutting trace). A plurality of ribs 11c may be provided in one metal powder injection molded body 2.

Claims (8)

  1.  金属粉末射出成型体の接合方法であって、
     それぞれ金属粉末とバインダとを混練して射出成型された少なくとも二つの金属粉末射出成型体を互いに当接させ、
     前記少なくとも二つの金属粉末射出成型体が当接されている接合部に、窒素又は塩素を含む塗布剤を塗布し、
     前記接合部に前記塗布剤が塗布された前記少なくとも二つの金属粉末射出成型体を脱脂又は焼結することで、前記少なくとも二つの金属粉末射出成型体を前記接合部で接合させて金属製品を製作する、金属粉末射出成型体の接合方法。
    A method for joining metal powder injection moldings,
    At least two metal powder injection-molded bodies that are injection-molded by kneading metal powder and a binder are brought into contact with each other,
    Applying a coating agent containing nitrogen or chlorine to the joint where the at least two metal powder injection molded bodies are in contact,
    By degreasing or sintering the at least two metal powder injection molded bodies in which the coating agent is applied to the joint, the metal products are manufactured by joining the at least two metal powder injection molded bodies at the joint. A method for joining metal powder injection molded bodies.
  2.  請求項1に記載の金属粉末射出成型体の接合方法であって、
     前記バインダが、所定温度域で揮発するワックスと、前記所定温度域よりも高い温度域で飛散する樹脂と、を含み、
     前記塗布剤の少なくとも一部が、前記少なくとも二つの金属粉末射出成型体の脱脂時又は焼結時に、前記ワックスよりも遅く揮発し、前記樹脂よりも早く飛散する、金属粉末射出成型体の接合方法。
    A method for joining metal powder injection molded bodies according to claim 1,
    The binder includes a wax that volatilizes in a predetermined temperature range, and a resin that scatters in a temperature range higher than the predetermined temperature range,
    At least a part of the coating agent volatilizes slower than the wax and scatters faster than the resin during degreasing or sintering of the at least two metal powder injection molded bodies, and the joining method of the metal powder injection molded bodies .
  3.  請求項1又は2に記載の金属粉末射出成型体の接合方法であって、
     前記塗布剤が、前記接合部の接触面又は周側面に塗布される、金属粉末射出成型体の接合方法。
    A method for joining metal powder injection molded bodies according to claim 1 or 2,
    The joining method of the metal powder injection molding body by which the said coating agent is apply | coated to the contact surface or peripheral side surface of the said junction part.
  4.  請求項1~3の何れか一項に記載の金属粉末射出成型体の接合方法であって、
     前記接合部における隙間が0.1mm以下に保持された状態で、前記少なくとも二つの金属粉末射出成型体を脱脂又は焼結する、金属粉末射出成型体の接合方法。
    A method for joining metal powder injection molded bodies according to any one of claims 1 to 3,
    A method for joining metal powder injection molded bodies, wherein the at least two metal powder injection molded bodies are degreased or sintered in a state where a gap in the joint portion is maintained at 0.1 mm or less.
  5.  請求項1~4の何れか一項に記載の金属粉末射出成型体の接合方法であって、
     前記金属製品が、複数の翼と、前記複数の翼を支持するバンド部とを備えた翼セクタであり、
     前記少なくとも二つの金属粉末射出成型体のそれぞれが、単一の翼を有する前記翼セクタの分割体である、金属粉末射出成型体の接合方法。
    A method for joining metal powder injection molded bodies according to any one of claims 1 to 4,
    The metal product is a wing sector including a plurality of wings and a band portion supporting the plurality of wings;
    The method for joining metal powder injection molded bodies, wherein each of the at least two metal powder injection molded bodies is a divided body of the blade sector having a single blade.
  6.  請求項5に記載の金属粉末射出成型体の接合方法であって、
     前記バンド部の前記翼が立設された面の裏面上に、前記翼の翼弦線と交差する方向に延在するリブが形成されている、金属粉末射出成型体の接合方法。
    It is a joining method of the metal powder injection molding object according to claim 5,
    A method for joining metal powder injection moldings, wherein a rib extending in a direction intersecting a chord line of the wing is formed on the back surface of the surface of the band portion on which the wing is erected.
  7.  請求項6に記載の金属粉末射出成型体の接合方法であって、
     前記分割体における前記バンド部の延在方向と前記リブの延在方向との角度をθとすると、角度θは、0°より大きく、かつ、前記翼のスタガー角以下である、金属粉末射出成型体の接合方法。
    It is a joining method of the metal powder injection molding object according to claim 6,
    When the angle between the extending direction of the band portion and the extending direction of the rib in the divided body is θ, the angle θ is greater than 0 ° and equal to or less than the stagger angle of the blade. Body joining method.
  8.  請求項6に記載の金属粉末射出成型体の接合方法であって、
     前記分割体における前記バンド部の延在方向と前記リブの延在方向との間の角度をθとすると、0°<θ≦12°である、金属粉末射出成型体の接合方法。
    It is a joining method of the metal powder injection molding object according to claim 6,
    A joining method of metal powder injection molded bodies, wherein 0 ° <θ ≦ 12 °, where θ is an angle between the extending direction of the band portion and the extending direction of the rib in the divided body.
PCT/JP2014/074514 2013-10-15 2014-09-17 Method for bonding metal powder injection molded bodies WO2015056513A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2926768A CA2926768C (en) 2013-10-15 2014-09-17 Method for jointing metal injection molded parts
KR1020167012218A KR20160098182A (en) 2013-10-15 2014-09-17 Method for bonding metal powder injection molded bodies
JP2015542549A JP6245268B2 (en) 2013-10-15 2014-09-17 Joining method of metal powder injection molding
EP14854623.7A EP3059033A4 (en) 2013-10-15 2014-09-17 Method for bonding metal powder injection molded bodies
CN201480056174.8A CN105612015B (en) 2013-10-15 2014-09-17 The joint method of metal powder injection molding body
US15/093,246 US20160221081A1 (en) 2013-10-15 2016-04-07 Method for jointing metal injection molded parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-214346 2013-10-15
JP2013214346 2013-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/093,246 Continuation US20160221081A1 (en) 2013-10-15 2016-04-07 Method for jointing metal injection molded parts

Publications (1)

Publication Number Publication Date
WO2015056513A1 true WO2015056513A1 (en) 2015-04-23

Family

ID=52827966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074514 WO2015056513A1 (en) 2013-10-15 2014-09-17 Method for bonding metal powder injection molded bodies

Country Status (8)

Country Link
US (1) US20160221081A1 (en)
EP (1) EP3059033A4 (en)
JP (1) JP6245268B2 (en)
KR (1) KR20160098182A (en)
CN (1) CN105612015B (en)
CA (1) CA2926768C (en)
TW (1) TWI511815B (en)
WO (1) WO2015056513A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562696A (en) * 2016-01-11 2016-05-11 江西理工大学 Metal 3D printing method
US11097345B2 (en) * 2015-08-06 2021-08-24 Safran Aircraft Engines Method for producing a part consisting of a composite material
JP7435161B2 (en) 2020-03-30 2024-02-21 セイコーエプソン株式会社 Manufacturing method of metal composite sintered body

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015210770A1 (en) * 2015-06-12 2016-12-15 Rolls-Royce Deutschland Ltd & Co Kg Component construction, component for a gas turbine and method for producing a component of a gas turbine by metal powder injection molding
CN106735170B (en) * 2016-12-20 2019-01-25 佛山铂利镁特金属科技有限公司 A kind of injection moulding method of big part metalwork
CN110573279B (en) * 2017-04-27 2021-08-10 联邦摩高气门机构公司 Poppet valve and method of manufacturing the same
FR3066936B1 (en) * 2017-06-01 2019-11-01 Safran IMPROVED CO-CLEANING WELDING PROCESS
WO2018220213A1 (en) * 2017-06-01 2018-12-06 Safran Method for improved manufacturing of a dual microstructure part
KR102013256B1 (en) 2017-11-23 2019-10-21 두산중공업 주식회사 Steam turbine
CN108326308A (en) * 2017-12-25 2018-07-27 杭州铭赫科技有限公司 A kind of hollow and thin-walled structural metal powder fission injection moulding splicing sintering method
CN108687348A (en) * 2018-05-25 2018-10-23 合肥汇智新材料科技有限公司 A kind of Novel valve core production technology
FR3096912B1 (en) * 2019-06-07 2021-10-29 Safran Aircraft Engines A method of manufacturing a turbomachine part by MIM molding
KR102289703B1 (en) 2019-12-31 2021-08-17 한국과학기술원 Chip-scale atomic clock
DE102020133998A1 (en) * 2020-12-17 2022-06-23 Rolls-Royce Deutschland Ltd & Co Kg Blade component, method of manufacture thereof and gas turbine
CN114289996B (en) * 2021-12-15 2023-04-11 北京航星机器制造有限公司 Large-size platform manufacturing and creep control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711305A (en) * 1993-06-28 1995-01-13 Seiko Instr Inc Method for joining injection molded articles of metallic powder and ceramic powder
JPH0820808A (en) * 1994-07-06 1996-01-23 Olympus Optical Co Ltd Production of sintered compact
JP2004197622A (en) 2002-12-17 2004-07-15 Ishikawajima Harima Heavy Ind Co Ltd Turbine compressor stationary blade
JP2006249943A (en) * 2005-03-08 2006-09-21 Honda Motor Co Ltd Centrifugal impeller
JP2009019629A (en) * 2007-07-13 2009-01-29 Snecma Shim for blade of turbo machine
JP2009097370A (en) * 2007-10-15 2009-05-07 Mitsubishi Heavy Ind Ltd Assembly method of stationary blade annular segment, stationary annular segment, joining member, and welding method
JP2010236042A (en) 2009-03-31 2010-10-21 Nippon Piston Ring Co Ltd Method of joining metal powder injection moldings, and method of producing metal composite sintered material
JP2013018228A (en) * 2011-07-13 2013-01-31 Ihi Corp Method of manufacturing blade for gas turbine engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10331599A1 (en) * 2003-07-11 2005-02-03 Mtu Aero Engines Gmbh Component for a gas turbine and method for producing the same
CN1873245A (en) * 2005-05-31 2006-12-06 李茂碷 Circulator and manufactureing method
JP2007117306A (en) * 2005-10-26 2007-05-17 Sri Sports Ltd Golf club shaft
TWI383561B (en) * 2008-11-24 2013-01-21 Arx Group Injection molding of the bobbin and its manufacturing method
WO2010124398A1 (en) * 2009-04-29 2010-11-04 Maetta Sciences Inc. A method for co-processing components in a metal injection molding process, and components made via the same
DE102011082484A1 (en) * 2011-09-12 2013-03-14 Robert Bosch Gmbh Manufacturing a powder injection molded-composite component, comprises e.g. providing powder injection molded-green sheets to be connected into a composite component, applying an adhesive system on a joining point

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711305A (en) * 1993-06-28 1995-01-13 Seiko Instr Inc Method for joining injection molded articles of metallic powder and ceramic powder
JPH0820808A (en) * 1994-07-06 1996-01-23 Olympus Optical Co Ltd Production of sintered compact
JP2004197622A (en) 2002-12-17 2004-07-15 Ishikawajima Harima Heavy Ind Co Ltd Turbine compressor stationary blade
JP2006249943A (en) * 2005-03-08 2006-09-21 Honda Motor Co Ltd Centrifugal impeller
JP2009019629A (en) * 2007-07-13 2009-01-29 Snecma Shim for blade of turbo machine
JP2009097370A (en) * 2007-10-15 2009-05-07 Mitsubishi Heavy Ind Ltd Assembly method of stationary blade annular segment, stationary annular segment, joining member, and welding method
JP2010236042A (en) 2009-03-31 2010-10-21 Nippon Piston Ring Co Ltd Method of joining metal powder injection moldings, and method of producing metal composite sintered material
JP2013018228A (en) * 2011-07-13 2013-01-31 Ihi Corp Method of manufacturing blade for gas turbine engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3059033A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097345B2 (en) * 2015-08-06 2021-08-24 Safran Aircraft Engines Method for producing a part consisting of a composite material
CN105562696A (en) * 2016-01-11 2016-05-11 江西理工大学 Metal 3D printing method
JP7435161B2 (en) 2020-03-30 2024-02-21 セイコーエプソン株式会社 Manufacturing method of metal composite sintered body

Also Published As

Publication number Publication date
CA2926768C (en) 2018-10-23
TW201524640A (en) 2015-07-01
TWI511815B (en) 2015-12-11
CA2926768A1 (en) 2015-04-23
CN105612015A (en) 2016-05-25
KR20160098182A (en) 2016-08-18
CN105612015B (en) 2019-04-12
EP3059033A1 (en) 2016-08-24
US20160221081A1 (en) 2016-08-04
JPWO2015056513A1 (en) 2017-03-09
EP3059033A4 (en) 2017-06-21
JP6245268B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6245268B2 (en) Joining method of metal powder injection molding
CN105710377B (en) Composite additive manufacturing method using composite additive manufacturing features for composite components
US6551551B1 (en) Sinter bonding using a bonding agent
KR100886112B1 (en) Powder metal scrolls
EP2957376B1 (en) Method of forming a bonded article with provision of a porous interlayer region
US7845549B2 (en) MIM braze preforms
US20160010469A1 (en) Hybrid manufacturing for rotors
US20230033578A1 (en) Techniques and assemblies for joining components
CN105921756A (en) Method for producing a molded article with insert
US20070202000A1 (en) Method For Manufacturing Components
TWI483795B (en) Method for integrally forming a composite metal
JP7212633B2 (en) Method for improved manufacture of dual microtextured parts
WO2017150340A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
TW202333875A (en) Aluminum powder mixture, metal additive manufacturing powder, and additively manufactured metal product
JP6985118B2 (en) Manufacturing method of metal parts
CN109986699A (en) Compound noise reduction sintered saw bits and preparation method thereof
JP2022139734A (en) Compound sintered compact and manufacturing method thereof and joint material
EP3822012A1 (en) Techniques and assemblies for joining components using solid retainer materials
JP2022139734A5 (en)
Martens et al. Micro feature enhanced sinter bonding of metal injection molded (MIM) parts to solid substrate
JPH10330171A (en) Brazing material for brazing material poor in wettability and production of the same
JP4790742B2 (en) Solder iron tip and method for manufacturing the same
WO2020245551A1 (en) Method for manufacturing a turbomachine part by mim molding
JP6232858B2 (en) Sintered body manufacturing method and jig usable therefor
JPH06287611A (en) Method for joining cemented carbides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542549

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2926768

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012218

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014854623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854623

Country of ref document: EP