WO2015054890A1 - 一种调度请求的处理方法及装置 - Google Patents

一种调度请求的处理方法及装置 Download PDF

Info

Publication number
WO2015054890A1
WO2015054890A1 PCT/CN2013/085470 CN2013085470W WO2015054890A1 WO 2015054890 A1 WO2015054890 A1 WO 2015054890A1 CN 2013085470 W CN2013085470 W CN 2013085470W WO 2015054890 A1 WO2015054890 A1 WO 2015054890A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user equipment
detection
time
detection time
Prior art date
Application number
PCT/CN2013/085470
Other languages
English (en)
French (fr)
Inventor
靳日飞
马海涛
陈泉宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001682.1A priority Critical patent/CN103765971B/zh
Priority to PCT/CN2013/085470 priority patent/WO2015054890A1/zh
Publication of WO2015054890A1 publication Critical patent/WO2015054890A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the base station For example, if the base station detects the false alarm of the SR, the base station unilaterally starts the activation period (inactive) of the DRX of the UE, and the actual DRX state of the UE is still in the dormant state. At this time, for the downlink, if the downlink data transmission by the base station causes DTX (Discontinuous Transmission) feedback of the downlink data, even when the downlink transmission reaches the maximum number of retransmissions, an abnormal call drop may be caused.
  • DTX Continuous Transmission
  • the embodiment of the invention provides a processing method and a device for scheduling a request, which are used to solve the technical problem that a wireless link abnormality occurs when a SR false alarm occurs under the working mechanism of the DRX in the prior art.
  • the base station performs SR detection according to the SR detection policy.
  • a sending module configured to send, to the base station, the SR according to the SR sending policy when it is detected that there is uplink data to be sent.
  • the sending module is further configured to: when the uplink authorization issued by the base station is not received, send a random access request or a reestablishment request to the base station.
  • the user equipment provided by the embodiment of the present invention includes:
  • the device further includes:
  • a base station provided by the embodiment of the present invention includes:
  • FIG. 11 is a structural diagram of a processing apparatus for scheduling a request according to a second embodiment of the present invention
  • FIG. 12 is a structural diagram of a user equipment according to an embodiment of the present invention
  • FIG. 13 is a structural diagram of a processing apparatus for scheduling a request according to a third embodiment of the present invention
  • FIG. 14 is a structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of a processing apparatus for scheduling a request according to a fourth embodiment of the present invention
  • FIG. 16 is a structural diagram of another user equipment according to an embodiment of the present invention
  • FIG. 17 is a structural diagram of a processing apparatus for scheduling a request according to a fifth embodiment of the present invention
  • FIG. 18 is a structural diagram of still another base station according to an embodiment of the present invention.
  • the base station generates a configuration parameter, where the configuration parameter is used to indicate an SR detection policy of the base station.
  • the base station generates configuration parameters, where the configuration parameters are used to indicate the SR detection policy of the base station.
  • the SR detection strategy includes: the base station does not perform SR detection during the forbidden detection time; and the base station performs SR detection within the allowable detection time. Specifically, the base station performs the SR detection in the allowable detection time.
  • the allowable detection time includes an activation period of the user equipment, and the prohibition detection time is a time other than the allowed detection time. Further optionally, allowing the detection time may also include activating the preparation period.
  • the Inactivity Timer is the time that the UE keeps active after the PDCCH that is initially transmitted by the UE is successfully decoded by the HARQ (Hybrid Automatic Repeat Request), that is, the UE receives the PDCCH indicating that it is a UL/DL (Up).
  • the SR Active Timer is the allowable detection time, which is the total time that the UE stays awake after waking up from the DRX sleep period.
  • the configuration parameters generated by the base station may include: an RRC (Radio Resource Control) control cell, for example, may be an SR_MASK RRC control cell, and an RRC control cell format is in the application.
  • RRC Radio Resource Control
  • the language can be expressed as:
  • the configuration parameters generated by the base station may include: MAC (Medium Access Control) control cells, for example, the MAC may be disabled for the SR, that is, increased.
  • the logical channel ID of an MCE is configured by the MAC layer to prohibit the detection time.
  • the format of the MAC control cell can be:
  • the SR Forbid Timer can be set to a time constant, for example, 5 seconds.
  • the forbidden detection time can be set to: SR Forbid Timer*N*DRX Cycle, that is, the detection time is the product of the SR Forbid Timer and the N DRX cycles, and N is greater than zero. Positive integer.
  • the RRC control cell may also be a MAC control cell, or may be other implementation forms, and is not specifically limited by this embodiment.
  • the base station sends configuration parameters to the user equipment, so that the user equipment determines an SR sending policy that matches the SR detection policy according to the SR detection policy of the base station.
  • the base station sends configuration parameters to the user equipment, and after receiving the configuration parameter, the user equipment parses the configuration parameter, and the configuration parameter is used to indicate the SR detection policy of the base station, and the user equipment is configured according to the SR of the base station.
  • the detection policy determines an SR transmission policy that matches the SR detection policy.
  • the SR detection policy may include: the base station does not perform SR detection during the forbidden detection time; and the base station performs SR detection within the allowable detection time.
  • the SR sending policy may include: the user equipment does not perform SR sending within the time when the detecting is prohibited; the user equipment may perform SR sending within the allowed detecting time. Specifically, the user equipment can perform SR transmission during the detection time.
  • the user equipment does not perform SR transmission within the forbidden detection time, and the SR transmission may be performed within the allowed detection time. If the uplink data arrives in the forbidden detection time, the user equipment caches the uplink data in the local storage area, and waits for the detection time to be sent before the SR is sent. The base station performs the SR detection within the allowable detection time. The SR detection is not performed during the detection time.
  • the user equipment does not perform SR transmission within the forbidden detection time, and the prohibition detection time can be set as: SR Forbid Timer*N*DRX Cycle. If the uplink data arrives in the forbidden detection time, the user equipment caches the uplink data in the local storage area, and waits for the detection time to be sent before the SR is sent. The base station performs the SR detection within the allowable detection time. The SR detection is not performed during the detection time.
  • the implementation of the present invention provides a method for processing a scheduling request.
  • the base station sends a configuration parameter to the user equipment, where the configuration parameter is used to indicate a scheduling request SR detection policy of the base station, and the configuration parameter may include an RRC control cell or a MAC control cell.
  • the user equipment is configured to determine the corresponding SR sending policy according to the SR detection policy, so that when the user equipment detects that there is uplink data to be sent, the SR sends the SR to the base station according to the SR sending policy, and the base station performs the SR detection according to the SR detection policy, and the detection time is allowed.
  • the user equipment receives the configuration parameter that is sent by the base station, where the configuration parameter is used to indicate the SR detection policy of the base station.
  • the user equipment receives configuration parameters sent by the base station,
  • the configuration parameter is used to indicate the SR detection policy of the base station.
  • the SR detection strategy includes: the base station does not perform SR detection during the forbidden detection time; and the base station performs SR detection within the allowable detection time.
  • the allowed detection time includes an activation period of the user equipment, and the prohibition detection time is a time other than the allowed detection time. Further optionally, allowing the detection time may further include activating the preparation period. The pre-activation period allows the SR to reach the base station in advance, and the base station can timely deliver the uplink grant, which reduces the delay.
  • the user equipment determines, according to the SR detection policy, an SR sending policy that matches the SR detection policy.
  • the user equipment determines, according to the SR detection policy, an SR transmission policy that matches the SR detection policy, where the SR transmission policy may include: the user equipment does not perform SR transmission within the prohibition detection time; The SR transmission can be performed within the allowable detection time.
  • the user equipment When detecting that there is uplink data to be sent, the user equipment sends the SR to the base station according to the SR sending policy.
  • the user equipment when it is detected that the uplink data needs to be sent, the user equipment sends the SR to the base station according to the SR sending policy. Further optionally, the user equipment does not perform SR transmission within the time when the detection is prohibited. If the uplink data arrives in the forbidden detection time, the user equipment caches the uplink data in the local storage area, and waits for the detection time to be sent before the SR is sent. The base station performs the SR detection within the allowable detection time. The SR detection is not performed during the detection time.
  • the embodiment of the present invention provides a processing method for scheduling a request, where the user equipment receives the configuration parameter sent by the base station, the configuration parameter is used to indicate the scheduling request SR detection policy of the base station, and the user equipment determines the SR transmission policy that matches the SR detection policy.
  • the SR is sent to the base station according to the SR transmission policy.
  • the SR transmission policy of the user equipment corresponds to the SR detection policy of the base station, and the detection status of the user equipment and the base station are consistent, which can effectively reduce the probability of false alarms. .
  • FIG. 3 is a flowchart of a method for processing a scheduling request according to a third embodiment of the present invention. The specific implementation is as shown in FIG. 3, and the processing method of the scheduling request provided in this embodiment includes: S301 ⁇ S305.
  • the base station generates an RRC control cell, where the RRC control cell is used to indicate an SR detection policy of the base station.
  • the base station generates an RRC control cell, where the RRC control cell is used to indicate the SR detection policy of the base station.
  • the SR detection policy includes: the base station does not perform the SR detection during the forbidden detection time.
  • the base station performs SR detection within the allowable detection time.
  • the allowable detection time includes an activation period of the user equipment, and the prohibition detection time is a time other than the allowed detection time.
  • allowing the detection time may further include activating the preparation period. The pre-activation period allows the SR to reach the base station in advance, and the base station can timely deliver the uplink grant, which reduces the delay.
  • the RRC control information generated by the base station may be, for example, an SR_MASK RRC control cell, and the format of the RRC control cell may be expressed in the application language as:
  • the base station sends the RRC control cell to the user equipment.
  • the user equipment determines, according to the SR detection policy, an SR sending policy that matches the SR detection policy.
  • the user equipment parses the RRC control cell, and the RRC control cell is used to indicate the SR detection policy of the base station, and the user equipment determines and detects the SR according to the SR detection policy. If the policy matches the SR sending policy, the SR sending policy may include: the user equipment does not perform SR sending within the forbidden detecting time; and the user equipment may perform SR sending within the allowed detecting time.
  • the user equipment when it is detected that the uplink data needs to be sent, the user equipment sends the SR to the base station according to the SR sending policy. Further optionally, the user equipment does not perform SR transmission within the prohibition detection time. If it is detected that the uplink data arrives within the prohibited detection time, The user equipment caches the uplink data in the local storage area, and waits for the detection time to transmit the SR. The base station performs the SR detection within the allowable detection time, and does not perform the SR detection within the prohibition detection time.
  • the base station performs SR detection according to the SR detection policy.
  • the base station performs SR detection according to the SR detection policy, where the SR detection policy includes: the base station does not perform SR detection during the prohibition detection time; and the base station performs SR detection within the allowable detection time. Specifically, the base station can perform the SR detection during the allowed detection time. When the user equipment detects that there is uplink data to be sent, the user equipment is allowed to detect the time.
  • the present invention provides a method for processing a scheduling request, where the base station sends an RRC control cell to the user equipment, where the RRC control information element is used to indicate a scheduling request SR detection policy of the base station, and the user equipment can determine that the SR detection policy is matched.
  • the SR transmission policy when it is detected that there is uplink data to be transmitted, the user equipment sends an SR to the base station at the detection time, the base station detects the SR at the detection time, and the user equipment does not transmit the SR when the detection time is prohibited, and the base station does not prohibit the detection time.
  • FIG. 4 is a flowchart of a method for processing a scheduling request according to a fourth embodiment of the present invention.
  • the specific implementation is shown in FIG. 4.
  • the processing method of the scheduling request provided in this embodiment includes: S401 ⁇ S405.
  • the base station generates a MAC control cell, where the MAC control cell is used to indicate an SR detection policy of the base station.
  • the base station generates a MAC control cell, where the MAC control cell is used to indicate an SR detection policy of the base station.
  • the SR detection policy includes: the base station does not perform the SR detection during the forbidden detection time.
  • the base station can perform SR detection within the allowable detection time.
  • the allowable detection time includes an activation period of the user equipment, and the prohibition detection time is the allowed detection period.
  • allowing the detection time may also include activating the preparation period. The pre-activation period allows the SR to reach the base station in advance, and the base station can timely deliver the uplink grant, which reduces the delay.
  • the MAC control cell generated by the base station may be, for example, an SR-inhibited MAC cell, that is, a logical channel ID of one MCE is added, and the prohibition detection time is configured by the MAC layer, and the format of the MAC control cell is configured.
  • an SR-inhibited MAC cell that is, a logical channel ID of one MCE is added, and the prohibition detection time is configured by the MAC layer, and the format of the MAC control cell is configured.
  • the SR Forbid Timer 0
  • the base station sends a MAC control cell to the user equipment.
  • the user equipment When it is detected that there is uplink data to be sent, the user equipment sends the SR to the base station according to the SR sending policy.
  • the user equipment when it is detected that the uplink data needs to be sent, the user equipment sends the SR to the base station according to the SR sending policy. Further optionally, the user equipment does not perform SR transmission within the prohibition detection time. If it is detected that the uplink data arrives within the prohibited detection time, The user equipment caches the uplink data in the local storage area, and waits for the detection time to transmit the SR. The base station performs the SR detection within the allowable detection time, and does not perform the SR detection within the prohibition detection time.
  • the base station performs SR detection according to the SR detection policy.
  • the base station performs SR detection according to the SR detection policy, where
  • the SR detection strategy includes: The base station does not perform SR detection during the prohibition detection time; the base station performs SR detection within the allowable detection time. Specifically, the base station can perform SR detection during the allowed detection time.
  • the base station detects that there is uplink data to be transmitted, and the user equipment sends the SR to the base station within the allowed detection time.
  • the user equipment detects that there is no uplink data to be sent, the user equipment does not send the SR to the base station within the allowed detection time, and the base station does not detect the SR.
  • the present invention provides a method for processing a scheduling request.
  • the base station sends a MAC control cell to the user equipment, where the MAC control cell is used to indicate a scheduling request SR detection policy of the base station, and the user equipment can determine that the SR detection policy is matched.
  • the SR transmission policy when it is detected that there is uplink data to be transmitted, the user equipment sends an SR to the base station at the allowable detection time, the base station checks the SR at the time of the detection, and the user equipment does not transmit the SR at the time of prohibiting the detection, and the base station does not prohibit the detection time.
  • FIG. 5 is a flowchart of a method for processing a scheduling request according to a fifth embodiment of the present invention.
  • the processing method of the scheduling request shown in FIG. 5 is described from the perspective of a base station.
  • the processing method of the scheduling request provided in this embodiment includes the following steps: S501 ⁇ S503.
  • the base station generates configuration parameters, where the configuration parameters include: an SR vacant cell and a configuration time.
  • the SR vacant cell is used to indicate that the user equipment does not perform SR reporting
  • the configuration time is used to indicate that the user equipment waits for the base station to send an uplink grant.
  • the base station generates a configuration parameter, where the configuration parameter includes: an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration time is used to indicate The time when the user equipment waits for the uplink grant to be sent by the base station.
  • the control unit may be configured as an SR_NULL RRC cell. If the SR control cell is absent, the base station performs physical layer configuration of the SR. If the configuration parameter generated by the base station includes the SR vacant cell, the RRC configuration is not The physical layer configuration of the SR is carried, and the user equipment does not have the corresponding SR configuration.
  • the configuration time can be set to a preset time in the SR Wait Timer, for example, 30 seconds, 60 seconds, etc., and the configuration time is used to indicate the time when the user equipment waits for the uplink authorization to be sent by the base station.
  • the base station sends configuration parameters to the user equipment, so that when the user equipment needs to send the uplink data, the SR does not report the SR to the base station according to the SR vacant cell.
  • the base station sends configuration parameters to the user equipment, and after receiving the configuration parameters, the user equipment parses the configuration parameters, and the configuration parameters include: SR vacant cells and configuration time, where the SR vacant cells are used.
  • the user equipment is not required to report the SR, and the configuration time is used to indicate that the user equipment waits for the uplink grant to be sent by the base station.
  • the user equipment detects that there is uplink data to be sent, the user equipment does not report the SR to the base station according to the SR vacant cell.
  • the user equipment detects that there is uplink data to be sent, does not send an SR to the base station according to the SR vacant cell, does not initiate random access to the base station, starts the SR Wait Timer, and waits for the base station to send an uplink grant.
  • the base station sends an uplink grant to the user equipment in a preset period.
  • the base station sends an uplink authorization to the user equipment in a preset period of time.
  • the SR Wait Timer is set to N*DRX Cycle.
  • the PDCCH indication of the uplink grant is sent to the user equipment in the preset period, and the base station can generally reach each PDCCH.
  • the Duration Timer is started, the uplink grant transmission of the preset cycle time is started.
  • step S503 the method further includes the following steps:
  • the base station receives uplink data that is sent according to the uplink grant when the user equipment receives the uplink grant in the configured time.
  • the base station receives the uplink number sent by the user equipment according to the uplink data sent by the uplink grant to the base station.
  • the base station dynamically schedules the next scheduled authorized resource according to the value of the BSR. size.
  • step S503 the method further includes the following steps:
  • the base station receives a random access request or a reestablishment request sent by the user equipment when the uplink grant is not received within the configured time.
  • the base station receives the random access request or the reestablishment request sent by the base station, and the base station receives the random access request or the reestablishment request sent by the user equipment.
  • the base station sends the DRX Command MAC Control Element to the user equipment, indicating that the user equipment is switched from the state where the detection time is allowed to the state where the detection time is prohibited, and enters the power saving state. .
  • the base station generally starts the uplink grant indication transmission of the preset cycle time on each scheduling timer. If the BSRs reported by the user equipment are all 0 and there is no downlink data transmission requirement during the duration timer, the base station can immediately end the duration timer. Send the DRX Command MAC Control Element to prevent the UE from entering an unnecessary DRX activation period.
  • the present invention provides a method for processing a scheduling request.
  • the base station sends configuration parameters to the user equipment.
  • the configuration parameters include the SR vacant cells and the configuration time.
  • the user equipment When it is detected that there is uplink data to be sent, the user equipment according to the SR vacant cell.
  • the SR is not reported to the base station. If the user equipment receives the uplink grant sent by the base station within the configured time, the user equipment sends the uplink data to the base station according to the uplink grant. If the user equipment does not receive the uplink sent by the base station within the configured time.
  • Authorization sending a random access request or a reestablishment request to the base station.
  • FIG. 6 is a flowchart of a method for processing a scheduling request according to a sixth embodiment of the present invention.
  • the processing method of the scheduling request shown in FIG. 6 is described from the perspective of a user equipment, where the user equipment may be a mobile user equipment, a PC user equipment, and serve global communication.
  • the device or other types of user equipment, the implementation form of the specific user equipment is not limited.
  • the processing method of the scheduling request provided in this embodiment includes the following steps: S601 ⁇ S604.
  • the user equipment receives configuration parameters sent by the base station, where the configuration parameters include an SR vacant cell and a configuration time.
  • the SR vacant cell is used to indicate that the user equipment does not perform SR reporting
  • the configuration time is used to indicate that the user equipment waits for the base station to send an uplink grant.
  • the user equipment receives the configuration parameters sent by the base station and parses the configuration parameters.
  • the configuration parameter includes: an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration time is used to indicate that the user equipment waits for the base station to send an uplink grant.
  • the SR control cell may be, for example, an SR_NULL RRC cell. If the SR control cell is absent, the base station performs physical layer configuration of the SR. If the received configuration parameter includes the SR vacant cell, the base station When the RRC configuration does not carry the physical layer configuration of the SR, the user equipment does not have the corresponding SR configuration, and the user equipment does not report the SR.
  • the configuration time can be set to the preset time in the SR Wait Timer, for example, 30 seconds, 60 seconds, etc. The configuration time is used to indicate the time when the user equipment waits for the uplink authorization to be sent by the base station.
  • the user equipment When it is detected that there is uplink data to be sent, the user equipment does not report the SR to the base station according to the SR vacant cell.
  • the user equipment when detecting that there is uplink data to be sent, the user equipment does not report the SR to the base station according to the SR vacant cell. For example, the user equipment detects that uplink data needs to be sent, and controls according to the SR vacant cell. The SR is not sent to the base station, and the control does not initiate random access to the base station, and the SR Wait Timer timer is started, and the base station is sent an uplink grant.
  • the uplink data is sent to the base station according to the uplink grant.
  • the uplink data is sent to the base station according to the uplink grant.
  • the user equipment after receiving the uplink authorization, sends data according to the BSR carrying data to the base station.
  • the base station After receiving the BSR, the base station dynamically schedules the resource size of the next scheduled authorization according to the value of the BSR.
  • the base station sends the uplink grant to the base station. Send a random access request or a rebuild request.
  • the base station receives the random access request or the reestablishment request sent by the base station, and the base station receives the random access request or the reestablishment request sent by the user equipment.
  • the present invention provides a processing method for a scheduling request.
  • the user equipment receives the configuration parameters sent by the base station, and the configuration parameters include the SR vacant cells and the configuration time. When it is detected that there is uplink data to be sent, the user equipment according to the SR vacant cell The control does not report the SR to the base station. If the user equipment receives the uplink grant sent by the base station within the configured time, the user equipment sends the uplink data to the base station according to the uplink grant.
  • the uplink grant sends a random access request or a reestablishment request to the base station.
  • the SR vacant cell sent by the base station to the user equipment can be used to indicate that the user equipment does not report the SR, and the user equipment does not report the SR.
  • FIG. 7 is a flowchart of a method for processing a scheduling request according to a seventh embodiment of the present invention.
  • the processing method of the scheduling request shown in FIG. 7 is described from the perspective of a base station.
  • the embodiment of the present invention is a processing method in the case of a false alarm.
  • the processing method for the scheduling request provided in this embodiment includes the following steps: S701 ⁇ S702.
  • the base station When the base station receives the SR for the first time in the forbidden detection time, the base station does not respond to the first received SR.
  • the base station when the base station receives the SR for the first time in the prohibition detection time, the base station does not respond to the first received SR. Under normal circumstances, the user equipment does not generate SR during the forbidden detection time. However, due to the complexity of the wireless environment, the user equipment does not send the SR, and the base station detects the SR by mistake due to the interference of the wireless environment. police. In the embodiment of the present invention, in the case where a false alarm occurs, the SR received for the first time in the prohibition detection time is not responded.
  • the base station when the base station receives the SR for the second time in the forbidden detection time, the base station sends an uplink grant to the user equipment, and controls the state where the prohibition detection time is switched to the state where the detection time is allowed.
  • the base station if the base station receives the SR for the second time in the forbidden detection time, the base station sends an uplink authorization to the user equipment according to the received SR, and the state of the prohibition detection time is switched to the allowed detection time. The state of the place. Further, if the base station receives the SR for the third time in the forbidden detection time, and the base station is in the state where the detection time is allowed, the SR may be detected.
  • step S702 the method further includes the following steps:
  • the base station stops sending an uplink grant to the user equipment, and controls to switch to the location of the allowed detection time. The state in which the detection time is prohibited is described.
  • the base station sends the downlink data to the user equipment, and if the number of times the DTX response sent by the user equipment is received is greater than the preset number of times, the control is changed from the state where the detection time is allowed to the time where the detection time is prohibited. status.
  • the SR false alarm can be processed according to the feedback of the downlink data, which reduces the possibility that the base station and the user equipment are inconsistent.
  • the present invention provides a processing method for scheduling a request.
  • the base station receives the SR for the first time in the forbidden detection time
  • the base station does not respond to the first received SR
  • the base station receives the second time within the forbidden detection time.
  • the base station sends an uplink grant to the user equipment, and controls the state in which the state of the prohibition detection time is switched to the state in which the detection time is allowed. If no configuration parameter is sent by the base station, if the SR is received for the second time in the forbidden detection time, the state where the detection time is prohibited is switched to the state where the detection time is allowed, which is the post-processing in the case of SR false alarm. Can reduce the probability of false alarms.
  • the base station sends the downlink data to the user equipment
  • the state of the allowed detection time is switched to the state where the detection time is prohibited.
  • the SR false alarm can be processed according to the feedback of the downlink data, which reduces the possibility that the base station and the user equipment are inconsistent.
  • the apparatus may include: a generating module 901, a transmitting module 902, and a detecting module 903.
  • the generating module 901 is configured to generate a configuration parameter, where the configuration parameter is used to indicate a scheduling request SR detection policy of the base station.
  • the generating module 901 generates configuration parameters, where the configuration parameters are used to indicate the SR detection policy of the base station.
  • the SR detection strategy includes: the base station does not perform SR detection during the prohibition detection time; and the base station performs SR detection within the allowable detection time. Specifically, the base station can perform the SR detection during the allowed detection time.
  • the user equipment detects that there is uplink data to be sent, the user equipment sends the SR to the base station within the allowed detection time.
  • the base station detects the SR, and when the user equipment detects that the non-existence exists.
  • the uplink data needs to be sent the user equipment does not send the SR to the base station within the allowed detection time, and the base station does not detect the SR.
  • the allowed detection time includes an activation period of the user equipment, and the prohibition detection time is a time other than the allowed detection time. Further optionally, allowing the detection time may also include activating the preparation period.
  • a schematic diagram of a DRX time may include a Pre-Strimer and a Duration Timer in a DRX Cycle, and a DRX Inactive Timer may be included in a DRX Cycle.
  • the allowable detection time includes the Duration Timer, Inactivity Timer, and Pre-Strimer.
  • the Pre-Strimer allows the SR to reach the base station before the Duration Timer, so that the base station reaches the Duration Timer and immediately issues the uplink grant, which reduces the delay.
  • the configuration parameters generated by the base station may include: an RRC control cell, for example, may be an SR_MASK RRC control cell, and the format of the RRC control cell may be expressed in the application language as:
  • the configuration parameters generated by the base station may include: MAC control cells, for example, the MAC may be disabled for the SR, that is, the logical channel ID of one MCE is added, and the MAC address is increased.
  • the layer configures the forbidden detection time.
  • the format of the MAC control cell can be:
  • the SR Forbid Timer can be set to a time constant, for example, 5 seconds.
  • the forbidden detection time can be set to: SR Forbid Timer*N*DRX Cycle, that is, the detection time is the product of the SR Forbid Timer and the N DRX cycles, and N is greater than zero. Positive integer.
  • the SR Forbid Timer 0
  • the implementation method of the configuration parameter generated by the generating module 901 is various, and may be an RRC control cell, a MAC control cell, or other implementation forms, and is not specifically implemented by the implementation.
  • the sending module 902 is configured to send the configuration parameter generated by the generating module 901 to the user equipment, so that the user equipment determines an SR sending policy that matches the SR detection policy according to the SR detection policy of the base station.
  • the sending module 902 sends a configuration parameter to the user equipment, and after receiving the configuration parameter, the user equipment parses the configuration parameter, and the configuration parameter is used to indicate the SR detection policy of the base station, and the user equipment according to the base station
  • the SR detection policy determines the SR transmission policy that matches the SR detection policy.
  • the SR detection policy may include: the base station does not perform SR detection during the forbidden detection time; and the base station performs SR detection within the allowable detection time.
  • the SR transmission policy may include: the user equipment does not perform SR transmission within the prohibition detection time; the user equipment may perform SR transmission within the allowable detection time. Specifically, the user equipment can perform SR transmission during the detection time.
  • the user equipment When the user equipment detects that there is uplink data to be sent, the user equipment sends an SR to the base station within the allowed detection time. When the user equipment detects that there is no uplink data, it needs to send. The user equipment does not send the SR to the base station within the allowed detection time.
  • the user equipment does not perform SR sending within the forbidden detection time, and the SR sending may be performed within the allowed detection time. If the uplink data arrives in the forbidden detection time, the user equipment caches the uplink data in the local storage area, and waits for the detection time to be sent before the SR is sent. The base station performs SR detection within the allowable detection time, and does not perform SR detection within the prohibition detection time.
  • the user equipment does not perform SR sending within the forbidden detection time, and the forbidden detection time can be set as: SR Forbid Timer*N *DRX Cycle. If the uplink data arrives in the forbidden detection time, the user equipment caches the uplink data in the local storage area, and waits for the detection time to be sent before the SR is sent. The base station performs the SR detection within the allowable detection time. The SR detection is not performed during the detection time.
  • the detecting module 903 is configured to perform SR detection according to the SR detection policy.
  • the detecting module 903 performs the SR detection according to the SR detection policy, where the SR detection policy includes: the base station does not perform the SR detection during the forbidden detection time; and the base station can perform the SR within the allowed detection time. Detection. Specifically, the base station can perform the SR detection during the allowed detection time. When the user equipment detects that there is uplink data to be sent, the user equipment sends the SR to the base station within the allowed detection time, the base station detects the SR, and when the user equipment detects When there is no uplink data to be transmitted, the user equipment does not send the SR to the base station within the allowed detection time, and the base station does not detect the SR.
  • the SR detection policy includes: the base station does not perform the SR detection during the forbidden detection time; and the base station can perform the SR within the allowed detection time. Detection. Specifically, the base station can perform the SR detection during the allowed detection time. When the user equipment detects that there is uplink data to be sent, the user
  • the base station can perform the SR detection in the allowable detection time, so that the SR transmission policy of the user equipment corresponds to the SR detection policy of the base station.
  • the detection status of the user equipment is consistent with that of the base station, which reduces the detection time of the base station, and can effectively reduce the probability of occurrence of false alarms.
  • a processing device for scheduling a request is provided, the generating module generates a configuration parameter, and the configuration parameter is used to indicate a scheduling request SR detection policy of the base station, and the sending module sends a configuration parameter to the user equipment, where the configuration parameter may include RRC.
  • the user equipment may determine the corresponding SR transmission policy according to the SR detection policy, so that when the user equipment detects that there is uplink data to be transmitted, the SR is sent to the base station according to the SR transmission policy, and the base station detects the SR according to the SR.
  • the policy performs the SR detection, and the detection time may further include a preliminary activation period.
  • the preliminary activation period enables the SR to reach the base station in advance, and the base station can timely deliver the uplink authorization, thereby reducing the delay.
  • the SR transmission policy of the user equipment corresponds to the SR detection policy of the base station, and the detection status of the user equipment and the base station are consistent, which can reduce the detection time of the base station and effectively reduce the probability of occurrence of the false alarm.
  • the sending module in this embodiment may be a transmitter of a base station, and the receiving module and the sending module may be integrated to form a transceiver of the base station.
  • the generating module may be a separately set processor, or may be integrated in one processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called by one of the base stations and executes the above. Generate the functionality of the module.
  • the implementation of the detection module is the same as the generation module, and can be integrated with the generation module or independently.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station provided in this embodiment corresponds to the method shown in FIG. 1 and is a processing method based on the scheduling request shown in FIG. 1 .
  • Execution body. The specific implementation form is as shown in FIG. 10.
  • the base station of the embodiment of the present invention includes: a receiver 1001, a transmitter 1002, a memory 1003, and a processor 1004, wherein the receiver 1001, the transmitter 1002, the memory 1003, and the processor 1004 Connections, for example, can be connected via a bus.
  • the base station may also include a common component such as an antenna, a baseband processing component, a medium-frequency processing component, and an input/output device, and the embodiment of the present invention is not limited thereto.
  • Receiver 1001 and transmitter 1002 can be integrated to form a transceiver.
  • the memory 1003 is for storing executable program code, the program code including computer operating instructions.
  • the memory 1003 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 1004 can be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the memory 1003 stores a set of program codes
  • the processor 1004 is configured to call the program code stored in the memory 1003 to perform the following operations:
  • the configuration parameter is used to indicate a scheduling request SR detection policy of the base station, and the configuration parameter is sent to the user equipment by the transmitter 1002, so that the user equipment determines according to the SR detection policy of the base station.
  • SR detection is performed.
  • a base station including a receiver, a transmitter, a memory, and a processor, and a configuration parameter is sent to a user equipment by using a transmitter, and the configuration parameter is used to indicate a scheduling request of the base station.
  • the processor determines the corresponding SR transmission policy according to the SR detection policy.
  • the SR is sent to the base station according to the SR transmission policy, and the SR detection is performed according to the SR detection policy, so that the SR of the user equipment is sent.
  • the policy corresponds to the SR detection strategy of the base station, and the detection status of the user equipment and the base station is the same, which reduces the detection time of the base station, and can effectively reduce the probability of occurrence of the false alarm.
  • FIG. 11 is a schematic structural diagram of a processing apparatus for scheduling a request according to a second embodiment of the present invention. It should be noted that the processing apparatus of the scheduling request shown in FIG.
  • FIG. 11 is used to execute the method of the embodiment shown in FIG. 2 of the present invention.
  • FIG. 2 of the present invention For the convenience of description, only parts related to the embodiment of the present invention are shown, and the specific technical details are described. Unexplained, please refer to the embodiment shown in Fig. 2 of the present invention.
  • the apparatus may include: a receiving module 1101, a determining module 1102, and a transmitting module 1103.
  • the receiving module 1101 is configured to receive a configuration parameter that is sent by the base station, where the configuration parameter is used to indicate an SR detection policy of the base station.
  • the receiving module 1101 receives the configuration parameter delivered by the base station, where the configuration parameter is used to indicate the SR detection policy of the base station.
  • the SR detection strategy includes: the base station does not perform SR detection during the forbidden detection time; and the base station performs SR detection within the allowable detection time.
  • the allowed detection time includes an activation period of the user equipment, and the prohibition detection time is a time other than the allowed detection time. Further optionally, allowing the detection time may also include an activation preparation period. The pre-activation period allows the SR to reach the base station in advance, and the base station can timely deliver the uplink grant, which reduces the delay.
  • the determining module 1102 is configured to determine, according to the SR detection policy, an SR sending policy that matches the SR detection policy. As an optional implementation manner, the determining module 1102 determines, according to the SR detection policy, an SR sending policy that matches the SR detecting policy, where the SR sending policy may include: the user equipment does not perform SR sending during the forbidden detecting time; The device can perform SR transmission within the allowable detection time.
  • the sending module 1103 is configured to send the SR to the base station according to the SR sending policy when it is detected that there is uplink data to be sent.
  • the sending module 1103 sends the SR to the base station according to the SR sending policy. Further optionally, the user equipment does not perform SR transmission within the time when the detection is prohibited. If the uplink data arrives in the forbidden detection time, the user equipment caches the uplink data in the local storage area, and waits for the detection time to be sent before the SR is sent. The base station performs the SR detection within the allowable detection time. The SR detection is not performed during the detection time.
  • the user equipment when it is detected that there is no uplink data to be transmitted, the user equipment does not send the SR to the base station within the allowed detection time. At this time, the base station performs the SR detection according to the SR detection policy, but the SR is not detected because the user equipment The SR was not sent within the allowed detection time.
  • a processing device for scheduling a request receives configuration parameters sent by the base station, the configuration parameter is used to indicate a scheduling request SR detection policy of the base station, and the determining module determines an SR sending policy that matches the SR detection policy.
  • the sending module sends the SR to the base station according to the SR sending policy, and the SR sending policy of the user equipment corresponds to the SR detecting policy of the base station, and the detection status of the user equipment and the base station are consistent, which can effectively reduce the virtual state.
  • the probability of occurrence of the police is provided.
  • the receiving module in this embodiment may be a receiver of the user equipment, and the sending module may be a transmitter of the user equipment; in addition, the receiving module and the sending module may also be integrated to form a transceiver of the user equipment.
  • the determining module may be a separately set processor, or may be integrated in a processor of the user equipment, or may be stored in the memory of the user equipment in the form of program code, and is called by a processor of the user equipment. And perform the functions of the above tracking task establishment unit.
  • the processor described herein can be a central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment provided in this embodiment corresponds to the method shown in FIG. 2, and is a processing based on the scheduling request shown in FIG. 2 .
  • the user equipment provided by the embodiment of the present invention may be a mobile user equipment, a PC user equipment, a device serving global communication, or another type of user equipment.
  • the implementation form of the specific user equipment is not limited.
  • the user equipment in the embodiment of the present invention may include: a receiver 1201, a transmitter 1202, a memory 1203, and a processor 1204, wherein the receiver 1201, the transmitter 1202, and the memory 1203 are both processed.
  • the device 1204 is connected, for example, via a bus.
  • the user equipment may also include a common component such as an antenna, an input/output device, and the like, and the embodiment of the present invention is not limited thereto.
  • Receiver 1201 and transmitter 1202 can be integrated to form a transceiver.
  • Memory 1203 is for storing executable program code, the program code including computer operating instructions.
  • Memory 1203 may include high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • Processor 1204 can be a central processing unit, or a particular integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 1203 stores a set of program codes
  • the processor 1204 is configured to call the program code stored in the memory 1203 to perform the following operations:
  • the receiver 1201 And receiving, by the receiver 1201, a configuration parameter that is sent by the base station, where the configuration parameter is used to indicate an SR detection policy of the base station;
  • the SR is sent to the base station by using the transmitter 1202 according to the SR transmission policy.
  • a user equipment including: a receiver, a transmitter, a memory, and a processor, where the configuration parameter sent by the base station is received by the receiver, and the configuration parameter is used to indicate a scheduling request SR detection policy of the base station, and the processing is performed.
  • the SR transmission policy that matches the SR detection policy is determined.
  • the SR is sent by the transmitter to the base station according to the SR transmission policy, and the SR transmission policy of the user equipment corresponds to the SR detection policy of the base station.
  • the detection status of the user equipment and the base station are consistent, which can effectively reduce the probability of occurrence of false alarms.
  • FIG. 13 is a schematic structural diagram of a processing apparatus for scheduling a request according to a third embodiment of the present invention. It should be noted that the processing apparatus of the scheduling request shown in FIG. 13 is used to execute the method of the embodiment shown in FIG. 5 of the present invention. For the convenience of description, only the parts related to the embodiment of the present invention are shown, and the specific technical details are shown. Unexplained, please refer to the embodiment shown in FIG. 5 of the present invention.
  • the apparatus may include: a generating module 1301 and a transmitting module 1302.
  • the generating module 1301 is configured to generate a configuration parameter, where the configuration parameter includes: an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration time is used for indicating The user equipment waits for the time when the base station sends an uplink grant.
  • the generating module 1301 generates a configuration parameter, where the configuration parameter includes: an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration time is used. The time when the user equipment is instructed to wait for the uplink grant to be sent by the base station.
  • the SR control cell may be, for example, an SR_NULL RRC cell. If the SR control cell is absent, the base station performs physical layer configuration of the SR. If the configuration parameter generated by the base station includes the SR vacant cell, The RRC configuration does not carry the physical layer configuration of the SR, and the user equipment does not have the corresponding SR configuration.
  • the configuration time can be set to a preset time in the SR Wait Timer, for example, 30 seconds, 60 seconds, etc., and the configuration time is used to indicate the time when the user equipment waits for the uplink authorization to be sent by the base station.
  • the sending module 1302 is configured to send, to the user equipment, the configuration parameter generated by the generating module 1301, so that the user equipment does not report to the base station according to the SR vacant cell when it is detected that there is uplink data to be sent. SR.
  • the sending module 1302 sends configuration parameters to the user equipment, and after receiving the configuration parameters, the user equipment parses the configuration parameters, and the configuration parameters include: SR vacant cells and configuration time, where, the SR vacancy The element is used to indicate that the user equipment does not perform SR reporting, and the configuration time is used to indicate that the user equipment waits for the base station to send an uplink grant.
  • the user equipment detects that there is uplink data to be sent, the user equipment does not send the base station according to the SR vacant cell.
  • the SR is reported, for example, the user equipment detects that there is uplink data to be sent, does not send an SR to the base station according to the SR vacant cell, does not initiate random access to the base station, starts the SR Wait Timer, and waits for the base station to send an uplink grant.
  • the sending module 1302 is further configured to send the uplink grant to the user equipment in a preset period of time. Right.
  • processing device of the scheduling request in the embodiment of the present invention may further include: a receiving module 1303.
  • the receiving module 1303 is configured to receive uplink data that is sent by the user equipment according to the uplink grant when the user equipment receives the uplink authorization.
  • the receiving module 1304 receives the uplink data sent by the user equipment according to the uplink data sent by the uplink grant to the base station. Specifically, after the user equipment receives the uplink authorization, if the data is in the buffer, the data is sent and the amount of data remaining in the buffer is carried by the BSR. After receiving the BSR, the base station dynamically schedules the next scheduled authorization resource according to the value of the BSR. size.
  • the receiving module 1303 may be further configured to receive a random access request or a reestablishment request sent by the user equipment when the uplink grant is not received within the configured time.
  • the receiving module 1303 receives the random access request or the re-establishment sent by the user equipment. request.
  • the base station sends the DRX Command MAC Control Element to the user equipment, indicating that the user equipment is switched from the state where the detection time is allowed to the state where the detection time is prohibited, and enters the power saving state. .
  • the base station generally starts the uplink grant indication transmission of the preset cycle time on each scheduling timer. If the BSRs reported by the user equipment are all 0 and there is no downlink data transmission requirement during the duration timer, the base station can immediately end the duration timer. Send DRX Command MAC Control Element, prevents the UE from entering an unnecessary DRX activation period.
  • a processing device for scheduling a request is provided, and the generating module generates a configuration parameter, and the sending module sends a configuration parameter to the user equipment, where the configuration parameter includes the SR vacant cell and the configuration time, and the sending module sends the configuration to the preset period time.
  • the user device sends an uplink authorization. When it is detected that the uplink data needs to be sent, the user equipment does not report the SR to the base station according to the SR vacant cell. If the user equipment receives the uplink grant sent by the sending module, the user equipment sends the uplink grant to the base station according to the uplink grant.
  • Uplink data if the user equipment does not receive the uplink grant sent by the base station within the configured time, sends a random access request or a reestablishment request to the base station.
  • the SR vacant cell sent by the base station to the user equipment can be used to indicate that the user equipment does not report the SR, and the user equipment does not report the SR.
  • the base station sends an uplink grant within a preset period to ensure that the resources are normally allocated. False alarms can reduce the probability of false alarms to zero.
  • the sending module in this embodiment may be a transmitter of the user equipment.
  • the receiving module may be a receiver of the base station.
  • the sending module and the receiving module may be integrated to form a transmitting and receiving of the base station. machine.
  • the generating module may be a separately set processor, or may be integrated in one processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called by one of the base stations and executes the above. Generate the functionality of the module.
  • the processor described herein can be a central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • FIG. 14 is a schematic structural diagram of another base station according to an embodiment of the present invention, where the base station provided in this embodiment corresponds to the method shown in FIG. 5, and is a processing method based on the scheduling request shown in FIG. Executive body.
  • the specific implementation is as shown in FIG. 14.
  • the base station in the embodiment of the present invention includes: a receiver 1401, a transmitter 1402, a memory 1403, and a processor 1404, wherein the receiver 1401, the transmitter 1402, and the memory 1403 are both coupled to the processor 1404. Connections, for example, can be connected via a bus.
  • the base station may also include a common component such as an antenna, a baseband processing component, a medium-frequency processing component, and an input/output device.
  • the embodiment of the present invention is not limited herein.
  • Receiver 1401 and transmitter 1402 can be integrated to form a transceiver.
  • the memory 1403 is for storing executable program code, the program code including computer operating instructions.
  • the memory 1003 may include a high speed RAM memory, and may also include a nonvolatile memory, for example. Such as at least one disk storage.
  • Processor 1004 can be a central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 1403 stores a set of program codes
  • the processor 1404 is configured to call the program code stored in the memory 1403 to perform the following operations:
  • the configuration parameter includes: an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration time is used to indicate that the user equipment waits Describe the time when the base station sends the uplink grant;
  • the configuration parameter is sent to the user equipment by the transmitter 1402, so that the user equipment does not report the SR to the base station according to the SR vacant cell when it is detected that there is uplink data to be sent;
  • the uplink authorization is sent to the user equipment through the transmitter 1402 in a preset period.
  • the receiver 1401 receives uplink data that is sent by the user equipment according to the uplink grant when the uplink grant is received in the configured time.
  • the random access request or the reestablishment request sent by the user equipment when the uplink grant is not received within the configured time is received by the receiver 1401.
  • a base station including: a receiver, a transmitter, a memory, and a processor, where the transmitter can send configuration parameters to the user equipment, where the configuration parameters include the SR vacant cell and the configuration time, when the uplink is detected When the data needs to be sent, the processor does not report the SR to the base station according to the SR vacant cell control. If the user equipment is in the configuration time, the receiver can receive the uplink grant sent by the base station, and receive the uplink sent by the user equipment to the base station according to the uplink grant. Data: If the user equipment does not receive the uplink grant sent by the base station within the configured time, the receiver receives the random access request or the reestablishment request sent by the user equipment.
  • the SR vacant cell sent by the eNB to the user equipment can be used to indicate that the user equipment does not report the SR, and the user equipment does not perform the SR report.
  • the base station sends the uplink grant within the preset period to ensure the normal allocation of resources. False alarms can reduce the probability of false alarms to zero.
  • FIG. 15 a device for processing a scheduling request according to a fourth embodiment of the present invention is provided. Schematic diagram. It should be noted that the processing apparatus of the scheduling request shown in FIG. 15 is used to execute the method of the embodiment shown in FIG. 6 of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown, and the specific technical details are shown. Unexplained, please refer to the embodiment shown in Fig. 6 of the present invention.
  • the processing device of the scheduling request provided by the embodiment of the present invention may be a user equipment, where the user equipment may be a mobile user equipment, a PC user equipment, a device serving global communication, or another type of user equipment.
  • the implementation form of the specific user equipment is not limited.
  • the apparatus may include: a receiving module 1501, a control module 1502, and a transmitting module 1503.
  • the receiving module 1501 is configured to receive a configuration parameter that is sent by the base station, where the configuration parameter includes an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration is performed. The time is used to indicate that the user equipment waits for the base station to send an uplink grant.
  • the receiving module 1501 receives configuration parameters sent by the base station, and parses the configuration parameters.
  • the configuration parameter includes: an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration time is used to indicate that the user equipment waits for the base station to send an uplink grant.
  • the SR control cell may be, for example, an SR_NULL RRC cell. If the SR control cell is absent, the base station performs physical layer configuration of the SR. If the received configuration parameter includes the SR vacant cell, the base station When the RRC configuration does not carry the physical layer configuration of the SR, the user equipment does not have the corresponding SR configuration, and the user equipment does not report the SR.
  • the configuration time can be set to a preset time in the SR Wait Timer, for example, 30 seconds, 60 seconds, etc. The configuration time is used to indicate the time when the user equipment waits for the uplink authorization to be sent by the base station.
  • the control module 1502 is configured to control not reporting the SR to the base station according to the SR vacant cell when detecting that there is uplink data to be sent.
  • the control module 1502 when detecting that there is uplink data to be sent, does not report the SR to the base station according to the SR vacant cell control. For example, the user equipment detects that uplink data needs to be sent, according to the SR vacancy signal. The element control does not send an SR to the base station, and the control does not initiate random access to the base station, and starts the SR Wait Timer timer, and waits for the base station to send an uplink grant.
  • the sending module if the uplink authorization is received within the configuration time, the sending module
  • Uplink data sent to the base station according to the uplink grant Specifically, after the user equipment receives the uplink authorization, if the data is in the buffer, the data is sent, and the data is sent to the base station by using the BSR. After receiving the BSR, the base station dynamically schedules the resource size of the next scheduled authorization according to the value of the BSR.
  • the sending module 1503 is further configured to: when the uplink grant issued by the base station is not received, send a random access request or a reestablishment request to the base station.
  • the sending module 1503 sends a random access request or a reestablishment request to the base station, and the base station receives the random access request or the reestablishment request sent by the user equipment.
  • a processing device for scheduling a request receives configuration parameters sent by the base station, and the configuration parameters include an SR vacant cell and a configuration time.
  • the control module is vacant according to the SR.
  • the UE does not report the SR to the base station. If the user equipment receives the uplink grant sent by the base station within the configured time, the sending module sends the uplink data to the base station according to the uplink grant. If the user equipment does not receive the base station within the configured time.
  • the uplink grant is sent, and the sending module sends a random access request or a reestablishment request to the base station.
  • the SR vacant cell sent by the base station to the user equipment can be used to indicate that the user equipment does not report the SR, and the user equipment does not report the SR.
  • the base station sends an uplink grant within a preset period to ensure that the resources are normally allocated. False alarms can reduce the probability of false alarms to zero.
  • the receiving module in this embodiment may be a receiver of the user equipment, and the sending module may be a transmitter of the user equipment; in addition, the receiving module and the sending module may be integrated to form a transceiver of the user equipment.
  • the control module may be a separately set processor, or may be integrated in a processor of the user equipment, or may be stored in the memory of the user equipment in the form of program code, and is called by a processor of the user equipment. And perform the functions of the above tracking task establishment unit.
  • the processor described herein can be a central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • FIG. 16 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • the user equipment provided in this embodiment corresponds to the method shown in FIG.
  • the user equipment provided by the embodiment of the present invention may be a mobile user equipment, a PC user equipment, a device serving global communication, or another type of user equipment.
  • the implementation form of the specific user equipment is not limited.
  • the user equipment of the embodiment of the present invention may include: a receiver 1601, a transmitter 1602, a memory 1603, and a processor 1604, wherein the receiver 1601, the transmitter 1602, and the memory 1603 are both processed and processed.
  • the device 1604 is connected, for example, via a bus.
  • the user equipment may also include a common component such as an antenna, an input/output device, and the like, and the embodiment of the present invention is not limited thereto.
  • Receiver 1601 and transmitter 1602 can be integrated to form a transceiver.
  • Memory 1603 is for storing executable program code, the program code including computer operating instructions.
  • Memory 1603 may include high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • the memory 1603 stores a set of program codes
  • the processor 1604 is configured to call the program code stored in the memory 1603 to perform the following operations:
  • the configuration parameter that is sent by the base station, where the configuration parameter includes an SR vacant cell and a configuration time, where the SR vacant cell is used to indicate that the user equipment does not perform SR reporting, and the configuration time is And a time for indicating that the user equipment waits for the base station to send an uplink grant;
  • the control When it is detected that there is uplink data to be transmitted, according to the SR vacant cell, the control does not report the SR to the base station;
  • the transmitter 1602 When the uplink grant issued by the base station is not received within the configured time, the transmitter 1602 sends a random access request or a reestablishment request to the base station.
  • a user equipment including: a receiver, a transmitter, a memory, and a processor, where the receiver can receive configuration parameters sent by the base station, and the configuration parameters include an SR vacant cell and a configuration time, and the processor detects When there is uplink data to be sent, the user equipment is based on the SR idle letter.
  • the control device does not report the SR to the base station, and when the user equipment receives the uplink grant sent by the base station, the uplink data is sent to the base station according to the uplink grant, and the user equipment does not receive the base station during the configured time.
  • the uplink grant is performed, a random access request or a reestablishment request is sent to the base station through the transmitter.
  • FIG. 17 is a schematic structural diagram of a processing apparatus for scheduling a request according to a fifth embodiment of the present invention. It should be noted that the processing apparatus of the scheduling request shown in FIG. 17 is used to execute the method of the embodiment shown in FIG. 7 of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown, and the specific technical details are shown. Unexplained, please refer to the embodiment shown in Fig. 7 of the present invention.
  • the apparatus may include: a first control module 1701 and a second control module 1702.
  • the first control module 1701 is configured to: when the SR is received for the first time in the prohibition detection time, the control does not respond to the first received SR.
  • the first control module 1701 controls not responding to the first received SR.
  • the user equipment does not generate SR during the forbidden detection time.
  • the base station detects the SR by mistake due to the interference of the wireless environment. police.
  • the first control module 1701 does not respond to the SR received for the first time in the forbidden detection time.
  • the second control module 1702 is configured to: when the base station receives the SR for the second time in the forbidden detection time, send an uplink grant to the user equipment, and control to switch from the state of the prohibition detection time to the allowable detection time. Status.
  • the second control module 1702 sends an uplink authorization to the user equipment according to the received SR, and is switched by the state where the detection time is prohibited. To the state where the detection time is allowed. Further, if the base station receives the SR for the third time in the forbidden detection time, and the base station is in the state where the detection time is allowed, the SR may be detected. Further, the processing device of the scheduling request provided by the embodiment of the present invention may further include: a third control module 1703.
  • the third control module 1703 is configured to stop sending an uplink grant to the user equipment, and control the allowed detection time, when the number of times that the discontinuous transmission of the DTX response sent by the user equipment is received is greater than a preset number of times The state of the switch is switched to the state where the prohibition detection time is located.
  • the base station sends the downlink data to the user equipment. If the number of times the DTX response sent by the user equipment is received is greater than the preset number of times, the third control module 1703 controls the state of the allowed detection time to be disabled. The status of the detection time. The SR false alarm can be processed according to the feedback of the downlink data, which reduces the possibility that the base station and the user equipment are inconsistent.
  • a processing apparatus for scheduling a request is provided.
  • the first control module controls not to respond to the first received SR, and when the base station is prohibited from detecting
  • the second control module sends an uplink grant to the user equipment, and controls the state where the prohibition detection time is switched to the state where the detection time is allowed. If the base station does not send any configuration parameters, if the SR is received for the second time after the prohibition detection time, the state where the prohibition detection time is switched to the state where the detection time is allowed is the post-processing in the case of SR false alarm. , can reduce the probability of false alarms.
  • the third control module controls the state in which the state of the allowed detection time is switched to the state in which the detection time is prohibited.
  • the SR false alarm can be processed according to the feedback of the downlink data, which reduces the possibility that the base station and the user equipment are inconsistent.
  • first control module and the second control module in this embodiment may be separately set up processors, or may be integrated in one processor of the base station, or may be stored in the form of program code.
  • the functions of the above first control module and the second control module are called and executed by a certain processor of the base station.
  • the implementation of the third control module is the same as that of the first control module and the second control module, and may be integrated with the first control module and the second control module, or may be implemented independently.
  • the processor described herein can be a central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • FIG. 18 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the user equipment provided in this embodiment corresponds to the method shown in FIG. 7 and is a processing based on the scheduling request shown in FIG. 7.
  • the base station of the embodiment of the present invention includes: a receiver 1801, a transmitter 1802, a memory 1803, and a processor 1804, wherein the receiver 1801, the transmitter 1802, and the memory 1803 are both coupled to the processor 1804. Connections, for example, can be connected via a bus.
  • the base station may also include a common component such as an antenna, a baseband processing component, a medium-frequency processing component, and an input/output device, and the embodiment of the present invention is not limited thereto.
  • Receiver 1801 and transmitter 1802 can be integrated to form a transceiver.
  • Memory 1803 is for storing executable program code, the program code including computer operating instructions.
  • Memory 1803 may include high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • Processor 1804 can be a central processing unit, or a particular integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 1803 stores a set of program codes
  • the processor 1804 is configured to call the program code stored in the memory 1803 to perform the following operations:
  • the base station When the base station receives the SR for the second time in the forbidden detection time, the uplink authorization is sent to the user equipment, and the state in which the prohibition detection time is set to the state where the detection time is allowed is controlled.
  • the uplink authorization is sent to the user equipment, and the state of the allowed detection time is controlled to be switched.
  • the state of the prohibition detection time is controlled to be switched.
  • a base station including: a receiver, a transmitter, a memory, and a processor, where the processor is configured to not perform the first received SR when the base station receives the SR for the first time in the prohibition detection time.
  • the base station sends an uplink grant to the user equipment, and controls the state in which the state of the prohibition detection time is switched to the state in which the detection time is allowed. If the base station does not send any configuration parameters, if the detection time is prohibited for the second time When the SR is received, the state of the detection time is prohibited from being switched to the state where the detection time is allowed. In the case of the post-processing of the SR false alarm, the probability of occurrence of the false alarm can be reduced.
  • the processing system for scheduling request includes a base station and a user equipment.
  • the base station is as shown in Figure 9, and the user equipment is as shown in Figure 11.
  • the base station and the user equipment can be connected through a wireless network.
  • the base station is as shown in Figure 13, and the user equipment is as shown in Figure 15.
  • the base station and the user equipment can be connected through a wireless network.
  • the structure and function of the device refer to the related description of the embodiment shown in FIG. 13 and FIG. 15 , and details are not described herein. It should be noted that the system of the embodiment can be applied to the above method.
  • the base station is as shown in Figure 17.
  • the base station and the user equipment can be connected through a wireless network.
  • the base station may send a configuration parameter to the user equipment, where the configuration parameter is used to indicate the scheduling request SR detection policy of the base station, and the user equipment determines the corresponding SR sending policy according to the SR detection policy.
  • the The SR transmission policy sends an SR to the base station, and the base station performs the SR detection according to the SR detection policy, so that the SR transmission policy of the user equipment corresponds to the SR detection policy of the base station, and the detection status of the user equipment and the base station are consistent, which reduces the detection time of the base station. Effectively reduce the probability of false alarms.
  • the base station may send the configuration parameter to the user equipment, where the configuration parameter includes the SR vacant cell and the configuration time.
  • the user equipment does not report the SR to the base station according to the SR vacant cell. If the user equipment receives the uplink grant sent by the base station within the configured time, the user equipment sends the uplink data to the base station according to the uplink grant. If the user equipment does not receive the uplink grant sent by the base station, the user equipment sends a random connection to the base station. Incoming request or rebuilding request.
  • the SR vacant cell sent by the base station to the user equipment can be used to indicate that the user equipment does not report the SR, and the user equipment does not.
  • the base station After the SR is reported, the base station sends an uplink grant within the preset period to ensure the normal allocation of resources, and no false alarm occurs. The probability of occurrence of the false alarm can be reduced to zero.
  • the base station when the base station receives the SR for the first time in the forbidden detection time, the base station does not respond to the first received SR.
  • the base station When the base station receives the SR for the second time in the forbidden detection time, the base station sends the user equipment to the user equipment. Sending an uplink grant, and controlling the state in which the state of the prohibition detection time is switched to the state in which the detection time is allowed.
  • the state where the detection time is prohibited is switched to the state where the detection time is allowed, which is the post-processing in the case of SR false alarm. Can reduce the probability of false alarms.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种调度请求的处理方法及装置。基站可向用户设备下发配置参数,配置参数用于指示基站的SR检测策略,用户设备确定与SR检测策略匹配的SR发送策略,减少了基站的检测时间,有效降低虚警的发生概率。

Description

一种调度请求的处理方法^置
技术领域
本发明涉及无线通信领域, 尤其涉及一种 SR ( Scheduling Request, 调度 请求) 的处理方法及装置。 背景技术
当 UE ( User Equipment, 用户设备)需要上传数据而没有上行资源用于传 输时, UE可以通过 SR向基站请求上行资源, 例如, UE可以按照一定的周期 和子帧位置通过 PUCCH ( Physical Uplink Control Channel , 物理上行链路控制 信道 )中的 UCI ( Uplink Control Information, 上行控制消息 )向基站传输 SR, 基站通过检测接收到的 SR判断 UE是否有资源需求,进而向 UE发送 UL Grant (上行授权)。
DRX( Discontinuous Reception ,非连续接收 )是 LTE( Long Term Evolution, 长期演进) 系统中引入的一种工作机制。 在这种工作机制下, UE可以在一段 时间内停止监听 PDCCH ( Physical downlink Control Channel , 下行控制信道) 信道, 称这段时间为 DRX休眠期。 相应的, UE监听 PDCCH信道的时间段称 之为 DRX激活期。
由于无线环境的复杂性, 往往存在 SR虚警的情况。 所谓 SR虚警是指, 用户设备没有发送 SR, 而基站由于无线环境的干扰等错误的检测到了 SR。 当 这种 SR虚警出现在 DRX的工作机制下, 往往会出现无线链路异常的问题。
例如, 如果基站检测到了 SR的虚警, 基站就会单方面启动 UE的 DRX 的激活期(inactive ), 而 UE的实际 DRX状态还是休眠态。 此时, 对于下行, 如果基站进行下行数据的传输会造成下行数据的 DTX ( Discontinuous Transmission, 不连续发送)反馈, 甚至当下行传输达到最大重传次数时会引 起异常掉话。 对于上行, 如果基站进行 SRS ( Sounding Reference Symbol, 探 测参考信号) 的测量或周期 CQI ( Channel Quality Indicator, 信道质量标识) 的检测, 会造成测量失准和 AMC ( Automatic Modulation and Coding自适应调 制编码) 的错误。 发明内容
本发明实施例提供一种调度请求的处理方法及装置,用于解决现有技术中 当 SR虚警出现在 DRX的工作机制下情况下出现无线链路异常的技术问题。
本申请实施例第一方面提供的一种调度请求的处理方法, 包括: 基站生成配置参数, 所述配置参数用于指示所述基站的 SR检测策略; 所述基站向用户设备下发所述配置参数,以使所述用户设备根据所述基站 的 SR检测策略确定与所述 SR检测策略匹配的 SR发送策略;
所述基站根据所述 SR检测策略, 进行 SR检测。
在第一方面的第一种可能实现方式中, 所述 SR检测策略包括: 所述基站 在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进行 SR 检测。
结合第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式 中, 所述 SR发送策略, 包括: 所述用户设备在禁止检测时间内, 不进行 SR 发送; 所述用户设备在允许检测时间内, 进行 SR发送。
结合第一方面的第一种或第二种可能实现方式,在第一方面的第三种可能 实现方式中, 所述允许检测时间包括用户设备的激活期; 所述禁止检测时间为 所述允许检测时间之外的时间。
结合第一方面的第三种可能实现方式,在第一方面的第四种可能实现方式 中, 所述允许检测时间还包括激活预备期。
结合第一方面的第一种或第二种可能实现方式,在第一方面的第五种可能 实现方式中, 所述禁止检测时间包括多个非连续接收 DRX周期。
结合第一方面、第一方面的第一种至第五种可能实现方式之一,在第一方 面的第六种可能实现方式中, 所述配置参数包括: 无线资源控制协议 RRC控 制信元或介质访问控制 MAC控制信元。
第二方面, 本发明实施例提供的一种调度请求的处理方法, 包括: 用户设备接收基站下发的配置参数, 所述配置参数用于指示所述基站的 SR检测策略;
所述用户设备根据所述 SR检测策略,确定与所述 SR检测策略匹配的 SR 发送策略;
当检测到存在上行数据需要发送时, 所述用户设备根据所述 SR发送策略 向基站发送 SR。
在第二方面的第一种可能实现方式中, 所述 SR检测策略包括: 所述基站 在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进行 SR 检测。
结合第二方面的第一种可能实现方式,在第二方面的第二种可能实现方式 中, 所述 SR发送策略包括: 所述用户设备在禁止检测时间内, 不进行 SR发 送; 所述用户设备在允许检测时间内, 进行 SR发送。
结合第二方面的第一种或第二种可能实现方式,在第二方面的第三种可能 实现方式中, 所述允许检测时间包括用户设备的激活期; 所述禁止检测时间为 所述允许检测时间之外的时间。
结合第二方面的第三种可能实现方式,在第二方面的第四种可能实现方式 中, 所述允许检测时间还包括激活预备期。
结合第二方面的第一种或第二种可能实现方式,在第二方面的第五种可能 实现方式中, 所述禁止检测时间包括多个 DRX周期。
结合第二方面、第二方面的第一种至第五种可能实现方式之一,在第二方 面的第六种可能实现方式中, 所述配置参数包括: RRC控制信元或 MAC控制 信元。
第三方面, 本发明实施例提供的一种调度请求的处理方法, 包括: 基站生成配置参数, 所述配置参数包括: SR空置信元和配置时间, 其中, 所述 SR空置信元用于指示用户设备不进行 SR上报, 所述配置时间为用于指 示所述用户设备等待所述基站下发上行授权的时间;
所述基站向用户设备下发所述配置参数,以使所述用户设备当检测到存在 上行数据需要发送时, 根据所述 SR空置信元不向所述基站上报 SR;
所述基站在预设的周期时间内向所述用户设备下发上行授权。
在第三方面的第一种可能实现方式中,所述基站在预设的周期时间内向所 述用户设备下发上行授权之后, 包括: 所述基站接收所述用户设备在所述配置时间内接收到所述上行授权时根 据所述上行授权发送的上行数据; 或
所述基站接收所述用户设备在所述配置时间内未接收到所述上行授权时 发送的随机接入请求或重建请求。
第四方面, 本发明实施例提供的一种调度请求的处理方法, 包括: 用户设备接收基站下发的配置参数, 所述配置参数包括 SR空置信元和配 置时间, 其中, 所述 SR空置信元用于指示所述用户设备不进行 SR上报, 所 述配置时间为用于指示所述用户设备等待所述基站下发上行授权的时间;
当检测到存在上行数据需要发送时,所述用户设备根据所述 SR空置信元, 不向所述基站上报 SR;
若所述用户设备在所述配置时间内,接收到所述基站下发的上行授权,根 据所述上行授权向基站发送上行数据;
若所述用户设备在所述配置时间内, 未接收到所述基站下发的上行授权, 向所述基站发送随机接入请求或重建请求。
第五方面, 本发明实施例提供的一种调度请求的处理方法, 包括: 当基站在禁止检测时间内第一次接收到 SR时, 控制对所述第一次接收到 的 SR不作响应;
当所述基站在禁止检测时间内第二次接收到 SR时, 所述基站向用户设备 下发上行授权,并控制由所述禁止检测时间的所在状态切换到允许检测时间的 所在状态。
在第五方面的第一种可能实现方式中,所述基站向用户设备下发上行授权 之后, 包括:
如果接收到所述用户设备发送的不连续发送 DTX响应的次数大于预设的 次数, 所述基站停止向所述用户设备下发上行授权, 并控制由所述允许检测时 间的所在状态切换到所述禁止检测时间的所在状态。
第六方面, 本发明实施例提供的一种调度请求的处理装置, 包括: 生成模块, 用于生成配置参数, 所述配置参数用于指示所述基站的调度请 求 SR检测策略; 发送模块, 用于向用户设备下发所述生成模块生成的配置参数, 以使所述 用户设备根据所述基站的 SR检测策略确定与所述 SR检测策略匹配的 SR发 送策略;
检测模块, 用于根据所述 SR检测策略, 进行 SR检测。
在第六方面的第一种可能实现方式中, 所述 SR检测策略包括: 所述基站 在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进行 SR 检测。
结合第六方面的第一种可能实现方式,在第六方面的第二种可能实现方式 中, 所述 SR发送策略, 包括: 所述用户设备在禁止检测时间内, 不进行 SR 发送; 所述用户设备在允许检测时间内, 进行 SR发送。
结合第六方面的第一种或第二种可能实现方式,在第六方面的第三种可能 实现方式中, 所述允许检测时间包括用户设备的激活期; 所述禁止检测时间为 所述允许检测时间之外的时间。
结合第六方面的第三种可能实现方式,在第六方面的第四种可能实现方式 中, 所述允许检测时间还包括激活预备期。
结合第六方面的第一种或第二种可能实现方式,在第六方面的第五种可能 实现方式中, 所述禁止检测时间包括多个 DRX周期。
结合第六方面、第六方面的第一种至第五种可能实现方式之一,在第六方 面的第六种可能实现方式中, 所述配置参数包括: RRC控制信元或 MAC控 制信元。
第七方面, 本发明实施例提供的一种基站, 包括: 接收机、 发射机、 存储 器和分别与接收机、 发射机、 存储器连接的处理器, 其中, 存储器中存储一组 程序代码, 且处理器用于调用存储器中存储的程序代码, 执行以下操作:
生成配置参数,所述配置参数用于指示所述基站的调度请求 SR检测策略; 通过所述发射机向用户设备下发所述配置参数,以使所述用户设备根据所 述基站的 SR检测策略确定与所述 SR检测策略匹配的 SR发送策略;
根据所述 SR检测策略, 进行 SR检测。
第八方面, 本发明实施例提供的一种调度请求的处理装置, 包括: 接收模块, 用于接收基站下发的配置参数, 所述配置参数用于指示所述基 站的 SR检测策略;
确定模块, 用于根据所述 SR检测策略, 确定与所述 SR检测策略匹配的 SR发送策略;
发送模块, 用于当检测到存在上行数据需要发送时, 根据所述 SR发送策 略向基站发送 SR。
在第八方面的第一种可能实现方式中, 所述 SR检测策略包括: 所述基站 在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进行 SR 检测。
结合第八方面的第一种可能实现方式,在第八方面的第二种可能实现方式 中, 所述 SR发送策略包括: 所述用户设备在禁止检测时间内, 不进行 SR发 送; 所述用户设备在允许检测时间内, 进行 SR发送。
结合第八方面的第一种或第二种可能实现方式,在第八方面的第三种可能 实现方式中, 所述允许检测时间包括用户设备的激活期; 所述禁止检测时间为 所述允许检测时间之外的时间。
结合第八方面的第三种可能实现方式,在第八方面的第四种可能实现方式 中, 所述允许检测时间还包括激活预备期。
结合第八方面的第一种或第二种可能实现方式,在第八方面的第五种可能 实现方式中, 所述禁止检测时间包括多个 DRX周期。
结合第八方面、第八方面的第一种至第五种可能实现方式之一,在第八方 面的第六种可能实现方式中,所述配置参数包括: RRC控制信元或 MAC控制 信元。
第九方面, 本发明实施例提供的一种用户设备, 包括: 接收机、 发射机、 存储器和分别与接收机、 发射机、 存储器连接的处理器, 其中, 存储器中存储 一组程序代码, 且处理器用于调用存储器中存储的程序代码, 执行以下操作: 通过所述接收机接收基站下发的配置参数,所述配置参数用于指示所述基 站的 SR检测策略;
根据所述 SR检测策略, 确定与所述 SR检测策略匹配的 SR发送策略; 当检测到存在上行数据需要发送时, 根据所述 SR发送策略通过所述发射 机向基站发送 SR。
第十方面, 本发明实施例提供的一种调度请求的处理装置, 包括: 生成模块, 用于生成配置参数, 所述配置参数包括: SR空置信元和配置 时间, 其中, 所述 SR空置信元用于指示用户设备不进行 SR上报, 所述配置 时间为用于指示所述用户设备等待所述基站下发上行授权的时间;
发送模块, 用于向用户设备下发所述配置参数, 以使所述用户设备当检测 到存在上行数据需要发送时, 根据所述 SR空置信元不向所述基站上报 SR; 所述发送模块, 还用于在预设的周期时间内向所述用户设备下发上行授 权。
在第十方面的第一种可能实现方式中, 所述装置还包括:
接收模块,用于接收所述用户设备在所述配置时间内接收到所述上行授权 时根据所述上行授权发送的上行数据;
所述接收模块,还用于接收所述用户设备在所述配置时间内未接收到所述 上行授权时发送的随机接入请求或重建请求。
第十一方面, 本发明实施例提供的一种基站, 包括:
接收机、 发射机、 存储器和分别与所述接收机、 发射机、 存储器连接的处 理器, 其中, 存储器中存储一组程序代码, 且处理器用于调用存储器中存储的 程序代码, 执行以下操作:
生成配置参数, 所述配置参数包括: SR空置信元和配置时间, 其中, 所 述 SR空置信元用于指示用户设备不进行 SR上报, 所述配置时间为用于指示 所述用户设备等待所述基站下发上行授权的时间;
通过所述发射机向用户设备下发所述配置参数,以使所述用户设备当检测 到存在上行数据需要发送时, 根据所述 SR空置信元不向所述基站上报 SR; 在预设的周期时间内通过所述发射机向所述用户设备下发上行授权。 第十二方面, 本发明实施例提供的一种调度请求的处理装置, 包括: 接收模块, 用于接收基站下发的配置参数, 所述配置参数包括 SR空置信 元和配置时间, 其中, 所述 SR空置信元用于指示所述用户设备不进行 SR上 报, 所述配置时间为用于指示所述用户设备等待所述基站下发上行授权的时 间;
控制模块, 用于当检测到存在上行数据需要发送时, 根据所述 SR空置信 元, 控制不向所述基站上报 SR;
发送模块, 用于当在所述配置时间内, 接收到所述基站下发的上行授权, 根据所述上行授权向基站发送上行数据;
所述发送模块,还用于当在所述配置时间内, 未接收到所述基站下发的上 行授权, 向所述基站发送随机接入请求或重建请求。
第十三方面, 本发明实施例提供的一种用户设备, 包括:
接收机、发射机、存储器和分别与接收机、发射机、存储器连接的处理器, 其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代 码, 执行以下操作:
通过所述接收机接收基站下发的配置参数, 所述配置参数包括 SR空置信 元和配置时间, 其中, 所述 SR空置信元用于指示所述用户设备不进行 SR上 报, 所述配置时间为用于指示所述用户设备等待所述基站下发上行授权的时 间;
当检测到存在上行数据需要发送时, 根据所述 SR空置信元, 控制不向所 述基站上报 SR;
当在所述配置时间内,接收到所述基站下发的上行授权,根据所述上行授 权向基站发送上行数据;
当在所述配置时间内, 未接收到所述基站下发的上行授权,通过所述发射 机向所述基站发送随机接入请求或重建请求。
第十四方面, 本发明实施例提供的一种调度请求的处理装置, 包括: 第一控制模块, 用于当在禁止检测时间内第一次接收到 SR时, 控制对所 述第一次接收到的 SR不作响应;
第二控制模块, 用于当所述基站在禁止检测时间内第二次接收到 SR时, 向用户设备下发上行授权,并控制由所述禁止检测时间的所在状态切换到允许 检测时间的所在状态。 在第十四方面的第一种可能实现方式中, 所述装置还包括:
第三控制模块, 用于当接收到所述用户设备发送的不连续发送 DTX响应 的次数大于预设的次数时,停止向所述用户设备下发上行授权, 并控制由所述 允许检测时间的所在状态切换到所述禁止检测时间的所在状态。
第十五方面, 本发明实施例提供的一种基站, 包括:
接收机、发射机、存储器和分别与接收机、发射机、存储器连接的处理器, 其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代 码, 执行以下操作:
当在禁止检测时间内第一次接收到 SR时, 对所述第一次接收到的 SR不 作响应;
当所述基站在禁止检测时间内第二次接收到 SR时, 向用户设备下发上行 授权, 并控制由所述禁止检测时间的所在状态切换到允许检测时间的所在状 态。
实施本发明实施例, 具有如下有益效果:
本发明实施中,基站向用户设备下发配置参数, 配置参数用于指示该基站 的调度请求 SR检测策略, 用户设备根据 SR检测策略确定对应的 SR发送策 略, 当用户设备检测到存在上行数据需要发送时, 根据 SR发送策略向基站发 送 SR, 基站根据 SR检测策略进行 SR检测, 使得用户设备的 SR发送策略与 基站的 SR检测策略相对应, 用户设备与基站的检测状态一致, 减少了基站的 检测时间, 可有效降低虚警的发生概率。
本发明实施中, 基站向用户设备下发配置参数, 配置参数包括 SR空置信 元和配置时间, 当检测到存在上行数据需要发送时, 用户设备根据 SR空置信 元, 不向所述基站上报 SR, 若用户设备在配置时间内, 接收到基站下发的上 行授权, 根据上行授权向基站发送上行数据, 若用户设备在配置时间内, 未接 收到基站下发的上行授权, 向基站发送随机接入请求或重建请求。基站向用户 设备下发的 SR空置信元可用于指示用户设备不进行 SR上报, 用户设备不进 行 SR上报, 基站在预设的周期时间内下发上行授权, 确保资源的正常分配, 不会出现虚警, 可将虚警的发生概率降低到零。 本发明实施中, 当基站在禁止检测时间内第一次接收到 SR时, 对第一次 接收到的 SR不作响应, 当基站在禁止检测时间内第二次接收到 SR时, 基站 向用户设备下发上行授权,并控制由所述禁止检测时间的所在状态切换到允许 检测时间的所在状态。在基站没有下发任何配置参数情况下, 若在禁止检测时 间第二次接收到 SR, 则禁止检测时间的所在状态切换到允许检测时间的所在 状态, 为出现 SR虚警情况下的后处理, 可降低虚警的发生概率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明第一实施例提供的一种调度请求的处理方法的流程图; 图 2为本发明第二实施例提供的一种调度请求的处理方法的流程图; 图 3为本发明第三实施例提供的一种调度请求的处理方法的流程图; 图 4为本发明第四实施例提供的一种调度请求的处理方法的流程图; 图 5为本发明第五实施例提供的一种调度请求的处理方法的流程图; 图 6为本发明第六实施例提供的一种调度请求的处理方法的流程图; 图 7为本发明第七实施例提供的一种调度请求的处理方法的流程图; 图 8为本发明实施例提供的 DRX时间的示意图;
图 9为本发明第一实施例提供的一种调度请求的处理装置的结构图; 图 10为本发明实施例提供的一种基站的结构图;
图 11为本发明第二实施例提供的一种调度请求的处理装置的结构图; 图 12为本发明实施例提供的一种用户设备的结构图;
图 13为本发明第三实施例提供的一种调度请求的处理装置的结构图; 图 14为本发明实施例提供的另一种基站的结构图;
图 15为本发明第四实施例提供的一种调度请求的处理装置的结构图; 图 16为本发明实施例提供的另一种用户设备的结构图; 图 17为本发明第五实施例提供的一种调度请求的处理装置的结构图; 图 18为本发明实施例提供的又一种基站的结构图。 具体实施方式
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下结合附图及实施例, 对本发明进行进一步详细说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
请参见图 1 , 图 1为本发明第一实施例提供的一种调度请求的处理方法的 流程图;其中,图 1所示的调度请求的处理方法是从一基站的角度进行描述的。 如图 1所示, 本实施例提供的调度请求的处理方法包括: S101~S103。
S101 , 基站生成配置参数, 所述配置参数用于指示基站的 SR检测策略。 作为一种可选的实施方式, 本步骤中, 基站生成配置参数, 配置参数用于 指示所述基站的 SR检测策略。 进一步可选的, SR检测策略包括: 基站在禁 止检测时间内, 不进行 SR检测; 基站在允许检测时间内, 进行 SR检测。 具 体的, 基站在允许检测时间内进行 SR检测, 当用户设备检测到存在上行数据 需要发送时, 用户设备在允许检测时间内向基站发送了 SR, 基站检测到 SR, 当用户设备检测到不存在上行数据需要发送时,用户设备在允许检测时间内没 向基站发送 SR, 则基站没检测到 SR。 其中, 允许检测时间包括用户设备的激 活期, 禁止检测时间为所述允许检测时间之外的时间。 进一步可选的, 允许检 测时间还可以包括激活预备期。
作为一种可选的实施方式, 如图 8所示, 为本发明实施例提供的 DRX时 间的示意图, 在一个 DRX Cycle (非连续接收周期) 中可以包括 Pre-Strimer (激活预备期 )和 Duration Timer (持续期),一个 DRX Cycle中可以包括 DRX Inactive Timer ( DRX激活期 )和 Pre-Strimer (激活预备期),允许检测时间( SR Active Timer )包括 Duration Timer、 Inactivity Timer和 Pre-Strimer。 Pre-Strimer 可使 SR在 Duration Timer之前到达基站,使得基站到达 Duration Timer立即下 发上行授权, 降低了时延。
其中, 本发明实施例中的时间^^于子帧的时间, 以 ms为单位。 UE可 以在一段时间内停止监听 PDCCH信道, 称这段时间为 DRX休眠期。相应的, UE监听 PDCCH信道的时间段称之为 DRX激活期。 Duration Timer为 UE每 次从 DRX休眠期醒来后维持醒着的时间, UE在该段时间内会搜索 PDCCH。 Inactivity Timer,是 UE在醒着时每次成功解码 HARQ( Hybrid Automatic Repeat Request, 混合自动重传请求)初始发送的 PDCCH后保持 active的时间, 即 UE收到 PDCCH指示的是一个 UL/DL ( Up Link /Down Link, 上行链路 /下行 链路 )的初始传输, 而不是重传。 SR Active Timer为允许检测时间, 是 UE从 DRX休眠期醒来后保持醒着的总时间。
作为一种可选的实施方式, 基站生成的配置参数可以包括: RRC ( Radio Resource Control , 无线资源控制协议 )控制信元, 例如可以为 SR_MASK RRC 控制信元, RRC控制信元的格式在应用程序语言中可以表示为:
SR-Mask ENUMERATED {setup} OPTIONAL 作为一种可选的实施方式, 基站生成的配置参数可以包括: MAC ( Medium Access Control,介质访问控制)控制信元,例如可以为 SR禁止 MAC 信元, 即增加一个 MCE的逻辑信道 ID, 通过 MAC层对禁止检测时间进行配 置, MAC控制信元的格式可以为:
SR Forbid Timer Oct 1
SR Forbid Timer可以设为一个时间常数, 例如 5秒, 禁止检测时间可以设为: SR Forbid Timer*N*DRX Cycle, 即禁止检测时间为 SR Forbid Timer与 N个 DRX周期之积, N为大于零的正整数。
进一步可选的,若 SR Forbid Timer=0,则表示用户设备不受禁止检测时间 的限制, 可以随时发送 SR, 对于有频繁的上行数据需要发送的情况可以降低 发送上行数据的时延; 若 SR Forbid Timer = Oxff, 即 SR Forbid Timer定义为无 穷大, 则表示用户设备一直处于禁止检测时间的状态, 一直不能向基站发送 SR, 可节省信令。
在其他实施例中,基站生成的配置参数的实现方法是多种多样的, 可以为
RRC控制信元, 也可以为 MAC控制信元, 也可以是其他的实现形式, 具体不 受本实施例的限制。
S102, 基站向用户设备下发配置参数, 以使用户设备根据基站的 SR检测 策略确定与 SR检测策略匹配的 SR发送策略。
作为一种可选的实施方式,基站向用户设备下发配置参数, 用户设备接收 到该配置参数后,解析该配置参数,又配置参数用于指示基站的 SR检测策略, 用户设备根据基站的 SR检测策略确定与 SR检测策略匹配的 SR发送策略。 其中, SR检测策略可包括: 基站在禁止检测时间内, 不进行 SR检测; 基站 在允许检测时间内, 进行 SR检测。 SR发送策略可包括: 用户设备在禁止检 测时间内, 不进行 SR发送; 用户设备在允许检测时间内, 可以进行 SR发送。 具体的, 用户设备在允许检测时间内可以进行 SR发送, 当用户设备检测到存 在上行数据需要发送时, 用户设备在允许检测时间内向基站发送 SR, 当用户 设备检测到不存在上行数据需要发送时,用户设备在允许检测时间内不向基站 发送 SR。
进一步可选的, 如果基站向用户设备下发的配置参数包括: RRC控制信 元, 则用户设备在禁止检测时间内, 不进行 SR发送, 在允许检测时间内, 可 以进行 SR发送。 如果在禁止检测时间内检测到有上行数据到达, 用户设备将 上行数据緩存在本地存储区中, 等到达允许检测时间才进行 SR的发送, 基站 对应在允许检测时间内, 进行 SR检测, 在禁止检测时间内, 不进行 SR检测。
进一步可选的, 如果基站向用户设备下发的配置参数包括: MAC控制信 元, 则用户设备在禁止检测时间内, 不进行 SR发送, 禁止检测时间可以设为: SR Forbid Timer*N*DRX Cycle。 如果在禁止检测时间内检测到有上行数据到 达, 用户设备将上行数据緩存在本地存储区中, 等到达允许检测时间才进行 SR的发送, 基站对应在允许检测时间内, 进行 SR检测, 在禁止检测时间内, 不进行 SR检测。
S103, 基站根据 SR检测策略, 进行 SR检测。 作为一种可选的实施方式, 基站根据 SR检测策略, 进行 SR检测, 其中, SR检测策略包括: 基站在禁止检测时间内, 不进行 SR检测; 基站在允许检 测时间内, 可以进行 SR检测。 具体的, 基站在允许检测时间内, 可以进行 SR 检测, 当用户设备检测到存在上行数据需要发送时, 用户设备在允许检测时间 内向基站发送了 SR, 则基站检测到 SR, 当用户设备检测到不存在上行数据需 要发送时,用户设备在允许检测时间内没向基站发送 SR,则基站没检测到 SR。 用户设备检测到存在上行数据需要发送时, 且在允许检测时间内, 进行 SR发 送, 基站在允许检测时间内, 可以进行 SR检测, 使得用户设备的 SR发送策 略与基站的 SR检测策略相对应, 用户设备与基站的检测状态一致, 减少了基 站的检测时间, 可有效降低虚警的发生概率。
本发明实施提供一种调度请求的处理方法, 基站向用户设备下发配置参 数, 配置参数用于指示该基站的调度请求 SR检测策略, 配置参数可以包括 RRC控制信元或 MAC控制信元, 可使用户设备根据 SR检测策略确定对应的 SR发送策略, 使得当用户设备检测到存在上行数据需要发送时, 根据 SR发 送策略向基站发送 SR, 基站根据 SR检测策略进行 SR检测, 允许检测时间还 可以包括预备激活期, 预备激活期可使 SR在提前到达基站, 基站可及时下发 上行授权, 降低了时延。 本发明实施例中, 用户设备的 SR发送策略与基站的 SR检测策略相对应, 用户设备与基站的检测状态一致, 可减少基站的检测时 间, 且有效降低虚警的发生概率。 请参阅图 2, 图 2为本发明第二实施例提供的一种调度请求的处理方法的 流程图。其中, 图 2所示的调度请求的处理方法是从一用户设备的角度进行描 述的, 其中, 用户设备可以是移动用户设备、 PC用户设备、 服务于全局通信 的设备或者是其他类型用户设备, 具体用户设备的实现形式不受限制。 如图 2 所示, 本实施例提供的调度请求的处理方法, 包括以下步骤: S201~S203。
S201 ,用户设备接收基站下发的配置参数,所述配置参数用于指示基站的 SR检测策略。
作为一种可选的实施方式,本步骤中,用户设备接收基站下发的配置参数, 其中, 配置参数用于指示基站的 SR检测策略。 进一步可选的, SR检测策略 包括: 基站在禁止检测时间内, 不进行 SR检测; 基站在允许检测时间内, 进 行 SR检测。 其中, 允许检测时间包括用户设备的激活期, 禁止检测时间为所 述允许检测时间之外的时间。进一步可选的, 允许检测时间还可以包括激活预 备期。 预备激活期可使 SR在提前到达基站, 基站可及时下发上行授权, 降低 了时延。
5202, 用户设备根据 SR检测策略, 确定与 SR检测策略匹配的 SR发送 策略。
作为一种可选的实施方式, 用户设备根据 SR检测策略确定与 SR检测策 略相匹配的 SR发送策略, 其中, SR发送策略可包括: 用户设备在禁止检测 时间内, 不进行 SR发送; 用户设备在允许检测时间内, 可以进行 SR发送。
5203 , 当检测到存在上行数据需要发送时, 用户设备根据 SR发送策略向 基站发送 SR。
作为一种可选的实施方式, 当检测到存在上行数据需要发送时,用户设备 根据所述 SR发送策略向基站发送 SR。 进一步可选的, 用户设备在禁止检测 时间内, 不进行 SR发送。 如果在禁止检测时间内检测到有上行数据到达, 用 户设备将上行数据緩存在本地存储区中, 等到达允许检测时间才进行 SR的发 送, 基站对应在允许检测时间内, 进行 SR检测, 在禁止检测时间内, 不进行 SR检测。
进一步可选的, 当检测到不存在上行数据需要发送时, 用户设备在允许检 测时间内不向基站发送 SR, 此时, 基站根据 SR检测策略进行 SR检测, 但没 检测到 SR, 因为用户设备在允许检测时间内没有发送 SR。
本发明实施提供一种调度请求的处理方法,用户设备接收基站下发的配置 参数, 配置参数用于指示基站的调度请求 SR检测策略, 用户设备确定与 SR 检测策略相匹配的 SR发送策略, 当检测到存在上行数据需要发送时,根据 SR 发送策略向基站发送 SR,用户设备的 SR发送策略与基站的 SR检测策略相对 应, 用户设备与基站的检测状态一致, 可有效降低虚警的发生概率。 请参见图 3, 图 3为本发明第三实施例提供的一种调度请求的处理方法的 流程图。具体的实现形式如图 3所示, 本实施例提供的调度请求的处理方法包 括: S301~S305。
5301 , 基站生成 RRC控制信元, 所述 RRC控制信元用于指示基站的 SR 检测策略。
作为一种可选的实施方式, 基站生成 RRC控制信元, 其中, RRC控制信 元用于指示基站的 SR检测策略, 具体的, SR检测策略包括: 基站在禁止检 测时间内, 不进行 SR检测; 基站在允许检测时间内, 进行 SR检测。 其中, 允许检测时间包括用户设备的激活期,禁止检测时间为所述允许检测时间之外 的时间, 进一步可选的, 允许检测时间还可以包括激活预备期。 预备激活期可 使 SR在提前到达基站, 基站可及时下发上行授权, 降低了时延。
作为一种可选的实施方式, 基站生成的 RRC 控制信元例如可以为 SR_MASK RRC控制信元, RRC控制信元的格式在应用程序语言中可以表示 为:
SR-Mask ENUMERATED {setup} OPTIONAL
5302, 基站向用户设备下发所述 RRC控制信元。
5303, 用户设备根据所述 SR检测策略, 确定与 SR检测策略相匹配的 SR 发送策略。
作为一种可选的实施方式, 用户设备接收到 RRC控制信元后, 解析 RRC 控制信元, 又 RRC控制信元用于指示基站的 SR检测策略, 用户设备根据 SR 检测策略, 确定与 SR检测策略相匹配的 SR发送策略, SR发送策略可包括: 用户设备在禁止检测时间内, 不进行 SR发送; 用户设备在允许检测时间内, 可以进行 SR发送。
5304, 当检测到存在上行数据需要发送时, 用户设备根据 SR发送策略向 基站发送 SR。
作为一种可选的实施方式, 当检测到存在上行数据需要发送时,用户设备 根据所述 SR发送策略向基站发送 SR。 进一步可选的, 用户设备在禁止检测 时间内, 不进行 SR发送。 如果在禁止检测时间内检测到有上行数据到达, 用 户设备将上行数据緩存在本地存储区中, 等到达允许检测时间才进行 SR的发 送, 基站对应在允许检测时间内, 进行 SR检测, 在禁止检测时间内, 不进行 SR检测。
S305 , 基站根据 SR检测策略, 进行 SR检测。
作为一种可选的实施方式, 基站根据 SR检测策略, 进行 SR检测, 其中, SR检测策略包括: 基站在禁止检测时间内, 不进行 SR检测; 基站在允许检 测时间内, 进行 SR检测。 具体的, 基站在允许检测时间内, 可以进行 SR检 测, 当用户设备检测到存在上行数据需要发送时, 用户设备在允许检测时间内
R, 则基站检测到 SR。
Figure imgf000019_0001
本发明实施提供一种调度请求的处理方法, 基站向用户设备下发 RRC控 制信元, 其中, RRC控制信元用于指示基站的调度请求 SR检测策略, 用户设 备可确定与 SR检测策略相匹配的 SR发送策略, 当检测到存在上行数据需要 发送时, 用户设备在允许检测时间向基站发送 SR, 基站在允许检测时间检测 SR, 用户设备在禁止检测时间不发送 SR, 基站在禁止检测时间不检测 SR, 确保了用户设备的 SR发送策略与基站的 SR检测策略相一致, 用户设备与基 站的检测状态一致, 减少了基站的检测时间, 且有效降低虚警的发生概率。 请参见图 4, 图 4为本发明第四实施例提供的一种调度请求的处理方法的 流程图。具体的实现形式如图 4所示, 本实施例提供的调度请求的处理方法包 括: S401~S405。
S401 ,基站生成 MAC控制信元,所述 MAC控制信元用于指示基站的 SR 检测策略。
作为一种可选的实施方式, 基站生成 MAC控制信元, 其中, MAC控制 信元用于指示基站的 SR检测策略, 具体的, SR检测策略包括: 基站在禁止 检测时间内, 不进行 SR检测; 基站在允许检测时间内, 可以进行 SR检测。 其中, 允许检测时间包括用户设备的激活期, 禁止检测时间为所述允许检测时 间之外的时间, 进一步可选的, 允许检测时间还可以包括激活预备期。 预备激 活期可使 SR在提前到达基站, 基站可及时下发上行授权, 降低了时延。
作为一种可选的实施方式, 基站生成的 MAC控制信元例如可以为 SR禁 止 MAC信元, 即增加一个 MCE的逻辑信道 ID, 通过 MAC层对禁止检测时 间进行配置, MAC控制信元的格式可以为:
SR Forbid Timer Oct 1
SR Forbid Timer可以设为一个时间常数, 例如 5秒, 禁止检测时间可以设为: SR Forbid Timer*N*DRX Cycle, 即禁止检测时间为 SR Forbid Timer与 N个 DRX周期之积, N为大于零的正整数。
进一步可选的,若 SR Forbid Timer=0,则表示用户设备不受禁止检测时间 的限制, 可以随时发送 SR, 对于有频繁的上行数据需要发送的情况可以降低 发送上行数据的时延; 若 SR Forbid Timer = Oxff, 即 SR Forbid Timer定义为无 穷大, 则表示用户设备一直处于禁止检测时间的状态, 一直不能向基站发送 SR, 可节省信令。
5402, 基站向用户设备下发 MAC控制信元。
5403, 用户设备根据 SR检测策略, 确定与 SR检测策略匹配的 SR发送 作为一种可选的实施方式,用户设备接收到 MAC控制信元后,解析 MAC 控制信元, 又 MAC控制信元用于指示基站的 SR检测策略, 用户设备根据 SR 检测策略, 确定与 SR检测策略相匹配的 SR发送策略, SR发送策略可包括: 用户设备在禁止检测时间内, 不进行 SR发送; 用户设备在允许检测时间内, 可以进行 SR发送。
S404, 当检测到存在上行数据需要发送时, 用户设备根据 SR发送策略向 基站发送 SR。
作为一种可选的实施方式, 当检测到存在上行数据需要发送时,用户设备 根据所述 SR发送策略向基站发送 SR。 进一步可选的, 用户设备在禁止检测 时间内, 不进行 SR发送。 如果在禁止检测时间内检测到有上行数据到达, 用 户设备将上行数据緩存在本地存储区中, 等到达允许检测时间才进行 SR的发 送, 基站对应在允许检测时间内, 进行 SR检测, 在禁止检测时间内, 不进行 SR检测。
S405 , 基站根据 SR检测策略, 进行 SR检测。
作为一种可选的实施方式, 基站根据 SR检测策略, 进行 SR检测, 其中,
SR检测策略包括: 基站在禁止检测时间内, 不进行 SR检测; 基站在允许检 测时间内, 进行 SR检测。 具体的, 基站在允许检测时间内, 可以进行 SR检 测, 当用户设备检测到存在上行数据需要发送时, 用户设备在允许检测时间内 向基站发送了 SR, 则基站检测到 SR。
进一步可选的, 当用户设备检测到不存在上行数据需要发送时, 用户设备 在允许检测时间内不向基站发送 SR, 则基站没检测到 SR。
本发明实施提供一种调度请求的处理方法,基站向用户设备下发 MAC控 制信元, 其中, MAC控制信元用于指示基站的调度请求 SR检测策略, 用户 设备可确定与 SR检测策略相匹配的 SR发送策略, 当检测到存在上行数据需 要发送时, 用户设备在允许检测时间向基站发送 SR, 基站在允许检测时间检 SR, 用户设备在禁止检测时间不发送 SR,基站在禁止检测时间不检测 SR, 确保了用户设备的 SR发送策略与基站的 SR检测策略相一致, 用户设备与基 站的检测状态一致, 减少了基站的检测时间, 且有效降低虚警的发生概率。 请参阅图 5 , 图 5为本发明第五实施例提供的一种调度请求的处理方法的 流程图。其中,图 5所示的调度请求的处理方法是从一基站的角度进行描述的。 如图 5所示,本实施例提供的调度请求的处理方法,包括以下步骤: S501~S503。
S501 , 基站生成配置参数, 所述配置参数包括: SR空置信元和配置时间。 其中, 所述 SR空置信元用于指示用户设备不进行 SR上报, 所述配置时间为 用于指示所述用户设备等待所述基站下发上行授权的时间。
作为一种可选的实施方式, 基站生成配置参数, 其中, 配置参数包括: SR 空置信元和配置时间, 其中, SR空置信元用于指示用户设备不进行 SR上报, 配置时间为用于指示用户设备等待所述基站下发上行授权的时间。具体的, SR 控制信元例如可以设为 SR_NULL RRC信元, 如果无该 SR控制信元, 则基站 会进行 SR的物理层配置, 如果基站生成的配置参数中包括该 SR空置信元, 则在 RRC配置时不携带 SR的物理层配置, 进而使得用户设备也无对应的 SR 配置, 使得用户设备不能进行 SR上报。 配置时间例如可以设为 SR Wait Timer 定时器中预设的时间, 例如 30秒、 60秒等, 配置时间用于指示用户设备等待 基站下发上行授权的时间。
5502,基站向用户设备下发配置参数, 以使用户设备当检测到存在上行数 据需要发送时, 根据 SR空置信元不向基站上报 SR。
作为一种可选的实施方式,基站向用户设备下发配置参数, 用户设备接收 到配置参数后, 解析配置参数, 又配置参数包括: SR空置信元和配置时间, 其中, SR空置信元用于指示用户设备不进行 SR上报, 配置时间为用于指示 用户设备等待所述基站下发上行授权的时间,用户设备当检测到存在上行数据 需要发送时, 根据 SR空置信元不向基站上报 SR, 例如, 用户设备检测到有 上行数据需要发送, 根据 SR空置信元不向基站发送 SR, 不向基站发起随机 接入, 启动 SR Wait Timer定时器, 等待基站下发上行授权。
5503, 基站在预设的周期时间内向用户设备下发上行授权。
作为一种可选的实施方式,基站在预设的周期时间内向用户设备下发上行 授权。 进一步可选的, SR Wait Timer定时器 = N*DRX Cycle, 如图 8所示, 在 Duration Timer基站会在预设的周期时间内向用户设备下发上行授权的 PDCCH指示, 基站一般可在到达每个 Duration Timer时, 启动预设的周期时 间的上行授权发送。 进一步可选的, 如果用户设备收到 PDCCH指示, 而緩存 中没有数据, 则会发送 BSR=0的 MCE给基站, 基站如果连续收到 M次 BSR 等于零的 MCE, 基站可停止周期性的上行授权指示发送。
进一步可选的, 继步骤 S503之后, 该方法还包括如下步骤:
基站接收所述用户设备在所述配置时间内接收到所述上行授权时根据所 述上行授权发送的上行数据。
作为一种可选的实施方式, 如果用户设备在配置时间内接收到上行授权, 则根据上行授权向基站发送的上行数据, 基站接收到用户设备发送的上行数 据。 具体的, 用户设备收到上行授权后, 如果緩存中有数据则发送数据并把緩 存中剩余的数据量通过 BSR携带上来, 基站收到 BSR后会根据 BSR的值动 态调度下一次调度授权的资源大小。
进一步可选的, 继步骤 S503之后, 该方法还包括如下步骤:
基站接收所述用户设备在所述配置时间内未接收到所述上行授权时发送 的随机接入请求或重建请求。
作为一种可选的实施方式,如果用户设备在配置时间内没有接收到上行授 权, 则向基站发送的随机接入请求或重建请求,基站接收到用户设备发送的随 机接入请求或重建请求。
进一步可选的,如果用户设备检测到没有下行数据的发送需求,基站向用 户设备发送给 DRX Command MAC Control Element, 指示用户设备由允许检 测时间所在状态切换到禁止检测时间所在状态, 进入省电状态。 又基站一般会 在每个 duration timer 上启动预设的周期时间的上行授权指示发送, 如果 duration timer期间用户设备上报的 BSR全部都是 0且没有下行数据发送需求, 基站可以在 duration timer 结束时立即发送 DRX Command MAC Control Element, 防止 UE进入不必要的 DRX激活期。
本发明实施提供一种调度请求的处理方法, 基站向用户设备下发配置参 数, 配置参数包括 SR空置信元和配置时间, 当检测到存在上行数据需要发送 时, 用户设备根据 SR空置信元, 不向所述基站上报 SR, 若用户设备在配置 时间内, 接收到基站下发的上行授权, 根据上行授权向基站发送上行数据, 若 用户设备在配置时间内, 未接收到基站下发的上行授权, 向基站发送随机接入 请求或重建请求。 基站向用户设备下发的 SR空置信元可用于指示用户设备不 进行 SR上报, 用户设备不进行 SR上报, 基站在预设的周期时间内下发上行 授权, 确保资源的正常分配, 不会出现虚警, 可将虚警的发生概率降低到零。 请参阅图 6, 图 6为本发明第六实施例提供的一种调度请求的处理方法的 流程图。其中, 图 6所示的调度请求的处理方法是从一用户设备的角度进行描 述的, 其中, 用户设备可以是移动用户设备、 PC用户设备、 服务于全局通信 的设备或者是其他类型用户设备, 具体用户设备的实现形式不受限制。 如图 6 所示, 本实施例提供的调度请求的处理方法, 包括以下步骤: S601~S604。
5601 , 用户设备接收基站下发的配置参数, 所述配置参数包括 SR空置信 元和配置时间。 其中, 所述 SR空置信元用于指示所述用户设备不进行 SR上 报, 所述配置时间为用于指示所述用户设备等待所述基站下发上行授权的时 间。
作为一种可选的实施方式, 用户设备接收基站下发的配置参数,解析配置 参数。 其中, 配置参数包括: SR空置信元和配置时间, 其中, SR空置信元用 于指示用户设备不进行 SR上报, 配置时间为用于指示用户设备等待所述基站 下发上行授权的时间。 具体的, SR控制信元例如可以设为 SR_NULL RRC信 元, 如果无该 SR控制信元, 则基站会进行 SR的物理层配置, 如果接收到的 配置参数中包括该 SR空置信元,即基站在 RRC配置时不携带 SR的物理层配 置, 则用户设备也无对应的 SR配置, 用户设备不进行 SR上报。 配置时间例 如可以设为 SR Wait Timer定时器中预设的时间, 例如 30秒、 60秒等, 配置 时间用于指示用户设备等待基站下发上行授权的时间。
5602, 当检测到存在上行数据需要发送时, 用户设备根据 SR空置信元, 不向基站上报 SR。
作为一种可选的实施方式, 用户设备当检测到存在上行数据需要发送时, 根据 SR空置信元不向基站上报 SR, 例如, 用户设备检测到有上行数据需要 发送, 根据 SR空置信元控制不向基站发送 SR, 控制不向基站发起随机接入, 启动 SR Wait Timer定时器, 等待基站下发上行授权。
5603, 若用户设备在配置时间内, 接收到基站下发的上行授权, 根据上行 授权向基站发送上行数据。
作为一种可选的实施方式, 如果用户设备在配置时间内接收到上行授权, 则根据上行授权向基站发送的上行数据。 具体的, 用户设备收到上行授权后, 如果緩存中有数据, 则发送数据, 可通过 BSR携带数据发送到基站, 基站收 到 BSR后会根据 BSR的值动态调度下一次调度授权的资源大小。
5604, 若用户设备在配置时间内, 未接收到基站下发的上行授权, 向基站 发送随机接入请求或重建请求。
作为一种可选的实施方式,如果用户设备在配置时间内没有接收到上行授 权, 则向基站发送的随机接入请求或重建请求,基站接收到用户设备发送的随 机接入请求或重建请求。
本发明实施提供一种调度请求的处理方法,用户设备接收基站下发的配置 参数, 配置参数包括 SR空置信元和配置时间, 当检测到存在上行数据需要发 送时, 用户设备根据 SR空置信元, 控制不向所述基站上报 SR, 若用户设备 在配置时间内,接收到基站下发的上行授权,根据上行授权向基站发送上行数 据, 若用户设备在配置时间内, 未接收到基站下发的上行授权, 向基站发送随 机接入请求或重建请求。 基站向用户设备下发的 SR空置信元可用于指示用户 设备不进行 SR上报, 用户设备不进行 SR上报, 基站在预设的周期时间内下 发上行授权, 确保资源的正常分配, 不会出现虚警, 可将虚警的发生概率降低 到零。 请参阅图 7, 图 7为本发明第七实施例提供的一种调度请求的处理方法的 流程图。其中,图 7所示的调度请求的处理方法是从一基站的角度进行描述的。 本发明实施例为出现虚警情况下的处理方法, 如图 7所示, 本实施例提供的调 度请求的处理方法, 包括以下步骤: S701~S702。
5701 , 当基站在禁止检测时间内第一次接收到 SR时, 对第一次接收到的 SR不作响应。
作为一种可选的实施方式, 基站在禁止检测时间内第一次接收到 SR时, 对该第一次接收到的 SR不作响应。 正常情况下, 用户设备在禁止检测时间内 不会发生 SR, 但由于无线环境的复杂性, 用户设备没有发送 SR, 而基站由于 无线环境的干扰等错误的检测到了 SR, 这种情况为 SR虚警。 本发明实施例 中,对于出现虚警的情况下,对禁止检测时间内第一次接收到的 SR不作响应。
5702, 当所述基站在禁止检测时间内第二次接收到 SR时, 基站向用户设 备下发上行授权,并控制由禁止检测时间的所在状态切换到允许检测时间的所 在状态。 作为一种可选的实施方式,如果基站在禁止检测时间内第二次接收到 SR, 则根据接收到的 SR向用户设备下发上行授权, 并由禁止检测时间的所在状态 切换到允许检测时间的所在状态。进一步可选的,如果基站在禁止检测时间内 第三次接收到 SR, 此时基站处于允许检测时间的所在状态, 则可以对 SR进 行检测。
进一步可选的, 继步骤 S702之后, 该方法还包括如下步骤:
如果接收到所述用户设备发送的不连续发送 DTX响应的次数大于预设的 次数, 所述基站停止向所述用户设备下发上行授权, 并控制由所述允许检测时 间的所在状态切换到所述禁止检测时间的所在状态。
作为一种可选的实施方式,基站向用户设备发送下行数据,如果接收到用 户设备发送的 DTX响应的次数大于预设的次数, 则控制由允许检测时间的所 在状态切换到禁止检测时间的所在状态。 可根据下行数据的反馈对出现 SR虚 警的情况进行处理, 减少了基站与用户设备检测状态不一致的可能性。
本发明实施提供一种调度请求的处理方法,当基站在禁止检测时间内第一 次接收到 SR时, 对第一次接收到的 SR不作响应, 当基站在禁止检测时间内 第二次接收到 SR时, 基站向用户设备下发上行授权, 并控制由禁止检测时间 的所在状态切换到允许检测时间的所在状态。在基站没有下发任何配置参数情 况下, 若在禁止检测时间第二次接收到 SR, 则禁止检测时间的所在状态切换 到允许检测时间的所在状态, 为出现 SR虚警情况下的后处理, 可降低虚警的 发生概率。当基站向用户设备发送下行数据,如果接收到用户设备发送的 DTX 响应的次数大于预设的次数,则控制由允许检测时间的所在状态切换到禁止检 测时间的所在状态。 可根据下行数据的反馈对出现 SR虚警的情况进行处理, 减少了基站与用户设备检测状态不一致的可能性。 下面将结合附图 9、 图 11、 图 13、 图 15以及图 17, 对本发明实施例提供 的调度请求的处理装置进行详细介绍。
请参见图 9, 为本发明第一实施例提供的一种调度请求的处理装置的结构 示意图。 需要说明的是, 附图 9所示的调度请求的处理装置, 用于执行本发明 图 1示实施例的方法, 为了便于说明, 仅示出了与本发明实施例相关的部分, 具体技术细节未揭示的, 请参照本发明图 1所示的实施例。
如图 9所示,该装置可包括:生成模块 901、发送模块 902和检测模块 903。 生成模块 901 , 用于生成配置参数, 所述配置参数用于指示所述基站的调 度请求 SR检测策略。
作为一种可选的实施方式, 生成模块 901生成配置参数, 配置参数用于指 示基站的 SR检测策略。 进一步可选的, SR检测策略包括: 基站在禁止检测 时间内, 不进行 SR检测; 基站在允许检测时间内, 进行 SR检测。 具体的, 基站在允许检测时间内可以进行 SR检测, 当用户设备检测到存在上行数据需 要发送时, 用户设备在允许检测时间内向基站发送了 SR, 基站检测到 SR, 当 用户设备检测到不存在上行数据需要发送时,用户设备在允许检测时间内没向 基站发送 SR, 则基站没检测到 SR。 其中, 允许检测时间包括用户设备的激活 期, 禁止检测时间为所述允许检测时间之外的时间。 进一步可选的, 允许检测 时间还可以包括激活预备期。
作为一种可选的实施方式, 如图 8所示, 为本发明实施例提供的 DRX时 间的示意图, 在一个 DRX Cycle中可以包括 Pre-Strimer和 Duration Timer, 一 个 DRX Cycle中可以包括 DRX Inactive Timer和 Pre-Strimer,允许检测时间( SR Active Timer )包括 Duration Timer、 Inactivity Timer和 Pre-Strimer。 Pre-Strimer 可使 SR在 Duration Timer之前到达基站,使得基站到达 Duration Timer立即下 发上行授权, 降低了时延。
作为一种可选的实施方式, 基站生成的配置参数可以包括: RRC控制信 元, 例如可以为 SR_MASK RRC控制信元, RRC控制信元的格式在应用程序 语言中可以表示为:
SR-Mask ENUMERATED {setup} OPTIONAL 作为一种可选的实施方式,基站生成的配置参数可以包括: MAC控制信 元, 例如可以为 SR禁止 MAC信元, 即增加一个 MCE的逻辑信道 ID, 通过 MAC层对禁止检测时间进行配置, MAC控制信元的格式可以为:
SR Forbid Timer Oct 1 SR Forbid Timer可以设为一个时间常数, 例如 5秒, 禁止检测时间可以设为: SR Forbid Timer*N*DRX Cycle, 即禁止检测时间为 SR Forbid Timer与 N个 DRX周期之积, N为大于零的正整数。
进一步可选的,若 SR Forbid Timer=0,则表示用户设备不受禁止检测时间 的限制, 可以随时发送 SR, 对于有频繁的上行数据需要发送的情况可以降低 发送上行数据的时延; 若 SR Forbid Timer = Oxff, 即 SR Forbid Timer定义为无 穷大, 则表示用户设备一直处于禁止检测时间的状态, 一直不能向基站发送 SR, 可节省信令。
在其他实施例中, 生成模块 901 生成的配置参数的实现方法是多种多样 的, 可以为 RRC控制信元, 也可以为 MAC控制信元, 也可以是其他的实现 形式, 具体不受本实施例的限制。
发送模块 902, 用于向用户设备下发所述生成模块 901生成的配置参数, 以使所述用户设备根据所述基站的 SR检测策略确定与所述 SR检测策略匹配 的 SR发送策略。
作为一种可选的实施方式,发送模块 902向用户设备下发配置参数, 用户 设备接收到该配置参数后, 解析该配置参数, 又配置参数用于指示基站的 SR 检测策略, 用户设备根据基站的 SR检测策略确定与 SR检测策略匹配的 SR 发送策略。 其中, SR检测策略可包括: 基站在禁止检测时间内, 不进行 SR 检测; 基站在允许检测时间内, 进行 SR检测。 SR发送策略可包括: 用户设 备在禁止检测时间内, 不进行 SR发送; 用户设备在允许检测时间内, 可以进 行 SR发送。 具体的, 用户设备在允许检测时间内可以进行 SR发送, 当用户 设备检测到存在上行数据需要发送时,用户设备在允许检测时间内向基站发送 SR, 当用户设备检测到不存在上行数据需要发送时, 用户设备在允许检测时 间内不向基站发送 SR。
进一步可选的,如果发送模块 902向用户设备下发的配置参数包括: RRC 控制信元, 则用户设备在禁止检测时间内, 不进行 SR发送, 在允许检测时间 内, 可以进行 SR发送。 如果在禁止检测时间内检测到有上行数据到达, 用户 设备将上行数据緩存在本地存储区中,等到达允许检测时间才进行 SR的发送, 基站对应在允许检测时间内, 进行 SR检测, 在禁止检测时间内, 不进行 SR 检测。
进一步可选的,如果发送模块 902向用户设备下发的配置参数包括: MAC 控制信元, 则用户设备在禁止检测时间内, 不进行 SR发送, 禁止检测时间可 以设为: SR Forbid Timer*N*DRX Cycle。 如果在禁止检测时间内检测到有上 行数据到达, 用户设备将上行数据緩存在本地存储区中, 等到达允许检测时间 才进行 SR的发送, 基站对应在允许检测时间内, 进行 SR检测, 在禁止检测 时间内, 不进行 SR检测。
检测模块 903, 用于根据所述 SR检测策略, 进行 SR检测。
作为一种可选的实施方式, 检测模块 903根据 SR检测策略, 进行 SR检 测, 其中, SR检测策略包括: 基站在禁止检测时间内, 不进行 SR检测; 基 站在允许检测时间内, 可以进行 SR检测。 具体的, 基站在允许检测时间内, 可以进行 SR检测, 当用户设备检测到存在上行数据需要发送时, 用户设备在 允许检测时间内向基站发送了 SR, 则基站检测到 SR, 当用户设备检测到不存 在上行数据需要发送时, 用户设备在允许检测时间内没向基站发送 SR, 则基 站没检测到 SR。 用户设备检测到存在上行数据需要发送时, 且在允许检测时 间内, 进行 SR发送, 基站在允许检测时间内, 可以进行 SR检测, 使得用户 设备的 SR发送策略与基站的 SR检测策略相对应, 用户设备与基站的检测状 态一致, 减少了基站的检测时间, 可有效降低虚警的发生概率。
上述技术方案中,提供一种调度请求的处理装置, 生成模块于生成配置参 数, 配置参数用于指示该基站的调度请求 SR检测策略, 发送模块向用户设备 下发配置参数, 配置参数可以包括 RRC控制信元或 MAC控制信元, 可使用 户设备根据 SR检测策略确定对应的 SR发送策略, 使得当用户设备检测到存 在上行数据需要发送时, 根据 SR发送策略向基站发送 SR, 基站根据 SR检测 策略进行 SR检测,允许检测时间还可以包括预备激活期,预备激活期可使 SR 在提前到达基站, 基站可及时下发上行授权, 降低了时延。 本发明实施例中, 用户设备的 SR发送策略与基站的 SR检测策略相对应, 用户设备与基站的检 测状态一致, 可减少基站的检测时间, 且有效降低虚警的发生概率。 需要说明的是, 本实施例中的发送模块可以为基站的发射机,且接收模块 和发送模块可以集成在一起构成基站的收发机。生成模块可以为单独设立的处 理器, 也可以集成在基站的某一个处理器中实现, 此外, 也可以以程序代码的 形式存储于基站的存储器中,由基站的某一个处理器调用并执行以上生成模块 的功能。 检测模块的实现同生成模块, 且可以与生成模块集成在一起, 也可以 独立实现。这里所述的处理器可以是一个中央处理器( Central Processing Unit, CPU ), 或者是特定集成电路(Application Specific Integrated Circuit, ASIC ), 或者是被配置成实施本发明实施例的一个或多个集成电路。
请参见图 10, 为本发明实施例提供的一种基站的结构示意图, 其中, 本 实施例提供的基站与图 1所示的方法相对应,为基于图 1所示的调度请求的处 理方法的执行主体。具体的实现形式如图 10所示, 本发明实施例的基站包括: 接收机 1001、 发射机 1002、 存储器 1003和处理器 1004, 其中, 接收机 1001、 发射机 1002、 存储器 1003均和处理器 1004连接, 例如, 可以通过总线连接。 当然, 基站还可以包括天线、 基带处理部件、 中射频处理部件、 输入输出装置 等通用部件, 本发明实施例在此不再任何限制。
接收机 1001和发射机 1002可以集成在一起, 构成收发机。
存储器 1003用于存储可执行程序代码,该程序代码包括计算机操作指令。 存储器 1003 可能包含高速 RAM 存储器, 也可能还包括非易失性存储器 ( non-volatile memory ) , 例如至少一个磁盘存储器。
处理器 1004可以是一个中央处理器( Central Processing Unit, CPU ), 或 者是特定集成电路 ( Application Specific Integrated Circuit, ASIC ), 或者是被 配置成实施本发明实施例的一个或多个集成电路。
其中,存储器 1003中存储一组程序代码,且处理器 1004用于调用存储器 1003中存储的程序代码, 执行以下操作:
生成配置参数,所述配置参数用于指示所述基站的调度请求 SR检测策略; 通过发射机 1002向用户设备下发所述配置参数, 以使所述用户设备根据 所述基站的 SR检测策略确定与所述 SR检测策略匹配的 SR发送策略;
根据所述 SR检测策略, 进行 SR检测。 上述技术方案中,提供一种基站, 包括接收机、发射机、存储器和处理器, 可通过发射机向用户设备下发配置参数,配置参数用于指示该基站的调度请求
SR检测策略, 处理器根据 SR检测策略确定对应的 SR发送策略, 当检测到存 在上行数据需要发送时, 根据 SR发送策略向基站发送 SR, 根据 SR检测策略 进行 SR检测, 使得用户设备的 SR发送策略与基站的 SR检测策略相对应, 用户设备与基站的检测状态一致, 减少了基站的检测时间, 可有效降低虚警的 发生概率。 请参见图 11 , 为本发明第二实施例提供的一种调度请求的处理装置的结 构示意图。 需要说明的是, 附图 11所示的调度请求的处理装置, 用于执行本 发明图 2示实施例的方法, 为了便于说明,仅示出了与本发明实施例相关的部 分, 具体技术细节未揭示的, 请参照本发明图 2所示的实施例。
进一步可选的,本发明实施例提供的一种调度请求的处理装置可以为用户 设备, 其中, 用户设备可以是移动用户设备、 PC用户设备、 服务于全局通信 的设备或者是其他类型用户设备, 具体用户设备的实现形式不受限制。
如图 11所示, 该装置可包括: 接收模块 1101、 确定模块 1102和发送模 块 1103。
接收模块 1101 , 用于接收基站下发的配置参数, 所述配置参数用于指示 所述基站的 SR检测策略。
作为一种可选的实施方式, 接收模块 1101接收基站下发的配置参数, 其 中, 配置参数用于指示基站的 SR检测策略。 进一步可选的, SR检测策略包 括: 基站在禁止检测时间内, 不进行 SR检测; 基站在允许检测时间内, 进行 SR检测。 其中, 允许检测时间包括用户设备的激活期, 禁止检测时间为所述 允许检测时间之外的时间。进一步可选的, 允许检测时间还可以包括激活预备 期。 预备激活期可使 SR在提前到达基站, 基站可及时下发上行授权, 降低了 时延。
确定模块 1102, 用于根据所述 SR检测策略, 确定与所述 SR检测策略匹 配的 SR发送策略。 作为一种可选的实施方式,确定模块 1102根据 SR检测策略确定与 SR检 测策略相匹配的 SR发送策略, 其中, SR发送策略可包括: 用户设备在禁止 检测时间内, 不进行 SR发送; 用户设备在允许检测时间内, 可以进行 SR发 送。
发送模块 1103 , 用于当检测到存在上行数据需要发送时, 根据所述 SR发 送策略向基站发送 SR。
作为一种可选的实施方式, 当检测到存在上行数据需要发送时,发送模块 1103根据 SR发送策略向基站发送 SR。 进一步可选的, 用户设备在禁止检测 时间内, 不进行 SR发送。 如果在禁止检测时间内检测到有上行数据到达, 用 户设备将上行数据緩存在本地存储区中, 等到达允许检测时间才进行 SR的发 送, 基站对应在允许检测时间内, 进行 SR检测, 在禁止检测时间内, 不进行 SR检测。
进一步可选的, 当检测到不存在上行数据需要发送时,用户设备在允许检 测时间内没有向基站发送 SR, 此时, 基站根据 SR检测策略进行 SR检测, 但 没检测到 SR, 因为用户设备在允许检测时间内没有发送 SR。
上述技术方案中,提供一种调度请求的处理装置,接收模块接收基站下发 的配置参数, 配置参数用于指示基站的调度请求 SR检测策略, 确定模块确定 与 SR检测策略相匹配的 SR发送策略, 当检测到存在上行数据需要发送时, 发送模块根据 SR发送策略向基站发送 SR,用户设备的 SR发送策略与基站的 SR检测策略相对应, 用户设备与基站的检测状态一致, 可有效降低虚警的发 生概率。
需要说明的是, 本实施例中的接收模块可以为用户设备的接收机,发送模 块可以为用户设备的发射机; 另外,也可以将接收模块和发送模块集成在一起 构成用户设备的收发机。确定模块可以为单独设立的处理器,也可以集成在用 户设备的某一个处理器中实现, 此外,也可以以程序代码的形式存储于用户设 备的存储器中,由用户设备的某一个处理器调用并执行以上跟踪任务建立单元 的功能。 这里所述的处理器可以是一个中央处理器, 或者是特定集成电路, 或 者是被配置成实施本发明实施例的一个或多个集成电路。 请参见图 12, 为本发明实施例提供的一种用户设备的结构示意图, 其中, 本实施例提供的用户设备与图 2所示的方法相对应,为基于图 2所示的调度请 求的处理方法的执行主体。进一步可选的, 本发明实施例提供的一种用户设备 可以是移动用户设备、 PC用户设备、 服务于全局通信的设备或者是其他类型 用户设备, 具体用户设备的实现形式不受限制。具体的实现形式如图 12所示, 本发明实施例的用户设备可以包括: 接收机 1201、 发射机 1202、 存储器 1203 和处理器 1204, 其中, 接收机 1201、 发射机 1202、 存储器 1203均和处理器 1204 连接, 例如, 可以通过总线连接。 当然, 用户设备还可以包括天线、 输 入输出装置等通用部件, 本发明实施例在此不再任何限制。
接收机 1201和发射机 1202可以集成在一起, 构成收发机。
存储器 1203用于存储可执行程序代码,该程序代码包括计算机操作指令。 存储器 1203可能包含高速 RAM存储器, 也可能还包括非易失性存储器, 例 如至少一个磁盘存储器。
处理器 1204可以是一个中央处理器, 或者是特定集成电路, 或者是被配 置成实施本发明实施例的一个或多个集成电路。
其中,存储器 1203中存储一组程序代码,且处理器 1204用于调用存储器 1203中存储的程序代码, 执行以下操作:
通过接收机 1201接收基站下发的配置参数, 所述配置参数用于指示所述 基站的 SR检测策略;
根据所述 SR检测策略, 确定与所述 SR检测策略匹配的 SR发送策略; 当检测到存在上行数据需要发送时, 根据所述 SR发送策略通过发射机 1202向基站发送 SR。
上述技术方案中, 提供一种用户设备, 包括: 接收机、 发射机、 存储器和 处理器, 可通过接收机接收基站下发的配置参数, 配置参数用于指示基站的调 度请求 SR检测策略, 处理器确定与 SR检测策略相匹配的 SR发送策略, 当 检测到存在上行数据需要发送时, 根据 SR发送策略通过发射机向基站发送 SR, 用户设备的 SR发送策略与基站的 SR检测策略相对应, 用户设备与基站 的检测状态一致, 可有效降低虚警的发生概率。 请参见图 13, 为本发明第三实施例提供的一种调度请求的处理装置的结 构示意图。 需要说明的是, 附图 13所示的调度请求的处理装置, 用于执行本 发明图 5示实施例的方法, 为了便于说明,仅示出了与本发明实施例相关的部 分, 具体技术细节未揭示的, 请参照本发明图 5所示的实施例。
如图 13所示, 该装置可包括: 生成模块 1301和发送模块 1302。
生成模块 1301 , 用于生成配置参数, 所述配置参数包括: SR空置信元和 配置时间, 其中, 所述 SR空置信元用于指示用户设备不进行 SR上报, 所述 配置时间为用于指示所述用户设备等待所述基站下发上行授权的时间。
作为一种可选的实施方式, 生成模块 1301生成配置参数, 其中, 配置参 数包括: SR空置信元和配置时间, 其中, SR空置信元用于指示用户设备不进 行 SR上报,配置时间为用于指示用户设备等待所述基站下发上行授权的时间。 具体的, SR控制信元例如可以设为 SR_NULL RRC信元, 如果无该 SR控制 信元,则基站会进行 SR的物理层配置,如果基站生成的配置参数中包括该 SR 空置信元, 则在 RRC配置时不携带 SR的物理层配置, 进而使得用户设备也 无对应的 SR配置, 使得用户设备不能进行 SR上报。 配置时间例如可以设为 SR Wait Timer定时器中预设的时间, 例如 30秒、 60秒等, 配置时间用于指示 用户设备等待基站下发上行授权的时间。
发送模块 1302,用于向用户设备下发所述生成模块 1301生成的配置参数, 以使所述用户设备当检测到存在上行数据需要发送时, 根据所述 SR空置信元 不向所述基站上报 SR。
作为一种可选的实施方式, 发送模块 1302向用户设备下发配置参数, 用 户设备接收到配置参数后, 解析配置参数, 又配置参数包括: SR空置信元和 配置时间, 其中, SR空置信元用于指示用户设备不进行 SR上报, 配置时间 为用于指示用户设备等待所述基站下发上行授权的时间,用户设备当检测到存 在上行数据需要发送时, 根据 SR空置信元不向基站上报 SR, 例如, 用户设 备检测到有上行数据需要发送, 根据 SR空置信元不向基站发送 SR, 不向基 站发起随机接入, 启动 SR Wait Timer定时器, 等待基站下发上行授权。
发送模块 1302, 还用于在预设的周期时间内向所述用户设备下发上行授 权。
作为一种可选的实施方式, 发送模块 1302在预设的周期时间内向用户设 备下发上行授权。 进一步可选的, SR Wait Timer定时器 = N*DRX Cycle, 如 图 8所示,在 Duration Timer基站会在预设的周期时间内向用户设备下发上行 授权的 PDCCH指示, 基站一般可在到达每个 Duration Timer时, 启动预设的 周期时间的上行授权发送。 进一步可选的, 如果用户设备收到 PDCCH指示, 而緩存中没有数据, 则会发送 BSR=0的 MCE给基站, 基站如果连续收到 M 次 BSR等于零的 MCE, 基站可停止周期性的上行授权指示发送。
进一步可选的, 本发明实施例的调度请求的处理装置还可以包括: 接收模 块 1303。
接收模块 1303 , 用于接收所述用户设备在所述配置时间内接收到所述上 行授权时根据所述上行授权发送的上行数据。
作为一种可选的实施方式, 如果用户设备在配置时间内接收到上行授权, 则根据上行授权向基站发送的上行数据, 接收模块 1304接收到用户设备发送 的上行数据。 具体的, 用户设备收到上行授权后, 如果緩存中有数据则发送数 据并把緩存中剩余的数据量通过 BSR携带上来,基站收到 BSR后会根据 BSR 的值动态调度下一次调度授权的资源大小。
接收模块 1303 , 还可以用于接收所述用户设备在所述配置时间内未接收 到所述上行授权时发送的随机接入请求或重建请求。
作为一种可选的实施方式,如果用户设备在配置时间内没有接收到上行授 权, 则向基站发送的随机接入请求或重建请求, 接收模块 1303接收到用户设 备发送的随机接入请求或重建请求。
进一步可选的,如果用户设备检测到没有下行数据的发送需求,基站向用 户设备发送给 DRX Command MAC Control Element, 指示用户设备由允许检 测时间所在状态切换到禁止检测时间所在状态, 进入省电状态。 又基站一般会 在每个 duration timer 上启动预设的周期时间的上行授权指示发送, 如果 duration timer期间用户设备上报的 BSR全部都是 0且没有下行数据发送需求, 基站可以在 duration timer 结束时立即发送 DRX Command MAC Control Element, 防止 UE进入不必要的 DRX激活期。
上述技术方案中,提供一种调度请求的处理装置,生成模块生成配置参数, 发送模块向用户设备下发配置参数, 配置参数包括 SR空置信元和配置时间, 发送模块在预设的周期时间内向用户设备下发上行授权。当检测到存在上行数 据需要发送时, 用户设备根据 SR空置信元, 不向所述基站上报 SR, 若用户 设备在配置时间内,接收到发送模块下发的上行授权,根据上行授权向基站发 送上行数据, 若用户设备在配置时间内, 未接收到基站下发的上行授权, 向基 站发送随机接入请求或重建请求。 基站向用户设备下发的 SR空置信元可用于 指示用户设备不进行 SR上报, 用户设备不进行 SR上报, 基站在预设的周期 时间内下发上行授权, 确保资源的正常分配, 不会出现虚警, 可将虚警的发生 概率降低到零。
需要说明的是,本实施例中的发送模块可以为用户设备的发射机,可选的, 接收模块可以为基站的接收机; 另外, 也可以将发送模块、接收模块集成在一 起构成基站的收发机。生成模块可以为单独设立的处理器,也可以集成在基站 的某一个处理器中实现, 此外,也可以以程序代码的形式存储于基站的存储器 中, 由基站的某一个处理器调用并执行以上生成模块的功能。这里所述的处理 器可以是一个中央处理器, 或者是特定集成电路, 或者是被配置成实施本发明 实施例的一个或多个集成电路。
请参见图 14, 为本发明实施例提供的另一种基站的结构示意图, 其中, 本实施例提供的基站与图 5所示的方法相对应,为基于图 5所示的调度请求的 处理方法的执行主体。 具体的实现形式如图 14所示, 本发明实施例的基站包 括: 接收机 1401、 发射机 1402、 存储器 1403和处理器 1404, 其中, 接收机 1401、 发射机 1402、 存储器 1403均和处理器 1404连接, 例如, 可以通过总 线连接。 当然, 基站还可以包括天线、 基带处理部件、 中射频处理部件、 输入 输出装置等通用部件, 本发明实施例在此不再任何限制。
接收机 1401和发射机 1402可以集成在一起, 构成收发机。
存储器 1403用于存储可执行程序代码,该程序代码包括计算机操作指令。 存储器 1003可能包含高速 RAM存储器, 也可能还包括非易失性存储器, 例 如至少一个磁盘存储器。
处理器 1004可以是一个中央处理器, 或者是特定集成电路, 或者是被配 置成实施本发明实施例的一个或多个集成电路。
其中,存储器 1403中存储一组程序代码,且处理器 1404用于调用存储器 1403中存储的程序代码, 执行以下操作:。
生成配置参数, 所述配置参数包括: SR空置信元和配置时间, 其中, 所 述 SR空置信元用于指示用户设备不进行 SR上报, 所述配置时间为用于指示 所述用户设备等待所述基站下发上行授权的时间;
通过所述发射机 1402向用户设备下发所述配置参数, 以使所述用户设备 当检测到存在上行数据需要发送时, 根据所述 SR空置信元不向所述基站上报 SR;
在预设的周期时间内通过所述发射机 1402 向所述用户设备下发上行授 权。
进一步可选的, 通过接收机 1401接收所述用户设备在所述配置时间内接 收到所述上行授权时根据所述上行授权发送的上行数据。
通过接收机 1401接收所述用户设备在所述配置时间内未接收到所述上行 授权时发送的随机接入请求或重建请求。
上述技术方案中, 提供一种基站, 包括: 接收机、 发射机、 存储器和处理 器, 发射机可向用户设备下发配置参数, 配置参数包括 SR空置信元和配置时 间, 当检测到存在上行数据需要发送时, 处理器根据 SR空置信元控制不向基 站上报 SR, 若用户设备在配置时间内, 可通过接收机接收基站下发的上行授 权,接收用户设备根据上行授权向基站发送的上行数据, 若用户设备在配置时 间内, 未接收到基站下发的上行授权,通过接收机接收用户设备发送的随机接 入请求或重建请求。 基站向用户设备下发的 SR空置信元可用于指示用户设备 不进行 SR上报, 用户设备不进行 SR上报, 基站在预设的周期时间内下发上 行授权,确保资源的正常分配,不会出现虚警,可将虚警的发生概率降低到零。 请参见图 15 , 为本发明第四实施例提供的一种调度请求的处理装置的结 构示意图。 需要说明的是, 附图 15所示的调度请求的处理装置, 用于执行本 发明图 6示实施例的方法, 为了便于说明,仅示出了与本发明实施例相关的部 分, 具体技术细节未揭示的, 请参照本发明图 6所示的实施例。
进一步可选的,本发明实施例提供的一种调度请求的处理装置可以为用户 设备, 其中, 用户设备可以是移动用户设备、 PC用户设备、 服务于全局通信 的设备或者是其他类型用户设备, 具体用户设备的实现形式不受限制。
如图 15所示, 该装置可包括: 接收模块 1501、 控制模块 1502和发送模 块 1503。
接收模块 1501 , 用于接收基站下发的配置参数, 所述配置参数包括 SR空 置信元和配置时间,其中,所述 SR空置信元用于指示所述用户设备不进行 SR 上报,所述配置时间为用于指示所述用户设备等待所述基站下发上行授权的时 间。
作为一种可选的实施方式, 接收模块 1501接收基站下发的配置参数, 解 析配置参数。 其中, 配置参数包括: SR空置信元和配置时间, 其中, SR空置 信元用于指示用户设备不进行 SR上报, 配置时间为用于指示用户设备等待所 述基站下发上行授权的时间。 具体的, SR控制信元例如可以设为 SR_NULL RRC信元, 如果无该 SR控制信元, 则基站会进行 SR的物理层配置, 如果接 收到的配置参数中包括该 SR空置信元,即基站在 RRC配置时不携带 SR的物 理层配置, 则用户设备也无对应的 SR配置, 用户设备不进行 SR上报。 配置 时间例如可以设为 SR Wait Timer定时器中预设的时间, 例如 30秒、 60秒等, 配置时间用于指示用户设备等待基站下发上行授权的时间。
控制模块 1502, 用于当检测到存在上行数据需要发送时,根据所述 SR空 置信元, 控制不向所述基站上报 SR。
作为一种可选的实施方式, 当检测到存在上行数据需要发送时,控制模块 1502根据 SR空置信元控制不向基站上报 SR, 例如, 用户设备检测到有上行 数据需要发送, 根据 SR空置信元控制不向基站发送 SR, 控制不向基站发起 随机接入, 启动 SR Wait Timer定时器, 等待基站下发上行授权。
发送模块 1503, 用于当在所述配置时间内, 接收到所述基站下发的上行 授权, 根据所述上行授权向基站发送上行数据。
作为一种可选的实施方式, 如果在配置时间内接收到上行授权,发送模块
1503 根据上行授权向基站发送的上行数据。 具体的, 用户设备收到上行授权 后, 如果緩存中有数据, 则发送数据, 可通过 BSR携带数据发送到基站, 基 站收到 BSR后会根据 BSR的值动态调度下一次调度授权的资源大小。
发送模块 1503 , 还用于当在所述配置时间内, 未接收到所述基站下发的 上行授权, 向所述基站发送随机接入请求或重建请求。
作为一种可选的实施方式, 如果在配置时间内没有接收到上行授权,发送 模块 1503向基站发送的随机接入请求或重建请求, 基站接收到用户设备发送 的随机接入请求或重建请求。
上述技术方案中,提供一种调度请求的处理装置,接收模块接收基站下发 的配置参数, 配置参数包括 SR空置信元和配置时间, 当检测到存在上行数据 需要发送时, 控制模块根据 SR空置信元, 控制不向基站上报 SR, 若用户设 备在配置时间内,接收到基站下发的上行授权,发送模块根据上行授权向基站 发送上行数据, 若用户设备在配置时间内, 未接收到基站下发的上行授权, 发 送模块向基站发送随机接入请求或重建请求。 基站向用户设备下发的 SR空置 信元可用于指示用户设备不进行 SR上报, 用户设备不进行 SR上报, 基站在 预设的周期时间内下发上行授权, 确保资源的正常分配, 不会出现虚警, 可将 虚警的发生概率降低到零。
需要说明的是, 本实施例中的接收模块可以为用户设备的接收机,发送模 块可以为用户设备的发射机; 另外,也可以将接收模块和发送模块集成在一起 构成用户设备的收发机。控制模块可以为单独设立的处理器,也可以集成在用 户设备的某一个处理器中实现, 此外,也可以以程序代码的形式存储于用户设 备的存储器中,由用户设备的某一个处理器调用并执行以上跟踪任务建立单元 的功能。 这里所述的处理器可以是一个中央处理器, 或者是特定集成电路, 或 者是被配置成实施本发明实施例的一个或多个集成电路。
请参见图 16, 为本发明实施例提供的另一种用户设备的结构示意图, 其 中, 本实施例提供的用户设备与图 6所示的方法相对应, 为基于图 6所示的调 度请求的处理方法的执行主体。进一步可选的, 本发明实施例提供的一种用户 设备可以是移动用户设备、 PC用户设备、 服务于全局通信的设备或者是其他 类型用户设备, 具体用户设备的实现形式不受限制。 具体的实现形式如图 16 所示, 本发明实施例的用户设备可以包括: 接收机 1601、 发射机 1602、 存储 器 1603和处理器 1604, 其中, 接收机 1601、 发射机 1602、 存储器 1603均和 处理器 1604连接, 例如, 可以通过总线连接。 当然, 用户设备还可以包括天 线、 输入输出装置等通用部件, 本发明实施例在此不再任何限制。
接收机 1601和发射机 1602可以集成在一起, 构成收发机。
存储器 1603用于存储可执行程序代码,该程序代码包括计算机操作指令。 存储器 1603可能包含高速 RAM存储器, 也可能还包括非易失性存储器, 例 如至少一个磁盘存储器。
处理器 1604可以是一个中央处理器, 或者是特定集成电路, 或者是被配 置成实施本发明实施例的一个或多个集成电路。
其中,存储器 1603中存储一组程序代码,且处理器 1604用于调用存储器 1603中存储的程序代码, 执行以下操作:
通过接收机 1601接收基站下发的配置参数, 所述配置参数包括 SR空置 信元和配置时间, 其中, 所述 SR空置信元用于指示所述用户设备不进行 SR 上报,所述配置时间为用于指示所述用户设备等待所述基站下发上行授权的时 间;
当检测到存在上行数据需要发送时, 根据所述 SR空置信元, 控制不向所 述基站上报 SR;
当在所述配置时间内接收到所述基站下发的上行授权时,根据所述上行授 权向基站发送上行数据;
当在所述配置时间内未接收到所述基站下发的上行授权时, 通过发射机 1602向所述基站发送随机接入请求或重建请求。
上述技术方案中, 提供一种用户设备, 包括: 接收机、 发射机、 存储器和 处理器, 接收机可接收基站下发的配置参数, 配置参数包括 SR空置信元和配 置时间, 处理器当检测到存在上行数据需要发送时, 用户设备根据 SR空置信 元, 控制不向所述基站上报 SR, 当用户设备在配置时间内接收到基站下发的 上行授权时,根据上行授权向基站发送上行数据, 当用户设备在配置时间内未 接收到基站下发的上行授权时,通过发射机向基站发送随机接入请求或重建请 求。基站向用户设备下发的 SR空置信元可用于指示用户设备不进行 SR上报, 用户设备不进行 SR上报, 基站在预设的周期时间内下发上行授权, 确保资源 的正常分配, 不会出现虚警, 可将虚警的发生概率降低到零。 请参见图 17 , 为本发明第五实施例提供的一种调度请求的处理装置的结 构示意图。 需要说明的是, 附图 17所示的调度请求的处理装置, 用于执行本 发明图 7示实施例的方法, 为了便于说明,仅示出了与本发明实施例相关的部 分, 具体技术细节未揭示的, 请参照本发明图 7所示的实施例。
如图 17所示, 该装置可包括: 第一控制模块 1701和第二控制模块 1702。 第一控制模块 1701 , 用于当在禁止检测时间内第一次接收到 SR时,控制 对所述第一次接收到的 SR不作响应。
作为一种可选的实施方式, 基站在禁止检测时间内第一次接收到 SR时, 第一控制模块 1701控制对该第一次接收到的 SR不作响应。 正常情况下, 用 户设备在禁止检测时间内不会发生 SR, 但由于无线环境的复杂性, 用户设备 没有发送 SR, 而基站由于无线环境的干扰等错误的检测到了 SR, 这种情况为 SR虚警。 本发明实施例中, 对于出现虚警的情况下, 第一控制模块 1701对禁 止检测时间内第一次接收到的 SR不作响应。
第二控制模块 1702, 用于当所述基站在禁止检测时间内第二次接收到 SR 时, 向用户设备下发上行授权, 并控制由所述禁止检测时间的所在状态切换到 允许检测时间的所在状态。
作为一种可选的实施方式,如果基站在禁止检测时间内第二次接收到 SR, 第二控制模块 1702根据接收到的 SR向用户设备下发上行授权, 并由禁止检 测时间的所在状态切换到允许检测时间的所在状态。进一步可选的,如果基站 在禁止检测时间内第三次接收到 SR,此时基站处于允许检测时间的所在状态, 则可以对 SR进行检测。 进一步可选的, 本发明实施例提供的一种调度请求的处理装置还可以包 括: 第三控制模块 1703。
第三控制模块 1703, 用于当接收到所述用户设备发送的不连续发送 DTX 响应的次数大于预设的次数时,停止向所述用户设备下发上行授权, 并控制由 所述允许检测时间的所在状态切换到所述禁止检测时间的所在状态。
作为一种可选的实施方式,基站向用户设备发送下行数据,如果接收到用 户设备发送的 DTX响应的次数大于预设的次数,第三控制模块 1703控制由允 许检测时间的所在状态切换到禁止检测时间的所在状态。可根据下行数据的反 馈对出现 SR虚警的情况进行处理, 减少了基站与用户设备检测状态不一致的 可能性。
上述技术方案中,提供一种调度请求的处理装置, 当基站在禁止检测时间 内第一次接收到 SR时, 第一控制模块控制对第一次接收到的 SR不作响应, 当基站在禁止检测时间内第二次接收到 SR时, 第二控制模块向用户设备下发 上行授权, 并控制由禁止检测时间的所在状态切换到允许检测时间的所在状 态。 在基站没有下发任何配置参数情况下, 若在禁止检测时间第二次接收到 SR, 则由禁止检测时间的所在状态切换到允许检测时间的所在状态, 为出现 SR虚警情况下的后处理, 可降低虚警的发生概率。 当基站向用户设备发送下 行数据, 如果接收到用户设备发送的 DTX响应的次数大于预设的次数, 第三 控制模块控制由允许检测时间的所在状态切换到禁止检测时间的所在状态。可 根据下行数据的反馈对出现 SR虚警的情况进行处理, 减少了基站与用户设备 检测状态不一致的可能性。
需要说明的是, 本实施例中的第一控制模块、第二控制模块可以为单独设 立的处理器, 也可以集成在基站的某一个处理器中实现, 此外, 也可以以程序 代码的形式存储于基站的存储器中,由基站的某一个处理器调用并执行以上第 一控制模块和第二控制模块的功能。第三控制模块的实现同第一控制模块、第 二控制模块, 且可以与第一控制模块、 第二控制模块集成在一起, 也可以独立 实现。 这里所述的处理器可以是一个中央处理器, 或者是特定集成电路, 或者 是被配置成实施本发明实施例的一个或多个集成电路。 请参见图 18, 为本发明实施例提供的又一种基站的结构示意图, 其中, 本实施例提供的用户设备与图 7所示的方法相对应,为基于图 7所示的调度请 求的处理方法的执行主体。 具体的实现形式如图 18所示, 本发明实施例的基 站包括: 接收机 1801、 发射机 1802、 存储器 1803和处理器 1804, 其中, 接 收机 1801、 发射机 1802、 存储器 1803均和处理器 1804连接, 例如, 可以通 过总线连接。 当然, 基站还可以包括天线、 基带处理部件、 中射频处理部件、 输入输出装置等通用部件, 本发明实施例在此不再任何限制。
接收机 1801和发射机 1802可以集成在一起, 构成收发机。
存储器 1803用于存储可执行程序代码,该程序代码包括计算机操作指令。 存储器 1803可能包含高速 RAM存储器, 也可能还包括非易失性存储器, 例 如至少一个磁盘存储器。
处理器 1804可以是一个中央处理器, 或者是特定集成电路, 或者是被配 置成实施本发明实施例的一个或多个集成电路。
其中,存储器 1803中存储一组程序代码,且处理器 1804用于调用存储器 1803中存储的程序代码, 执行以下操作:。
当在禁止检测时间内第一次接收到 SR时,控制对所述第一次接收到的 SR 不作响应;
当所述基站在禁止检测时间内第二次接收到 SR时, 向用户设备下发上行 授权, 并控制由所述禁止检测时间的所在状态切换到允许检测时间的所在状 态。
可选的, 当接收到所述用户设备发送的不连续发送 DTX响应的次数大于 预设的次数时,停止向所述用户设备下发上行授权, 并控制由所述允许检测时 间的所在状态切换到所述禁止检测时间的所在状态。
上述技术方案中, 提供一种基站, 包括: 接收机、 发射机、 存储器和处理 器, 处理器用于当基站在禁止检测时间内第一次接收到 SR时, 对第一次接收 到的 SR不作响应, 当基站在禁止检测时间内第二次接收到 SR时, 向用户设 备下发上行授权,并控制由所述禁止检测时间的所在状态切换到允许检测时间 的所在状态。在基站没有下发任何配置参数情况下, 若在禁止检测时间第二次 接收到 SR, 则禁止检测时间的所在状态切换到允许检测时间的所在状态, 为 出现 SR虚警情况下的后处理, 可降低虚警的发生概率。 进一步可选的, 本发明实施例还提供的一种调度请求的处理系统, 包括基 站和用户设备。
作为一种可选的实施方式, 基站如图 9所示的装置, 用户设备如图 11所 示的装置。 其中, 基站和用户设备可通过无线网络连接, 该装置的结构和功能 可参见图 9、 图 11所示实施例的相关描述, 在此不赘述。 需要说明的是, 本 实施例的系统可应用于上述方法中。
作为一种可选的实施方式, 基站如图 13 所示的装置, 用户设备如图 15 所示的装置。 其中, 基站和用户设备可通过无线网络连接, 该装置的结构和功 能可参见图 13、 图 15所示实施例的相关描述, 在此不赘述。 需要说明的是, 本实施例的系统可应用于上述方法中。
作为一种可选的实施方式, 基站如图 17所示的装置。 其中, 基站和用户 设备可通过无线网络连接, 该装置的结构和功能可参见图 17所示实施例的相 关描述, 在此不赘述。 需要说明的是, 本实施例的系统可应用于上述方法中。
综上, 本发明实施例提供的一种调度请求的处理方法及装置。基站可向用 户设备下发配置参数, 配置参数用于指示该基站的调度请求 SR检测策略, 用 户设备根据 SR检测策略确定对应的 SR发送策略, 当用户设备检测到存在上 行数据需要发送时, 根据 SR发送策略向基站发送 SR, 基站根据 SR检测策略 进行 SR检测, 使得用户设备的 SR发送策略与基站的 SR检测策略相对应, 用户设备与基站的检测状态一致, 减少了基站的检测时间, 可有效降低虚警的 发生概率。 可选的, 基站可向用户设备下发配置参数, 配置参数包括 SR空置 信元和配置时间, 当检测到存在上行数据需要发送时, 用户设备根据 SR空置 信元, 不向所述基站上报 SR, 若用户设备在配置时间内, 接收到基站下发的 上行授权, 根据上行授权向基站发送上行数据, 若用户设备在配置时间内, 未 接收到基站下发的上行授权, 向基站发送随机接入请求或重建请求。基站向用 户设备下发的 SR空置信元可用于指示用户设备不进行 SR上报, 用户设备不 进行 SR上报,基站在预设的周期时间内下发上行授权,确保资源的正常分配, 不会出现虚警, 可将虚警的发生概率降低到零。 可选的, 当基站在禁止检测时 间内第一次接收到 SR时, 对第一次接收到的 SR不作响应, 当基站在禁止检 测时间内第二次接收到 SR时, 基站向用户设备下发上行授权, 并控制由所述 禁止检测时间的所在状态切换到允许检测时间的所在状态。在基站没有下发任 何配置参数情况下, 若在禁止检测时间第二次接收到 SR, 则禁止检测时间的 所在状态切换到允许检测时间的所在状态, 为出现 SR虚警情况下的后处理, 可降低虚警的发生概率。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件实现 时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个 或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和通信介 质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介 质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计 算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其他光盘存储、 磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据 结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何 连接可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、 光纤 光缆、 双绞线、 数字用户线(DSL )或者诸如红外线、 无线电和微波之类的无 线技术从网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双 绞线、 DSL或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的 定影中。 如本发明所使用的, 盘(Disk )和碟(disc ) 包括压缩光碟(CD )、 激光碟、 光碟、 数字通用光碟(DVD )、 软盘和蓝光光碟, 其中盘通常磁性的 复制数据, 而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机 可读介质的保护范围之内。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种调度请求的处理方法, 其特征在于, 包括:
基站生成配置参数, 所述配置参数用于指示所述基站的调度请求 SR检测 策略;
所述基站向用户设备下发所述配置参数,以使所述用户设备根据所述基站 的 SR检测策略确定与所述 SR检测策略匹配的 SR发送策略;
所述基站根据所述 SR检测策略, 进行 SR检测。
2、 如权利要求 1所述的方法, 其特征在于, 所述 SR检测策略包括: 所 述基站在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进 行 SR检测。
3、 如权利要求 2所述的方法, 其特征在于, 所述 SR发送策略, 包括: 所述用户设备在禁止检测时间内, 不进行 SR发送; 所述用户设备在允许检测 时间内, 进行 SR发送。
4、 如权利要求 2或 3所述的方法, 其特征在于, 所述允许检测时间包括 用户设备的激活期; 所述禁止检测时间为所述允许检测时间之外的时间。
5、 如权利要求 4所述的方法, 其特征在于, 所述允许检测时间还包括激 活预备期。
6、 如权利要求 2或 3所述的方法, 其特征在于, 所述禁止检测时间包括 多个非连续接收 DRX周期。
7、 如权利要求 1~6任一项所述的方法, 其特征在于, 所述配置参数包括: 无线资源控制协议 RRC控制信元或介质访问控制 MAC控制信元。
8、 一种调度请求的处理方法, 其特征在于, 包括:
用户设备接收基站下发的配置参数, 所述配置参数用于指示所述基站的 SR检测策略;
所述用户设备根据所述 SR检测策略,确定与所述 SR检测策略匹配的 SR 发送策略;
当检测到存在上行数据需要发送时, 所述用户设备根据所述 SR发送策略 向基站发送 SR。
9、 如权利要求 8所述的方法, 其特征在于, 所述 SR检测策略包括: 所 述基站在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进 行 SR检测。
10、 如权利要求 9所述的方法, 其特征在于, 所述 SR发送策略包括: 所 述用户设备在禁止检测时间内, 不进行 SR发送; 所述用户设备在允许检测时 间内, 进行 SR发送。
11、 如权利要求 9或 10所述的方法, 其特征在于, 所述允许检测时间包 括用户设备的激活期; 所述禁止检测时间为所述允许检测时间之外的时间。
12、 如权利要求 11所述的方法, 其特征在于, 所述允许检测时间还包括 激活预备期。
13、 如权利要求 9或 10所述的方法, 其特征在于, 所述禁止检测时间包 括多个 DRX周期。
14、 如权利要求 8~12任一项所述的方法, 其特征在于, 所述配置参数包 括: RRC控制信元或 MAC控制信元。
15、 一种调度请求的处理装置, 其特征在于, 包括:
生成模块, 用于生成配置参数, 所述配置参数用于指示所述基站的调度请 求 SR检测策略;
发送模块, 用于向用户设备下发所述生成模块生成的配置参数, 以使所述 用户设备根据所述基站的 SR检测策略确定与所述 SR检测策略匹配的 SR发 送策略;
检测模块, 用于根据所述 SR检测策略, 进行 SR检测。
16、 如权利要求 15所述的装置, 其特征在于, 所述 SR检测策略包括: 所述基站在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进行 SR检测。
17、 如权利要求 16所述的装置, 其特征在于, 所述 SR发送策略, 包括: 所述用户设备在禁止检测时间内, 不进行 SR发送; 所述用户设备在允许检测 时间内, 进行 SR发送。
18、 如权利要求 16或 17所述的装置, 其特征在于, 所述允许检测时间包 括用户设备的激活期; 所述禁止检测时间为所述允许检测时间之外的时间。
19、 如权利要求 18所述的装置, 其特征在于, 所述允许检测时间还包括 激活预备期。
20、 如权利要求 16或 17所述的装置, 其特征在于, 所述禁止检测时间包 括多个 DRX周期。
21、 如权利要求 15~20任一项所述的装置, 其特征在于, 所述配置参数包 括: RRC控制信元或 MAC控制信元。
22、 一种调度请求的处理装置, 其特征在于, 包括:
接收模块, 用于接收基站下发的配置参数, 所述配置参数用于指示所述基 站的 SR检测策略;
确定模块, 用于根据所述 SR检测策略, 确定与所述 SR检测策略匹配的 SR发送策略;
发送模块, 用于当检测到存在上行数据需要发送时, 根据所述 SR发送策 略向基站发送 SR。
23、 如权利要求 22所述的装置, 其特征在于, 所述 SR检测策略包括: 所述基站在禁止检测时间内, 不进行 SR检测; 所述基站在允许检测时间内, 进行 SR检测。
24、 如权利要求 23所述的装置, 其特征在于, 所述 SR发送策略包括: 所述用户设备在禁止检测时间内, 不进行 SR发送; 所述用户设备在允许检测 时间内, 进行 SR发送。
25、 如权利要求 23或 24所述的装置, 其特征在于, 所述允许检测时间包 括用户设备的激活期; 所述禁止检测时间为所述允许检测时间之外的时间。
26、 如权利要求 25所述的装置, 其特征在于, 所述允许检测时间还包括 激活预备期。
27、 如权利要求 23或 24所述的装置, 其特征在于, 所述禁止检测时间包 括多个 DRX周期。
28、 如权利要求 22~27任一项所述的装置, 其特征在于, 所述配置参数包 括: RRC控制信元或 MAC控制信元。
PCT/CN2013/085470 2013-10-18 2013-10-18 一种调度请求的处理方法及装置 WO2015054890A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001682.1A CN103765971B (zh) 2013-10-18 2013-10-18 一种调度请求的处理方法及装置
PCT/CN2013/085470 WO2015054890A1 (zh) 2013-10-18 2013-10-18 一种调度请求的处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/085470 WO2015054890A1 (zh) 2013-10-18 2013-10-18 一种调度请求的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2015054890A1 true WO2015054890A1 (zh) 2015-04-23

Family

ID=50531069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085470 WO2015054890A1 (zh) 2013-10-18 2013-10-18 一种调度请求的处理方法及装置

Country Status (2)

Country Link
CN (1) CN103765971B (zh)
WO (1) WO2015054890A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981465B (zh) * 2014-11-24 2020-05-15 上海朋邦实业有限公司 一种资源分配的方法和基站
CN104581789B (zh) * 2015-02-05 2018-04-20 武汉虹信通信技术有限责任公司 一种drx状态下调度请求处理的方法和系统
CN106211332B (zh) 2015-05-05 2021-08-17 中兴通讯股份有限公司 资源分配的方法和装置
CN106535336B (zh) * 2015-09-15 2020-07-31 南京中兴软件有限责任公司 基站及其进行非连续接收处理方法
CN107548154B (zh) * 2016-06-27 2021-09-07 中兴通讯股份有限公司 一种资源分配方法和装置
CN110710290B (zh) * 2017-09-15 2022-06-10 Oppo广东移动通信有限公司 用于传输数据的方法和终端设备
US10511477B2 (en) * 2017-11-30 2019-12-17 Micron Technology, Inc. Wireless devices and systems including examples of configuration during an active time period

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389123A (zh) * 2007-09-12 2009-03-18 大唐移动通信设备有限公司 发送调度请求的方法、模块及系统
CN102474880A (zh) * 2009-06-29 2012-05-23 瑞典爱立信有限公司 无线通信系统中的方法和布置
CN102821477A (zh) * 2012-08-15 2012-12-12 中国联合网络通信集团有限公司 调度请求周期的调整方法及装置
CN103297999A (zh) * 2012-02-22 2013-09-11 中兴通讯股份有限公司 调整调度请求虚警门限值的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101387537B1 (ko) * 2007-09-20 2014-04-21 엘지전자 주식회사 성공적으로 수신했으나 헤더 압축 복원에 실패한 패킷의 처리 방법
CN102006107B (zh) * 2009-09-03 2014-12-03 电信科学技术研究院 一种发送和接收sr的方法、系统及装置
CN102014442B (zh) * 2009-09-29 2014-01-08 电信科学技术研究院 发送上行资源调度请求的方法和用户设备
US8644279B2 (en) * 2010-12-16 2014-02-04 Telefonaktiebolaget L M Ericsson (Publ.) SR/RACH transmission strategy for half-duplex UEs in LTE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389123A (zh) * 2007-09-12 2009-03-18 大唐移动通信设备有限公司 发送调度请求的方法、模块及系统
CN102474880A (zh) * 2009-06-29 2012-05-23 瑞典爱立信有限公司 无线通信系统中的方法和布置
CN103297999A (zh) * 2012-02-22 2013-09-11 中兴通讯股份有限公司 调整调度请求虚警门限值的方法及装置
CN102821477A (zh) * 2012-08-15 2012-12-12 中国联合网络通信集团有限公司 调度请求周期的调整方法及装置

Also Published As

Publication number Publication date
CN103765971B (zh) 2018-02-02
CN103765971A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
KR102434687B1 (ko) 대역폭 부분 스위칭 및 phy 구성 정렬
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
US20220039016A1 (en) Nr-u lbt mac procedures
WO2015054890A1 (zh) 一种调度请求的处理方法及装置
TWI552537B (zh) 裝置內干擾減輕方法及系統
JP6842535B2 (ja) 2ステップ・グラントでのアクティブ時間処理
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
WO2013048571A1 (en) Discontinuous reception in a wireless device for in-device coexistence
WO2021026918A1 (zh) 下行控制信息的监听方法及装置
WO2020150903A1 (zh) 省电信号图案的使用方法、装置、设备及系统
KR20140116173A (ko) 업 링크 시간을 벗어난 사용자 디바이스들에 대한 무선 자원 제어 접속 해제
JP2024516949A (ja) サイドリンクフィードバックリソースの決定方法、端末及びネットワーク側機器
US20240064855A1 (en) Sidelink Discontinuous Reception at a User Equipment
EP2829144B1 (en) System and method for supporting switching between a packet-switched network and a circuit-switched network
WO2022083637A1 (zh) 波束失败恢复方法、装置、终端和存储介质
WO2021007790A1 (zh) Drx定时器控制方法、装置、终端及存储介质
WO2015113199A1 (zh) 一种非连续接收的控制方法及装置
WO2021068173A1 (zh) 一种信号传输方法及装置、终端设备
CN104871575A (zh) 用于基于cqi掩码处理csi报告的方法、装置及计算机程序产品
CN114303334A (zh) Scell波束失败恢复的完成
WO2022178813A1 (zh) 一种侧行链路通信方法及装置
CN114762392B (zh) 通信方法及装置
US20240284513A1 (en) Systems and methods for reducing utilization of a random access procedure for scheduling request transmission in a wireless network
WO2024093792A1 (zh) 定时器运行方法及装置
WO2022205479A1 (zh) 定时器状态更改方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895719

Country of ref document: EP

Kind code of ref document: A1