WO2021026918A1 - 下行控制信息的监听方法及装置 - Google Patents

下行控制信息的监听方法及装置 Download PDF

Info

Publication number
WO2021026918A1
WO2021026918A1 PCT/CN2019/100870 CN2019100870W WO2021026918A1 WO 2021026918 A1 WO2021026918 A1 WO 2021026918A1 CN 2019100870 W CN2019100870 W CN 2019100870W WO 2021026918 A1 WO2021026918 A1 WO 2021026918A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink resource
discontinuous reception
timer
harq feedback
control information
Prior art date
Application number
PCT/CN2019/100870
Other languages
English (en)
French (fr)
Inventor
石聪
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19941450.9A priority Critical patent/EP3958489A4/en
Priority to CN201980097184.9A priority patent/CN113906697A/zh
Priority to PCT/CN2019/100870 priority patent/WO2021026918A1/zh
Publication of WO2021026918A1 publication Critical patent/WO2021026918A1/zh
Priority to US17/550,820 priority patent/US20220110185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • H04L1/1851Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication, and in particular to a method and device for monitoring downlink control information.
  • LAA License Assisted Access
  • LBT Listen Before Talk
  • the Discontinuous Reception (DRX) mechanism is a technology that allows the terminal to periodically enter the sleep mode (sleep mode) and wake up mode (wake up mode).
  • the terminal When the terminal is in the sleep state, the terminal does not monitor the channel; when the terminal is in the awake state, the terminal can monitor the channel, so that the terminal can achieve the purpose of reducing energy consumption.
  • Combining the LBT mechanism with the DRX mechanism that is, using the DRX mechanism in the unlicensed frequency band can effectively reduce the energy consumption of the terminal.
  • the terminal receives the downlink data sent by the network side device on the downlink resource indicated by the downlink control information (DCI) sent by the network side device, and generates a hybrid automatic retransmission request ( Hybrid Automatic Repeat reQuest (HARQ) feedback information and return it to the network side device through uplink resources.
  • DCI downlink control information
  • HARQ Hybrid Automatic Repeat reQuest
  • the terminal uses the LBT mechanism to detect (or also called monitoring) the uplink resource. When it detects that the uplink resource is in a busy state, the network-side device will send DCI again to indicate New uplink resources are used to transmit the HARQ feedback.
  • the terminal monitors that the uplink resource is in a busy state, and the network side device cannot receive the HARQ feedback information in time, it is difficult to guarantee the normal transmission of the HARQ feedback information.
  • the embodiments of the present application provide a method and device for monitoring downlink control information, which can be used to solve the problem that HARQ feedback information is difficult to guarantee in related technologies, that is, it is difficult to guarantee the normal transmission of HARQ feedback information.
  • the technical solution is as follows:
  • a method for monitoring downlink control information includes:
  • the device includes a processing module,
  • the processing module is configured to start a target timer for discontinuous reception when the uplink resource used to transmit the HARQ feedback information of the hybrid automatic repeat request is not available, and perform the downlink control information within the duration of the target timer. monitor.
  • a terminal in another aspect, includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is used to be executed by the processor to implement the foregoing method for monitoring downlink control information .
  • a computer-readable storage medium stores at least one instruction, and the at least one instruction is used to be executed by a processor to implement the foregoing method for monitoring downlink control information.
  • a chip in another aspect, includes a programmable logic circuit and/or program instructions, and is used to implement a method for monitoring downlink control information when the chip is running.
  • a computer program product stores at least one instruction, and the at least one instruction is used to be executed by a processor to implement the foregoing method for monitoring downlink control information.
  • the target timer for discontinuous reception can be started, and the DCI can be monitored within the duration of the target timer, so that the terminal can monitor the downlink re-issued by the network side device in time Signaling, and timely feedback of HARQ feedback information to the network side device based on the trigger of the downlink signaling, which effectively guarantees the normal transmission of data (that is, HARQ feedback information). In this way, the terminal can not only consider saving energy consumption but also ensure data transmission performance.
  • Fig. 1 is a schematic diagram of a DRX cycle provided by an exemplary embodiment of the present application
  • Figure 2 is a schematic diagram of an implementation environment provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for monitoring DCI provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a target timer for starting discontinuous reception to monitor DCI according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of another target timer for starting discontinuous reception to monitor DCI according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another target timer for starting discontinuous reception to monitor DCI according to an embodiment of the present application.
  • Fig. 8 is a block diagram of an apparatus for monitoring downlink control information provided by an embodiment of the present application.
  • FIG. 9 is a block diagram of another device for monitoring downlink control information provided by an embodiment of the present application.
  • FIG. 10 is a block diagram of another device for monitoring downlink control information provided by an embodiment of the present application.
  • FIG. 11 is a block diagram of a terminal provided by an embodiment of the present application.
  • NR working in an unlicensed frequency band includes the following work scenarios: carrier aggregation scenarios, where the primary cell (Primary Cell, PCell) is the licensed spectrum, and the work is aggregated through carrier aggregation. Secondary Cell (SCell) on unlicensed spectrum; dual-connectivity working scenario, PCell is a Long Term Evolution (LTE) licensed spectrum, SCell is NR unlicensed spectrum; independent working scenario, NR works as an independent cell In unlicensed spectrum.
  • PCell Primary Cell
  • SCell Secondary Cell
  • LTE Long Term Evolution
  • SCell is NR unlicensed spectrum
  • independent working scenario NR works as an independent cell In unlicensed spectrum.
  • the working frequency band (Band) of NR-U includes 5 gigahertz (GHz) unlicensed spectrum and 6 GHz unlicensed spectrum.
  • GHz gigahertz
  • the unlicensed spectrum resources can be set A coexistence mechanism, such as an energy detection mechanism.
  • the energy detection mechanism may be an LBT mechanism.
  • the LBT mechanism means that the transmitting end needs to detect the channel for a period of time according to regulations before transmitting data to the receiving end on the unlicensed spectrum.
  • the transmitting end can transmit data to the receiving end; if the detection result indicates that the channel is occupied, the transmitting end needs to back off for a period of time according to the regulations and continue to monitor the channel until it monitors The result is an idle state, and then data is transmitted to the receiving end.
  • monitoring a channel refers to monitoring the information or data carried on the channel.
  • monitoring the Physical Downlink Control Channel (PDCCH) refers to monitoring the DCI carried on the PDCCH.
  • the DRX mechanism refers to configuring a DRX cycle (DRX Cycle) for the terminal in the RRC_CONNECTED state of Radio Resource Control (Radio Resource Control, RRC).
  • Figure 1 shows a schematic diagram of a DRX cycle.
  • the period of time marked “Continuing” is the time for the terminal to monitor the channel. During this period of time, the terminal is in the awake state. "Continuing” can correspond to the English translation "On Duration”.
  • the mark "DRX timing” is the time when the terminal does not monitor the channel. During this period of time, the terminal is in a sleep state.
  • “DRX timing” can correspond to the English translation "Opportunity for DRX", "off duration", or " off state”.
  • the network side device can control the DRX cycle of the terminal by configuring timer parameters.
  • the timer parameters can include:
  • the duration timer for discontinuous reception namely drx-onDurationTimer.
  • the terminal starts drx-onDurationTimer in a fixed DRX cycle, and the terminal monitors the PDCCH during the duration of the timer.
  • the inactive timer for discontinuous reception namely drx-InactivityTimer.
  • the timer is started or restarted when the terminal successfully decodes a PDCCH and the PDCCH is scheduled for initial transmission, and the terminal monitors the PDCCH for the duration of the timer.
  • the downlink retransmission timer of discontinuous reception namely drx-RetransmissionTimerDL
  • the terminal maintains this timer separately for each downlink HARQ, and the terminal determines that the corresponding HARQ process data demodulation fails.
  • This timer is in drx-HARQ-
  • the RTT-TimerDL is started after the timeout, and within the duration of the timer, the terminal monitors the PDCCH. The behavior of drx-HARQ-RTT-TimerDL is described below.
  • the uplink retransmission timer for discontinuous reception namely drx-RetransmissionTimerUL.
  • the terminal maintains this timer separately for each uplink HARQ process.
  • the timer is started after the drx-HARQ-RTT-TimerUL expires. At this timing During the duration of the device, the terminal monitors the PDCCH.
  • this timer parameter is used to represent a long period of discontinuous reception.
  • Discontinuously received downlink HARQ round-trip delay timer that is, drx-HARQ-RTT-TimerDL. This timer parameter is maintained separately for each downlink HARQ process.
  • the timer is the first time after the HARQ feedback resource is transmitted. A symbol starts, and the terminal does not need to monitor the PDCCH during the duration of the timer.
  • the uplink HARQ round-trip delay timer for discontinuous reception namely drx-HARQ-RTT-TimerUL
  • the timer parameter is maintained separately for each uplink HARQ process, and the timer is the first after the terminal data transmission resource.
  • Each symbol starts, and the terminal does not need to monitor the PDCCH during the duration of the timer.
  • the terminal receives the DCI sent by the network side device, and feeds back HARQ feedback information for a certain downlink data at the time-frequency domain resource location indicated by the DCI, and the HARQ feedback information includes an acknowledgement message (ACK) And negative acknowledgement message (Negative Acknowledgement, NACK).
  • ACK acknowledgement message
  • NACK negative acknowledgement message
  • the terminal starts drx-HARQ-RTT-TimerDL and stops drx-Retransmission-TimerDL.
  • the terminal does not monitor the PDCCH; in drx-HARQ-RTT- After the TimerDL expires, if the terminal fails to decode the downlink data successfully, the terminal starts the drx-RetransmissionTimerDL.
  • the terminal monitors the DCI used to retransmit the downlink data.
  • the terminal feeds back HARQ feedback information to the network side device.
  • the terminal sending HARQ feedback information for a certain downlink data to the network side device can be triggered by the downlink signaling sent by the network side device.
  • the downlink signaling is DCI, that is, the network side device sends
  • the terminal sends downlink signaling, which triggers the terminal to send HARQ feedback information to the network side device. If the HARQ feedback triggered by the downlink signaling does not receive the corresponding HARQ feedback information due to the busy channel (ie, LBT failure), the network side device needs to send the downlink signaling that triggers the HARQ feedback again.
  • the drx-Retransmission-TimerDL in the DRX mechanism will not be triggered to start, so the terminal will enter the dormant state in the DRX cycle, which further causes the terminal to be unable to monitor the downlink signaling re-issued by the network side device in time.
  • the embodiment of the present application provides a method for monitoring DCI, which can solve the problem in related technologies that the terminal cannot monitor the downlink signaling re-issued by the network side device in time.
  • Fig. 2 is a schematic diagram of an implementation environment provided by an embodiment of the present application.
  • the implementation environment includes a terminal 11, a terminal 12, and a network side device 21.
  • the terminal 11 and the terminal 12 may both communicate with the network side device 21.
  • the terminal 11 sends uplink data to the network side device 21, and the network side device 21 sends downlink data to the terminal 12.
  • the network side device 21 and the terminal 12 form a downlink transmission link.
  • the terminal 12 decodes the downlink data and generates HARQ from the decoding result.
  • the feedback information is returned to the network side device.
  • the embodiments of this application mainly focus on the downlink transmission link.
  • communication can also be performed between the terminal 12 and the terminal 11, which is not limited in the embodiment of the present application.
  • the terminal may be User Equipment (UE).
  • UE User Equipment
  • Fig. 3 is a flowchart of a DCI monitoring method provided by an embodiment of the present application, and the method includes:
  • Step 301 When uplink resources for transmitting HARQ feedback information are not available, start a target timer for discontinuous reception, and monitor DCI within the duration of the target timer.
  • the uplink resource is a Physical Uplink Control Channel (PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the target timer of discontinuous reception can be started to monitor the DCI, so that the terminal can monitor in time
  • the network-side device reissues the downlink signaling, and based on the triggering of the downlink signaling, feeds back HARQ feedback information to the network-side device in time, which effectively guarantees the normal transmission of data (that is, the HARQ feedback information). This allows the terminal to consider saving energy and ensuring data transmission performance.
  • the DCI may include a first dedicated DCI, a second dedicated DCI, a third dedicated DCI, or a public DCI.
  • the first dedicated DCI includes an uplink scheduling grant (Uplink grant), which can be used to schedule uplink data.
  • the second dedicated DCI includes a downlink scheduling assignment (Downlink assignment), and the downlink scheduling assignment is used for scheduling downlink data.
  • the third proprietary DCI does not include uplink scheduling authorization and downlink scheduling allocation, and the DCI is neither used for scheduling uplink data nor for scheduling downlink data.
  • the common DCI is the DCI sent to a certain group of terminals. Each group may include at least one terminal, and the common DCI is used for scheduling uplink data of multiple terminals in the group, and/or scheduling downlink data of multiple terminals in the group.
  • an indication field is set in the aforementioned DCI, and the indication field may instruct the terminal to trigger HARQ feedback (or a certain group of HARQ feedback).
  • This indication field can be called a dynamic information indication.
  • the dynamic indication information can trigger feedback on one PDSCH or indicate feedback on multiple PDSCHs.
  • the dynamic indication information is used to indicate that when multiple PDSCH data is fed back, the multiple PDSCHs correspond to the same group;
  • the multiple PDSCHs may also correspond to different groups;
  • the dynamic indication information needs to include group information corresponding to the indication data feedback.
  • the dynamic indication information also needs to include PUCCH information.
  • the uplink resource used to transmit HARQ feedback information is unavailable.
  • the uplink resource unavailability means that the uplink resource is busy.
  • that the uplink resource is unavailable means that the uplink resource is conflicted and discarded.
  • determining that the uplink resource used for transmitting HARQ feedback information is not available may include:
  • Step S1 Perform channel state detection on uplink resources used for transmitting HARQ feedback information.
  • the energy detection method is used to monitor the channel status. If the signal strength of the channel is greater than a specified threshold, the uplink resource is determined to be in a busy state, otherwise, it is in an idle state.
  • the specified goal shooting threshold may be predetermined by the terminal.
  • Step S2 When the uplink resource is busy, it is determined that the uplink resource is not available.
  • Step S3 When the uplink resource used for transmitting HARQ feedback information is not available, start the target timer of discontinuous reception, and monitor the DCI within the duration of the target timer.
  • the terminal When the uplink resource is unavailable, the terminal promptly starts the discontinuous reception target timer to monitor the DCI, so as to monitor the newly sent DCI by the network-side device in time.
  • the DCI is used to indicate that the uplink resource for transmitting HARQ feedback information is unavailable. There is no uplink resource corresponding to the HARQ feedback information transmitted. In order to ensure data transmission performance.
  • determining that the uplink resource used to transmit HARQ feedback information is not available may include:
  • Step S4 When the HARQ feedback information conflicts with other services on the uplink resources, and the service priority of the other services is higher than the service priority of the HARQ feedback, it is determined that the uplink resources are not available.
  • the uplink resource is used to transmit service data of other services, which causes the uplink resource to also be in a busy state. Therefore, the uplink resource in this case can also be determined as unavailable.
  • Step S5 When uplink resources for transmitting HARQ feedback information are not available, start a target timer for discontinuous reception, and monitor DCI within the duration of the target timer.
  • the second situation may occur in the following scenario: when the uplink resource for transmitting HARQ feedback information conflicts with the resource for transmitting other data in the time domain, the physical layer of the terminal may also give up the uplink for transmitting HARQ feedback information.
  • Resources For example, if the channel of the uplink resource for transmitting HARQ feedback information is a channel for Enhanced Mobile Broadband (eMBB), then when transmitting the uplink resource, the network side device will schedule an ultra-high-reliability and ultra-low-latency communication ( Ultra Reliable and Low Latency Communication (URLLC) channel, the resources transmitted on the URLLC channel and the resources transmitted on the eMBB channel overlap in the time domain. Since the terminal cannot transmit two uplink resources at the same time, the terminal may change The eMBB channel is abandoned. In this case, the target timer for discontinuous reception needs to be started to monitor the DCI.
  • eMBB Ultra Reliable and Low Latency Communication
  • starting the target timer of discontinuous reception to monitor DCI includes three implementation methods:
  • the DCI is monitored by setting the active time of DRX. During the active time of the DRX, the terminal needs to monitor the DCI;
  • the terminal needs to monitor the DCI during the timing of the newly-added timer
  • the DCI is monitored during the duration of the discontinuous reception retransmission timer started after the HARQ round-trip delay timer expires.
  • FIG. 4 shows a flowchart of another DCI monitoring method provided by an embodiment of the present application. The method is introduced in combination with the foregoing three implementation manners, and the method is executed by the terminal.
  • Step 401 Receive a DRX configuration message.
  • the DRX configuration message is sent by the network side device.
  • the DRX configuration message can be configured by RRC signaling. That is, the network side device may send RRC signaling to the terminal, the RRC signaling includes a DRX configuration message, and the terminal configures its own DRX mechanism according to the received DRX configuration message.
  • the DRX configuration message may at least include the configuration of the following timer parameters: drx-onDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerUL, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL And the long cycle start offset drx-LongCycleStartOffset for discontinuous reception.
  • drx-LongCycleStartOffset can be used to indicate the long period of discontinuous reception and the start offset of discontinuous reception.
  • Step 402 Receive DCI.
  • the DCI is used to schedule downlink data through the downlink resource indicated by it.
  • the DCI can indicate the downlink resource allocated by the network-side device for the downlink data, so that the terminal can use the downlink resource to receive the downlink data.
  • the downlink resources allocated for the downlink data can be regarded as the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) allocated for the downlink data.
  • the DCI can correspond to the PDSCH one-to-one, that is, one DCI is used to indicate one PDSCH, that is, one downlink resource.
  • the DCI includes dynamic indication information sent by the network-side device to the terminal.
  • the dynamic indication information may be trigger signaling sent by the network-side device to the terminal.
  • the trigger signaling is used to trigger HARQ feedback generation in the terminal.
  • HARQ feedback information is used to trigger HARQ feedback information.
  • Step 403 Generate HARQ feedback information.
  • the terminal generates HARQ feedback information for the downlink data according to the dynamic information indication of the network side device.
  • the downlink data has a one-to-one correspondence with the HARQ process, that is, the PDSCH has a one-to-one correspondence with the HARQ process.
  • Each terminal can respectively generate multiple HARQ feedback information according to multiple HARQ processes.
  • the dynamic indication information triggers the terminal to generate one HARQ feedback information for one PDSCH, or the dynamic indication information triggers the terminal to generate multiple HARQ feedback information for multiple PDSCHs.
  • the multiple PDSCHs may correspond to one group or multiple groups, and each group is distinguished by a group identification (ID).
  • the dynamic indication information includes group information (for example, a group ID) corresponding to the HARQ process that indicates the HARQ feedback information to be sent, and the dynamic indication information includes the PUCCH that carries the HARQ feedback information.
  • group information for example, a group ID
  • Step 404 Monitor the PUCCH carrying the HARQ feedback information. If the monitoring is unsuccessful, perform step 405, and if the monitoring is successful, perform step 407.
  • the terminal monitors the PUCCH used to carry the HARQ feedback information.
  • the monitoring is unsuccessful, it means that the PUCCH is occupied or conflicted and discarded.
  • reference may be made to the two situations in which the uplink resource is unavailable.
  • Step 405 When uplink resources for transmitting HARQ feedback information are unavailable, start a target timer of discontinuous reception to monitor DCI.
  • the network side device Because when the uplink resource used to transmit HARQ feedback information is not available, the network side device cannot obtain the HARQ feedback information in time. At this time, the network side device will send the DCI again to trigger the terminal to send the HARQ feedback information again. In order to ensure the data transmission performance, the terminal should monitor the DCI in time to avoid the situation that the terminal cannot feed back the HARQ feedback information to the terminal in time due to the terminal entering the dormant state in the DRX mechanism.
  • starting the target timer of discontinuous reception to monitor DCI includes the following three implementation methods:
  • the DCI when the uplink resource is not available, the DCI can be monitored during the DRX Active Time (DRX Active Time), and the active time includes the time after the uplink resource. That is, when the uplink resource is not available, the time after the uplink resource is determined as the activation time of discontinuous reception, and the DCI is monitored during the activation time.
  • DRX Active Time DRX Active Time
  • the terminal continuously monitors the DCI during the activation time of the discontinuous reception.
  • the DCI can trigger or schedule an uplink resource for data transmission, and the uplink resource needs to carry at least HARQ feedback information that is not transmitted because the uplink resource for transmitting the HARQ feedback information is not available.
  • the PDSCH (and its corresponding HARQ process) can correspond to the group through the terminal.
  • multiple PDSCHs may correspond to the same group, or multiple PDSCHs may correspond to multiple different groups. Regardless of whether the multiple PDSCHs correspond to the same group or correspond to multiple different groups, they can all be indicated by the DCI corresponding to the PDSCH.
  • FIG. 5 is a schematic diagram of a target timer for starting discontinuous reception to monitor DCI according to an embodiment of the present application.
  • multiple PDSCHs ie, multiple HARQ processes
  • the DCI received by the terminal indicates the group ID, and the DCI can trigger the terminal to generate HARQ feedback information for the HARQ process.
  • three DCIs used for scheduling downlink resources ie, downlink scheduling DCI
  • the three HARQ processes all belong to the group with ID 0.
  • DCI can trigger the terminal in the group with ID 0 to send the corresponding HARQ feedback, that is, the terminal in the group with ID 0 sends corresponding HARQ feedback information according to the three HARQ processes, and the HARQ feedback information is in one uplink resource In the transmission.
  • the terminal performs LBT for the corresponding uplink resource. If the LBT fails, the terminal will regard the time after the PDCCH resource used to feed back HARQ information as DRX Active Time, and continue to monitor the DCI used to trigger the terminal to send HARQ feedback information after DRX Active Time .
  • the first symbol after the uplink resource starts the newly added timer for discontinuous reception, and the DCI is processed during the duration of the newly added timer for discontinuous reception. Monitor.
  • the terminal monitors the DCI during the operation period of the newly added timer.
  • the DCI may trigger or schedule an uplink resource for transmission, and the uplink resource needs to carry at least HARQ feedback information that is not transmitted because the uplink resource for transmitting the HARQ feedback information is not available.
  • FIG. 6 is another schematic diagram of starting a target timer for discontinuous reception to monitor DCI according to an embodiment of the present application. It is similar to the embodiment shown in FIG. 5 in which multiple PDSCHs (ie, multiple HARQ processes) ) Corresponds to the same group as an example.
  • the DCI received by the terminal indicates the group ID, and the DCI can trigger the terminal to generate HARQ feedback information for the HARQ process.
  • the three DCIs used for scheduling downlink resources can respectively indicate three HARQ processes (that is, HARQ process IDs are divided into HARQ processes of 0, 1, and 2) , The three HARQ processes all belong to the group with ID 0.
  • the DCI can trigger the terminals in the group with ID 0 to send corresponding HARQ feedback, that is, the terminals in the group with ID 0 send corresponding HARQ feedback information to the three HARQ processes respectively.
  • the HARQ feedback information is transmitted in an uplink resource.
  • the terminal is performing LBT for the corresponding uplink resource. If the LBT fails, the terminal starts the newly added timer for discontinuous reception after the corresponding uplink resource, and the terminal continues to monitor for triggering the terminal within the duration of the newly added timer Send the DCI of the HARQ feedback information.
  • the first symbol after the uplink resource starts the HARQ round trip delay timer for discontinuous reception; after the HARQ round trip delay timer for discontinuous reception expires, it starts The discontinuous reception retransmission timer monitors the DCI during the duration of the discontinuous reception retransmission timer.
  • the terminal will be in an awake state within the duration of the retransmission timer of discontinuous reception and can monitor the channel. Therefore, in this embodiment of the present application, the DCI can be monitored by using the discontinuously received retransmission timer.
  • each HARQ process is correspondingly set with a HARQ round trip delay timer for discontinuous reception and a retransmission timer for discontinuous reception. Therefore, when one or more PDSCHs are being transmitted, the first symbol (symbol) after the PUCCH starts the HARQ round trip delay timers for discontinuous reception maintained in the HARQ processes corresponding to the one or more PDSCHs. Then after the HARQ round trip delay timer of the discontinuous reception expires, the retransmission timer of the discontinuous reception maintained by the HARQ process is started, and the DCI is monitored for the duration of the retransmission timer of the discontinuous reception .
  • the terminal monitors the DCI within the duration of the non-continuously received retransmission timer.
  • the DCI can trigger or schedule an uplink resource for transmission.
  • the uplink resource needs to carry at least because the uplink resource for transmitting HARQ feedback information is not available.
  • the transmitted HARQ feedback information is not available.
  • FIG. 7 is a schematic diagram of a target timer for starting discontinuous reception to monitor DCI according to an embodiment of the present application. It is similar to the embodiment shown in FIG. 5 or FIG. 6, in which multiple PDSCHs (ie Multiple HARQ processes corresponding to the same group will be described as an example.
  • the DCI received by the terminal indicates the group ID, and the DCI can trigger the terminal to generate HARQ feedback information for the HARQ process.
  • the three DCIs used for scheduling downlink resources can respectively indicate three HARQ processes (that is, the HARQ process IDs are divided into HARQ processes of 0, 1, and 2) ,
  • the three HARQ processes all belong to the group with ID 0.
  • the DCI can trigger the terminals in the group with ID 0 to send corresponding HARQ feedback information, that is, the terminals in the group with ID 0 send corresponding HARQ feedback information for three HARQ processes respectively.
  • the HARQ feedback information is fed back and transmitted in an uplink resource.
  • the terminal is performing LBT for the corresponding uplink resource.
  • the terminal starts at least one HARQ round trip delay timer for discontinuous reception of the HARQ process; when the HARQ round trip delay timer for discontinuous reception expires, After the HARQ round-trip delay timer for continuous reception expires, start the discontinuous reception retransmission timer of the HARQ process, and monitor the duration of the discontinuous reception retransmission timer to trigger the terminal to send HARQ feedback information.
  • uplink resource unavailable may mean that the media access control sublayer protocol (Media Access Control, MAC) layer receives an indication from the physical layer to indicate that the PUCCH resource LBT is unsuccessful.
  • Media Access Control Media Access Control
  • Step 406 When the DCI corresponding to the uplink resource used for transmitting the HARQ feedback is monitored, the HARQ feedback is transmitted on the PDSCH indicated by the DCI.
  • Step 407 When the PUCCH for transmitting HARQ feedback information is available, transmit HARQ feedback information for one or more PDSCHs on the PUCCH.
  • the PUCCH can be used to transmit HARQ feedback for the one or more PDSCHs.
  • Step 408 Start the HARQ round trip delay timer for discontinuous reception at the first symbol after the PUCCH, and stop the retransmission timer for discontinuous reception.
  • the first symbol after the PUCCH starts the HARQ round trip delay timers for discontinuous reception maintained by the HARQ processes corresponding to the one or more PDSCHs, and stops the one Or a retransmission timer for discontinuous reception of HARQ processes corresponding to multiple PDSCHs.
  • Step 409 When the non-continuously received HARQ round-trip delay timer corresponding to the specified HARQ process expires, and the data transmitted by the specified HARQ process is not successfully decoded, start the non-continuously received HARQ round-trip delay timer Specify the discontinuous reception retransmission timer corresponding to the HARQ process.
  • the designated HARQ process is any one of the HARQ processes corresponding to one or more PDSCHs.
  • the retransmission timer of the discontinuous reception corresponding to the specified HARQ process can be started by two factors. One is that the HARQ round trip delay timer of the discontinuous reception corresponding to the specified HARQ process expires, and the other is the specified HARQ process. The data transmitted by the process was not successfully decoded. When both factors are satisfied, the retransmission timer of the discontinuous reception can be started.
  • the target timer of discontinuous reception can be started to monitor the DCI, so that the terminal can monitor in time
  • the network-side device reissues the downlink signaling, and based on the triggering of the downlink signaling, feeds back HARQ feedback information to the network-side device in time, which effectively guarantees the normal transmission of data (that is, the HARQ feedback information).
  • the terminal can not only consider saving energy consumption but also ensure data transmission performance in the NR-U system.
  • FIG. 8 shows a block diagram of an apparatus for monitoring downlink control information provided by an embodiment of the present application.
  • the apparatus 800 includes a processing module 801,
  • the processing module 801 is configured to start a target timer for discontinuous reception when the uplink resource used for transmitting the HARQ feedback information of the hybrid automatic repeat request is unavailable, and monitor the downlink control information within the duration of the target timer.
  • the target timer of discontinuous reception can be started to monitor the DCI, so that the terminal can monitor in time
  • the network-side device reissues the downlink signaling, and based on the triggering of the downlink signaling, feeds back HARQ feedback information to the network-side device in time, which effectively guarantees the normal transmission of data (that is, the HARQ feedback information). This makes it possible for the terminal to save energy and ensure data transmission performance in the NR-U system.
  • the processing module 801 is configured to determine the time after the uplink resource as the activation time of discontinuous reception when the uplink resource is unavailable, and perform the discontinuous reception on the downlink at the activation time of the discontinuous reception. Control information for monitoring. That is, the processing module 801 is configured to monitor the downlink control information at the activation time of the discontinuous reception when the uplink resource is not available, and the activation time includes the time after the uplink resource.
  • the processing module 801 is configured to, when the uplink resource is unavailable, start a newly-added timer for discontinuous reception at the first symbol after the uplink resource, and perform a discontinuous reception when the Monitor the downlink control information within the duration of the timer.
  • the processing module 801 is configured to start the HARQ round trip delay timer for discontinuous reception at the first symbol after the uplink resource when the uplink resource is not available;
  • the retransmission timer of the discontinuous reception is started, and the downlink control information is monitored within the duration of the retransmission timer of the discontinuous reception.
  • the downlink control information includes:
  • a first dedicated DCI where the first dedicated DCI includes uplink scheduling authorization
  • a second dedicated DCI where the second dedicated DCI includes downlink scheduling allocation
  • a third dedicated DCI where the third dedicated DCI does not include the uplink scheduling grant and the downlink scheduling allocation
  • the device 800 further includes a detection module 802 and a determination module 803,
  • the detection module 802 is configured to perform channel state detection on the uplink resource used for transmitting the HARQ feedback information; the determining module 803 is configured to determine that the uplink resource is unavailable when the uplink resource is in a busy state;
  • the determining module 803 is configured to determine the uplink when the HARQ feedback information conflicts with other services on the uplink resources, and the service priority of the other services is higher than the service priority of the HARQ feedback The resource is unavailable.
  • the device 800 further includes a transmission module 804,
  • the transmission module 804 is configured to transmit the HARQ feedback on the uplink resource indicated by the downlink control information when the downlink control information corresponding to the uplink resource used to transmit the HARQ feedback information is monitored.
  • FIG. 11 shows a structural block diagram of a terminal provided by an embodiment of the present application.
  • the terminal includes a processor 91, a receiver 92, a transmitter 93, a memory 94, and a bus 95.
  • the processor 91 includes one or more processing cores, and the processor 91 executes various functional applications and information processing by running software programs and modules.
  • the receiver 92 and the transmitter 93 can be implemented as a communication component.
  • the communication component can be a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, etc., which are used to modulate and/or decode information. Tune, and receive or send the information through wireless signals.
  • the memory 94 is connected to the processor 91 through a bus 95.
  • the memory 94 may be used to store at least one instruction, and the processor 91 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 94 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static anytime access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static anytime access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable except programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the present application provides a computer-readable storage medium in which at least one instruction is stored, and the at least one instruction is loaded and executed by the processor to implement the monitoring of downlink control information provided by the foregoing various method embodiments method.
  • the present application also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the method for monitoring downlink control information provided by the foregoing method embodiments.
  • the present application provides a chip that includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the method for monitoring downlink control information provided by the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种下行控制信息的监听方法及装置,涉及无线通信领域,该方法中,当用于传输HARQ反馈信息的上行资源不可用时,可以启动非连续接收的目标定时器,在目标定时器的持续时间内对DCI进行监听,使得终端可以及时监听到网络侧设备重新下发的下行信令,并基于该下行信令的触发向网络侧设备及时反馈HARQ反馈信息,有效保证了数据(即HARQ反馈信息)的正常传输。使得终端可以既能考虑到节省能耗又保证数据的传输性能。

Description

下行控制信息的监听方法及装置 技术领域
本申请涉及无线通信领域,特别涉及一种下行控制信息的监听方法及装置。
背景技术
为了保证非授权频谱上各系统之间能够以公平的方式共享非授权频谱资源,第三代合作伙伴计划(Third Generation Partnership Project,3GPP)在应用许可辅助接入(License Assisted Access,LAA)技术中引入了先听后说(Listen Before Talk,LBT)机制。LBT机制用于在各个系统接入非授权频谱上的信道之前,先对该信道进行监听以确定该信道的闲忙状态。
非连续接收(Discontinuous Reception,DRX)机制是一种可以让终端周期性地进入睡眠状态(sleep mode)以及唤醒状态(wake up mode)的技术。当终端处于睡眠状态时,终端不对信道进行监听;当终端处于唤醒状态时,终端可以对信道进行监听,如此可以使终端达到减少能耗的目的。将LBT机制与DRX机制相结合,也即是,在非授权频段采用DRX机制可以有效降低终端的能耗。
相关技术中,终端在网络侧设备发送的下行控制信息(Downlink control information,DCI)指示的下行资源上接收网络侧设备发送的下行数据,根据对该下行数据的解码结果生成混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息,并通过上行资源返回给网络侧设备。终端在向网络侧设备发送该HARQ反馈信息之前,采用LBT机制对该上行资源进行检测(或也称为监听),当监听到该上行资源处于繁忙状态时,网络侧设备会再次发送DCI以指示新的上行资源来传输该HARQ反馈。但是,相关技术中,当终端监听到该上行资源处于繁忙状态,而导致网络侧设备无法及时接收到HARQ反馈信息时,难以保证该HARQ反馈信息的正常传输。
发明内容
本申请实施例提供了一种下行控制信息的监听方法及装置,可以用于解决相关技术中难以保证HARQ反馈信息,也即是,难以保证HARQ反馈信息的正 常传输的问题。所述技术方案如下:
一个方面,提供了一种下行控制信息的监听方法,所述方法包括:
当用于传输混合自动重传请求HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在所述目标定时器的持续时间内对所述下行控制信息进行监听
另一方面,提供了一种下行控制信息的监听装置,所述装置包括:处理模块,
所述处理模块用于当用于传输混合自动重传请求HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在所述目标定时器的持续时间内对所述下行控制信息进行监听。
另一方面,提供了一种终端,所述终端包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述下行控制信息的监听方法。
另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述下行控制信息的监听方法。
另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现下行控制信息的监听方法。
另一方面,提供了一种计算机程序产品,所述计算机程序产品存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述下行控制信息的监听方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
当用于传输HARQ反馈信息的上行资源不可用时,可以启动非连续接收的目标定时器,在目标定时器的持续时间内对DCI进行监听,使得终端可以及时监听到网络侧设备重新下发的下行信令,并基于该下行信令的触发向网络侧设备及时反馈HARQ反馈信息,有效保证了数据(即HARQ反馈信息)的正常传输。如此使得终端可以既能考虑到节省能耗又保证数据的传输性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的一种DRX周期的示意图;
图2是本申请实施例提供的一种实施环境的示意图;
图3是本申请实施例提供的一种DCI的监听方法的流程图;
图4是本申请实施例提供的另一种DCI的监听方法的流程图;
图5是本申请实施例提供的一种启动非连续接收的目标定时器对DCI进行监听的示意图;
图6是本申请实施例提供的另一种启动非连续接收的目标定时器对DCI进行监听的示意图;
图7是本申请实施例提供的又一种启动非连续接收的目标定时器对DCI进行监听的示意图;
图8是本申请实施例提供的一种下行控制信息的监听装置的框图;
图9是本申请实施例提供的又一种下行控制信息的监听装置的框图;
图10是本申请实施例提供的再一种下行控制信息的监听装置的框图;
图11是本申请实施例提供的一种终端的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
3GPP无线接入网(Radio Access Network,RAN)工作组在2018年12月份同意了新空口(New Radio,NR)非授权工作方式(即NR-Unlicensed,简称NR-U)的立项,该项目的目标是使得NR工作在非授权频段,示例的,NR工作在非授权频段包括如下几种工作场景:载波聚合场景,主小区(Primary Cell,PCell)为授权频谱,通过载波聚合的方式聚合工作在非授权频谱上的辅小区(Secondary Cell,SCell);双连接工作场景,PCell为长期演进(Long Term Evolution,LTE)授权频谱,SCell为NR非授权频谱;独立工作场景,NR作为一个独立小区工作在非授权频谱。
可选的,NR-U的工作频带(Band)包括5千兆赫(GHz)非授权频谱和6GHz非授权频谱。在设计NR-U的非授权频谱时,为了保证接入该非授权频谱 的系统与其他已经工作在非授权频谱上的系统均可以公平地共享非授权频谱资源,可以为该非授权频谱资源设置一种共存机制,例如能量检测机制。该能量检测机制可以为LBT机制。LBT机制指的是传输端在非授权频谱上向接收端传输数据之前,需要先按照规定对信道进行一段时间的检测。如果检测的结果表示该信道为空闲状态,则传输端可以向接收端传输数据;如果检测的结果表示该信道为占用状态,则传输端需要根据规定回退一段时间再继续监听该信道,直到监听结果为空闲状态,再向接收端传输数据。
需要提前说明的是,对信道进行监听指的是对信道上所承载的信息或数据进行监听。例如,对物理下行控制信道(Physical Downlink Control Channel,PDCCH)进行监听指的是对PDCCH上承载的DCI进行监听。
DRX机制是指为处于无线资源控制(Radio Resource Control,RRC)的连接(RRC_CONNECTED)态的终端配置一个DRX周期(DRX Cycle)。图1示出的是一个DRX周期的示意图。该DRX周期中,标识“持续中”的这段时间是终端监听信道的时间,该段时间内终端处于唤醒状态,“持续中”可对应英文翻译“On Duration”。该DRX周期中,标识“DRX的时机”是终端不监听信道的时间,该段时间内终端处于睡眠状态,“DRX的时机”可对应英文翻译“Opportunity for DRX”、“off duration”、或者“off state”。
网络侧设备可以通过配置定时器参数来控制终端的DRX周期。其中,定时器参数可以包括:
1)非连续接收的持续时间定时器,即drx-onDurationTimer。终端在固定的DRX周期,启动drx-onDurationTimer,终端在该定时器的持续时长内监听PDCCH。
2)非连续接收的非激活定时器,即drx-InactivityTimer。该定时器在终端成功解码一个PDCCH,且该PDCCH调度初传时启动或者重启,终端在该定时器的持续时长内监听PDCCH。
3)非连续接收的下行链路重传定时器,即drx-RetransmissionTimerDL,终端针对每一个下行HARQ单独维护该定时器,终端确定对应的HARQ进程数据解调失败,该定时器在drx-HARQ-RTT-TimerDL超时之后启动,在该定时器的持续时长内,终端监听PDCCH。drx-HARQ-RTT-TimerDL的行为如下描述。
4)非连续接收的上行链路重传定时器,即drx-RetransmissionTimerUL,终端针对每一个上行HARQ进程单独维护该定时器,该定时器在 drx-HARQ-RTT-TimerUL超时之后启动,在该定时器的持续时长内,终端监听PDCCH。
5)非连续接收的长周期,即drx-LongCycle,该定时器参数用于表示一个长的非连续接收的周期。
6)非连续接收的下行链路HARQ往返时延定时器,即drx-HARQ-RTT-TimerDL,该定时器参数针对每一个下行HARQ进程单独维护,该定时器在传输HARQ反馈的资源之后的第一个符号启动,在该定时器的持续时长,终端可以不用监听PDCCH。
7)非连续接收的上行链路HARQ往返时延定时器,即drx-HARQ-RTT-TimerUL,该定时器参数针对每一个上行HARQ进程单独维护,该定时器在终端数据传输资源之后的第一个符号启动,在该定时器的持续时长内,终端可以不用监听PDCCH。
在相关技术中,终端接收到网络侧设备发送的DCI,并在该DCI所指示的时频域资源位置反馈针对某一下行数据的HARQ反馈信息,该HARQ反馈信息包括应答消息(Acknowledgement,ACK)以及否定应答消息(Negative Acknowledgement,NACK)。在终端反馈该HARQ反馈信息之后,终端启动drx-HARQ-RTT-TimerDL,并停止drx-Retransmission-TimerDL,在drx-HARQ-RTT-TimerDL运行期间,终端不监听PDCCH;在drx-HARQ-RTT-TimerDL超时之后,如果终端没有将下行数据解码成功,则终端启动drx-RetransmissionTimerDL,在drx-RetransmissionTimerDL运行期间,终端监听用于重传该下行数据的DCI。
需要提前说明的是,在本申请实施例所描述的技术方案中,当终端中的HARQ机制中的HARQ反馈被触发时,终端向网络侧设备反馈HARQ反馈信息。
在NR-U系统中,终端向网络侧设备发送针对某一下行数据的HARQ反馈信息可以由网络侧设备发送的下行信令触发,例如该下行信令为DCI,也即是,网络侧设备向终端发送下行信令,该下行信令触发终端向网络侧设备发送HARQ反馈信息。如果被下行信令触发的HARQ反馈由于信道繁忙(即LBT失败的情况)而导致网络侧设备没有收到对应的HARQ反馈信息,则网络侧设备需要再次发送触发HARQ反馈的下行信令。
在上述描述中,针对由于LBT失败导致无法传输HARQ反馈信息的情况, DRX机制是如何实现的没有明确规定,也即是,现有技术中没有规定将DRX机制应用于LBT失败导致无法传输HARQ反馈信息的情况。如此导致DRX机制中的drx-Retransmission-TimerDL不会被触发启动,因此终端会进入DRX周期中的休眠状态,进一步导致终端不能及时监听网络侧设备重新下发的下行信令。本申请实施例提供了一种DCI的监听方法,可以解决相关技术中,终端不能及时监听网络侧设备重新下发的下行信令的问题。
图2是本申请实施例提供的一种实施环境的示意图。该实施环境中包括终端11、终端12以及网络侧设备21。终端11和终端12可以均与网络侧设备21进行通信。终端11向网络侧设备21发送上行数据,网络侧设备21向终端12发送下行数据。其中,网络侧设备21和终端12组成了下行传输链路,该下行传输链路中,网络侧设备21向终端12发送下行数据之后,终端12对该下行数据的进行解码并将解码结果生成HARQ反馈信息返回给网络侧设备。本申请实施例主要针对的是该下行传输链路。当然,终端12和终端11之间也可以进行通信,本申请实施例对此不进行限制。终端可以为用户设备(User Equipment,UE)。
图3是本申请实施例提供的一种DCI的监听方法的流程图,该方法包括:
步骤301、当用于传输HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在目标定时器的持续时间内对DCI进行监听。
其中,该上行资源为物理上行链路控制信道(Physical Uplink Control CHannel,PUCCH)。
综上所述,本申请实施例提供的DCI的监听方法中,当用于传输HARQ反馈信息的上行资源不可用时,可以启动非连续接收的目标定时器对DCI进行监听,使得终端可以及时监听到网络侧设备重新下发的下行信令,并基于该下行信令的触发向网络侧设备及时反馈HARQ反馈信息,有效保证了数据(即HARQ反馈信息)的正常传输。使得终端可以既能考虑到节省能耗又保证数据的传输性能。
其中,DCI可以包括第一专有DCI、第二专有DCI、第三专有DCI或者公共DCI。该第一专有DCI包含上行调度授权(Uplink grant),该上行调度授权可 以用于调度上行数据。该第二专有DCI包含下行调度分配(Downlink assignment),该下行调度分配用于调度下行数据。该第三专有DCI不包含上行调度授权和下行调度分配,该DCI既不用于调度上行数据,也不用于调度下行数据。该公共DCI为发送给某一组(group)终端的DCI。每一组可以包括至少一个终端,该公共DCI用于调度该组中的多个终端的上行数据,和/或,调度该组中的多个终端的下行数据。
在一个示例中,上述DCI中设置有指示域,该指示域可以指示终端触发HARQ反馈(或某一组的HARQ反馈)。该指示域可称为动态信息指示。该动态指示信息可以触发对一个PDSCH的反馈也可以指示对多个PDSCH的反馈。示例性的:
1、该动态指示信息用于指示对多个PDSCH的数据反馈时,这多个PDSCH对应同一个组;
2、该动态指示信息用于指示对多个PDSCH的数据反馈时,这多个PDSCH也可以对应不同的组;
3、PDSCH属于哪个组在其对应的DCI中指示;
在一个示例中,该动态指示信息需要包含指示数据反馈对应的组信息。该动态指示信息也需要包含PUCCH信息。
本申请实施例所描述的DCI的监听方法中,确定用于传输HARQ反馈信息的上行资源不可用包括两种情况,第一种情况中,该上行资源不可用指的是该上行资源处于繁忙状态;第二种情况中,该上行资源不可用指的是该上行资源被冲突丢弃。
针对该第一种情况,确定用于传输HARQ反馈信息的上行资源不可用,可以包括:
步骤S1、对用于传输HARQ反馈信息的上行资源进行信道状态检测。
示例的,采用能量检测的方式来进行信道状态监测,如果该信道的信号强度大于指定门限阈值时,确定该上行资源为繁忙状态,反之则为空闲状态。该指定门射阈值可以由终端预先确定。
步骤S2、在上行资源处于繁忙状态时,确定上行资源不可用。
步骤S3、当用于传输HARQ反馈信息的上行资源不可用时,启动非连续接 收的目标定时器,在目标定时器的持续时间内对DCI进行监听。
当该上行资源不可用时,终端及时启动非连续接收的目标定时器对DCI进行监听,以便及时监听到网络侧设备新发送的DCI,该DCI用于指示由于传输HARQ反馈信息的上行资源不可用而没有传输的HARQ反馈信息对应的上行资源。以此来保证数据的传输性能。
针对该第二种情况,确定用于传输HARQ反馈信息的上行资源不可用,可以包括:
步骤S4、当HARQ反馈信息与其它业务在上行资源上发生冲突,且其它业务的业务优先级高于HARQ反馈的业务优先级时,确定上行资源不可用。
当其它业务的业务优先级高于HARQ反馈的业务优先级时,该上行资源用于传输其他业务的业务数据,如此导致该上行资源也处于繁忙状态。因此,也可以将该种情况下的上行资源确定为不可用。
步骤S5、当用于传输HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在目标定时器的持续时间内对DCI进行监听。
该第二种情况可以发生在如下场景中:当传输HARQ反馈信息的上行资源与传输其他数据的资源在时域上发生冲突时,终端的物理层也有可能放弃该用于传输HARQ反馈信息的上行资源。例如,如果传输HARQ反馈信息的上行资源所在信道是针对增强移动宽带(Enhanced Mobile Broadband,eMBB)的信道,那么在传输该上行资源时,网络侧设备会调度一个超高可靠超低时延通信(Ultra Reliable and Low Latency Communication,URLLC)的信道,该URLLC信道上传输的资源与eMBB信道上传输的资源在时域上重叠,由于终端不能在同一时刻传输两个上行资源,所以终端有可能会将eMBB信道放弃,该种情况下,则需要启动非连续接收的目标定时器,来对DCI进行监听。
本申请实施例所描述的DCI的监听方法中,启动非连续接收的目标定时器对DCI进行监听包括三种实现方式:
在第一种实现方式中,通过设置DRX的激活时间(active time)来对DCI进行监听,在该DRX的激活时间内,终端均需要对DCI进行监听;
在第二种实现方式中,通过设置一个新增定时器,在该新增定时器的计时时间内,终端均需要对DCI进行监听;
在第三种实现方式中,通过启动往返时延定时器以及重传定时器,在HARQ往返时延定时器超时后启动的非连续接收重传定时器的持续时间内对DCI进行监听。
图4示出了本申请实施例提供的又一种DCI的监听方法的流程图,该方法结合上述三种实现方式进行介绍,该方法由终端执行。
步骤401、接收DRX配置消息。
该DRX配置消息由网络侧设备发送。可选的,该DRX配置消息可以由RRC信令进行配置。也即是,网络侧设备可以向终端发送RRC信令,该RRC信令中包含DRX配置消息,终端根据接收到的DRX配置消息来对其自身具有的DRX机制进行配置。
可选的,该DRX配置消息可以至少包括对如下定时器参数的配置:drx-onDurationTimer、drx-InactivityTimer、drx-HARQ-RTT-TimerDL、drx-HARQ-RTT-TimerUL、drx-RetransmissionTimerDL,drx-RetransmissionTimerUL以及非连续接收的长周期起始偏移drx-LongCycleStartOffset。
其中,drx-LongCycleStartOffset可以用于表示非连续接收的长周期以及非连续接收的起始偏移量。
步骤402、接收DCI。
该DCI用于通过其指示的下行资源调度下行数据。该DCI能够指示网络侧设备为该下行数据分配的下行资源,使得终端可以使用该下行资源接收下行数据。需要说明的是,为该下行数据分配的下行资源可以看成是为该下行数据分配的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。DCI可以与PDSCH一一对应,也即是,一个DCI用于指示一个PDSCH即一个下行资源。
可选的,该DCI中包括有网络侧设备向终端发送的动态指示信息,该动态指示信息可以为网络侧设备向终端发送的触发信令,该触发信令用于触发终端中的HARQ反馈生成HARQ反馈信息。
步骤403、生成HARQ反馈信息。
终端根据网络侧设备的动态信息指示生成针对该下行数据的HARQ反馈信息。其中,下行数据与HARQ进程一一对应,也即是,PDSCH与HARQ进程 一一对应。每个终端均可以根据多个HARQ进程来分别生成多个HARQ反馈信息。
可选的,该动态指示信息触发终端针对一个PDSCH生成一个HARQ反馈信息,或者,该动态指示信息触发终端针对多个PDSCH生成多个HARQ反馈信息。该多个PDSCH可以对应一个组或者多个组,每个组通过组标号(ID)进行区分。
可选的,动态指示信息中包含指示发送HARQ反馈信息的HARQ进程所对应的group信息(例如组ID),该动态指示信息中包含承载HARQ反馈信息的PUCCH。
步骤404、对承载该HARQ反馈信息的PUCCH进行监听,如果监听不成功,执行步骤405,如果监听成功,则执行步骤407。
在生成HARQ反馈信息之后且发送该HARQ反馈信息之前,终端对用于承载该HARQ反馈信息的PUCCH进行监听。在步骤404中,如果监听不成功,则说明PUCCH被占用,或者被冲突丢弃,相关描述可以参考上述上行资源不可用所包括的两种情况。
步骤405、当用于传输HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器对DCI进行监听。
由于当用于传输HARQ反馈信息的上行资源不可用,则网络侧设备无法及时获取到该HARQ反馈信息。此时网络侧设备会再次发送DCI,以触发终端再次发送该HARQ反馈信息。为了保证数据的传输性能,终端应该及时对该DCI进行监听,以避免由于终端进入DRX机制中的休眠状态,而无法及时向终端反馈该HARQ反馈信息的情况。
可选的,启动非连续接收的目标定时器对DCI进行监听包括如下三种实现方式:
在第一种实现方式中,当上行资源不可用时,在该非连续接收的激活时间(DRX Active Time)可以对DCI进行监听,激活时间包括所述上行资源之后的时间。也即,当上行资源不可用时,将该上行资源之后的时间确定为非连续接收的激活时间,在激活时间内对DCI进行监听。
终端在该非连续接收的激活时间内持续监听DCI。该DCI可以触发或者调度一个上行资源进行数据传输,该上行资源中需要至少承载由于该传输HARQ反馈信息的上行资源不可用而没有传输的HARQ反馈信息。
基于上述步骤403中介绍的PDSCH、HARQ进程、以及组之间的对应关系,可以进一步得出,PDSCH(以及其对应的HARQ进程)通过终端可以与组进行对应。示例的,多个PDSCH可以对应同一个组,或者多个PDSCH可以对应不同的多个组。无论该多个PDSCH对应同一个组或是对应不同的多个组,可以均由PDSCH对应的DCI进行指示。
图5是本申请实施例提供的一种启动非连续接收的目标定时器对DCI进行监听的示意图,该图中以多个PDSCH(即多个HARQ进程)对应同一组为例进行说明。终端接收的DCI中指示组ID,该DCI可以触发终端针对HARQ进程生成HARQ反馈信息。在图5所示的实施例中,三个用于调度下行资源的DCI(即下行调度的DCI)可以分别指示三个HARQ进程(即HARQ进程ID分为为0、1和2的HARQ进程),该三个HARQ进程均属于ID为0的组。DCI可以触发ID为0的组中的终端发送对应的HARQ反馈,也即是,ID为0的组中的终端根据三个HARQ进程分别发送对应的HARQ反馈信息,该HARQ反馈信息在一个上行资源中传输。终端在针对对应的上行资源执行LBT,如果LBT失败,则终端将用于反馈HARQ信息的PDCCH资源之后的时间当成DRX Active Time,在DRX Active Time之后继续监听用于触发终端发送HARQ反馈信息的DCI。
在第二种实现方式中,当上行资源不可用时,在该上行资源之后的第一个符号启动非连续接收的新增定时器,在该非连续接收的新增定时器的持续时间内对DCI进行监听。
终端在该新增定时器的运行期间内监听DCI。该DCI可以触发或者调度一个上行资源进行传输,该上行资源中需要至少承载由于该传输HARQ反馈信息的上行资源不可用而没有传输的HARQ反馈信息。
图6是本申请实施例提供的又一种启动非连续接收的目标定时器对DCI进行监听的示意图,与图5所示的实施例类似,该图中以多个PDSCH(即多个HARQ进程)对应同一组为例进行说明。终端接收的DCI中指示组ID,该DCI可以触发终端针对HARQ进程生成HARQ反馈信息。在图6所示的实施例中,三个用于调度下行资源的DCI(即下行调度的DCI)可以分别指示三个HARQ进程(即HARQ进程ID分为为0、1和2的HARQ进程),该三个HARQ进程均属于ID为0的组。DCI可以触发ID为0的组中的终端发送对应的HARQ反 馈,也即是,ID为0的组中的终端对三个HARQ进程分别发送对应的HARQ反馈信息。该HARQ反馈信息在一个上行资源中传输。终端在针对对应的上行资源执行LBT,如果LBT失败,则终端在对应的上行资源之后启动该非连续接收的新增定时器,在该新增定时器的持续时间内终端继续监听用于触发终端发送HARQ反馈信息的DCI。
在第三种实现方式中,当上行资源不可用时,在上行资源之后的第一个符号启动非连续接收的HARQ往返时延定时器;在非连续接收的HARQ往返时延定时器超时后,启动非连续接收的重传定时器,在非连续接收的重传定时器的持续时间内对DCI进行监听。
在DRX机制中包括的定时器参数中,非连续接收的重传定时器持续时间内终端会处于唤醒状态,可以对信道进行监听。因此,本申请实施例可以通过采用该非连续接收的重传定时器来对DCI进行监听。
PDSCH与HARQ进程一一对应,每个HARQ进程均对应设置有非连续接收的HARQ往返时延定时器以及非连续接收的重传定时器。因此,当传输有一个或多个PDSCH时,在PUCCH之后的第一个符号(symbol)分别启动该一个或者多个PDSCH对应的HARQ进程的所维护的非连续接收的HARQ往返时延定时器。然后在该非连续接收的HARQ往返时延定时器超时后,启动该HARQ进程的所维护的非连续接收的重传定时器,在非连续接收的重传定时器的持续时间内对DCI进行监听。
终端在该非连续接收的重传定时器的持续时间内监听DCI,该DCI可以触发或者调度一个上行资源进行传输,该上行资源中需要至少承载由于该传输HARQ反馈信息的上行资源不可用而没有传输的HARQ反馈信息。
图7是本申请实施例提供的一种启动非连续接收的目标定时器对DCI进行监听的示意图,与上述图5或图6所示的实施例类似,该图7中以多个PDSCH(即多个HARQ进程)对应同一组为例进行说明。终端接收的DCI中指示组ID,该DCI可以触发终端针对HARQ进程生成HARQ反馈信息。在图7所示的实施例中,三个用于调度下行资源的DCI(即下行调度的DCI)可以分别指示三个HARQ进程(即HARQ进程ID分为为0、1和2的HARQ进程),该三个HARQ进程均属于ID为0的组。DCI可以触发ID为0的组中的终端发送对应的HARQ 反馈信息,也即是,ID为0的组中的终端针对三个HARQ进程分别发送对应的HARQ反馈信息。该HARQ反馈信息反馈在一个上行资源中传输。终端在针对对应的上行资源执行LBT,如果LBT失败,终端至少启动一个HARQ进程的非连续接收的HARQ往返时延定时器;当该非连续接收的HARQ往返时延定时器超时,则在该非连续接收的HARQ往返时延定时器超时后,启动该HARQ进程的非连续接收的重传定时器,在非连续接收的重传定时器的持续时间内监听用于触发终端发送HARQ反馈信息。
需要说明的是,“上行资源不可用”可以是介质访问控制子层协议(Media Access Control,MAC)层收到物理层指示,指示该PUCCH资源LBT不成功。
步骤406、当监听到用于传输HARQ反馈的上行资源对应的DCI时,在该DCI指示的PDSCH上传输HARQ反馈。
步骤407、当用于传输HARQ反馈信息的PUCCH可用时,在该PUCCH上传输针对一个或者多个PDSCH的HARQ反馈信息。
由于监听承载该HARQ反馈的PUCCH成功,则该PUCCH可以用于传输针对该一个或者多个PDSCH的HARQ反馈。
步骤408、在PUCCH之后的第一个符号启动非连续接收的HARQ往返时延定时器,并停止非连续接收的重传定时器。
当传输有一个或多个PDSCH时,在PUCCH之后的第一个符号分别启动该一个或者多个PDSCH对应的HARQ进程的所维护的非连续接收的HARQ往返时延定时器,并分别停止该一个或者多个PDSCH对应的HARQ进程的非连续接收的重传定时器。
步骤409、当指定HARQ进程对应的非连续接收的HARQ往返时延定时器超时,且该指定HARQ进程传输的数据没有被解码成功,则在该非连续接收的HARQ往返时延定时器之后启动该指定HARQ进程对应的非连续接收的重传定时器。
该指定HARQ进程为一个或多个PDSCH对应的HARQ进程中的任意一个HARQ进程。指定HARQ进程对应的非连续接收的重传定时器能够被启动由两个因素同时决定,其一是该指定HARQ进程对应的非连续接收的HARQ往返时延定时器超时,其二是该指定HARQ进程传输的数据没有被解码成功。当两个因素均被满足时,可以启动该非连续接收的重传定时器。
综上所述,本申请实施例提供的DCI的监听方法中,当用于传输HARQ反 馈信息的上行资源不可用时,可以启动非连续接收的目标定时器对DCI进行监听,使得终端可以及时监听到网络侧设备重新下发的下行信令,并基于该下行信令的触发向网络侧设备及时反馈HARQ反馈信息,有效保证了数据(即HARQ反馈信息)的正常传输。如此使得终端在NR-U系统中可以既能考虑到节省能耗又保证数据的传输性能。
图8示出了本申请实施例提供的一种下行控制信息的监听装置的框图,装置800包括:处理模块801,
处理模块801用于当用于传输混合自动重传请求HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在目标定时器的持续时间内对下行控制信息进行监听。
综上所述,本申请实施例提供的DCI的监听装置中,当用于传输HARQ反馈信息的上行资源不可用时,可以启动非连续接收的目标定时器对DCI进行监听,使得终端可以及时监听到网络侧设备重新下发的下行信令,并基于该下行信令的触发向网络侧设备及时反馈HARQ反馈信息,有效保证了数据(即HARQ反馈信息)的正常传输。如此使得终端在NR-U系统中可以既能考虑到节省能耗又保证数据的传输性能。
可选的,所述处理模块801,用于当所述上行资源不可用时,将所述上行资源之后的时间确定为非连续接收的激活时间,在所述非连续接收的激活时间对所述下行控制信息进行监听。也即,所述处理模块801,用于当所述上行资源不可用时,在所述非连续接收的激活时间对所述下行控制信息进行监听,所述激活时间包括所述上行资源之后的时间。
可选的,所述处理模块801,用于当所述上行资源不可用时,在所述上行资源之后的第一个符号启动非连续接收的新增定时器,在所述非连续接收的新增定时器的持续时间内对所述下行控制信息进行监听。
可选的,所述处理模块801,用于当所述上行资源不可用时,在所述上行资源之后的第一个符号启动非连续接收的HARQ往返时延定时器;
在所述非连续接收的HARQ往返时延定时器超时后,启动非连续接收的重传定时器,在所述非连续接收的重传定时器的持续时间内对所述下行控制信息进行监听。
可选的,所述下行控制信息包括:
第一专有DCI,所述第一专有DCI包含上行调度授权;
或,第二专有DCI,所述第二专有DCI包含下行调度分配;
或,第三专有DCI,所述第三专有DCI不包含所述上行调度授权和所述下行调度分配;
或,公共DCI。
可选的,如图9所示,所述装置800还包括检测模块802和确定模块803,
所述检测模块802用于对用于传输所述HARQ反馈信息的上行资源进行信道状态检测;所述确定模块803用于在所述上行资源处于繁忙状态时,确定所述上行资源不可用;
或,
所述确定模块803用于当所述HARQ反馈信息与其它业务在所述上行资源上发生冲突,且所述其它业务的业务优先级高于所述HARQ反馈的业务优先级时,确定所述上行资源不可用。
可选的,如图10所示,所述装置800还包括传输模块804,
所述传输模块804用于当监听到用于传输所述HARQ反馈信息的上行资源对应的下行控制信息时,在所述下行控制信息指示的上行资源上传输所述HARQ反馈。
请参考图11,其示出了本申请实施例提供的一种终端的结构方框图,该终端包括:处理器91、接收器92、发射器93、存储器94和总线95。
处理器91包括一个或者一个以上处理核心,处理器91通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器92和发射器93可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器94通过总线95与处理器91相连。
存储器94可用于存储至少一个指令,处理器91用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器94可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM), 只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的下行控制信息的监听方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述各个方法实施例提供的下行控制信息的监听方法。
本申请提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现上述各个方法实施例提供的下行控制信息的监听方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种下行控制信息的监听方法,其特征在于,所述方法包括:
    当用于传输混合自动重传请求HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在所述目标定时器的持续时间内对所述下行控制信息进行监听。
  2. 根据权利要求1所述的方法,其特征在于,所述当用于传输HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在所述目标定时器的持续时间内对所述下行控制信息进行监听,包括:
    当所述上行资源不可用时,在所述非连续接收的激活时间对所述下行控制信息进行监听,所述激活时间包括所述上行资源之后的时间。
  3. 根据权利要求1所述的方法,其特征在于,所述当用于传输HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在所述目标定时器的持续时间内对所述下行控制信息进行监听,包括:
    当所述上行资源不可用时,在所述上行资源之后的第一个符号启动所述非连续接收的新增定时器,在所述非连续接收的新增定时器的持续时间内对所述下行控制信息进行监听。
  4. 根据权利要求1所述的方法,其特征在于,所述当用于传输HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在所述目标定时器的持续时间内对所述下行控制信息进行监听,包括:
    当所述上行资源不可用时,在所述上行资源之后的第一个符号启动所述非连续接收的HARQ往返时延定时器;
    在所述非连续接收的HARQ往返时延定时器超时后,启动所述非连续接收的重传定时器,在所述非连续接收的重传定时器的持续时间内对所述下行控制信息进行监听。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述下行控制信息包括:
    第一专有DCI,所述第一专有DCI包含上行调度授权;
    或,第二专有DCI,所述第二专有DCI包含下行调度分配;
    或,第三专有DCI,所述第三专有DCI不包含所述上行调度授权和所述下行调度分配;
    或,公共DCI。
  6. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    对用于传输所述HARQ反馈信息的上行资源进行信道状态检测;在所述上行资源处于繁忙状态时,确定所述上行资源不可用;
    或,
    当所述HARQ反馈信息与其它业务在所述上行资源上发生冲突,且所述其它业务的业务优先级高于所述HARQ反馈的业务优先级时,确定所述上行资源不可用。
  7. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    当监听到用于传输所述HARQ反馈信息的上行资源对应的下行控制信息时,在所述下行控制信息指示的上行资源上传输所述HARQ反馈。
  8. 一种下行控制信息的监听装置,其特征在于,所述装置包括:处理模块,
    所述处理模块,用于当用于传输混合自动重传请求HARQ反馈信息的上行资源不可用时,启动非连续接收的目标定时器,在所述目标定时器的持续时间内对所述下行控制信息进行监听。
  9. 根据权利要求8所述的装置,其特征在于,
    所述处理模块,用于当所述上行资源不可用时,在所述非连续接收的激活时间对所述下行控制信息进行监听,所述激活时间包括所述上行资源之后的时间。
  10. 根据权利要求8所述的装置,其特征在于,
    所述处理模块,用于当所述上行资源不可用时,在所述上行资源之后的第 一个符号启动所述非连续接收的新增定时器,在所述非连续接收的新增定时器的持续时间内对所述下行控制信息进行监听。
  11. 根据权利要求8所述的装置,其特征在于,
    所述处理模块,用于当所述上行资源不可用时,在所述上行资源之后的第一个符号启动所述非连续接收的HARQ往返时延定时器;
    在所述非连续接收的HARQ往返时延定时器超时后,启动所述非连续接收的重传定时器,在所述非连续接收的重传定时器的持续时间内对所述下行控制信息进行监听。
  12. 根据权利要求8至11任一所述的装置,其特征在于,所述下行控制信息包括:
    第一专有DCI,所述第一专有DCI包含上行调度授权;
    或,第二专有DCI,所述第二专有DCI包含下行调度分配;
    或,第三专有DCI,所述第三专有DCI不包含所述上行调度授权和所述下行调度分配;
    或,公共DCI。
  13. 根据权利要求8至11任一所述的装置,其特征在于,所述装置还包括检测模块和确定模块,
    所述检测模块,用于对用于传输所述HARQ反馈信息的上行资源进行信道状态检测;所述确定模块用于在所述上行资源处于繁忙状态时,确定所述上行资源不可用;
    或,
    所述确定模块,用于当所述HARQ反馈信息与其它业务在所述上行资源上发生冲突,且所述其它业务的业务优先级高于所述HARQ反馈的业务优先级时,确定所述上行资源不可用。
  14. 根据权利要求8至11任一所述的装置,其特征在于,所述装置还包括传输模块;
    所述传输模块,用于当监听到用于传输所述HARQ反馈信息的上行资源对应的下行控制信息时,在所述下行控制信息指示的上行资源上传输所述HARQ反馈。
  15. 一种终端,其特征在于,所述终端包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述权利要求1至7中任一所述的下行控制信息的监听方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有至少一条指令,所述至少一条指令用于被处理器执行以实现上述权利要求1至7中任一所述的下行控制信息的监听方法。
  17. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如权利要求1至7任一所述的下行控制信息的监听方法。
PCT/CN2019/100870 2019-08-15 2019-08-15 下行控制信息的监听方法及装置 WO2021026918A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19941450.9A EP3958489A4 (en) 2019-08-15 2019-08-15 METHOD AND DEVICE FOR MONITORING DOWNLINK CONTROL INFORMATION
CN201980097184.9A CN113906697A (zh) 2019-08-15 2019-08-15 下行控制信息的监听方法及装置
PCT/CN2019/100870 WO2021026918A1 (zh) 2019-08-15 2019-08-15 下行控制信息的监听方法及装置
US17/550,820 US20220110185A1 (en) 2019-08-15 2021-12-14 Method for Monitoring Downlink Control Information, Terminal Device, and Non-Transitory Computer-Readable Storage Medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100870 WO2021026918A1 (zh) 2019-08-15 2019-08-15 下行控制信息的监听方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/550,820 Continuation US20220110185A1 (en) 2019-08-15 2021-12-14 Method for Monitoring Downlink Control Information, Terminal Device, and Non-Transitory Computer-Readable Storage Medium

Publications (1)

Publication Number Publication Date
WO2021026918A1 true WO2021026918A1 (zh) 2021-02-18

Family

ID=74570873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100870 WO2021026918A1 (zh) 2019-08-15 2019-08-15 下行控制信息的监听方法及装置

Country Status (4)

Country Link
US (1) US20220110185A1 (zh)
EP (1) EP3958489A4 (zh)
CN (1) CN113906697A (zh)
WO (1) WO2021026918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4307587A4 (en) * 2021-03-12 2024-04-17 Beijing Xiaomi Mobile Software Co Ltd DISCONTINUOUS RECEPTION PROCESSING METHOD AND APPARATUS, TERMINAL DEVICE AND STORAGE MEDIUM

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11716753B2 (en) * 2021-01-26 2023-08-01 Qualcomm Incorporated Feedback methods for subband full duplex systems
CN116488777A (zh) * 2022-01-11 2023-07-25 大唐移动通信设备有限公司 一种非连续接收定时器控制方法、装置、终端及网络设备
WO2023133730A1 (en) * 2022-01-12 2023-07-20 Apple Inc. Technologies for managing discontinuous reception timers
CN115334570A (zh) * 2022-08-01 2022-11-11 维沃移动通信有限公司 资源控制方法、终端和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置
CN107969171A (zh) * 2015-04-09 2018-04-27 诺基亚技术有限公司 用于授权辅助接入(laa)的不连续接收(drx)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347307B (zh) * 2017-01-25 2021-02-09 华为技术有限公司 传输数据的方法、终端设备和网络设备
US11115156B2 (en) * 2017-11-22 2021-09-07 FG Innovation Company Limited Discontinuous reception operations among multiple bandwidth parts
EP4060927A1 (en) * 2019-03-26 2022-09-21 Ofinno, LLC Discontinuous reception

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107969171A (zh) * 2015-04-09 2018-04-27 诺基亚技术有限公司 用于授权辅助接入(laa)的不连续接收(drx)
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "HARQ enhancements in NR unlicensed", 3GPP DRAFT; R1-1808063, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 8, XP051515467 *
SAMSUNG: "Discussion on DTX handling methods for UL HARQ in eLAA", 3GPP DRAFT; R1-162661 DISCUSSION ON DTX HANDLING METHODS FOR UL HARQ IN ELAA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20160411 - 20160415, 1 April 2016 (2016-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051079639 *
See also references of EP3958489A4 *
VIVO: "Discussion on the Systematic Failure of the UL transmission", 3GPP DRAFT; R2-1903081 DISCUSSION ON THE SYSTEMATIC FAILURE OF THE UL TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Xi'an, China; 20190408 - 20190412, 6 April 2019 (2019-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051700438 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4307587A4 (en) * 2021-03-12 2024-04-17 Beijing Xiaomi Mobile Software Co Ltd DISCONTINUOUS RECEPTION PROCESSING METHOD AND APPARATUS, TERMINAL DEVICE AND STORAGE MEDIUM

Also Published As

Publication number Publication date
US20220110185A1 (en) 2022-04-07
CN113906697A (zh) 2022-01-07
EP3958489A1 (en) 2022-02-23
EP3958489A4 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
US11457494B2 (en) Communication method, communications device, and network device
US11910470B2 (en) DRX handling in LTE license assisted access operation
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
WO2021026918A1 (zh) 下行控制信息的监听方法及装置
TWI830716B (zh) 資訊處理方法、裝置及設備
WO2016161548A1 (zh) 辅小区的去激活方法、装置以及通信系统
JP2012530406A (ja) ロングタームエボリューションアドバンストキャリアアグリゲーションのための間欠受信の方法およびシステム
WO2019192502A1 (zh) 一种控制定时器的方法和装置
WO2018184571A1 (zh) 反馈信息的发送、接收方法及相关装置和存储介质
WO2021007790A1 (zh) Drx定时器控制方法、装置、终端及存储介质
US20240007229A1 (en) Sidelink communication method and apparatus
WO2015054890A1 (zh) 一种调度请求的处理方法及装置
JP2022533337A (ja) アップリンク送信のための方法、端末デバイス、およびネットワークノード
CN113950164B (zh) 控制多个无线电接口上的非连续接收行为的方法和设备
US20240064855A1 (en) Sidelink Discontinuous Reception at a User Equipment
CN113365326B (zh) 资源调度方法、装置、设备及存储介质
WO2021007868A1 (zh) 盲检pdcch的方法及相关设备
WO2022205479A1 (zh) 定时器状态更改方法、装置、终端及存储介质
US12004157B2 (en) Method and apparatus for operating DRX timer, device and storage medium
CN114762392B (zh) 通信方法及装置
WO2022021411A1 (zh) Harq进程确定方法、装置、设备及介质
KR20230169148A (ko) 사이드링크 통신을 위한 방법들 및 장치들
CN116456312A (zh) 一种直接通信配置方法、终端设备及存储介质
CN115604775A (zh) Sl处理方法、装置、终端及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019941450

Country of ref document: EP

Effective date: 20211115

NENP Non-entry into the national phase

Ref country code: DE