WO2022083637A1 - 波束失败恢复方法、装置、终端和存储介质 - Google Patents
波束失败恢复方法、装置、终端和存储介质 Download PDFInfo
- Publication number
- WO2022083637A1 WO2022083637A1 PCT/CN2021/124976 CN2021124976W WO2022083637A1 WO 2022083637 A1 WO2022083637 A1 WO 2022083637A1 CN 2021124976 W CN2021124976 W CN 2021124976W WO 2022083637 A1 WO2022083637 A1 WO 2022083637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bfd
- beam failure
- bfrq
- group
- mac
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 124
- 238000011084 recovery Methods 0.000 title claims abstract description 70
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 230000011664 signaling Effects 0.000 claims description 100
- 230000004913 activation Effects 0.000 claims description 79
- 230000008569 process Effects 0.000 claims description 52
- 230000005540 biological transmission Effects 0.000 claims description 44
- 230000004044 response Effects 0.000 claims description 15
- 230000000694 effects Effects 0.000 description 16
- 238000004891 communication Methods 0.000 description 13
- 230000001960 triggered effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000007726 management method Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
- H04B7/06964—Re-selection of one or more beams after beam failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/04—Arrangements for maintaining operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0868—Hybrid systems, i.e. switching and combining
- H04B7/088—Hybrid systems, i.e. switching and combining using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
- H04B7/06968—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/19—Connection re-establishment
Definitions
- the present application relates to the field of communication technologies, and in particular, to a beam failure recovery method, device, terminal and storage medium.
- the current beam failure recovery (BFR) mechanism is mainly for beam failure recovery of a single Transmitting Receiving Point (TRP), that is to say, the current beam failure recovery mechanism can only be applied to single beam failure detection
- BFD RS Beam Failure Detection Reference Signal
- the present application provides a beam failure recovery method, device, terminal and storage medium, so as to improve the beam failure recovery effect of the terminal.
- an embodiment of the present application provides a beam failure recovery method, which is executed by a terminal, including:
- Beam failure recovery request BFRQ
- the first condition and/or the BFRQ are related to M beam failure detection reference signal BFD RS groups, where M is a positive integer greater than 1.
- an embodiment of the present application provides a beam failure recovery apparatus, including:
- a triggering module for triggering a beam failure event under the first condition
- a first reporting module configured to send a beam failure recovery request BFRQ when the beam failure event occurs
- the first condition and/or the BFRQ are related to M beam failure detection reference signal BFD RS groups, where M is a positive integer greater than 1.
- an embodiment of the present application provides a terminal, including: a memory, a processor, and a program or instruction stored in the memory and executable on the processor, the program or instruction being executed by the processor The steps in the beam failure recovery method are implemented when executed.
- an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps in the beam failure recovery method are implemented.
- a program product is provided, the program product is stored in a non-volatile storage medium, the program product is executed by at least one processor to implement the steps in the beam failure recovery method.
- a beam failure event is triggered under a first condition; when the beam failure event occurs, a beam failure recovery request BFRQ is sent; wherein the first condition and/or the BFRQ and M Beam failure detection reference signal BFD RS group correlation, M is a positive integer greater than 1.
- FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied
- FIG. 2 is a flowchart of a beam failure recovery method provided by an embodiment of the present application
- FIG. 3 is a flowchart of another beam failure recovery method provided by an embodiment of the present application.
- FIG. 4 is a structural diagram of a beam failure recovery apparatus provided by an embodiment of the present application.
- FIG. 5 is a structural diagram of a terminal provided by an embodiment of the present application.
- first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
- the first object may be one or multiple.
- “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
- LTE Long Term Evolution
- LTE-Advanced LTE-Advanced
- LTE-A Long Term Evolution
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single-carrier Frequency-Division Multiple Access
- system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
- NR New Radio
- the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation (6th Generation) , 6G) communication system.
- 6th Generation 6th Generation
- 6G 6th Generation
- FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
- the wireless communication system includes a terminal 11 and a network device 12 .
- the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-mobile Personal Computer (UMPC), Mobile Internet Device (Mobile Internet Device, MID) or Vehicle Equipment (VUE), Pedestrian Terminal (PUE) , RedCap UE and other terminal-side devices, where RedCap UE) can include: wearable devices, industrial sensors, video monitoring devices, etc., and wearable devices include: bracelets, headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 11 .
- the network device 12 may be a base station or a core network, where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Transmission and Reception Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that in the embodiment of this application, only NR is used The base station in the system is taken as an example, but the specific type of the base station is not limited.
- the embodiments of the present application can be applied to scenarios that support broadcast/multicast features, such as: public safety and mission critical, V2X applications, transparent IPv4/ IPv6 multicast delivery (transparent IPv4/IPv6 multicast delivery), IPTV, wireless software delivery (software delivery over wireless), group communications and IoT applications (group communications and IoT applications) and other scenarios that support broadcast/multicast features.
- broadcast/multicast features such as: public safety and mission critical, V2X applications, transparent IPv4/ IPv6 multicast delivery (transparent IPv4/IPv6 multicast delivery), IPTV, wireless software delivery (software delivery over wireless), group communications and IoT applications (group communications and IoT applications) and other scenarios that support broadcast/multicast features.
- this embodiment of the present application is not limited, for example, other unicast scenarios may also be used.
- FIG. 2 is a flowchart of a beam failure recovery method provided by an embodiment of the present application. The method is executed by a terminal. As shown in FIG. 2, the method includes the following steps:
- Step 201 Trigger a beam failure event under a first condition.
- the first condition includes:
- Beam failure occurs in each BFD RS of any BFD RS group in the M BFD RS groups; or,
- a beam failure occurs in any BFD RS in the M BFD RS groups; or,
- All BFD RSs of each BFD RS group in the M BFD RS groups have beam failures
- the M BFD RS groups are obtained by dividing multiple BFD RSs corresponding to the terminal, M is a positive integer greater than 1, and a beam failure of the BFD RS means that the quality detection results of the BFD RS are lower than the corresponding the first preset threshold.
- the foregoing first condition may be configured on the network side, or may also be agreed in an agreement, which is not limited in this embodiment of the present application.
- the above-mentioned multiple BFD RSs may be multiple BFD RSs of the terminal in a Multi Transmitting Receiving Point (MTRP) scenario, where the MTRP may include multiple downlink control information (Multi Downlink control information, M-DCI) or a single BFD RS. Downlink control information (single Downlink control information, S-DCI)) MTRP.
- M-DCI Multiple Downlink control information
- S-DCI single Downlink control information
- the terminal works in the MTRP mode of M-DCI, where the TRP identifier can be the control resource set pool index (CORESETPoolIndex), of course, can also be other identifiers, which is not limited. .
- CORESETPoolIndex control resource set pool index
- the terminal when the terminal is configured with the Media Access Control Control Element (Media Access Control Control Element, MAC CE) activated physical downlink shared channel (Physical downlink shared channel, PDSCH) Transmission Configuration Indication (Transmission Configuration Indication, TCI) code point If there is at least one TCI code point corresponding to two TCI states, the terminal may work in the MTRP mode of S-DCI.
- Media Access Control Control Element Media Access Control Control Element, MAC CE
- Physical downlink shared channel Physical downlink shared channel, PDSCH
- Transmission Configuration Indication Transmission Configuration Indication
- Each BFD RS group may include one or more BFD RSs, and the number of BFD RSs included in different BFD RS groups may be the same or different.
- the network side can be grouped according to the CORESETPoolIndex of the control resource set (Control Resource Set, CORESET) corresponding to the BFD RS, that is, the BFD RSs with the same CORESETPoolIndex value associated with the CORESET corresponding to the BFD RS belong to the same BFD RS.
- BFD RS group BFD RSs with different CORESETPoolIndex values associated with the CORESET corresponding to the BFD RS belong to different BFD RS groups.
- this grouping method can be applied to the MTRP scenario of M-DCI, and in this scenario, multiple different CORESETPoolIndex values can be configured.
- the network side device can directly configure the BFR RS group, for example, the BFR RS group number can be explicitly configured for the terminal, and the media access control (Media Access Control, MAC) layer of the terminal can be seen.
- this grouping method is applicable to both MTRP of M-DCI and MTRP of S-DCI. In this way, the terminal does not need to distinguish whether the system is configured with M-DCI or S-DCI for it. As long as M groups of BFD RSs are configured, the terminal will perform the beam failure process according to the subsequent steps.
- one BFD RS group may correspond to one or more TRPs, and one BFD RS group may include BFD RSs corresponding to one or more beams.
- step 201 it can be realized that if a beam failure occurs in each BFD RS of any BFD RS group, a beam failure event is triggered; or, a beam failure event occurs in any BFD RS in the M BFD RS groups, and a beam failure event is triggered.
- a beam failure occurs in a BFD RS
- a configuration parameter may also be used to indicate that a group or one BFD RS fails to trigger a beam failure event.
- the M BFD RS groups may respectively correspond to M first preset thresholds.
- the first preset thresholds corresponding to each BFD RS group may be the same or different. That is to say, each BFD RS group is individually configured with the corresponding first preset threshold, which can improve the beam failure detection effect.
- the first preset threshold may be uniformly configured for the M BFD RS groups.
- Step 202 in the case of the beam failure event, sending a beam failure recovery request BFRQ;
- the first condition and/or the BFRQ are related to M beam failure detection reference signal BFD RS groups, where M is a positive integer greater than 1.
- the number of beam failure events can be counted through a beam failure counter and a timer, and when the number of times reaches a certain value, BFRQ is sent to perform beam recovery.
- the above-mentioned sending of the BFRQ may be sending the BFRQ to the network device.
- the above-mentioned BFRQ may be related to the M BFD RS groups, and the BFRQ may include information of the M BFD RS groups, for example, including the information of the BFD RS groups in which the beam failure occurs.
- beam failure recovery can be implemented in multiple BFD RS scenarios, thereby improving the effect of terminal beam failure recovery.
- the beam failure recovery of MTRP of S-DCI and MTRP of M-DCI can be supported at the same time, and BFRQ can be sent reliably and quickly when some TRP beams fail, and the reporting of failed TRP information can be realized.
- each BFD RS group corresponds to one or more of the following configurations:
- the first physical uplink control channel Physical Uplink Control Channel, PUCCH
- random access channel Random Access Channel, RACH
- candidate beam sets Physical Uplink Control Channel, PUCCH
- PUCCH Physical Uplink Control Channel
- RACH Random Access Channel
- first PUCCH for each BFD RS group
- RACH resource for each BFD RS group
- candidate beam set for each BFD RS group.
- the BFRQ includes information of one or more new beams, wherein the one or more new beams include:
- the terminal configures one candidate beam set, one or more new beams selected from the one candidate beam set;
- the terminal is configured with M candidate beam sets corresponding to the M BFD RS groups respectively, one or more new beams selected from the candidate beam sets corresponding to the BFD RS groups in which the beam failure occurred;
- the terminal When the terminal is configured with K candidate beam sets, select one or more new beams from any candidate beam set for reporting, or select one or more candidate waves from the target candidate beam set, where K is greater than M, and the K candidate beam sets include M candidate beam sets respectively corresponding to the M BFD RS groups; the target candidate beam set is the K candidate beam sets except for the BFD RSs that do not have beam failures Candidate beam sets corresponding to BFD RS groups other than the group.
- the above-mentioned reporting of the new beam may be reporting the new beam to the network device, so as to implement communication with the network device through the new beam.
- the candidate beams included in one candidate beam set do not belong to other candidate beam sets.
- multiple candidate beam sets can be implemented, so that new beams corresponding to the BFD RS groups in which beam failures have occurred can be reported.
- N BFD RS groups select at most N new beams from the M-N beam candidate set, where N is less than M; or,
- the above-mentioned selection of at most N new beams from the M-N beam candidate set may be that the terminal may select one or more, but not more than N new beams. Since at most M-N new beams can be selected, more new beams can be reported to further improve the recovery effect of beam failure.
- the terminal when configured with K candidate beam sets, if multiple new beams are selected, the selected new beams belong to different candidate beam sets.
- multiple new beams can be selected from multiple different candidate beam sets. In this way, since the selected multiple new beams belong to different candidate beam sets, it means that the selected multiple new beams correspond to multiple TRPs, thus using These new beams can select other TRPs to further improve beam failure recovery.
- sending the BFRQ includes:
- the second preset threshold of the beam failure counter corresponding to each BFD RS group is configured separately.
- a separate beam failure counter and a corresponding second preset threshold may be configured for each BFD RS group in advance.
- the second preset thresholds corresponding to different BFD RS groups may be the same or different, and in the same case, it can be understood that the second preset thresholds are common.
- the BFRQ is sent, so that the terminal can be prevented from reporting too frequently, so as to save the power consumption of the terminal.
- the method further includes:
- BFI beam failure instance
- the beam failure counter corresponding to the BFD-RS group in which the beam failure occurred is incremented by 1;
- the beam failure counter corresponding to the BFD-RS group in which the beam failure occurs is recounted, and the timer corresponding to each BFD RS group is counted again. Configured individually.
- the upper layer can be informed of the BFD-RS group in which the beam failure occurred, so as to transmit the corresponding BFRQ, so as to improve the recovery effect of the beam failure.
- the network configures or indicates two sets of BFD RSs for the terminal.
- the hypothetical PDCCH block error rate (block error rate, BLER) of all BFD RSs in group 1 is less than the first preset threshold
- the physical layer of the terminal reports a beam failure BFI indication to the upper layer (such as the MAC layer) of the terminal.
- the BFI contains the BFD-RS group number.
- the counter for beam failure detection of the corresponding group is incremented by 1. If the value of the counter (set independently for each BFD RS group) is greater than or equal to the second preset threshold, the beam failure recovery process of the corresponding group is triggered.
- some of the BFD RSs in the M BFD RS groups do not have the same spatial relationship with the demodulation reference signal (demodulation reference signal, DMRS) corresponding to the CORESET; or,
- the BFD RSs included in some BFD RS groups in the M BFD RS groups do not have the same spatial relationship with the DMRS corresponding to CORESET.
- some of the BFD RSs in the above-mentioned M BFD RS groups may be one or more BFD RSs in the M BFD RS groups, and the one or more BFD RSs may not distinguish specific BFD RS groups.
- the BFD RSs included in the above-mentioned partial BFD RS groups may be all or part of the BFD RSs included in one or more BFD RS groups in the above-mentioned M BFD RS groups.
- the above-mentioned spatial relationship may be a Quasi Co-Location (QCL) relationship.
- QCL Quasi Co-Location
- the terminal does not know the corresponding relationship between the configured one or more CORESETs and the TRP.
- the terminal In the case that all CORESETs are sent by one TRP, if the BFD RS is restricted to have the same spatial relationship as the DMRS corresponding to the CORESET, the terminal cannot measure the beam quality corresponding to another TRP. Since the BFD RS does not have the same spatial relationship with the DMRS corresponding to the CORESET, it can be realized that the above-mentioned part of the BFD RS or the BFD RS included in the part of the BFD RS group can correspond to multiple TRPs, so that the terminal can detect multiple TRPs through the BFD RS. CORESET beam quality to improve the detection effect of the terminal.
- the sending BFRQ includes:
- SR Scheduling Request
- MAC CE carrying the BFRQ is sent on the uplink data channel, which is obtained through the SR request scheduling Upstream data channel.
- the above-mentioned SR may be PUCCH-SR, or may be PUCCH-BFR of PCell or SCell, and uplink scheduling is requested through the above-mentioned SR, and the MAC CE carrying the BFRQ is sent by the scheduled uplink data channel.
- the sending SR includes:
- the SR is sent using a first PUCCH, wherein the first PUCCH corresponds to a BFD RS group with a beam failure or a BFD RS group without a beam failure.
- the above-mentioned first PUCCH may be a specially configured PUCCH-BFR.
- the SR can be sent through the first PUCCH corresponding to the BFD RS group in which the beam failure occurs or the BFD RS group in which the beam failure does not occur.
- the PUCCH-BFR can be selected to send the SR according to a predetermined rule, for example, according to the configuration, the PUCCH-BFR corresponding to the non-failed TRP or BFR RS group is used to send the SR, or any one of them is used to send the SR.
- the terminal sends the BFRQ through the MAC CE; or,
- the BFRQ is sent through the MAC CE.
- the above configuration indication may be configured on the network side.
- the MAC CE can be implemented to use the MAC CE to send the BFRQ according to the configuration. For example, when the terminal is configured with multiple different CORESETPoolIndex, or at least one TCI code point corresponds to multiple TCI states, or a special configuration indication, the BFRQ is sent through the MAC CE.
- the uplink data channel corresponds to a TRP in which beam failure does not occur.
- the TRP corresponding to the uplink data channel may be determined by the CORESETPoolIndex corresponding to the CORESET where the DCI of the scheduled PUSCH is located for the above-mentioned TRP without beam failure.
- the MAC CE carrying the BFRQ information can be sent using the latest PUSCH scheduling corresponding to the unfailed TRP, which is more conducive to beam failure recovery.
- the BFRQ includes:
- the information of the above-mentioned BFD RS group may be a group number.
- the network device can be informed of the information of the BFD RS group in which the beam failure occurred or the information of the TRP corresponding to the BFD RS group in which the beam failure occurred, which is beneficial to the beam failure recovery between the network device and the terminal.
- the above-mentioned BFRQ may also include or not include new beam information, because the network device may determine the new beam and which BFD RS group has a beam failure event according to the PRACH resource that detects the BFRQ, so as to update the beam corresponding to the TRP, or the network The device can trigger the terminal to perform the beam training process again through the TRP in which no beam failure has occurred, and report new beam information.
- the above-mentioned new beam may be referred to as a new candidate beam (new candidate beam).
- the sending BFRQ further includes:
- the MAC CE transmission is interrupted, and the BFRQ is sent through the RACH, wherein the BFRQ process refers to the process from the determined part The process from the occurrence of beam failure in the BFD RS group to the process before sending the physical uplink shared channel PUSCH of the MAC CE carrying the BFRQ; or,
- the BFRQ process refers to the process from the determined part The process from the occurrence of beam failure in the BFD RS group to the process before sending the PUSCH of the MAC CE carrying the BFRQ; or,
- the MAC CE is multiplexed with the uplink service, continue to send the PUSCH multiplexing the MAC CE with the uplink service, or, if only the MAC CE is sent, do not send the PUSCH bearing the MAC CE .
- MAC CE not yet in PUCSH can include either:
- the MAC CE is generated but not assembled into the Protocol Data Unit (PDU);
- the PDU has been generated but not yet sent on the PUSCH.
- the MAC PDU can be reconstructed, for example, the MAC CE in the MAC PDU is deleted and some bits are filled.
- the above-mentioned RACH reporting the BFRQ may be, if contention-based random access (Contention Free Random Access, CFRA) is configured and a new beam is found, the RACH of CFRA is used to send BFRQ information; otherwise, contention-based random access is used to send BFRQ information; Incoming (Contention Based Random Access, CBRA) RACH sends BFRQ information.
- contention-based random access Contention Free Random Access, CFRA
- CFRA contention Free Random Access
- CBRA Contention Based Random Access
- the sending BFRQ includes:
- the BFRQ is sent through the RACH.
- the above-mentioned SR failure may be the above-mentioned SR failure in the embodiment of sending the BFRQ through the MAC CE.
- the BFRQ is sent through RACH, so that beam failure recovery can be performed quickly.
- the sending the BFRQ through the RACH includes:
- the BFRQ is reported using the RACH of CBRA.
- the BFRQ information is sent using the RACH of CFRA; otherwise, the BFRQ information is sent using the RACH of CBRA.
- the network side receives the BFRQ of CFRA or CBRA, it can be determined that beam failure has occurred in all M BFD RS groups of the terminal.
- the RACH resource of the RACH corresponds to at least one of the following:
- New beam, BFD RS group with beam failure New beam, BFD RS group with beam failure.
- the PRACH resource for sending BFRQ can be determined according to at least one of the BFD RS group where the beam failure occurs and the detected new beam, for example: determining the preamble and PRACH time-frequency resources, such as PRACH occasion (PRACH occasion )Wait. Further, through the above-mentioned RACH resources, it is possible to indicate to the network device the BFD RS group in which beam failure occurs and the detected new beam.
- the method further includes:
- Beam failure recovery response Beam failure recovery response, BFRR
- the response of the BFRQ is not monitored, and if the BFRQ is sent successfully, it is determined that the beam fails and the BFR is restored successfully.
- the monitoring response can be that if a MAC CE is sent, the terminal continues to monitor the responses of all CORESETs, and the network side can use the CORESET corresponding to the new TCI to send responses.
- the response of the BFRQ is not monitored, that is, the BFR is not monitored.
- the MAC behavior of the terminal can be: once the MAC CE is sent out, consider the BFR successful, cancel the BFR triggered by the corresponding BFD RS group, set the corresponding beam failure counter (such as BFR counter) to 0, and restart the corresponding timer (eg BFR timer).
- the network side can reconfigure the beam through the connected TRP, such as reconfiguring the TCI state, the spatial relation state, and the like.
- the method further includes:
- At least one of the beam failure counter and the beam failure timer corresponding to the BFD RS group to which the reconfigured BFD RS belongs is reset.
- the above-mentioned resetting of the beam failure counter may be setting the beam failure counter to 0, and the above-mentioned resetting the beam failure timer may be restarting the beam failure timer, so as to cancel the triggered beam failure event.
- BFD-RS 1 corresponds to CORESETPoolIndex
- BFD-RS 2 corresponds to CORESETPoolIndex 1
- reconfiguration is received from the network side, configure both BFD-RS 1 and BFD-RS2 to correspond to CORESETPoolIndex
- the value is 0, at least one of the corresponding beam failure counter and beam failure timer is reset.
- the method further includes:
- BFRR is determined to be received under any of the following conditions:
- a preset PUSCH scheduled by PDCCH is received; or,
- a preset PDCCH is received; or,
- target MAC CE activation signaling is used to activate the transmission configuration of CORESET to indicate a TCI state, and the TCI state corresponds to a new beam;
- the target high layer signaling is received, wherein the target high layer signaling includes setting the TCI state of CORESET, and the TCI state corresponds to the new beam.
- the above-mentioned preset PUSCH may be a PUSCH scheduled by the receiving PDCCH and having the same HARQ process number as the first PUSCH and a new data indicator (New Data Indicator, NDI) is not flipped.
- NDI New Data Indicator
- the above-mentioned preset PDCCH may be that after the PRACH is sent on time slot n, the terminal configures the search space set with the recovery search space identifier (recoverySearchSpaceId) according to the reported QCL of the new beam within a window starting from time slot n+4.
- the PDCCH detected on the (search space set), the PDCCH is determined by the Cell Radio Network Temporary Identifier-C-RNTI or the Modulation and Coding Scheme Radio Network Temporary Identifier, MCS- RNTI) scrambling code.
- the above-mentioned target MAC CE activation signaling can activate the TCI state of the CORESET, and the activated TCI state includes a new beam.
- the above-mentioned preset PUSCH scheduled to receive the PDCCH may be the preset PUSCH scheduled to receive the PDCCH on the CORESET using the reported new beam, of course, this is not limited.
- the CORESET of the new beam can be configured to be associated with a CORESET of a certain CORESET for receiving beam failure recovery.
- the CORESET may be a CORESET specially configured to receive BFRR, such as CORESET-BFR, that is, the search space set associated therewith is configured to restore the search space identifier.
- the terminal does not receive the BFRR within the preset window after reporting the BFRQ including the new beam information, the beam is not reset. If the original beam is still received and sent, for example, when the network side finds that there is still a TRP remaining connected, it will not send a response.
- the network device can trigger the terminal to re-beam training through the TRP that has not failed beams, and report new beam information; If BFRR is received within the above preset window, the beam will be reset.
- the method when the terminal is in the MTRP state of multiple transmission and reception points of multiple downlink control information M-DCI, the method further includes:
- a BFRQ is sent and a preset PUSCH scheduled by PDCCH is received, or a preset PDCCH is received, and before the MAC CE activation signaling indicating the TCI state in the transmission configuration is received, it is assumed that a beam failure occurs
- the antenna port of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group has a quasi-co-located QCL relationship with the new beam, and it is assumed that the antenna port receiving the PDSCH has a QCL relationship with the new beam; or,
- BFRQ is sent, and the target MAC CE activation signaling is received, and before the MAC CE activation signaling indicating the TCI state in the transmission configuration is received, according to the target MAC CE activation signaling instruction, Determine the TCI state of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group in which the beam failure occurred, wherein the target MAC CE activation signaling is used to activate the transmission configuration of the CORESET to indicate the TCI state, and the TCI state corresponds to the new beam ;or,
- the beam is determined according to the parameter configuration of the target high-level signaling the TCI state of the CORESET associated with the CORESETPoolIndex corresponding to the failed BFD RS group, wherein the target high-level signaling includes setting the TCI state of the CORESET, and the TCI state corresponds to a new beam; or,
- a new beam is reported by sending BFRQ and a preset PDCCH is received, and before the MAC CE activation signaling indicating the TCI state in the transmission configuration is received, the terminal only reserves the part of the CORESET, assuming that the antenna ports of this part of the CORESET have a QCL relationship with the new beam; or,
- the assumption can also be understood as a determination, for example: the antenna port of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group in which the beam failure occurs is assumed to have a quasi-co-located QCL relationship with the new beam , and assuming that the antenna port receiving PDSCH has a QCL relationship with the new beam, it can also be understood as: it is determined that the antenna port of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group in which the beam failure occurs has a quasi-co-located QCL relationship with the new beam , and it is determined that the antenna port receiving the PDSCH has a QCL relationship with the new beam.
- the MAC CE activation signaling in the above-mentioned TCI state may be the MAC CE activation signaling used for beam training or beam update.
- the MAC CE activation signaling and the above-mentioned MAC CE activation signaling of the new beam or new TCI state may be the same type or different types of activation commands.
- the above-mentioned reserved part of CORESET may be, or may be a pre-selected part of the reserved CORESET, for example: this part of CORESET may be preset on the network side, or agreed in a protocol, or determined by the terminal itself.
- CORESET corresponding to a CORESETPoolIndex may be reserved, for example, those CORESETs corresponding to CORESETPoolIndex 0.
- the TCI status of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS set without beam failure is not affected. Influence.
- the method when the terminal is in the MTRP state of the single downlink control information S-DCI, the method further includes:
- BFRQ is sent and a preset PUSCH scheduled by PDCCH is received, or a preset PDCCH is received, and before the MAC CE activation signaling in the TCI state is received, it is assumed that the BFD RS group with beam failure occurs.
- the antenna port of the corresponding CORESET or CORESET-BFR has a QCL relationship with the new beam; or,
- BFRQ is sent and the target MAC CE activation signaling is received, and before the MAC CE activation signaling in the TCI state is received, the PDCCH is received according to the instruction of the target MAC CE activation signaling, The target MAC CE activation signaling is used to activate the TCI state of CORESET, and the TCI state corresponds to the new beam; or,
- the QCL of the antenna port of the CORESET corresponding to the BFD RS group without beam failure remains unchanged.
- the original TCI state or the original beam is still used to receive the PDCCH;
- the terminal reports the BFRQ including the new beam information, and before receiving the MAC CE activation signaling in the TCI state, the original TCI state or the original beam is still used to receive the PDCCH.
- the terminal when all BFD RS group beams fail, after sending BFRQ and receiving BFRR, and before receiving the TCI state MAC CE activation signaling, the terminal performs PDCCH detection and PDSCH reception according to the existing QCL assumption.
- a beam failure event is triggered under the first condition; according to the beam failure event, a beam failure recovery request BFRQ is reported.
- the first condition includes: beam failure occurs in each BFD RS of any BFD RS group in the M BFD RS groups; or beam failure occurs in any BFD RS in the M BFD RS groups; or the M BFD RS groups have beam failures; Beam failure occurs in all BFD RS groups of each BFD RS group in the BFD RS groups; wherein, the M BFD RS groups are obtained by dividing a plurality of BFD RSs corresponding to the terminal, and M is a positive integer greater than 1,
- the occurrence of beam failure in the BFD RS means that the quality detection results of the BFD RS are all lower than the corresponding first preset threshold. In this way, beam failure recovery can be implemented in multiple BFD RS scenarios, thereby improving the effect of terminal beam failure recovery.
- FIG. 3 is a flowchart of another beam failure recovery method provided by an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
- Step 301 In the case of beam failure in some BFD RS groups, send BFRQ.
- partial BFD RS group For the partial BFD RS group, reference may be made to the partial BFD RS group among the multiple BFD RS groups in the embodiment shown in FIG. 2 .
- Step 302 Monitor the response BFRR of the BFRQ.
- Step 303 Determine that the BFRR is received under the second condition.
- the second condition includes:
- a preset PUSCH scheduled by PDCCH is received; or,
- a preset PDCCH is received; or,
- Target MAC CE activation signaling is used to activate the transmission configuration of CORESET to indicate the TCI state, and the TCI state corresponds to the new beam;
- the target high layer signaling is received, wherein the target high layer signaling includes setting the TCI state of CORESET, and the TCI state corresponds to the new beam.
- beam failure recovery can be implemented in multiple BFD RS scenarios, thereby improving the effect of terminal beam failure recovery.
- FIG. 4 is a structural diagram of a beam failure recovery apparatus provided by an embodiment of the present invention. As shown in FIG. 4, the beam failure recovery apparatus 400 includes:
- a triggering module 401 configured to trigger a beam failure event under a first condition
- a sending module 402 configured to send a beam failure recovery request BFRQ when the beam failure event occurs;
- the first condition and/or the BFRQ are related to M beam failure detection reference signal BFD RS groups, where M is a positive integer greater than 1.
- the first condition includes:
- Beam failure occurs in each BFD RS of any BFD RS group in the M beam failure detection reference signal BFD RS groups; or,
- a beam failure occurs in any BFD RS in the M BFD RS groups; or,
- All BFD RSs of each BFD RS group in the M BFD RS groups have beam failures
- the M BFD RS groups are obtained by dividing a plurality of BFD RSs corresponding to the terminal, and the occurrence of beam failure of the BFD RSs means that the quality detection results of the BFD RSs are all lower than the corresponding first preset threshold.
- the M BFD RS groups correspond to M first preset thresholds respectively.
- the first condition is configured on the network side.
- each BFD RS group corresponds to one or more of the following configurations:
- the BFRQ includes information of one or more new beams, where the one or more new beams include:
- the terminal In the case where the terminal is configured with one candidate beam set, select one or more new beams from the one candidate beam set; or,
- the terminal When the terminal is configured with M candidate beam sets respectively corresponding to the M BFD RS groups, one or more new beams selected from the candidate beam sets corresponding to the BFD RS groups in which the beam failure occurred; or,
- the terminal When the terminal is configured with K candidate beam sets, one or more new beams selected from any candidate beam set, or one or more candidate waves selected from the target candidate beam set, where K is greater than M , and the K candidate beam sets include M candidate beam sets respectively corresponding to the M BFD RS groups; the target candidate beam sets are the K candidate beam sets except for the BFD RS groups that do not have beam failures Candidate beam sets corresponding to BFD RS groups other than .
- N BFD RS groups select at most N new beams from the M-N beam candidate set, where N is less than M; or,
- the terminal when configured with K candidate beam sets, if multiple new beams are selected, the selected new beams belong to different candidate beam sets.
- the sending module 302 is configured to:
- the second preset threshold of the beam failure counter corresponding to each BFD RS group is configured separately.
- the device further includes:
- a reporting module configured to report a beam failure instance BFI to a higher layer in the case of a beam failure, where the BFI includes the identifier of the BFD-RS group in which the beam failure occurred;
- a counting module for adding 1 to the beam failure counter corresponding to the BFD-RS group in which the beam failure occurred
- the beam failure counter corresponding to the BFD-RS group in which the beam failure occurs is recounted, and the timer corresponding to each BFD RS group is counted again. Configured individually.
- some BFD RSs in the M BFD RS groups do not have the same spatial relationship with the demodulation reference signal DMRS corresponding to the control resource set CORESET; or,
- the BFD RSs included in some of the M BFD RS groups do not have the same spatial relationship with the DMRS corresponding to the control resource set CORESET.
- the sending module 302 is used for:
- a scheduling request SR is sent, and a MAC CE carrying the BFRQ is sent on an uplink data channel, which is an uplink data channel obtained through the SR request scheduling.
- the sending SR includes:
- the SR is sent using a first PUCCH, wherein the first PUCCH corresponds to a BFD RS group with a beam failure or a BFD RS group without a beam failure.
- the terminal sends the BFRQ through the MAC CE; or,
- the BFRQ is sent through the MAC CE.
- the uplink data channel corresponds to the transmission and reception point TRP where no beam failure occurs.
- the BFRQ includes:
- the sending module 302 is further configured to:
- the MAC CE transmission is interrupted, and the BFRQ is sent through the RACH, wherein the BFRQ process refers to the process from the determined part The process from the occurrence of beam failure in the BFD RS group to the process before the physical uplink shared channel PUSCH of the MAC CE carrying the BFRQ is sent; or,
- the BFRQ process refers to the process from the determined part The process from the occurrence of beam failure in the BFD RS group to the process before sending the PUSCH of the MAC CE carrying the BFRQ; or,
- the MAC CE is multiplexed with the uplink service, continue to send the PUSCH multiplexing the MAC CE with the uplink service, or, if only the MAC CE is sent, do not send the PUSCH bearing the MAC CE .
- the sending module 402 is used for:
- the BFRQ is reported through the random access channel RACH.
- the sending the BFRQ through the RACH includes:
- the BFRQ is reported using the RACH based on non-contention random access CFRA;
- the BFRQ is reported using the RACH of contention-based random access CBRA.
- the RACH resource of the RACH corresponds to at least one of the following:
- New beam, BFD RS group with beam failure New beam, BFD RS group with beam failure.
- the device further includes:
- the monitoring module is used to monitor the beam failure of the BFRQ and recover the response to BFRR after a beam failure occurs in some BFD RS groups and a BFRQ is sent; or,
- the first determining module is configured to not monitor the response of the BFRQ after the BFRQ is sent, and in the case that the BFRQ is successfully sent, determine that the beam fails to restore the BFR successfully.
- the device further includes:
- the first reset module is used to reset at least one of the beam failure counter and the beam failure timer corresponding to the BFD RS group to which the reconfigured BFD RS belongs when the network focuses on configuring the CORESET pool index CORESETPoolIndex corresponding to the BFD RS. set.
- the device further includes:
- the second determination module is used to determine that BFRR is received under any one of the following conditions after beam failure occurs in some BFD RS groups and BFRQ is sent:
- a preset PUSCH scheduled by PDCCH is received; or,
- a preset PUSCH scheduled by PDCCH is received; or,
- a preset PDCCH is received; or,
- target MAC CE activation signaling is used to activate the transmission configuration of CORESET to indicate a TCI state, and the TCI state corresponds to a new beam;
- the target high layer signaling is received, wherein the target high layer signaling includes setting the TCI state of CORESET, and the TCI state corresponds to the new beam.
- the apparatus when the terminal is in the MTRP state of multiple transmission and reception points of multiple downlink control information M-DCI, the apparatus further includes:
- the first assumption module is used for when a partial BFD RS group beam failure occurs, a BFRQ is sent and a preset PUSCH scheduled by PDCCH is received or a preset PDCCH is received, and after receiving the MAC CE activation signaling indicating the TCI state in the transmission configuration
- the antenna port of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group in which the beam failure occurred has a quasi-co-located QCL relationship with the new beam
- the antenna port receiving PDSCH has a QCL relationship with the new beam
- the second hypothesis module is used to, when a partial BFD RS group beam failure occurs, send BFRQ, and receive the target MAC CE activation signaling, and before receiving the MAC CE activation signaling indicating the TCI state in the transmission configuration, according to the target
- the MAC CE activation signaling indicates that the TCI state of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group in which the beam failure occurred is determined, wherein the target MAC CE activation signaling is used to activate the transmission configuration of the CORESET to indicate the TCI state, and the The TCI state corresponds to the new beam; or,
- the third hypothesis module is used to, when a partial BFD RS group beam failure occurs, send BFRQ and receive the target high-level signaling, and before receiving the MAC CE activation signaling indicating the TCI state in the transmission configuration, according to the target high-level signaling
- the fourth assumption module is used for beam failure in all the M BFD RS groups, and after sending BFRQ to report a new beam and receiving the preset PDCCH, and after receiving the MAC CE activation signaling indicating the TCI state in the transmission configuration Before, the terminal only retains part of the CORESET, and assumes that the antenna port of this part of the CORESET has a QCL relationship with the new beam;
- the fifth assumption module is used to assume that the CORESETPoolIndex corresponding to the BFD RS group in which the beam failure occurs is assumed to be associated with the CORESETPoolIndex before receiving the MAC CE activation signaling indicating the TCI state in the transmission configuration after the beam failure of the partial BFD RS group occurs and the BFRQ is sent.
- the antenna port of the CORESET has a quasi-co-located QCL relationship with the new beam, and it is assumed that the antenna port receiving the PDSCH has a QCL relationship with the new beam.
- the apparatus when the terminal is in the MTRP state of the single downlink control information S-DCI, the apparatus further includes:
- the fifth assumption module is used to assume that when a partial BFD RS group beam failure occurs, a BFRQ is sent and a preset PUSCH scheduled by PDCCH is received or a preset PDCCH is received, and before the MAC CE activation signaling in the TCI state is received, the assumption is made.
- the antenna port of the CORESET or CORESET-BFR corresponding to the BFD RS group in which the beam failure occurred has a QCL relationship with the new beam; or,
- the receiving module is used to, when a partial BFD RS group beam failure occurs, send BFRQ and receive the target MAC CE activation signaling, and before receiving the MAC CE activation signaling in the TCI state, according to the target MAC CE activation signaling
- the indication of receiving PDCCH, the target MAC CE activation signaling is used to activate the TCI state of CORESET, and the TCI state corresponds to the new beam; or,
- the sixth assumption module is used to assume that the antenna port or CORESET corresponding to the BFD RS group in which the beam failure occurred is assumed to be the antenna port of the CORESET corresponding to the BFD RS group in which the beam failure occurs after the BFRQ is sent, and before the MAC CE activation signaling in the TCI state is received.
- -BFR has a QCL relationship with the new beam.
- the original TCI state or the original beam is still used to receive the PDCCH;
- the terminal reports the BFRQ including the new beam information, and before receiving the MAC CE activation signaling in the TCI state, the original TCI state or the original beam is still used to receive the PDCCH.
- the beam failure recovery apparatus provided in the embodiment of the present application can implement each process in the method embodiment of FIG. 2 , which is not repeated here to avoid repetition, and can improve the beam failure recovery effect of the terminal.
- the beam failure recovery apparatus in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
- FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
- the terminal 500 includes but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 508, a processor 510 and other components .
- the communication device 500 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power management through the power management system. consumption management and other functions.
- a power supply such as a battery
- the structure of the electronic device shown in FIG. 5 does not constitute a limitation on the electronic device.
- the electronic device may include more or less components than the one shown, or combine some components, or arrange different components, which will not be repeated here. .
- a processor 510 configured to trigger a beam failure event under the first condition
- a radio frequency unit 501 configured to send a beam failure recovery request BFRQ when the beam failure event occurs;
- the first condition and/or the BFRQ are related to M beam failure detection reference signal BFD RS groups, where M is a positive integer greater than 1.
- the first condition includes:
- Beam failure occurs in each BFD RS of any BFD RS group in the M beam failure detection reference signal BFD RS groups; or,
- a beam failure occurs in any BFD RS in the M BFD RS groups; or,
- All BFD RSs of each BFD RS group in the M BFD RS groups have beam failures
- the M BFD RS groups are obtained by dividing a plurality of BFD RSs corresponding to the terminal, and a beam failure of the BFD RSs means that the quality detection results of the BFD RSs are all lower than the corresponding first preset threshold.
- the M BFD RS groups correspond to M first preset thresholds respectively.
- the first condition is configured on the network side.
- each BFD RS group corresponds to one or more of the following configurations:
- the BFRQ includes information of one or more new beams, where the one or more new beams include:
- the terminal In the case where the terminal is configured with one candidate beam set, select one or more new beams from the one candidate beam set; or,
- the terminal When the terminal is configured with M candidate beam sets respectively corresponding to the M BFD RS groups, one or more new beams selected from the candidate beam sets corresponding to the BFD RS groups in which the beam failure occurred; or,
- the terminal is configured with K candidate beam sets, one or more new beams selected from any candidate beam set, or one or more candidate waves selected from the target candidate beam set, where K is greater than M, and the K candidate beam sets include M candidate beam sets respectively corresponding to the M BFD RS groups; the target candidate beam set is the K candidate beam sets except for the BFD RSs that do not have beam failures Candidate beam sets corresponding to BFD RS groups other than the group.
- the terminal when configured with K candidate beam sets, if multiple new beams are selected, the selected new beams belong to different candidate beam sets.
- sending the BFRQ includes:
- the second preset threshold of the beam failure counter corresponding to each BFD RS group is configured separately.
- processor 510 is further configured to:
- the beam failure counter corresponding to the BFD-RS group in which the beam failure occurred is incremented by 1;
- the beam failure counter corresponding to the BFD-RS group in which the beam failure occurs is recounted, and the timer corresponding to each BFD RS group is counted again. Configured individually.
- some BFD RSs in the M BFD RS groups do not have the same spatial relationship with the demodulation reference signal DMRS corresponding to the control resource set CORESET; or,
- the BFD RSs included in some of the M BFD RS groups do not have the same spatial relationship with the DMRS corresponding to the control resource set CORESET.
- the sending BFRQ includes:
- a scheduling request SR is sent, and a MAC CE carrying the BFRQ is sent on an uplink data channel, which is an uplink data channel obtained through the SR request scheduling.
- the sending SR includes:
- the SR is sent using a first PUCCH, wherein the first PUCCH corresponds to a BFD RS group with a beam failure or a BFD RS group without a beam failure.
- the terminal sends the BFRQ through the MAC CE; or,
- the BFRQ is sent through the MAC CE.
- the uplink data channel corresponds to the transmission and reception point TRP where no beam failure occurs.
- the BFRQ includes:
- the sending BFRQ further includes:
- the MAC CE transmission is interrupted, and the BFRQ is sent through the RACH, wherein the BFRQ process refers to the process from the determined part The process from the occurrence of beam failure in the BFD RS group to the process before sending the physical uplink shared channel PUSCH of the MAC CE carrying the BFRQ; or,
- the BFRQ process refers to the process from the determined part The process from the occurrence of beam failure in the BFD RS group to the process before sending the PUSCH of the MAC CE carrying the BFRQ; or,
- the MAC CE is multiplexed with the uplink service, continue to send the PUSCH multiplexing the MAC CE with the uplink service, or, if only the MAC CE is sent, do not send the PUSCH bearing the MAC CE .
- the sending BFRQ includes:
- the BFRQ is reported through the random access channel RACH.
- the sending the BFRQ through the RACH includes:
- the BFRQ is reported using the RACH based on non-contention random access CFRA;
- the BFRQ is reported using the RACH of contention-based random access CBRA.
- the RACH resource of the RACH corresponds to at least one of the following:
- New beam, BFD RS group with beam failure New beam, BFD RS group with beam failure.
- the radio frequency unit 501 is further configured to:
- the processor 510 is further configured to:
- the response of the BFRQ is not monitored, and if the BFRQ is sent successfully, it is determined that the beam fails and the BFR is restored successfully.
- processor 510 is further configured to:
- the network When the network focuses on configuring the CORESET pool index CORESETPoolIndex corresponding to the BFD RS, at least one of the beam failure counter and the beam failure timer corresponding to the BFD RS group to which the reconfigured BFD RS belongs is reset.
- processor 510 is further configured to:
- BFRR is determined to be received under any of the following conditions:
- a preset PUSCH scheduled by PDCCH is received; or,
- a preset PDCCH is received; or,
- target MAC CE activation signaling is used to activate the transmission configuration of CORESET to indicate a TCI state, and the TCI state corresponds to a new beam;
- the target high layer signaling is received, wherein the target high layer signaling includes setting the TCI state of CORESET, and the TCI state corresponds to the new beam.
- the processor 510 is further configured to:
- a BFRQ is sent and a preset PUSCH scheduled by PDCCH is received, or a preset PDCCH is received, and before the MAC CE activation signaling indicating the TCI state in the transmission configuration is received, it is assumed that a beam failure occurs
- the antenna port of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group has a quasi-co-located QCL relationship with the new beam, and it is assumed that the antenna port receiving the PDSCH has a QCL relationship with the new beam; or,
- BFRQ is sent, and the target MAC CE activation signaling is received, and before the MAC CE activation signaling indicating the TCI state in the transmission configuration is received, according to the target MAC CE activation signaling instruction, Determine the TCI state of the CORESET associated with the CORESETPoolIndex corresponding to the BFD RS group in which the beam failure occurred, wherein the target MAC CE activation signaling is used to activate the transmission configuration of the CORESET to indicate the TCI state, and the TCI state corresponds to the new beam ;or,
- the beam is determined according to the parameter configuration of the target high-level signaling.
- a new beam is reported by sending BFRQ and a preset PDCCH is received, and before the MAC CE activation signaling indicating the TCI state in the transmission configuration is received, the terminal only reserves the part of the CORESET, assuming that the antenna ports of this part of the CORESET have a QCL relationship with the new beam; or,
- the processor 510 is further configured to:
- BFRQ is sent and a preset PUSCH scheduled by PDCCH is received, or a preset PDCCH is received, and before the MAC CE activation signaling in the TCI state is received, it is assumed that the BFD RS group with beam failure occurs.
- the antenna port of the corresponding CORESET or CORESET-BFR has a QCL relationship with the new beam; or,
- BFRQ is sent and the target MAC CE activation signaling is received, and before the MAC CE activation signaling in the TCI state is received, the PDCCH is received according to the instruction of the target MAC CE activation signaling, The target MAC CE activation signaling is used to activate the TCI state of CORESET, and the TCI state corresponds to the new beam; or,
- the original TCI state or the original beam is still used to receive the PDCCH;
- the terminal reports the BFRQ including the new beam information, and before receiving the MAC CE activation signaling in the TCI state, the original TCI state or the original beam is still used to receive the PDCCH.
- This embodiment can improve the beam failure recovery effect of the terminal.
- an embodiment of the present invention further provides a terminal, including a processor 510, a memory 508, a program or instruction stored in the memory 508 and executable on the processor 510, the program or instruction being executed by the processor 510 During execution, each process of the embodiment of the beam failure recovery method described above is implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not described here.
- An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps in the beam failure recovery method provided by the embodiment of the present application are implemented .
- Embodiments of the present application further provide a program product, where the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the beam failure recovery method provided by the embodiments of the present application. step.
- the processor is the processor in the terminal or the network device described in the foregoing embodiment.
- the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
- An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the beam provided by the embodiment of the present application
- the chip includes a processor and a communication interface
- the communication interface is coupled to the processor
- the processor is configured to run a program or an instruction to implement the beam provided by the embodiment of the present application
- the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种波束失败恢复方法、装置、终端和存储介质,该方法包括:在第一条件下触发波束失败事件;在第一条件下触发波束失败事件;在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
Description
相关申请的交叉引用
本申请主张在2020年10月23日在中国提交的中国专利申请号No.202011149209.6的优先权,其全部内容通过引用包含于此。
本申请涉及通信技术领域,尤其涉及一种波束失败恢复方法、装置、终端和存储介质。
在高频段通信系统中,由于无线信号的波长较短,较容易发生信号传播被阻挡等情况,导致信号传播中断,例如:波束失败。然而,目前波束失败恢复(beam failure recovery,BFR)机制主要是针对单发送接收点(Transmitting Receiving Point,TRP)的波束失败恢复,也就是说,目前波束失败恢复机制只能应用于单个波束失败检测参考信号(Beam Failure Detection Reference Signal,BFD RS)场景的波束失败恢复,导致终端的波束失败恢复效果比较差。
发明内容
本申请提供一种波束失败恢复方法、装置、终端和存储介质,以能够提高终端的波束失败恢复效果。
第一方面,本申请实施例提供一种波束失败恢复方法,由终端执行,包括:
在第一条件下触发波束失败事件;
在发送所述波束失败事件的情况下,发送波束失败恢复请求(Beam failure recovery request,BFRQ);
其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
第二方面,本申请实施例提供一种波束失败恢复装置,包括:
触发模块,用于在第一条件下触发波束失败事件;
第一上报模块,用于在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;
其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
第三方面,本申请实施例提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或者指令,所述程序或者指令被所述处理器执行时实现波束失败恢复方法中的步骤。
第四方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现波束失败恢复方法中的步骤。
第五方面,提供了一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现波束失败恢复方法中的步骤。
本申请实施例中,在第一条件下触发波束失败事件;在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。这样可以实现在多个BFD RS场景下进行波束失败恢复,从而提高终端波束失败恢复的效果。
图1示出本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种波束失败恢复方法的流程图;
图3是本申请实施例提供的另一种波束失败恢复方法的流程图;
图4是本申请实施例提供的一种波束失败恢复装置的结构图;
图5是本申请实施例提供的一种终端的结构图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)或车载设备(VUE)、行人终端(PUE)、RedCap UE等终端侧设备,其中,RedCap UE)可以包括:穿戴设备、工业传感器、视频监控设备等,穿戴设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。
网络设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
另外,本申请实施例中,可以应用于支持广播/多播(broadcast/multicast)特性的场景,例如:公共安全和关键任务(public safety and mission critical)、V2X应用(V2X applications),透明IPv4/IPv6多播传送(transparent IPv4/IPv6 multicast delivery)、IPTV、无线软件传送(software delivery over wireless)、组通信和物联网应用(group communications and IoT applications)等支持中broadcast/multicast特性的场景。当然,对此本申请实施例不作限定,例如:还可以其他单播的场景。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的波束失败恢复方法、装置、终端和存储介质进行详细地说明。
请参见图2,图2是本申请实施例提供的一种波束失败恢复方法的流程图,该方法由终端执行,如图2所示,包括以下步骤:
步骤201、在第一条件下触发波束失败事件。
可选的,所述第一条件包括:
M个BFD RS组中任一个BFD RS组的各BFD RS均发生波束失败;或者,
所述M个BFD RS组中任一BFD RS发生波束失败;或者,
所述M个BFD RS组中各BFD RS组的所有BFD RS均发生波束失败;
其中,所述M个BFD RS组为将所述终端对应的多个BFD RS进行划分得到,M为大于1的正整数,BFD RS发生波束失败是指BFD RS的质量检测结果均低于对应的第一预设阈值。
上述第一条件可以为网络侧配置的,或者也可以是协议约定的,对此本申请实施例不作限定。
上述多个BFD RS可以是终端在多发送接收点(Multi Transmitting Receiving Point,MTRP)场景下的多个BFD RS,其中,MTRP可以包括多下行控制信息(Multi Downlink control information,M-DCI)或者单下行控制信息(single Downlink control information,S-DCI))的MTRP。进一步的,当终端被配置了多个TRP标识,则终端工作在M-DCI的MTRP模式,其中TRP标识可以是控制资源集池索引(CORESETPoolIndex),当然,也可以是其他标识,对此不作限定。而当终端被配置的媒体接入控制的控制单元(Media Access Control Control Element,MAC CE)激活的物理下行共享信道(Physical downlink shared channel,PDSCH)的传输配置指示(Transmission Configuration Indication,TCI)码点中至少有一个TCI码点对应两个TCI状态,则终端可能工作在S-DCI的MTRP模式。
每个BFD RS组可以包括一个或者多个BFD RS,且不同的BFD RS组包含BFD RS数量可以相同或者不同。
例如:若网络侧配置多个不同CORESETPoolIndex值,则可以根据BFD RS对应的控制资源集(Control Resource Set,CORESET)的CORESETPoolIndex进行分组,即BFD RS对应的CORESET关联的CORESETPoolIndex值相同的BFD RS属于同一BFD RS组,BFD RS对应的CORESET关联的CORESETPoolIndex值不同的BFD RS属于不同的BFD RS组。具体的,该分组方式可以应用于M-DCI的MTRP场景下,该场景下可以配置多个不同CORESETPoolIndex值。
又例如:网络侧设备可以直接配置BFR RS分组,例如:可以显式地为终端配置BFR RS组号,终端的媒体接入控制(Media Access Control,MAC)层可见。具体的,该分组方式既适用于M-DCI的MTRP,又适用于S-DCI的MTRP。这样,终端不用区分系统是否为其配置了M-DCI还是S-DCI,只 要配置M组BFD RS,终端即按后续步骤进行波束失败流程。
进一步的,一个BFD RS组可以对应一个或者多个TRP,一个BFD RS组可以包含对应一个或者多个波束的BFD RS。
通过步骤201可以实现若任一个BFD RS组的各BFD RS均发生波束失败,则触发波束失败事件;或者,M个BFD RS组中任一BFD RS发生波束失败则触发波束失败事件,该情况下,某一个BFD RS发生波束失败可以确定对应的BFD RS组发生波束失败;或者,M个BFD RS组中各BFD RS组的所有BFD RS均发生波束失败,即所有BFD RS均发生波束失败,则触发波束失败事件。另外,本申请实施例中,还可以利用配置参数指示有一组或一个BFD RS发生失败则触发波束失败事件。
本申请实施例中,所述M个BFD RS组可以分别对应M个第一预设阈值。且各BFD RS组对应的第一预设阈值可以相同或不同。也就是说,每个BFD RS组单独配置对应的第一预设阈值,这样可以提高波束失败检测效果。当然,本申请实施例中,在一些场景也可以是M个BFD RS组统一配置第一预设阈值。
步骤202、在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;
其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
该步骤可以是通过波束失败计数器和计时器统计波束失败事件次数,当次数达到一定值时,发送BFRQ,以进行波束恢复。当然,本申请实施例中,也不排除,只要触发波束失败事件,则发送BFRQ。上述发送BFRQ可以是向网络设备发送BFRQ。上述BFRQ与M个BFD RS组相关可以是,BFRQ包括M个BFD RS组的信息,例如:包括发生波束失败的BFD RS组的信息。
本申请实施例中,通过上述步骤可以实现在多个BFD RS场景下进行波束失败恢复,从而提高终端波束失败恢复的效果。例如:实现在MTRP场景下,同时支持S-DCI的MTRP和M-DCI的MTRP的波束失败恢复,以及可以实现部分TRP波束失败情况下可靠快速发送BFRQ,以及失败TRP信息的上报。
作为一种可选的实施方式,每个BFD RS组对应各自的如下配置的一种或多种:
第一物理上行控制信道(Physical Uplink Control Channel,PUCCH)、随机接入信道(Random Access Channel,RACH)资源、候选波束集。
该实施方式中,可以实现分别为每个BFD RS组配置单独的第一PUCCH,例如:第一PUCCH BFR。以及可以实现分别为每个BFD RS组配置单独的RACH资源,以及可以实现分别为每个BFD RS组配置单独的候选波束集。这样在某个BFD RS组发生波束失败的情况下,可以通过对应的第一PUCCH或者RACH资源发送BFRQ,或者在对应的候选波束集中选择新波束,以进一步提高波束失败恢复效果。
作为一种可选的实施方式,所述BFRQ包括一个或者多个新波束的信息,其中,所述一个或者多个新波束包括:
在所述终端配置一个候选波束集的情况下,从所述一个候选波束集中选择的一个或者多个新波束;或者
在所述终端配置有分别与所述M个BFD RS组对应的M个候选波束集的情况下,从发生波束失败的BFD RS组对应的候选波束集中选择的一个或者多个新波束;或者
在所述终端配置有K个候选波束集的情况下,从任一候选波束集中选择一个或者多个新波束进行上报,或者从目标候选波束集中选择的一个或者多个候选波,其中,K大于M,且所述K个候选波束集中包括分别与所述M个BFD RS组对应的M个候选波束集;所述目标候选波束集为所述K个候选波束集中除未发生波束失败的BFD RS组以外的BFD RS组对应的候选波束集。
上述新波束上报可以是向网络设备上报新波束,以实现通过新波束与网络设备进行通信。
其中,在上述配置M个候选波束集的情况下,一个候选波束集包含的候选波束不属于其他候选波束集。
该实施方式中,可以实现多种候选波束集,从而可以实现上报与发生波束失败的BFD RS组对应的新波束。
可选的,在N个BFD RS组发生波束失败的情况下,从M-N个波束候选 集中最多选择N个新波束,N小于M;或者,
在所述M个BFD RS组发生波束失败的情况下,最多选择M个新波束或者最多选择一个新波束。
上述从M-N个波束候选集中最多选择N个新波束可以是,终端可以选择一个或者多个,但不能超过N个新波束。由于最多可以选择M-N个新波束,从而可以上报更多的新波束,以进一步提高波束失败恢复效果。
可选的,在所述终端配置有K个候选波束集的情况下,如果选择多个新波束,则选择的新波束属于不同的候选波束集。
该实施方式中,可以实现从多不同的候选波束集中选择多个新波束,这样由于选择的多个新波束属于不同的候选波束集,意味着选择的多个新波束对应多个TRP,从而使用这些新波束可以选择其他TRP,进一步提高波束失败恢复效果。
可选的,所述在发生所述波束失败事件的情况下,发送BFRQ,包括:
在所述终端配置的M个波束失败计数器中存在取值大于或者等于第二预设阈值的波束失败计数器的情况下,发送BFRQ,所述M个波束失败计数器分别用于与所述M个BFD RS组对应;
其中,每个BFD RS组对应的波束失败计数器的第二预设阈值单独配置。
该实施方式中,可以预先为每个BFD RS组分别配置单独的波束失败计数器,以及配置对应的第二预设阈值。其中,不同BFD RS组对应的第二预设阈值可以相同或者不同,相同的情况下,可以理解为第二预设阈值为公共的。
由于波束失败计数器取值大于或者等于第二预设阈值,才发送BFRQ,从而可以避免终端过于频繁上报,以节约终端功耗。
可选的,所述方法还包括:
在发生波束失败的情况下,向高层上报波束失败实例(beam failure instance,BFI),所述BFI包括发生波束失败的BFD-RS组的标识;
所述发生波束失败的BFD-RS组对应的波束失败计数器加1;
其中,在所述发生波束失败的BFD-RS组对应的定时器超时的情况下,所述发生波束失败的BFD-RS组对应的波束失败计数器重新计数,每个BFD RS组对应的定时器的单独配置。
该实施方式中,由于BFI包括发生波束失败的BFD-RS组的标识,这样可以让高层知道发生波束失败的BFD-RS组,从而发送对应的BFRQ,以提高波束失败恢复效果。
例如:在MTRP场景配置下,网络为终端配置或指示两组BFD RS。当组1的所有BFD RS的假想PDCCH误块率(block error rate,BLER)均小于第一预设阈值,终端的物理层上报给终端的高层(如MAC层)一个波束失败BFI指示。BFI包含BFD-RS组号。当高层收到一个BFI指示后,则对用于相应组的波束失败检测的计数器进行加1。若该计数器(每个BFD RS组独立设置的)的值大于等于第二预设阈值,则触发相应组的波束失败恢复过程。
作为一种可选的实施方式,所述M个BFD RS组中的部分BFD RS不与CORESET对应的解调参考信号(demodulation reference signal,DMRS)具有相同的空间关系;或者,
所述M个BFD RS组中的部分BFD RS组包含的BFD RS不与CORESET对应的DMRS具有相同的空间关系。
其中,上述M个BFD RS组中的部分BFD RS可以是,M个BFD RS组中的一个或者多个BFD RS,这一个或者多个BFD RS可以不区分具体的BFD RS组。而上述部分BFD RS组包含的BFD RS可以是,上述M个BFD RS组中一个或者多个BFD RS组包含的全部或者部分BFD RS。
上述空间关系可以是准共址(Quasi Co-Location,QCL)关系。
在S-DCI的MTRP模式下,终端并不知道配置的一个或多个CORESET与TRP的对应关系。在所有CORESET均由一个TRP发送的情况下,如果限制BFD RS与CORESET对应的DMRS具有相同的空间关系,那么终端无法测量对应于另一个TRP的波束质量。由于BFD RS不与CORESET对应的DMRS具有相同的空间关系,这样可以实现上述部分BFD RS或者部分BFD RS组包含的BFD RS可以对应多个TRP,从而实现终端可以通过BFD RS检测到多个TRP的CORESET的波束质量,以提高终端的检测效果。
作为一种可选的实施方式,所述发送BFRQ,包括:
在部分BFD RS组发生波束失败的情况下,使用最近一次调度的上行数 据信道发送携带所述BFRQ的MAC CE;或者,
在部分BFD RS组发生波束失败的情况下,发送调度请求(Scheduling Request,SR),并在上行数据信道发送携带所述BFRQ的MAC CE,所述上行数据信道是通过所述SR请求调度得到的上行数据信道。
其中,上述SR可以是PUCCH-SR,或者可以是PCell或SCell的PUCCH-BFR,通过上述SR请求上行调度,以调度的上行数据信道发送携带所述BFRQ的MAC CE。
该实施方式中,由于部分BFD RS组发生波束失败,也就是说,还存在未发生波束失败的BFD RS组,即部分TRP发生失败,还有部分TRP处于较好的连接状态,从而通过MAC CE发送BFRQ,以实现快速发送BFRQ,以提高波束失败恢复的效率。
可选的,所述发送SR,包括:
使用第一PUCCH发送所述SR,其中,所述第一PUCCH与发生波束失败的BFD RS组或未发生波束失败的BFD RS组对应。
其中,上述第一PUCCH可以是专门配置的PUCCH-BFR。
该实施方式中,可以实现通过发生波束失败的BFD RS组或未发生波束失败的BFD RS组对应的第一PUCCH发送SR。
例如:如果一个载波单元(Component Carrier,CC)上仅配有一个PUCCH-BFR,则用此PUCCH-BFR发送SR;如果一个CC上配有多个PUCCH-BFR,PUCCH-BFR与BFD-RS组关联,则可按照预定规则选择PUCCH-BFR发送SR,例如根据配置使用未失败的TRP或BFR RS组对应的PUCCH-BFR发送SR或者使用任意一个发送SR。
可选的,在所述终端在MTRP的配置下,通过所述MAC CE发送所述BFRQ;或者,
在所述终端获取的使用MAC CE发送BFRQ的配置指示的情况下,通过所述MAC CE发送所述BFRQ。
上述配置指示可以是网络侧配置的。
该实施方式中,可以实现根据配置使用MAC CE发送BFRQ。例如:在终端配置了多个不同的CORESETPoolIndex,或至少有一个TCI码点对应多 个TCI状态,或专门的配置指示的情况下,通过所述MAC CE发送所述BFRQ。
可选的,所述上行数据信道与未发生波束失败的TRP对应。
其中,上述未发生波束失败的TRP可以由调度PUSCH的DCI所在的CORESET对应的CORESETPoolIndex确定上行数据信道对应的TRP。
该实施方式中,可以实现使用未失败的TRP对应的最近一次PUSCH调度发送携带BFRQ信息的MAC CE,从而更加有利于波束失败恢复。
可选的,所述BFRQ包括:
发生波束失败BFD RS组的信息;或者,
发生波束失败BFD RS组对应的TRP的信息。
其中,上述BFD RS组的信息可以是组号。
通过上述信息可以让网络设备获知发生波束失败BFD RS组的信息或者发生波束失败BFD RS组对应的TRP的信息,从而有利于网络设备与终端之间的波束失败恢复。
进一步的,上述BFRQ还可以包括或者不包括新波束信息,因为,网络设备可能根据检测到BFRQ的PRACH资源来确定新波束以及哪个BFD RS组发生波束失败事件,以更新对应TRP的波束,或者网络设备可以通过未发生波束失败的TRP触发终端重新进行波束训练过程,上报新的波束信息。需要说明的是,上述新波束可以称作新候选波束(new candidate beam)。
可选的,在部分BFD RS组发生波束失败的情况下,所述发送BFRQ还包括:
若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则中断所述MAC CE发送,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的物理上行共享信道PUSCH之前的过程;或者,
若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则继续发送所述MAC CE,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的PUSCH之前的过程;或者,
如果所述MAC CE与上行业务复用发送,则继续发送将所述MAC CE与 所述上行业务复用的PUSCH,或者,如果仅发送所述MAC CE,则不发送承载所述MAC CE的PUSCH。
该实施方式中,可以实现在一部分BFD RS组发生束失败正在发送BFRQ的过程中,又有新的BFD RS组发生波束失败,通过RACH发送所述BFRQ或者在MAC CE与上行业务复用发送的情况下,继续发送将MAC CE与上行业务复用的PUSCH,从而实现快速发送BFRQ,以提高波束失败恢复效率。
另外,在使用MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,还可以在所述MAC CE尚未在PUCSH上发送的情况下,不发送所述MAC CE。MAC CE尚未在PUCSH可以包括任一项:
MAC CE还没生成;
MAC CE生成但还未组装到协议数据单元(Protocol Data Unit,PDU);
PDU已生成,但还未放到PUSCH上发送。
另外,上述情况下,可以是对MAC PDU进行重构,例如:删除MAC PDU中的MAC CE并填充一些比特。
另外,上述RACH上报所述BFRQ可以是,如果配置了基于非竞争的随机接入(Contention Free Random Access,CFRA)且找到新波束时则使用CFRA的RACH发送BFRQ信息;否则使用基于竞争的随机接入(Contention Based Random Access,CBRA)的RACH发送BFRQ信息。
作为一种可选的实施方式,所述发送BFRQ,包括:
在SR失败或者所述M个BFD RS组均发生波束失败的情况下,通过RACH发送所述BFRQ。
上述SR失败可以是上述通过MAC CE发送BFRQ的实施方式的发送SR失败。
该实施方式中,由于SR失败或者所述M个BFD RS组均发生波束失败,通过RACH发送所述BFRQ,这样可以快速进行波束失败恢复。
可选的,所述通过RACH发送所述BFRQ,包括:
在所述M个BFD RS组均发生波束失败,且所述终端找到新波束的情况下,使用CFRA的RACH上报所述BFRQ;或者,
使用CBRA的RACH上报所述BFRQ。
例如:如果配置了CFRA且找到新波束时则使用CFRA的RACH发送BFRQ信息;否则使用CBRA的RACH发送BFRQ信息。
需要说明的是,如果网络侧收到了CFRA或CBRA的BFRQ,则可以确定终端的M个BFD RS组都发生波束失败。
可选的,所述RACH的RACH资源与如下至少一项对应:
新波束、发生波束失败的BFD RS组。
该实施方式中,可以实现根据波束失败发生的BFD RS组和检测到的新波束中的至少一项确定发送BFRQ的PRACH资源,例如:确定前导码以及PRACH时频资源,例如PRACH时机(PRACH occasion)等。进一步,通过上述RACH资源可以实现向网络设备指示发生波束失败的BFD RS组以及检测到的新波束。
作为一种可选的实施方式,所述发送BFRQ之后,所述方法还包括:
部分BFD RS组发生波束失败并发出BFRQ后,监听所述BFRQ的波束失败恢复响应(Beam failure recovery response,BFRR);或者,
在发送BFRQ之后,不监听所述BFRQ的响应,在所述BFRQ发送成功的情况下,确定波束失败恢复BFR成功。
监听响应可以是,如果发送MAC CE,终端继续监听所有CORESET的响应,且网络侧可以使用新的TCI对应的CORESET发送响应。
该实施方式中,可以实现在发送BFRQ之后,不监听BFRQ的响应,即不监听BFR。例如:终端的MAC行为可以是:一旦MAC CE发送出去,就认为BFR成功,取消对应BFD RS组触发的BFR,以及将对应的波束失败计数器(如BFR counter)置0,以及重启对应的定时器(如BFR timer)。
进一步的,在不监听所述BFRQ的响应的情况下,可以由网络侧通过连接的TRP重新配置波束,如重新配置TCI状态、空间关系(spatial relation)状态等。
作为一种可选的实施方式,所述方法还包括:
在网络侧重配置BFD RS对应CORESETPoolIndex的情况下,对重配置的BFD RS所属BFD RS组对应的波束失败计数器和波束失败定时器中的至少一项进行重置。
上述波束失败计数器重置可以是将波束失败计数器置0,上述对波束失败定时器重置可以是重启波束失败定时器,以取消有已经触发的波束失败事件。
例如:如果初始配置是BFD-RS 1对应CORESETPoolIndex 0,BFD-RS 2对应CORESETPoolIndex 1,在BFD/BFR过程中,如果收到网络侧的重配,配置BFD-RS 1和BFD-RS2均对应CORESETPoolIndex 0时,则将对应的波束失败计数器和波束失败定时器中的至少一项进行重置。
作为一种可选的实施方式,所述方法还包括:
当部分BFD RS组发生波束失败且发送BFRQ后,在以下任意一项条件下确定收到BFRR:
接收到PDCCH调度的预设PUSCH;或者,
接收到预设PDCCH;或者,
接收到目标MAC CE激活信令,其中所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应新波束;或者
接收到目标高层信令,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束。
其中,上述预设PUSCH可以是接收PDCCH调度的与第一次PUSCH具有相同HARQ进程号且新数据指示(New Data Indicator,NDI)未翻转的PUSCH。
上述预设PDCCH可以是在时隙n上发送PRACH后,终端在从时隙n+4开始的一个窗口内,按照报告的新波束的QCL在配置了恢复搜索空间标识(recoverySearchSpaceId)的搜索空间集(search space set)上检测的PDCCH,该PDCCH由小区无线网络临时标识(Cell Radio Network Temporary Identifier-C-RNTI)或调制与编码方式无线网络临时标识(Modulation and Coding Scheme Radio Network Temporary Identifier,MCS-RNTI)扰码。
上述目标MAC CE激活信令可以激活CORESET的TCI状态的,激活的TCI状态包括新波束。
另外,上述接收到PDCCH调度的预设PUSCH可以是在使用上报的新波束的CORESET上接收到PDCCH调度的预设PUSCH,当然,对此不作限定。 上述新波束的CORESET可以配置的关联到某个CORESET的用于接收波束失败恢复的CORESET。且该CORESET可以是专门配置接收BFRR的CORESET,例如CORESET-BFR,即与之关联的搜索空间集被配置为恢复搜索空间标识。
进一步的,若终端上报包含新波束信息的BFRQ后在预设窗口内没收到BFRR,则不重置波束。如仍按原波束接收发送,例如网络侧发现仍有一个TRP保持连接时则不发送响应,网络设备可以通过未发生波束失败的TRP触发终端重新进行波束训练过程,上报新的波束信息;如果在上述预设窗口内收到BFRR则重置波束。
作为一种可选择的实施方式,在所述终端处于多下行控制信息M-DCI的多发送接收点MTRP状态下,所述方法还包括:
当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的预设PUSCH或接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系;或者,
当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令指示,确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应所述新波束;或者,
当发生部分BFD RS组波束失败、发送BFRQ且接收到目标高层信令后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标高层信令的参数配置确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束;或者,
在所述M个BFD RS组均发生波束失败,且发送BFRQ上报一个新波束 且接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,所述终端仅保留部分CORESET,并假设这部分CORESET的天线端口与所述新波束具有QCL关系;或者,
当发生部分BFD RS组波束失败、发送BFRQ后,在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系。
需要说明的是,本申请实施例中,假设也可以理解为确定,例如:上述假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与所述新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系也可以理解为:确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与所述新波束具有准共址QCL关系,且确定接收PDSCH的天线端口与所述新波束具有QCL关系。
其中,上述TCI状态的MAC CE激活信令可以是用于波束训练或者波束更新的MAC CE激活信令。该MAC CE激活信令与上述新波束或新TCI状态的MAC CE激活信令可以是相同类型或者不同类型的激活命令。
上述保留部分CORESET可以是,可以是保留预先选定的部分CORESET,例如:这部分CORESET可以是网络侧预设配置的,或者协议约定的,或者终端自行决定的。
具体的,可以仅保留某个CORESETPoolIndex对应的CORESET,例如CORESETPoolIndex 0对应的那些CORESET。
其中,若MAC CE激活信令不包括未发生波束失败的BFD RS集对应的CORESETPoolIndex所关联的CORESET的TCI状态,则未发生波束失败的BFD RS集对应的CORESETPoolIndex所关联的CORESET的TCI状态不受影响。
可选的,在所述终端处于单下行控制信息S-DCI的MTRP的状态下,所述方法还包括:
当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的 预设PUSCH或接收到预设PDCCH后,并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系;或者,
当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令的指示接收PDCCH,所述目标MAC CE激活信令用于激活CORESET的TCI状态,且所述TCI状态对应所述新波束;或者,
当发生部分BFD RS组波束失败、发送BFRQ后,并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系。
进一步的,未发生波束失败的BFD RS组对应的CORESET的天线端口的QCL保持不变。
可选的,在所述终端上报包含新波束信息的BFRQ后在预设窗口内未收到BFRR,则仍使用原TCI状态或原波束接收PDCCH;或者
在所述终端上报包含新波束信息的BFRQ,在收到TCI状态的MAC CE激活信令前,则仍使用原TCI状态或原波束接收PDCCH。
例如:当发生全部BFD RS组波束失败、发送BFRQ且收到BFRR后,并且在收到TCI状态MAC CE激活信令前,终端按照现有QCL假设进行PDCCH的检测和PDSCH的接收。
该实施方式中,可以实现不监听BFRR,直接在在收到TCI状态的MAC CE激活信令前,则仍使用原TCI状态或原波束接收PDCCH。
本申请实施例中,在第一条件下触发波束失败事件;依据所述波束失败事件,上报波束失败恢复请求BFRQ。其中,所述第一条件包括:M个BFD RS组中任一个BFD RS组的各BFD RS均发生波束失败;或者所述M个BFD RS组中任一BFD RS发生波束失败;或者所述M个BFD RS组中各BFD RS组的所有BFD RS均发生波束失败;其中,所述M个BFD RS组为将所述终端对应的多个BFD RS进行划分得到,M为大于1的正整数,BFD RS发生波束失败是指BFD RS的质量检测结果均低于对应的第一预设阈值。这样可以实现在多个BFD RS场景下进行波束失败恢复,从而提高终端波束失败恢复 的效果。
请参见图3,图3是本发明实施例提供的另一种波束失败恢复方法的流程图,如图3所示,包括以下步骤:
步骤301、在部分BFD RS组发生波束失败的情况下,发送BFRQ。
部分BFD RS组可以参见图2所示的实施例中多个BFD RS组中的部分BFD RS组。
步骤302、监听所述BFRQ的响应BFRR。
步骤303、在第二条件下确定收到BFRR。
可选的,第二条件包括:
接收到PDCCH调度的预设PUSCH;或者,
接收到预设PDCCH;或者,
接收到目标MAC CE激活信令,其中所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应新波束;或者,
接收到目标高层信令,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束。
需要说明的是,本实施例确定收到BFRR的具体实施方式可以参见图2所示的相应说明,此处不作赘述。
本实施例中,通过上述步骤可以实现在多个BFD RS场景下进行波束失败恢复,从而提高终端波束失败恢复的效果。
请参见图4,图4是本发明实施例提供的一种波束失败恢复装置的结构图,如图4所示,波束失败恢复装置400包括:
触发模块401,用于在第一条件下触发波束失败事件;
发送模块402,用于在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;
其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
可选的,所述第一条件包括:
M个波束失败检测参考信号BFD RS组中任一个BFD RS组的各BFD RS均发生波束失败;或者,
所述M个BFD RS组中任一BFD RS发生波束失败;或者,
所述M个BFD RS组中各BFD RS组的所有BFD RS均发生波束失败;
其中,所述M个BFD RS组为将终端对应的多个BFD RS进行划分得到,BFD RS发生波束失败是指BFD RS的质量检测结果均低于对应的第一预设阈值。
可选的,所述M个BFD RS组分别对应M个第一预设阈值。
可选的,所述第一条件为网络侧配置的。
可选的,每个BFD RS组对应各自的如下配置的一种或多种:
第一物理上行控制信道PUCCH、随机接入信道RACH资源、候选波束集。
可选的,所述BFRQ包括一个或者多个新波束的信息,其中,所述一个或者多个新波束包括:
在所述终端配置一个候选波束集的情况下,从所述一个候选波束集中的选择一个或者多个新波束;或者,
在所述终端配置有分别与所述M个BFD RS组对应的M个候选波束集的情况下,从发生波束失败的BFD RS组对应的候选波束集中选择的一个或者多个新波束;或者,
在所述终端配置有K个候选波束集的情况下,从任一候选波束集中选择的一个或者多个新波束,或者从目标候选波束集中选择的一个或者多个候选波,其中,K大于M,且所述K个候选波束集中包括分别与所述M个BFD RS组对应的M个候选波束集;所述目标候选波束集为所述K个候选波束集中除未发生波束失败的BFD RS组以外的BFD RS组对应的候选波束集。
可选的,在N个BFD RS组发生波束失败的情况下,从M-N个波束候选集中最多选择N个新波束,N小于M;或者,
在所述M个BFD RS组发生波束失败的情况下,最多选择M个新波束或者最多选择一个新波束。
可选的,在所述终端配置有K个候选波束集的情况下,如果选择多个新波束,则选择的新波束属于不同的候选波束集。
可选的,所述依据所述波束失败事件,发送模块302用于:
在所述终端配置的M个波束失败计数器中存在取值大于或者等于第二预设阈值的波束失败计数器的情况下,发送BFRQ,所述M个波束失败计数器分别用于与所述M个BFD RS组对应;
其中,每个BFD RS组对应的波束失败计数器的第二预设阈值单独配置。
可选的,所述装置还包括:
上报模块,用于在发生波束失败的情况下,向高层上报波束失败实例BFI,所述BFI包括发生波束失败的BFD-RS组的标识;
计数模块,用于所述发生波束失败的BFD-RS组对应的波束失败计数器加1;
其中,在所述发生波束失败的BFD-RS组对应的定时器超时的情况下,所述发生波束失败的BFD-RS组对应的波束失败计数器重新计数,每个BFD RS组对应的定时器的单独配置。
可选的,所述M个BFD RS组中的部分BFD RS不与控制资源集CORESET对应的解调参考信号DMRS具有相同的空间关系;或者,
所述M个BFD RS组中的部分BFD RS组包含的BFD RS不与控制资源集CORESET对应的DMRS具有相同的空间关系。
可选的,发送模块302用于:
在部分BFD RS组发生波束失败的情况下,使用最近一次调度的上行数据信道发送携带所述BFRQ的媒体接入控制控制单元MAC CE;或者,
在部分BFD RS组发生波束失败的情况下,发送调度请求SR,并在上行数据信道发送携带所述BFRQ的MAC CE,所述上行数据信道是通过所述SR请求调度得到的上行数据信道。
可选的,所述发送SR,包括:
使用第一PUCCH发送所述SR,其中,所述第一PUCCH与发生波束失败的BFD RS组或未发生波束失败的BFD RS组对应。
可选的,在所述终端在多发送接收点MTRP的配置下,通过所述MAC CE发送所述BFRQ;或者,
在所述终端获取的使用MAC CE发送BFRQ的配置指示的情况下,通过所述MAC CE发送所述BFRQ。
可选的,所述上行数据信道与未发生波束失败的发送接收点TRP对应。
可选的,所述BFRQ包括:
发生波束失败BFD RS组的信息;或者,
发生波束失败BFD RS组对应的TRP的信息。
可选的,在部分BFD RS组发生波束失败的情况下,发送模块302还用于:
若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则中断所述MAC CE发送,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的物理上行共享信道PUSCH之前的过程;或者,
若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则继续发送所述MAC CE,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的PUSCH之前的过程;或者,
如果所述MAC CE与上行业务复用发送,则继续发送将所述MAC CE与所述上行业务复用的PUSCH,或者,如果仅发送所述MAC CE,则不发送承载所述MAC CE的PUSCH。
可选的,发送模块402用于:
在SR失败或者所述M个BFD RS组均发生波束失败的情况下,通过随机接入信道RACH上报所述BFRQ。
可选的,所述通过RACH发送所述BFRQ,包括:
在所述M个BFD RS组均发生波束失败,且所述终端找到新波束的情况下,使用基于非竞争的随机接入CFRA的RACH上报所述BFRQ;或者,
使用基于竞争的随机接入CBRA的RACH上报所述BFRQ。
可选的,所述RACH的RACH资源与如下至少一项对应:
新波束、发生波束失败的BFD RS组。
可选的,所述装置还包括:
监听模块,用于部分BFD RS组发生波束失败并发出BFRQ后,监听所述BFRQ的波束失败恢复响应BFRR;或者,
第一确定模块,用于在发送BFRQ之后,不监听所述BFRQ的响应,在所述BFRQ发送成功的情况下,确定波束失败恢复BFR成功。
可选的,所述装置还包括:
第一重置模块,用于在网络侧重配置BFD RS对应CORESET池索引CORESETPoolIndex的情况下,对重配置的BFD RS所属BFD RS组对应的波束失败计数器和波束失败定时器中的至少一项进行重置。
可选的,所述装置还包括:
第二确定模块,用于当部分BFD RS组发生波束失败且发送BFRQ后,在以下任意一项条件下确定收到BFRR:
接收到PDCCH调度的预设PUSCH;或者,
接收到PDCCH调度的预设PUSCH;或者,
接收到预设PDCCH;或者,
接收到目标MAC CE激活信令,其中所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应新波束;或者
接收到目标高层信令,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束。
可选的,在所述终端处于多下行控制信息M-DCI的多发送接收点MTRP状态下,所述装置还包括:
第一假设模块,用于当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的预设PUSCH或接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系;或者,
第二假设模块,用于当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令指示,确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI 状态,且所述TCI状态对应所述新波束;或者,
第三假设模块,用于当发生部分BFD RS组波束失败、发送BFRQ且接收到目标高层信令后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标高层信令的参数配置确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束;或者,
第四假设模块,用于在所述M个BFD RS组均发生波束失败,且发送BFRQ上报一个新波束且接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,所述终端仅保留部分CORESET,并假设这部分CORESET的天线端口与所述新波束具有QCL关系;
第五假设模块,用于当发生部分BFD RS组波束失败、发送BFRQ后,在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系。
可选的,在所述终端处于单下行控制信息S-DCI的MTRP的状态下,所述装置还包括:
第五假设模块,用于当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的预设PUSCH或接收到预设PDCCH后,并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系;或者,
接收模块,用于当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令的指示接收PDCCH,所述目标MAC CE激活信令用于激活CORESET的TCI状态,且所述TCI状态对应所述新波束;或者,
第六假设模块,用于当发生部分BFD RS组波束失败、发送BFRQ后, 并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系。
可选的,在所述终端上报包含新波束信息的BFRQ后在预设窗口内未收到BFRR,则仍使用原TCI状态或原波束接收PDCCH;或者,
在所述终端上报包含新波束信息的BFRQ,在收到TCI状态的MAC CE激活信令前,则仍使用原TCI状态或原波束接收PDCCH。
本申请实施例提供的波束失败恢复装置能够实现图2的方法实施例中的各个过程,为避免重复,这里不再赘述,且可以提高终端波束失败恢复效果。
需要说明的是,本申请实施例中的波束失败恢复装置可以是装置,也可以是终端中的部件、集成电路、或芯片。
图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器508、以及处理器510等部件。
本领域技术人员可以理解,通信设备500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
处理器510,用于在第一条件下触发波束失败事件;
射频单元501,用于在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;
其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
可选的,所述第一条件包括:
M个波束失败检测参考信号BFD RS组中任一个BFD RS组的各BFD RS均发生波束失败;或者,
所述M个BFD RS组中任一BFD RS发生波束失败;或者,
所述M个BFD RS组中各BFD RS组的所有BFD RS均发生波束失败;
其中,所述M个BFD RS组为将所述终端对应的多个BFD RS进行划分得到,BFD RS发生波束失败是指BFD RS的质量检测结果均低于对应的第一预设阈值。
可选的,所述M个BFD RS组分别对应M个第一预设阈值。
可选的,所述第一条件为网络侧配置的。
可选的,每个BFD RS组对应各自的如下配置的一种或多种:
第一物理上行控制信道PUCCH、随机接入信道RACH资源、候选波束集。
可选的,所述BFRQ包括一个或者多个新波束的信息,其中,所述一个或者多个新波束包括:
在所述终端配置一个候选波束集的情况下,从所述一个候选波束集中的选择一个或者多个新波束;或者,
在所述终端配置有分别与所述M个BFD RS组对应的M个候选波束集的情况下,从发生波束失败的BFD RS组对应的候选波束集中选择的一个或者多个新波束;或者,
在所述终端配置有K个候选波束集的情况下,从任一候选波束集中选择的一个或者多个新波束进行,或者从目标候选波束集中选择的一个或者多个候选波,其中,K大于M,且所述K个候选波束集中包括分别与所述M个BFD RS组对应的M个候选波束集;所述目标候选波束集为所述K个候选波束集中除未发生波束失败的BFD RS组以外的BFD RS组对应的候选波束集。
可选的,在N个BFD RS组发生波束失败的情况下,最多从M-N个波束候选集中选择M-N个新波束,N小于M;或者,
在所述M个BFD RS组发生波束失败的情况下,最多选择M个新波束或者最多选择一个新波束。
可选的,在所述终端配置有K个候选波束集的情况下,如果选择多个新波束,则选择的新波束属于不同的候选波束集。
可选的,所述在发生所述波束失败事件的情况下,发送BFRQ,包括:
在所述终端配置的M个波束失败计数器中存在取值大于或者等于第二预 设阈值的波束失败计数器的情况下,发送BFRQ,所述M个波束失败计数器分别用于与所述M个BFD RS组对应;
其中,每个BFD RS组对应的波束失败计数器的第二预设阈值单独配置。
可选的,处理器510还用于:
在发生波束失败的情况下,向高层上报波束失败实例BFI,所述BFI包括发生波束失败的BFD-RS组的标识;
所述发生波束失败的BFD-RS组对应的波束失败计数器加1;
其中,在所述发生波束失败的BFD-RS组对应的定时器超时的情况下,所述发生波束失败的BFD-RS组对应的波束失败计数器重新计数,每个BFD RS组对应的定时器的单独配置。
可选的,所述M个BFD RS组中的部分BFD RS不与控制资源集CORESET对应的解调参考信号DMRS具有相同的空间关系;或者,
所述M个BFD RS组中的部分BFD RS组包含的BFD RS不与控制资源集CORESET对应的DMRS具有相同的空间关系。
可选的,所述发送BFRQ,包括:
在部分BFD RS组发生波束失败的情况下,使用最近一次调度的上行数据信道发送携带所述BFRQ的媒体接入控制控制单元MAC CE;或者,
在部分BFD RS组发生波束失败的情况下,发送调度请求SR,并在上行数据信道发送携带所述BFRQ的MAC CE,所述上行数据信道是通过所述SR请求调度得到的上行数据信道。
可选的,所述发送SR,包括:
使用第一PUCCH发送所述SR,其中,所述第一PUCCH与发生波束失败的BFD RS组或未发生波束失败的BFD RS组对应。
可选的,在所述终端在多发送接收点MTRP的配置下,通过所述MAC CE发送所述BFRQ;或者,
在所述终端获取的使用MAC CE发送BFRQ的配置指示的情况下,通过所述MAC CE发送所述BFRQ。
可选的,所述上行数据信道与未发生波束失败的发送接收点TRP对应。
可选的,所述BFRQ包括:
发生波束失败BFD RS组的信息;或者,
发生波束失败BFD RS组对应的TRP的信息。
可选的,在部分BFD RS组发生波束失败的情况下,所述发送BFRQ还包括:
若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则中断所述MAC CE发送,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的物理上行共享信道PUSCH之前的过程;或者,
若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则继续发送所述MAC CE,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的PUSCH之前的过程;或者,
如果所述MAC CE与上行业务复用发送,则继续发送将所述MAC CE与所述上行业务复用的PUSCH,或者,如果仅发送所述MAC CE,则不发送承载所述MAC CE的PUSCH。
可选的,所述发送BFRQ,包括:
在SR失败或者所述M个BFD RS组均发生波束失败的情况下,通过随机接入信道RACH上报所述BFRQ。
可选的,所述通过RACH发送所述BFRQ,包括:
在所述M个BFD RS组均发生波束失败,且所述终端找到新波束的情况下,使用基于非竞争的随机接入CFRA的RACH上报所述BFRQ;或者,
使用基于竞争的随机接入CBRA的RACH上报所述BFRQ。
可选的,所述RACH的RACH资源与如下至少一项对应:
新波束、发生波束失败的BFD RS组。
可选的,所述发送BFRQ之后,射频单元501还用于:
部分BFD RS组发生波束失败并发出BFRQ后,监听所述BFRQ的波束失败恢复响应BFRR。
可选的,所述发送BFRQ之后,处理器510还用于:
在发送BFRQ之后,不监听所述BFRQ的响应,在所述BFRQ发送成功 的情况下,确定波束失败恢复BFR成功。
可选的,处理器510还用于:
在网络侧重配置BFD RS对应CORESET池索引CORESETPoolIndex的情况下,对重配置的BFD RS所属BFD RS组对应的波束失败计数器和波束失败定时器中的至少一项进行重置。
可选的,处理器510还用于:
当部分BFD RS组发生波束失败且发送BFRQ后,在以下任意一项条件下确定收到BFRR:
接收到PDCCH调度的预设PUSCH;或者,
接收到预设PDCCH;或者,
接收到目标MAC CE激活信令,其中所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应新波束;或者
接收到目标高层信令,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束。
可选的,在所述终端处于多下行控制信息M-DCI的多发送接收点MTRP状态下,处理器510还用于:
当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的预设PUSCH或接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系;或者,
当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令指示,确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应所述新波束;或者,
当发生部分BFD RS组波束失败、发送BFRQ且接收到目标高层信令后, 并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标高层信令的参数配置确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束;或者,
在所述M个BFD RS组均发生波束失败,且发送BFRQ上报一个新波束且接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,所述终端仅保留部分CORESET,并假设这部分CORESET的天线端口与所述新波束具有QCL关系;或者,
当发生部分BFD RS组波束失败、发送BFRQ后,在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系。
可选的,在所述终端处于单下行控制信息S-DCI的MTRP的状态下,处理器510还用于:
当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的预设PUSCH或接收到预设PDCCH后,并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系;或者,
当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令的指示接收PDCCH,所述目标MAC CE激活信令用于激活CORESET的TCI状态,且所述TCI状态对应所述新波束;或者,
当发生部分BFD RS组波束失败、发送BFRQ后,并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系。
可选的,在所述终端上报包含新波束信息的BFRQ后在预设窗口内未收到BFRR,则仍使用原TCI状态或原波束接收PDCCH;或者,
在所述终端上报包含新波束信息的BFRQ,在收到TCI状态的MAC CE激活信令前,则仍使用原TCI状态或原波束接收PDCCH。
本实施例可以提高终端的波束失败恢复效果。
可选的,本发明实施例还提供一种终端,包括处理器510,存储器508,存储在存储器508上并可在所述处理器510上运行的程序或指令,该程序或指令被处理器510执行时实现上述波束失败恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现本申请实施例提供的波束失败恢复方法中的步骤。
本申请实施例还提供一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现本申请实施例提供的波束失败恢复方法中的步骤。
其中,所述处理器为上述实施例中所述的终端或者网络设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现本申请实施例提供的波束失败恢复方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例 如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (30)
- 一种波束失败恢复方法,由终端执行,包括:在第一条件下触发波束失败事件;在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
- 如权利要求1所述的方法,其中,所述第一条件包括:M个波束失败检测参考信号BFD RS组中任一个BFD RS组的各BFD RS均发生波束失败;或者所述M个BFD RS组中任一BFD RS发生波束失败;或者,所述M个BFD RS组中各BFD RS组的所有BFD RS均发生波束失败;其中,所述M个BFD RS组为将所述终端对应的多个BFD RS进行划分得到,BFD RS发生波束失败是指BFD RS的质量检测结果均低于对应的第一预设阈值。
- 如权利要求1所述的方法,其中,所述M个BFD RS组分别对应M个第一预设阈值。
- 如权利要求1所述的方法,其中,每个BFD RS组对应各自的如下配置的一种或多种:第一物理上行控制信道PUCCH、随机接入信道RACH资源、候选波束集。
- 如权利要求1所述的方法,其中,所述BFRQ包括一个或者多个新波束的信息,其中,所述一个或者多个新波束包括:在所述终端配置一个候选波束集的情况下,从所述一个候选波束集中的选择一个或者多个新波束;或者在所述终端配置有分别与所述M个BFD RS组对应的M个候选波束集的情况下,从发生波束失败的BFD RS组对应的候选波束集中选择的一个或者多个新波束;或者在所述终端配置有K个候选波束集的情况下,从任一候选波束集中选择 的一个或者多个新波束,或者从目标候选波束集中选择的一个或者多个候选波,其中,K大于M,且所述K个候选波束集中包括分别与所述M个BFD RS组对应的M个候选波束集;所述目标候选波束集为所述K个候选波束集中除未发生波束失败的BFD RS组以外的BFD RS组对应的候选波束集。
- 如权利要求5所述的方法,其中,在N个BFD RS组发生波束失败的情况下,从M-N个波束候选集中最多选择N个新波束,N小于M;或者,在所述M个BFD RS组发生波束失败的情况下,最多选择M个新波束或者最多选择一个新波束。
- 如权利要求6所述的方法,其中,在所述终端配置有K个候选波束集的情况下,如果选择多个新波束,则选择的新波束属于不同的候选波束集。
- 如权利要求1所述的方法,其中,所述在发生所述波束失败事件的情况下,发送BFRQ,包括:在所述终端配置的M个波束失败计数器中存在取值大于或者等于第二预设阈值的波束失败计数器的情况下,发送BFRQ,所述M个波束失败计数器分别用于与所述M个BFD RS组对应;其中,每个BFD RS组对应的波束失败计数器的第二预设阈值单独配置。
- 如权利要求8所述的方法,其中,所述方法还包括:在发生波束失败的情况下,向高层上报波束失败实例BFI,所述BFI包括发生波束失败的BFD-RS组的标识;所述发生波束失败的BFD-RS组对应的波束失败计数器加1;其中,在所述发生波束失败的BFD-RS组对应的定时器超时的情况下,所述发生波束失败的BFD-RS组对应的波束失败计数器重新计数,每个BFD RS组对应的定时器的单独配置。
- 如权利要求1所述的方法,其中,所述M个BFD RS组中的部分BFD RS不与控制资源集CORESET对应的解调参考信号DMRS具有相同的空间关系;或者所述M个BFD RS组中的部分BFD RS组包含的BFD RS不与控制资源集CORESET对应的DMRS具有相同的空间关系。
- 如权利要求1所述的方法,其中,所述发送BFRQ,包括:在部分BFD RS组发生波束失败的情况下,使用最近一次调度的上行数据信道发送携带所述BFRQ的媒体接入控制控制单元MAC CE;或者在部分BFD RS组发生波束失败的情况下,发送调度请求SR,并在上行数据信道发送携带所述BFRQ的MAC CE,所述上行数据信道是通过所述SR请求调度得到的上行数据信道。
- 如权利要求11所述的方法,其中,所述发送SR,包括:使用第一PUCCH发送所述SR,其中,所述第一PUCCH与发生波束失败的BFD RS组或未发生波束失败的BFD RS组对应。
- 如权利要求11所述的方法,其中,在所述终端在多发送接收点MTRP的配置下,通过所述MAC CE发送所述BFRQ;或者,在所述终端获取的使用MAC CE发送BFRQ的配置指示的情况下,通过所述MAC CE发送所述BFRQ。
- 如权利要求11所述的方法,其中,所述上行数据信道与未发生波束失败的发送接收点TRP对应。
- 如权利要求1所述的方法,其中,所述BFRQ包括:发生波束失败BFD RS组的信息;或者发生波束失败BFD RS组对应的TRP的信息。
- 如权利要求11所述的方法,其中,在部分BFD RS组发生波束失败的情况下,所述发送BFRQ还包括:若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则中断所述MAC CE发送,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的物理上行共享信道PUSCH之前的过程;或者,若在使用所述MAC CE发送BFRQ过程中,又有另一部分BFD RS组发生波束失败,则继续发送所述MAC CE,并通过RACH发送所述BFRQ,其中,所述BFRQ过程是指从确定部分BFD RS组发生波束失败开始到发送携带BFRQ的所述MAC CE的PUSCH之前的过程;或者,如果所述MAC CE与上行业务复用发送,则继续发送将所述MAC CE与所述上行业务复用的PUSCH,或者,如果仅发送所述MAC CE,则不发送承 载所述MAC CE的PUSCH。
- 如权利要求1所述的方法,其中,所述发送BFRQ,包括:在SR失败或者所述M个BFD RS组均发生波束失败的情况下,通过随机接入信道RACH上报所述BFRQ。
- 如权利要求17所述的方法,其中,所述通过RACH发送所述BFRQ,包括:在所述M个BFD RS组均发生波束失败,且所述终端找到新波束的情况下,使用基于非竞争的随机接入CFRA的RACH上报所述BFRQ;或者,使用基于竞争的随机接入CBRA的RACH上报所述BFRQ。
- 如权利要求18所述的方法,其中,所述RACH的RACH资源与如下至少一项对应:新波束、发生波束失败的BFD RS组。
- 如权利要求1所述的方法,其中,所述发送BFRQ之后,所述方法还包括:部分BFD RS组发生波束失败并发出BFRQ后,监听所述BFRQ的响应BFRR;或者,在发送BFRQ之后,不监听所述BFRQ的响应,在所述BFRQ发送成功的情况下,确定波束失败恢复BFR成功。
- 如权利要求1、8或者9所述的方法,其中,所述方法还包括:在网络侧重配置BFD RS对应CORESET池索引CORESETPoolIndex的情况下,对重配置的BFD RS所属BFD RS组对应的波束失败计数器和波束失败定时器中的至少一项进行重置。
- 如权利要求1所述的方法,其中,所述方法还包括:当部分BFD RS组发生波束失败且发送BFRQ后,在以下任意一项条件下确定收到BFRR:接收到PDCCH调度的预设PUSCH;或者,接收到预设PDCCH;或者,接收到目标MAC CE激活信令,其中所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应新波束;或者,接收到目标高层信令,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束。
- 如权利要求1所述的方法,其中,在所述终端处于多下行控制信息M-DCI的多发送接收点MTRP状态下,所述方法还包括:当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的预设PUSCH或接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系;或者,当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令指示,确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标MAC CE激活信令用于激活CORESET的传输配置指示TCI状态,且所述TCI状态对应所述新波束;或者,当发生部分BFD RS组波束失败、发送BFRQ且接收到目标高层信令后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,按照所述目标高层信令的参数配置确定发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的TCI状态,其中,所述目标高层信令包括设置CORESET的TCI状态,且所述TCI状态对应新波束;或者,在所述M个BFD RS组均发生波束失败,且发送BFRQ上报一个新波束且接收到预设PDCCH后,并且在收到传输配置指示TCI状态的MAC CE激活信令前,所述终端仅保留部分CORESET,并假设这部分CORESET的天线端口与所述新波束具有QCL关系;或者,当发生部分BFD RS组波束失败、发送BFRQ后,在收到传输配置指示TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESETPoolIndex所关联的CORESET的天线端口与新波束具有准共址QCL关系,且假设接收PDSCH的天线端口与所述新波束具有QCL关系。
- 如权利要求1所述的方法,其中,在所述终端处于单下行控制信息S-DCI的MTRP的状态下,所述方法还包括:当发生部分BFD RS组波束失败、发送BFRQ且接收到PDCCH调度的预设PUSCH或接收到预设PDCCH后,并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系;或者,当发生部分BFD RS组波束失败、发送BFRQ且接收到目标MAC CE激活信令后,并且在收到TCI状态的MAC CE激活信令前,按照所述目标MAC CE激活信令的指示接收PDCCH,所述目标MAC CE激活信令用于激活CORESET的TCI状态,且所述TCI状态对应所述新波束;或者,当发生部分BFD RS组波束失败、发送BFRQ后,并且在收到TCI状态的MAC CE激活信令前,假设发生波束失败的BFD RS组对应的CORESET的天线端口或者CORESET-BFR与所述新波束具有QCL关系。
- 如权利要求1所述的方法,其中,在所述终端上报包含新波束信息的BFRQ后在预设窗口内未收到BFRR,则仍使用原TCI状态或原波束接收PDCCH;或者,在所述终端上报包含新波束信息的BFRQ,在收到TCI状态的MAC CE激活信令前,则仍使用原TCI状态或原波束接收PDCCH。
- 一种波束失败恢复装置,包括:触发模块,用于在第一条件下触发波束失败事件;第一上报模块,用于在发生所述波束失败事件的情况下,发送波束失败恢复请求BFRQ;其中,所述第一条件和/或所述BFRQ与M个波束失败检测参考信号BFD RS组相关,M为大于1的正整数。
- 如权利要求26所述的装置,其中,所述第一条件包括:M个波束失败检测参考信号BFD RS组中任一个BFD RS组的各BFD RS均发生波束失败;或者所述M个BFD RS组中任一BFD RS发生波束失败;或者所述M个BFD RS组中各BFD RS组的所有BFD RS均发生波束失败;其中,所述M个BFD RS组为将终端对应的多个BFD RS进行划分得到,M为大于1的正整数,BFD RS发生波束失败是指BFD RS的质量检测结果均低于对应的第一预设阈值。
- 如权利要求26所述的装置,其中,每个BFD RS组对应各自的如下配置的一种或多种:第一物理上行控制信道PUCCH、随机接入信道RACH资源、候选波束集。
- 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或者指令,其中,所述程序或者指令被所述处理器执行时实现如权利要求1至25中任一项所述的波束失败恢复方法中的步骤。
- 一种可读存储介质,所述可读存储介质上存储有程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至25中任一项所述的波束失败恢复方法中的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21882052.0A EP4236152A4 (en) | 2020-10-23 | 2021-10-20 | METHOD AND DEVICE FOR RESTORING A BEAM FAILURE, TERMINAL DEVICE AND STORAGE MEDIUM |
US18/138,032 US20230262820A1 (en) | 2020-10-23 | 2023-04-21 | Beam failure recovery method and apparatus, terminal, and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011149209.6A CN114499782A (zh) | 2020-10-23 | 2020-10-23 | 波束失败恢复方法、装置、终端和存储介质 |
CN202011149209.6 | 2020-10-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/138,032 Continuation US20230262820A1 (en) | 2020-10-23 | 2023-04-21 | Beam failure recovery method and apparatus, terminal, and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022083637A1 true WO2022083637A1 (zh) | 2022-04-28 |
Family
ID=81291580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/124976 WO2022083637A1 (zh) | 2020-10-23 | 2021-10-20 | 波束失败恢复方法、装置、终端和存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230262820A1 (zh) |
EP (1) | EP4236152A4 (zh) |
CN (1) | CN114499782A (zh) |
WO (1) | WO2022083637A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024187437A1 (zh) * | 2023-03-15 | 2024-09-19 | 北京小米移动软件有限公司 | 信息处理方法、装置及存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114175556A (zh) * | 2019-07-24 | 2022-03-11 | Oppo广东移动通信有限公司 | 空间关系确定方法和设备、用户设备和网络设备 |
WO2024007167A1 (zh) * | 2022-07-05 | 2024-01-11 | Oppo广东移动通信有限公司 | 通信方法及通信装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110536436A (zh) * | 2019-03-28 | 2019-12-03 | 中兴通讯股份有限公司 | 一种波束失败恢复方法和装置 |
CN110896546A (zh) * | 2018-09-13 | 2020-03-20 | 展讯通信(上海)有限公司 | 波束失败恢复方法及装置、存储介质、用户设备 |
CN111278122A (zh) * | 2019-01-25 | 2020-06-12 | 维沃移动通信有限公司 | 波束失败恢复方法、处理方法、终端及网络侧设备 |
CN111567081A (zh) * | 2017-12-19 | 2020-08-21 | 三星电子株式会社 | 用于下一代无线系统中的波束报告的方法和装置 |
US10813157B1 (en) * | 2019-10-04 | 2020-10-20 | Qualcomm Incorporated | Beam failure recovery and related timing determination techniques |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943817A (zh) * | 2018-09-21 | 2020-03-31 | 中兴通讯股份有限公司 | 波束失败恢复方法及装置 |
WO2020034567A1 (en) * | 2019-01-08 | 2020-02-20 | Zte Corporation | Wireless link recovery |
CN111586862B (zh) * | 2019-02-15 | 2024-07-26 | 华为技术有限公司 | 信息指示的方法及装置 |
-
2020
- 2020-10-23 CN CN202011149209.6A patent/CN114499782A/zh active Pending
-
2021
- 2021-10-20 EP EP21882052.0A patent/EP4236152A4/en active Pending
- 2021-10-20 WO PCT/CN2021/124976 patent/WO2022083637A1/zh unknown
-
2023
- 2023-04-21 US US18/138,032 patent/US20230262820A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111567081A (zh) * | 2017-12-19 | 2020-08-21 | 三星电子株式会社 | 用于下一代无线系统中的波束报告的方法和装置 |
CN110896546A (zh) * | 2018-09-13 | 2020-03-20 | 展讯通信(上海)有限公司 | 波束失败恢复方法及装置、存储介质、用户设备 |
CN111278122A (zh) * | 2019-01-25 | 2020-06-12 | 维沃移动通信有限公司 | 波束失败恢复方法、处理方法、终端及网络侧设备 |
CN110536436A (zh) * | 2019-03-28 | 2019-12-03 | 中兴通讯股份有限公司 | 一种波束失败恢复方法和装置 |
US10813157B1 (en) * | 2019-10-04 | 2020-10-20 | Qualcomm Incorporated | Beam failure recovery and related timing determination techniques |
Non-Patent Citations (1)
Title |
---|
See also references of EP4236152A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024187437A1 (zh) * | 2023-03-15 | 2024-09-19 | 北京小米移动软件有限公司 | 信息处理方法、装置及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN114499782A (zh) | 2022-05-13 |
EP4236152A1 (en) | 2023-08-30 |
EP4236152A4 (en) | 2024-07-17 |
US20230262820A1 (en) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114097266B (zh) | 执行波束故障恢复的方法和相关装置 | |
US11032760B2 (en) | SCell selection for beam failure recovery | |
US10659983B2 (en) | Beam failure detection and recovery | |
JP7028974B2 (ja) | ワイヤレス通信システムにおけるビーム失敗リカバリのための装置および方法 | |
JP7074972B2 (ja) | セカンダリセルビーム失敗リカバリ時のユーザー機器受信機空間フィルタ設定 | |
JP7288458B2 (ja) | 装置、方法及びコンピュータープログラム | |
WO2022083637A1 (zh) | 波束失败恢复方法、装置、终端和存储介质 | |
US9655093B2 (en) | Method for configuring resources, device, and system | |
EP3855661A1 (en) | Beam failure recovery processing method and device | |
JP2020188513A (ja) | 無線通信システムにおける帯域幅部分ミスアライメントを防ぐ方法及び装置 | |
JP2021517420A5 (zh) | ||
EP3771282A1 (en) | Method running on user equipment, and user equipment | |
CN114503685B (zh) | 用于波束故障恢复过程的不连续接收操作的方法和设备 | |
US20190141552A1 (en) | Interaction mechanism between radio link monitoring/radio link failure (rlm/rlf) and beam failure recovery procedure | |
US11540284B2 (en) | Data transmission method and device | |
WO2022218297A1 (zh) | 多发送接收点的波束失败恢复方法、装置、设备及可读存储介质 | |
US20220294582A1 (en) | Method performed by user equipment, and user equipment | |
CN114071479B (zh) | 数据传输类型的设定方法和终端 | |
US20230095844A1 (en) | Beam failure recovery method and apparatus, and device | |
WO2018028675A1 (zh) | 随机接入信号配置方法、装置、设备、系统和存储介质 | |
WO2020155160A1 (en) | Serving cell state management | |
WO2019178844A1 (zh) | 数据传输方法及装置 | |
US12127224B2 (en) | Serving cell state management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21882052 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021882052 Country of ref document: EP Effective date: 20230523 |