WO2015053453A1 - 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 - Google Patents

반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 Download PDF

Info

Publication number
WO2015053453A1
WO2015053453A1 PCT/KR2014/003845 KR2014003845W WO2015053453A1 WO 2015053453 A1 WO2015053453 A1 WO 2015053453A1 KR 2014003845 W KR2014003845 W KR 2014003845W WO 2015053453 A1 WO2015053453 A1 WO 2015053453A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
formula
curing
group
Prior art date
Application number
PCT/KR2014/003845
Other languages
English (en)
French (fr)
Inventor
김민겸
이동환
김정섭
천진민
전환승
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2015053453A1 publication Critical patent/WO2015053453A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/70Chelates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an epoxy resin composition for sealing a semiconductor device and a semiconductor device sealed using the same.
  • the epoxy resin composition may include an epoxy resin, a curing agent, a curing catalyst, and the like.
  • the curing catalyst As the curing catalyst, amine compounds such as tertiary amines, imidazole compounds, phosphine compounds, phosphonium salts, and the like are used. Specifically, addition reactants of triphenylphosphine and 1,4-benzoquinone are used. These curing catalysts cause the curing promoting effect to appear at relatively low temperatures. For example, the curing reaction proceeds partially by heat generated when mixing the epoxy resin composition before curing with other components or heat added from the outside, and after completion of mixing, the curing reaction further proceeds even when the epoxy resin composition is stored at room temperature. Can be.
  • the progress of this partial curing reaction may result in an increase in viscosity or a decrease in fluidity when the composition is a liquid, and may develop viscosity when the composition is a solid, and this change of state is uniform in the epoxy resin composition. Since it does not occur, the characteristics at the time of curing of each part of the composition may vary. This partial change results in degradation of the mechanical, electrical or chemical properties of the molding when the curing reaction proceeds to a high temperature to form a thermosetting epoxy resin composition. Therefore, when using such a hardening accelerator, since the strict quality control of each component mixing time, the storage or transportation at low temperature, and the precise control of molding conditions are essential, operation becomes very complicated.
  • Korean Patent No. 10-0290448 discloses an epoxy resin curing catalyst which is a carboxylate of bicyclic amidine.
  • An object of the present invention is to provide an epoxy resin composition for sealing semiconductor elements that can be cured even at low temperatures.
  • Another object of the present invention is to provide an epoxy resin composition for sealing a semiconductor device, in which curing reaction proceeds rapidly at low temperature, fluidity does not decrease, and curing strength is good.
  • Another object of the present invention is to minimize the change in viscosity even in a predetermined range of time and temperature conditions to reduce the moldability due to fluidity decrease when the curing reaction at high temperature, the mechanical device, electrical and chemical properties of the molded product is not deteriorated It is to provide an epoxy resin composition for sealing.
  • the epoxy resin composition for sealing a semiconductor device of the present invention may include an epoxy resin, a curing agent, an inorganic filler, and a curing catalyst, and the curing catalyst may include a compound of Formula 1 below:
  • R 1 , R 2 , R 3 , R 4 , Y, W, M, m and n are as defined in the following detailed description).
  • the semiconductor device of the present invention may be sealed using the epoxy resin composition for sealing the semiconductor device.
  • the present invention provides an epoxy resin composition for sealing semiconductor elements that can be cured even at low temperatures.
  • the present invention provides an epoxy resin composition for sealing a semiconductor device having a good curing strength without rapidly decreasing the curing reaction at a low temperature, fluidity.
  • the present invention provides an epoxy resin composition for sealing a semiconductor device having high long-term storage stability by catalyzing the curing only when the desired curing temperature is reached and without the curing catalyst activity when the curing temperature is not the desired curing temperature.
  • the present invention is an epoxy resin for semiconductor element sealing that minimizes the change in viscosity even in a predetermined range of time and temperature conditions to reduce the moldability due to fluidity decrease, the mechanical, electrical, and chemical properties of the molded product does not decrease when the curing reaction at a high temperature
  • the composition was provided.
  • FIG. 1 is a cross-sectional view of a semiconductor device in accordance with an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a semiconductor device of another embodiment of the present invention.
  • substituted means that the hydrogen atom of the functional group is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, halogen, cyano group, or It is substituted with a hydroxyl group.
  • the epoxy resin composition for sealing a semiconductor device of an embodiment of the present invention includes an epoxy resin, a curing agent, an inorganic filler, and a curing catalyst, and the curing catalyst is an anion in which a phosphonium-based or ammonium-based cation is chelate-bonded with a metal and a ligand. It may include a salt comprising a.
  • the salt containing a cation and an anion may be used as a curing catalyst in the epoxy resin composition.
  • the salt Upon receiving external energy such as heat, the salt is decomposed into cations and anions at about 80 ° C. to about 120 ° C., and the resulting cation
  • the anion and the anion may exhibit excellent degree of curing even in a short time during the curing reaction of the epoxy resin, compared to the existing catalyst, it is possible to increase the low temperature curing properties and storage stability of the epoxy resin composition.
  • the “storage stability” is an activity that catalyzes curing only when the desired curing temperature is reached and there is no curing catalyst activity when the desired curing temperature is not achieved, and as a result, the epoxy resin composition can be stored for a long time without changing the viscosity.
  • the progress of the curing reaction may cause an increase in viscosity and a decrease in fluidity when the epoxy resin composition is a liquid, and may exhibit viscosity when the epoxy resin composition is a solid.
  • the salt containing the cation and anion may be represented by the following formula (1):
  • R 1 , R 2 , R 3 and R 4 each represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted aryl having 6 to 20 carbon atoms, respectively.
  • M is Fe, Cu, Zn or Co
  • W is H 2 O or NH 3 ,
  • Y is an organic functional group capable of forming a chelate bond with M n + in Formula 1,
  • M, n and k are integers, respectively, m> n> 0, 2 ⁇ m ⁇ 5, 1 ⁇ n ⁇ 3, and 0 ⁇ k ⁇ 5).
  • n may be 2 or 3
  • m may be 2, 3 or 4.
  • Y may be represented by Formula 2:
  • X is a substituted or unsubstituted alkylene group having 1 to 12 carbon atoms, or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms,
  • R 5 , R 6 , R 7 and R 8 are each independently an alkylene group having 1 to 3 carbon atoms or an arylene group having 6 to 10 carbon atoms,
  • Y 1 , Y 2 , Y 3, and Y 4 are each independently a carboxylate (COO ⁇ ), * —NR a R b (wherein, * is a linking site, and Ra and R b are each independently hydrogen or C 1 to 5 carbon atoms). an alkyl group), or -R 10 -O - a - (wherein, * has connections, and R 10 is an arylene group having from 1 to 5 carbon atoms or an alkylene group having a carbon number of 6 to 10), and
  • Y 1, Y 2, Y 3 and Y 4 is one or more of the carboxylate or * -R 10 -O - a).
  • Y may be an anion of ethylenediaminetetraacetic acid (EDTA).
  • EDTA ethylenediaminetetraacetic acid
  • Y is diethylenetriaminepentaacetic acid, nitrilotriacetic acid, glutamic-N, N-diacetic acid, methylglycine N, N-diacetic acid, ethylene glycol-bis (2-aminoethyl) -N , N, N ', N'-tetraacetic acid, 1,2-bis (o-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid, cyclohexanediaminetetraacetic acid, triethylenetetraaminehexa Acetic acid, N- (2-hydroxyethyl) ethylenediamine-N, N ', N'-triacetic acid, ethylenediaminetetramethylenesulfonic acid, diethylenetriaminepentamethylenesulfonic acid, amino trimethylenesulfonic acid, ethylenediaminetetramethylenephosphonic acid , Diethylenetriaminepentamethylenephosphonic acid, aminot
  • the compound of Formula 1 is a salt including a phosphonium-based or ammonium-based cation and an anion in which a metal and a ligand are chelate-bonded.
  • M n + may chelate with at least one of Y and W.
  • the compound of Formula 1 may be prepared by a conventional method. For example, it may be prepared by reacting a phosphonium-based or ammonium-based cation-containing compound of Formula 1 with a metal chelate anion-containing compound of Formula 1.
  • the phosphonium-based or ammonium-based cation-containing compound is a salt of a phosphonium-based or ammonium-based cation and a halogen anion, respectively, and the halogen may be fluorine, chlorine, bromine, or iodine.
  • Phosphonium-based or ammonium-based cation-containing compounds may be prepared by combining phosphonium or alkylamine compounds with alkyl halides, aryl halides, or aralkyl halides in a solvent.
  • the metal chelated anion containing compound is a salt of a metal chelated anion with an alkali metal or alkaline earth metal cation, and can be prepared by conventional methods.
  • the reaction of the phosphonium- or ammonium-based cation-containing compound with the metal chelated anion-containing compound may be carried out in an aqueous solvent such as water, alcohol, or a mixture thereof, and may be about 10 ° C. to about 40 ° C., for example about 20 From about 1 hour to about 30 hours, for example from about 20 hours to about 30 hours, at 0 ° C. to about 30 ° C., wherein the phosphonium-based or ammonium-based cation-containing compound: the metal chelated anion-containing compound is from about 1: 0.9 to React at a molar ratio of about 1: 2. In the above range, the synthesis of the compound of Formula 1 may be possible.
  • the compound of formula 1 may be included in about 0.01% to about 5%, specifically about 0.01% to about 2%, more specifically about 0.05% to about 1.0% by weight of the epoxy resin composition. In the above range, the curing reaction time is not delayed, and the fluidity of the composition can be ensured.
  • the epoxy resin may be an epoxy resin commonly used in the epoxy resin composition field, specifically, the epoxy resin is not particularly limited as long as it has two or more epoxy groups in the molecule, and may be one of liquid, solid, monomer, oligomer and polymer. It may contain the above.
  • the epoxy resin is a phenol aralkyl type epoxy resin, an orthocresol novolak type epoxy resin, an epoxy resin obtained by epoxidizing a condensate of phenol or alkyl phenols with hydroxybenzaldehyde, a phenol novolak type epoxy resin, cresol Novolak-type epoxy resin, polyfunctional epoxy resin, naphthol novolak-type epoxy resin, novolak-type epoxy resin of bisphenol A / bisphenol F / bisphenol AD, glycidyl ether of bisphenol A / bisphenol F / bisphenol AD, bishydroxyl It may include one or more of a bibiphenyl-based epoxy resin, a dicyclopentadiene-based epoxy resin, a biphenyl-type epoxy resin, a polyaromatic modified epoxy resin, a bisphenol A-type epoxy resin, a naphthalene-based epoxy resin.
  • the epoxy resin may be a biphenyl type epoxy resin of formula (4):
  • R is an alkyl group having 1 to 4 carbon atoms, the average value of n is 0 to 7).
  • the epoxy resin may be included in about 2% to about 17% by weight, for example from about 3% to about 15% by weight, for example from about 3% to about 12% by weight, based on solids in the composition. In the above range, the curability of the composition may not be lowered.
  • the curing agent is a phenol aralkyl type phenol resin, a phenol novolak type phenol resin, a xylock type phenol resin, a cresol novolak type phenol resin, a naphthol type phenol resin, a terpene type phenol resin, a polyfunctional phenol resin, a dicyclopentadiene type phenol resin, Novolac-type phenolic resin synthesized from bisphenol A and resol, polyhydric phenolic compound including tris (hydroxyphenyl) methane, dihydroxybiphenyl, acid anhydride containing maleic anhydride and phthalic anhydride, metaphenylenediamine, dia Aromatic amines, such as a minodiphenylmethane and a diamino diphenyl sulfone, etc. are mentioned.
  • the curing agent may be a phenol resin having one or more hydroxyl groups.
  • the curing agent may include a xyloxic phenolic resin of Formula 5 below:
  • the curing agent may be included from about 0.5% to about 13% by weight, for example from about 1% to about 10% by weight, for example from about 2% to about 8% by weight, based on solids in the epoxy resin composition. In the above range, the curability of the composition may not be lowered.
  • the weight ratio of the curing agent to the curing catalyst in the composition may be about 5 to about 15. In the above range, the curability of the composition may not be lowered.
  • Inorganic fillers can increase the mechanical properties and low stress of the composition.
  • examples of inorganic fillers may include one or more of molten silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, and glass fibers. have.
  • molten silica having a low coefficient of linear expansion is used to reduce stress.
  • Molten silica refers to amorphous silica having a specific gravity of about 2.3 or less, including amorphous silica made by melting crystalline silica or synthesized from various raw materials.
  • the shape and particle size of the molten silica are not particularly limited, but the spherical molten silica having a spherical molten silica having an average particle diameter of about 5 ⁇ m to about 30 ⁇ m, and having a mean particle diameter of about 0.001 ⁇ m to about 1 ⁇ m And from about 40% to about 100% by weight of the molten silica mixture, including about 1% to about 50% by weight relative to the total filler.
  • the maximum particle diameter can be adjusted to any one of about 45 ⁇ m, about 55 ⁇ m and about 75 ⁇ m according to the application.
  • conductive carbon may be included as a foreign material on the silica surface, but it may be a polar foreign material. It is also important to choose materials that contain little.
  • the amount of the inorganic filler used depends on the required physical properties such as formability, low stress, and high temperature strength.
  • the inorganic filler may be included in about 70% to about 95% by weight, for example about 75% to about 92% by weight of the epoxy resin composition. Within this range, fluidity and reliability of the epoxy resin composition can be ensured.
  • the epoxy resin composition may further include a non-pyridinium-based curing catalyst that catalyzes the reaction between the epoxy resin and the curing agent and does not include a pyridinium cation.
  • a non-pyridinium-based curing catalyst that catalyzes the reaction between the epoxy resin and the curing agent and does not include a pyridinium cation.
  • a non-pyridinium-based curing catalyst tertiary amines, organometallic compounds, organophosphorus compounds, imidazoles, boron compounds and the like can be used.
  • Tertiary amines include benzyldimethylamine, triethanolamine, triethylenediamine, diethylaminoethanol, tri (dimethylaminomethyl) phenol, 2-2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl ) Phenol and tri-2-ethylhexyl acid salt.
  • Organometallic compounds include chromium acetylacetonate, zinc acetylacetonate, nickel acetylacetonate and the like.
  • Organophosphorus compounds include tris-4-methoxyphosphine, phenylphosphine, diphenylphosphine, triphenylphosphine, triphenylphosphine triphenylborane, triphenylphosphine-1,4-benzoquinone adduct and the like.
  • Imidazoles include 2-methylimidazole, 2-phenylimidazole, 2-aminoimidazole, 2-methyl-1-vinylimidazole, 2-ethyl-4-methylimidazole, 2-heptadecyl Imidazole and the like.
  • boron compound examples include triphenylphosphine tetraphenylborate, tetraphenylboron salt, trifluoroborane-n-hexylamine, trifluoroborane monoethylamine, tetrafluoroboranetriethylamine, tetrafluoroboraneamine, and the like.
  • phenol novolak resin salts may be used.
  • Particularly preferred curing catalysts include organophosphorus compounds, boron compounds, amine-based or imidazole-based curing catalysts used alone or in combination.
  • the curing catalyst it is also possible to use an adduct made by linear reaction with an epoxy resin or a curing agent.
  • the compound of Formula 1 in the total curing catalyst may be included in about 10% to about 100% by weight, for example about 10% to about 70% by weight, the curing reaction time is not delayed in the above range, Liquidity can be secured.
  • the curing catalyst may be included in about 0.01% to about 5% by weight, specifically about 0.01% to about 3% by weight, more specifically about 0.05% to about 1.0% by weight of the epoxy resin composition. In the above range, the curing reaction time is not delayed, and the fluidity of the composition can be ensured.
  • composition of the present invention may further comprise conventional additives included in the composition.
  • the additive may comprise one or more of a coupling agent, a release agent, a stress relaxer, a crosslinking enhancer, a leveling agent, a colorant.
  • the coupling agent may use one or more selected from the group consisting of epoxysilane, aminosilane, mercaptosilane, alkylsilane and alkoxysilane, but is not limited thereto.
  • the coupling agent may be included in about 0.1% to about 1% by weight of the epoxy resin composition.
  • the release agent may use one or more selected from the group consisting of paraffin wax, ester wax, higher fatty acid, higher fatty acid metal salt, natural fatty acid and natural fatty acid metal salt.
  • the release agent may be included in about 0.05% to about 1% by weight of the epoxy resin composition.
  • the stress relieving agent may use one or more selected from the group consisting of modified silicone oils, silicone elastomers, silicone powders and silicone resins, but is not limited thereto.
  • the stress relieving agent is preferably contained in about 0% to about 6.5% by weight, for example from about 0% to about 1% by weight, for example from about 0.1% to about 1% by weight, in the epoxy resin composition. It may be contained, or both may be contained.
  • the modified silicone oil is preferably a silicone polymer having excellent heat resistance, and the total epoxy resin composition by mixing one or two or more kinds of a silicone oil having an epoxy functional group, a silicone oil having an amine functional group, and a silicone oil having a carboxyl functional group.
  • the silicon powder has a central particle diameter of about 15 ⁇ m or less, which does not act as a cause of the deterioration of moldability, and is about 0 wt% to about 5 wt%, for example, about 0.1 wt% to the total resin composition.
  • the colorant may be included in carbon black or the like, about 0.1% to about 1% by weight based on the total composition.
  • the additive may be included in about 0.1% to about 10% by weight, such as about 0.1% to about 3% by weight in the epoxy resin composition.
  • the epoxy resin composition is curable even at low temperatures, for example, the curing start temperature may be about 80 ° C to about 130 ° C. In the above range, there is an advantage that the curing proceeds sufficiently even at low temperatures.
  • the epoxy resin composition has a high storage stability by including the compound of Formula 1 as a curing catalyst, and even though the epoxy resin composition is stored at a predetermined range of temperature for a predetermined time, curing does not proceed, and thus the change in viscosity of the epoxy resin composition is low.
  • the epoxy resin composition may have a viscosity change rate of about 20% or less, for example about 10% or less, for example about 0% to about 10%
  • Viscosity Change Rate ⁇ B-A ⁇ / A x 100
  • A is the viscosity (unit: cPs) measured at 25 °C of the epoxy resin composition
  • B is the viscosity (unit: cPs) measured at 25 °C after leaving the epoxy resin composition for 48 hours at 25 °C conditions) to be).
  • A may be between about 100 cPs and about 3000 cPs
  • B may be between about 100 cPs and about 3000 cPs.
  • the epoxy resin composition may have a flow length of about 55 inches to about 75 inches, specifically about 60 inches to about 72 inches, at 150 ° C. and 70 kgf / cm 2 at EMMI-1-66. In the above range, it can be used for the use of the epoxy resin composition.
  • the method for producing the epoxy resin composition is not particularly limited, but the components contained in the composition are uniformly mixed using a Henschel mixer or a Lodige mixer, and then melt kneaded at a roll mill or kneader at 90 ° C to 120 ° C. It can be prepared through the cooling and grinding process.
  • a method of sealing a semiconductor device using an epoxy resin composition a low pressure transfer molding method may be most commonly used. However, it can also be molded by an injection molding method or a casting method.
  • a semiconductor device of a copper lead frame, an iron lead frame, or a lead frame pre-plated with at least one material selected from the group consisting of palladium with nickel and copper on the lead frame, or an organic laminate frame can be manufactured. Can be.
  • the sealed semiconductor device of the present invention may be sealed using the epoxy resin composition for sealing the semiconductor device.
  • the method of sealing a semiconductor element using an epoxy resin composition can use a conventionally well-known method.
  • 1 is a cross-sectional view of a semiconductor device in accordance with an embodiment of the present invention.
  • the semiconductor device 100 includes a wiring board 10, a bump 30 formed on the wiring board 10, and a semiconductor chip 20 formed on the bump 30, and the wiring board 10.
  • the gap between the semiconductor chip 20 and the semiconductor chip 20 may be sealed with the epoxy resin composition 40.
  • 2 is a cross-sectional view of a semiconductor device of another embodiment of the present invention. Referring to FIG.
  • the semiconductor device 200 includes a wiring board 10, a bump 30 formed on the wiring board 10, and a semiconductor chip 20 formed on the bump 30, and the wiring board 10.
  • the gap between the semiconductor chip 20 and the entire upper surface of the semiconductor chip 30 may be encapsulated with the epoxy resin composition 40.
  • the sizes of the wiring boards, bumps, and semiconductor chips, and the number of bumps may be changed as shown in the drawings.
  • Example 1 Except that 43.3g of triphenylbenzylphosphonium bromide and 55g of ethylenediaminetetraacetic acid chelated iron (III) sodium salt were used, 48.2g of white pale red powder of Chemical Formula 7 was obtained in the same manner as in Example 1.
  • Example 1 Except that 41.9 g of Tetrabutylphosphonium bromide and 30 g of Ethylenediaminetetraacetic acid chelated iron (III) sodium salt were obtained, 42.2 g of a sticky red solid component of the following Chemical Formula 8 was obtained in the same manner as in Example 1.
  • Example 1 Except that 32.2 g of Tetraoctylammonium bromide and 55 g of ethyldiaminetetraacetic acid chelated iron (III) sodium salt were used, 36.8 g of a sticky yellow solid of the following Chemical Formula 9 was obtained in the same manner as in Example 1.
  • Example 1 except that 41.9 g of Tetraphenylphosphonium bromide and 52 g of Ethylenediaminetetraacetic acid chelated copper (II) sodium salt were used, 58 g of a purple solid of Chemical Formula 10 was obtained in the same manner as in Example 1.
  • a coupling agent a mixture of 0.2 parts by weight of Dow Corning Chemical), 0.3 parts by weight of carnauba wax as a release agent, and 0.4 parts by weight of carbon black (MA-600, Matsusita Chemical) as a colorant, using a Hansel mixer.
  • the mixture was uniformly obtained to obtain a powdery composition.
  • the melt kneaded at 95 °C using a continuous kneader, and then cooled and ground to prepare an epoxy resin composition for sealing semiconductor elements.
  • Example 1 an epoxy resin composition for semiconductor element sealing was prepared in the same manner except for using the compound (unit: parts by weight) of Table 1 in place of the compound of Preparation Example 1.
  • An epoxy resin composition for sealing semiconductor elements was prepared in the same manner as in Example 1, except that triphenylphosphine and 1,4-benzoquinone adduct were used instead of the compound of Preparation Example 1.
  • An epoxy resin composition for sealing a semiconductor device was prepared in the same manner as in Example 1, except that tetraphenylphosphonium tetraphenylborate was used instead of the compound of Preparation Example 1.
  • Curing catalyst adduct of triphenylphosphine and 1,4-benzoquinone
  • Cure Shrinkage ⁇ C-D ⁇ / C x 100
  • C is the length of the specimen obtained by the transfer molding press epoxy resin composition at 175 °C, 70kgf / cm 2
  • D is obtained after curing the specimen after 4 hours at 170 °C ⁇ 180 °C, and cooled Length of the specimen).
  • Hygroscopicity (%): With respect to the epoxy resin composition under conditions of a mold temperature of 170 ° C to 180 ° C, a clamp pressure of 70kgf / cm 2 , a conveying pressure of 1000psi, a conveying speed of 0.5cm / s to 1cm / s, and a curing time of 120 seconds. Molding gave a cured specimen in the form of a disk having a diameter of 50 mm and a thickness of 1.0 mm. After the obtained specimens were put into an oven at 170 ° C. to 180 ° C. for 4 hours, they were post-cured (PMC: post molding cure) for 4 hours, then left at 85 ° C. and 85 RH% relative humidity for 168 hours, and then the weight change due to moisture absorption was measured. The moisture absorptivity was calculated by Equation 3.
  • Hygroscopicity (weight of test piece after moisture absorption-weight of test piece before moisture absorption) ⁇ (weight of test piece before moisture absorption) x 100
  • Adhesion force (kgf) A copper metal element is prepared to the epoxy resin composition in a standard suitable for the adhesion measurement mold, and the resin composition prepared in the above Examples and Comparative Examples is prepared on the prepared test piece with a mold temperature of 170 ° C to 180 ° C. And the pressure of the clamp pressure of 70kgf / cm 2 , the feed pressure of 1000psi, the feed rate of 0.5cm / s ⁇ 1cm / s, the curing time 120 seconds to obtain a cured specimen. The obtained specimens were placed in an oven at 170 ° C. to 180 ° C. and then post-cured (PMC) for 4 hours. At this time, the area of the epoxy resin composition in contact with the specimen is 40 ⁇ 1mm 2 , the adhesion measurement was measured by the average value after measuring by using a universal testing machine (UTM) for 12 specimens for each measurement process.
  • UPM universal testing machine
  • Shore-D MPS (Multi Plunger System) equipped with a mold for an eTQFP (exposed thin quad flat package) package having a width of 24 mm, a length of 24 mm, and a thickness of 1 mm containing a copper metal element for an epoxy resin composition.
  • the epoxy resin composition for sealing a semiconductor device of the present invention has a high fluidity and a low curing shrinkage, and has a high curing strength even in a short curing time compared to the conventional phosphonium catalyst when comparing the curing degree for each curing time It was confirmed that. In addition, the rate of change of viscosity after 48 hr was also small, confirming that it had high storage stability. On the other hand, the composition of the comparative example was low storage stability, high curing shrinkage rate, low fluidity, it was confirmed that the effect of the present invention when used in the package.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

본 발명은 에폭시수지, 경화제, 무기충전제 및 경화촉매를 포함하고, 상기 경화촉매는 하기 화학식 1의 화합물을 포함하는, 반도체 소자 밀봉용 에폭시수지 조성물 및 이를 사용하여 밀봉된 반도체 소자에 관한 것이다.

Description

반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
본 발명은 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자에 관한 것이다.
IC(integrated circuit), LSI(large scale integration) 등의 반도체 소자를 포장하고 반도체 장치를 얻는 방법으로는 에폭시 수지 조성물의 트랜스퍼(transfer) 성형이 저비용, 대량 생산에 적합하다는 점에서 널리 사용되고 있다. 에폭시 수지나 경화제인 페놀 수지의 개량에 의하여 반도체 장치의 특성 및 신뢰성의 향상이 도모될 수 있다. 에폭시 수지 조성물은 에폭시 수지, 경화제, 경화촉매 등을 포함할 수 있다.
경화촉매로 3차 아민 등의 아민 화합물, 이미다졸류 화합물, 포스핀류 화합물, 포스포늄염 등이 사용되고 있고, 구체적으로 트리페닐포스핀과 1,4-벤조퀴논의 부가 반응물이 사용되고 있다. 이들 경화촉매는 경화 촉진 효과가 비교적 저온에서 나타나게 한다. 예를 들면, 경화 전의 에폭시 수지 조성물을 다른 성분과 혼합할 때에 발생하는 열이나 외부로부터 더해지는 열에 의해 경화 반응이 일부 진행되며 혼합 종료 후, 이 에폭시 수지 조성물을 상온으로 보관할 때에도 경화 반응은 한층 더 진행될 수 있다. 이 부분적인 경화 반응의 진행은 조성물이 액체인 경우에는 점도의 상승이나 유동성의 저하를 가져올 수 있고, 조성물이 고체인 경우에는 점성을 발현시킬 수 있으며, 이러한 상태의 변화는 에폭시 수지 조성물 내에서 균일하게 생기는 것이 아니기 때문에, 조성물의 각 부분의 경화 시의 특성이 달라질 수 있다. 이러한 부분적인 변화는 경화 반응을 고온으로 진행시켜 열경화성 에폭시 수지 조성 물건을 성형할 때에 성형물의 기계적, 전기적 혹은 화학적 특성의 저하를 가져온다. 따라서, 이러한 경화 촉진제를 이용할 때 각 성분 혼합 시간의 엄밀한 품질관리, 저온으로의 보관이나 운반, 성형 조건의 엄밀한 관리가 필수적이기 때문에 조작이 대단히 번잡하게 된다.
이와 관련하여, 한국등록특허 제10-0290448호는 바이사이클릭 아미딘의 카르복시산염인 에폭시 수지 경화 촉매를 개시하고 있다.
본 발명의 목적은 저온에서도 경화 가능한 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하는 것이다.
본 발명의 다른 목적은 저온에서 경화반응이 빠르게 진행되고, 유동성이 저하되지 않고, 경화 강도가 양호한 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 원하는 경화 온도가 될 때에만 경화를 촉매시키고 원하는 경화 온도가 아닐 때에는 경화 촉매 활성이 없게 하여 장기간 저장안정성이 높은 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 소정 범위의 시간 및 온도 조건에서도 점도 변화를 최소화하여 고온에서 경화 반응시켰을 때 유동성 저하에 따른 성형성 저하, 성형 제품의 기계적, 전기적, 화학적 특성이 저하가 없게 하는 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하는 것이다.
본 발명의 반도체 소자 밀봉용 에폭시 수지 조성물은 에폭시 수지, 경화제, 무기충전제, 및 경화촉매를 포함하고, 상기 경화촉매는 하기 화학식 1의 화합물을 포함할 수 있다:
[화학식 1]
Figure PCTKR2014003845-appb-I000001
(상기 화학식 1에서, 상기 R1, R2, R3, R4, Y, W, M, m 및 n은 하기 상세한 설명에서 정의한 바와 같다).
본 발명의 반도체 소자는 상기 반도체 소자 밀봉용 에폭시 수지 조성물을 사용하여 밀봉될 수 있다.
본 발명은 저온에서도 경화 가능한 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하였다.
본 발명은 저온에서 경화반응이 빠르게 진행되고, 유동성이 저하되지 않고, 경화 강도가 양호한 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하였다.
본 발명은 원하는 경화 온도가 될 때에만 경화를 촉매시키고 원하는 경화 온도가 아닐 때에는 경화 촉매 활성이 없게 하여 장기간 저장안정성이 높은 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하였다.
본 발명은 소정 범위의 시간 및 온도 조건에서도 점도 변화를 최소화하여 고온에서 경화 반응시켰을 때 유동성 저하에 따른 성형성 저하, 성형 제품의 기계적, 전기적, 화학적 특성이 저하가 없게 하는 반도체 소자 밀봉용 에폭시 수지 조성물을 제공하였다.
도 1은 본 발명 일 실시예의 반도체 소자의 단면도이다.
도 2는 본 발명 다른 실시예의 반도체 소자의 단면도이다.
첨부한 도면을 참고하여 실시예에 의해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다.
본 명세서에서 “치환된”은 해당 작용기의 수소 원자가 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 6 내지 10의 아릴기, 탄소수 7 내지 12의 아릴알킬기, 할로겐, 시아노기, 또는 수산기로 치환됨을 의미한다.
본 발명 일 실시예의 반도체 소자 밀봉용 에폭시수지 조성물은 에폭시수지, 경화제, 무기충전제 및 경화 촉매를 포함하고, 경화 촉매는 포스포늄계 또는 암모늄계 양이온과, 금속과 리간드(ligand)가 킬레이트 결합된 음이온을 포함하는 염을 포함할 수 있다.
상기 양이온과 음이온을 포함하는 염은 에폭시수지 조성물에서 경화 촉매로 사용될 수 있는데, 열 등의 외부 에너지를 받게 되면, 예를 들면 약 80℃ 내지 약 120℃에서 양이온과 음이온으로 분해되고, 생성된 양이온과 음이온은 각각 기존 촉매에 비하여 에폭시수지의 경화 반응시 짧은 시간에도 우수한 경화도를 나타내게 할 수 있고, 에폭시수지 조성물의 저온 경화성과 저장 안정성을 높일 수 있다. 상기 “저장 안정성”은 원하는 경화 온도가 될 때에만 경화를 촉매시키고 원하는 경화 온도가 아닐 때에는 경화 촉매 활성이 없는 활성으로서, 그 결과 점도 변화 없이도 에폭시수지 조성물을 장시간 동안 저장할 수 있게 한다. 일반적으로 경화 반응의 진행은 에폭시수지 조성물이 액체인 경우 점도의 상승, 유동성 저하를 가져올 수 있고, 에폭시수지 조성물이 고체인 경우 점성을 발현시킬 수 있다.
구체적으로, 상기 양이온과 음이온을 포함하는 염은 하기 화학식 1로 표시될 수 있다:
[화학식 1]
Figure PCTKR2014003845-appb-I000002
(상기 화학식 1에서, A는 N 또는 P이고,
상기 R1, R2, R3 및 R4는 각각 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 20의 아릴알킬기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬기, 또는 치환 또는 비치환된 탄소수 4 내지 20의 헤테로아릴기이고,
상기 M은 Fe, Cu, Zn 또는 Co이고,
상기 W는 H2O 또는 NH3이고,
상기 Y는 상기 화학식 1 중 Mn+와 킬레이트 결합 형성 가능한 유기 작용기이고,
상기 m, n 및 k는 각각 정수, m>n>0, 2≤m≤5, 1≤n≤3, 및 0≤k≤5이다).
구체적으로, 상기 n은 2 또는 3이 될 수 있고, 상기 m은 2, 3 또는 4가 될 수 있다.
일 구체예에서, 상기 Y는 하기 화학식 2로 표시될 수 있다:
[화학식 2]
Figure PCTKR2014003845-appb-I000003
(상기 화학식 2에서, 상기 X는 치환 또는 비치환된 탄소수 1 내지 12의 알킬렌기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고,
상기 R5, R6, R7 및 R8은 각각 독립적으로 탄소수 1 내지 3의 알킬렌기, 또는 탄소수 6 내지 10의 아릴렌기이고,
상기 Y1, Y2, Y3 및 Y4는 각각 독립적으로 카르복실레이트(COO-), *-NRaRb(상기에서, *는 연결 부위이고, Ra, Rb는 각각 독립적으로 수소 또는 탄소수 1 내지 5의 알킬기이다), 또는 *-R10-O-(상기에서, *는 연결 부위이고, R10은 탄소수 1 내지 5의 알킬렌기 또는 탄소수 6 내지 10의 아릴렌기이다)이고,
상기 Y1, Y2, Y3 및 Y4 중 하나 이상은 카르복실레이트 또는 *-R10-O-이다).
보다 구체적으로, Y는 에틸렌디아민테트라아세트산(EDTA)의 음이온이 될 수 있다.
다른 구체예에서, Y는 디에틸렌트리아민펜타아세트산, 니트릴로트리아세트산, 글루타믹-N,N-디아세트산, 메틸글리신 N,N-디아세트산, 에틸렌글리콜-비스(2-아미노에틸)-N,N,N',N'-테트라아세트산, 1,2-비스(o-아미노페녹시)에탄-N,N,N',N'-테트라아세트산, 시클로헥산디아민테트라아세트산, 트리에틸렌테트라아민헥사아세트산, N-(2-히드록시에틸)에틸렌디아민-N,N',N'-트리아세트산, 에틸렌디아민테트라메틸렌술폰산, 디에틸렌트리아민펜타메틸렌술폰산, 아미노 트리메틸렌술폰산, 에틸렌디아민테트라메틸렌포스폰산, 디에틸렌트리아민펜타메틸렌포스폰산, 아미노트리메틸렌포스폰산의 음이온이 될 수 있다.
화학식 1의 화합물은 포스포늄계 또는 암모늄계 양이온과 금속과 리간드가 킬레이트 결합된 음이온을 포함하는 염으로서, 구체적으로 화학식 1에서 상기 Mn+는 Y, W 중 하나 이상과 킬레이트 결합할 수 있으며, 반드시 하나 이상의 Y와 킬레이트 결합을 하고 있다. 보다 구체적으로, 화학식 1의 화합물의 음이온은 하기 화학식 3으로 표시될 수 있다:
[화학식 3]
Figure PCTKR2014003845-appb-I000004
(상기 화학식 3에서, 상기 M, n, R5, R6, R7, R8, Y1, Y2, Y3, Y4 및 X는 상기 화학식 1과 2에서 정의한 바와 같다).
상기 화학식 1의 화합물은 통상의 방법으로 제조될 수 있다. 예를 들면, 상기 화학식 1 중 포스포늄계 또는 암모늄계 양이온 함유 화합물과, 상기 화학식 1 중 금속 킬레이트된 음이온 함유 화합물을 반응시켜 제조될 수 있다.
포스포늄계 또는 암모늄계 양이온 함유 화합물은 각각 포스포늄계 또는 암모늄계 양이온과 할로겐 음이온의 염으로서, 할로겐은 플루오르, 염소, 브롬, 또는 요오드가 될 수 있다. 포스포늄계 또는 암모늄계 양이온 함유 화합물은 용매 하에 포스포늄 또는 알킬아민 화합물과 알킬 할라이드, 아릴 할라이드 또는 아랄킬 할라이드 등을 결합시켜 제조될 수 있다. 금속 킬레이트된 음이온 함유 화합물은 금속 킬레이트된 음이온과 알칼리금속 또는 알칼리토금속 양이온의 염으로서, 통상의 방법으로 제조될 수 있다.
포스포늄계 또는 암모늄계 양이온 함유 화합물과 금속 킬레이트된 음이온 함유 화합물의 반응은 물, 알코올 등의 수계 용매, 또는 이들의 혼합물에서 수행될 수 있고, 약 10℃ 내지 약 40℃, 예를 들면 약 20℃ 내지 약 30℃에서 약 1 시간 내지 약 30 시간 예를 들면 약 20 시간 내지 약 30 시간 수행될 수 있고, 포스포늄계 또는 암모늄계 양이온 함유 화합물: 금속 킬레이트된 음이온 함유 화합물은 약 1:0.9 내지 약 1:2의 몰수비로 반응할 수 있다. 상기 범위에서, 화학식 1의 화합물의 합성이 가능할 수 있다.
화학식 1의 화합물은 에폭시 수지 조성물 중 약 0.01 중량% 내지 약 5 중량%, 구체적으로 약 0.01 중량% 내지 약 2 중량%, 더 구체적으로 약 0.05 중량% 내지 약 1.0 중량%로 포함될 수 있다. 상기 범위에서, 경화 반응 시간이 지연되지 않고, 조성물의 유동성이 확보될 수 있다.
에폭시 수지는 에폭시 수지 조성물 분야에서 통상적으로 사용되는 에폭시 수지를 사용할 수 있는데, 구체적으로 에폭시 수지는 분자 중에 2개 이상의 에폭시기를 갖는 것이라면 특별히 제한되지 않으며, 액상 또는 고상의, 모노머, 올리고머 및 폴리머 중 하나 이상을 포함할 수 있다.
구체예에서, 에폭시 수지는 페놀아랄킬형 에폭시 수지, 오르쏘크레졸노볼락형 에폭시 수지, 페놀 또는 알킬 페놀류와 히드록시벤즈알데히드와의 축합물을 에폭시화하여 얻어지는 에폭시 수지, 페놀노볼락형 에폭시 수지, 크레졸노볼락형 에폭시 수지, 다관능형 에폭시 수지, 나프톨노볼락형 에폭시 수지, 비스페놀A/비스페놀F/비스페놀AD의 노볼락형 에폭시 수지, 비스페놀A/비스페놀F/비스페놀AD의 글리시딜에테르, 비스히드록시비페닐계 에폭시 수지, 디시클로펜타디엔계 에폭시 수지, 비페닐형 에폭시 수지, 다방향족 변성 에폭시 수지, 비스페놀 A형 에폭시 수지, 나프탈렌계 에폭시 수지 중 하나 이상을 포함할 수 있다.
일 구체예에서, 에폭시 수지는 하기 화학식 4의 비페닐형 에폭시 수지가 될 수 있다:
[화학식 4]
Figure PCTKR2014003845-appb-I000005
(상기 화학식 4에서, 상기 R은 탄소수 1 내지 4의 알킬기, 상기 n의 평균치는 0 내지 7이다).
에폭시 수지는 조성물 중 고형분 기준으로 약 2 중량% 내지 약 17 중량%, 예를 들면 약 3 중량% 내지 약 15중량%, 예를 들면 약 3 중량% 내지 약 12 중량%로 포함될 수 있다. 상기 범위에서, 조성물의 경화성이 저하되지 않을 수 있다.
경화제는 페놀아랄킬형 페놀수지,페놀노볼락형 페놀수지, 자일록형 페놀수지, 크레졸 노볼락형 페놀수지, 나프톨형 페놀수지, 테르펜형 페놀수지, 다관능형 페놀수지, 디시클로펜타디엔계 페놀수지, 비스페놀 A와 레졸로부터 합성된 노볼락형페놀수지, 트리스(하이드록시페닐)메탄, 디하이드록시바이페닐을 포함하는 다가 페놀 화합물, 무수 말레인산및무수프탈산을 포함하는산무수물, 메타페닐렌디아민, 디아미노디페닐메탄, 디아미노디페닐설폰등의 방향족 아민등을 들수 있다. 바람직하게는, 경화제는 1개 이상의 수산기를 갖는 페놀수지일 수 있다.
일 구체예에서, 경화제는 하기 화학식 5의 자일록형 페놀수지를 포함할 수 있다:
[화학식 5]
Figure PCTKR2014003845-appb-I000006
(상기 화학식 5에서, 상기 n의 평균치는 0 내지 7이다.)
경화제는 에폭시 수지 조성물 중 고형분 기준으로 약 0.5 중량% 내지 약 13 중량%, 예를 들면 약 1 중량% 내지 약 10 중량%, 예를 들면 약 2 중량% 내지 약 8 중량%로 포함될 수 있다. 상기 범위에서, 조성물의 경화성이 저하되지 않을 수 있다.
조성물 중 경화촉매에 대한 경화제의 중량비는 약 5 내지 약 15가 될 수 있다. 상기 범위에서, 조성물의 경화성이 저하되지 않을 수 있다.
무기충전제는 조성물의기계적 물성의 향상과 저응력화를 높일 수 있다. 무기충전제의 예로는 용융실리카, 결정성실리카, 탄산칼슘, 탄산마그네슘, 알루미나, 마그네시아, 클레이(clay), 탈크(talc), 규산칼슘, 산화티탄, 산화안티몬, 유리섬유 중 하나 이상을 포함할 수 있다.
바람직하게는 저응력화를 위해서 선팽창계수가 낮은 용융실리카를 사용한다. 용융실리카는 진비중이 약 2.3이하인 비결정성 실리카를 의미하는 것으로 결정성 실리카를 용융하여 만들거나 다양한 원료로부터 합성한 비결정성 실리카도 포함된다. 용융실리카의 형상 및 입경은 특별히 한정되지는 않지만, 평균 입경 약 5 ㎛ 내지 약 30 ㎛의 구상 용융실리카를 약 50 중량% 내지 약 99 중량%, 평균 입경 약 0.001 ㎛ 내지 약 1 ㎛의 구상 용융실리카를 약 1 중량% 내지 약 50 중량%를 포함한 용융실리카혼합물을전체 충전제에대하여약 40 중량% 내지 약 100 중량%가 되도록포함하는 것이 좋다. 또한, 용도에 맞춰 그 최대 입경을 약 45㎛, 약 55㎛ 및 약 75㎛ 중 어느 하나로 조정해서 사용할 수가 있다.상기 구상 용융실리카에는 도전성의 카본이 실리카 표면에 이물질로서 포함되는 경우가 있으나 극성 이물질의 혼입이 적은 물질을 선택하는 것도 중요하다.
무기충전제의 사용량은 성형성, 저응력성, 및 고온강도 등의 요구 물성에 따라 다르다. 구체예에서는 무기충전제는 에폭시 수지 조성물 중 약 70 중량% 내지 약 95 중량%, 예를 들면 약 75 중량% 내지 약 92 중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 유동성 및 신뢰성을 확보할 수 있다.
에폭시 수지 조성물은 에폭시 수지와 경화제의 반응을 촉매하고, 피리디늄 양이온을 포함하지 않는 비-피리디늄계 경화 촉매를 더 포함할 수 있다. 비-피리디늄계 경화촉매는 3급 아민, 유기금속화합물, 유기인화합물, 이미다졸, 및 붕소화합물 등이 사용 가능하다. 3급 아민에는 벤질디메틸아민, 트리에탄올아민, 트리에틸렌디아민, 디에틸아미노에탄올, 트리(디메틸아미노메틸)페놀, 2-2-(디메틸아미노메틸)페놀, 2,4,6-트리스(디아미노메틸)페놀과 트리-2-에틸헥실산염 등이 있다. 유기 금속화합물에는 크로뮴아세틸아세토네이트, 징크아세틸아세토네이트, 니켈아세틸아세토네이트등이 있다. 유기인화합물에는 트리스-4-메톡시포스핀, 페닐포스핀, 디페닐포스핀, 트리페닐포스핀, 트리페닐포스핀트리페닐보란, 트리페닐포스핀-1,4-벤조퀴논부가물 등이 있다. 이미다졸류에는 2-메틸이미다졸,2-페닐이미다졸,2-아미노이미다졸, 2-메틸-1-비닐이미다졸, 2-에틸-4-메틸이미다졸, 2-헵타데실이미다졸등이 있다. 붕소화합물에는 트리페닐포스핀 테트라페닐보레이트, 테트라페닐보론염, 트리플루오로보란-n-헥실아민, 트리플루오로보란모노에틸아민, 테트라플루오로보란트리에틸아민, 테트라플루오로보란아민 등이 있다.이외에도 1,5-디아자바이시클로[4.3.0]논-5-엔(1,5-diazabicyclo[4.3.0]non-5-ene: DBN), 1,8-디아자바이시클로[5.4.0]운덱-7-엔(1,8-diazabicyclo[5.4.0]undec-7-ene: DBU) 및페놀노볼락 수지염등을 사용할 수 있다. 특히 바람직한경화촉매는 유기인화합물, 붕소화합물, 아민계, 또는 이미다졸계 경화촉매를 단독 혹은 혼합하여 사용하는 것을 들 수 있다. 경화촉매는 에폭시 수지 또는 경화제와 선 반응하여 만든 부가물을 사용하는 것도 가능하다. 전체 경화촉매 중 상기 화학식 1의 화합물은 약 10 중량% 내지 약 100 중량%, 예를 들면 약 10 중량% 내지 약 70 중량%로 포함될 수 있고, 상기 범위에서 경화 반응 시간이 지연되지 않고, 조성물의 유동성이 확보될 수 있다. 경화촉매는 에폭시 수지 조성물 중 약 0.01 중량% 내지 약 5 중량%, 구체적으로 약 0.01 중량% 내지 약 3 중량%, 더 구체적으로 약 0.05 중량% 내지 약 1.0 중량%로 포함될 수 있다. 상기 범위에서, 경화 반응 시간이 지연되지 않고, 조성물의 유동성이 확보될 수 있다.
본 발명의 조성물은 조성물에 포함되는 통상의 첨가제를 더 포함할 수 있다. 구체예에서, 첨가제는 커플링제, 이형제, 응력 완화제, 가교 증진제, 레벨링제, 착색제 중 하나 이상을 포함할 수 있다.
커플링제는 에폭시실란, 아미노실란, 머캡토실란, 알킬실란 및 알콕시실란으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있지만, 이에 제한되지 않는다. 커플링제는 에폭시 수지 조성물 중 약 0.1 중량% 내지 약 1 중량%로 포함될 수 있다.
이형제는 파라핀계 왁스, 에스테르계 왁스, 고급 지방산, 고급 지방산 금속염, 천연 지방산 및 천연 지방산 금속염으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다. 이형제는 에폭시 수지 조성물 중 약 0.05 중량% 내지 약 1 중량%로 포함될 수 있다.
응력 완화제는 변성 실리콘 오일, 실리콘 엘라스토머, 실리콘 파우더 및 실리콘 레진으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있지만, 이에 제한되지 않는다. 응력 완화제는 에폭시 수지 조성물 중 약 0 중량% 내지 약 6.5 중량%, 예를 들면 약 0 중량% 내지 약 1 중량%, 예를 들면 약 0.1 중량% 내지 약 1 중량%로 함유되는 것이 바람직한데, 선택적으로 함유될 수도 있고, 양자 모두 함유될 수도 있다. 이때, 변성 실리콘 오일로는 내열성이 우수한 실리콘 중합체가 좋으며, 에폭시 관능기를 갖는 실리콘 오일, 아민 관능기를 갖는 실리콘 오일 및 카르복실 관능기를 갖는 실리콘 오일 등을 1종 또는 2종 이상 혼합하여 전체 에폭시 수지 조성물에 대해 약 0.05 중량% 내지 약 1.5 중량% 사용할 수 있다. 다만, 실리콘 오일을 약 1.5 중량% 이상 초과할 경우에는 표면 오염이 발생하기 쉽고 레진 블리드(bleed)가 길어질 우려가 있으며, 약 0.05 중량% 미만으로 사용 시에는 충분한 저 탄성률을 얻을 수가 없게 되는 문제점이 있을 수 있다. 또한, 실리콘 파우더는 중심 입경이 약 15 ㎛ 이하인 것이 성형성 저하의 원인으로 작용하지 않기에 특히 바람직하며, 전체 수지 조성물에 대하여 약 0 중량% 내지 약 5 중량%, 예를 들면 약 0.1 중량% 내지 약 5 중량%로 함유될 수 있다. 착색제는 카본블랙 등으로, 전체 조성물에 대해 약 0.1 중량% 내지 약 1 중량%로 포함될 수 있다.
첨가제는 에폭시 수지 조성물 중 약 0.1 중량% 내지 약 10 중량%, 예를 들면 약 0.1 중량% 내지 약 3 중량%로 포함될 수 있다.
에폭시 수지 조성물은 저온에서도 경화가능하고, 예를 들면 경화개시온도는 약 80℃ 내지 약 130℃가 될 수 있다. 상기 범위에서, 저온에서도 경화가 충분히 진행되는 장점이 있다.
에폭시 수지 조성물은 화학식 1의 화합물을 경화촉매로 포함함으로써 저장안정성이 높아, 소정 범위의 온도에서 소정 시간 저장하더라도 경화가 진행되지 않아 에폭시 수지 조성물의 점도의 변화가 낮다. 일 구체예에 따르면, 에폭시 수지 조성물은 하기 식 1의 점도변화율이 약 20% 이하, 예를 들면 약 10% 이하, 예를 들면 약 0% 내지 약 10%가 될 수 있다:
[식 1]
점도변화율 = │B-A│/ A x 100
(상기 식 1에서, A는 에폭시 수지 조성물의 25℃에서 측정한 점도(단위:cPs), B는 에폭시 수지 조성물을 25℃ 조건에서 48시간 방치한 후 25℃에서 측정한 점도(단위:cPs)이다).
상기 범위에서, 저장안정성이 높아 원하는 경화 온도가 될 때에만 경화를 촉매시키고 원하는 경화 온도가 아닐 때에는 경화 촉매 활성이 없고, 실제로 고온에서 경화 반응시켰을 때 유동성 저하에 따른 성형성 저하, 성형 제품의 기계적, 전기적, 화학적 특성 저하가 없을 수 있다. 구체예에서, A는 약 100cPs 내지 약 3000cPs, B는 약 100cPs 내지 약 3000cPs가 될 수 있다.
에폭시 수지 조성물은 EMMI-1-66에서 150℃, 70kgf/cm2에서 트랜스퍼 몰딩 프레스에 의한 유동길이가 약 55 inch 내지 약 75 inch, 구체적으로 약 60 inch 내지 약 72 inch가 될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 용도로 사용될 수 있다.
에폭시 수지 조성물을 제조하는 방법은 특별히 제한되지 않지만, 조성물에 포함되는 각 구성성분을 헨셀 믹서나 뢰디게 믹서를 이용하여 균일하게 혼합한 후, 롤 밀이나 니이더로 90℃ 내지 120℃에서 용융 혼련하고, 냉각 및 분쇄 과정을 거쳐 제조될 수 있다. 에폭시 수지 조성물을 이용하여 반도체 소자를 밀봉하는 방법은 저압 트랜스퍼 성형 방법이 가장 일반적으로 사용될 수 있다. 그러나, 인젝션(injection) 성형 방법이나 캐스팅(casting) 방법 등의 방법으로도 성형될 수 있다. 상기 방법에 의해 구리 리드프레임, 철 리드프레임, 또는 상기 리드프레임에 니켈 및 구리로 팔라듐으로 이루어진 군으로부터 선택되는 1종 이상의 물질로 프리플레이팅된 리드프레임, 또는 유기계 라미네이트 프레임의 반도체 소자를 제조할 수 있다.
본 발명의 밀봉된 반도체 소자는 상기 반도체 소자 밀봉용 에폭시 수지 조성물을 사용하여 밀봉된 것일 수 있다. 에폭시 수지 조성물을 사용하여 반도체 소자를 밀봉하는 방법은 통상적으로 알려진 방법을 사용할 수 있다. 도 1은 본 발명 일 실시예의 반도체 소자의 단면도이다. 도 1을 참조하면, 반도체 소자(100)는 배선기판(10), 배선기판(10) 위에 형성된 범프(30), 범프(30) 위에 형성된 반도체칩(20)을 포함하고, 배선기판(10)과 반도체칩(20) 간의 갭은 에폭시 수지 조성물(40)로 봉지될 수 있다. 도 2는 본 발명 다른 실시예의 반도체 소자의 단면도이다. 도 2를 참조하면, 반도체 소자(200)는 배선기판(10), 배선기판(10) 위에 형성된 범프(30), 범프(30) 위에 형성된 반도체칩(20)을 포함하고, 배선기판(10)과 반도체칩(20) 간의 갭과 반도체칩(30) 상부면 전체가 에폭시 수지 조성물(40)로 봉지될 수 있다. 도 1 내지 도 2에서 배선기판, 범프, 반도체 칩의 각각의 크기, 범프의 개수는 임의의 도시된 것으로서, 변경될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
제조예 1
합성은 Chem. commun. 2011, vol47, pp2300~2302를 참고하였다.
Tetraphenylphosphonium bromide 41.9g과 Ethylenediaminetetraacetic acid chelated iron(III) sodium salt 55g을 ethanol 200mL과 증류수 200mL에 각각 녹인 후, 두 용액을 혼합하여 25℃에서 24시간 동안 반응을 진행시켰다. 그 후 ethanol과 물을 감압 증류하여 제거하고 다시 dichloromethane을 넣고 25℃에서 방치하여 생성되는 고체를 걸러내었다. 이어서 Dichloromethane을 감압증류하여 하기 화학식 6의 pale red powder 54.0g을 얻었다.
[화학식 6]
Figure PCTKR2014003845-appb-I000007
제조예 2
실시예 1에서, triphenylbenzylphosphonium bromide 43.3g과Ethylenediaminetetraacetic acid chelated iron(III) sodium salt 55g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하기 화학식 7의 흰색 pale red powder 48.2g을 얻었다.
[화학식 7]
Figure PCTKR2014003845-appb-I000008
제조예 3
실시예 1에서, Tetrabutylphosphonium bromide 41.9g과Ethylenediaminetetraacetic acid chelated iron(III) sodium salt 30g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하기 화학식 8의 끈적끈적한 붉은색 고형분 42.2g을 얻었다.
[화학식 8]
Figure PCTKR2014003845-appb-I000009
제조예 4
실시예 1에서, Tetraoctylammonium bromide 32.2g과Ethylenediaminetetraacetic acid chelated iron(III) sodium salt 55g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하기 화학식 9의 끈적끈적한 노란색 고형분 36.8g을 얻었다.
[화학식 9]
Figure PCTKR2014003845-appb-I000010
제조예 5
실시예 1에서, Tetraphenylphosphonium bromide 41.9g과Ethylenediaminetetraacetic acid chelated copper(II) sodium salt 52g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 하기 화학식 10의 보라색 고체 58g을 얻었다.
[화학식 10]
Figure PCTKR2014003845-appb-I000011
실시예 1
비페닐형 에폭시 수지(NC-3000, Nippon Kayaku) 8.2중량부, 자일록형 페놀수지(HE100C-10, Air Water) 4.4중량부, 제조예 1의 화합물 0.3중량부, 평균입경 18㎛의 구상 용융실리카와 평균입경 0.5㎛의 구상 용융실리카의 9:1 중량비의 혼합물인 무기충전제 86중량부, 머캡토프로필트리메톡시실란(KBM-803, Shinetsu) 0.2중량부와 메틸트리메톡시실란(SZ-6070, Dow Corning Chemical)의 0.2중량부의 혼합물인 커플링제 0.4중량부, 이형제로 카르나우바왁스 0.3중량부, 착색제로 카본블랙(MA-600, Matsusita Chemical) 0.4중량부를 혼합하고, 헨젤 믹서를 사용하여 균일하게 혼합하야 분말 상태의 조성물을 얻었다. 그런 다음, 연속 니이더를 이용하여 95℃에서 용융 혼련한 후 냉각 및 분쇄하여 반도체 소자 밀봉용 에폭시 수지 조성물을 제조하였다.
실시예 2 내지 실시예 5
실시예 1에서, 제조예 1의 화합물 대신에 하기 표 1의 화합물(단위: 중량부)을 사용한 것을 제외하고는 동일한 방법으로 반도체 소자 밀봉용 에폭시 수지 조성물을 제조하였다.
비교예 1
실시예 1에서 제조예 1의 화합물 대신에 트리페닐포스핀과 1,4-벤조퀴논의 부가물을 사용한 것을 제외하고는 동일한 방법으로 반도체 소자 밀봉용 에폭시 수지 조성물을 제조하였다.
비교예 2
실시예 1에서 제조예1의 화합물 대신에 테트라페닐포스포늄 테트라페닐보레이트를 사용한 것을 제외하고는 동일한 방법으로 반도체 소자 밀봉용 에폭시 수지 조성물을 제조하였다.
표 1
구분(단위:중량부) 실시예 비교예
1 2 3 4 5 1 2
에폭시 수지 8.2 8.2 8.2 8.2 8.2 8.2 8.2
경화제 4.4 4.4 4.4 4.4 4.4 4.4 4.4
경화촉매 제조예 1 0.3 - - - - - -
제조예 2 - 0.3 - - - - -
제조예 3 - - 0.3 - - - -
제조예 4 - - - 0.3 - - -
제조예 5 - - - - 0.3 - -
경화촉매* - - - - - 0.3 -
경화촉매** - - - - - - 0.3
무기충전제 86 86 86 86 86 86 86
커플링제 KBM-803 0.2 0.2 0.2 0.2 0.2 0.2 0.2
SZ-6070 0.2 0.2 0.2 0.2 0.2 0.2 0.2
이형제 0.3 0.3 0.3 0.3 0.3 0.3 0.3
착색제 0.4 0.4 0.4 0.4 0.4 0.4 0.4
* 경화촉매: 트리페닐포스핀과 1,4-벤조퀴논의 부가물
** 경화촉매: 테트라페닐포스포늄 테트라페닐보레이트
(1) 유동성(inch): 에폭시 수지 조성물에 대해 EMMI-1-66에 준하여 평가용 금형을 사용하여 150℃, 70kgf/cm2에서 트랜스퍼 몰딩 프레스(transfer molding press)를 이용하여 유동 길이를 측정하였다. 측정값이 높을수록 유동성이 우수하다.
(2) 경화 수축율(%): 굴곡 강도 시편 제작용 금형을 사용하여 175℃, 70kgf/cm2에서 트랜스퍼 몰딩 프레스(transfer molding press)를 이용하여 성형시편(125mm x 12.6mm x 6.4mm, 가로x세로x두께)을 얻었다. 얻은 시편을 170℃~180℃의 오븐에 넣어 4시간 동안 후경화(PMC:post molding cure)시킨 다음 냉각한 후 시험편의 길이를 캘리퍼스로 측정하였다. 경화 수축율은 다음과 같은 식 2로부터 계산하였다.
[식 2]
경화수축률 =│C - D│/ C x 100
(상기 식 2에서, C는 에폭시 수지 조성물을 175℃, 70kgf/cm2에서 트랜스퍼 몰딩 프레스하여 얻은 시편의 길이, D는 상기 시편을 170℃~180℃에서 4시간 후경화하고, 냉각시킨 후 얻은 시편의 길이이다).
(3) 유리전이온도(℃): 에폭시 수지 조성물에 대해 열기계 분석기(Thermomechanical Analyzer, TMA)를 이용하여 측정하였다. 이때 TMA는 25℃에서 분당 10℃씩 온도를 상승시켜 300℃까지 측정하는 조건으로 설정하였다.
(4) 흡습율(%): 에폭시 수지 조성물에 대해 금형 온도 170℃~180℃, 클램프 압력 70kgf/cm2, 이송 압력 1000psi, 이송 속도 0.5cm/s~1cm/s, 경화 시간 120초의 조건으로 성형하여 직경 50mm, 두께 1.0mm의 디스크 형태의 경화 시편을 얻었다. 얻은 시편을 170℃~180℃의 오븐에 넣어 4시간 동안 후경화(PMC:post molding cure)시킨 직후 85℃, 85RH% 상대 습도 조건 하에서 168시간 동안 방치시킨 후 흡습에 의한 무게 변화를 측정하여 다음 식 3에 의하여 흡습율을 계산하였다.
[식 3]
흡습율 = (흡습 후 시험편의 무게 - 흡습 전 시험편의 무게)÷(흡습 전 시험편의 무게) x 100
(5) 부착력(kgf): 에폭시 수지 조성물에 대해 구리 금속 소자를 부착 측정용 금형에 맞는 규격으로 준비하고, 준비된 시험편에 상기 실시예와 비교예에서 제조된 수지 조성물을 금형 온도 170℃~180℃, 클램프 압력 70kgf/cm2, 이송 압력 1000psi, 이송 속도 0.5cm/s ~1cm/s, 경화 시간 120초의 조건으로 성형하여 경화 시편을 얻었다. 얻은 시편을 170℃~180℃의 오븐에 넣어 4시간 동안 후경화(PMC:post molding cure)시켰다. 이때 시편에 닿는 에폭시 수지 조성물의 면적은 40±1mm2이고, 부착력 측정은 각 측정 공정 당 12개의 시편에 대하여 UTM(Universal Testing Machine)을 이용하여 측정한 후 평균값으로 계산하였다.
(6) 저장안정성: 제조된 에폭시 수지 조성물을 25℃, 50RH%로 설정된 항온항습기에 보존하면서 48시간 이후, 상기 (1)의 유동성 측정과 같은 방법으로 유동길이를 측정하고, 제조 직후의 유동길이에 대한 백분율(%)을 구하는 방법으로 아래 식 (4)와 같은 방법으로 구하였다. 이 백분율의 수치가 클 수록 저장안정성이 양호한 것을 나타낸다.
[식 4]
저장안정성 = (48시간 이후 유동 길이) / (제조 직후의 유동 길이)x 100
(7) 경화도(shore-D): 에폭시 수지 조성물에 대해 구리 금속 소자를 포함하는 가로 24mm, 세로24mm, 두께 1mm인 eTQFP(exposed Thin Quad Flat Package) 패키지용 금형이 장착된 MPS(Multi Plunger System) 성형기를 이용하여 150℃에서 70초, 80초, 90초, 100초 그리고 110초 간 평가하고자 하는 에폭시 수지 조성물을 경화시킨 후 금형 위의 패지지에 직접 Shore-D형 경도계로 경화시간에 따른 경화물의 경도를 측정하였다. 값이 높을수록 경화도가 우수하다.
표 2
평가 항목 실시예 비교예
1 2 3 4 5 1 2
기본물성 유동성(inch) 63 69 70 65 66 46 57
경화수축율(%) 0.32 0.31 0.35 0.35 0.31 0.42 0.41
유리전이온도(℃) 121 121 124 134 122 120 122
흡습율(%) 0.23 0.25 0.25 0.26 0.23 0.26 0.26
부착력(kgf) 75 74 74 74 75 72 74
저장안정성(48hr, %) 92 92 92 93 91 69 88
패키지평가 경화 시간별 경화강도 (Shore-D) 70초 69 70 70 71 70 51 -
80초 71 73 72 74 71 53 60
90초 73 75 74 76 73 56 62
100초 75 78 77 79 75 59 63
110초 77 79 80 81 77 62 67
상기 표 2에서 나타난 바와 같이, 본 발명의 반도체 소자 밀봉용 에폭시 수지 조성물은 유동성이 높고 경화수축률이 낮으며, 경화시간별 경화도를 비교할 때 기존의 포스포늄 촉매에 비하여 짧은 경화시간에도 높은 경화강도를 갖는 것으로 확인되었다. 또한, 48hr 이후의 점도 변화율도 작아서 높은 저장 안정성을 가지고 있음을 확인하였다. 반면에, 비교예의 조성물은 저장안정성이 낮고, 경화수축률도 높고, 유동성도 낮으며, 패키지에 사용시 본 발명의 효과를 구현할 수 없음을 확인하였다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (8)

  1. 에폭시 수지, 경화제, 무기충전제 및 경화촉매를 포함하고,
    상기 경화촉매는 하기 화학식 1의 화합물을 포함하는, 반도체 소자 밀봉용 에폭시 수지 조성물:
    [화학식 1]
    Figure PCTKR2014003845-appb-I000012
    (상기 화학식 1에서, A는 N 또는 P이고,
    상기 R1, R2, R3 및 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 3 내지 10의 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 7 내지 20의 아릴알킬기, 치환 또는 비치환된 탄소수 2 내지 10의 헤테로시클로알킬기, 또는 치환 또는 비치환된 탄소수 4 내지 20의 헤테로아릴기이고,
    상기 M은 Fe, Cu, Zn 또는 Co이고,
    상기 W는 H2O 또는 NH3이고,
    상기 Y는 상기 화학식 1 중 Mn+와 킬레이트 결합 형성 가능한 유기 작용기이고,
    상기 m, n 및 k는 각각 정수이며, m>n>0, 2≤m≤5, 1≤n≤3 및 0≤k≤5 이다).
  2. 제1항에 있어서, 상기 Y는 하기 화학식 2로 표시되는 반도체 소자 밀봉용 에폭시 수지 조성물:
    [화학식 2]
    Figure PCTKR2014003845-appb-I000013
    (상기 화학식 2에서, 상기 X는 치환 또는 비치환된 탄소수 1 내지 12의 알킬렌기, 또는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기이고,
    상기 R5, R6, R7 및 R8은 각각 독립적으로 탄소수 1 내지 3의 알킬렌기, 또는 탄소수 6 내지 10의 아릴렌기이고,
    상기 Y1, Y2,, Y3 및 Y4는 각각 독립적으로 카르복실레이트(C(=O)O-), *-NRaRb(상기에서, *는 연결 부위이고, Ra, Rb는 각각 독립적으로 수소 또는 탄소수 1 내지 5의 알킬기이다), 또는 *-R10-O-(상기에서, *는 연결 부위이고, R10은 탄소수 1 내지 5의 알킬렌기 또는 탄소수 6 내지 10의 아릴렌기이다)이며,
    상기 Y1, Y2, Y3 및 Y4 중 하나 이상은 카르복실레이트 또는 *-R10-O-이다).
  3. 제1항에 있어서, 상기 화학식 1의 화합물은 상기 경화촉매 중 약 10 중량% 내지 약 100 중량%로 포함되는, 반도체 소자 밀봉용 에폭시 수지 조성물.
  4. 제1항에 있어서, 상기 화학식 1의 화합물은 상기 조성물 중 약 0.01 중량% 내지 약 5 중량%로 포함되는, 반도체 소자 밀봉용 에폭시 수지 조성물.
  5. 제1항에 있어서, 상기 조성물 중 상기 경화촉매에 대한 상기 경화제의 중량비는 약 5 내지 약 15인, 반도체 소자 밀봉용 에폭시 수지 조성물.
  6. 제1항에 있어서, 상기 경화제는 페놀 수지를 포함하는, 반도체 소자 밀봉용 에폭시 수지 조성물.
  7. 제1항에 있어서, 상기 조성물은 상기 조성물 중 상기 에폭시 수지 약 2 중량% 내지 약 17 중량%, 상기 경화제 약 0.5 중량% 내지 약 13 중량%, 상기 무기 충전제 약 70 중량% 내지 약 95 중량% 및 상기 경화촉매 약 0.01 중량% 내지 약 5 중량%를 포함하는, 반도체 소자 밀봉용 에폭시 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항의 반도체 소자 밀봉용 에폭시 수지 조성물을 사용하여 밀봉된 반도체 소자.
PCT/KR2014/003845 2013-10-10 2014-04-30 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 WO2015053453A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0120853 2013-10-10
KR1020130120853A KR101627019B1 (ko) 2013-10-10 2013-10-10 반도체 소자 밀봉용 에폭시수지 조성물 및 이를 사용하여 밀봉된 반도체 소자

Publications (1)

Publication Number Publication Date
WO2015053453A1 true WO2015053453A1 (ko) 2015-04-16

Family

ID=52813256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003845 WO2015053453A1 (ko) 2013-10-10 2014-04-30 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자

Country Status (2)

Country Link
KR (1) KR101627019B1 (ko)
WO (1) WO2015053453A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813758B1 (ko) 2015-06-22 2018-01-31 삼성에스디아이 주식회사 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116660A (ja) * 1997-10-16 1999-04-27 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
KR20000065486A (ko) * 1999-04-06 2000-11-15 유현식 반도체 소자 밀봉용 에폭시 수지 조성물
JP2008280492A (ja) * 2007-05-14 2008-11-20 Sumitomo Bakelite Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2010047741A (ja) * 2008-07-22 2010-03-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法並びに光半導体装置
KR20100055396A (ko) * 2007-07-31 2010-05-26 스미또모 베이크라이트 가부시키가이샤 접착제용 액상 수지 조성물, 반도체 장치 및 반도체 장치의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116660A (ja) * 1997-10-16 1999-04-27 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
KR20000065486A (ko) * 1999-04-06 2000-11-15 유현식 반도체 소자 밀봉용 에폭시 수지 조성물
JP2008280492A (ja) * 2007-05-14 2008-11-20 Sumitomo Bakelite Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
KR20100055396A (ko) * 2007-07-31 2010-05-26 스미또모 베이크라이트 가부시키가이샤 접착제용 액상 수지 조성물, 반도체 장치 및 반도체 장치의 제조 방법
JP2010047741A (ja) * 2008-07-22 2010-03-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法並びに光半導体装置

Also Published As

Publication number Publication date
KR20150042087A (ko) 2015-04-20
KR101627019B1 (ko) 2016-06-03

Similar Documents

Publication Publication Date Title
KR101362887B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
KR101835937B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자
WO2016167449A1 (ko) 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자
WO2017142251A1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
KR101309822B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
WO2015053453A1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
KR101908179B1 (ko) 반도체 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치
KR101861917B1 (ko) 에폭시 화합물, 이를 포함하는 반도체 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치
KR101854503B1 (ko) 포스포늄계 화합물, 이를 포함하는 에폭시수지 조성물, 및 이를 사용하여 제조된 반도체 장치
KR100882533B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자
KR102137549B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
KR101437141B1 (ko) 반도체 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
KR101845134B1 (ko) 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 장치
WO2016085115A1 (ko) 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자
KR102112868B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 제조된 반도체 소자
KR102112865B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
KR102126050B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치
KR101293791B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자
KR101900552B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
KR102018361B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치
KR101992006B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
KR101871574B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자
KR101768303B1 (ko) 포스포늄계 화합물, 이를 포함하는 에폭시수지 조성물, 및 이를 사용하여 제조된 반도체 소자
KR101980949B1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치
WO2016047899A1 (ko) 반도체 소자 밀봉용 에폭시수지 조성물 및 이를 사용하여 밀봉된 반도체 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851578

Country of ref document: EP

Kind code of ref document: A1