WO2015053237A1 - Polyimide composition, and alignment film and optical element formed using polyimide composition - Google Patents

Polyimide composition, and alignment film and optical element formed using polyimide composition Download PDF

Info

Publication number
WO2015053237A1
WO2015053237A1 PCT/JP2014/076734 JP2014076734W WO2015053237A1 WO 2015053237 A1 WO2015053237 A1 WO 2015053237A1 JP 2014076734 W JP2014076734 W JP 2014076734W WO 2015053237 A1 WO2015053237 A1 WO 2015053237A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
film
composition
anisotropic dye
alignment film
Prior art date
Application number
PCT/JP2014/076734
Other languages
French (fr)
Japanese (ja)
Inventor
美香 山口
二郎 杉山
政昭 西村
充哉 青葉
輝恒 大澤
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020167008988A priority Critical patent/KR20160068764A/en
Priority to CN201480055445.8A priority patent/CN105612441A/en
Priority to JP2015541576A priority patent/JP6428634B2/en
Publication of WO2015053237A1 publication Critical patent/WO2015053237A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1096Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors containing azo linkage in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a polyimide composition containing a polyimide having a specific structure and used for an alignment film for an anisotropic dye film.
  • the present invention also relates to an alignment film and an optical element formed using the polyimide composition.
  • the conventional liquid crystal display uses a polarizing film obtained by dyeing and stretching a polyvinyl alcohol (PVA) film or the like with a solution containing a dye, and orienting the dye in the drawing process, and therefore has low durability against humidity. . Therefore, establishment of a technique for an anisotropic dye film (polarizing film) using a dye that improves wet resistance and heat resistance is expected.
  • PVA polyvinyl alcohol
  • membrane is provided on a coating substrate and the pigment
  • an alignment film is obtained by applying a polyamic acid solution (polyimide precursor) to a substrate and heating (Patent Document 2).
  • a polyamic acid solution polyimide precursor
  • Patent Document 3 As the alignment film, an alignment film for liquid crystal has been conventionally studied, and it is disclosed that a liquid crystal alignment film is obtained by applying a polyamic acid solution to a substrate and heating.
  • polyimide has been studied as an optical film application.
  • Patent Documents 4 and 6 For example, in order to obtain a film having excellent heat resistance, transmittance, mechanical properties, and heat resistance, it is disclosed that a polyamic acid solution is heated after coating (Patent Documents 4 and 6). In addition, it is disclosed that a film is obtained by applying a polyimide solution having excellent solubility in organic solvents, heat resistance, dimensional stability, and transparency (Patent Document 5).
  • JP 2009-217011 Japanese Unexamined Patent Publication No. 2010-72521 Japanese Unexamined Patent Publication No. 2000-305088 Japanese Laid-Open Patent Publication No. 8-104750 Japanese Unexamined Patent Publication No. 2012-146905 Japanese Unexamined Patent Publication No. 2007-161930 Japanese Unexamined Patent Publication No. 2011-253054
  • Patent Document 1 discloses that an anisotropic dye film is produced by applying a dichroic dye to a polymer surface, but no consideration is given to providing an alignment film.
  • Patent Documents 2 and 3 disclose that a polyimide film is obtained by applying a polyamic acid solution on a substrate and performing a heat treatment at a high temperature of 200 ° C. or higher. Therefore, an alignment film for an anisotropic dye film cannot be formed on a material having a heat resistance of 200 ° C. or less. For example, a high-intensity color filter using a dye that has been developed in recent years has a problem that the luminance is lowered when processed at a high temperature of 200 ° C. or higher.
  • the alignment film using the polyamic acid as described above cannot be used as an alignment film for an anisotropic dye film.
  • the imidization reaction of the alignment film proceeds, and this water generated by water breaks the association of the anisotropic dye, resulting in deterioration of the anisotropic dye film.
  • the remaining amic acid site is hydrolyzed and the molecular weight of the polyimide is lowered, whereby the physical properties of the alignment film are changed and the alignment characteristics are deteriorated.
  • the remaining amic acid site is hydrolyzed to generate a highly reactive carboxylic acid end or amine end, thereby accelerating the deterioration and coloring of the dye and peripheral members in the anisotropic dye film.
  • Solvent molecules trapped in the amic acid moiety having a high affinity with the solvent are difficult to remove even during the drying process, and are volatilized as outgas during the subsequent process and storage, thereby degrading the device and peripheral members.
  • the remaining amic acid site absorbs the solvent or the like in the anisotropic dye film composition, and the alignment film swells. Further, by releasing the absorbed water, the association of the anisotropic dye is broken and the anisotropic dye film is deteriorated.
  • Patent Document 3 discloses that polyimide is used for the alignment film for liquid crystal, but no investigation is made as an alignment film for an anisotropic dye film.
  • the alignment film for liquid crystal aligns liquid crystal molecules of which one molecule is about several tens of thousands.
  • an alignment film for an anisotropic dye film needs to align about several hundreds of columns in which anisotropic dyes are associated. Due to the difference in size of the alignment material, the characteristics required for each alignment film are different, and the alignment film for liquid crystal cannot be diverted to the alignment film for anisotropic dye film.
  • Patent Documents 4 to 6 are optical film applications, and it is difficult to divert them to alignment films for anisotropic dye films.
  • Patent Documents 4 and 6 as in Patent Documents 2 and 3, in order to obtain a film, it is necessary to perform a heat treatment at a high temperature of 200 ° C. or higher after applying the polyamic acid solution. Further, according to the study by the present inventors, the polyimide used in Patent Document 5 has a high hydrophobicity, and there is a problem that the applicability to the anisotropic dye film composition is lowered.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a polyimide composition containing polyimide having excellent solubility in a solvent. Moreover, when a polyimide composition is excellent in applicability
  • the inventors of the present invention have excellent solubility in a solvent of a specific structure.
  • the polyimide composition can be applied. I found it excellent.
  • a polyimide composition containing a highly soluble polyimide it is not necessary to perform an imidization reaction at a high temperature after coating. That is, when forming the alignment film, it is only necessary to remove the solvent of the applied alignment film, and since it can be performed at a temperature lower than 200 ° C., the alignment film can be formed on a material such as a color filter. I found it. Further, it has been found that the alignment film obtained from the polyimide composition is excellent in surface treatment resistance such as rubbing and has high alignment characteristics of the anisotropic dye film. The present invention has been accomplished based on these findings.
  • a polyimide composition used for an alignment film for anisotropic dye film includes a polyimide and a solvent,
  • the said polyimide is represented by General formula (1),
  • the polyimide composition characterized by the above-mentioned.
  • X represents a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms
  • R 1 represents a divalent organic group having an aromatic ring
  • n represents an integer of 1 or more
  • a plurality of R 1 and X present in one molecule of the structure represented by the general formula (1) may be the same or different.
  • [2] The polyimide composition as described in [1] above, wherein the ratio of the number of elements forming an aromatic ring is 5% or more and 75% or less of the number of elements forming the main chain of the polyimide.
  • the polyimide having a specific structure of the present invention is excellent in solubility in a solvent, and the polyimide composition containing the polyimide and the solvent is excellent in coatability.
  • the polyimide composition of the present invention it is not necessary to perform an imidization reaction at a high temperature after coating, and only the solvent removal of the coating film can be performed at a low temperature, and an alignment film is formed on a material such as a color filter. can do.
  • the reason for the above effect is not clear, but is presumed as follows. Improve the solubility of the polyimide in the solvent by X of the polyimide represented by the general formula (1) contained in the polyimide composition of the present invention being a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms. Can do. Since the polyimide in the polyimide composition is difficult to deposit, the applicability of the polyimide composition is improved. In addition, since the polyimide composition of the present invention has high solubility in a solvent even when the imidization ratio of polyimide is high, it is not necessary to carry out an imidation reaction by heating after coating, and the solvent is used at a temperature of 200 ° C. or lower. It is possible to form an alignment film by removing.
  • X of the polyimide represented by the general formula (1) contained in the polyimide composition of the present invention being a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms. Can do. Since the polyimide in the
  • R 1 in the general formula (1) is a divalent organic group having an aromatic ring
  • the polyimide of the present invention has a rigid structure and linearity. Since the polyimide has linearity, the effect of surface treatment such as rubbing on the alignment film is more easily obtained. Due to the effect of the surface treatment such as rubbing, the linearity of the polyimide in the alignment film increases, and the alignment characteristics of the anisotropic dye film formed on the surface can be enhanced. Since R 1 is a divalent organic group having an aromatic ring, the R 1 moiety exhibits an electron donating property (donor).
  • the imide ring structure portion of polyimide exhibits an electron accepting property (acceptor)
  • the association property of the polyimide in the polyimide composition is obtained by the donor-acceptor interaction. Therefore, the alignment characteristic of the alignment film can be improved, and the alignment characteristic of the anisotropic dye film formed on the surface can be improved.
  • the polyimide of the present invention has a rigid structure and, as described above, the associative properties of the polyimide can be obtained, so that the surface treatment resistance is excellent. Therefore, it is possible to perform a strong surface treatment on the alignment film, and further improve the alignment characteristics of the polyimide.
  • the electron donating property refers to a state where the electron density of the ⁇ electron cloud on the aromatic ring is high
  • the electron accepting property refers to a state where the electron density is low.
  • the polyimide of the present invention is a combination of the above X and R 1 , the association of the polyimide in the polyimide composition by the donor-acceptor interaction can be improved while maintaining the solubility in a solvent. Therefore, the alignment characteristic of the obtained alignment film is improved, and the alignment characteristic of the anisotropic dye film can be enhanced.
  • the alignment film of the present invention has an aromatic ring and is excellent in interaction with an anisotropic dye having an aromatic ring, the alignment characteristics of the anisotropic dye film tend to be further improved.
  • the anisotropic dye has a relatively large association (column) structure of about several hundreds of pieces with which the anisotropic dye is associated.
  • the anisotropic dye hardly aligns following the alignment film. Therefore, in order to align the anisotropic dye, an alignment film having high alignment characteristics is required.
  • the polyimide having a specific structure according to the present invention has high alignment characteristics of the alignment film due to the above-described reasons. It is suitable for orienting the dye.
  • Polyimide composition The polyimide composition of this invention has the characteristics in containing the polyimide and solvent which are represented by General formula (1).
  • X represents a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms
  • R 1 represents a divalent organic group having an aromatic ring
  • n represents an integer of 1 or more
  • a plurality of R 1 and X present in one molecule of the structure represented by the general formula (1) may be the same or different.
  • the polyimide composition of the present invention may contain a plurality of polyimides as long as it contains the polyimide represented by the general formula (1).
  • the polyimide of the present invention does not need to be synthesized under the same reaction conditions, or only those having the same aromatic element ratio, imidization rate, and solubility. Mixtures prepared under different conditions and having different physical properties may be used.
  • the aromatic ring element ratio and imidation rate described below are average values of the polyimide constituting the polyimide composition.
  • the polyimide composition of this invention may contain components other than a polyimide, if it is a range which does not impair the effect of this invention.
  • the solvent used in the polyimide composition of the present invention is not particularly limited.
  • hydrocarbon solvents such as hexane, cyclohexane, and heptane
  • aromatics such as benzene, toluene, xylene, mesitylene, phenol, cresol, and anisole.
  • Solvents Halogenated hydrocarbon solvents such as carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and fluorobenzene; Ether systems such as diethyl ether, tetrahydrofuran, 1,4-dioxane and methoxybenzene Solvent: Ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, etc .; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, die Glycol solvents such as lenglycol dimethyl ether and propylene glycol monomethyl ether acetate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; aprotic polarities such as dimethyl
  • a hydrocarbon solvent an aromatic solvent, a glycol solvent, and an amide solvent.
  • toluene, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and anisole are preferably used.
  • Use of these solvents tends to improve the solubility of polyimide and facilitate the removal of the solvent when forming the alignment film.
  • the polyimide according to the present invention is not particularly limited as long as it includes a repeating unit containing at least an imide bond and has a skeleton having a specific structure represented by the general formula (1).
  • N is an integer of 1 or more, and there is no particular upper limit as long as the effect of the present invention is not impaired, but n is set so that the mass average molecular weight of the polyimide represented by the general formula (1) is in the range described later. It is preferable to define. These ranges are preferable because the solubility of the polyimide in the solvent, the viscosity of the polyimide composition, and the like tend to be in a range in which an alignment film can be easily formed.
  • R 1 and X present in a plurality in one molecule of the structure represented by the general formula (I) may be the same or different.
  • X in the general formula (1) represents a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms.
  • the aliphatic hydrocarbon group is cyclic or chain-like and may be a combination of these.
  • X has 5 or more carbon atoms, preferably 6 or more. Further, it is preferably 20 or less, more preferably 16 or less, and particularly preferably 14 or less. When the carbon number is within this range, the solubility of the polyimide in the solvent is improved, the polyimide composition is excellent in applicability, and heating after application tends to be performed at a low temperature.
  • the cyclic aliphatic hydrocarbon group or a group in which cyclic and chain aliphatic hydrocarbon groups are combined improves the solubility of the polyimide in the solvent and the applicability of the polyimide composition.
  • Examples of the chain aliphatic hydrocarbon group include an alkylene group which may have a substituent.
  • the chain aliphatic hydrocarbon group may be a straight chain or may have a branch.
  • Examples of the substituent that the alkylene group may have include an alkoxyl group having 1 to 4 carbon atoms and a trifluoromethyl group.
  • the cyclic aliphatic hydrocarbon group is a monocyclic ring, a condensed polycyclic ring, or a ring linked to each other directly or by a bridging member.
  • Specific examples include groups derived from alicyclic tetracarboxylic dianhydrides described below.
  • a single ring or a group in which single rings are connected to each other directly or by a crosslinking member is preferable because the solubility of polyimide in a solvent tends to be improved.
  • the monocyclic and condensed polycyclic aliphatic hydrocarbon groups share a single ring such as cyclopentane, cyclopentene, cyclohexane, cyclohexene, cycloheptane, and the two carbon atoms of the monocycle.
  • a condensed polycycle is mentioned.
  • the structure of the following formula (2), formula (3) or formula (4) is preferable, and the structure of formula (2) or formula (3) is particularly preferable.
  • the cyclic aliphatic hydrocarbon group in which monocyclic or condensed polycycles are directly or mutually linked by a bridging member has a structure represented by the following general formula (5), and the solubility of polyimide in a solvent is It is preferable because it is improved, the applicability of the polyimide composition is excellent, and heating after application tends to be performed at a low temperature.
  • X 1 and X 2 each independently represent a divalent cyclic aliphatic hydrocarbon group having 5 or more carbon atoms, and R 2 is a carbon that may have a direct bond or a substituent.
  • the divalent cyclic aliphatic hydrocarbon group for X 1 and X 2 is not particularly limited as long as it has 5 or more carbon atoms, but preferably has 10 or less carbon atoms, more preferably 8 or less. Furthermore, it is C5 and C6, the solubility to the solvent of a polyimide improves, it exists in the tendency which is excellent in the applicability
  • X 1 and X 2 may have a substituent, and an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a carboxy group, a sulfo group, an amino group Group, cyano group, nitro group, halogen atom and the like.
  • R 2 is a direct bond, an alkylene group having 1 to 6 carbon atoms which may have a substituent, or a group represented by the following.
  • a direct bond is preferable because the solubility of polyimide in a solvent is improved, the applicability of the polyimide composition is excellent, and heating after application tends to be performed at a low temperature.
  • the substituent that the alkylene group of R 2 may have include an alkoxy group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a carboxy group, a sulfo group, a cyano group, a nitro group, and a halogen atom. And an alkylthio group having 1 to 5 carbon atoms, a trifluoromethyl group, and the like.
  • the following general formula (6) is preferable, and the following general formula (7) further improves the solubility of the polyimide in the solvent and improves the applicability of the polyimide composition. It is preferable because it is excellent and tends to be able to perform heating after coating at a low temperature.
  • R 3 in the general formula (6) has the same definition as R 2 in the general formula (5), and a preferred range is also the same.
  • R 1 represents any divalent organic group having an aromatic ring.
  • R 1 is not particularly limited as long as it is a divalent group having an aromatic ring, and the number of aromatic rings is not particularly limited.
  • groups other than an aromatic ring may be included.
  • the aromatic ring of the organic group may be a single ring, a condensed polycycle, and those in which these are connected to each other directly or by a bridging member.
  • the aromatic ring may be connected with a group other than the aromatic ring.
  • aromatic ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a biphenylene ring, and a fluorene ring. These aromatic rings may have a substituent. Examples of the substituent which may be included include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom. Examples of the group other than the aromatic ring include an alkylene group having 1 to 4 carbon atoms, an alkenylene group having 1 to 4 carbon atoms, and a group represented by the following.
  • the alkylene group having 1 to 4 carbon atoms and the alkenylene group having 1 to 4 carbon atoms may have a substituent.
  • substituents which may be included include an alkoxy group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a carboxy group, a sulfo group, a cyano group, a nitro group, a halogen atom, and 1 to 5 carbon atoms. And the like.
  • connection position at which the aromatic ring is connected by a direct bond and a group other than the aromatic ring is not particularly limited, but the connection is preferably performed at a position that does not hinder the rigidity, association, and orientation characteristics of the polyimide molecule.
  • R 1 include a divalent group obtained by removing an amino group from a diamine compound, which is a raw material for polyimide represented by the general formula (1) described later.
  • the aromatic ring of R 1 is preferably a single ring from the viewpoint of solubility of polyimide in a solvent. Further, R 1 has 1 or more aromatic rings, and preferably 2 or more. The number of aromatic rings is preferably 6 or less, and more preferably 4 or less. When the number of aromatic rings is within the above range, solubility of polyimide in a solvent can be obtained, and further, rigidity and association of polyimide can be improved, and alignment characteristics and surface treatment resistance of the resulting alignment film can be improved. Tend to.
  • R 1 is particularly preferably a structure represented by the following formula (8), (9), (10) or (11).
  • R 10 in formula (9), R 11 to R 12 in formula (10), and R 13 to R 15 in formula (11) are each independently a linking group other than a divalent aromatic ring, specifically Represents the above-mentioned groups other than the aromatic ring of R 1 .
  • each aromatic ring of the formulas (8) to (11) may have an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, a halogen atom or the like as a substituent.
  • R 10 to R 15 are each an alkylene group having 1 to 4 carbon atoms or a group represented by the following, whereby the rigidity and associative properties of the polyimide are improved, and the orientation characteristics and surface resistance of the resulting orientation film are improved. Is preferable because of a tendency to improve.
  • At least one of R 10 , R 11 and R 12 , or at least one of R 13 to R 15 is —O—, which increases the electron donating property of R 1 , This is particularly preferable because the associating property of the polyimide by the action is improved and the orientation characteristics of the obtained orientation film tend to be improved.
  • X and R 1 The combination of X and R 1 described above is not particularly limited, but a combination in which X is a cyclic aliphatic hydrocarbon group and R 1 has a structure having a plurality of monocyclic aromatic rings is preferable.
  • X includes at least one structure represented by formulas (2) to (7) and R 1 includes at least one structure represented by formulas (8) to (9).
  • the polyimide of the present invention is not particularly limited as long as it contains the polyimide represented by the general formula (1), and a combination of a unit derived from tetracarboxylic dianhydride and / or a unit derived from a diamine compound is used in combination. It may be polymerized. Moreover, polyimides other than the polyimide represented by General formula (1) may be included in the polyimide composition.
  • the unit derived from the tetracarboxylic dianhydride to be copolymerized may contain other than aliphatic hydrocarbon groups having 5 or more carbon atoms as long as the effects of the present invention are not impaired.
  • aromatic ring such as a benzene ring and a naphthalene ring, a group in which an aromatic ring is directly bonded, a group in which a plurality of aromatic rings are connected with a linking group other than an aromatic ring, and the like.
  • the aromatic ring may have a substituent, and examples thereof include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom.
  • the unit derived from the tetracarboxylic dianhydride to be copolymerized include groups derived from a tetracarboxylic dianhydride having an aromatic ring, which will be described later, as a polyimide raw material.
  • examples of the group derived from tetracarboxylic dianhydride having an aromatic ring include structures represented by the following formulas (12) to (14). The use of these is preferable because the rigidity and association of the polyimide are improved while maintaining the solubility of the polyimide in the solvent, and the alignment characteristics and surface treatment resistance of the resulting alignment film tend to be improved.
  • These aromatic rings may have a substituent. Examples of the substituent which may be included include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom.
  • R 15 represents an alkylene group having 1 to 4 carbon atoms, an alkenylene group having 1 to 4 carbon atoms, or a group represented by the following.
  • the connecting position of R 15 is not particularly limited and it is preferably connected at a position that does not interfere with the rigidity, associative and alignment properties of the polyimide molecule.
  • the proportion of units derived from anhydride is preferably 0.1 mol% or more, more preferably 1 mol% or more, preferably 99 mol% or less, more preferably 90 mol% or less.
  • the unit derived from the diamine compound to be copolymerized may not contain an aromatic ring as long as the effects of the present invention are not impaired.
  • examples thereof include a cyclic or chain aliphatic hydrocarbon group, a group connecting aliphatic hydrocarbon groups, and the like.
  • these groups may have a substituent, and examples thereof include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom.
  • Specific examples include a divalent group obtained by removing an amino group from an aliphatic diamine compound having no aromatic ring, which will be described later, as a raw material for polyimide.
  • the proportion of units other than the units derived from the diamine compound used in the general formula (1) is preferably It is 0.1 mol% or more, preferably 50 mol% or less, more preferably 40 mol% or less.
  • the ratio of the number of elements forming an aromatic ring is preferably 75% or less, more preferably 65% or less, It is preferably 60% or less, particularly preferably 55% or less, and most preferably 50% or less. Further, it is preferably 5% or more, more preferably 7% or more, and further preferably 10% or more.
  • aromatic ring element ratio is in the above range, the polyimide is easily dissolved in the solvent, and when the polyimide composition is heated, precipitation or gelation tends not to occur.
  • the number of elements that form the main chain does not include the number of elements that form a hydrogen atom or a substituent that becomes a side chain.
  • the ratio of the aromatic ring element can be adjusted by adjusting the ratio of those having an aromatic ring with respect to the tetracarboxylic dianhydride and diamine compound (hereinafter sometimes referred to as “raw material monomer”) used as a raw material for polyimide synthesis. It can be a range.
  • the aromatic ring element ratio of the obtained polyimide and the alignment film containing the polyimide can be obtained by analyzing the composition of the raw material monomer obtained by solid NMR, IR, or the like. It can also be determined by analyzing the composition of the raw material monomer determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, etc. after dissolution with alkali.
  • the method of setting the aromatic ring element ratio of the polyimide within the above range includes tetracarboxylic dianhydride having an aromatic ring, tetracarboxylic dianhydride having no aromatic ring, diamine compound having an aromatic ring, and diamine having no aromatic ring.
  • the compound can be obtained by using the aromatic ring element in a ratio that falls within the above range.
  • the imidation ratio of the polyimide is preferably 90% or more, more preferably 95% or more, and particularly preferably 98% or more. Moreover, there is no upper limit and the higher one is preferable.
  • the imidation ratio is in a specific range, the remaining amount of amic acid when the alignment film is formed can be suppressed, and a change with time such as hydrolysis tends to hardly occur.
  • the imidization ratio is in a specific range, the necessity of performing an imidization reaction (heating) when forming the alignment film is reduced, and the alignment film tends to be obtained by heating at a low temperature.
  • the imidation rate of this invention can be adjusted with the conditions of imidation in the manufacturing method mentioned later.
  • the imidation ratio indicates the ratio of imide bonds in the main chain of polyimide.
  • the imidization rate can be determined by a conventionally known method such as NMR, IR, and titration.
  • the imidation rate in the present invention is a value determined by IR.
  • Absorption strength of C C stretching vibration of sample at 100% imidization (A)
  • Absorption strength of C C stretching vibration of sample subjected only to solvent drying ( A ′)
  • the absorption strength (B ′) of CN stretching vibration is measured, and the imidation ratio of each polyimide composition can be calculated from the following formula (C).
  • Imidation ratio (B ′ / A ′) / (B / A) * 100 (C)
  • Preparation of 100% imidized sample is made by heating the sample to be measured at high temperature.
  • the heating temperature is usually 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher.
  • the drying temperature of a solvent can be determined according to the boiling point of the solvent used, it is usually 20 ° C. or higher, preferably 40 ° C. or higher, usually 200 ° C. or lower, and more preferably lower than the imidization reaction temperature.
  • the drying temperature is not too low, the solvent is sufficiently dried and unnecessary signals tend not to be observed during IR measurement. Further, since the drying temperature is not too high, the imidization rate does not change during drying, and an accurate imidization rate can be obtained.
  • soluble in a solvent means complete dissolution when polyimide is dissolved in a solvent constituting the composition at room temperature (25 ° C.).
  • the concentration for complete dissolution is usually 0.5% by mass or more, preferably 1% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more.
  • a polyimide soluble in a solvent can be obtained by setting the ratio of the aromatic ring element in the main chain and the imidization ratio within the above ranges.
  • the concentration of the composition can be confirmed by using a conventionally known method as appropriate.
  • the solvent of the composition is dried using a method such as drying under reduced pressure, and the mass ratio before and after drying.
  • the composition can be concentrated by using a method such as distilling off the solvent under reduced pressure to determine solubility.
  • concentration of the composition is high, the measurement concentration can be 1% by mass by diluting with the solvent of the composition.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone
  • aprotic solvents such as dimethyl sulfoxide
  • ethylene Glycol solvents such as glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and propylene glycol monomethyl ether acetate
  • aromatic solvents such as benzene, toluene, xylene, mesitylene, phenol, cresol, and anisole
  • hexane Hydrocarbon solvents such as cyclohexane and heptane
  • Hydrocarbon solvents such as cyclohexane and heptane
  • the ratio of the number of elements forming the aliphatic structure (hereinafter sometimes referred to as aliphatic element ratio) is 5 out of the number of elements forming the main chain of polyimide. % Or more, preferably 7% or more, particularly preferably 10% or more. Moreover, 60% or less is preferable, 50% or less is more preferable, 40% or less is further more preferable, and it is especially preferable to have 35% or less.
  • the number of elements that form the main chain does not include the number of elements that form a hydrogen atom or a substituent that becomes a side chain.
  • a tetracarboxylic dianhydride and a diamine compound having an aliphatic structure may be used in a ratio within an appropriate range.
  • the aliphatic structure includes both alicyclic and chain structures.
  • the weight average molecular weight (Mw) of a polyimide is not specifically limited, It is 1.0 * 10 ⁇ 3 > or more normally in polystyrene conversion, Preferably it is 5.0 * 10 ⁇ 3 > or more, More preferably, it is 1.0 * 10 ⁇ 4 > or more, Usually It is 1.0 ⁇ 10 6 or less, preferably 8.0 ⁇ 10 5 or less, more preferably 5.0 ⁇ 10 5 or less. These ranges are preferable because the solubility of the polyimide in the solvent, the viscosity of the polyimide composition, and the like tend to be in a range in which an alignment film can be easily formed.
  • the polystyrene-reduced weight average molecular weight can be determined by gel permeation chromatography (GPC).
  • the number average molecular weight (Mn) of the polyimide is not particularly limited, but is usually 5.0 ⁇ 10 2 or more, preferably 2.5 ⁇ 10 3 or more, more preferably 5.0 ⁇ 10 3 or more in terms of polystyrene, It is 5.0 ⁇ 10 4 or less, preferably 4.0 ⁇ 10 4 or less, more preferably 2.5 ⁇ 10 4 or less. This range is preferable in terms of solubility, solution viscosity, melt viscosity, and the like that are easy to handle in normal production equipment.
  • the number average molecular weight of polyimide can be measured by the same method as the above weight average molecular weight.
  • the molecular weight distribution of polyimide (PDI, (weight average molecular weight / number average molecular weight (Mw / Mn))) is usually 1 or more, preferably 1.1 or more, more preferably 1.2 or more, and usually 10 or less, preferably Is 9 or less, more preferably 8 or less.
  • the molecular weight distribution is preferably in this range in that a highly uniform composition can be obtained.
  • the molecular weight distribution of polyimide can be calculated
  • the polyimide according to the present invention is obtained by reacting a tetracarboxylic dianhydride and a diamine compound in an organic solvent.
  • Tetracarboxylic dianhydride examples of the tetracarboxylic dianhydride that is a raw material of the polyimide represented by the general formula (1) of the present invention include aliphatic tetracarboxylic dianhydrides having no aromatic ring. Examples of the aliphatic tetracarboxylic dianhydride include alicyclic tetracarboxylic dianhydrides and chain aliphatic tetracarboxylic dianhydrides.
  • alicyclic tetracarboxylic dianhydride examples include 3,3 ′, 4,4′-biscyclopentanetetracarboxylic dianhydride, 3,3 ′, 4,4′-biscyclohexanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, tricyclo [6.4.0.02,7 Dodecane-1,8: 2,7-tetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,1 '-Biscyclohexane-3,3', 4,4'-tetracarboxylic dianhydride, 1,1'-oxybiscyclohexane-3,3 ', 4,4'-tetracarboxylic dianhydride, 1, 1'-sulfon
  • alicyclic tetracarboxylic dianhydrides are preferred.
  • These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
  • Examples of the diamine compound that is a raw material of the polyimide represented by the general formula (1) of the present invention include diamine compounds containing an aromatic ring.
  • Examples of the diamine compound having an aromatic ring include a diamine compound having one aromatic ring contained in the molecule, a diamine compound having two or more independent aromatic rings, and a diamine compound having a condensed aromatic ring.
  • a diamine compound having one aromatic ring contained in the molecule such as 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, etc .; 4,4 ′-(biphenyl- 2,5-diylbisoxy) bisaniline, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) Benzene, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, 1, 3-bis (4-aminophenoxy) neopentane, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-
  • diamine compounds having an aromatic ring it is preferable to use a compound having two or more independent aromatic rings.
  • 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diamino-2,2 '-Dimethylbiphenyl and bis (4- (4-aminophenoxy) phenyl) sulfone are particularly preferable because they can maintain a solubility and obtain a polyimide having excellent dimensional stability.
  • These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
  • a tetracarboxylic dianhydride having an aromatic ring and / or an aliphatic diamine compound having no aromatic ring are used within a range not impairing the effects of the present invention. Polymerization may be performed.
  • the tetracarboxylic dianhydride having an aromatic ring includes a tetracarboxylic dianhydride having one aromatic ring in the molecule, a tetracarboxylic dianhydride having two or more independent aromatic rings, and condensation. Examples include tetracarboxylic dianhydrides having an aromatic ring.
  • tetracarboxylic dianhydride having one aromatic ring contained in the molecule such as pyromellitic dianhydride and 1,2,3,4-benzenetetracarboxylic dianhydride; 1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Anhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 3, 3
  • tetracarboxylic dianhydride having one aromatic ring contained in the molecule and tetracarboxylic dianhydride having two or more independent aromatic rings.
  • biphenyltetracarboxylic dianhydride maintains the solubility of the polyimide in the solvent, the rigidity and associability of the polyimide are improved, and the orientation characteristics and surface treatment resistance of the resulting alignment film tend to be improved. Therefore, it is preferable.
  • aliphatic diamine compound having no aromatic ring examples include alicyclic diamine compounds and chain aliphatic diamine compounds.
  • alicyclic diamine compounds are preferred, and among them, 1,4-diaminocyclohexane and 1,3-bis (aminomethyl) maintain the solubility of the polyimide in the solvent while maintaining the rigidity of the polyimide. This is preferable because the associative property is improved and the orientation properties and surface treatment resistance of the resulting alignment film tend to be improved.
  • polyimide production method for example, a method of producing a polyamic acid as a precursor to obtain a polyimide (two-stage method), tetracarboxylic dianhydride A method (one-step method) for producing polyimide directly from a product and a diamine compound is used.
  • a polyamic acid from tetracarboxylic dianhydride and a diamine compound can be performed under conventionally known conditions. There are no particular limitations on the order of addition or addition method of the tetracarboxylic dianhydride and the diamine compound.
  • a polyamic acid composition can be obtained by sequentially adding tetracarboxylic dianhydride and a diamine compound to a solvent and stirring at an appropriate temperature.
  • the amount of the diamine compound is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less, relative to tetracarboxylic dianhydride.
  • the concentration of the tetracarboxylic dianhydride and the diamine compound in the solvent can be appropriately set according to the reaction conditions and the viscosity of the polyamic acid.
  • the total mass of the tetracarboxylic dianhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, based on the total liquid amount. Preferably it is 30 mass% or less.
  • the reaction temperature is not particularly limited as long as the reaction proceeds, but is usually 0 ° C or higher, preferably 20 ° C or higher, and usually 120 ° C or lower, preferably 100 ° C or lower.
  • the reaction time is usually 1 hour or longer, preferably 2 hours or longer, usually 100 hours or shorter, preferably 24 hours or shorter. By carrying out the reaction under such conditions, a polyamic acid can be obtained at a low cost and in a high yield.
  • the pressure during the reaction may be normal pressure, increased pressure, or reduced pressure.
  • the atmosphere may be air or an inert atmosphere.
  • the solvent used in this reaction is not particularly limited.
  • hydrocarbon solvents such as hexane, cyclohexane and heptane
  • aromatic solvents such as benzene, toluene, xylene, mesitylene, phenol, cresol and anisole
  • carbon tetrachloride Halogenated hydrocarbon solvents such as methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, fluorobenzene
  • ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene
  • acetone, methyl ethyl ketone, cyclohexanone Ketone solvents such as methyl isobutyl ketone
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ester
  • the polyamic acid solution thus obtained may be used as it is, or may be added to a poor solvent to be precipitated as a solid and then re-dissolved in another solvent to obtain a polyimide composition. .
  • the poor solvent at this time is not particularly limited and may be appropriately selected depending on the type of polyimide resin.
  • Ether solvents such as diethyl ether or diisopropyl ether; Ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; Methanol , Alcohol solvents such as ethanol and isopropyl alcohol; and the like.
  • alcohol solvents such as isopropyl alcohol are preferable in that precipitates can be obtained efficiently, the boiling point is low, and drying is easy.
  • the solvent for dissolving the polyamic acid is not particularly limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone
  • aprotic solvents such as dimethyl sulfoxide
  • Aromatic solvents such as benzene, toluene, xylene, mesitylene, phenol, cresol, anisole
  • glycol solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate;
  • amide solvents, aromatic solvents and glycol solvents are preferred.
  • N, N-dimethylformamide, N, N-dimethylacetamide or N-methyl-2-pyrrolidone, anisole, ethylene glycol dimethyl ether and ethylene glycol monomethyl ether are preferred. These can be used alone, and can also be used as a mixture of two or more.
  • a polyimide composition can be obtained by dehydrating and cyclizing the above polyamic acid in the presence of a solvent.
  • imidation can be performed using any conventionally known method, examples thereof include thermal imidization by thermal cyclization and chemical imidization by chemical cyclization. These imidization reactions may be used alone or in combination.
  • the polyimide which is a specific imidation ratio of the present invention is a heating temperature, a heating time, a concentration of polyamic acid in a solvent, and, if an imidization accelerator is used, a kind, an addition amount, and an addition of an imidization accelerator It can be obtained by adjusting the timing of charging.
  • the solvent for imidizing the polyamic acid include the same solvents as those used in the reaction for obtaining the polyamic acid. The same or different solvents may be used for the polyamic acid production and the polyimide composition production.
  • water generated by the imidization reaction may be discharged out of the system in order to inhibit the ring closure reaction.
  • concentration of the polyamic acid during the imidation reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. By carrying out in this range, a polyimide having a controlled imidization rate can be obtained. In addition, polyimide can be produced with a solution viscosity that is high in production efficiency and easy to produce.
  • the imidization reaction temperature is not particularly limited as long as it does not depart from the gist of the present invention. It is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 220 ° C. or lower, particularly preferably 200 ° C. or lower. By performing within this range, it is possible to obtain a polyimide in which the imidization reaction proceeds efficiently and the imidization rate is controlled. Moreover, since side reactions other than imidation reaction are suppressed, it is preferable.
  • the pressure during the reaction may be normal pressure, pressurization, or reduced pressure.
  • the atmosphere may be air or an inert atmosphere.
  • a compound having a function of enhancing nucleophilicity and electrophilicity can be added.
  • tertiary amine compounds carboxylic acid compounds, and heterocyclic compounds are preferable, and triethylamine, imidazole, and pyridine are particularly preferable because they tend to control the imidization rate.
  • These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
  • the amount of the imidization accelerator used is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, particularly preferably 1 mol% or more based on the carboxyl group or ester group of the amic acid skeleton. Moreover, it is preferable that it is 50 mol% or less, and it is more preferable that it is 10 mol% or less.
  • the usage-amount of a catalyst exists in such a range, it exists in the tendency for the imidation reaction to advance efficiently and to obtain the polyimide which controlled the imidation ratio. Furthermore, the reaction can be performed at a low cost and with a high yield.
  • the timing which adds an imidation promoter can be adjusted suitably in order to make it a desired imidation rate, may be before a heating start, and may be during a heating. Moreover, you may add in multiple times.
  • a polyimide composition can be obtained by chemically imidizing a polyamic acid with a dehydrating condensing agent in the presence of a solvent.
  • the polyimide which is a specific imidization ratio of the present invention has a heating temperature, a heating time, a polyamic acid concentration in a solvent, a type of a dehydrating condensing agent, an amount of adding a dehydrating condensing agent, a timing for adding a dehydrating condensing agent, and the like. It can be obtained by adjusting.
  • the solvent used when imidizing the polyamic acid include the same solvents as mentioned in the synthesis of the polyamic acid in the above two-stage method.
  • dehydrating condensing agent examples include N, N-2-substituted carbodiimides such as N, N-dicyclohexylcarbodiimide and N, N-diphenylcarbodiimide; acid anhydrides such as acetic anhydride and trifluoroacetic anhydride; thionyl chloride and tosyl chloride and the like.
  • acid anhydrides or halogenated compounds are preferable, and acid anhydrides are particularly preferable.
  • acid anhydrides are particularly preferable.
  • the imidation reaction proceeds efficiently, and a polyimide having a controlled imidation rate tends to be obtained.
  • These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
  • the amount of these dehydrating condensing agents to be used is usually 0.1 mol or more, preferably 0.2 mol or more, usually 1.0 mol or less, preferably 0.9 mol or less with respect to 1 mol of the amic acid skeleton.
  • the imidization rate can be controlled.
  • the imidation rate can be controlled, production efficiency tends to be high, and the solution viscosity tends to be easy to manufacture.
  • the imidization reaction temperature is not particularly limited, the imidization reaction temperature is not particularly limited as long as it does not depart from the gist of the present invention, but is usually 0 ° C or higher, preferably 10 ° C or higher, more preferably 20 ° C or higher, Usually, it is 150 ° C. or lower, preferably 130 ° C. or lower, more preferably 100 ° C. or lower. It is preferable to carry out in this range since the imidization reaction proceeds efficiently and a polyimide having a controlled imidization rate tends to be obtained. Furthermore, it is preferable because side reactions other than the imidization reaction are suppressed.
  • the pressure during the reaction may be normal pressure, pressurization, or reduced pressure.
  • the atmosphere may be air or an inert atmosphere. Moreover, the above-mentioned tertiary amines etc. can also be added similarly to heat
  • a polyimide composition can be obtained directly from tetracarboxylic dianhydride and a diamine compound using a conventionally known method.
  • imidization is performed from synthesis of polyamic acid in a two-stage method to imidization without stopping the reaction or isolating an intermediate (polyamic acid).
  • the one-step method can also use the same reaction conditions as those of the heat imidization and chemical imidization.
  • tetracarboxylic dianhydride and diamine compound there are no particular limitations on the order and method of adding tetracarboxylic dianhydride and diamine compound to tetracarboxylic dianhydride and diamine compound.
  • a polyimide composition can be obtained by adding a tetracarboxylic dianhydride and a diamine compound to a solvent in this order and stirring at a temperature at which the reaction until imidization proceeds.
  • the amount of the diamine compound is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of tetracarboxylic dianhydride. is there.
  • amount of the diamine compound in such a range, it is possible to obtain a polyimide with a controlled imidation rate, and the yield of the resulting polyimide composition tends to be improved.
  • the concentration of tetracarboxylic dianhydride and diamine compound in the solvent can be set as appropriate for each condition and viscosity during polymerization, but the total mass of tetracarboxylic dianhydride and diamine compound is a special setting. However, it is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less, based on the total liquid amount. If the concentration in the solvent is too low, elongation of the molecular weight hardly occurs, and if it is too high, the viscosity becomes too high and stirring becomes difficult. Moreover, it exists in the tendency which can obtain the polyimide which controlled the imidation ratio because it is the said range. Examples of the solvent used in this reaction include the same solvents as those described above.
  • the obtained polyimide may be used as it is as a polyimide composition, or after being precipitated in a solid state by adding it to a poor solvent, it is redissolved in another solvent. It can also be used as a polyimide composition.
  • the poor solvent at this time is not particularly limited and may be appropriately selected depending on the type of polyimide, but ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone, and methyl isobutyl ketone; methanol, Examples thereof include alcohol solvents such as ethanol and isopropyl alcohol. Among them, alcohol solvents such as isopropyl alcohol are preferable in that precipitates can be obtained efficiently, the boiling point is low, and drying is easy. These solvents may be used alone or in combination of two or more in any ratio and combination. Moreover, the solvent of the polyimide composition mentioned above is mentioned as a solvent which redissolves a polyimide.
  • an imidizing agent can be added to the polyimide composition in order to further increase the imidization rate when forming the alignment film.
  • the imidizing agent is not particularly limited as long as it promotes imidization, and the above-mentioned imidization accelerator can be used.
  • Preferred are carboxylic acid compounds or heterocyclic compounds, more preferred are heterocyclic compounds, and more preferred are 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, N, N-dimethylaminopyridine, nicotine.
  • addition of said compound may be added at the time of manufacture of a polyimide composition, and may be added just before application
  • a coupling agent such as a silane coupling agent or a titanium coupling agent can be added in order to adjust the adhesiveness to the coated body.
  • These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
  • the amount used at this time is preferably 0.1% by mass or more and 3% by mass or less with respect to the polyimide.
  • silane coupling agent examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltripropoxysilane, ⁇ -aminopropyltributoxysilane, ⁇ -aminoethyltriethoxysilane, ⁇ -Aminoethyltrimethoxysilane, ⁇ -aminoethyltripropoxysilane, ⁇ -aminoethyltributoxysilane, ⁇ -aminobutyltriethoxysilane, ⁇ -aminobutyltrimethoxysilane, ⁇ -aminobutyltripropoxysilane, ⁇ -amino Examples include butyltributoxysilane.
  • titanium coupling agent examples include ⁇ -aminopropyltriethoxytitanium, ⁇ -aminopropyltrimethoxytitanium, ⁇ -aminopropyltripropoxytitanium, ⁇ -aminopropyltributoxytitanium, ⁇ -aminoethyltriethoxytitanium, ⁇ -Aminoethyltrimethoxytitanium, ⁇ -aminoethyltripropoxytitanium, ⁇ -aminoethyltributoxytitanium, ⁇ -aminobutyltriethoxytitanium, ⁇ -aminobutyltrimethoxytitanium, ⁇ -aminobutyltripropoxytitanium, ⁇ -amino Examples thereof include butyl tributoxy titanium.
  • additives can be blended as necessary.
  • other powdery, granular, plate-like, fiber-like inorganic fillers and organic fillers can be blended within a range not impairing the effects of the present invention.
  • these fillers may be processed into a flat shape such as a non-woven fabric or may be used in combination.
  • various additives commonly used in resin compositions such as lubricants, colorants, stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, etc. Can be blended. These various fillers and additive components may be added at any stage of any process for producing polyimide.
  • an optical element comprising an alignment film formed from the polyimide composition, an anisotropic dye film formed from the alignment film and a dye.
  • the alignment film of the present invention can be formed by applying the polyimide composition of the present invention to an object to be coated.
  • the application method is not particularly limited as long as it can form a layer having a uniform thickness.
  • a substrate including glass such as float glass or soda glass; plastic such as polyethylene terephthalate, polycarbonate, polyolefin, or the like can be used.
  • a functional silane-containing compound or a functional titanium-containing compound can be applied in advance to the surface of the substrate, which is an object to be coated. Further, ultraviolet treatment, plasma treatment, or the like can be performed.
  • the method for volatilizing the solvent of the polyimide composition is not particularly limited.
  • a solvent is volatilized by heating the to-be-coated body to which the polyimide composition is applied.
  • the heating method is not particularly limited, and examples thereof include hot air heating, vacuum heating, infrared heating, microwave heating, heating by contact using a hot plate or a hot roll, and the like.
  • the heating temperature in drying the solvent of the applied polyimide composition can be a suitable temperature depending on the type of the solvent, but is usually 20 ° C. or higher, preferably 40 ° C. or higher, more preferably 50 ° C. or higher. is there. Further, it is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 150 ° C. or lower.
  • the solvent removal temperature is 20 ° C. or higher, it is preferable in that the solvent is sufficiently volatilized.
  • solvent removal temperature is 200 degrees C or less, the performance fall of each material at the time of forming alignment film in to-be-coated bodies, such as a low heat resistant material, for example, polyester resin, polyolefin resin, etc. can be suppressed.
  • the temperature for increasing the imidization rate is preferably 60 ° C or higher, more preferably 80 ° C or higher. Further, it is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 150 ° C. or lower. A heating temperature of 60 ° C. or higher is preferable because imidization proceeds efficiently and the remaining amount of amic acid that causes hydrolysis and the like decreases.
  • heating temperature is 200 degrees C or less, it exists in the tendency which can suppress the performance fall of each material at the time of forming alignment film in to-be-coated bodies, such as a low heat resistant material, for example, polyester resin, polyolefin resin.
  • the solvent removal temperature and the temperature for increasing the imidization rate may be different from each other or the same temperature.
  • each heating method may differ or may be the same.
  • the thickness of the alignment film obtained can be controlled by adjusting the coating amount of the polyimide composition.
  • the thickness of the alignment film is usually 1 nm or more, preferably 10 nm or more, and is usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the thickness is 1 nm or more, the uniformity of the film thickness at the time of forming the alignment film is increased, and the alignment film can have sufficient alignment characteristics.
  • the hardness of the alignment film prepared from the polyimide composition of the present invention is such that the Vickers hardness at a film thickness of 2 ⁇ m is usually 10 or more, preferably 20 or more, more preferably 30 or more. Moreover, it is 100 or less normally, Preferably it is 80 or less, More preferably, it is 60 or less.
  • the Vickers hardness is in a specific range, scratches hardly occur on the alignment film, and application defects of the anisotropic dye film due to scratches on the alignment film tend to be prevented. Further, when a surface treatment such as a rubbing treatment of the alignment film is performed, the relaxation becomes slow and the surface treatment effect tends to be obtained.
  • the Vickers hardness can be measured as follows using a microhardness meter HM2000 (Fischer Instruments). As the indenter, a Vickers indenter is used. A load of 5 mN / ⁇ m 2 is applied at a load speed of 1.67 mN / sec. After holding for 5 seconds, the load is removed to obtain a Vickers hardness (Martens hardness ⁇ 0.0945).
  • the elastic deformation rate of the alignment film prepared with the polyimide composition of the present invention is usually 10% or more, preferably 15% or more, more preferably 18% or more, as determined by a microhardness meter at a film thickness of 2 ⁇ m. Yes, particularly preferably 20% or more. Moreover, it is 70% or less normally, Preferably it is 65% or less. When the elastic change rate of the alignment film is within this range, it becomes difficult to relax when surface treatment such as rubbing is performed, and the surface treatment such as rubbing can be maintained, and the orientation characteristics tend to be maintained. When rubbing is performed, the alignment film is less likely to be scraped or scratched by rubbing, and a uniform alignment film tends to be obtained.
  • the transmittance of the alignment film prepared from the polyimide composition of the present invention is usually 60% or more, preferably 70% or more, more preferably 80% or more on the longer wavelength side (visible region) from 400 nm. There is no particular upper limit on the transmittance, and a higher one is preferable.
  • An alignment film having a high light transmittance is preferably used in a device or the like that requires translucency. In particular, when used in a liquid crystal display, it is desirable that the transmittance of the blue region of the backlight is high, and specifically, it is preferable to have the above transmittance on a longer wavelength side than 420 nm.
  • the transmittance of the alignment film prepared from the polyimide composition of the present invention the total light transmittance according to JIS K 7136-1 is used.
  • a rubbing process in which the coated surface obtained above is rubbed in a certain direction with a roll wrapped with a cloth containing fibers such as nylon, rayon, and cotton, and a process of irradiating linearly polarized light. Etc. can be performed. By performing these treatments, an alignment film having higher alignment characteristics can be obtained. Among them, it is preferable to enhance the alignment characteristics by rubbing treatment in order to align the anisotropic dye film described later. When this rubbing treatment is performed on the alignment film and the anisotropic dye is aligned, it is necessary to perform the rubbing treatment more strongly than the liquid crystal alignment film. For this reason, the conventional alignment film for liquid crystal is scraped by rubbing, and there may be a defect in the anisotropic dye film due to process contamination due to scraping and damage to the alignment film caused by scraping.
  • the contact angle of the alignment film is usually 70 ° or less, preferably 60 ° or less, and more preferably 50 ° or less.
  • the contact angle is within an appropriate range, the dye solution tends to be uniformly applied without repelling the dye solution.
  • an anisotropic dye film composition is in a liquid crystal phase as a composition, and an anisotropic dye film formed after evaporation of the solvent has a high degree of orientation. It is preferable from a viewpoint of forming.
  • the state of the liquid crystal phase means that the liquid crystal phase is liquid as described on pages 1 to 16 of “Basics and Applications of Liquid Crystal” (Shoichi Matsumoto, Ryo Tsunoda, 1991). It is a liquid crystal state exhibiting both properties of crystal and crystal, and it means a nematic phase, a cholesteric phase, a numeric phase or a discotic phase. A nematic phase is particularly preferable.
  • curing agent, an additive, etc. may be mix
  • the anisotropic dye film composition may be in the form of a solution or gel.
  • the composition for anisotropic dye film may be in a state in which a dye or the like is dissolved or dispersed in a solvent.
  • the dye As the dye, a dichroic dye is usually used. Examples of the dichroic dye include a dye expressing a lyotropic liquid crystal, a dye expressing a thermotropic liquid crystal, and the like, and any of them may be used. In the present invention, the dye is preferably a dye having a liquid crystal phase for alignment control.
  • the dye having a liquid crystal phase means a dye that exhibits lyotropic liquid crystallinity in a solvent, and may or may not exhibit a liquid crystal phase when the composition for an anisotropic dye film is formed. Although it is good, the liquid crystal phase is preferable as described above.
  • the dye used in the present invention may be soluble in water or an organic solvent so that the anisotropic dye film composition exhibits a liquid crystal phase and is used for a wet film-forming method described later.
  • Particularly preferred is water solubility.
  • Further preferred are compounds having an inorganic value smaller than the organic value as defined in “Organic Conceptual Diagram-Fundamentals and Applications” (Yoshio Koda, Sankyo Publishing, 1984).
  • the molecular weight is preferably 200 or more, particularly preferably 300 or more, more preferably 1500 or less, and particularly preferably 1200 or less.
  • water-soluble means that the compound is usually dissolved in water at 0.1% by mass or more, preferably 1% by mass or more at room temperature.
  • composition for anisotropic dye film of the present invention only one kind of dye may be used, or two or more kinds may be used in combination.
  • two or more types are combined, in order for the anisotropic dye film composition to exhibit a liquid crystal phase, it is sufficient that at least one type is a pigment that exhibits a liquid crystal phase.
  • the dye examples include azo dyes, stilbene dyes, cyanine dyes, phthalocyanine dyes, and condensed polycyclic dyes (perylene and oxazine dyes).
  • the dye used in the present invention is not particularly limited, and the following known dyes can be used.
  • the dye include, for example, Japanese Unexamined Patent Publication No. 2006-0799030, Japanese Unexamined Patent Publication No. 2010-168570, Japanese Unexamined Patent Publication No. 2007-302807, Japanese Unexamined Patent Publication No. 2008-081700, Japanese Unexamined Patent Publication No. 09-230142, Japan 2007-722211, Japan 2007-186428, Japan 2008-69300, Japan 2009-169341, Japan JP 2009-161722, JP 2009-173849, JP 2010-039154, JP 2010-180314, JP 2010-266769, JP No. 2010-031268, Japanese Unexamined Patent Publication No.
  • JP 2012-194365 JP include dyes described in Japanese Patent 2011-016920 Patent Publication.
  • the above dye is suitable as a dye for an anisotropic dye film formed by a wet film forming method, has low wavelength dispersibility, and has a high degree of polarization and dichroic ratio. Moreover, since the said pigment
  • An azo dye means a dye having at least one azo group. The number of azo groups in one molecule is preferably 2 or more, and preferably 6 or less. Further, 4 or less is more preferable. When the azo group is in an appropriate number, the wavelength dispersion is low, a color tone having absorption in a wide range in the visible region is obtained, and the production tends to be easy.
  • each of the disazo, trisazo and tetrakisazo dyes having the structure of the following general formula (A) in the form of a free acid is compatible with the alignment film formed from the polyimide composition of the present invention. It is preferable because an anisotropic dye film having excellent molecular orientation and a high degree of molecular orientation can be obtained. Furthermore, the dye having the structure of the general formula (A) is preferable because it has a low wavelength dispersibility and a color tone having absorption in a wide range in the visible region is obtained.
  • E 1 represents an arbitrary organic group
  • R 20 and R 21 each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • p and q each independently represent an integer of 1 or more and 5 or less, and the sum of p and q represents 2 or more and 6 or less.
  • each of the disazo, trisazo and tetrakisazo dyes having the structure of the following general formula (B) in the form of a free acid is formed from the polyimide composition of the present invention.
  • An anisotropic dye film having excellent compatibility with the film and showing a high degree of molecular orientation can be obtained, which is more preferable.
  • dye which has a structure of general formula (B) is especially preferable from the color dispersion which has a low wavelength dispersion property and has absorption in a visible region widely.
  • E 2 represents an arbitrary organic group
  • R 22 and R 23 each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • the dye in the present embodiment may be used in the form of a free acid, or a part of the acid group may have a salt form. Further, a salt-type dye and a free acid-type dye may be mixed. Moreover, when it is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form.
  • a salt-type exchange method a known method can be arbitrarily used, and examples thereof include the following methods.
  • a strong acid such as hydrochloric acid is added to an aqueous solution of a dye obtained in a salt form, the dye is acidified in the form of a free acid, and then the dye is added with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
  • a method of neutralizing acidic groups and salt exchange is performed.
  • a neutral salt eg, lithium chloride
  • An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in the form of a free acid, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). ) To neutralize the acidic group of the dye and perform salt exchange. 4) A method of performing salt exchange by allowing an aqueous solution of a dye obtained in a salt form to act on a strongly acidic cation exchange resin previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
  • the acidic group of the dye in the present embodiment is a free acid type or a salt type depends on the pKa of the dye and the pH of the aqueous dye solution.
  • the salt type include salts of alkali metals such as Na, Li and K, ammonium salts which may be substituted with alkyl groups or hydroxyalkyl groups, and organic amine salts.
  • the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy-substituted lower alkyl amine having 1 to 6 carbon atoms, and the like.
  • the type is not limited to one type, and a plurality of types may be mixed.
  • the above dyes can be used alone, but two or more of these may be used in combination, and dyes other than the above exemplified dyes may be blended and used to such an extent that the orientation is not lowered. Thereby, anisotropic dye films having various hues can be produced.
  • Examples of blending pigments when blending other pigments include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 34, C.I. I. Direct Yellow 86, C.I. I. Direct Yellow 142, C.I. I. Direct Yellow 132, C.I. I. Acid Yellow 25, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Orange 79, C.I. I. Acid Orange 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red 89, C.I. I. Acid Red 37, C.I. I. Direct Violet 9, C.I.
  • anthraquinone compound may be blended in the anisotropic dye film composition of the present invention in accordance with the methods described in Japanese Patent Application Publication No. 2007-199333 and Japanese Patent Application Publication No. 2008-101154. Furthermore, the methods described in Japanese Unexamined Patent Publication No. 2006-3864 and Japanese Unexamined Patent Publication No. 2006-323377 may be used.
  • the composition for anisotropic dye film of the present invention has a temperature of 5 ° C. for an anisotropic dye film composition and 0.01% after strain application as described in Japanese Patent Application Laid-Open No. 2007-179933.
  • the defect of the anisotropic dye film may be controlled by setting the time until the relaxation elastic modulus G after 1 second is reduced to 1/10 to 0.1 second or less.
  • the cation is 0.9 equivalent or more and 0.99 equivalent or less and the strongly acidic anion is 0.02 equivalent or more with respect to the acidic group of the azo compound in the composition for anisotropic dye film. , 0.1 equivalent or less is included.
  • the solvent is not particularly limited as long as it dissolves or disperses the above compound.
  • water, a water-miscible organic solvent, or a mixture thereof is suitable because the dye easily forms an association state such as a lyotropic liquid crystal in the solvent.
  • the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin, glycols such as ethylene glycol and diethylene glycol, and cellosolves such as methyl cellosolve and ethyl cellosolve, or a mixture of two or more.
  • a solvent is mentioned.
  • water, methanol, and ethanol are preferable, and water is particularly preferable because it promotes association between highly organic portions such as an aromatic ring of the dye.
  • the concentration of the dye in the composition for anisotropic dye film is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and preferably 50% by mass, although it depends on the film forming conditions. Hereinafter, it is more preferably 30% by mass or less. If the dye concentration is excessively low, the association of the dyes in the composition becomes insufficient, and the anisotropic dye film obtained cannot obtain anisotropy such as a sufficient degree of polarization and dichroic ratio. If it is too high, the viscosity becomes so high that it is difficult to apply a uniform thin film, or the dye may precipitate in the composition for anisotropic dye film.
  • the anisotropic dye film composition may further contain additives such as a surfactant, a leveling agent, a coupling agent, and a pH adjuster as necessary. Depending on the additive, wettability, applicability and the like may be improved.
  • a surfactant any of anionic, cationic and nonionic properties can be used.
  • the addition concentration is not particularly limited, but is usually sufficient as the concentration in the anisotropic dye film composition as an amount that is sufficient to obtain the added effect and does not inhibit the orientation of the molecule. 0.01 mass% or more is preferable and 0.1 mass% or more is further more preferable. Moreover, 5 mass% or less is preferable, 1 mass% or less is more preferable, 0.5 mass% or less is especially preferable.
  • a known pH adjuster such as acid / alkali is added to the anisotropic dye. It may be added either before or after mixing the components of the film composition or during mixing.
  • “Additive for Coating”, Edited by J. Known additives described in Bieleman, Willy-VCH (2000) can also be used.
  • an anisotropic dye film is preferably formed on the alignment film of the present invention by a wet film formation method.
  • the wet film-forming method referred to in the present invention is a method in which an anisotropic dye film composition is applied to an alignment film by any method, and a dye is aligned and laminated on a substrate through a process of drying a solvent. is there.
  • the anisotropic dye film composition when the anisotropic dye film composition is formed on the substrate, the dye itself self-associates in the anisotropic dye film composition or in the process of drying the solvent. Causes orientation in a small area.
  • an anisotropic dye film having desired performance can be obtained by orienting in a certain direction in a macro region.
  • This is different from the method based on the principle that a so-called polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only by a stretching process.
  • the external field includes the influence of the orientation treatment layer previously applied on the base material, shear force, magnetic field, etc., and these may be used alone or in combination.
  • the process of forming the composition for an anisotropic dye film on the substrate, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously.
  • the method for applying the anisotropic dye film composition on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like.
  • the present invention preferably uses a coating method.
  • the anisotropic dye film can be formed by applying the anisotropic dye film composition to the alignment film.
  • the orientation direction of the anisotropic dye film is usually coincident with the application direction, but may be different from the application direction.
  • the orientation direction of the anisotropic dye film is, for example, a transmission axis or absorption axis of polarized light in the case of an anisotropic dye film, and a fast axis or in the case of a retardation film. It is the slow axis.
  • the anisotropic dye film in the present embodiment functions as a polarizing film or retardation film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, as well as film forming processes and coatings.
  • a composition containing an applied body (substrate or the like) or an organic compound (colorant or transparent material) it can be functionalized as various anisotropic films such as refractive anisotropy and conduction anisotropy.
  • the method for applying the anisotropic dye film composition to obtain the anisotropic dye film is not particularly limited.
  • Yuji Harasaki Coating Engineering
  • Methods described on pages 253 to 277 supervised by Kunihiro Ichimura, “Creation and Application of Molecular Coordination Materials” (CMC Publishing Co., Ltd., published on March 3, 1998), pages 118 to 149
  • Examples of the method include coating on the coated body by a slot die coating method, a spin coating method, a spray coating method, a bar coating method, a roll coating method, a blade coating method, a curtain coating method, a fountain method, and a dip method.
  • the slot die coating method is preferable because an anisotropic dye film with high uniformity can be obtained.
  • the anisotropic dye film composition that expresses a preferable lyotropic liquid crystal phase as the above-mentioned anisotropic dye film composition by the above-described application method, It is considered that the dye is oriented by the influence of the orientation treatment of the orientation film or the like previously applied on the substrate and the shearing force applied to the anisotropic dye film composition at the time of application.
  • the method for supplying the composition for anisotropic dye film and the supply interval when applying the composition for anisotropic dye film continuously are not particularly limited, but the operation of supplying the coating liquid becomes complicated, or the coating liquid When the anisotropic dye film is thin, especially while supplying the composition for the anisotropic dye film continuously, the coating film thickness may vary at the start and stop of It is desirable to apply.
  • the speed at which the composition for anisotropic dye film is applied is usually 1 mm / second or more, preferably 5 mm / second or more, more preferably 10 mm / second or more. Moreover, it is 1000 mm / sec or less normally, Preferably it is 200 mm / sec or less. It is. If the coating speed is too small, the anisotropy of the anisotropic dye film may be lowered. On the other hand, when too large, there exists a possibility that it cannot apply
  • coating temperature of the composition for anisotropic dye films it is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 40 degrees C or less. Moreover, the humidity at the time of application
  • the film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 50 nm or more as a dry film thickness. On the other hand, it is preferably 30 ⁇ m or less, more preferably 1 ⁇ m or less. When the film thickness of the anisotropic dye film is in an appropriate range, there is a tendency that uniform orientation of molecules and a uniform film thickness can be obtained in the film.
  • the anisotropic dye film may be insolubilized.
  • Insolubilization means a treatment step that increases the stability of the film by controlling the elution of the compound from the anisotropic dye film by reducing the solubility of the compound in the anisotropic dye film.
  • an ion with a lower valence is replaced with an ion with a higher valence (for example, a monovalent ion is replaced with a polyvalent ion), or an organic molecule or polymer having a plurality of ionic groups.
  • a replacement process is listed.
  • the obtained anisotropic dye film is treated by a method described in Japanese Patent Application Laid-Open No. 2007-241267, etc. to obtain an anisotropic dye film insoluble in water. It is preferable from the viewpoint of ease and durability.
  • the transmittance of the anisotropic dye film in the visible light wavelength region is preferably 25% or more. 35% or more is more preferable, and 40% or more is particularly preferable.
  • permeability What is necessary is just an upper limit according to a use. For example, when used for a liquid crystal display, it is preferably 50% or less.
  • the orientation characteristic of the anisotropic dye film can be expressed by the degree of polarization.
  • the degree of polarization is such that the single transmittance is 36% or more and is usually 95% or more, preferably 98% or more, and more preferably 99% or more. Moreover, the higher the degree of polarization, the better. The maximum value is 100%.
  • the degree of polarization is not less than the above numerical value, it is useful as the following optical element, particularly as a polarizing element.
  • Each transmittance is not particularly limited as long as it has the same wavelength, and any wavelength may be selected depending on the purpose.
  • Polarization degree (P) (%) ⁇ (Ty ⁇ Tz) / (Ty + Tz) ⁇ 1/2 ⁇ 100 Tz: transmittance for polarized light in the direction of the absorption axis of the anisotropic dye film Ty: transmittance for polarized light in the direction of the polarization axis of the anisotropic dye film
  • anisotropic dye or the composition for anisotropic dye film can be directly added to the polyimide composition of the present invention to be used as an anisotropic dye film.
  • Each condition in this case can be performed in the same manner as the method for forming the anisotropic dye film.
  • the optical element of the present invention is a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc., utilizing retardation of light absorption, a retardation element, refractive anisotropy, conductive anisotropy, etc. It is an element having a function. These functions can be appropriately adjusted depending on the film forming process and the selection of a composition containing an object to be coated (substrate or the like) or an organic compound (pigment or transparent material). In the present invention, it is preferably used as a polarizing element.
  • the polarizing element of the present invention has any other film (layer) as long as it has an alignment film and an anisotropic dye film composition on an object to be coated (substrate or the like). It may be a thing. For example, it can be produced by forming an anisotropic dye film composition on the surface of the alignment film.
  • the polarizing element of the present invention is an overcoat layer, an adhesive layer or an antireflection layer, an alignment film, a function as a retardation film, a function as a brightness enhancement film, if necessary, in addition to the alignment film and the anisotropic dye film.
  • Layers with various functions such as a function as a reflection film, a function as a transflective film, a layer with optical functions such as a diffusion film, etc. are laminated by coating or bonding, and used as a laminate. May be.
  • These layers having an optical function can be formed, for example, by the following method.
  • the layer having a function as a retardation film is subjected to stretching treatment described in, for example, Japanese Patent Application Laid-Open No. 2-59703, Japanese Patent Application Laid-Open No. 4-230704, or Japanese Patent Application Laid-Open No. 7-230007. It can be formed by performing the treatment described in the above.
  • the layer having a function as a brightness enhancement film may be formed with micropores by a method as described in, for example, Japanese Patent Application Laid-Open No. 2002-169025 or Japanese Patent Application Laid-Open No. 2003-29030, or It can be formed by overlapping two or more cholesteric liquid crystal layers having different central wavelengths of selective reflection.
  • the layer having a function as a reflective film or a transflective film can be formed using a metal thin film obtained by vapor deposition, sputtering, or the like.
  • the layer having a function as a diffusion film can be formed by coating the protective layer with a resin solution containing fine particles.
  • the layer having a function as a retardation film or an optical compensation film can be formed by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound.
  • the anisotropic dye film in the present embodiment is used as an anisotropic dye film or the like for various display elements such as LCDs and OLEDs, an alignment film directly on the surface of the electrode substrate or the like constituting these display elements
  • An anisotropic dye film can be formed, or a substrate on which an alignment film and an anisotropic dye film are formed can be used as a constituent member of these display elements.
  • the optical element of the present invention can be directly formed on a highly heat-resistant coated body (substrate or the like) such as glass, a highly heat-resistant polarizing element can be obtained, so that a liquid crystal display or an organic electroluminescence display can be obtained.
  • it can be suitably used for applications that require high heat resistance, such as liquid crystal projectors and in-vehicle display panels.
  • ⁇ Aromatic ring element ratio It calculated from the ratio of the aromatic tetracarboxylic anhydride and diamine compound in a raw material monomer.
  • the polyimide composition containing the reaction solution was determined as “x” when the solid content (insoluble polyimide resin) was precipitated at room temperature, and “ ⁇ ” when completely dissolved.
  • ⁇ Vickers microhardness meter measurement> The solid concentration of the synthesized polyimide compositions 1 to 3 was diluted to 15% by weight to obtain a coating solution. 7 This coating solution was applied to a glass substrate using a spin coater, heated at 80 ° C. for 10 minutes, and further heated at 140 ° C. for 1 hour. The film thickness at this time was 2 ⁇ m. Using this film, a Vickers micro hardness tester HM2000 (manufactured by Fischer Instruments) is used. The indenter is a Vickers indenter. A load of 5 mN / ⁇ m 2 is applied at a load speed of 1.67 mN / sec and held for 5 seconds. Thereafter, the load was removed, and Vickers hardness (Martens hardness ⁇ 0.0945), elastic change rate: (total deformation ⁇ plastic deformation) / total deformation ⁇ 100 were obtained.
  • HM2000 manufactured by Fischer Instruments
  • Example 2 Synthesis was performed in the same manner as in Example 1 except that 2,2-bis (4- (4-aminophenoxy) phenyl) propane of Example 1 was changed to 4.6 g of 4,4′-diaminodiphenyl ether. A polyimide composition 2 was obtained. About the obtained polyimide composition 2, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 3 Example 2, except that 2,2-bis (4- (4-aminophenoxy) phenyl) propane in Example 1 was changed to 4.8 g of 4,4′-diamino-2,2′-dimethylbiphenyl. Synthesis was performed in the same manner to obtain a polyimide composition 3. About the obtained polyimide composition 3, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 4 In a four-necked flask equipped with a reflux nitrogen gas inlet tube, a condenser, a Dean-Stark agglomerator filled with toluene, and a stirrer, 13.3 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride, pyromerit 1.5 g of acid dianhydride, 14.0 g of 3,4-diaminodiphenyl ether, 86 g of N-methyl-2-pyrrolidone and 17.3 g of toluene were added. The mixture was heated with stirring and reacted at 160 to 170 ° C. for 13 hours to obtain a polyimide composition 4. About the obtained polyimide composition 4, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 5 To 15.714 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4, 3,714 ', 4,4'-biscyclohexanetetracarboxylic dianhydride was added 3,4-diaminodiphenyl ether. 25.949 g of bis (4- (4-aminophenoxy) phenyl) sulfone, 1.243 g of pyromellitic dianhydride, 82 g of N-methyl-2-pyrrolidone, and 16.3 g of toluene were changed. The polyimide composition 5 was obtained by synthesizing in the same manner as in Example 4. The obtained polyimide composition 5 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4 to 9.982 g of 1,2,3,4-cyclopentanetetracarboxylic dianhydride, pyromellitic anhydride to 0 g, A polyimide composition 6 was obtained by synthesizing in the same manner as in Example 4, except that the amount of 3,4-diaminodiphenyl ether was changed to 10.12 g, N-methyl-2-pyrrolidone was changed to 60 g, and toluene was changed to 12 g. It was. The obtained polyimide composition was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 The 1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4 was added to 12.63 g of 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic dianhydride.
  • Example 4 except that melitric anhydride was changed to 1.0 g, 3,4-diaminodiphenyl ether was changed to 9.66 g, N-methyl-2-pyrrolidone was changed to 70.10 g, and toluene was changed to 10.5 g.
  • Example 7 was synthesized in the same manner as above to obtain a polyimide composition 7. About the obtained polyimide composition 7, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
  • Example 2 The 1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4 was changed to 4.2 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and pyromellitic dianhydride was changed to 0 g. Same as Example 4 except that 3,4-diaminodiphenyl ether was changed to 4.8 g of 4,4-diamino-2,2-dimethylbiphenyl, 27 g of N-methyl-2-pyrrolidone, and 5.4 g of toluene. Thus, a polyimide composition 9 was obtained. About the obtained polyimide composition 9, it measured by the method similar to Example 1. FIG. The polyimide composition 9 was not soluble. Moreover, since it was not soluble, the imidation ratio could not be measured. The results are shown in Table 1.
  • Examples 8 to 14 Using polyimide compositions 2 to 7 synthesized in Examples 2 to 7, alignment films 1 to 7 were produced as follows. Further, rubbing treatment was performed on each alignment film, and the presence or absence of scratches or scraping on the film after rubbing was confirmed with the naked eye. The compositions 8 and 9 of Comparative Examples 1 and 2 were not soluble and the polyimide was deposited, so that the coating could not be performed and an alignment film could not be obtained.
  • Polyimide compositions 2 and 3 were diluted to 4% by mass with a coating solvent (N, N-dimethylacetamide) to obtain a coating solution.
  • composition for anisotropic dye film 20 parts by mass of the azo compound represented by formula (I) and 1 part by mass of the compound represented by formula (II) are added to 79 parts by mass of water and stirred. After being dissolved, the solution was filtered to remove insoluble matter, thereby obtaining an aqueous dye solution (anisotropic dye film composition).
  • the above-mentioned anisotropic dye film composition is applied to the polyimide alignment film produced by the above method with an applicator (manufactured by Horita Seisakusho Co., Ltd.) with a gap of 4 ⁇ m, and then naturally dried to obtain an anisotropic dye film. It was.
  • the anisotropic dye film is formed by applying the above anisotropic dye film composition to the polyimide alignment film produced by the above method by applying it using a die coater having a slot width of 50 ⁇ m, and then naturally drying. Obtained.
  • the optical performance was evaluated by the single transmittance and the degree of polarization of the anisotropic dye film.
  • the single transmittance and the degree of polarization were determined using a spectrophotometer equipped with a Gram-Thomson polarizer (product name “RETS-100” manufactured by Otsuka Electronics Co., Ltd.).
  • the linearly polarized measuring light was incident on the anisotropic dye film and the transmittance was measured.
  • the degree of polarization at 620 nm which is the maximum absorption wavelength of the anisotropic dye film, was calculated by the following equation.
  • Polarization degree (P) (%) ⁇ (Ty ⁇ Tz) / (Ty + Tz) ⁇ 1/2 ⁇ 100
  • Tz Transmittance with respect to polarized light in the direction of the absorption axis of the anisotropic dye film
  • Ty Transmittance with respect to polarized light in the direction of the polarization axis of the anisotropic dye film Evaluation was performed as follows from the single transmittance and the degree of polarization.
  • Examples 1 to 7 (polyimide compositions 1 to 7) were all soluble.
  • the alignment films 1 to 7 obtained by using the compositions 2 to 7 were free from scratches or scraping due to rubbing, and were shown to have excellent surface treatment resistance. Further, since the alignment films 1 to 7 are excellent in the optical characteristics of the anisotropic dye film, it can be seen that the alignment films of the present invention have high alignment characteristics.
  • the present invention can be used in any industrial field.
  • the present invention can be suitably used in a field where an alignment film having a high distribution characteristic is required.
  • a display, etc. it can be particularly suitably used in a field where an optical element is required.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polarising Elements (AREA)

Abstract

 A polyimide composition used in an alignment film for an anisotropic pigment film, the polyimide composition characterized in that the polyimide composition includes a polyimide and a solvent, and the polyimide is represented by general formula (1). (In general formula (1), X represents a tetravalent aliphatic hydrocarbon having a carbon number of at least 5, R1 represents a divalent organic group having an aromatic ring, n represents an integer of 1 or higher, and when n is 2 or higher, a plurality of R1 and X present in a molecule of the structure represented by general formula (1) may each be the same or different.)

Description

ポリイミド組成物、前記ポリイミド組成物を用いて形成された配向膜及び光学素子Polyimide composition, alignment film formed using said polyimide composition, and optical element
 本発明は、特定構造のポリイミドを含有し、異方性色素膜用の配向膜に用いるポリイミド組成物に関する。また、前記ポリイミド組成物を用いて形成された配向膜及び光学素子に関する。 The present invention relates to a polyimide composition containing a polyimide having a specific structure and used for an alignment film for an anisotropic dye film. The present invention also relates to an alignment film and an optical element formed using the polyimide composition.
 近年、液晶ディスプレイの普及に伴い、液晶ディスプレイの様々な用途での利用が進められている。それに伴い、様々な課題が提唱され、検討がなされている。その中でも光学素子、特に偏光素子に関して、特に湿度、熱及び光に対する耐久性への要求が高まってきている。従来の液晶ディスプレイではポリビニルアルコール(PVA)フィルム等を色素を含む溶液で染色して延伸し、延伸工程で色素を配向させて得られる偏光フィルムを使用していることから、湿度に対する耐久性が低い。そこで耐湿潤性、耐熱性を改善する、色素を用いた異方性色素膜(偏光膜)の技術の確立が期待されている。
 異方性色素膜を得る方法としては、二色性色素をポリマー表面へ塗布することで異方性色素膜を得る方法等が開示されている(特許文献1)。
In recent years, with the widespread use of liquid crystal displays, the use of liquid crystal displays in various applications has been promoted. Along with this, various issues have been proposed and studied. Among them, with respect to optical elements, particularly polarizing elements, there is an increasing demand for durability against humidity, heat and light. The conventional liquid crystal display uses a polarizing film obtained by dyeing and stretching a polyvinyl alcohol (PVA) film or the like with a solution containing a dye, and orienting the dye in the drawing process, and therefore has low durability against humidity. . Therefore, establishment of a technique for an anisotropic dye film (polarizing film) using a dye that improves wet resistance and heat resistance is expected.
As a method for obtaining an anisotropic dye film, a method for obtaining an anisotropic dye film by applying a dichroic dye to a polymer surface is disclosed (Patent Document 1).
 また、異方性色素膜を塗布することで得る際に、塗布基板上に配向膜を設け色素を配向させることがなされている。例えば、ポリアミック酸溶液(ポリイミド前駆体)を基板に塗布し加熱することで配向膜を得ることが開示されている(特許文献2)。
 配向膜は、液晶用の配向膜が従来検討されており、ポリアミック酸溶液を基板に塗布し加熱することで液晶用配向膜を得ることが開示されている(特許文献3)。
 一方、ポリイミドについては、光学フィルム用途としても検討されている。例えば、耐熱性、透過率、機械特性及び耐熱性に優れたフィルムを得るために、ポリアミック酸溶液を塗布後加熱することが開示されている(特許文献4及び6)。また、有機溶媒への可溶性、耐熱性、寸法安定性および透明性に優れたポリイミド溶液を塗布することで、フィルムを得ることが開示されている(特許文献5)。
Moreover, when obtaining by apply | coating an anisotropic pigment | dye film | membrane, the orientation film | membrane is provided on a coating substrate and the pigment | dye is made to align. For example, it is disclosed that an alignment film is obtained by applying a polyamic acid solution (polyimide precursor) to a substrate and heating (Patent Document 2).
As the alignment film, an alignment film for liquid crystal has been conventionally studied, and it is disclosed that a liquid crystal alignment film is obtained by applying a polyamic acid solution to a substrate and heating (Patent Document 3).
On the other hand, polyimide has been studied as an optical film application. For example, in order to obtain a film having excellent heat resistance, transmittance, mechanical properties, and heat resistance, it is disclosed that a polyamic acid solution is heated after coating (Patent Documents 4 and 6). In addition, it is disclosed that a film is obtained by applying a polyimide solution having excellent solubility in organic solvents, heat resistance, dimensional stability, and transparency (Patent Document 5).
 近年、液晶ディスプレイの軽量化や耐衝撃性の向上、フレキシブル化への展開に対応するため、基板をプラスチックにする検討もなされている。これらに使用するプラスチック基板は耐熱性が低いことから、液晶ディスプレイの作製工程の低温化が求められている。
 また、液晶ディスプレイを高輝度化するために、カラーフィルターの着色剤を染料にすることが検討されている。この場合、染料の耐熱性の低さから、カラーフィルター作製後の工程の温度を、従来用いられている温度より低い、180℃以下にすることが求められている(特許文献7)。
In recent years, in order to respond to the development of weight reduction, impact resistance improvement, and flexibility of liquid crystal displays, studies have been made on using a plastic substrate. Since the plastic substrate used for these has low heat resistance, it is required to lower the temperature of the manufacturing process of the liquid crystal display.
In order to increase the brightness of a liquid crystal display, it has been studied to use a colorant for a color filter as a dye. In this case, due to the low heat resistance of the dye, it is required that the temperature of the process after producing the color filter be 180 ° C. or lower, which is lower than the conventionally used temperature (Patent Document 7).
日本国特開2009-217011号公報JP 2009-217011 日本国特開2010-72521号公報Japanese Unexamined Patent Publication No. 2010-72521 日本国特開2000-305088号公報Japanese Unexamined Patent Publication No. 2000-305088 日本国特開平8-104750号公報Japanese Laid-Open Patent Publication No. 8-104750 日本国特開2012-146905号公報Japanese Unexamined Patent Publication No. 2012-146905 日本国特開2007-161930号公報Japanese Unexamined Patent Publication No. 2007-161930 日本国特開2011-253054号公報Japanese Unexamined Patent Publication No. 2011-253054
 特許文献1には、二色性色素をポリマー表面へ塗布することで異方性色素膜を作製することが開示されているが、配向膜を設けることに関して検討されていない。
 特許文献2及び3は、ポリアミック酸溶液を基板上に塗布し、200℃以上の高温での熱処理を行うことで、ポリイミド膜を得ることが開示されている。よって、耐熱性が200℃以下である材料上へ異方性色素膜用の配向膜を作成することはできない。例えば、近年開発されている染料を用いる高輝度カラーフィルターでは、200℃以上の高温で処理すると輝度が低下するという問題がある。
Patent Document 1 discloses that an anisotropic dye film is produced by applying a dichroic dye to a polymer surface, but no consideration is given to providing an alignment film.
Patent Documents 2 and 3 disclose that a polyimide film is obtained by applying a polyamic acid solution on a substrate and performing a heat treatment at a high temperature of 200 ° C. or higher. Therefore, an alignment film for an anisotropic dye film cannot be formed on a material having a heat resistance of 200 ° C. or less. For example, a high-intensity color filter using a dye that has been developed in recent years has a problem that the luminance is lowered when processed at a high temperature of 200 ° C. or higher.
 一方、ポリアミック酸溶液を基板等に塗布し、200℃以下で熱処理をした場合、十分にイミド化反応が進行せず、配向膜内にアミック酸部分が残存する。残存したアミック酸部分は、以下(1)~(6)の問題を生じさせる傾向にある。従って、上記のようなポリアミック酸を用いた配向膜は、異方性色素膜用の配向膜として用いることはできない。
(1)配向膜を用い光学素子を形成後も、配向膜のイミド化反応が進行し、水が生成するこの水が異方性色素の会合を壊し、異方性色素膜の劣化が起こる。
(2)残存するアミック酸部位が加水分解し、ポリイミドの分子量が低下することで、配向膜物性が変化し、配向特性の劣化が起こる。
(3)残存するアミック酸部位が加水分解し、反応性に富むカルボン酸末端やアミン末端が生成することで異方性色素膜中の色素や周辺部材の劣化及び着色が加速する。
(4)溶媒との親和性に富むアミック酸部位に捕捉された溶媒分子は乾燥工程においても除去が難しく、続く工程や保存中にアウトガスとなって揮発し、素子や周辺部材を劣化させる。
(5)異方性色素膜用組成物の塗布時に、残存するアミック酸部位が異方性色素膜用組成物中の溶媒等を吸水し、配向膜の膨潤が起こる。さらに吸収した水を放出することによって、異方性色素の会合を壊し、異方性色素膜の劣化が起こる。
(6)残存するアミック酸部位を減少させるため、ポリアミック酸を塗布後に閉環イミド化反応を行う場合、閉環に伴って発生した水が、配向膜の表面ムラやマイクロバブルを引き起こす。これらが発生した配向膜は表面平滑性が悪く、異方性色素膜の配向特性や表面平滑性を阻害する。
On the other hand, when a polyamic acid solution is applied to a substrate or the like and heat-treated at 200 ° C. or lower, the imidization reaction does not proceed sufficiently, and the amic acid portion remains in the alignment film. The remaining amic acid portion tends to cause the following problems (1) to (6). Therefore, the alignment film using the polyamic acid as described above cannot be used as an alignment film for an anisotropic dye film.
(1) Even after the optical element is formed using the alignment film, the imidization reaction of the alignment film proceeds, and this water generated by water breaks the association of the anisotropic dye, resulting in deterioration of the anisotropic dye film.
(2) The remaining amic acid site is hydrolyzed and the molecular weight of the polyimide is lowered, whereby the physical properties of the alignment film are changed and the alignment characteristics are deteriorated.
(3) The remaining amic acid site is hydrolyzed to generate a highly reactive carboxylic acid end or amine end, thereby accelerating the deterioration and coloring of the dye and peripheral members in the anisotropic dye film.
(4) Solvent molecules trapped in the amic acid moiety having a high affinity with the solvent are difficult to remove even during the drying process, and are volatilized as outgas during the subsequent process and storage, thereby degrading the device and peripheral members.
(5) Upon application of the anisotropic dye film composition, the remaining amic acid site absorbs the solvent or the like in the anisotropic dye film composition, and the alignment film swells. Further, by releasing the absorbed water, the association of the anisotropic dye is broken and the anisotropic dye film is deteriorated.
(6) In order to reduce the remaining amic acid sites, when a ring-closing imidization reaction is performed after applying polyamic acid, water generated along with ring-closing causes surface unevenness and microbubbles in the alignment film. The alignment film in which these occur is poor in surface smoothness and inhibits the alignment characteristics and surface smoothness of the anisotropic dye film.
 さらに、特許文献3には液晶用配向膜にポリイミドを用いることが開示されているが、異方性色素膜用の配向膜としての検討はなされていない。液晶用配向膜は、1分子が数十Å程度の液晶分子を配向させるものである。一方、異方性色素膜用の配向膜は、異方性色素が会合した数百Å程度のカラムを配向させる必要がある。このように配向させるものの大きさの違いから、各々の配向膜に求められる特性は異なり、液晶用配向膜を異方性色素膜用の配向膜に転用することはできない。
 特許文献4~6は、光学フィルム用途であり、これを異方性色素膜用の配向膜に転用することは困難である。さらに、特許文献4及び6は特許文献2及び3と同様に、フィルムを得るためには、ポリアミック酸溶液を塗布後、200℃以上の高温での熱処理を行う必要がある。また、本発明者らの検討によると、特許文献5に用いられているポリイミドは、疎水性が高く、異方性色素膜組成物に対する塗布性が低下してしまう問題がある。
Further, Patent Document 3 discloses that polyimide is used for the alignment film for liquid crystal, but no investigation is made as an alignment film for an anisotropic dye film. The alignment film for liquid crystal aligns liquid crystal molecules of which one molecule is about several tens of thousands. On the other hand, an alignment film for an anisotropic dye film needs to align about several hundreds of columns in which anisotropic dyes are associated. Due to the difference in size of the alignment material, the characteristics required for each alignment film are different, and the alignment film for liquid crystal cannot be diverted to the alignment film for anisotropic dye film.
Patent Documents 4 to 6 are optical film applications, and it is difficult to divert them to alignment films for anisotropic dye films. Further, in Patent Documents 4 and 6, as in Patent Documents 2 and 3, in order to obtain a film, it is necessary to perform a heat treatment at a high temperature of 200 ° C. or higher after applying the polyamic acid solution. Further, according to the study by the present inventors, the polyimide used in Patent Document 5 has a high hydrophobicity, and there is a problem that the applicability to the anisotropic dye film composition is lowered.
 本発明は、上記従来技術の問題を解決し、溶媒への溶解性に優れたポリイミドを含むポリイミド組成物を提供することを課題とする。また、ポリイミド組成物が塗布性に優れ、ポリイミド組成物を用いて配向膜を形成する際に、低温処理が可能であるポリイミド組成物を提供することを課題とする。さらに、得られた配向膜の耐表面処理性が高く、且つ、配向特性が高いポリイミド組成物を提供することを課題とする。 An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a polyimide composition containing polyimide having excellent solubility in a solvent. Moreover, when a polyimide composition is excellent in applicability | paintability and forms an oriented film using a polyimide composition, it makes it a subject to provide the polyimide composition which can be processed at low temperature. Furthermore, it is an object of the present invention to provide a polyimide composition having high surface treatment resistance and high alignment characteristics of the obtained alignment film.
 本発明者らは上記課題を達成すべく鋭意検討した結果、特定構造のポリイミドが溶媒への溶解性に優れ、前記ポリイミド及び溶媒を含むポリイミド組成物を用いることで、ポリイミド組成物が塗布性に優れることを見出した。溶解度の高いポリイミドを含むポリイミド組成物を用いることで、塗布後に高温にてイミド化反応を行う必要がない。つまり、配向膜を形成時には、塗布した配向膜の溶媒除去のみを行うだけでよく、200℃より低い温度で行うことができるため、カラーフィルター等の材料上に配向膜を形成することができることを見出した。
 また、上記ポリイミド組成物から得られた配向膜が、ラビング等の耐表面処理性に優れ、且つ、異方性色素膜の配向特性が高いことを見出した。
 本発明はこれらの知見に基づいて成し遂げられたものである。
As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention have excellent solubility in a solvent of a specific structure. By using a polyimide composition containing the polyimide and the solvent, the polyimide composition can be applied. I found it excellent. By using a polyimide composition containing a highly soluble polyimide, it is not necessary to perform an imidization reaction at a high temperature after coating. That is, when forming the alignment film, it is only necessary to remove the solvent of the applied alignment film, and since it can be performed at a temperature lower than 200 ° C., the alignment film can be formed on a material such as a color filter. I found it.
Further, it has been found that the alignment film obtained from the polyimide composition is excellent in surface treatment resistance such as rubbing and has high alignment characteristics of the anisotropic dye film.
The present invention has been accomplished based on these findings.
 即ち、本発明の要旨は、以下の〔1〕~〔5〕に存する。
〔1〕
 異方性色素膜用配向膜に用いられるポリイミド組成物であって、
 ポリイミド組成物は、ポリイミド及び溶媒を含み、
 前記ポリイミドが一般式(1)で表されることを特徴とするポリイミド組成物。
That is, the gist of the present invention resides in the following [1] to [5].
[1]
A polyimide composition used for an alignment film for anisotropic dye film,
The polyimide composition includes a polyimide and a solvent,
The said polyimide is represented by General formula (1), The polyimide composition characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (一般式(1)において、Xは、炭素数5以上の4価の脂肪族炭化水素基を表し、
 Rは、芳香環を有する2価の有機基を表し、
 nは1以上の整数を表し、nが2以上の場合は、一般式(1)で表される構造1分子中に複数存在するR及びXは、それぞれ同一であっても異なっていてもよい。)
〔2〕
 前記ポリイミドの主鎖を形成する元素数のうち、芳香環を形成する元素数の割合が5%以上、75%以下である、上記〔1〕に記載のポリイミド組成物。
〔3〕
 前記ポリイミドのイミド化率が90%以上である、上記〔1〕又は〔2〕に記載のポリイミド組成物。
〔4〕
 〔1〕~〔3〕の何れか1項に記載のポリイミド組成物を用いて形成されたものである、異方性色素膜用配向膜。
〔5〕
 〔4〕に記載の異方性色素膜用配向膜と、前記異方性色素膜用配向膜上に積層される異方性色素膜とを有する、光学素子。
(In the general formula (1), X represents a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms,
R 1 represents a divalent organic group having an aromatic ring,
n represents an integer of 1 or more, and when n is 2 or more, a plurality of R 1 and X present in one molecule of the structure represented by the general formula (1) may be the same or different. Good. )
[2]
The polyimide composition as described in [1] above, wherein the ratio of the number of elements forming an aromatic ring is 5% or more and 75% or less of the number of elements forming the main chain of the polyimide.
[3]
The polyimide composition according to the above [1] or [2], wherein the imidization ratio of the polyimide is 90% or more.
[4]
An alignment film for an anisotropic dye film, which is formed using the polyimide composition according to any one of [1] to [3].
[5]
An optical element having the anisotropic dye film alignment film according to [4] and an anisotropic dye film laminated on the anisotropic dye film alignment film.
 本発明の特定構造のポリイミドは溶媒への溶解性に優れ、前記ポリイミド及び溶媒を含むポリイミド組成物が塗布性に優れる。本発明のポリイミド組成物を用いることで、塗布後に高温にてイミド化反応を行う必要がなく、塗布膜の溶媒除去のみを低温で行うことができ、カラーフィルター等の材料上に配向膜を形成することができる。
 また、ラビング等の処理に対する耐表面処理性に優れ、且つ異方性色素膜の配向特性が高い配向膜を得ることができる。
The polyimide having a specific structure of the present invention is excellent in solubility in a solvent, and the polyimide composition containing the polyimide and the solvent is excellent in coatability. By using the polyimide composition of the present invention, it is not necessary to perform an imidization reaction at a high temperature after coating, and only the solvent removal of the coating film can be performed at a low temperature, and an alignment film is formed on a material such as a color filter. can do.
In addition, it is possible to obtain an alignment film that is excellent in surface treatment resistance against a process such as rubbing and that has high alignment characteristics of an anisotropic dye film.
 上記の効果を奏する理由は定かではないが、以下と推測される。本発明のポリイミド組成物が含む一般式(1)で表されるポリイミドのXが炭素数5以上の4価の脂肪族炭化水素基であることで、溶媒へのポリイミドの溶解性を向上することができる。ポリイミド組成物中のポリイミドが析出し難いため、ポリイミド組成物の塗布性が向上する。また、本発明のポリイミド組成物はポリイミドのイミド化率が高い場合でも溶媒への溶解性が高いことから、塗布後の加熱によりイミド化反応を行う必要がなく、200℃以下の温度で溶媒を除去し配向膜を形成することが可能となる。 The reason for the above effect is not clear, but is presumed as follows. Improve the solubility of the polyimide in the solvent by X of the polyimide represented by the general formula (1) contained in the polyimide composition of the present invention being a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms. Can do. Since the polyimide in the polyimide composition is difficult to deposit, the applicability of the polyimide composition is improved. In addition, since the polyimide composition of the present invention has high solubility in a solvent even when the imidization ratio of polyimide is high, it is not necessary to carry out an imidation reaction by heating after coating, and the solvent is used at a temperature of 200 ° C. or lower. It is possible to form an alignment film by removing.
 一般式(1)のRが芳香環を有する2価の有機基であることで、本発明のポリイミドは剛直な構造となり、直線性を有する。ポリイミドが直線性を有することで、配向膜へのラビングなどの表面処理の効果がより得られやすくなる。このラビングなどの表面処理の効果により配向膜中のポリイミドの直線性が増し、その表面に形成される異方性色素膜の配向特性を高めることができる。
 Rが芳香環を有する2価の有機基であることで、R部分は電子供与性(ドナー)を示す。一方、ポリイミドのイミド環構造部分は電子受容性(アクセプター)を示すため、ドナー・アクセプター相互作用によって、ポリイミド組成物中でのポリイミドの会合性が得られる。従って、配向膜の配向特性が向上し、その表面に形成される異方性色素膜の配向特性も高めることができる。
 また、本発明のポリイミドは剛直な構造を持ち、さらに上記のようにポリイミドの会合性が得られるため、耐表面処理性に優れる。そのため、配向膜に強い表面処理を行うことが可能となり、さらにポリイミドの配向特性を向上することが可能となる。なお、本発明において電子供与性とは、芳香環上のπ電子雲の電子密度が高い状態であり、電子受容性とは、電子密度が低い状態を表す。
Since R 1 in the general formula (1) is a divalent organic group having an aromatic ring, the polyimide of the present invention has a rigid structure and linearity. Since the polyimide has linearity, the effect of surface treatment such as rubbing on the alignment film is more easily obtained. Due to the effect of the surface treatment such as rubbing, the linearity of the polyimide in the alignment film increases, and the alignment characteristics of the anisotropic dye film formed on the surface can be enhanced.
Since R 1 is a divalent organic group having an aromatic ring, the R 1 moiety exhibits an electron donating property (donor). On the other hand, since the imide ring structure portion of polyimide exhibits an electron accepting property (acceptor), the association property of the polyimide in the polyimide composition is obtained by the donor-acceptor interaction. Therefore, the alignment characteristic of the alignment film can be improved, and the alignment characteristic of the anisotropic dye film formed on the surface can be improved.
In addition, the polyimide of the present invention has a rigid structure and, as described above, the associative properties of the polyimide can be obtained, so that the surface treatment resistance is excellent. Therefore, it is possible to perform a strong surface treatment on the alignment film, and further improve the alignment characteristics of the polyimide. In the present invention, the electron donating property refers to a state where the electron density of the π electron cloud on the aromatic ring is high, and the electron accepting property refers to a state where the electron density is low.
 本発明のポリイミドは、上記X及びRの組み合わせであることで、溶媒への溶解性を維持しながら、ドナー・アクセプター相互作用によるポリイミド組成物中のポリイミドの会合性を向上させることができる。従って、得られる配向膜の配向特性が向上し、異方性色素膜の配向特性を高めることができる。また、本発明の配向膜は芳香環を有するため、芳香環を有する異方性色素との相互作用にすぐれるため、異方性色素膜の配向特性をさらに高めることができる傾向にある。なお、異方性色素は液晶分子と異なり、異方性色素が会合した数百Å程度の比較的大きな会合(カラム)構造をとるために、配向膜に追随して配向しにくいと考えられる。そのため、異方性色素を配向させるためには、高い配向特性を有する配向膜が必要であるが、本発明の特定構造のポリイミドは上述の理由により、配向膜の配向特性が高く、異方性色素を配向させるのに適しているものである。 Since the polyimide of the present invention is a combination of the above X and R 1 , the association of the polyimide in the polyimide composition by the donor-acceptor interaction can be improved while maintaining the solubility in a solvent. Therefore, the alignment characteristic of the obtained alignment film is improved, and the alignment characteristic of the anisotropic dye film can be enhanced. In addition, since the alignment film of the present invention has an aromatic ring and is excellent in interaction with an anisotropic dye having an aromatic ring, the alignment characteristics of the anisotropic dye film tend to be further improved. In addition, unlike the liquid crystal molecules, the anisotropic dye has a relatively large association (column) structure of about several hundreds of pieces with which the anisotropic dye is associated. Therefore, it is considered that the anisotropic dye hardly aligns following the alignment film. Therefore, in order to align the anisotropic dye, an alignment film having high alignment characteristics is required. However, the polyimide having a specific structure according to the present invention has high alignment characteristics of the alignment film due to the above-described reasons. It is suitable for orienting the dye.
 以下、本発明の実施の形態について説明するが、以下に例示する物や方法等は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を逸脱しない限り、これらの内容に限定されない。
 ここで、本明細書において“質量%”と“重量%”とは同義である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below. However, the objects and methods exemplified below are examples (representative examples) of the embodiments of the present invention, and the present invention includes these contents unless departing from the gist thereof. It is not limited to.
Here, in the present specification, “mass%” and “wt%” are synonymous.
1.ポリイミド組成物
 本発明のポリイミド組成物は、一般式(1)で表されるポリイミド及び溶媒を含むことに特徴を有するものである。
1. Polyimide composition The polyimide composition of this invention has the characteristics in containing the polyimide and solvent which are represented by General formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(一般式(1)において、Xは、炭素数5以上の4価の脂肪族炭化水素基を表し、
は、芳香環を有する2価の有機基を表し、
nは1以上の整数を表し、nが2以上の場合は、一般式(1)で表される構造1分子中に複数存在するR及びXは、それぞれ同一であっても異なっていてもよい。)
(In the general formula (1), X represents a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms,
R 1 represents a divalent organic group having an aromatic ring,
n represents an integer of 1 or more, and when n is 2 or more, a plurality of R 1 and X present in one molecule of the structure represented by the general formula (1) may be the same or different. Good. )
 本発明のポリイミド組成物中は、一般式(1)で表されるポリイミドを含んでいれば、複数のポリイミドを含んでいてもよい。本発明のポリイミドは、同じ反応条件で合成されたもの、また芳香族元素割合やイミド化率、溶解性が同じもののみである必要はない。異なる条件で調製され、上記物性が異なるものの混合物であってもよい。本発明において、後述する芳香環元素割合やイミド化率は、ポリイミド組成物を構成するポリイミドの平均値である。
 また、本発明のポリイミド組成物は、本発明の効果を損なわない範囲であれば、ポリイミド以外の成分を含んでいてもよい。
The polyimide composition of the present invention may contain a plurality of polyimides as long as it contains the polyimide represented by the general formula (1). The polyimide of the present invention does not need to be synthesized under the same reaction conditions, or only those having the same aromatic element ratio, imidization rate, and solubility. Mixtures prepared under different conditions and having different physical properties may be used. In the present invention, the aromatic ring element ratio and imidation rate described below are average values of the polyimide constituting the polyimide composition.
Moreover, the polyimide composition of this invention may contain components other than a polyimide, if it is a range which does not impair the effect of this invention.
1.1 溶媒
 本発明のポリイミド組成物に用いる溶媒は特に限定されないが、例えば、ヘキサン、シクロヘキサン、ヘプタン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン、メシチレン、フェノール、クレゾール、アニソール等の芳香族系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、フルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メトキシベンゼン等のエーテル系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系極性溶媒;ピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の複素環系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒;等が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率および組合せで用いてもよい。
 これらの中でも、炭化水素系溶媒、芳香族系溶媒、グリコール系溶媒及びアミド系溶媒を用いることが好ましい。特に、トルエン、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン及びアニソールを用いることが好ましい。これらの溶媒を用いることで、ポリイミドの溶解性向上、配向膜形成時の溶媒除去が容易となる等の傾向にある。
1.1 Solvent The solvent used in the polyimide composition of the present invention is not particularly limited. For example, hydrocarbon solvents such as hexane, cyclohexane, and heptane; aromatics such as benzene, toluene, xylene, mesitylene, phenol, cresol, and anisole. Solvents: Halogenated hydrocarbon solvents such as carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and fluorobenzene; Ether systems such as diethyl ether, tetrahydrofuran, 1,4-dioxane and methoxybenzene Solvent: Ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, etc .; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, die Glycol solvents such as lenglycol dimethyl ether and propylene glycol monomethyl ether acetate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; aprotic polarities such as dimethyl sulfoxide Solvents; heterocyclic solvents such as pyridine, picoline, lutidine, quinoline and isoquinoline; lactone solvents such as γ-butyrolactone, γ-valerolactone and δ-valerolactone; These solvents may be used alone or in combination of two or more in any ratio and combination.
Among these, it is preferable to use a hydrocarbon solvent, an aromatic solvent, a glycol solvent, and an amide solvent. In particular, toluene, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and anisole are preferably used. Use of these solvents tends to improve the solubility of polyimide and facilitate the removal of the solvent when forming the alignment film.
1.2 ポリイミド
 本発明に係るポリイミドは、少なくともイミド結合を含む繰り返し単位を含み、一般式(1)で表される特定構造の骨格を有するものであれば特に限定されない。
1.2 Polyimide The polyimide according to the present invention is not particularly limited as long as it includes a repeating unit containing at least an imide bond and has a skeleton having a specific structure represented by the general formula (1).
(n)
 nは1以上の整数であり、本発明の効果を損なわない範囲であれば、上限は特に無いが、一般式(1)で示されるポリイミドの質量平均分子量が後述する範囲となるようにnを定めることが好ましい。これらの範囲であることで、ポリイミドの溶媒への溶解性、ポリイミド組成物の粘度等が、配向膜を形成しやすい範囲となる傾向になるため好ましい。
 また、nが2以上の場合は、一般式(I)で表される構造1分子中に複数存在するR及びXは、それぞれ同一であっても異なっていてもよい。
(N)
n is an integer of 1 or more, and there is no particular upper limit as long as the effect of the present invention is not impaired, but n is set so that the mass average molecular weight of the polyimide represented by the general formula (1) is in the range described later. It is preferable to define. These ranges are preferable because the solubility of the polyimide in the solvent, the viscosity of the polyimide composition, and the like tend to be in a range in which an alignment film can be easily formed.
When n is 2 or more, R 1 and X present in a plurality in one molecule of the structure represented by the general formula (I) may be the same or different.
(X)
 一般式(1)のXは、炭素数5以上の4価の脂肪族炭化水素基を表す。脂肪族炭化水素基は、環状又は鎖状であり、これらを組み合わせた基であってもよい。
 Xの炭素数は5以上であり、好ましくは6以上である。また好ましくは20以下であり、更に好ましくは16以下、特に好ましくは14以下である。炭素数がこの範囲であることで、ポリイミドの溶媒への溶解性が向上し、ポリイミド組成物の塗布性に優れ、塗布後の加熱を低温で行うことができる傾向にある。
(X)
X in the general formula (1) represents a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms. The aliphatic hydrocarbon group is cyclic or chain-like and may be a combination of these.
X has 5 or more carbon atoms, preferably 6 or more. Further, it is preferably 20 or less, more preferably 16 or less, and particularly preferably 14 or less. When the carbon number is within this range, the solubility of the polyimide in the solvent is improved, the polyimide composition is excellent in applicability, and heating after application tends to be performed at a low temperature.
 脂肪族炭化水素基の中でも、環状脂肪族炭化水素基又は環状及び鎖状の脂肪族炭化水素基を組み合わせた基であることが、ポリイミドの溶媒への溶解性及びポリイミド組成物の塗布性が向上し、塗布後の加熱を低温で行うことができる傾向にあるため好ましい。 Among the aliphatic hydrocarbon groups, the cyclic aliphatic hydrocarbon group or a group in which cyclic and chain aliphatic hydrocarbon groups are combined improves the solubility of the polyimide in the solvent and the applicability of the polyimide composition. In addition, it is preferable because heating after coating tends to be performed at a low temperature.
 鎖状脂肪族炭化水素基としては、置換基を有していてもよいアルキレン基等が挙げられる。また鎖状脂肪族炭化水素基は、直鎖でもよく、分岐を有していてもよい。前記アルキレン基が有していてもよい置換基としては、炭素数1~4のアルコキシル基、トリフロロメチル基等が挙げられる。 Examples of the chain aliphatic hydrocarbon group include an alkylene group which may have a substituent. The chain aliphatic hydrocarbon group may be a straight chain or may have a branch. Examples of the substituent that the alkylene group may have include an alkoxyl group having 1 to 4 carbon atoms and a trifluoromethyl group.
 環状脂肪族炭化水素基は、単環、縮合多環及びこれらが直接又は架橋員により相互に連結されたものである。具体的には、後述する脂環式テトラカルボン酸二無水物に由来する基等が挙げられる。
 環状脂肪族炭化水素基の中でも、単環又は単環が直接又は架橋員により相互に連結されたものが、ポリイミドの溶媒への溶解性が向上する傾向にあるため好ましい。
The cyclic aliphatic hydrocarbon group is a monocyclic ring, a condensed polycyclic ring, or a ring linked to each other directly or by a bridging member. Specific examples include groups derived from alicyclic tetracarboxylic dianhydrides described below.
Among the cyclic aliphatic hydrocarbon groups, a single ring or a group in which single rings are connected to each other directly or by a crosslinking member is preferable because the solubility of polyimide in a solvent tends to be improved.
 単環及び縮合多環の環状脂肪族炭化水素基としては、具体的には、シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン、シクロヘプタン等の単環、前記単環の2つの炭素原子を共有している縮合多環が挙げられる。
 これらの中でも下記式(2)、式(3)または式(4)の構造であることが好ましく、特に式(2)または式(3)の構造であることが好ましい。これらの構造であることで、ポリイミドの溶媒への溶解性が向上し、ポリイミド組成物の塗布性に優れ、塗布後の加熱を低温で行うことができる傾向にある。
Specific examples of the monocyclic and condensed polycyclic aliphatic hydrocarbon groups share a single ring such as cyclopentane, cyclopentene, cyclohexane, cyclohexene, cycloheptane, and the two carbon atoms of the monocycle. A condensed polycycle is mentioned.
Among these, the structure of the following formula (2), formula (3) or formula (4) is preferable, and the structure of formula (2) or formula (3) is particularly preferable. With these structures, the solubility of polyimide in a solvent is improved, the applicability of the polyimide composition is excellent, and heating after application tends to be performed at a low temperature.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 単環又は縮合多環が直接又は架橋員により相互に連結された環状脂肪族炭化水素基としては、下記一般式(5)で表される構造であることが、ポリイミドの溶媒への溶解性が向上し、ポリイミド組成物の塗布性に優れ、塗布後の加熱を低温で行うことができる傾向にあるため好ましい。 The cyclic aliphatic hydrocarbon group in which monocyclic or condensed polycycles are directly or mutually linked by a bridging member has a structure represented by the following general formula (5), and the solubility of polyimide in a solvent is It is preferable because it is improved, the applicability of the polyimide composition is excellent, and heating after application tends to be performed at a low temperature.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(5)において、X及びXはそれぞれ独立に、炭素数5以上の2価の環状脂肪族炭化水素基を表し、Rは直接結合、置換基を有していてもよい炭素数1~6のアルキレン基または以下で表される基を表す。 In General Formula (5), X 1 and X 2 each independently represent a divalent cyclic aliphatic hydrocarbon group having 5 or more carbon atoms, and R 2 is a carbon that may have a direct bond or a substituent. This represents an alkylene group of 1 to 6 or a group represented by the following.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(X及びX
 X及びXの2価の環状脂肪族炭化水素基としては、炭素数5以上であれば特に限定されないが、炭素数が10以下であることが好ましく、8以下であることが更に好ましい。さらに炭素数5及び6であることで、ポリイミドの溶媒への溶解性が向上し、ポリイミド組成物の塗布性に優れ、塗布後の加熱を低温で行うことができる傾向にある。
 X及びXは置換基を有していてもよく、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のアルキルチオ基、カルボキシ基、スルホ基、アミノ基、シアノ基、ニトロ基、ハロゲン原子等が挙げられる。
(X 1 and X 2)
The divalent cyclic aliphatic hydrocarbon group for X 1 and X 2 is not particularly limited as long as it has 5 or more carbon atoms, but preferably has 10 or less carbon atoms, more preferably 8 or less. Furthermore, it is C5 and C6, the solubility to the solvent of a polyimide improves, it exists in the tendency which is excellent in the applicability | paintability of a polyimide composition, and can perform the heating after application | coating at low temperature.
X 1 and X 2 may have a substituent, and an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkylthio group having 1 to 5 carbon atoms, a carboxy group, a sulfo group, an amino group Group, cyano group, nitro group, halogen atom and the like.
(R
 Rは直接結合、置換基を有していてもよい炭素数1~6のアルキレン基または以下で表される基である。
(R 2 )
R 2 is a direct bond, an alkylene group having 1 to 6 carbon atoms which may have a substituent, or a group represented by the following.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 これらの中でも、直接結合であることが、ポリイミドの溶媒への溶解性が向上し、ポリイミド組成物の塗布性に優れ、塗布後の加熱を低温で行うことができる傾向にあるため好ましい。
 Rのアルキレン基が有していてもよい置換基としては、炭素数1~5のアルコキシ基、炭素数1~5のアルキルカルボニル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、ハロゲン原子、炭素数1~5のアルキルチオ基、トリフルオロメチル基等が挙げられる。
Among these, a direct bond is preferable because the solubility of polyimide in a solvent is improved, the applicability of the polyimide composition is excellent, and heating after application tends to be performed at a low temperature.
Examples of the substituent that the alkylene group of R 2 may have include an alkoxy group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a carboxy group, a sulfo group, a cyano group, a nitro group, and a halogen atom. And an alkylthio group having 1 to 5 carbon atoms, a trifluoromethyl group, and the like.
 一般式(5)の中でも、下記一般式(6)であることが好ましく、さらに下記一般式(7)であることが、ポリイミドの溶媒への溶解性が向上し、ポリイミド組成物の塗布性に優れ、塗布後の加熱を低温で行うことができる傾向にあるため好ましい。 Among the general formula (5), the following general formula (6) is preferable, and the following general formula (7) further improves the solubility of the polyimide in the solvent and improves the applicability of the polyimide composition. It is preferable because it is excellent and tends to be able to perform heating after coating at a low temperature.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(6)のRは、一般式(5)のRと同義であり、好ましい範囲も同義である。 R 3 in the general formula (6) has the same definition as R 2 in the general formula (5), and a preferred range is also the same.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(R
 Rは、芳香環を有する任意の2価の有機基を表す。Rは、芳香環を有した2価の基であれば特に限定されず、有する芳香環の数は特に限定されない。また、芳香環以外の基を含んでいてもよい。
 有機基が有する芳香環は、単環、縮合多環及びこれらが直接又は架橋員により相互に連結されたものであってもよい。また、芳香環が芳香環以外の基で連結されていてもよい。
(R 1 )
R 1 represents any divalent organic group having an aromatic ring. R 1 is not particularly limited as long as it is a divalent group having an aromatic ring, and the number of aromatic rings is not particularly limited. Moreover, groups other than an aromatic ring may be included.
The aromatic ring of the organic group may be a single ring, a condensed polycycle, and those in which these are connected to each other directly or by a bridging member. Moreover, the aromatic ring may be connected with a group other than the aromatic ring.
 芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ビフェニレンン環、フルオレン環等が挙げられる。
 これら芳香環は置換基を有していていもよい。有していてもよい置換基としては、炭素数1~5のアルキル基、スルホ基、シアノ基、トリフルオロメチル基、ハロゲン原子等が挙げられる。
 芳香環以外の基としては、炭素数1~4のアルキレン基、炭素数1~4のアルケニレン基または以下で表される基等が挙げられる。
Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a biphenylene ring, and a fluorene ring.
These aromatic rings may have a substituent. Examples of the substituent which may be included include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom.
Examples of the group other than the aromatic ring include an alkylene group having 1 to 4 carbon atoms, an alkenylene group having 1 to 4 carbon atoms, and a group represented by the following.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 芳香環以外の基の中で挙げた炭素数1~4のアルキレン基及び炭素数1~4のアルケニレン基は置換基を有していてもよい。有していてもよい置換基としては、炭素数1~5のアルコキシ基、炭素数1~5のアルキルカルボニル基、カルボキシ基、スルホ基、シアノ基、ニトロ基、ハロゲン原子、炭素数1~5のアルキルチオ基等が挙げられる。 Among the groups other than the aromatic ring, the alkylene group having 1 to 4 carbon atoms and the alkenylene group having 1 to 4 carbon atoms may have a substituent. Examples of the substituent which may be included include an alkoxy group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a carboxy group, a sulfo group, a cyano group, a nitro group, a halogen atom, and 1 to 5 carbon atoms. And the like.
 芳香環が直接結合及び上記芳香環以外の基で連結される連結位置は特に限定されないが、ポリイミド分子の剛直性、会合性及び配向特性を妨げない位置で連結することが好ましい。
 Rの具体例としては、後述する一般式(1)で表されるポリイミドの原料であるジアミン化合物からアミノ基を除いた2価の基等が挙げられる。
The connection position at which the aromatic ring is connected by a direct bond and a group other than the aromatic ring is not particularly limited, but the connection is preferably performed at a position that does not hinder the rigidity, association, and orientation characteristics of the polyimide molecule.
Specific examples of R 1 include a divalent group obtained by removing an amino group from a diamine compound, which is a raw material for polyimide represented by the general formula (1) described later.
 上記の中でも、Rの芳香環は単環であることがポリイミドの溶媒への溶解性の点で好ましい。また、Rが有する芳香環の数は1以上であり、2以上であることが好ましい。また、芳香環の数は6以下であることが好ましく、4以下であることが更に好ましい。芳香環の数が上記範囲であることで、ポリイミドの溶媒への溶解性が得られ、さらに、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にある。 Among these, the aromatic ring of R 1 is preferably a single ring from the viewpoint of solubility of polyimide in a solvent. Further, R 1 has 1 or more aromatic rings, and preferably 2 or more. The number of aromatic rings is preferably 6 or less, and more preferably 4 or less. When the number of aromatic rings is within the above range, solubility of polyimide in a solvent can be obtained, and further, rigidity and association of polyimide can be improved, and alignment characteristics and surface treatment resistance of the resulting alignment film can be improved. Tend to.
 さらに、Rは特に以下式(8)、(9)、(10)又は(11)で表される構造であることが特に好ましい。これらの構造であることで、ポリイミドの溶媒への溶解性が得られ、さらに、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にある。 Further, R 1 is particularly preferably a structure represented by the following formula (8), (9), (10) or (11). With these structures, the solubility of polyimide in a solvent can be obtained, the rigidity and association of polyimide can be improved, and the orientation characteristics and surface treatment resistance of the resulting alignment film tend to be improved. .
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(9)のR10、式(10)のR11~R12、式(11)のR13~R15は、それぞれ独立に、2価の芳香環以外の連結基であり、具体的には上記Rの芳香環以外の基で挙げたものを表す。
 また、式(8)~(11)の各芳香環は炭素数1~5のアルキル基、スルホ基、シアノ基、トリフルオロメチル基、ハロゲン原子等を置換基として有していてもよい。
R 10 in formula (9), R 11 to R 12 in formula (10), and R 13 to R 15 in formula (11) are each independently a linking group other than a divalent aromatic ring, specifically Represents the above-mentioned groups other than the aromatic ring of R 1 .
Further, each aromatic ring of the formulas (8) to (11) may have an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, a halogen atom or the like as a substituent.
 R10~R15は、炭素数1~4のアルキレン基又は以下で表される基であることが、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にあるため好ましい。 R 10 to R 15 are each an alkylene group having 1 to 4 carbon atoms or a group represented by the following, whereby the rigidity and associative properties of the polyimide are improved, and the orientation characteristics and surface resistance of the resulting orientation film are improved. Is preferable because of a tendency to improve.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 さらに、R10、R11及びR12の少なくとも一つ、またはR13~R15のうち少なくとも一1つは、-O-であることが、Rの電子供与性が増し、ドナー・アクセプター相互作用によるポリイミドの会合性が向上し、得られる配向膜の配向特性が向上する傾向にあるため、特に好ましい。 Further, at least one of R 10 , R 11 and R 12 , or at least one of R 13 to R 15 is —O—, which increases the electron donating property of R 1 , This is particularly preferable because the associating property of the polyimide by the action is improved and the orientation characteristics of the obtained orientation film tend to be improved.
(XとRの組合せ)
 上述したXとRの組合せは特に限定されないが、Xが環状脂肪族炭化水素基であり、Rが複数の単環の芳香環を有する構造である組合せが好ましい。特に、Xが式(2)~(7)で表される構造を少なくとも1つ含み、Rが式(8)~(9)で表される構造を少なくとも1つ含むことが好ましい。これらの組合せであることで、ドナー・アクセプター相互作用によるポリイミド組成物中のポリイミドの会合性が向上し、得られる配向膜の配向特性が向上する傾向にある。
(Combination of X and R 1 )
The combination of X and R 1 described above is not particularly limited, but a combination in which X is a cyclic aliphatic hydrocarbon group and R 1 has a structure having a plurality of monocyclic aromatic rings is preferable. In particular, it is preferable that X includes at least one structure represented by formulas (2) to (7) and R 1 includes at least one structure represented by formulas (8) to (9). By combining these, the association property of the polyimide in the polyimide composition due to the donor-acceptor interaction is improved, and the alignment characteristics of the resulting alignment film tend to be improved.
(その他の構造)
 本発明のポリイミドは、一般式(1)で表されるポリイミドを含んでいれば特に限定されず、テトラカルボン酸二無水物に由来する単位及び/又はジアミン化合物に由来する単位を複数組み合わせ、共重合させたものでもよい。また、ポリイミド組成物の中に一般式(1)で表されるポリイミド以外のポリイミドを含んでもよい。
 共重合させるテトラカルボン酸二無水物に由来する単位は、本発明の効果を損なわない範囲であれば、炭素数5以上の脂肪族炭化水素基以外を含んでいてもよい。具体例としては、ベンゼン環、ナフタレン環等の芳香環、芳香環を直接結合した基、芳香環を芳香環以外の連結基で複数連結した基等が挙げられる。また、芳香環は置換基を有していていもよく、炭素数1~5のアルキル基、スルホ基、シアノ基、トリフルオロメチル基、ハロゲン原子等が挙げられる。
 共重合させるテトラカルボン酸二無水物に由来する単位としては、具体的には、ポリイミドの原料として後述する芳香環を有するテトラカルボン酸二無水物に由来する基等が挙げられる。これらの中でも芳香環を有するテトラカルボン酸二無水物に由来する基としては以下式(12)~(14)で表される構造が挙げられる。これらを用いることがポリイミドの溶媒への溶解性を維持しながら、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にあるため好ましい。
 またこれら芳香環は置換基を有していていもよい。有していてもよい置換基としては、炭素数1~5のアルキル基、スルホ基、シアノ基、トリフルオロメチル基、ハロゲン原子等が挙げられる。
(Other structures)
The polyimide of the present invention is not particularly limited as long as it contains the polyimide represented by the general formula (1), and a combination of a unit derived from tetracarboxylic dianhydride and / or a unit derived from a diamine compound is used in combination. It may be polymerized. Moreover, polyimides other than the polyimide represented by General formula (1) may be included in the polyimide composition.
The unit derived from the tetracarboxylic dianhydride to be copolymerized may contain other than aliphatic hydrocarbon groups having 5 or more carbon atoms as long as the effects of the present invention are not impaired. Specific examples include an aromatic ring such as a benzene ring and a naphthalene ring, a group in which an aromatic ring is directly bonded, a group in which a plurality of aromatic rings are connected with a linking group other than an aromatic ring, and the like. The aromatic ring may have a substituent, and examples thereof include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom.
Specific examples of the unit derived from the tetracarboxylic dianhydride to be copolymerized include groups derived from a tetracarboxylic dianhydride having an aromatic ring, which will be described later, as a polyimide raw material. Among these, examples of the group derived from tetracarboxylic dianhydride having an aromatic ring include structures represented by the following formulas (12) to (14). The use of these is preferable because the rigidity and association of the polyimide are improved while maintaining the solubility of the polyimide in the solvent, and the alignment characteristics and surface treatment resistance of the resulting alignment film tend to be improved.
These aromatic rings may have a substituent. Examples of the substituent which may be included include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 R15は、炭素数1~4のアルキレン基、炭素数1~4のアルケニレン基または以下で表される基を表す。また、R15の連結位置は特に限定されず、ポリイミド分子の剛直性、会合性及び配向特性を妨げない位置で連結することが好ましい。 R 15 represents an alkylene group having 1 to 4 carbon atoms, an alkenylene group having 1 to 4 carbon atoms, or a group represented by the following. The connecting position of R 15 is not particularly limited and it is preferably connected at a position that does not interfere with the rigidity, associative and alignment properties of the polyimide molecule.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明において、ポリイミド中に含まれるテトラカルボン酸二無水物に由来する単位のうち、一般式(1)に用いるテトラカルボン酸二無水物に由来する単位以外(共重合させるその他のテトラカルボン酸二無水物に由来する単位)の割合は、好ましくは0.1モル%以上、さらに好ましくは1モル%以上であり、好ましくは99モル%以下、さらに好ましくは90モル%以下である。これらの範囲であることで、ポリイミドの溶媒への溶解性を維持しながら、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にあるため好ましい。 In the present invention, among the units derived from the tetracarboxylic dianhydride contained in the polyimide, other than the units derived from the tetracarboxylic dianhydride used in the general formula (1) (other tetracarboxylic dianhydrides to be copolymerized) The proportion of units derived from anhydride is preferably 0.1 mol% or more, more preferably 1 mol% or more, preferably 99 mol% or less, more preferably 90 mol% or less. By being in these ranges, while maintaining the solubility of the polyimide in the solvent, the rigidity and association properties of the polyimide are improved, and the orientation characteristics and surface treatment resistance of the resulting alignment film tend to be improved. preferable.
 共重合させるジアミン化合物に由来する単位は、本発明の効果を損なわない範囲であれば、芳香環を含まなくてもよい。例えば、環状又は鎖状の脂肪族炭化水素基、脂肪族炭化水素基を連結する基等が挙げられる。また、これらの基は置換基を有していていもよく、炭素数1~5のアルキル基、スルホ基、シアノ基、トリフルオロメチル基、ハロゲン原子等が挙げられる。
 具体的には、ポリイミドの原料として後述する芳香環を有しない脂肪族ジアミン化合物からアミノ基を除いた2価の基等が挙げられる。
The unit derived from the diamine compound to be copolymerized may not contain an aromatic ring as long as the effects of the present invention are not impaired. Examples thereof include a cyclic or chain aliphatic hydrocarbon group, a group connecting aliphatic hydrocarbon groups, and the like. In addition, these groups may have a substituent, and examples thereof include an alkyl group having 1 to 5 carbon atoms, a sulfo group, a cyano group, a trifluoromethyl group, and a halogen atom.
Specific examples include a divalent group obtained by removing an amino group from an aliphatic diamine compound having no aromatic ring, which will be described later, as a raw material for polyimide.
 本発明のポリイミド中に含まれるジアミン化合物に由来する単位のうち、一般式(1)に用いるジアミン化合物に由来する単位以外(共重合させるその他のジアミン化合物に由来する単位)の割合は、好ましくは0.1モル%以上であり、好ましくは50モル%以下、さらに好ましくは40モル%以下である。これらの範囲であることで、ポリイミドの溶媒への溶解性を維持しながら、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にあるため好ましい。 Of the units derived from the diamine compound contained in the polyimide of the present invention, the proportion of units other than the units derived from the diamine compound used in the general formula (1) (units derived from other diamine compounds to be copolymerized) is preferably It is 0.1 mol% or more, preferably 50 mol% or less, more preferably 40 mol% or less. By being in these ranges, while maintaining the solubility of the polyimide in the solvent, the rigidity and association properties of the polyimide are improved, and the orientation characteristics and surface treatment resistance of the resulting alignment film tend to be improved. preferable.
(ポリイミドの芳香環を形成する元素数の割合)
 ポリイミドの主鎖を形成する元素数のうち、芳香環を形成する元素数の割合(以下、芳香環元素割合と表すことがある)は、好ましくは75%以下、より好ましくは65%以下、さらに好ましくは60%以下、特に好ましくは55%以下であり、最も好ましくは50%以下である。また、好ましくは5%以上、より好ましくは7%以上、さらに好ましくは10%以上である。芳香環元素割合が上記範囲であることで、ポリイミドが溶媒へ溶解しやすくなり、ポリイミド組成物を加熱した際に、析出やゲル化が起こりにくい傾向となる。ここで、主鎖を形成する元素数には、水素原子や側鎖となる置換基を形成する元素数は含まない。
 芳香環元素割合は、ポリイミドの合成原料として用いるテトラカルボン酸二無水物とジアミン化合物(以下、「原料モノマー」ということがある。)について、芳香環をもつものの割合を調整することにより、上記の範囲とすることができる。また、得られたポリイミド、前記ポリイミドを含む配向膜の芳香環元素割合は、固体NMR、IR等によって求められる原料モノマーの組成を解析することにより求めることができる。
 また、アルカリで溶解した後に、ガスクロマトグラフィー(GC)、H-NMR、13C-NMR、二次元NMR、質量分析等によって求められる原料モノマーの組成を解析することによっても求めることができる。
(Ratio of the number of elements forming the aromatic ring of polyimide)
Of the number of elements forming the main chain of polyimide, the ratio of the number of elements forming an aromatic ring (hereinafter sometimes referred to as aromatic ring element ratio) is preferably 75% or less, more preferably 65% or less, It is preferably 60% or less, particularly preferably 55% or less, and most preferably 50% or less. Further, it is preferably 5% or more, more preferably 7% or more, and further preferably 10% or more. When the aromatic ring element ratio is in the above range, the polyimide is easily dissolved in the solvent, and when the polyimide composition is heated, precipitation or gelation tends not to occur. Here, the number of elements that form the main chain does not include the number of elements that form a hydrogen atom or a substituent that becomes a side chain.
The ratio of the aromatic ring element can be adjusted by adjusting the ratio of those having an aromatic ring with respect to the tetracarboxylic dianhydride and diamine compound (hereinafter sometimes referred to as “raw material monomer”) used as a raw material for polyimide synthesis. It can be a range. Moreover, the aromatic ring element ratio of the obtained polyimide and the alignment film containing the polyimide can be obtained by analyzing the composition of the raw material monomer obtained by solid NMR, IR, or the like.
It can also be determined by analyzing the composition of the raw material monomer determined by gas chromatography (GC), 1 H-NMR, 13 C-NMR, two-dimensional NMR, mass spectrometry, etc. after dissolution with alkali.
 ポリイミドの芳香環元素割合を上記範囲とする方法は、芳香環を有するテトラカルボン酸二無水物、芳香環を有しないテトラカルボン酸二無水物、芳香環を有するジアミン化合物及び芳香環を有しないジアミン化合物を、芳香環元素割合が上記範囲内となる割合で用いることで得ることができる。 The method of setting the aromatic ring element ratio of the polyimide within the above range includes tetracarboxylic dianhydride having an aromatic ring, tetracarboxylic dianhydride having no aromatic ring, diamine compound having an aromatic ring, and diamine having no aromatic ring. The compound can be obtained by using the aromatic ring element in a ratio that falls within the above range.
(ポリイミドのイミド化率)
 ポリイミドのイミド化率は、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。また、上限はなく、高い方が好ましい。
 イミド化率が特定の範囲であることで、配向膜を作成した際のアミック酸残量を抑制することができ、加水分解等の経時変化が起こりにくくなる傾向にある。また、イミド化率が特定の範囲であることで、配向膜を形成する際のイミド化反応(加熱)を行う必要性が低くなり、低温の加熱にて配向膜を得られる傾向となる。本発明のイミド化率は、後述する製造方法におけるイミド化の条件により、調節することができる。
(Imidation rate of polyimide)
The imidation ratio of the polyimide is preferably 90% or more, more preferably 95% or more, and particularly preferably 98% or more. Moreover, there is no upper limit and the higher one is preferable.
When the imidation ratio is in a specific range, the remaining amount of amic acid when the alignment film is formed can be suppressed, and a change with time such as hydrolysis tends to hardly occur. In addition, when the imidization ratio is in a specific range, the necessity of performing an imidization reaction (heating) when forming the alignment film is reduced, and the alignment film tends to be obtained by heating at a low temperature. The imidation rate of this invention can be adjusted with the conditions of imidation in the manufacturing method mentioned later.
 本発明において、イミド化率は、ポリイミドの主鎖中のイミド結合の割合を示す。イミド化率は従来既知の方法、例えば、NMR、IR、滴定法等で求めることができる。本発明におけるイミド化率は、IRにより求めた値である。 In the present invention, the imidation ratio indicates the ratio of imide bonds in the main chain of polyimide. The imidization rate can be determined by a conventionally known method such as NMR, IR, and titration. The imidation rate in the present invention is a value determined by IR.
 以下にIRでイミド化率を求める一例を説明する。イミド化前後で変化しないシグナル、例えば主鎖の骨格に由来する芳香環C=C伸縮振動等を基準とし、基準のシグナルに対する、イミドのC-N伸縮振動の強度比または面積比から求めることができる。
 100%イミド化時のサンプルのC=C伸縮振動の吸収強度(A)、C-N伸縮振動の吸収強度(B)、溶媒の乾燥のみを行ったサンプルのC=C伸縮振動の吸収強度(A’)、C-N伸縮振動の吸収強度(B’)を測定し、下記の式(C)から各ポリイミド組成物のイミド化率を算出できる。
  イミド化率=(B’/A’)/(B/A)*100   (C)
An example of obtaining the imidization rate by IR will be described below. A signal that does not change before and after imidation, for example, an aromatic ring C = C stretching vibration derived from the backbone of the main chain, is used as a reference, and can be obtained from the intensity ratio or area ratio of the imide CN stretching vibration to the reference signal. it can.
Absorption strength of C = C stretching vibration of sample at 100% imidization (A), Absorption strength of CN stretching vibration (B), Absorption strength of C = C stretching vibration of sample subjected only to solvent drying ( A ′), the absorption strength (B ′) of CN stretching vibration is measured, and the imidation ratio of each polyimide composition can be calculated from the following formula (C).
Imidation ratio = (B ′ / A ′) / (B / A) * 100 (C)
 100%イミド化したサンプルの作成は、測定するサンプルを高温で加熱して作製する。その加熱温度は通常200℃以上、好ましくは250℃以上、より好ましくは300℃以上である。溶媒の乾燥温度は、用いた溶媒の沸点に応じて決定することができるが、通常20℃以上、また40℃以上が好ましく、通常200℃以下、またイミド化反応温度より低温がより好ましい。乾燥温度が低過ぎないことで、溶媒が十分に乾燥し、IR測定時に不要なシグナルが観測されない傾向にある。また、乾燥温度が高過ぎないことで、乾燥時にイミド化率が変化せず、正確なイミド化率を求めることができる。 ∙ Preparation of 100% imidized sample is made by heating the sample to be measured at high temperature. The heating temperature is usually 200 ° C. or higher, preferably 250 ° C. or higher, more preferably 300 ° C. or higher. Although the drying temperature of a solvent can be determined according to the boiling point of the solvent used, it is usually 20 ° C. or higher, preferably 40 ° C. or higher, usually 200 ° C. or lower, and more preferably lower than the imidization reaction temperature. When the drying temperature is not too low, the solvent is sufficiently dried and unnecessary signals tend not to be observed during IR measurement. Further, since the drying temperature is not too high, the imidization rate does not change during drying, and an accurate imidization rate can be obtained.
(ポリイミドの可溶性)
 本発明において、「溶媒に可溶」とは、組成物を構成する溶媒中で、ポリイミドを室温(25℃)で溶解させた場合に完溶することをいう。完溶する濃度としては、通常0.5質量%以上、好ましくは1質量%以上、より好ましくは10質量%以上、さらに好ましくは20質量%以上である。
 本発明においては、主鎖の芳香環元素割合とイミド化率を上記範囲とすることにより、溶媒に可溶なポリイミドを得ることができる。
 組成物の濃度は、従来知られている方法を適宜用いて確認することができるが、例えば、組成物の溶媒を、減圧乾燥等の方法を用いて乾固し、乾固する前後の質量比から求めることができる。
 組成物の濃度が薄い場合は溶媒の減圧留去等の方法を用いて、組成物を濃縮し、可溶性を求めることができる。組成物の濃度が濃い場合は、組成物の溶媒を用いて希釈することによって、測定濃度を1質量%とすることができる。また組成物の溶媒が不明の場合は、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒等;ベンゼン、トルエン、キシレン、メシチレン、フェノール、クレゾール、アニソール等の芳香族系溶媒;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素系溶媒;等を用いて希釈することができる。
(Polyimide solubility)
In the present invention, “soluble in a solvent” means complete dissolution when polyimide is dissolved in a solvent constituting the composition at room temperature (25 ° C.). The concentration for complete dissolution is usually 0.5% by mass or more, preferably 1% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more.
In the present invention, a polyimide soluble in a solvent can be obtained by setting the ratio of the aromatic ring element in the main chain and the imidization ratio within the above ranges.
The concentration of the composition can be confirmed by using a conventionally known method as appropriate. For example, the solvent of the composition is dried using a method such as drying under reduced pressure, and the mass ratio before and after drying. Can be obtained from
When the concentration of the composition is low, the composition can be concentrated by using a method such as distilling off the solvent under reduced pressure to determine solubility. When the concentration of the composition is high, the measurement concentration can be 1% by mass by diluting with the solvent of the composition. When the solvent of the composition is unknown, for example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone; aprotic solvents such as dimethyl sulfoxide; ethylene Glycol solvents such as glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and propylene glycol monomethyl ether acetate; aromatic solvents such as benzene, toluene, xylene, mesitylene, phenol, cresol, and anisole; hexane , Hydrocarbon solvents such as cyclohexane and heptane;
(ポリイミドの脂肪族構造を形成する元素数の割合)
 ポリイミドの主鎖を形成する元素数のうち、脂肪族構造を形成する元素数の割合(以下、脂肪族元素割合と表すことがある)は、ポリイミドの主鎖を形成する元素数の内、5%以上有することが好ましく、7%以上有することが好ましく、特に10%以上有することが好ましい。また、60%以下が好ましく、50%以下がより好ましく、40%以下がさらに好ましく、35%以下有することが特に好ましい。脂肪族構造を適当な範囲で主鎖に有することで、溶解性の高いポリイミドを含むポリイミド組成物を安定的に得られる傾向にある。ここで、主鎖を形成する元素数には、水素原子や側鎖となる置換基を形成する元素数は含まない。ポリイミドの主鎖を形成する構造として、脂肪族構造を有するためには、脂肪族構造を有する、テトラカルボン酸二無水物とジアミン化合物を適当な範囲内となる割合で用いればよい。ここで、脂肪族構造とは、脂環状及び鎖状のどちらも含む。
(Ratio of the number of elements forming the aliphatic structure of polyimide)
Of the number of elements forming the main chain of polyimide, the ratio of the number of elements forming the aliphatic structure (hereinafter sometimes referred to as aliphatic element ratio) is 5 out of the number of elements forming the main chain of polyimide. % Or more, preferably 7% or more, particularly preferably 10% or more. Moreover, 60% or less is preferable, 50% or less is more preferable, 40% or less is further more preferable, and it is especially preferable to have 35% or less. By having an aliphatic structure in the main chain in an appropriate range, a polyimide composition containing a highly soluble polyimide tends to be obtained stably. Here, the number of elements that form the main chain does not include the number of elements that form a hydrogen atom or a substituent that becomes a side chain. In order to have an aliphatic structure as a structure that forms the main chain of polyimide, a tetracarboxylic dianhydride and a diamine compound having an aliphatic structure may be used in a ratio within an appropriate range. Here, the aliphatic structure includes both alicyclic and chain structures.
(ポリイミドの分子量)
 ポリイミドの重量平均分子量(Mw)は特に限定されないが、ポリスチレン換算で通常1.0×10以上、好ましくは5.0×10以上、より好ましくは1.0×10以上であり、通常1.0×10以下、好ましくは8.0×10以下、より好ましくは5.0×10以下である。これらの範囲であることで、ポリイミドの溶媒への溶解性、ポリイミド組成物の粘度等が、配向膜を形成しやすい範囲となる傾向になるため好ましい。なお、ポリスチレン換算の重量平均分子量は、ゲル浸透クロマトグラフィ(GPC)により求めることができる。
(Molecular weight of polyimide)
Although the weight average molecular weight (Mw) of a polyimide is not specifically limited, It is 1.0 * 10 < 3 > or more normally in polystyrene conversion, Preferably it is 5.0 * 10 < 3 > or more, More preferably, it is 1.0 * 10 < 4 > or more, Usually It is 1.0 × 10 6 or less, preferably 8.0 × 10 5 or less, more preferably 5.0 × 10 5 or less. These ranges are preferable because the solubility of the polyimide in the solvent, the viscosity of the polyimide composition, and the like tend to be in a range in which an alignment film can be easily formed. The polystyrene-reduced weight average molecular weight can be determined by gel permeation chromatography (GPC).
 ポリイミドの数平均分子量(Mn)は特に限定されないが、ポリスチレン換算で通常5.0×10以上、好ましくは2.5×10以上、より好ましくは5.0×10以上であり、通常5.0×10以下、好ましくは4.0×10以下、より好ましくは2.5×10以下である。溶解性、溶液粘度、溶融粘度等が、通常の製造設備で扱いやすい範囲となる点でこの範囲が好ましい。ポリイミドの数平均分子量は、上記重量平均分子量と同様の方法で測定することができる。 The number average molecular weight (Mn) of the polyimide is not particularly limited, but is usually 5.0 × 10 2 or more, preferably 2.5 × 10 3 or more, more preferably 5.0 × 10 3 or more in terms of polystyrene, It is 5.0 × 10 4 or less, preferably 4.0 × 10 4 or less, more preferably 2.5 × 10 4 or less. This range is preferable in terms of solubility, solution viscosity, melt viscosity, and the like that are easy to handle in normal production equipment. The number average molecular weight of polyimide can be measured by the same method as the above weight average molecular weight.
 ポリイミドの分子量分布(PDI、(重量平均分子量/数平均分子量(Mw/Mn)))は、通常1以上、好ましくは1.1以上、より好ましくは1.2以上であり、通常10以下、好ましくは9以下、より好ましくは8以下である。均一性の高い組成物が得られるという点で、分子量分布がこの範囲にあることが好ましい。なお、ポリイミドの分子量分布は、上記重量平均分子量と数平均分子量の値から求めることができる。 The molecular weight distribution of polyimide (PDI, (weight average molecular weight / number average molecular weight (Mw / Mn))) is usually 1 or more, preferably 1.1 or more, more preferably 1.2 or more, and usually 10 or less, preferably Is 9 or less, more preferably 8 or less. The molecular weight distribution is preferably in this range in that a highly uniform composition can be obtained. In addition, the molecular weight distribution of polyimide can be calculated | required from the value of the said weight average molecular weight and number average molecular weight.
1.3 ポリイミドの原料
 本発明に係るポリイミドは、テトラカルボン酸二無水物とジアミン化合物とを有機溶媒中で反応させて得られる。
1.3 Raw Material of Polyimide The polyimide according to the present invention is obtained by reacting a tetracarboxylic dianhydride and a diamine compound in an organic solvent.
(テトラカルボン酸二無水物)
 本発明の一般式(1)で表されるポリイミドの原料であるテトラカルボン酸二無水物としては、芳香環を有しない脂肪族テトラカルボン酸二無水物が挙げられる。脂肪族テトラカルボン酸二無水物としては、脂環式テトラカルボン酸二無水物、鎖状脂肪族テトラカルボン酸二無水物等が挙げられる。
(Tetracarboxylic dianhydride)
Examples of the tetracarboxylic dianhydride that is a raw material of the polyimide represented by the general formula (1) of the present invention include aliphatic tetracarboxylic dianhydrides having no aromatic ring. Examples of the aliphatic tetracarboxylic dianhydride include alicyclic tetracarboxylic dianhydrides and chain aliphatic tetracarboxylic dianhydrides.
 脂環式テトラカルボン酸二無水物としては、具体的には、3,3’,4,4’-ビスシクロペンタンテトラカルボン酸二無水物、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、トリシクロ[6.4.0.02,7]ドデカン-1,8:2,7-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、1,1’-ビスシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物、1,1’-オキシビスシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物、1,1’-スルホニルビスシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物、1,1’-ビスシクロヘキシルケトン-3,3’,4,4’-テトラカルボン酸二無水物、1,1’-ビスシクロヘキシルメチル-3,3’,4,4’-テトラカルボン酸二無水物、1,1’-(1-メチルエチリデン)ビスシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物等が挙げられる。 Specific examples of the alicyclic tetracarboxylic dianhydride include 3,3 ′, 4,4′-biscyclopentanetetracarboxylic dianhydride, 3,3 ′, 4,4′-biscyclohexanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, tricyclo [6.4.0.02,7 Dodecane-1,8: 2,7-tetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,1 '-Biscyclohexane-3,3', 4,4'-tetracarboxylic dianhydride, 1,1'-oxybiscyclohexane-3,3 ', 4,4'-tetracarboxylic dianhydride, 1, 1'-sulfonylbiscyclohexane-3,3 , 4,4′-tetracarboxylic dianhydride, 1,1′-biscyclohexyl ketone-3,3 ′, 4,4′-tetracarboxylic dianhydride, 1,1′-biscyclohexylmethyl-3, Examples thereof include 3 ′, 4,4′-tetracarboxylic dianhydride, 1,1 ′-(1-methylethylidene) biscyclohexyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, and the like.
 これらの中で、脂環式テトラカルボン酸二無水物が好ましい。脂環式テトラカルボン酸二無水物の中でも、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物等が、ポリイミドの溶媒への溶解性が向上し、ポリイミド組成物の塗布性に優れ、塗布後の加熱を低温で行うことができる傾向にあるため特に好ましい。
 これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
Of these, alicyclic tetracarboxylic dianhydrides are preferred. Among the alicyclic tetracarboxylic dianhydrides, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3,3 ′, 4,4′-biscyclohexanetetracarboxylic dianhydride, 1, 2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,1′-bicyclohexane −3,3 ′, 4,4′-tetracarboxylic dianhydride improves the solubility of the polyimide in the solvent, improves the applicability of the polyimide composition, and allows heating after application at a low temperature. This is particularly preferable because it tends to be possible.
These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
(ジアミン化合物)
 本発明の一般式(1)で表されるポリイミドの原料であるジアミン化合物としては、芳香環を含むジアミン化合物が挙げられる。芳香環を有するジアミン化合物としては、分子内に含まれる芳香環が1つであるジアミン化合物、独立した2つ以上の芳香環を有するジアミン化合物、縮合芳香環を有するジアミン化合物等が挙げられる。
(Diamine compound)
Examples of the diamine compound that is a raw material of the polyimide represented by the general formula (1) of the present invention include diamine compounds containing an aromatic ring. Examples of the diamine compound having an aromatic ring include a diamine compound having one aromatic ring contained in the molecule, a diamine compound having two or more independent aromatic rings, and a diamine compound having a condensed aromatic ring.
 具体的には、1,4-フェニレンジアミン、1,2-フェニレンジアミン、1,3-フェニレンジアミン等の分子内に含まれる芳香環が1つであるジアミン化合物;4,4’-(ビフェニル-2,5-ジイルビスオキシ)ビスアニリン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(4-アミノ-3-カルボキシフェニル)メタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、N-(4-アミノフェノキシ)-4-アミノベンズアミン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、ビス(3-アミノフェニル)スルホン、ノルボルナンジアミン、4,4’-ジアミノ-2-(トリフルオロメチル)ジフェニルエーテル、5-トリフルオロメチル-1,3-ベンゼンジアミン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2-ビス[4-{4-アミノ-2-(トリフルオロメチル)フェノキシ}フェニル]ヘキサフルオロプロパン、2-トリフルオロメチル-p-フェニレンジアミン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン等の独立した2つ以上の芳香環を有するジアミン化合物;4,4’-(9-フルオレニリデン)ジアニリン、2,7-ジアミノフルオレン、1,5-ジアミノナフタレン、3,7-ジアミノ-2,8-ジメチルジベンゾチオフェン5,5-ジオキシド等の縮合芳香環を有するジアミン化合物;等が挙げられる。 Specifically, a diamine compound having one aromatic ring contained in the molecule such as 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, etc .; 4,4 ′-(biphenyl- 2,5-diylbisoxy) bisaniline, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) Benzene, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (3-aminophenoxy) phenyl) sulfone, 1, 3-bis (4-aminophenoxy) neopentane, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-dia No-2,2′-dimethylbiphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis (4-amino-3-carboxyphenyl) Methane, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfide, N- (4-aminophenoxy) -4-aminobenzamine, 2,2′-bis (trifluoromethyl) -4,4 '-Diaminobiphenyl, bis (3-aminophenyl) sulfone, norbornanediamine, 4,4'-diamino-2- (trifluoromethyl) diphenyl ether, 5-trifluoromethyl-1,3-benzenediamine, 2,2- Bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 4,4′-diamino-2,2 -Bis (trifluoromethyl) biphenyl, 2,2-bis [4- {4-amino-2- (trifluoromethyl) phenoxy} phenyl] hexafluoropropane, 2-trifluoromethyl-p-phenylenediamine, 2, Diamine compounds having two or more independent aromatic rings such as 2-bis (3-amino-4-methylphenyl) hexafluoropropane; 4,4 ′-(9-fluorenylidene) dianiline, 2,7-diaminofluorene, And diamine compounds having a condensed aromatic ring such as 1,5-diaminonaphthalene and 3,7-diamino-2,8-dimethyldibenzothiophene 5,5-dioxide.
 芳香環を有するジアミン化合物のなかでも、独立した2つ以上の芳香環を有する化合物を用いることが好ましい。特にこれらの中で、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホンが、溶解性を維持し、寸法安定性に優れたポリイミドを得られるため特に好ましい。
 これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
Of the diamine compounds having an aromatic ring, it is preferable to use a compound having two or more independent aromatic rings. Among these, in particular, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diamino-2,2 '-Dimethylbiphenyl and bis (4- (4-aminophenoxy) phenyl) sulfone are particularly preferable because they can maintain a solubility and obtain a polyimide having excellent dimensional stability.
These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
 また上記のテトラカルボン酸二無水物及びジアミン化合物に加えて、本発明の効果を損なわない範囲で、芳香環を有するテトラカルボン酸二無水物及び/又は芳香環を有しない脂肪族ジアミン化合物を共重合してもよい。 In addition to the tetracarboxylic dianhydride and the diamine compound, a tetracarboxylic dianhydride having an aromatic ring and / or an aliphatic diamine compound having no aromatic ring are used within a range not impairing the effects of the present invention. Polymerization may be performed.
(芳香環を有するテトラカルボン酸二無水物)
 芳香環を有するテトラカルボン酸二無水物としては、分子内に含まれる芳香環が1つであるテトラカルボン酸二無水物、独立した2つ以上の芳香環を有するテトラカルボン酸二無水物及び縮合芳香環を有するテトラカルボン酸二無水物等が挙げられる。
(Tetracarboxylic dianhydride having an aromatic ring)
The tetracarboxylic dianhydride having an aromatic ring includes a tetracarboxylic dianhydride having one aromatic ring in the molecule, a tetracarboxylic dianhydride having two or more independent aromatic rings, and condensation. Examples include tetracarboxylic dianhydrides having an aromatic ring.
 具体的には、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物等の分子内に含まれる芳香環が1つであるテトラカルボン酸二無水物;1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、2,2’,6,6’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2’-ビス(トリフルオロメチル)-4,4’、5,5’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロトリメチレン)-ジフタル酸二無水物、4,4’-(オクタフルオロテトラメチレン)-ジフタル酸二無水物、4,4’-オキシジフタル酸無水物等の独立した2つ以上の芳香環を有するテトラカルボン酸二無水物;1,2,5,6-ナフタレンジカルボン酸二無水物、1,4,5,8-ナフタレンジカルボン酸二無水物、2,3,6,7-ナフタレンジカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物等の縮合芳香環を有するテトラカルボン酸二無水物;等が挙げられる。 Specifically, tetracarboxylic dianhydride having one aromatic ring contained in the molecule such as pyromellitic dianhydride and 1,2,3,4-benzenetetracarboxylic dianhydride; 1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane Anhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride, 3, 3 ', , 4′-benzophenonetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 4,4- (p-phenylenediene) Oxy) diphthalic dianhydride, 4,4- (m-phenylenedioxy) diphthalic dianhydride, 2,2 ′, 6,6′-biphenyltetracarboxylic dianhydride, 2,2-bis (3 , 4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3 3,3-hexafluoropropane dianhydride, 2,2′-bis (trifluoromethyl) -4,4 ′, 5,5′-biphenyltetracarboxylic dianhydride, 4,4 ′-(hexafluorotri Methylene) -diphthalic dianhydride 1,4 '-(octafluorotetramethylene) -diphthalic dianhydride, 4,4'-oxydiphthalic anhydride, etc., tetracarboxylic dianhydrides having two or more independent aromatic rings; , 5,6-Naphthalenedicarboxylic dianhydride, 1,4,5,8-naphthalenedicarboxylic dianhydride, 2,3,6,7-naphthalenedicarboxylic dianhydride, 3,4,9,10- Tetracarboxylic acid dianhydrides, 2,3,6,7-anthracene tetracarboxylic dianhydrides, 1,2,7,8-phenanthrenetetracarboxylic dianhydrides and the like tetracarboxylic acid dihydrates having a condensed aromatic ring Anhydrides; and the like.
 なかでも分子内に含まれる芳香環が1つであるテトラカルボン酸二無水物及び独立した2つ以上の芳香環を有するテトラカルボン酸二無水物を用いることが好ましい。さらにこれらの中でも、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が、ポリイミドの溶媒への溶解性を維持しながら、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にあるため好ましい。 Among these, it is preferable to use tetracarboxylic dianhydride having one aromatic ring contained in the molecule and tetracarboxylic dianhydride having two or more independent aromatic rings. Among these, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, 3,3 ′, 4,4′- While biphenyltetracarboxylic dianhydride maintains the solubility of the polyimide in the solvent, the rigidity and associability of the polyimide are improved, and the orientation characteristics and surface treatment resistance of the resulting alignment film tend to be improved. Therefore, it is preferable.
(芳香環を有しない脂肪族ジアミン化合物)
 脂肪族ジアミン化合物としては、脂環系ジアミン化合物、鎖状脂肪族系ジアミン化合物等が挙げられる。
(Aliphatic diamine compound having no aromatic ring)
Examples of the aliphatic diamine compound include alicyclic diamine compounds and chain aliphatic diamine compounds.
 具体的には、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)等の脂環系ジアミン化合物;(1,2-エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ヘキサメチレンジアミン、1,5-ジアミノペンタン、1,10-ジアミノデカン、1,2-ジアミノ-2-メチルプロパン、2,3-ジアミノ-2,3-ブタンジアミン、2-メチル-1,5-ジアミノペンタン)等の鎖状脂肪族系ジアミン化合物;等が挙げられる。 Specifically, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,4-diaminocyclohexane, 4,4′-methylenebis (cyclohexylamine), 4,4′- Alicyclic diamine compounds such as methylenebis (2-methylcyclohexylamine); (1,2-ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-hexamethylene Diamine, 1,5-diaminopentane, 1,10-diaminodecane, 1,2-diamino-2-methylpropane, 2,3-diamino-2,3-butanediamine, 2-methyl-1,5-diaminopentane ) And the like; and the like.
 これらの中で、脂環系ジアミン化合物が好ましく、その中でも1,4-ジアミノシクロヘキサン及び1,3-ビス(アミノメチル)が、ポリイミドの溶媒への溶解性を維持しながら、ポリイミドの剛直性及び会合性が向上し、得られる配向膜の配向特性及び耐表面処理性が向上する傾向にあるため好ましい。 Among these, alicyclic diamine compounds are preferred, and among them, 1,4-diaminocyclohexane and 1,3-bis (aminomethyl) maintain the solubility of the polyimide in the solvent while maintaining the rigidity of the polyimide. This is preferable because the associative property is improved and the orientation properties and surface treatment resistance of the resulting alignment film tend to be improved.
1.4 ポリイミドの製造方法
 本発明に係るポリイミドの製造方法に特段の制限はないが、例えば、前駆体であるポリアミック酸を製造し、ポリイミドを得る方法(二段法)、テトラカルボン酸二無水物とジアミン化合物から直接ポリイミドを製造する方法(一段法)が用いられる。
1.4 Polyimide production method Although there is no particular limitation on the polyimide production method according to the present invention, for example, a method of producing a polyamic acid as a precursor to obtain a polyimide (two-stage method), tetracarboxylic dianhydride A method (one-step method) for producing polyimide directly from a product and a diamine compound is used.
(二段法)
(ポリアミック酸の合成)
 テトラカルボン酸二無水物とジアミン化合物からポリアミック酸を得る反応は、従来から知られている条件で行うことができる。テトラカルボン酸二無水物とジアミン化合物の添加順序や添加方法には特に限定はない。例えば、溶媒にテトラカルボン酸二無水物とジアミン化合物を順に投入し、適切な温度で撹拌することにより、ポリアミック酸組成物は得られる。
(Two-stage method)
(Synthesis of polyamic acid)
The reaction for obtaining a polyamic acid from tetracarboxylic dianhydride and a diamine compound can be performed under conventionally known conditions. There are no particular limitations on the order of addition or addition method of the tetracarboxylic dianhydride and the diamine compound. For example, a polyamic acid composition can be obtained by sequentially adding tetracarboxylic dianhydride and a diamine compound to a solvent and stirring at an appropriate temperature.
 ジアミン化合物の量は、テトラカルボン酸二無水物に対して、通常0.7モル以上、好ましくは0.8モル以上であり、通常1.3モル以下、好ましくは1.2モル以下である。ジアミン化合物をこのような範囲とすることで、得られるポリアミック酸の収率が向上する傾向にある。 The amount of the diamine compound is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less, relative to tetracarboxylic dianhydride. By making a diamine compound into such a range, it exists in the tendency for the yield of the polyamic acid obtained to improve.
 溶媒中のテトラカルボン酸二無水物及びジアミン化合物の濃度は、反応条件やポリアミック酸の粘度に応じて適宜設定できる。例えば、テトラカルボン酸二無水物とジアミン化合物の合計の質量は、特に制限はないが、全液量に対し、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは30質量%以下である。反応基質をこの範囲にすることによって、低コストで収率よくポリアミック酸を得ることができる。 The concentration of the tetracarboxylic dianhydride and the diamine compound in the solvent can be appropriately set according to the reaction conditions and the viscosity of the polyamic acid. For example, the total mass of the tetracarboxylic dianhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, based on the total liquid amount. Preferably it is 30 mass% or less. By setting the reaction substrate within this range, a polyamic acid can be obtained at a low cost and in a high yield.
 反応温度は、反応が進行する温度であれば特に制限はないが、通常0℃以上、好ましくは20℃以上であり、通常120℃以下、好ましくは100℃以下である。反応時間は通常1時間以上、好ましくは2時間以上であり、通常100時間以下、好ましくは24時間以下である。このような条件で反応を行うことにより、低コストで収率よくポリアミック酸を得ることができる。
 反応時の圧力は、常圧、加圧、または減圧のいずれかでもよい。雰囲気は空気下でも不活性雰囲気下でもよい。
The reaction temperature is not particularly limited as long as the reaction proceeds, but is usually 0 ° C or higher, preferably 20 ° C or higher, and usually 120 ° C or lower, preferably 100 ° C or lower. The reaction time is usually 1 hour or longer, preferably 2 hours or longer, usually 100 hours or shorter, preferably 24 hours or shorter. By carrying out the reaction under such conditions, a polyamic acid can be obtained at a low cost and in a high yield.
The pressure during the reaction may be normal pressure, increased pressure, or reduced pressure. The atmosphere may be air or an inert atmosphere.
 この反応で用いる溶媒としては特に限定されないが、例えば、ヘキサン、シクロヘキサン、ヘプタン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン、メシチレン、フェノール、クレゾール、アニソール等の芳香族系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、フルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メトキシベンゼン等のエーテル系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系極性溶媒;ピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の複素環系溶媒;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒;等が挙げられる。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。 The solvent used in this reaction is not particularly limited. For example, hydrocarbon solvents such as hexane, cyclohexane and heptane; aromatic solvents such as benzene, toluene, xylene, mesitylene, phenol, cresol and anisole; carbon tetrachloride, Halogenated hydrocarbon solvents such as methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, fluorobenzene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane, methoxybenzene; acetone, methyl ethyl ketone, cyclohexanone Ketone solvents such as methyl isobutyl ketone; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ester Glycol solvents such as ether and propylene glycol monomethyl ether acetate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; aprotic polar solvents such as dimethyl sulfoxide; And heterocyclic solvents such as pyridine, picoline, lutidine, quinoline and isoquinoline; lactone solvents such as γ-butyrolactone, γ-valerolactone and δ-valerolactone. These solvents may be used alone or in combination of two or more in any ratio and combination.
 このようにして得られたポリアミック酸溶液はそのまま用いてもよく、また貧溶媒中に添加することで固体状に析出させた後に他の溶媒に再溶解させて、ポリイミド組成物として得ることもできる。 The polyamic acid solution thus obtained may be used as it is, or may be added to a poor solvent to be precipitated as a solid and then re-dissolved in another solvent to obtain a polyimide composition. .
 この時の貧溶媒は特に制限はなく、ポリイミド樹脂の種類によって適宜選択しうるが、ジエチルエーテル又はジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;等が挙げられる。中でも、イソプロピルアルコール等のアルコール系溶媒が効率よく析出物が得られ、沸点が低くなり乾燥が容易である点で好ましい。 The poor solvent at this time is not particularly limited and may be appropriately selected depending on the type of polyimide resin. Ether solvents such as diethyl ether or diisopropyl ether; Ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone and methyl isobutyl ketone; Methanol , Alcohol solvents such as ethanol and isopropyl alcohol; and the like. Of these, alcohol solvents such as isopropyl alcohol are preferable in that precipitates can be obtained efficiently, the boiling point is low, and drying is easy.
 ポリアミック酸を溶解させる溶媒は特に限定されないが、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;ベンゼン、トルエン、キシレン、メシチレン、フェノール、クレゾール、アニソール等の芳香族系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコール系溶媒;が挙げられる。この中でもアミド系溶媒、芳香族系溶媒及びグリコール系溶媒が好ましい。特に、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド又はN-メチル-2-ピロリドン、アニソール、エチレングリコールジメチルエーテル及びエチレングリコールモノメチルエーテルが好ましい。これらは単独で使用することができ、2種類以上の混媒として使用する事もできる。 The solvent for dissolving the polyamic acid is not particularly limited. For example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone; aprotic solvents such as dimethyl sulfoxide; Aromatic solvents such as benzene, toluene, xylene, mesitylene, phenol, cresol, anisole; glycol solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate; Can be mentioned. Of these, amide solvents, aromatic solvents and glycol solvents are preferred. In particular, N, N-dimethylformamide, N, N-dimethylacetamide or N-methyl-2-pyrrolidone, anisole, ethylene glycol dimethyl ether and ethylene glycol monomethyl ether are preferred. These can be used alone, and can also be used as a mixture of two or more.
(ポリアミック酸からのポリイミド組成物の製造)
 上記のポリアミック酸を溶媒存在下で脱水環化することにより、ポリイミド組成物を得ることができる。イミド化は従来から知られている任意の方法を用いて行うことができるが、例えば熱的に環化させる加熱イミド化、化学的に環化させる化学イミド化等が挙げられる。これらのイミド化反応は単独で使用しても、併用してもよい。
(Production of polyimide composition from polyamic acid)
A polyimide composition can be obtained by dehydrating and cyclizing the above polyamic acid in the presence of a solvent. Although imidation can be performed using any conventionally known method, examples thereof include thermal imidization by thermal cyclization and chemical imidization by chemical cyclization. These imidization reactions may be used alone or in combination.
(加熱イミド化)
 本願発明の特定のイミド化率であるポリイミドは、加熱温度、加熱時間、ポリアミック酸の溶媒中の濃度、並びに、イミド化促進剤等を用いる場合はイミド化促進剤等の種類、添加量、添加投入のタイミング等を調整することにより得ることができる。
 ポリアミック酸をイミド化する際の溶媒は、上記ポリアミック酸を得る反応時に使用した溶媒と同様のものが挙げられる。ポリアミック酸製造時の溶媒と、ポリイミド組成物製造時の溶媒は、同じものを用いても、異なるものを用いてもよい。
(Heat imidization)
The polyimide which is a specific imidation ratio of the present invention is a heating temperature, a heating time, a concentration of polyamic acid in a solvent, and, if an imidization accelerator is used, a kind, an addition amount, and an addition of an imidization accelerator It can be obtained by adjusting the timing of charging.
Examples of the solvent for imidizing the polyamic acid include the same solvents as those used in the reaction for obtaining the polyamic acid. The same or different solvents may be used for the polyamic acid production and the polyimide composition production.
 この場合、イミド化反応によって生じた水は、閉環反応を阻害するため、系外に排出してもよい。イミド化反応時のポリアミック酸の濃度は特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。この範囲で行うことによって、イミド化率を制御したポリイミドを得ることができる。また、生産効率が高く、製造しやすい溶液粘度でポリイミドを製造することができる。 In this case, water generated by the imidization reaction may be discharged out of the system in order to inhibit the ring closure reaction. The concentration of the polyamic acid during the imidation reaction is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less. By carrying out in this range, a polyimide having a controlled imidization rate can be obtained. In addition, polyimide can be produced with a solution viscosity that is high in production efficiency and easy to produce.
 イミド化反応温度は、本発明の主旨を逸脱しない限り、特に制限されない。通常50℃以上、好ましくは80℃以上、さらに好ましくは100℃以上であり、通常300℃以下、好ましくは250℃以下、さらに好ましくは220℃以下、特に好ましくは200℃以下である。この範囲で行うことで、イミド化反応が効率よく進行し、且つ、イミド化率を制御したポリイミドを得ることができる。また、イミド化反応以外の副反応が抑制されるため好ましい。
 反応時の圧力は常圧、加圧、または減圧のいずれでもよい。雰囲気は、空気下でも不活性雰囲気下でもよい。
The imidization reaction temperature is not particularly limited as long as it does not depart from the gist of the present invention. It is usually 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 220 ° C. or lower, particularly preferably 200 ° C. or lower. By performing within this range, it is possible to obtain a polyimide in which the imidization reaction proceeds efficiently and the imidization rate is controlled. Moreover, since side reactions other than imidation reaction are suppressed, it is preferable.
The pressure during the reaction may be normal pressure, pressurization, or reduced pressure. The atmosphere may be air or an inert atmosphere.
 また、イミド化を促進するイミド化促進剤として、求核性、求電子性を高める働きをもつ化合物を加えることもできる。具体的には、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエアタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリン等の三級アミン化合物;4-ヒドロキシフェニル酢酸、3-ヒドロキシ安息香酸、N-アセチルグリシン、N-ベンゾイルグリシン等のカルボン酸化合物;3,5-ジヒドロキシアセトフェノン、3,5-ジヒドロキシ安息香酸メチル、ピロガロール、メチルガレート、エチルガレート、ナフタレンー1,6-ジオール等の多価フェノール化合物;2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジン、4-ピリジンメタノール、N,N-ジメチルアミノピリジン、ニコチンアルデヒド、イソニコチンアルデヒド、ピコリンアルデヒド、ピコリンアルデヒドオキシム、ニコチンアルデヒドオキシム、イソニコチンアルデヒドオキシム、ピコリン酸エチル、ニコチン酸エチル、イソニコチン酸エチル、ニコチンアミド、イソニコチンアミド、2-ヒドロキシニコチン酸、2,2’-ジピリジル、4,4’-ジピリジル、3-メチルピリダジン、キノリン、イソキノリン、フェナントロリン、1,10-フェナントロリン、イミダゾール、ベンズイミダゾール、1,2,4-トリアゾール等の複素環化合物;等が挙げられる。 Further, as an imidization accelerator for promoting imidization, a compound having a function of enhancing nucleophilicity and electrophilicity can be added. Specifically, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, triabutanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine , Tertiary amine compounds such as N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline and isoquinoline; carboxylic acids such as 4-hydroxyphenylacetic acid, 3-hydroxybenzoic acid, N-acetylglycine and N-benzoylglycine Compound; Polyhydric phenol compound such as methyl 3,5-dihydroxyacetophenone, methyl 3,5-dihydroxybenzoate, pyrogallol, methyl gallate, ethyl gallate, naphthalene-1,6-diol; 2-hydroxy Pyridine, 3-hydroxypyridine, 4-hydroxypyridine, 4-pyridinemethanol, N, N-dimethylaminopyridine, nicotinaldehyde, isonicotialdehyde, picolinaldehyde, picolinaldehyde oxime, nicotinaldehyde oxime, isonicotinaldehyde oxime, picolinic acid Ethyl, ethyl nicotinate, ethyl isonicotinate, nicotinamide, isonicotinamide, 2-hydroxynicotinic acid, 2,2'-dipyridyl, 4,4'-dipyridyl, 3-methylpyridazine, quinoline, isoquinoline, phenanthroline, 1 , 10-phenanthroline, imidazole, benzimidazole, 1,2,4-triazole and other heterocyclic compounds;
 これらの中で、三級アミン化合物、カルボン酸化合物及び複素環化合物が好ましく、特にトリエチルアミン、イミダゾール及びピリジンが、イミド化率を制御しやすい傾向があるためより好ましい。
 これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
Among these, tertiary amine compounds, carboxylic acid compounds, and heterocyclic compounds are preferable, and triethylamine, imidazole, and pyridine are particularly preferable because they tend to control the imidization rate.
These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
 イミド化促進剤の使用量は、アミック酸骨格のカルボキシル基又はエステル基に対して、0.01モル%以上が好ましく、0.1モル%以上がさらに好ましく、1モル%以上が特に好ましい。また、50モル%以下であることが好ましく、10モル%以下であることがより好ましい。触媒の使用量がこのような範囲にあることにより、イミド化反応が効率よく進行し、且つ、イミド化率を制御したポリイミドを得ることができる傾向にある。さらに、低コストで収率よく反応を行うことができる。
 また、イミド化促進剤を添加するタイミングは、所望のイミド化率にするために適宜調整することができ、加熱開始前でもよく、加熱中でもよい。また複数回に分けて添加してもよい。
The amount of the imidization accelerator used is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, particularly preferably 1 mol% or more based on the carboxyl group or ester group of the amic acid skeleton. Moreover, it is preferable that it is 50 mol% or less, and it is more preferable that it is 10 mol% or less. When the usage-amount of a catalyst exists in such a range, it exists in the tendency for the imidation reaction to advance efficiently and to obtain the polyimide which controlled the imidation ratio. Furthermore, the reaction can be performed at a low cost and with a high yield.
Moreover, the timing which adds an imidation promoter can be adjusted suitably in order to make it a desired imidation rate, may be before a heating start, and may be during a heating. Moreover, you may add in multiple times.
(化学イミド化)
 ポリアミック酸を溶媒存在下で、脱水縮合剤を用いて化学的にイミド化することにより、ポリイミド組成物を得ることができる。本願発明の特定のイミド化率であるポリイミドは、加熱温度、加熱時間、ポリアミック酸の溶媒中の濃度、脱水縮合剤の種類、脱水縮合剤の添加量、脱水縮合剤の添加投入のタイミング等を調整することにより得ることができる。
 ポリアミック酸をイミド化する際に使用する溶媒としては、上記二段法でのポリアミック酸の合成で挙げた溶媒と同様のものが挙げられる。
(Chemical imidization)
A polyimide composition can be obtained by chemically imidizing a polyamic acid with a dehydrating condensing agent in the presence of a solvent. The polyimide which is a specific imidization ratio of the present invention has a heating temperature, a heating time, a polyamic acid concentration in a solvent, a type of a dehydrating condensing agent, an amount of adding a dehydrating condensing agent, a timing for adding a dehydrating condensing agent, and the like. It can be obtained by adjusting.
Examples of the solvent used when imidizing the polyamic acid include the same solvents as mentioned in the synthesis of the polyamic acid in the above two-stage method.
 脱水縮合剤としては、例えば、N,N-ジシクロヘキシルカルボジイミド、N,N-ジフェニルカルボジイミド等のN,N-2置換カルボジイミド;無水酢酸、無水トリフルオロ酢酸等の酸無水物;塩化チオニル、塩化トシル等の塩化物;アセチルクロライド、アセチルブロマイド、プロピオニルアイオダイド、アセチルフルオライド、プロピオニルクロライド、プロピオニルブロマイド、プロピオニルアイオダイド、プロピオニルフルオライド、イソブチリルクロライド、イソブチリルブロマイド、イソブチリルアイオダイド、イソブチリルフルオライド、n-ブチリルクロライド、n-ブチリルブロマイド、n-ブチリルアイオダイド、n-ブチリルフルオライド、モノ-クロロアセチルクロライド、ジ-クロロアセチルクロライド、トリ-クロロアセチルクロライド、モノ-ブロモアセチルクロライド、ジ-ブロモアセチルクロライド、トリ-ブロモアセチルクロライド、モノ-アイオドアセチルクロライド、ジ-アイオドアセチルクロライド、トリ-アイオドアセチルクロライド、モノ-フルオロアセチルクロライド、ジ-フルオロアセチルクロライド、トリ-フルオロアセチルクロライド、無水クロロ酢酸、フェニルホスフォニックジクロライド、チオニルクロライド、チオニルブロマイド、チオニルアイオダイド、チオニルフルオライド等のハロゲン化化合物;三塩化リン、亜リン酸トリフェニル、ジエチルリン酸シアニド等のリン化合物;等が挙げられる。 Examples of the dehydrating condensing agent include N, N-2-substituted carbodiimides such as N, N-dicyclohexylcarbodiimide and N, N-diphenylcarbodiimide; acid anhydrides such as acetic anhydride and trifluoroacetic anhydride; thionyl chloride and tosyl chloride and the like. Chlorides of: acetyl chloride, acetyl bromide, propionyl iodide, acetyl fluoride, propionyl chloride, propionyl bromide, propionyl iodide, propionyl fluoride, isobutyryl chloride, isobutyryl bromide, isobutyryl iodide, isobuty Ril fluoride, n-butyryl chloride, n-butyryl bromide, n-butyryl iodide, n-butyryl fluoride, mono-chloroacetyl chloride, di-chloroacetyl chloride, Re-chloroacetyl chloride, mono-bromoacetyl chloride, di-bromoacetyl chloride, tri-bromoacetyl chloride, mono-iodoacetyl chloride, di-iodoacetyl chloride, tri-iodoacetyl chloride, mono-fluoroacetyl chloride , Di-fluoroacetyl chloride, tri-fluoroacetyl chloride, chloroacetic anhydride, phenylphosphonic dichloride, thionyl chloride, thionyl bromide, thionyl iodide, thionyl fluoride, etc .; phosphorus trichloride, triphenyl phosphite And phosphorus compounds such as diethyl phosphate cyanide; and the like.
 これらの中で、酸無水物又はハロゲン化化合物が好ましく、特に、酸無水物が好ましい。これらを用いることで、イミド化反応が効率よく進行し、且つ、イミド化率を制御したポリイミドを得ることができる傾向にある。
 これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
Among these, acid anhydrides or halogenated compounds are preferable, and acid anhydrides are particularly preferable. By using these, the imidation reaction proceeds efficiently, and a polyimide having a controlled imidation rate tends to be obtained.
These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations.
 これらの脱水縮合剤の使用量は、アミック酸骨格1molに対して、通常0.1mol以上、好ましくは0.2mol以上であり、通常1.0mol以下、好ましくは0.9mol以下である。脱水縮合剤をこの範囲とすることで、イミド化率を制御することができる。これらは単独で使用する事ができ、2種類以上を併用する事もできる。 The amount of these dehydrating condensing agents to be used is usually 0.1 mol or more, preferably 0.2 mol or more, usually 1.0 mol or less, preferably 0.9 mol or less with respect to 1 mol of the amic acid skeleton. By setting the dehydration condensing agent within this range, the imidization rate can be controlled. These can be used alone or in combination of two or more.
 イミド化反応時のポリアミック酸の濃度に特に制限はないが、通常1質量%以上、好ましくは5質量%以上であり、通常70質量%以下、好ましくは40質量%以下である。この範囲とすることで、イミド化率を制御でき、生産効率が高く、また製造しやすい溶液粘度で製造することができる傾向にある。 Although there is no restriction | limiting in particular in the density | concentration of the polyamic acid at the time of imidation reaction, Usually, 1 mass% or more, Preferably it is 5 mass% or more, Usually, 70 mass% or less, Preferably it is 40 mass% or less. By setting it within this range, the imidation rate can be controlled, production efficiency tends to be high, and the solution viscosity tends to be easy to manufacture.
 イミド化反応温度は特に制限されないが、イミド化反応温度は本発明の主旨を逸脱しない限り、特に制限はないが、通常0℃以上、好ましくは10℃以上、さらに好ましくは20℃以上であり、通常150℃以下、好ましくは130℃以下、さらに好ましくは100℃以下である。この範囲で行うことで、イミド化反応が効率よく進行し、且つ、イミド化率を制御したポリイミドを得ることができる傾向にあるため好ましい。さらに、イミド化反応以外の副反応が抑制されるため好ましい。
 反応時の圧力は常圧、加圧、または減圧のいずれでもよい。雰囲気は、空気下でも不活性雰囲気下でもよい。
 また、イミド化を促進する触媒として前述の三級アミン類等を加熱イミド化と同様に加えることもできる。
Although the imidization reaction temperature is not particularly limited, the imidization reaction temperature is not particularly limited as long as it does not depart from the gist of the present invention, but is usually 0 ° C or higher, preferably 10 ° C or higher, more preferably 20 ° C or higher, Usually, it is 150 ° C. or lower, preferably 130 ° C. or lower, more preferably 100 ° C. or lower. It is preferable to carry out in this range since the imidization reaction proceeds efficiently and a polyimide having a controlled imidization rate tends to be obtained. Furthermore, it is preferable because side reactions other than the imidization reaction are suppressed.
The pressure during the reaction may be normal pressure, pressurization, or reduced pressure. The atmosphere may be air or an inert atmosphere.
Moreover, the above-mentioned tertiary amines etc. can also be added similarly to heat | fever imidation as a catalyst which accelerates | stimulates imidation.
(一段法)
 テトラカルボン酸二無水物とジアミン化合物から、従来既知の方法を用いて、直接ポリイミド組成物を得ることができる。この方法は、二段法におけるポリアミック酸の合成からイミド化を、反応の停止や中間体(ポリアミック酸)の単離を経ることなく、イミド化までを行うものである。
 一段法も、ポリアミック酸からポリイミド組成物を得る場合(二段法)と同様に、加熱イミド化及び化学イミド化と同様の反応条件を用いることができる。
(One-step method)
A polyimide composition can be obtained directly from tetracarboxylic dianhydride and a diamine compound using a conventionally known method. In this method, imidization is performed from synthesis of polyamic acid in a two-stage method to imidization without stopping the reaction or isolating an intermediate (polyamic acid).
Similarly to the case of obtaining a polyimide composition from polyamic acid (two-step method), the one-step method can also use the same reaction conditions as those of the heat imidization and chemical imidization.
 一段法に特に制限はないが、以下に具体的に説明する。本願発明の特定のイミド化率であるポリイミドは、加熱温度、加熱時間、テトラカルボン酸二無水物及びジアミン化合物の濃度、添加剤等の種類、添加量、添加投入のタイミング等を調整することにより得ることができる。 There is no particular limitation on the one-stage method, but it will be explained in detail below. By adjusting the heating temperature, the heating time, the concentration of tetracarboxylic dianhydride and diamine compound, the type of additive, the amount of additive, the timing of addition, etc. Obtainable.
 テトラカルボン酸二無水物とジアミン化合物をテトラカルボン酸二無水物とジアミン化合物の添加順序や添加方法には特に限定はない。例えば、溶媒にテトラカルボン酸二無水物とジアミン化合物を順に投入し、イミド化までの反応が進行する温度で撹拌することでポリイミド組成物が得られる。 There are no particular limitations on the order and method of adding tetracarboxylic dianhydride and diamine compound to tetracarboxylic dianhydride and diamine compound. For example, a polyimide composition can be obtained by adding a tetracarboxylic dianhydride and a diamine compound to a solvent in this order and stirring at a temperature at which the reaction until imidization proceeds.
 ジアミン化合物の量は、テトラカルボン酸二無水物1モルに対して、通常0.7モル以上、好ましくは0.8モル以上であり、通常1.3モル以下、好ましくは1.2モル以下である。ジアミン化合物の量をこのような範囲とすることにより、イミド化率を制御したポリイミドを得ることができ、得られるポリイミド組成物の収率が向上する傾向にある。 The amount of the diamine compound is usually 0.7 mol or more, preferably 0.8 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less, relative to 1 mol of tetracarboxylic dianhydride. is there. By setting the amount of the diamine compound in such a range, it is possible to obtain a polyimide with a controlled imidation rate, and the yield of the resulting polyimide composition tends to be improved.
 溶媒中のテトラカルボン酸二無水物とジアミン化合物の濃度は、各々の条件や重合中の粘度に対して適宜設定しうるが、テトラカルボン酸二無水物とジアミン化合物の合計質量は、特段の設定ないが、全液量に対し、通常1質量%以上、好ましくは5質量%以上であり、通常70%質量%以下、好ましくは40質量%以下である。溶媒中の濃度が低すぎると分子量の伸長が起こりにくくなり、高すぎると粘度か高くなりすぎ撹拌が困難になる。また、上記範囲であることで、イミド化率を制御したポリイミドを得ることができる傾向にある。
 この反応で用いる溶媒としては、上記の溶媒と同様のものが挙げられる。
The concentration of tetracarboxylic dianhydride and diamine compound in the solvent can be set as appropriate for each condition and viscosity during polymerization, but the total mass of tetracarboxylic dianhydride and diamine compound is a special setting. However, it is usually 1% by mass or more, preferably 5% by mass or more, and usually 70% by mass or less, preferably 40% by mass or less, based on the total liquid amount. If the concentration in the solvent is too low, elongation of the molecular weight hardly occurs, and if it is too high, the viscosity becomes too high and stirring becomes difficult. Moreover, it exists in the tendency which can obtain the polyimide which controlled the imidation ratio because it is the said range.
Examples of the solvent used in this reaction include the same solvents as those described above.
1.5 ポリイミド組成物の製造方法
 得られたポリイミドは、そのままポリイミド組成物として用いてもよく、また貧溶媒中に添加することでポリイミドを固体状に析出させた後に、他の溶媒に再溶解させてポリイミド組成物として用いることもできる。
1.5 Production method of polyimide composition The obtained polyimide may be used as it is as a polyimide composition, or after being precipitated in a solid state by adding it to a poor solvent, it is redissolved in another solvent. It can also be used as a polyimide composition.
 この時の貧溶媒は特に制限はなく、ポリイミドの種類によって適宜選択しうるが、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、イソブチルケトン、メチルイソブチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒等が挙げられる。中でも、イソプロピルアルコール等のアルコール系溶媒が効率よく析出物がえられ、沸点が低く乾燥が容易である点で好ましい。これらの溶媒は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。
 また、ポリイミドを再溶解させる溶媒としては、前述したポリイミド組成物の溶媒が挙げられる。
The poor solvent at this time is not particularly limited and may be appropriately selected depending on the type of polyimide, but ether solvents such as diethyl ether and diisopropyl ether; ketone solvents such as acetone, methyl ethyl ketone, isobutyl ketone, and methyl isobutyl ketone; methanol, Examples thereof include alcohol solvents such as ethanol and isopropyl alcohol. Among them, alcohol solvents such as isopropyl alcohol are preferable in that precipitates can be obtained efficiently, the boiling point is low, and drying is easy. These solvents may be used alone or in combination of two or more in any ratio and combination.
Moreover, the solvent of the polyimide composition mentioned above is mentioned as a solvent which redissolves a polyimide.
 本発明のポリイミド組成物には、配向膜を形成する際にイミド化率をさらに上げるために、ポリイミド組成物にイミド化剤を添加することができる。
 イミド化剤はイミド化を促進するものであれば特に制限はなく、上記のイミド化促進剤を用いることができる。好ましくは、カルボン酸化合物または複素環化合物であり、より好ましくは複素環化合物であり、さらに好ましくは、2-ヒドロキシピリジン、3-ヒドロキシピリジン、4-ヒドロキシピリジン、N,N-ジメチルアミノピリジン、ニコチンアミド、イソニコチンアミド、イミダゾール、ベンズイミダゾール、1,2,4-トリアゾールである。
 これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。また、上記の化合物の添加はポリイミド組成物の製造時に添加してもよく、塗布直前添加してもよい。
In the polyimide composition of the present invention, an imidizing agent can be added to the polyimide composition in order to further increase the imidization rate when forming the alignment film.
The imidizing agent is not particularly limited as long as it promotes imidization, and the above-mentioned imidization accelerator can be used. Preferred are carboxylic acid compounds or heterocyclic compounds, more preferred are heterocyclic compounds, and more preferred are 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, N, N-dimethylaminopyridine, nicotine. Amides, isonicotinamides, imidazoles, benzimidazoles and 1,2,4-triazoles.
These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations. Moreover, addition of said compound may be added at the time of manufacture of a polyimide composition, and may be added just before application | coating.
 本発明のポリイミド組成物には、被塗布体との接着性を調節するため、シランカップリング剤、チタンカップリング剤等のカップリング剤を添加することができる。これらの化合物は、1種を単独で用いても、2種以上を任意の比率及び組合せで用いてもよい。このときの使用量は、ポリイミドに対して、0.1質量%以上、3質量%以下が好ましい。 In the polyimide composition of the present invention, a coupling agent such as a silane coupling agent or a titanium coupling agent can be added in order to adjust the adhesiveness to the coated body. These compounds may be used individually by 1 type, or may be used 2 or more types by arbitrary ratios and combinations. The amount used at this time is preferably 0.1% by mass or more and 3% by mass or less with respect to the polyimide.
 シランカップリング剤としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリメトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン等が挙げられる。 Examples of the silane coupling agent include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltripropoxysilane, γ-aminopropyltributoxysilane, γ-aminoethyltriethoxysilane, γ -Aminoethyltrimethoxysilane, γ-aminoethyltripropoxysilane, γ-aminoethyltributoxysilane, γ-aminobutyltriethoxysilane, γ-aminobutyltrimethoxysilane, γ-aminobutyltripropoxysilane, γ-amino Examples include butyltributoxysilane.
 チタンカップリング剤としては、例えば、γ-アミノプロピルトリエトキシチタン、γ-アミノプロピルトリメトキシチタン、γ-アミノプロピルトリプロポキシチタン、γ-アミノプロピルトリブトキシチタン、γ-アミノエチルトリエトキシチタン、γ-アミノエチルトリメトキシチタン、γ-アミノエチルトリプロポキシチタン、γ-アミノエチルトリブトキシチタン、γ-アミノブチルトリエトキシチタン、γ-アミノブチルトリメトキシチタン、γ-アミノブチルトリプロポキシチタン、γ-アミノブチルトリブトキシチタン等が挙げられる。 Examples of the titanium coupling agent include γ-aminopropyltriethoxytitanium, γ-aminopropyltrimethoxytitanium, γ-aminopropyltripropoxytitanium, γ-aminopropyltributoxytitanium, γ-aminoethyltriethoxytitanium, γ -Aminoethyltrimethoxytitanium, γ-aminoethyltripropoxytitanium, γ-aminoethyltributoxytitanium, γ-aminobutyltriethoxytitanium, γ-aminobutyltrimethoxytitanium, γ-aminobutyltripropoxytitanium, γ-amino Examples thereof include butyl tributoxy titanium.
 その他、必要に応じて、各種添加剤を配合することも可能である。例えば本発明の効果を損なわない範囲で、他の粉末状、粒状、板状、繊維状等の無機系充填剤や有機系充填剤を配合することができる。 In addition, various additives can be blended as necessary. For example, other powdery, granular, plate-like, fiber-like inorganic fillers and organic fillers can be blended within a range not impairing the effects of the present invention.
 また、これら充填剤は不織布等のような平板状に加工したものを用いてもよく、複数を混ぜて用いてもよい。さらに所望に応じ、樹脂組成物に通常用いられている各種添加剤、例えば滑剤、着色剤、安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、離型剤等を配合することができる。これら各種充填剤及び添加成分は、ポリイミドを製造するどの工程のどの段階で添加してもよい。   Further, these fillers may be processed into a flat shape such as a non-woven fabric or may be used in combination. Furthermore, if desired, various additives commonly used in resin compositions such as lubricants, colorants, stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, plasticizers, mold release agents, etc. Can be blended. These various fillers and additive components may be added at any stage of any process for producing polyimide. *
 本発明により、上記ポリイミド組成物から形成された配向膜、前記配向膜及び色素から形成された異方性色素膜を含む光学素子が提供される。以下、これらの発明についてさらに詳細に説明する。 According to the present invention, there is provided an optical element comprising an alignment film formed from the polyimide composition, an anisotropic dye film formed from the alignment film and a dye. Hereinafter, these inventions will be described in more detail.
1.6 配向膜の形成方法及び配向膜
 本発明の配向膜は、被塗布体に対して本発明のポリイミド組成物を塗布することによる形成できる。
 塗布方法は、均一な厚さの層を形成できる方法であれば特に限定されないが、例えば、ダイコーティング、スピンコーティング、スクリーン印刷、フレキソ印刷、スプレー、アプリケーターを用いたキャスティング法;コーターを用いる方法;吹き付けによる方法;浸漬法;カレンダー法;流延法;等が挙げられる。
1.6 Alignment Film Formation Method and Alignment Film The alignment film of the present invention can be formed by applying the polyimide composition of the present invention to an object to be coated.
The application method is not particularly limited as long as it can form a layer having a uniform thickness. For example, die coating, spin coating, screen printing, flexographic printing, spraying, a casting method using an applicator; a method using a coater; The method by spraying; immersion method; calendar method; casting method;
 被塗布体としては、例えば、フロートガラス、ソーダガラス等のガラス;ポリエチレンテレフタレート、ポリカーボネート、ポリオレフィン等のプラスチック;等を含む基板を用いることができる。本発明のポリイミド組成物を塗布する際には、被塗布体である基板の表面に、官能性シラン含有化合物、官能性チタン含有化合物をあらかじめ塗布することもできる。また紫外線処理、プラズマ処理等を行うこともできる。 As the coated body, for example, a substrate including glass such as float glass or soda glass; plastic such as polyethylene terephthalate, polycarbonate, polyolefin, or the like can be used. When applying the polyimide composition of the present invention, a functional silane-containing compound or a functional titanium-containing compound can be applied in advance to the surface of the substrate, which is an object to be coated. Further, ultraviolet treatment, plasma treatment, or the like can be performed.
 ポリイミド組成物の溶媒を揮発させる方法も特に限定されない。通常は、ポリイミド組成物が塗布された被塗布体を加熱することにより、溶媒が揮発させられる。加熱方法は特に限定されず、例えば熱風加熱、真空加熱、赤外線加熱、マイクロ波加熱、熱板又はホットロール等を用いた接触による加熱等が挙げられる。 The method for volatilizing the solvent of the polyimide composition is not particularly limited. Usually, a solvent is volatilized by heating the to-be-coated body to which the polyimide composition is applied. The heating method is not particularly limited, and examples thereof include hot air heating, vacuum heating, infrared heating, microwave heating, heating by contact using a hot plate or a hot roll, and the like.
 塗布したポリイミド組成物の溶媒を乾燥させる場合の加熱温度は、溶媒の種類に応じて好適な温度を用いることができるが、通常20℃以上、好ましくは40℃以上、さらに好ましくは50℃以上である。また、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。溶媒除去温度が20℃以上である場合、溶媒が十分揮発される点で好ましい。また溶媒除去温度が200℃以下である場合、耐熱性の低い材料、例えば、ポリエステル樹脂やポリオレフィン樹脂等の被塗布体に配向膜を形成した際の各材料の性能低下を抑えることができる。 The heating temperature in drying the solvent of the applied polyimide composition can be a suitable temperature depending on the type of the solvent, but is usually 20 ° C. or higher, preferably 40 ° C. or higher, more preferably 50 ° C. or higher. is there. Further, it is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 150 ° C. or lower. When the solvent removal temperature is 20 ° C. or higher, it is preferable in that the solvent is sufficiently volatilized. Moreover, when solvent removal temperature is 200 degrees C or less, the performance fall of each material at the time of forming alignment film in to-be-coated bodies, such as a low heat resistant material, for example, polyester resin, polyolefin resin, etc. can be suppressed.
 塗布後、配向膜のイミド化率をさらに上げるために、さらに加熱してもよい。イミド化率を上げる場合の温度は、好ましくは60℃以上、より好ましくは80℃以上である。また、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。加熱温度が60℃以上である場合、効率よくイミド化が進行し、加水分解等の原因となるアミック酸残量が少なくなるため好ましい。また加熱温度が200℃以下である場合、耐熱性の低い材料、例えばポリエステル樹脂やポリオレフィン樹脂等の被塗布体に配向膜を形成した際の各材料の性能低下を抑えることができる傾向にある。
 溶媒除去温度及びイミド化率を上げる温度は、それぞれ異なる温度で行っても、同じ温度で行ってもよい。また溶媒除去とイミド化率を上げるための加熱を行う場合、それぞれの加熱方法は異なっても、同じでもよい。
After application, in order to further increase the imidation ratio of the alignment film, it may be further heated. The temperature for increasing the imidization rate is preferably 60 ° C or higher, more preferably 80 ° C or higher. Further, it is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 150 ° C. or lower. A heating temperature of 60 ° C. or higher is preferable because imidization proceeds efficiently and the remaining amount of amic acid that causes hydrolysis and the like decreases. Moreover, when heating temperature is 200 degrees C or less, it exists in the tendency which can suppress the performance fall of each material at the time of forming alignment film in to-be-coated bodies, such as a low heat resistant material, for example, polyester resin, polyolefin resin.
The solvent removal temperature and the temperature for increasing the imidization rate may be different from each other or the same temperature. Moreover, when performing the heating for raising a solvent removal and imidation rate, each heating method may differ or may be the same.
 得られる配向膜の厚さは、ポリイミド組成物の塗布量を調節することによって制御されうる。配向膜の厚さは、通常1nm以上、好ましくは10nm以上であり、通常10μm以下、好ましくは5μm以下、より好ましくは2μm以下、特に好ましくは1μm以下である。厚さが1nm以上であることにより、配向膜形成時の膜厚等の均一性が高くなり、配向膜が十分な配向特性を有することができる。また、厚さを10μm以下にすることにより、液晶セルを薄くすることができるため好ましい。 The thickness of the alignment film obtained can be controlled by adjusting the coating amount of the polyimide composition. The thickness of the alignment film is usually 1 nm or more, preferably 10 nm or more, and is usually 10 μm or less, preferably 5 μm or less, more preferably 2 μm or less, and particularly preferably 1 μm or less. When the thickness is 1 nm or more, the uniformity of the film thickness at the time of forming the alignment film is increased, and the alignment film can have sufficient alignment characteristics. Moreover, it is preferable to make the thickness 10 μm or less because the liquid crystal cell can be thinned.
 本発明のポリイミド組成物で作成した配向膜の硬度は、膜厚2μmにおけるビッカース硬度が、通常10以上、好ましくは20以上、より好ましくは30以上である。また、通常100以下、好ましくは80以下、より好ましくは60以下である。ビッカース硬度が特定の範囲であることで、配向膜上に傷が発生し難くなり、配向膜上の傷による異方性色素膜の塗布欠陥を防止することができる傾向にある。また、配向膜のラビング処理等の表面処理を行った際、緩和が遅くなり、表面処理効果が得られる傾向にある。 The hardness of the alignment film prepared from the polyimide composition of the present invention is such that the Vickers hardness at a film thickness of 2 μm is usually 10 or more, preferably 20 or more, more preferably 30 or more. Moreover, it is 100 or less normally, Preferably it is 80 or less, More preferably, it is 60 or less. When the Vickers hardness is in a specific range, scratches hardly occur on the alignment film, and application defects of the anisotropic dye film due to scratches on the alignment film tend to be prevented. Further, when a surface treatment such as a rubbing treatment of the alignment film is performed, the relaxation becomes slow and the surface treatment effect tends to be obtained.
 ビッカース硬度は、微小硬度計HM2000(フィッシャー・インストルメンツ社製)を用いて次のとおり測定できる。
 圧子はビッカース圧子を使用し、5mN/μmの荷重を負荷速度1.67mN/secにて負荷し、5秒保持後、荷重を取り除き、ビッカース硬度(マルテンス硬さ×0.0945)を得る。
The Vickers hardness can be measured as follows using a microhardness meter HM2000 (Fischer Instruments).
As the indenter, a Vickers indenter is used. A load of 5 mN / μm 2 is applied at a load speed of 1.67 mN / sec. After holding for 5 seconds, the load is removed to obtain a Vickers hardness (Martens hardness × 0.0945).
 本発明のポリイミド組成物で作成した配向膜の弾性変形率は、膜厚2μmにおける微小硬度計で求めた値が、通常10%以上であり、好ましくは15%以上、さらに好ましくは18%以上であり、特に好ましくは20%以上である。また通常70%以下であり、好ましくは65%以下である。配向膜の弾性変化率がこの範囲であることで、ラビング等の表面処理を行った際、緩和し難くなり、ラビング等の表面処理を維持でき、配向特性を維持できる傾向にある。またラビングを行う場合、ラビングによる配向膜の削れや傷が少なく、均一な配向膜を得ることができる傾向にある。 The elastic deformation rate of the alignment film prepared with the polyimide composition of the present invention is usually 10% or more, preferably 15% or more, more preferably 18% or more, as determined by a microhardness meter at a film thickness of 2 μm. Yes, particularly preferably 20% or more. Moreover, it is 70% or less normally, Preferably it is 65% or less. When the elastic change rate of the alignment film is within this range, it becomes difficult to relax when surface treatment such as rubbing is performed, and the surface treatment such as rubbing can be maintained, and the orientation characteristics tend to be maintained. When rubbing is performed, the alignment film is less likely to be scraped or scratched by rubbing, and a uniform alignment film tends to be obtained.
 本発明のポリイミド組成物で作成した配向膜の透過率は、400nmより長波長側(可視領域)において、通常60%以上、好ましくは70%以上、より好ましくは80%以上である。透過率の上限は、特になく、高い方が好ましい。
 光線透過率が高い配向膜は、透光性を必要とするデバイス等において好適に用いられる。特に液晶ディスプレイに用いる場合には、バックライトの青色の領域の透過率が高いことが望ましく、具体的には420nmより長波長側で上記の透過率を有することが好ましい。なお、本発明のポリイミド組成物で作成した配向膜の透過率としては、JIS K 7136-1における全光線透過率を用いる。
The transmittance of the alignment film prepared from the polyimide composition of the present invention is usually 60% or more, preferably 70% or more, more preferably 80% or more on the longer wavelength side (visible region) from 400 nm. There is no particular upper limit on the transmittance, and a higher one is preferable.
An alignment film having a high light transmittance is preferably used in a device or the like that requires translucency. In particular, when used in a liquid crystal display, it is desirable that the transmittance of the blue region of the backlight is high, and specifically, it is preferable to have the above transmittance on a longer wavelength side than 420 nm. As the transmittance of the alignment film prepared from the polyimide composition of the present invention, the total light transmittance according to JIS K 7136-1 is used.
 配向膜の配向特性を上げるために、上記で得られた塗布面を、例えばナイロン、レーヨン、コットン等の繊維を含む布を巻きつけたロールで一定方向に擦るラビング処理、直線偏光を照射する処理等の表面処理を行うことができる。これらの処理を行うことで、より配向特性が高い配向膜を得ることができる。
 この中でラビング処理により配向特性を高めることが、後述の異方性色素膜を配向させる上で好ましい。このラビング処理を配向膜に行い、異方性色素を配向させる場合、液晶配向膜に施すよりも強くラビング処理を行う必要がある。そのため、従来の液晶用配向膜ではラビングによる削れが発生し、削れカスによるプロセス汚染、削れによって生じる配向膜の傷に由来する異方性色素膜の欠陥が起こる場合がある。
In order to improve the alignment characteristics of the alignment film, a rubbing process in which the coated surface obtained above is rubbed in a certain direction with a roll wrapped with a cloth containing fibers such as nylon, rayon, and cotton, and a process of irradiating linearly polarized light. Etc. can be performed. By performing these treatments, an alignment film having higher alignment characteristics can be obtained.
Among them, it is preferable to enhance the alignment characteristics by rubbing treatment in order to align the anisotropic dye film described later. When this rubbing treatment is performed on the alignment film and the anisotropic dye is aligned, it is necessary to perform the rubbing treatment more strongly than the liquid crystal alignment film. For this reason, the conventional alignment film for liquid crystal is scraped by rubbing, and there may be a defect in the anisotropic dye film due to process contamination due to scraping and damage to the alignment film caused by scraping.
 表面処理した配向膜へ水溶性二色性色素を塗布する場合、配向膜の接触角は通常70°以下であり、60°以下が好ましく、50°以下がより好ましい。接触角が適当な範囲であることで、色素溶液をはじかず、色素溶液の均一塗布ができる傾向にある。 When the water-soluble dichroic dye is applied to the surface-treated alignment film, the contact angle of the alignment film is usually 70 ° or less, preferably 60 ° or less, and more preferably 50 ° or less. When the contact angle is within an appropriate range, the dye solution tends to be uniformly applied without repelling the dye solution.
1.7 異方性色素膜用組成物
 異方性色素膜用組成物は、組成物として液晶相の状態であることが、溶剤が蒸発した後に形成される異方性色素膜を高配向度に形成する観点から好ましい。なお、本実施の形態において、液晶相の状態であるとは、『液晶の基礎と応用』(松本正一・角田市良著、1991)の1~16ページに記載されているように、液体と結晶の双方の性質を示す液晶状態であり、ネマティック相、コレステリック相、ヌメティック相又はディスコティック相であることをいう。特にネマティック相が好ましい。
 また、異方性色素膜用組成物には、必要に応じ、バインダー樹脂、モノマー、硬化剤、添加剤等が配合されてもよい。異方性色素膜用組成物の態様としては、溶液状であってもよいし、ゲル状であってもよい。異方性色素膜用組成物は、溶剤中に色素等が溶解又は分散している状態であってもよい。
1.7 Anisotropic Dye Film Composition An anisotropic dye film composition is in a liquid crystal phase as a composition, and an anisotropic dye film formed after evaporation of the solvent has a high degree of orientation. It is preferable from a viewpoint of forming. In this embodiment, the state of the liquid crystal phase means that the liquid crystal phase is liquid as described on pages 1 to 16 of “Basics and Applications of Liquid Crystal” (Shoichi Matsumoto, Ryo Tsunoda, 1991). It is a liquid crystal state exhibiting both properties of crystal and crystal, and it means a nematic phase, a cholesteric phase, a numeric phase or a discotic phase. A nematic phase is particularly preferable.
Moreover, binder resin, a monomer, a hardening | curing agent, an additive, etc. may be mix | blended with the composition for anisotropic dye films | membranes as needed. The anisotropic dye film composition may be in the form of a solution or gel. The composition for anisotropic dye film may be in a state in which a dye or the like is dissolved or dispersed in a solvent.
(色素)
 色素については、通常、二色性色素が用いられる。二色性色素としては、リオトロピック液晶を発現する色素、サーモトロピック液晶を発現する色素等が挙げられ、どれを用いてもよい。
 本発明において、色素は、配向制御のため液晶相を有する色素であることが好ましい。ここで、液晶相を有する色素とは、溶剤中でリオトロピック液晶性を示す色素を意味し、異方性色素膜用組成物にした際に、液晶相を発現していても、いなくてもよいが、上記のように液晶相の状態であることが好ましい。
(Dye)
As the dye, a dichroic dye is usually used. Examples of the dichroic dye include a dye expressing a lyotropic liquid crystal, a dye expressing a thermotropic liquid crystal, and the like, and any of them may be used.
In the present invention, the dye is preferably a dye having a liquid crystal phase for alignment control. Here, the dye having a liquid crystal phase means a dye that exhibits lyotropic liquid crystallinity in a solvent, and may or may not exhibit a liquid crystal phase when the composition for an anisotropic dye film is formed. Although it is good, the liquid crystal phase is preferable as described above.
 また、本発明で用いられる色素は、異方性色素膜用組成物が液晶相を発現すること、さらに、後述の湿式成膜法に供するために、水や有機溶媒に可溶であることが好ましく、特に水溶性であることが好ましい。さらに好ましいものは、「有機概念図-基礎と応用」(甲田善生著、三共出版、1984年)で定義される無機性値が有機性値よりも小さな化合物である。又、塩型をとらない遊離の状態で、その分子量が200以上であるのが好ましく、300以上であるのが特に好ましく、又、1500以下であるのが好ましく、1200以下であるのが特に好ましい。なお、水溶性とは、室温で化合物が水に、通常0.1質量%以上、好ましくは1質量%以上溶解することをいう。 In addition, the dye used in the present invention may be soluble in water or an organic solvent so that the anisotropic dye film composition exhibits a liquid crystal phase and is used for a wet film-forming method described later. Particularly preferred is water solubility. Further preferred are compounds having an inorganic value smaller than the organic value as defined in “Organic Conceptual Diagram-Fundamentals and Applications” (Yoshio Koda, Sankyo Publishing, 1984). Further, in a free state that does not take a salt form, the molecular weight is preferably 200 or more, particularly preferably 300 or more, more preferably 1500 or less, and particularly preferably 1200 or less. . The term “water-soluble” means that the compound is usually dissolved in water at 0.1% by mass or more, preferably 1% by mass or more at room temperature.
 本発明の異方性色素膜用組成物において、色素は1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。2種類以上組み合わせる場合、異方性色素膜用組成物が液晶相を発現するためには、少なくとも1種が液晶相を発現する色素であればよい。 In the composition for anisotropic dye film of the present invention, only one kind of dye may be used, or two or more kinds may be used in combination. When two or more types are combined, in order for the anisotropic dye film composition to exhibit a liquid crystal phase, it is sufficient that at least one type is a pigment that exhibits a liquid crystal phase.
 色素として、具体的には、アゾ系色素、スチルベン系色素、シアニン系色素、フタロシアニン系色素、縮合多環系色素(ペリレン系、オキサジン系)等が挙げられる。 Specific examples of the dye include azo dyes, stilbene dyes, cyanine dyes, phthalocyanine dyes, and condensed polycyclic dyes (perylene and oxazine dyes).
 本発明に用いられる色素は特に限定されず、以下に示す公知の色素を用いることができる。
 色素としては、例えば、日本国特開2006-079030号公報、日本国特開2010-168570号公報、日本国特開2007-302807号公報、日本国特開2008-081700号公報、日本国特開平09-230142号公報、日本国特開2007-272211号公報、日本国特開2007-186428号公報、日本国特開2008-69300号公報、日本国特開2009-169341号公報、日本国特開2009-161722号公報、日本国特開2009-173849号公報、日本国特開2010-039154号公報、日本国特開2010-180314号公報、日本国特開2010-266769号公報、日本国特開2010-031268号公報、日本国特開2011-012152号公報、日本国特開2011―016922号公報、日本国特開2010-100059号公報、日本国特開2011-141331号公報、日本国特開2011-190313号公報、日本国特表平08-511109号公報、日本国特表2001-504238号公報、日本国特開2006-48078号公報、日本国特開2006-98927号公報、日本国特開2006-193722号公報、日本国特開2006-206878号公報、日本国特開2005-255846号公報、日本国特開2007-145995号公報、日本国特開2007-126628号公報、日本国特開2008-102417号、日本国特開2012-194357号公報、日本国特開2012-194297号公報、日本国特開2011-034061号公報、日本国特開2009-110902号公報、日本国特開2011-100059号公報、日本国特開2012-194365号公報、日本国特開2011-016920号公報等に記載の色素が挙げられる。
The dye used in the present invention is not particularly limited, and the following known dyes can be used.
Examples of the dye include, for example, Japanese Unexamined Patent Publication No. 2006-0799030, Japanese Unexamined Patent Publication No. 2010-168570, Japanese Unexamined Patent Publication No. 2007-302807, Japanese Unexamined Patent Publication No. 2008-081700, Japanese Unexamined Patent Publication No. 09-230142, Japan 2007-722211, Japan 2007-186428, Japan 2008-69300, Japan 2009-169341, Japan JP 2009-161722, JP 2009-173849, JP 2010-039154, JP 2010-180314, JP 2010-266769, JP No. 2010-031268, Japanese Unexamined Patent Publication No. 2011-012152, Japanese Special No. 2011-016922, Japanese Unexamined Patent Publication No. 2010-100059, Japanese Unexamined Patent Publication No. 2011-141331, Japanese Unexamined Patent Publication No. 2011-190313, Japanese National Specification No. 08-511109, Japanese Special Publication Table 2001-504238, Japanese Unexamined Patent Publication No. 2006-48078, Japanese Unexamined Patent Publication No. 2006-98927, Japanese Unexamined Patent Publication No. 2006-193722, Japanese Unexamined Patent Publication No. 2006-206878, Japanese Special JP 2005-255846, JP 2007-145995, JP 2007-126628, JP 2008-102417, JP 2012-194357, JP 2012-194297, Japan JP2011-034061, JP, Japan JP 2009-110902 and JP Japanese Patent 2011-100059, JP Japanese Patent 2012-194365 JP include dyes described in Japanese Patent 2011-016920 Patent Publication.
 上記の色素は、湿式成膜法により形成される異方性色素膜用の色素として適しており、また波長分散性が低く、偏光度や二色比等も高い。また、前記色素は、本発明のポリイミド組成物から形成された配向膜との適合性に優れるため、高い分子配向度を示す異方性色素膜を得ることができる傾向にある。
 さらに、これらの色素の中でもアゾ系色素を用いることが、本発明のポリイミド組成物から形成された配向膜との適合性に特に優れるため好ましい。アゾ系色素とは、アゾ基を少なくとも1つ以上有する色素を言う。その一分子中のアゾ基の数は、2以上が好ましく、6以下が好ましい。また、4以下が更に好ましい。アゾ基が適当な数であることで、波長分散性が低く、可視領域に広域に吸収を有する色調が得られ、また、製造が容易になる傾向にある。
The above dye is suitable as a dye for an anisotropic dye film formed by a wet film forming method, has low wavelength dispersibility, and has a high degree of polarization and dichroic ratio. Moreover, since the said pigment | dye is excellent in compatibility with the orientation film formed from the polyimide composition of this invention, it exists in the tendency which can obtain the anisotropic pigment | dye film | membrane which shows a high degree of molecular orientation.
Furthermore, it is preferable to use an azo dye among these dyes because it is particularly excellent in compatibility with an alignment film formed from the polyimide composition of the present invention. An azo dye means a dye having at least one azo group. The number of azo groups in one molecule is preferably 2 or more, and preferably 6 or less. Further, 4 or less is more preferable. When the azo group is in an appropriate number, the wavelength dispersion is low, a color tone having absorption in a wide range in the visible region is obtained, and the production tends to be easy.
 アゾ系色素のなかでも、遊離酸の形で以下一般式(A)の構造を有する、ジスアゾ、トリスアゾ及びテトラキスアゾの各色素が、本発明のポリイミド組成物から形成された配向膜との適合性に優れ、高い分子配向度を示す異方性色素膜を得ることができるため好ましい。さらに、一般式(A)の構造を有する色素は、波長分散性が低く、可視領域に広域に吸収を有する色調が得られることから好ましい。 Among the azo dyes, each of the disazo, trisazo and tetrakisazo dyes having the structure of the following general formula (A) in the form of a free acid is compatible with the alignment film formed from the polyimide composition of the present invention. It is preferable because an anisotropic dye film having excellent molecular orientation and a high degree of molecular orientation can be obtained. Furthermore, the dye having the structure of the general formula (A) is preferable because it has a low wavelength dispersibility and a color tone having absorption in a wide range in the visible region is obtained.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記一般式(A)において、Eは任意の有機基を表し、R20及びR21は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基または置換基を有していてもよいフェニル基を表し、p及びqは、それぞれ独立して1以上、5以下の整数であり、且つpとqの和が2以上、6以下を表す。 In the general formula (A), E 1 represents an arbitrary organic group, and R 20 and R 21 each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent. And p and q each independently represent an integer of 1 or more and 5 or less, and the sum of p and q represents 2 or more and 6 or less.
 さらに上記一般式(A)の構造の中でも、遊離酸の形で以下一般式(B)の構造を有する、ジスアゾ、トリスアゾ及びテトラキスアゾの各色素が、本発明のポリイミド組成物から形成された配向膜との適合性に優れ、高い分子配向度を示す異方性色素膜を得ることができるため更に好ましい。また、一般式(B)の構造を有する色素は、波長分散性が低く、可視領域に広域に吸収を有する色調が得られることから特に好ましい。 Further, among the structures of the above general formula (A), each of the disazo, trisazo and tetrakisazo dyes having the structure of the following general formula (B) in the form of a free acid is formed from the polyimide composition of the present invention. An anisotropic dye film having excellent compatibility with the film and showing a high degree of molecular orientation can be obtained, which is more preferable. Moreover, the pigment | dye which has a structure of general formula (B) is especially preferable from the color dispersion which has a low wavelength dispersion property and has absorption in a visible region widely.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記一般式(B)において、Eは任意の有機基を表し、R22及びR23は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、または置換基を有していてもよいフェニル基を表す。 In the general formula (B), E 2 represents an arbitrary organic group, and R 22 and R 23 each independently have a hydrogen atom, an alkyl group which may have a substituent, or a substituent. Represents an optionally substituted phenyl group.
 以下に本発明に用いられる色素(具体的な化合物)を例示するが、これに限定されるわけではない。 Hereinafter, examples of pigments (specific compounds) used in the present invention are exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本実施の形態における色素は、遊離酸の形のまま使用してもよく、酸基の一部が塩型を取っているものであってもよい。また、塩型の色素と遊離酸型の色素が混在していてもよい。また、製造時に塩型で得られた場合はそのまま使用してもよいし、所望の塩型に変換してもよい。塩型の交換方法としては、公知の方法を任意に用いることができ、例えば以下の方法が挙げられる。 The dye in the present embodiment may be used in the form of a free acid, or a part of the acid group may have a salt form. Further, a salt-type dye and a free acid-type dye may be mixed. Moreover, when it is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form. As the salt-type exchange method, a known method can be arbitrarily used, and examples thereof include the following methods.
 1)塩型で得られた色素の水溶液に塩酸等の強酸を添加し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
 2)塩型で得られた色素の水溶液に、所望の対イオンを有する大過剰の中性塩(例えば、塩化リチウム)を添加し、塩析ケーキの形で塩交換を行う方法。
 3)塩型で得られた色素の水溶液を、強酸性陽イオン交換樹脂で処理し、色素を遊離酸の形で酸析せしめた後、所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
 4)予め所望の対イオンを有するアルカリ溶液(例えば水酸化リチウム水溶液)で処理した強酸性陽イオン交換樹脂に、塩型で得られた色素の水溶液を作用させ、塩交換を行う方法。
1) A strong acid such as hydrochloric acid is added to an aqueous solution of a dye obtained in a salt form, the dye is acidified in the form of a free acid, and then the dye is added with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). A method of neutralizing acidic groups and salt exchange.
2) A method of performing salt exchange in the form of a salting-out cake by adding a large excess of a neutral salt (eg, lithium chloride) having a desired counter ion to an aqueous dye solution obtained in a salt form.
3) An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in the form of a free acid, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). ) To neutralize the acidic group of the dye and perform salt exchange.
4) A method of performing salt exchange by allowing an aqueous solution of a dye obtained in a salt form to act on a strongly acidic cation exchange resin previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
 また、本実施の形態における色素が有する酸性基が遊離酸型となるか、塩型となるかは、色素のpKaと色素水溶液のpHに依存する。
 上記の塩型の例としては、Na、Li、K等のアルカリ金属の塩、アルキル基もしくはヒドロキシアルキル基で置換されていてもよいアンモニウムの塩、又は有機アミンの塩が挙げられる。有機アミンの例として、炭素数1~6の低級アルキルアミン、ヒドロキシ置換された炭素数1~6の低級アルキルアミン、カルボキシ置換された炭素数1~6の低級アルキルアミン等が挙げられる。これらの塩型の場合、その種類は1種類に限られず複数種混在していてもよい。
Whether the acidic group of the dye in the present embodiment is a free acid type or a salt type depends on the pKa of the dye and the pH of the aqueous dye solution.
Examples of the salt type include salts of alkali metals such as Na, Li and K, ammonium salts which may be substituted with alkyl groups or hydroxyalkyl groups, and organic amine salts. Examples of the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy-substituted lower alkyl amine having 1 to 6 carbon atoms, and the like. In the case of these salt types, the type is not limited to one type, and a plurality of types may be mixed.
 上記のような色素は単独で使用することができるが、これらの2種以上を併用してもよく、また、配向を低下させない程度に上記例示色素以外の色素を配合して用いることもできる。これにより各種の色相を有する異方性色素膜を製造することができる。 The above dyes can be used alone, but two or more of these may be used in combination, and dyes other than the above exemplified dyes may be blended and used to such an extent that the orientation is not lowered. Thereby, anisotropic dye films having various hues can be produced.
 他の色素を配合する場合の配合用色素の例としては、C.I.Direct Yellow 12、C.I.Direct Yellow 34、C.I.Direct Yellow 86、C.I.Direct Yellow 142、C.I.Direct Yellow 132、C.I.Acid Yellow 25、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 79、C.I.Acid Orange 28、C.I.Direct Red 39、C.I.Direct Red 79、C.I.Direct Red 81、C.I.Direct Red 83、C.I.Direct Red 89、C.I.Acid Red 37、C.I.Direct Violet 9、C.I.Direct Violet 35、C.I.Direct Violet 48、C.I.Direct Violet 57、C.I.Direct Blue 1、C.I.Direct Blue 67、C.I.Direct Blue 83、C.I.Direct Blue 90、C.I.Direct Green 42、C.I.Direct Green 51、C.I.Direct Green 59等が挙げられる。 Examples of blending pigments when blending other pigments include C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 34, C.I. I. Direct Yellow 86, C.I. I. Direct Yellow 142, C.I. I. Direct Yellow 132, C.I. I. Acid Yellow 25, C.I. I. Direct Orange 39, C.I. I. Direct Orange 72, C.I. I. Direct Orange 79, C.I. I. Acid Orange 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red 89, C.I. I. Acid Red 37, C.I. I. Direct Violet 9, C.I. I. Direct Violet 35, C.I. I. Direct Violet 48, C.I. I. Direct Violet 57, C.I. I. Direct Blue 1, C.I. I. Direct Blue 67, C.I. I. Direct Blue 83, C.I. I. Direct Blue 90, C.I. I. Direct Green 42, C.I. I. Direct Green 51, C.I. I. Direct Green 59 etc. are mentioned.
 本発明の異方性色素膜用組成物には、日本国特開2007-199333号公報及び日本国特開2008-101154号公報に記載の方法に従い、アントラキノン化合物を配合してもよい。さらに、日本国特開2006-3864号公報及び日本国特開2006-323377号公報に記載の方法を用いてもよい。
 また、本発明の異方性色素膜用組成物は、日本国特開2007-178993号公報に記載されているように異方性色素膜用組成物の温度5℃、歪印加後0.01秒後の緩和弾性率Gが10分の1に低下するまでの時間を0.1秒以下とすることで、異方性色素膜の欠陥を制御してもよい。具体的には、異方性色素膜用組成物中のアゾ系化合物の酸性基に対して、カチオンを0.9当量以上、0.99当量以下、且つ、強酸性アニオンを0.02当量以上、0.1当量以下を含有させる等を行うことが挙げられる。
An anthraquinone compound may be blended in the anisotropic dye film composition of the present invention in accordance with the methods described in Japanese Patent Application Publication No. 2007-199333 and Japanese Patent Application Publication No. 2008-101154. Furthermore, the methods described in Japanese Unexamined Patent Publication No. 2006-3864 and Japanese Unexamined Patent Publication No. 2006-323377 may be used.
In addition, the composition for anisotropic dye film of the present invention has a temperature of 5 ° C. for an anisotropic dye film composition and 0.01% after strain application as described in Japanese Patent Application Laid-Open No. 2007-179933. The defect of the anisotropic dye film may be controlled by setting the time until the relaxation elastic modulus G after 1 second is reduced to 1/10 to 0.1 second or less. Specifically, the cation is 0.9 equivalent or more and 0.99 equivalent or less and the strongly acidic anion is 0.02 equivalent or more with respect to the acidic group of the azo compound in the composition for anisotropic dye film. , 0.1 equivalent or less is included.
(異方性色素膜用組成物の溶媒)
 溶媒としては、上記の化合物を溶解、または分散させるものであれば特に制限はない。特に、色素が溶媒中でリオトロピック液晶のような会合状態を形成しやすいことから、水、水混和性のある有機溶剤、或いはこれらの混合物が適している。有機溶剤の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、グリセリン等のアルコール類、エチレングリコール、ジエチレングリコール等のグリコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類等の単独又は2種以上の混合溶剤が挙げられる。
 上記の中でも、色素の芳香族環等の有機性の高い部分同士での会合を促進することから、水、メタノール及びエタノールが好ましく、水が特に好ましい。
(Solvent of composition for anisotropic dye film)
The solvent is not particularly limited as long as it dissolves or disperses the above compound. In particular, water, a water-miscible organic solvent, or a mixture thereof is suitable because the dye easily forms an association state such as a lyotropic liquid crystal in the solvent. Specific examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin, glycols such as ethylene glycol and diethylene glycol, and cellosolves such as methyl cellosolve and ethyl cellosolve, or a mixture of two or more. A solvent is mentioned.
Among these, water, methanol, and ethanol are preferable, and water is particularly preferable because it promotes association between highly organic portions such as an aromatic ring of the dye.
(異方性色素膜用組成物中の色素の濃度)
 異方性色素膜用組成物中の色素の濃度としては、成膜条件にもよるが、好ましくは0.01質量%以上、更に好ましくは0.1質量%以上であり、好ましくは50質量%以下、更に好ましくは30質量%以下である。色素濃度が過度に低いと、組成物中での色素の会合が不十分となり、得られる異方性色素膜において十分な偏光度や二色比等の異方性を得ることができず、過度に高いと、粘度が高くなり均一な薄膜塗布が難しくなったり、異方性色素膜用組成物中で色素が析出したりする場合がある。
(Dye concentration in anisotropic dye film composition)
The concentration of the dye in the composition for anisotropic dye film is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and preferably 50% by mass, although it depends on the film forming conditions. Hereinafter, it is more preferably 30% by mass or less. If the dye concentration is excessively low, the association of the dyes in the composition becomes insufficient, and the anisotropic dye film obtained cannot obtain anisotropy such as a sufficient degree of polarization and dichroic ratio. If it is too high, the viscosity becomes so high that it is difficult to apply a uniform thin film, or the dye may precipitate in the composition for anisotropic dye film.
(異方性色素膜用組成物の添加剤)
 異方性色素膜用組成物には、さらに必要に応じて、界面活性剤、レベリング剤、カップリング剤、pH調整剤等の添加剤を配合することができる。添加剤により、濡れ性、塗布性等を向上させ得る場合がある。
 界面活性剤としては、アニオン性、カチオン性及びノニオン性のいずれも使用可能である。その添加濃度は、特に限定されるものではないが、添加した効果を得るために十分であって、かつ分子の配向を阻害しない量として、異方性色素膜用組成物中の濃度として通常、0.01質量%以上が好ましく、0.1質量%以上がさらに好ましい。また、5質量%以下が好ましく、1質量%以下がさらに好ましく、0.5質量%以下が特に好ましい。
(Additive of composition for anisotropic dye film)
The anisotropic dye film composition may further contain additives such as a surfactant, a leveling agent, a coupling agent, and a pH adjuster as necessary. Depending on the additive, wettability, applicability and the like may be improved.
As the surfactant, any of anionic, cationic and nonionic properties can be used. The addition concentration is not particularly limited, but is usually sufficient as the concentration in the anisotropic dye film composition as an amount that is sufficient to obtain the added effect and does not inhibit the orientation of the molecule. 0.01 mass% or more is preferable and 0.1 mass% or more is further more preferable. Moreover, 5 mass% or less is preferable, 1 mass% or less is more preferable, 0.5 mass% or less is especially preferable.
 また、異方性色素膜用組成物中での色素の造塩や凝集等の不安定性を抑制する等の目的のために、公知の酸/アルカリ等のpH調整剤等を、異方性色素膜用組成物の構成成分の混合の前後或いは混合中のいずれかで添加してもよい。なお、上記以外の添加剤として“Additive for Coating”, Edited by J.Bieleman,Willey-VCH(2000)記載の公知の添加剤を用いることもできる。 In addition, for the purpose of suppressing instability such as salt formation and aggregation of the dye in the composition for anisotropic dye film, a known pH adjuster such as acid / alkali is added to the anisotropic dye. It may be added either before or after mixing the components of the film composition or during mixing. As additives other than the above, “Additive for Coating”, Edited by J. Known additives described in Bieleman, Willy-VCH (2000) can also be used.
1.8 異方性色素膜の形成方法
 本発明においては、湿式成膜法により、本発明の配向膜上に異方性色素膜を作製することが好ましい。
 本発明でいう湿式成膜法とは、異方性色素膜用組成物を配向膜上に何らかの手法により適用し、溶剤が乾燥する過程を経て色素等を基材上で配向・積層させる方法である。湿式成膜法では異方性色素膜用組成物が基材上に形成されると、すでに異方性色素膜用組成物中で、または溶剤が乾燥する過程で、色素自体が自己会合することにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域で一定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、いわゆるポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。なお、ここで外場とは、あらかじめ基材上に施された配向処理層の影響、せん断力、磁場等が挙げられ、これらを単独で用いてもよく、複数組み合わせて用いてもよい。
1.8 Method for Forming Anisotropic Dye Film In the present invention, an anisotropic dye film is preferably formed on the alignment film of the present invention by a wet film formation method.
The wet film-forming method referred to in the present invention is a method in which an anisotropic dye film composition is applied to an alignment film by any method, and a dye is aligned and laminated on a substrate through a process of drying a solvent. is there. In the wet film formation method, when the anisotropic dye film composition is formed on the substrate, the dye itself self-associates in the anisotropic dye film composition or in the process of drying the solvent. Causes orientation in a small area. By applying an external field to this state, an anisotropic dye film having desired performance can be obtained by orienting in a certain direction in a macro region. This is different from the method based on the principle that a so-called polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only by a stretching process. Here, the external field includes the influence of the orientation treatment layer previously applied on the base material, shear force, magnetic field, etc., and these may be used alone or in combination.
 また、異方性色素膜用組成物を基材上に形成する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。
 湿式成膜法における異方性色素膜用組成物の基材上への適用方法としては、例えば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。またこのようにして得た異方性色素膜を別の基材に転写する方法もある。これらの中でも、本発明は塗布法を用いることが好ましい。具体的には、上記異方性色素膜用組成物を、配向膜に対して塗布することにより異方性色素膜を形成することができる。
 異方性色素膜の配向方向は、通常、塗布方向と一致するが、塗布方向と異なっていてもよい。なお、本実施の形態において異方性色素膜の配向方向とは、例えば、異方性色素膜であれば、偏光の透過軸又は吸収軸であり、位相差膜であれば、進相軸又は遅相軸のことである。
In addition, the process of forming the composition for an anisotropic dye film on the substrate, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously.
Examples of the method for applying the anisotropic dye film composition on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like. There is also a method of transferring the anisotropic dye film thus obtained to another substrate. Among these, the present invention preferably uses a coating method. Specifically, the anisotropic dye film can be formed by applying the anisotropic dye film composition to the alignment film.
The orientation direction of the anisotropic dye film is usually coincident with the application direction, but may be different from the application direction. In the present embodiment, the orientation direction of the anisotropic dye film is, for example, a transmission axis or absorption axis of polarized light in the case of an anisotropic dye film, and a fast axis or in the case of a retardation film. It is the slow axis.
 そして、本実施の形態における異方性色素膜は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光膜又は位相差膜として機能する他、膜形成プロセスと被塗布体(基板等)や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性膜として機能化が可能である。 The anisotropic dye film in the present embodiment functions as a polarizing film or retardation film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, as well as film forming processes and coatings. By selecting a composition containing an applied body (substrate or the like) or an organic compound (colorant or transparent material), it can be functionalized as various anisotropic films such as refractive anisotropy and conduction anisotropy.
 異方性色素膜用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されないが、例えば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)253頁~277頁に記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)118頁~149頁に記載の方法、被塗布体上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。中でも、スロットダイコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。
 本発明の配向膜の上に、前述の異方性色素膜用組成物として好ましいリオトロピック液晶相を発現する異方性色素膜用組成物を前述の塗布法により塗布する際には、主に、あらかじめ基材上に施された配向膜等の配向処理の影響と塗布時に異方性色素膜用組成物にかかるせん断力によって色素が配向すると考えられる。
The method for applying the anisotropic dye film composition to obtain the anisotropic dye film is not particularly limited. For example, Yuji Harasaki "Coating Engineering" (Asakura Shoten Co., Ltd., issued March 20, 1971) ) Methods described on pages 253 to 277, supervised by Kunihiro Ichimura, “Creation and Application of Molecular Coordination Materials” (CMC Publishing Co., Ltd., published on March 3, 1998), pages 118 to 149, Examples of the method include coating on the coated body by a slot die coating method, a spin coating method, a spray coating method, a bar coating method, a roll coating method, a blade coating method, a curtain coating method, a fountain method, and a dip method. Among these, the slot die coating method is preferable because an anisotropic dye film with high uniformity can be obtained.
On the alignment film of the present invention, when applying the anisotropic dye film composition that expresses a preferable lyotropic liquid crystal phase as the above-mentioned anisotropic dye film composition by the above-described application method, It is considered that the dye is oriented by the influence of the orientation treatment of the orientation film or the like previously applied on the substrate and the shearing force applied to the anisotropic dye film composition at the time of application.
 異方性色素膜用組成物を連続的に塗布する際の、異方性色素膜用組成物の供給方法、供給間隔は特に限定されないが、塗布液の供給操作が繁雑になったり、塗布液の開始時と停止時に塗布膜厚の変動を生じてしまったりする場合があるため、異方性色素膜の膜厚が薄い時には、特に連続的に異方性色素膜用組成物を供給しながら塗布することが望ましい。    The method for supplying the composition for anisotropic dye film and the supply interval when applying the composition for anisotropic dye film continuously are not particularly limited, but the operation of supplying the coating liquid becomes complicated, or the coating liquid When the anisotropic dye film is thin, especially while supplying the composition for the anisotropic dye film continuously, the coating film thickness may vary at the start and stop of It is desirable to apply. *
 異方性色素膜用組成物を塗布する速度としては、通常1mm/秒以上であり、好ましくは5mm/秒以上、更に好ましくは10mm/秒以上である。また、通常1000mm/秒以下であり、好ましくは200mm/秒以下である。である。塗布速度が過度に小さいと、異方性色素膜の異方性が低くなるおそれがある。一方、過度に大きいと、均一に塗布できないおそれがある。
 なお、異方性色素膜用組成物の塗布温度としては、通常0℃以上80℃以下、好ましくは40℃以下である。また、異方性色素膜用組成物の塗布時の湿度は、好ましくは10%RH以上、さらに好ましくは30%RH以上であり、好ましくは80RH%以下である。   
The speed at which the composition for anisotropic dye film is applied is usually 1 mm / second or more, preferably 5 mm / second or more, more preferably 10 mm / second or more. Moreover, it is 1000 mm / sec or less normally, Preferably it is 200 mm / sec or less. It is. If the coating speed is too small, the anisotropy of the anisotropic dye film may be lowered. On the other hand, when too large, there exists a possibility that it cannot apply | coat uniformly.
In addition, as application | coating temperature of the composition for anisotropic dye films, it is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 40 degrees C or less. Moreover, the humidity at the time of application | coating of the composition for anisotropic dye films becomes like this. Preferably it is 10% RH or more, More preferably, it is 30% RH or more, Preferably it is 80 RH% or less.
 異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、さらに好ましくは50nm以上である。一方、好ましくは30μm以下、さらに好ましくは1μm以下である。異方性色素膜の膜厚が適当な範囲にあることで、膜内で分子の均一な配向及び均一な膜厚を得られる傾向にある。 The film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 50 nm or more as a dry film thickness. On the other hand, it is preferably 30 μm or less, more preferably 1 μm or less. When the film thickness of the anisotropic dye film is in an appropriate range, there is a tendency that uniform orientation of molecules and a uniform film thickness can be obtained in the film.
 異方性色素膜には、不溶化処理を行ってもよい。不溶化とは、異方性色素膜中の化合物の溶解性を低下させることにより、前記化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理工程を意味する。具体的には、例えば少ない価数のイオンを、それより大きい価数のイオンに置き換える(例えば、1価のイオンを多価のイオンに置き換える)処理や、イオン基を複数有する有機分子やポリマーに置き換える処理が挙げられる。このような処理方法としては、例えば、細田豊著「理論製造 染色化学」(技報堂、1957年)435~437頁等に記載されている処理工程等の公知の方法を用いることができる。
 好ましくは、得られた異方性色素膜を、日本国特開2007-241267号公報等に記載の方法で処理し、水に対して不溶性の異方性色素膜とすることが、後工程の容易さ、耐久性等の点から好ましい。
 また、異方性色素膜の可視光波長領域における透過率は、好ましくは25%以上である。35%以上が更に好ましく、40%以上が特に好ましい。また、透過率の上限は特になく、用途に応じた上限であればよい。例えば、液晶ディスプレイ用に用いる場合には、50%以下であることが好ましい。 
The anisotropic dye film may be insolubilized. Insolubilization means a treatment step that increases the stability of the film by controlling the elution of the compound from the anisotropic dye film by reducing the solubility of the compound in the anisotropic dye film. Specifically, for example, an ion with a lower valence is replaced with an ion with a higher valence (for example, a monovalent ion is replaced with a polyvalent ion), or an organic molecule or polymer having a plurality of ionic groups. A replacement process is listed. As such a treatment method, for example, known methods such as treatment steps described in Yutaka Hosoda, “Theoretical Manufacturing, Dyeing Chemistry” (Gihodo, 1957), pages 435 to 437 can be used.
Preferably, the obtained anisotropic dye film is treated by a method described in Japanese Patent Application Laid-Open No. 2007-241267, etc. to obtain an anisotropic dye film insoluble in water. It is preferable from the viewpoint of ease and durability.
The transmittance of the anisotropic dye film in the visible light wavelength region is preferably 25% or more. 35% or more is more preferable, and 40% or more is particularly preferable. Moreover, there is no upper limit in particular in the transmittance | permeability, What is necessary is just an upper limit according to a use. For example, when used for a liquid crystal display, it is preferably 50% or less.
 本発明の異方性色素膜を偏光素子として使う場合は、異方性色素膜の配向特性を偏光度で表すことができる。偏光度は、単体透過率が36%以上で通常95%以上であり、98%以上が好ましく、99%以上がさらに好ましい。また、偏光度は高いほど好ましく、最大値は100%である。偏光度が前出の数値以上であることで、下記の光学素子、特に偏光素子として有用である。
 それぞれの透過率は同じ波長のものを用いれば特に制限なく、目的によっていずれの波長を選択してもよいが、異方性色素膜の配向の度合を表す場合は、異方性色素膜の極大吸収波長における値を用いることが好ましい。
  偏光度(P)(%)={(Ty-Tz)/(Ty+Tz)}1/2×100
     Tz:異方性色素膜の吸収軸方向の偏光に対する透過率
     Ty:異方性色素膜の偏光軸方向の偏光に対する透過率
When the anisotropic dye film of the present invention is used as a polarizing element, the orientation characteristic of the anisotropic dye film can be expressed by the degree of polarization. The degree of polarization is such that the single transmittance is 36% or more and is usually 95% or more, preferably 98% or more, and more preferably 99% or more. Moreover, the higher the degree of polarization, the better. The maximum value is 100%. When the degree of polarization is not less than the above numerical value, it is useful as the following optical element, particularly as a polarizing element.
Each transmittance is not particularly limited as long as it has the same wavelength, and any wavelength may be selected depending on the purpose. However, when expressing the degree of orientation of the anisotropic dye film, the maximum of the anisotropic dye film is used. The value at the absorption wavelength is preferably used.
Polarization degree (P) (%) = {(Ty−Tz) / (Ty + Tz)} 1/2 × 100
Tz: transmittance for polarized light in the direction of the absorption axis of the anisotropic dye film Ty: transmittance for polarized light in the direction of the polarization axis of the anisotropic dye film
 本発明のポリイミド組成物に、上記の異方性色素又は異方性色素膜用組成物を直接添加して、異方性色素膜として用いることもできる。この場合の各条件は、上記の異方性色素膜を形成する方法と同様に行うことができる。 The above-mentioned anisotropic dye or the composition for anisotropic dye film can be directly added to the polyimide composition of the present invention to be used as an anisotropic dye film. Each condition in this case can be performed in the same manner as the method for forming the anisotropic dye film.
1.9 光学素子
 本発明の光学素子は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、屈折異方性や伝導異方性等の機能を有する素子である。これらの機能は、膜形成プロセスと被塗布体(基板等)や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。本発明では、偏光素子として用いることが好ましい。
1.9 Optical Element The optical element of the present invention is a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc., utilizing retardation of light absorption, a retardation element, refractive anisotropy, conductive anisotropy, etc. It is an element having a function. These functions can be appropriately adjusted depending on the film forming process and the selection of a composition containing an object to be coated (substrate or the like) or an organic compound (pigment or transparent material). In the present invention, it is preferably used as a polarizing element.
1.10 偏光素子
 本発明の偏光素子は、被塗布体(基板等)上に配向膜と異方性色素膜用組成物を有するものであれば、そのほかにも、如何なる膜(層)を有するものであってもよい。例えば、配向膜の表面に、異方性色素膜用組成物を形成することにより製造することができる。本発明の偏光素子は、配向膜、異方性色素膜以外に必要に応じて、オーバーコート層、粘着層或いは反射防止層、配向膜、位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能等の光学機能をもつ層等、様々な機能をもつ層を塗布や貼合等により積層形成し、積層体として使用してもよい。
 これら光学機能を有する層は、例えば以下の様な方法により形成することができる。
 位相差フィルムとしての機能を有する層は、例えば日本国特開平2-59703号公報、日本国特開平4-230704号公報等に記載の延伸処理を施したり、日本国特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。
1.10 Polarizing Element The polarizing element of the present invention has any other film (layer) as long as it has an alignment film and an anisotropic dye film composition on an object to be coated (substrate or the like). It may be a thing. For example, it can be produced by forming an anisotropic dye film composition on the surface of the alignment film. The polarizing element of the present invention is an overcoat layer, an adhesive layer or an antireflection layer, an alignment film, a function as a retardation film, a function as a brightness enhancement film, if necessary, in addition to the alignment film and the anisotropic dye film. Layers with various functions such as a function as a reflection film, a function as a transflective film, a layer with optical functions such as a diffusion film, etc. are laminated by coating or bonding, and used as a laminate. May be.
These layers having an optical function can be formed, for example, by the following method.
The layer having a function as a retardation film is subjected to stretching treatment described in, for example, Japanese Patent Application Laid-Open No. 2-59703, Japanese Patent Application Laid-Open No. 4-230704, or Japanese Patent Application Laid-Open No. 7-230007. It can be formed by performing the treatment described in the above.
 また、輝度向上フィルムとしての機能を有する層は、例えば日本国特開2002-169025号公報や日本国特開2003-29030号公報に記載されるような方法で微細孔を形成すること、或いは、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。 Further, the layer having a function as a brightness enhancement film may be formed with micropores by a method as described in, for example, Japanese Patent Application Laid-Open No. 2002-169025 or Japanese Patent Application Laid-Open No. 2003-29030, or It can be formed by overlapping two or more cholesteric liquid crystal layers having different central wavelengths of selective reflection.
 反射フィルムまたは半透過反射フィルムとしての機能を有する層は、蒸着やスパッタリング等で得られた金属薄膜を用いて形成することができる。拡散フィルムとしての機能を有する層は、上記の保護層に微粒子を含む樹脂溶液をコーティングすることにより、形成することができる。 The layer having a function as a reflective film or a transflective film can be formed using a metal thin film obtained by vapor deposition, sputtering, or the like. The layer having a function as a diffusion film can be formed by coating the protective layer with a resin solution containing fine particles.
 また、位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物等の液晶性化合物を塗布して配向させることにより形成することができる。 The layer having a function as a retardation film or an optical compensation film can be formed by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound.
 本実施の形態における異方性色素膜をLCDやOLED等の各種の表示素子に異方性色素膜等として用いる場合には、これらの表示素子を構成する電極基板等の表面に直接配向膜及び異方性色素膜を形成したり、配向膜及び異方性色素膜を形成した基板をこれら表示素子の構成部材として用いたりすることができる。
 本発明の光学素子は、ガラス等の高耐熱性被塗布体(基板等)上に直接形成することで、高耐熱性の偏光素子を得ることができるという点から、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイだけでなく液晶プロジェクタや車載用表示パネル等、高耐熱性が求められる用途にも好適に使用することができる。
When the anisotropic dye film in the present embodiment is used as an anisotropic dye film or the like for various display elements such as LCDs and OLEDs, an alignment film directly on the surface of the electrode substrate or the like constituting these display elements An anisotropic dye film can be formed, or a substrate on which an alignment film and an anisotropic dye film are formed can be used as a constituent member of these display elements.
Since the optical element of the present invention can be directly formed on a highly heat-resistant coated body (substrate or the like) such as glass, a highly heat-resistant polarizing element can be obtained, so that a liquid crystal display or an organic electroluminescence display can be obtained. In addition, it can be suitably used for applications that require high heat resistance, such as liquid crystal projectors and in-vehicle display panels.
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り以下の実施例に限定されるものではない。なお、以下の実施例における各種の条件や評価結果の値は、本発明の実施態様における上限または下限の好ましい値としての意味をもつものであり、好ましい範囲は、上記の上限または下限の値と実施例の値または実施例同士の値との組合せで規定される範囲であってもよい。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In addition, the following examples are shown in order to explain the present invention in detail, and the present invention is not limited to the following examples unless it is contrary to the gist thereof. The values of various conditions and evaluation results in the following examples have meanings as preferred values of the upper limit or lower limit in the embodiment of the present invention, and the preferred range is the above upper limit or lower limit value. It may be a range defined by a combination of values of the examples or values between the examples.
<芳香環元素割合>
 原料モノマー中の芳香族テトラカルボン酸無水物とジアミン化合物の割合から算出した。
<Aromatic ring element ratio>
It calculated from the ratio of the aromatic tetracarboxylic anhydride and diamine compound in a raw material monomer.
<イミド化率>
 合成したポリイミド組成物のイミド化率はFT-IR(6100 日本分光社製)を用いて次のとおり測定した。
 先ず、ポリイミド組成物を臭化カリウム結晶に塗布し、70℃で乾燥したサンプルと同様に300℃で乾燥したサンプルを準備した。
 300℃乾燥サンプルの1500cm-1付近の吸収(A)、1380cm-1付近の吸収(B)、70℃乾燥サンプルの1500cm-1付近の吸収(A’)、1380cm-1付近の吸収(B’)を測定し、以下の式から各ポリイミド組成物のイミド化率(%)を算出した。
  イミド化率=(A’/B’)/(A/B)*100
<Imidization rate>
The imidation ratio of the synthesized polyimide composition was measured as follows using FT-IR (6100 manufactured by JASCO Corporation).
First, the polyimide composition was applied to potassium bromide crystals, and a sample dried at 300 ° C. was prepared in the same manner as the sample dried at 70 ° C.
Absorption around 1500 cm −1 of the 300 ° C. dried sample (A), absorption around 1380 cm −1 (B), absorption around 1500 cm −1 of the 70 ° C. dried sample (A ′), absorption around 1380 cm −1 (B ′ ) And the imidation ratio (%) of each polyimide composition was calculated from the following formula.
Imidation rate = (A ′ / B ′) / (A / B) * 100
<可溶性>
 反応液を含むポリイミド組成物が、室温において固形分(不溶ポリイミド樹脂)が析出したものを「×」、完溶したものを「○」と判定した。
<Soluble>
The polyimide composition containing the reaction solution was determined as “x” when the solid content (insoluble polyimide resin) was precipitated at room temperature, and “◯” when completely dissolved.
<ビッカース微小硬度計測定>
 合成したポリイミド組成物1~3の固形分濃度を15重量%に希釈し、塗布液とした。7この塗布液をスピンコーターを用いてガラス基板に塗布し、80℃で10分加熱し、さらに140℃で1時間加熱した。この時の膜厚は2μmであった。
 この膜をビッカース微小硬度計HM2000(フィッシャー・インストルメンツ社製)を用いて、圧子はビッカース圧子を使用し、5mN/μmの荷重を負荷速度1.67mN/secにて負荷し、5秒保持後、荷重を取り除き、ビッカース硬度(マルテンス硬さ×0.0945)、弾性変化率:(総変形量―塑性変形量)/総変形量×100を求めた。
<Vickers microhardness meter measurement>
The solid concentration of the synthesized polyimide compositions 1 to 3 was diluted to 15% by weight to obtain a coating solution. 7 This coating solution was applied to a glass substrate using a spin coater, heated at 80 ° C. for 10 minutes, and further heated at 140 ° C. for 1 hour. The film thickness at this time was 2 μm.
Using this film, a Vickers micro hardness tester HM2000 (manufactured by Fischer Instruments) is used. The indenter is a Vickers indenter. A load of 5 mN / μm 2 is applied at a load speed of 1.67 mN / sec and held for 5 seconds. Thereafter, the load was removed, and Vickers hardness (Martens hardness × 0.0945), elastic change rate: (total deformation−plastic deformation) / total deformation × 100 were obtained.
(ポリイミド組成物の合成)
[実施例1]
 還流窒素ガス導入環、冷却器、トルエンを満たしたディーンスターク凝集器及び攪拌機を備えた4つ口フラスコに1,1’-ビシクロヘキサンー3,3’,4,4’-テトラカルボン酸二無水物6.9g、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン9.4g、N,N-ジメチルアセトアミド58g、トルエン10.7gを加えた。この混合物を撹拌しながら昇温し140-150℃で13時間反応させ、ポリイミド組成物1を得た。
 得られたポリイミド組成物1について、芳香環元素割合、イミド化率及び可溶性を上記方法で求めた。その結果を表1に示す。
(Synthesis of polyimide composition)
[Example 1]
1,1'-bicyclohexane-3,3 ', 4,4'-tetracarboxylic dianhydride was added to a four-necked flask equipped with a refluxing nitrogen gas introduction ring, a condenser, a Dean-Stark agglomerator filled with toluene, and a stirrer. 6.9 g of the product, 9.4 g of 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 58 g of N, N-dimethylacetamide, and 10.7 g of toluene were added. The mixture was heated with stirring and reacted at 140-150 ° C. for 13 hours to obtain a polyimide composition 1.
About the obtained polyimide composition 1, the aromatic ring element ratio, the imidation ratio, and the solubility were calculated | required by the said method. The results are shown in Table 1.
[実施例2]
 実施例1の2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパンを、4,4’-ジアミノジフェニルエーテル4.6gに変更した以外は、実施例1と同様の方法で合成し、ポリイミド組成物2を得た。得られたポリイミド組成物2について、実施例1と同様の方法で評価を行った。その結果を表1に示す。
[Example 2]
Synthesis was performed in the same manner as in Example 1 except that 2,2-bis (4- (4-aminophenoxy) phenyl) propane of Example 1 was changed to 4.6 g of 4,4′-diaminodiphenyl ether. A polyimide composition 2 was obtained. About the obtained polyimide composition 2, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
[実施例3]
 実施例1の2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパンを、4,4’-ジアミノ-2,2’-ジメチルビフェニル4.8gに変更した以外は、実施例1と同様の方法で合成し、ポリイミド組成物3を得た。得られたポリイミド組成物3について、実施例1と同様の方法で評価を行った。その結果を表1に示す。
[Example 3]
Example 2, except that 2,2-bis (4- (4-aminophenoxy) phenyl) propane in Example 1 was changed to 4.8 g of 4,4′-diamino-2,2′-dimethylbiphenyl. Synthesis was performed in the same manner to obtain a polyimide composition 3. About the obtained polyimide composition 3, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
[実施例4]
 還流窒素ガス導入管、冷却器、トルエンを満たしたディーンスターク凝集器及び撹拌機を備えた4つ口フラスコに、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物13.3g、ピロメリット酸二無水物1.5g、3,4-ジアミノジフェニルエーテル14.0g、N-メチル-2-ピロリドン86g及びトルエン17.3gを加えた。この混合物を撹拌しながら昇温し、160~170℃で13時間反応させ、ポリイミド組成物4を得た。得られたポリイミド組成物4について、実施例1と同様の方法で評価を行った。その結果を表1に示す。
[Example 4]
In a four-necked flask equipped with a reflux nitrogen gas inlet tube, a condenser, a Dean-Stark agglomerator filled with toluene, and a stirrer, 13.3 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride, pyromerit 1.5 g of acid dianhydride, 14.0 g of 3,4-diaminodiphenyl ether, 86 g of N-methyl-2-pyrrolidone and 17.3 g of toluene were added. The mixture was heated with stirring and reacted at 160 to 170 ° C. for 13 hours to obtain a polyimide composition 4. About the obtained polyimide composition 4, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
[実施例5]
 実施例4の1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を3,3’,4,4’-ビスシクロヘキサンテトラカルボン酸二無水物15.714gに、3,4-ジアミノジフェニルエーテルをビス(4-(4-アミノフェノキシ)フェニル)スルホン25.949gに、ピロメリット酸二無水物を1.243gに、N-メチル-2-ピロリドンを82gに、トルエンを16.3gにそれぞれ変更した以外は実施例4と同様の方法で合成し、ポリイミド組成物5を得た。得られたポリイミド組成物5について、実施例1と同様の方法で評価を行った。その結果を表1に示す。
[Example 5]
To 15.714 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4, 3,714 ', 4,4'-biscyclohexanetetracarboxylic dianhydride was added 3,4-diaminodiphenyl ether. 25.949 g of bis (4- (4-aminophenoxy) phenyl) sulfone, 1.243 g of pyromellitic dianhydride, 82 g of N-methyl-2-pyrrolidone, and 16.3 g of toluene were changed. The polyimide composition 5 was obtained by synthesizing in the same manner as in Example 4. The obtained polyimide composition 5 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例6]
 実施例4の1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を1,2,3,4-シクロペンタンテトラカルボン酸二無水物9.982gに、ピロメリット酸無水物を0gに、3,4-ジアミノジフェニルエーテルを10.012gに、N-メチル-2-ピロリドンを60gに、トルエンを12gにそれぞれ変更した以外は、実施例4と同様の方法で合成し、ポリイミド組成物6を得た。得られたポリイミド組成物について、実施例1と同様の方法で評価を行った。その結果を表1に示す。
[Example 6]
1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4 to 9.982 g of 1,2,3,4-cyclopentanetetracarboxylic dianhydride, pyromellitic anhydride to 0 g, A polyimide composition 6 was obtained by synthesizing in the same manner as in Example 4, except that the amount of 3,4-diaminodiphenyl ether was changed to 10.12 g, N-methyl-2-pyrrolidone was changed to 60 g, and toluene was changed to 12 g. It was. The obtained polyimide composition was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[実施例7]
 実施例4の1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸二無水物12.63gに、ピロメリット酸無水物を1.0gに、3,4-ジアミノジフェニルエーテルを9.66gに、N-メチル-2-ピロリドンを70.10gに、トルエンを10.5gにそれぞれ変更した以外は、実施例4と同様の方法で合成し、ポリイミド組成物7を得た。得られたポリイミド組成物7について、実施例1と同様の方法で評価を行った。その結果を表1に示す。
[Example 7]
The 1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4 was added to 12.63 g of 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic dianhydride. Example 4 except that melitric anhydride was changed to 1.0 g, 3,4-diaminodiphenyl ether was changed to 9.66 g, N-methyl-2-pyrrolidone was changed to 70.10 g, and toluene was changed to 10.5 g. Was synthesized in the same manner as above to obtain a polyimide composition 7. About the obtained polyimide composition 7, it evaluated by the method similar to Example 1. FIG. The results are shown in Table 1.
[比較例1]
 実施例2の1,1’-ビシクロヘキサンー3,3’,4,4’-テトラカルボン酸二無水物を3,3’,4,4’-ビフェニルテトラカルボン酸二無水物6.7gに変更した以外は実施例2と同様の方法で合成し、ポリイミド組成物8を得た。得られたポリイミド組成物8について、実施例1と同様の方法で測定を行った。ポリイミド組成物8は可溶しなかった。また、可溶しなかったためにイミド化率を測定することができなかった。その結果を表1に示す。
[Comparative Example 1]
The 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic dianhydride of Example 2 was converted to 6.7 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. Except having changed, it synthesize | combined by the method similar to Example 2, and the polyimide composition 8 was obtained. About the obtained polyimide composition 8, it measured by the method similar to Example 1. FIG. The polyimide composition 8 was not soluble. Moreover, since it was not soluble, the imidation ratio could not be measured. The results are shown in Table 1.
[比較例2] 
 実施例4の1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を1,2,3,4-シクロブタンテトラカルボン酸二無水物4.2gに、ピロメリット酸二無水物を0gに、3,4-ジアミノジフェニルエーテルを4,4-ジアミノ-2,2-ジメチルビフェニル4.8gに、N-メチル-2-ピロリドンを27gに、トルエンを5.4gに変更した以外は実施例4と同様の方法で合成し、ポリイミド組成物9を得た。得られたポリイミド組成物9について、実施例1と同様の方法で測定を行った。ポリイミド組成物9は可溶しなかった。また、可溶しなかったためにイミド化率を測定することができなかった。その結果を表1に示す。
[Comparative Example 2]
The 1,2,4,5-cyclohexanetetracarboxylic dianhydride of Example 4 was changed to 4.2 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and pyromellitic dianhydride was changed to 0 g. Same as Example 4 except that 3,4-diaminodiphenyl ether was changed to 4.8 g of 4,4-diamino-2,2-dimethylbiphenyl, 27 g of N-methyl-2-pyrrolidone, and 5.4 g of toluene. Thus, a polyimide composition 9 was obtained. About the obtained polyimide composition 9, it measured by the method similar to Example 1. FIG. The polyimide composition 9 was not soluble. Moreover, since it was not soluble, the imidation ratio could not be measured. The results are shown in Table 1.
 また、実施例1~3で得られた組成物1~3については、上記<ビッカース微小硬度計測定>の方法に従って、ビッカース硬度と弾性率を測定した。結果を表2に示す。 In addition, with respect to the compositions 1 to 3 obtained in Examples 1 to 3, the Vickers hardness and the elastic modulus were measured according to the method described above <Measurement of Vickers microhardness meter>. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
(配向膜の作製)
[実施例8~14]
 実施例2~7で合成したポリイミド組成物2~7を用いて、次の通り、配向膜1~7を作製した。さらに、各配向膜上にラビング処理を行い、ラビング後の膜の傷及び削れの有無を肉眼で確認し、削れのないものを○、削れのあるのものを×とした。
 なお、比較例1及び2の組成物8及び9は、組成物が可溶せずポリイミドが析出したため、塗布ができず、配向膜を得ることができなかった。
(Preparation of alignment film)
[Examples 8 to 14]
Using polyimide compositions 2 to 7 synthesized in Examples 2 to 7, alignment films 1 to 7 were produced as follows. Further, rubbing treatment was performed on each alignment film, and the presence or absence of scratches or scraping on the film after rubbing was confirmed with the naked eye.
The compositions 8 and 9 of Comparative Examples 1 and 2 were not soluble and the polyimide was deposited, so that the coating could not be performed and an alignment film could not be obtained.
(1)配向膜の作成
 ポリイミド組成物2及び3は、塗布溶媒(N,N-ジメチルアセトアミド)で4質量%に希釈し、塗布液とした。ポリイミド組成物4~7は、塗布溶媒(N-メチル-2-ピロリドン/アニソール=1/1)を用い、ポリイミド組成物4及び5は4質量%に、ポリイミド組成物6は10質量%に、ポリイミド組成物7は3質量%にそれぞれ希釈し、塗布液とした。これら塗布液を、スピンコーターを用いてガラス基板にそれぞれ塗布した。その後、80℃で10分加熱後、140℃で1時間加熱し、配向膜1~7を得た。
(1) Preparation of alignment film Polyimide compositions 2 and 3 were diluted to 4% by mass with a coating solvent (N, N-dimethylacetamide) to obtain a coating solution. Polyimide compositions 4 to 7 use a coating solvent (N-methyl-2-pyrrolidone / anisole = 1/1), polyimide compositions 4 and 5 are 4% by mass, polyimide composition 6 is 10% by mass, The polyimide composition 7 was diluted to 3% by mass to prepare a coating solution. These coating solutions were respectively applied to glass substrates using a spin coater. Thereafter, the film was heated at 80 ° C. for 10 minutes and then heated at 140 ° C. for 1 hour to obtain alignment films 1 to 7.
(2)ラビング処理
 作成した配向膜1~7にレーヨン布を用いて、一方方向にラビングを施した。
 ラビング処理を行った配向膜1~7上に、それぞれ異方性色素膜用組成物の塗布を行い、得られた異方性色素膜の光学特性の評価を行った。
(2) Rubbing treatment The prepared alignment films 1 to 7 were rubbed in one direction using a rayon cloth.
On the alignment films 1 to 7 subjected to the rubbing treatment, a composition for an anisotropic dye film was applied, and optical characteristics of the obtained anisotropic dye film were evaluated.
(3)異方性色素膜用組成物の塗布
 水79質量部に、式(I)で表されるアゾ化合物20質量部と、式(II)で表される化合物1質量部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより色素水溶液(異方性色素膜用組成物)を得た。
(3) Application of composition for anisotropic dye film 20 parts by mass of the azo compound represented by formula (I) and 1 part by mass of the compound represented by formula (II) are added to 79 parts by mass of water and stirred. After being dissolved, the solution was filtered to remove insoluble matter, thereby obtaining an aqueous dye solution (anisotropic dye film composition).
 <アプリケーター塗布>
 上記の方法で作製されたポリイミド配向膜に、上記の異方性色素膜用組成物をギャップ4μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜を得た。
<Applicator application>
The above-mentioned anisotropic dye film composition is applied to the polyimide alignment film produced by the above method with an applicator (manufactured by Horita Seisakusho Co., Ltd.) with a gap of 4 μm, and then naturally dried to obtain an anisotropic dye film. It was.
<ダイコート塗布>
 上記の方法で作製されたポリイミド配向膜に、上記の異方性色素膜用組成物をスロット幅50μmのダイコーターを用いて塗布したで塗布した後、自然乾燥することにより異方性色素膜を得た。
<Die coat application>
The anisotropic dye film is formed by applying the above anisotropic dye film composition to the polyimide alignment film produced by the above method by applying it using a die coater having a slot width of 50 μm, and then naturally drying. Obtained.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(4)光学性能
 光学性能は、異方性色素膜の単体透過率と偏光度で評価した。単体透過率と偏光度は、グラムトムソン偏光子を備える分光光度計(大塚電子(株)製、製品名「RETS-100」)を用い求めた。異方性色素膜に直線偏光の測定光を入射して、透過率を測定した後、次式により計算し、異方性色素膜の極大吸収波長である620nmにおける偏光度を算出した。
 偏光度(P)(%)={(Ty-Tz)/(Ty+Tz)}1/2×100
   Tz:異方性色素膜の吸収軸方向の偏光に対する透過率
   Ty:異方性色素膜の偏光軸方向の偏光に対する透過率
 単体透過率及び偏光度から以下のように評価を行った。
A:単体透過率40%以上で偏光度99.5%以上
B:単体透過率が36%以上で偏光度が99%以上
C:単体透過率が36%以上で偏光度が95%以上、99%未満
D:単体透過率が36%以上で偏光度が95%未満
(4) Optical performance The optical performance was evaluated by the single transmittance and the degree of polarization of the anisotropic dye film. The single transmittance and the degree of polarization were determined using a spectrophotometer equipped with a Gram-Thomson polarizer (product name “RETS-100” manufactured by Otsuka Electronics Co., Ltd.). The linearly polarized measuring light was incident on the anisotropic dye film and the transmittance was measured. Then, the degree of polarization at 620 nm, which is the maximum absorption wavelength of the anisotropic dye film, was calculated by the following equation.
Polarization degree (P) (%) = {(Ty−Tz) / (Ty + Tz)} 1/2 × 100
Tz: Transmittance with respect to polarized light in the direction of the absorption axis of the anisotropic dye film Ty: Transmittance with respect to polarized light in the direction of the polarization axis of the anisotropic dye film Evaluation was performed as follows from the single transmittance and the degree of polarization.
A: Polarization degree of 99.5% or more when the single transmittance is 40% or more B: Single transmission is 36% or more and the polarization degree is 99% or more C: Single transmittance is 36% or more and the polarization degree is 95% or more, 99 Less than% D: Single transmittance is 36% or more and polarization degree is less than 95%
 上記配向膜の評価を表3及び4に示す。 The evaluation of the alignment film is shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 実施例1~7(ポリイミド組成物1~7)はすべて可溶であった。
 また、組成物2~7を用いて得られた配向膜1~7は、ラビングによる傷や削れが発生しておらず、耐表面処理性に優れることが示された。
 さらに配向膜1~7は異方性色素膜の光学特性も優れることから、本発明の配向膜の配向特性が高いことがわかる。
Examples 1 to 7 (polyimide compositions 1 to 7) were all soluble.
In addition, the alignment films 1 to 7 obtained by using the compositions 2 to 7 were free from scratches or scraping due to rubbing, and were shown to have excellent surface treatment resistance.
Further, since the alignment films 1 to 7 are excellent in the optical characteristics of the anisotropic dye film, it can be seen that the alignment films of the present invention have high alignment characteristics.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2013年10月7日出願の日本特許出願(特願2013-210392)及び2014年3月26日出願の日本特許出願(特願2014-064536)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on October 7, 2013 (Japanese Patent Application No. 2013-210392) and a Japanese patent application filed on March 26, 2014 (Japanese Patent Application No. 2014-064536). Incorporated by reference.
 本発明は産業上の任意の分野に使用可能であるが、例えば、高配特性の配向膜が必要とされる分野において好適に使用することができる、具体的は、例えば、光学分野、ディスプレイ等のおける光学素子が必要とされる分野において、特に好適に使用することができる。 The present invention can be used in any industrial field. For example, the present invention can be suitably used in a field where an alignment film having a high distribution characteristic is required. Specifically, for example, in the optical field, a display, etc. It can be particularly suitably used in a field where an optical element is required.

Claims (5)

  1.  異方性色素膜用配向膜に用いられるポリイミド組成物であって、
     ポリイミド組成物は、ポリイミド及び溶媒を含み、
     前記ポリイミドが一般式(1)で表されることを特徴とするポリイミド組成物。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)において、Xは、炭素数5以上の4価の脂肪族炭化水素基を表し、
     Rは、芳香環を有する2価の有機基を表し、
     nは1以上の整数を表し、nが2以上の場合は、一般式(1)で表される構造1分子中に複数存在するR及びXは、それぞれ同一であっても異なっていてもよい。)
    A polyimide composition used for an alignment film for anisotropic dye film,
    The polyimide composition includes a polyimide and a solvent,
    The said polyimide is represented by General formula (1), The polyimide composition characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), X represents a tetravalent aliphatic hydrocarbon group having 5 or more carbon atoms,
    R 1 represents a divalent organic group having an aromatic ring,
    n represents an integer of 1 or more, and when n is 2 or more, a plurality of R 1 and X present in one molecule of the structure represented by the general formula (1) may be the same or different. Good. )
  2.  前記ポリイミドの主鎖を形成する元素数のうち、芳香環を形成する元素数の割合が5%以上、75%以下である、請求項1に記載のポリイミド組成物。 2. The polyimide composition according to claim 1, wherein a ratio of the number of elements forming an aromatic ring to the number of elements forming the main chain of the polyimide is 5% or more and 75% or less.
  3.  前記ポリイミドのイミド化率が90%以上である、請求項1又は2に記載のポリイミド組成物。 The polyimide composition according to claim 1 or 2, wherein the imidization ratio of the polyimide is 90% or more.
  4.  請求項1~3の何れか1項に記載のポリイミド組成物を用いて形成されたものである、異方性色素膜用配向膜。 An alignment film for an anisotropic dye film, which is formed using the polyimide composition according to any one of claims 1 to 3.
  5.  請求項4に記載の異方性色素膜用配向膜と、前記異方性色素膜用配向膜上に積層される異方性色素膜とを有する、光学素子。 An optical element comprising the alignment film for anisotropic dye film according to claim 4 and an anisotropic dye film laminated on the alignment film for anisotropic dye film.
PCT/JP2014/076734 2013-10-07 2014-10-06 Polyimide composition, and alignment film and optical element formed using polyimide composition WO2015053237A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167008988A KR20160068764A (en) 2013-10-07 2014-10-06 Polyimide composition, and alignment film and optical element formed using polyimide composition
CN201480055445.8A CN105612441A (en) 2013-10-07 2014-10-06 Polyimide composition, and alignment film and optical element formed using polyimide composition
JP2015541576A JP6428634B2 (en) 2013-10-07 2014-10-06 Polyimide composition, alignment film formed using said polyimide composition, and optical element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013210392 2013-10-07
JP2013-210392 2013-10-07
JP2014064536 2014-03-26
JP2014-064536 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015053237A1 true WO2015053237A1 (en) 2015-04-16

Family

ID=52813053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076734 WO2015053237A1 (en) 2013-10-07 2014-10-06 Polyimide composition, and alignment film and optical element formed using polyimide composition

Country Status (4)

Country Link
JP (1) JP6428634B2 (en)
KR (1) KR20160068764A (en)
CN (1) CN105612441A (en)
WO (1) WO2015053237A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004856A1 (en) * 2020-07-02 2022-01-06 住友化学株式会社 Optical film
JP2022511459A (en) * 2018-11-30 2022-01-31 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Graphite sheet manufactured from polyimide film with excellent orientation and its manufacturing method
JP2023043032A (en) * 2021-09-15 2023-03-28 シャープディスプレイテクノロジー株式会社 Polarization plate and display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892117A (en) * 2016-06-30 2016-08-24 深圳市华星光电技术有限公司 Detection method of PI cyclization rate
KR102161673B1 (en) 2017-09-07 2020-10-05 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same
KR102162501B1 (en) 2017-09-08 2020-10-06 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same
JP2019049661A (en) * 2017-09-11 2019-03-28 シャープ株式会社 Alignment film, liquid crystal panel and method of manufacturing liquid crystal panel
CN114628675B (en) * 2021-11-08 2023-08-15 万向一二三股份公司 Ternary lithium battery anode material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159713A (en) * 1999-09-21 2001-06-12 Japan Chemical Innovation Institute New micropattern polarizing device
JP2002357720A (en) * 2001-03-15 2002-12-13 Nippon Kayaku Co Ltd Method for manufacturing new micro pattern polarizing element and three dimensional liquid crystal display device using the same
JP2004170718A (en) * 2002-11-20 2004-06-17 Hitachi Cable Ltd Liquid crystal display element
JP2008224804A (en) * 2007-03-09 2008-09-25 Sumitomo Bakelite Co Ltd Polarizing sheet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2616497B2 (en) 1995-10-06 1997-06-04 日立化成工業株式会社 Polyimide manufacturing method
JP2000305088A (en) 1999-04-22 2000-11-02 Ube Ind Ltd Liquid crystal aligning agent and liquid crystal alignment film
JP4383194B2 (en) * 2004-02-03 2009-12-16 古河電気工業株式会社 Dielectric multilayer filter having predetermined wavelength optical characteristics, design method thereof, design program thereof, and optical add / drop system using the dielectric multilayer filter
JP2007161930A (en) 2005-12-15 2007-06-28 Fujifilm Corp Optical film and image display
JP2008276074A (en) * 2007-05-02 2008-11-13 Hitachi Maxell Ltd Filter for optical communication, and module for optical communication using the same
JP2009217011A (en) 2008-03-11 2009-09-24 Osaka Prefecture Univ Method of manufacturing polarizing plate
JP2010072521A (en) 2008-09-22 2010-04-02 Hitachi Displays Ltd Polarizer, and liquid crystal display device
EP2397873A4 (en) * 2009-02-13 2012-09-05 Panasonic Corp Infrared optical filter and method for producing same
JP5510080B2 (en) 2010-06-02 2014-06-04 Jsr株式会社 Coloring composition for color filter, color filter, and color liquid crystal display element
CN102559205B (en) * 2010-12-29 2014-07-30 第一毛织株式会社 Liquid crystal alignment agent, liquid crystal alignment film manufactured using the same, and liquid crystal display device
JP2012146905A (en) 2011-01-14 2012-08-02 Kaneka Corp Utilization of soluble polyimide resin film
JP5845588B2 (en) * 2011-02-09 2016-01-20 セイコーエプソン株式会社 Wavelength variable interference filter, optical module, optical analyzer, and wavelength variable interference filter manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159713A (en) * 1999-09-21 2001-06-12 Japan Chemical Innovation Institute New micropattern polarizing device
JP2002357720A (en) * 2001-03-15 2002-12-13 Nippon Kayaku Co Ltd Method for manufacturing new micro pattern polarizing element and three dimensional liquid crystal display device using the same
JP2004170718A (en) * 2002-11-20 2004-06-17 Hitachi Cable Ltd Liquid crystal display element
JP2008224804A (en) * 2007-03-09 2008-09-25 Sumitomo Bakelite Co Ltd Polarizing sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511459A (en) * 2018-11-30 2022-01-31 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Graphite sheet manufactured from polyimide film with excellent orientation and its manufacturing method
JP7189347B2 (en) 2018-11-30 2022-12-13 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Graphite sheet manufactured from highly oriented polyimide film and manufacturing method thereof
WO2022004856A1 (en) * 2020-07-02 2022-01-06 住友化学株式会社 Optical film
JP2023043032A (en) * 2021-09-15 2023-03-28 シャープディスプレイテクノロジー株式会社 Polarization plate and display device

Also Published As

Publication number Publication date
JPWO2015053237A1 (en) 2017-03-09
JP6428634B2 (en) 2018-11-28
CN105612441A (en) 2016-05-25
KR20160068764A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6428634B2 (en) Polyimide composition, alignment film formed using said polyimide composition, and optical element
TWI542610B (en) Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide film prepared from these solutions, and use of polyimide film
TWI407211B (en) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
TWI513800B (en) Photoalignment composition
JP5282573B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
TWI422616B (en) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
TWI549991B (en) Polyamic acid, polymide, polyamic acid solution, and use of polymide
TWI471656B (en) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
JP5751171B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP5660160B2 (en) Diamine compound
TWI515228B (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, polylysine and polyimine
TWI507447B (en) A liquid crystal alignment agent, a liquid crystal alignment film and a liquid crystal display device using the same
JP2012012493A (en) Liquid crystal aligning agent and liquid crystal display element using the same
CN110662789B (en) Composition, polymer, liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, phase difference plate, polarizing plate and liquid crystal element
JPWO2003100510A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5434927B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
TW201105737A (en) Polyester composition for forming thermoset film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541576

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167008988

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852897

Country of ref document: EP

Kind code of ref document: A1