WO2015053047A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2015053047A1
WO2015053047A1 PCT/JP2014/074394 JP2014074394W WO2015053047A1 WO 2015053047 A1 WO2015053047 A1 WO 2015053047A1 JP 2014074394 W JP2014074394 W JP 2014074394W WO 2015053047 A1 WO2015053047 A1 WO 2015053047A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
substrate
row
pixel
column
Prior art date
Application number
PCT/JP2014/074394
Other languages
English (en)
French (fr)
Inventor
俊介 鈴木
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2015053047A1 publication Critical patent/WO2015053047A1/ja
Priority to US15/085,407 priority Critical patent/US9942491B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes

Definitions

  • the present invention relates to an imaging apparatus having two substrates.
  • This application claims priority based on Japanese Patent Application No. 2013-211096 filed in Japan on October 8, 2013, the contents of which are incorporated herein by reference.
  • An imaging apparatus having two substrates is known (for example, see Patent Document 1).
  • the two substrates are bonded together with their surfaces facing each other.
  • a plurality of pixels that output pixel signals corresponding to incident light are arranged on one of the two substrates.
  • a signal transfer unit that transfers pixel signals output from a plurality of pixels within the other substrate and a signal processing circuit that processes the transferred pixel signals are arranged. .
  • FIG. 5 shows an example of the configuration of an imaging apparatus having two substrates.
  • the imaging device illustrated in FIG. 5 includes a first substrate 40, a second substrate 50, and a connection unit that connects the two substrates.
  • the pixel portion 400 and connection nodes 600 and 601 are arranged on the first substrate 40.
  • the pixel portion 400 includes a plurality of pixels arranged in a matrix that outputs pixel signals corresponding to incident light.
  • the plurality of pixels output a pixel signal for each row of the array of the plurality of pixels. That is, pixels in the same row output pixel signals at the same time, and pixels in different rows output pixel signals at different timings.
  • the operation of the plurality of pixels is controlled by a pixel control signal supplied from the second substrate 50.
  • the pixel control signal is a common signal for each row, the state of the pixel control signal supplied to the pixels in the same row changes at the same timing, and the state of the pixel control signal supplied to the pixels in different rows is Change at different times.
  • the pixel control signal includes a row selection signal that sequentially selects rows in which pixels that output pixel signals are arranged. Pixels in the same row selected by the row selection signal simultaneously output pixel signals.
  • a plurality of connection nodes 600 are arranged in the pixel unit 400.
  • One connection node 600 is arranged at each pixel position. That is, the plurality of connection nodes 600 are arranged in a matrix.
  • the number of rows in the array of the plurality of connection nodes 600 is equal to the number of rows in the array of the plurality of pixels.
  • the number of columns in the array of the plurality of connection nodes 600 is equal to the number of columns in the array of the plurality of pixels.
  • the number of connection nodes 600 is equal to the number of pixels.
  • One connection node 600 may be shared among a plurality of pixels.
  • a plurality of connection nodes 601 are arranged outside the pixel portion 400. One connection node 601 is arranged for each row of an array of a plurality of pixels.
  • connection nodes 601 is equal to the number of rows in the arrangement of a plurality of pixels.
  • One connection node 601 may be arranged for each of a plurality of rows of a plurality of pixels.
  • the connection nodes 600 and 601 constitute a connection unit that electrically connects the first substrate 40 and the second substrate 50.
  • the second substrate 50 includes a signal transfer unit 500, a buffer and driver 501, a column scanning circuit 502, an AD conversion circuit 503, a functional circuit 504, a row signal generation circuit 505, and a column signal generation circuit 506.
  • a control circuit 507, a register and counter 508, and connection nodes 600 and 601 are arranged.
  • a plurality of connection nodes 600 are arranged in the signal transfer unit 500.
  • the signal transfer unit 500 transfers the pixel signal transferred from the first substrate 40 to the second substrate 50 via the connection node 600 to the buffer and driver 501.
  • the buffer and driver 501 has a column buffer and a line driver for receiving a pixel signal.
  • the column scanning circuit 502 sequentially outputs pixel signals output from the pixels for each row by scanning the columns of the plurality of pixels in accordance with a column scanning signal for scanning the columns of the plurality of pixels.
  • the AD conversion circuit 503 AD converts the analog pixel signal output from the column scanning circuit 502 and outputs a digital pixel signal.
  • the functional circuit 504 performs various image processing on the pixel signal output from the AD conversion circuit 503 as necessary.
  • the row signal generation circuit 505 generates a pixel control signal including a row selection signal.
  • the pixel control signal generated by the row signal generation circuit 505 is transferred from the second substrate 50 to the first substrate 40 via the connection node 601 and supplied to the pixels.
  • the column signal generation circuit 506 generates a column scanning signal.
  • the control circuit 507 generates control signals that control the buffer and driver 501, the AD conversion circuit 503, and the functional circuit 504.
  • the register and counter 508 includes a register and a counter necessary for the row signal generation circuit 505, the column signal generation circuit 506, and the control circuit 507 to generate each signal (pixel control signal, column scanning signal, and control signal). And have.
  • the register stores a control value that controls the timing at which the state (High, Low) of each signal changes.
  • the counter counts in synchronization with a predetermined clock and outputs a count value.
  • the control value and the count value are output to the row signal generation circuit 505, the column signal generation circuit 506, and the control circuit 507.
  • the row signal generation circuit 505, the column signal generation circuit 506, and the control circuit 507 change the state of each signal at the timing when the count value output from the counter matches the control value output from the register.
  • FIG. 6 shows how signals are transferred between two substrates.
  • the pixel control signal S1 generated by the row signal generation circuit 505 is transferred from the second substrate 50 to the first substrate 40 (not shown in FIG. 6) via the connection node 601 in FIG. 400 is supplied to each pixel. Further, the pixel signal S2 output from each pixel of the pixel unit 400 is transferred from the first substrate 40 to the second substrate 50 via the connection node 600 in FIG.
  • the pulse of the row selection signal generated by the row signal generation circuit 505 becomes noise for an analog pixel signal AD-converted by the AD conversion circuit 503.
  • the pulse of the column scanning signal generated by the column signal generation circuit 506 and supplied to the column scanning circuit 502 may become noise with respect to the analog pixel signal AD-converted by the AD conversion circuit 503. For this reason, an error may occur in the AD conversion result of the AD conversion circuit 503.
  • the column scanning circuit 502 scans the columns while the pixel signals of two different rows are output from the pixels, the column scanning signal is faster than the row selection signal. For this reason, noise due to the pulse of the column scanning signal is more likely to affect the AD conversion result of the AD conversion circuit 503.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an imaging apparatus in which a signal processing circuit that processes a pixel signal is not easily affected by noise.
  • the imaging device includes a first substrate, a second substrate, a connection portion that electrically connects the first substrate and the second substrate, and the first substrate.
  • a pixel portion having a plurality of pixels arranged in a matrix and outputting a pixel signal corresponding to incident light, and disposed on the first substrate or the second substrate.
  • a row signal generation circuit that sequentially generates a row selection signal for selecting a row in which the pixels that output signals are arranged, and that selects each row by the row selection signal at an interval based on a first frequency;
  • a column scanning signal is generated to scan the plurality of pixel columns, and scanning of each column by the column scanning signal is performed at intervals based on a second frequency higher than the first frequency.
  • the row signal generation circuit may be disposed on the first substrate.
  • the connection unit has a serial peripheral interface, and a control value for controlling a timing at which the state of the row selection signal changes is The data may be transferred from the second board to the first board via the serial peripheral interface.
  • the signal processing circuit is hardly affected by the column scanning signal. For this reason, the signal processing circuit is not easily affected by noise.
  • FIG. 1 is a block diagram illustrating a configuration of an imaging apparatus according to a first embodiment of the present invention. It is a timing chart which shows the row selection signal of each line in the 1st Embodiment of this invention, and the timing when each line is selected. It is a block diagram which shows the connection relation in the 1st Embodiment of this invention. It is a block diagram which shows the structure of the imaging device which concerns on the 2nd Embodiment of this invention. It is a block diagram which shows the structure of the imaging device which has two board
  • FIG. 1 shows the configuration of the imaging apparatus according to the present embodiment.
  • the imaging apparatus illustrated in FIG. 1 includes a first substrate 10a, a second substrate 20a, and a connection unit that connects the two substrates.
  • the pixel unit 100 includes a plurality of pixels arranged in a matrix that outputs a pixel signal corresponding to incident light.
  • the plurality of pixels output a pixel signal for each row of the array of the plurality of pixels. That is, pixels in the same row output pixel signals at the same time, and pixels in different rows output pixel signals at different timings.
  • the operation of the plurality of pixels is controlled by a pixel control signal supplied from the second substrate 20a.
  • the pixel control signal is a common signal for each row.
  • the state of the pixel control signal supplied to the pixels in the same row changes at the same timing.
  • the state of the pixel control signal supplied to the pixels in different rows changes at different timings.
  • the pixel control signal includes a row selection signal that sequentially selects rows in which pixels that output pixel signals are arranged. Pixels in the same row selected by the row selection signal simultaneously output pixel signals.
  • Each pixel has a photoelectric conversion element, a charge storage unit (capacitance or diffusion region), a transfer unit (transfer transistor), a signal generation unit (amplification transistor), and an output unit (output transistor).
  • the photoelectric conversion element converts incident light into signal charges.
  • the charge storage unit stores signal charges.
  • the transfer unit transfers the signal charge from the photoelectric conversion element to the charge storage unit.
  • the signal generation unit generates a pixel signal based on the signal charge stored in the charge storage unit.
  • the output unit outputs a pixel signal based on the row selection signal.
  • the column scanning circuit 101 sequentially outputs the pixel signals output from the pixels for each row for each column by scanning the columns of the plurality of pixels in accordance with a column scanning signal for scanning the columns of the plurality of pixels.
  • the column signal generation circuit 102 generates a column scanning signal.
  • the register and counter 103 includes a register necessary for the column signal generation circuit 102 to generate a column scanning signal, and a counter.
  • the register stores a control value that controls the timing at which the state (High, Low) of the column scanning signal changes.
  • the counter counts in synchronization with a predetermined clock and outputs a count value.
  • the control value and the count value are output to the column scanning circuit 101.
  • the column scanning circuit 101 changes the state of the column scanning signal at a timing when the count value output from the counter matches the control value output from the register.
  • a plurality of connection nodes 300 are arranged in the pixel unit 100.
  • One connection node 300 is arranged at each pixel position. That is, the plurality of connection nodes 300 are arranged in a matrix.
  • the number of rows in the array of the plurality of connection nodes 300 is equal to the number of rows in the array of the plurality of pixels.
  • the number of columns of the plurality of connection nodes 300 is equal to the number of columns of the plurality of pixels.
  • the number of connection nodes 300 is equal to the number of pixels.
  • One connection node 300 may be shared among a plurality of pixels.
  • a plurality of connection nodes 301 are arranged outside the pixel unit 100.
  • One connection node 301 is arranged for each row of the plurality of pixel arrays. That is, the number of connection nodes 301 is equal to the number of rows in the arrangement of a plurality of pixels.
  • the connection node 301 may be arranged for each of a plurality of rows in the arrangement of a pluralit
  • connection nodes 302 and 303 are arranged in the vicinity of the column scanning circuit 101.
  • One connection node 302, 303 is arranged for each column of a plurality of pixel arrays. That is, the number of connection nodes 302 and 303 is equal to the number of columns in the arrangement of a plurality of pixels.
  • the connection nodes 300, 301, 302, and 303 constitute a connection unit that electrically connects the first substrate 10a and the second substrate 20a.
  • the second substrate 20a is connected to the signal transfer unit 200, the buffer and driver 201, the AD conversion circuit 202, the functional circuit 203, the row signal generation circuit 204, the control circuit 205, the register and counter 206, and the like.
  • Nodes 300, 301, 302, 303, and 304 are arranged.
  • a plurality of connection nodes 300 are arranged in the signal transfer unit 200.
  • the signal transfer unit 200 transfers the pixel signal transferred from the first substrate 10 a to the second substrate 20 a via the connection node 300 to the buffer and driver 201.
  • the buffer and driver 201 has a column buffer and a line driver for receiving pixel signals.
  • a connection node 302 is arranged in the vicinity of the buffer and driver 201.
  • the pixel signal output from the buffer and driver 201 is transferred from the second substrate 20a to the first substrate 10a via the connection node 302.
  • the pixel signal transferred to the first substrate 10a is transferred from the first substrate 10a to the second substrate 20a via the column scanning circuit 101 and via the connection node 303.
  • the pixel signal transferred to the second substrate 20 a is input to the AD conversion circuit 202.
  • the AD conversion circuit 202 AD converts an analog pixel signal and outputs a digital pixel signal.
  • the functional circuit 203 performs various image processing on the pixel signal output from the AD conversion circuit 202 as necessary.
  • the row signal generation circuit 204 generates a pixel control signal including a row selection signal.
  • the pixel control signal generated by the row signal generation circuit 204 is transferred from the second substrate 20a to the first substrate 10a via the connection node 301 and supplied to the pixels.
  • the control circuit 205 generates a control signal that controls the buffer and driver 201, the AD conversion circuit 202, and the functional circuit 203.
  • the register and counter 206 includes a register and a counter necessary for the row signal generation circuit 204 and the control circuit 205 to generate each signal (pixel control signal and control signal).
  • the register stores a control value that controls the timing at which the state (High, Low) of each signal changes.
  • the counter counts in synchronization with a predetermined clock and outputs a count value.
  • the control value and the count value are output to the row signal generation circuit 204 and the control circuit 205.
  • the row signal generation circuit 204 and the control circuit 205 change the state of each signal at the timing when the count value output from the counter matches the control value output from the register.
  • the register / counter 103 and the register / counter 206 are connected via, for example, four connection nodes 304.
  • the control value stored in the register and counter 103 is input to the register and counter 206 from the outside, and transferred to the register and counter 103 via the connection node 304.
  • the connection node 304 forms a connection unit together with the connection nodes 300, 301, 302, and 303.
  • the connection node 304 can be configured as a serial peripheral interface (SPI), for example.
  • SPI serial peripheral interface
  • FIG. 2 shows an example of the row selection signal for each row generated by the row signal generation circuit 204 and the timing at which each row is selected.
  • row selection signals ⁇ SEL1, ⁇ SEL2, ⁇ SEL3, and ⁇ SEL4 for four rows are shown.
  • the horizontal direction in FIG. 2 indicates time.
  • the vertical direction in FIG. 2 indicates the voltage of the row selection signal.
  • the first row is selected at the timing when the row selection signal ⁇ SEL1 changes from Low to High.
  • the second row is selected at the timing when the row selection signal ⁇ SEL2 changes from Low to High.
  • the third row is selected at the timing when the row selection signal ⁇ SEL3 changes from Low to High.
  • the fourth row is selected at the timing when the row selection signal ⁇ SEL4 changes from Low to High.
  • the timing interval T at which each row is selected is, for example, the timing interval at which the output of the shift register is shifted by one stage when the row signal generation circuit 204 is configured by a shift register.
  • this interval is the reciprocal of the frequency of the control signal (control signal that changes the state of the row selection signal of each row) that shifts the output of the shift register (hereinafter referred to as the first frequency). Accordingly, selection of each row by the row selection signal is performed at an interval T based on the first frequency.
  • FIG. 3 shows the connection between the buffer and driver 201 and the column scanning circuit 101.
  • FIG. 3 shows a connection between the column scanning circuit 101 and the AD conversion circuit 202.
  • one column scanning circuit 101 and one AD conversion circuit 202 are arranged for every two columns.
  • the pixel signal output from the buffer and driver 201 is transferred to the column scanning circuit 101 via the connection node 302.
  • One column scanning circuit 101 scans two columns and sequentially outputs pixel signals for two columns.
  • the pixel signal output from the column scanning circuit 101 is transferred to the AD conversion circuit 202 via the connection node 303.
  • the pixel signals for two columns are sequentially input to one AD conversion circuit 202.
  • One column scanning circuit 101 and one AD conversion circuit 202 may be arranged for every three or more columns.
  • N N ⁇ 2
  • N N ⁇ 2
  • an arbitrary row is selected by a row selection signal, and pixel signals are simultaneously output from pixels for one row.
  • one column scanning circuit 101 scans N columns until another arbitrary row is selected by the row selection signal and the pixel signal is simultaneously output from the pixels for one row. Accordingly, scanning of each column by the column scanning signal is performed at intervals based on the second frequency higher than the first frequency. In the example shown in FIG. 3, the second frequency is N times the first frequency.
  • the first substrate 10a, the second substrate 20a, and the connection portions (connection nodes 300, 301, 302, and 303) that electrically connect the first substrate 10a and the second substrate 20a. , 304), the pixel portion 100 having a plurality of pixels arranged in a matrix, which is arranged on the first substrate 10a and outputs a pixel signal corresponding to the incident light, and the first substrate 10a or the second substrate 10a.
  • the row selection signal is generated to sequentially select the rows on which the pixels that output the pixel signals are arranged, and the row selection by the row selection signal is performed at intervals based on the first frequency.
  • a circuit 204 and a column scanning signal which is arranged on the first substrate 10a and scans a plurality of pixel columns are generated, and scanning of each column by the column scanning signal is performed at a second frequency higher than the first frequency.
  • the image pickup apparatus includes a signal processing circuit (AD conversion circuit 202) that is disposed on the substrate 20a and that processes the pixel signal output from the column scanning circuit 101.
  • the column signal generation circuit 506, the column scanning circuit 502, and the AD conversion circuit 503 are arranged on the same substrate.
  • the scanning circuit 101 and the AD conversion circuit 202 are arranged on different substrates.
  • the AD conversion circuit 202 is less susceptible to the influence of the column scanning signal, and the AD conversion circuit 202 is less susceptible to the influence of noise.
  • the counter for generating the column scanning signal is also disposed on the first substrate 10a, the AD conversion circuit 202 is less susceptible to noise.
  • FIG. 4 shows a configuration of the imaging apparatus according to the present embodiment.
  • the imaging device illustrated in FIG. 4 includes a first substrate 10b, a second substrate 20b, and a connection unit that connects the two substrates.
  • the first substrate 10b includes a pixel portion 100, a column scanning circuit 101, a column signal generation circuit 102, a row signal generation circuit 104, a register and counter 105, and connection nodes 300, 302, 303, and 304.
  • the row signal generation circuit 104 generates a pixel control signal including a row selection signal.
  • the register and counter 105 includes a register and a counter necessary for the column signal generation circuit 102 and the row signal generation circuit 104 to generate each signal (column scanning signal and pixel control signal).
  • the register stores a control value that controls the timing at which the state (High, Low) of each signal changes.
  • the counter counts in synchronization with a predetermined clock and outputs a count value.
  • the control value and the count value are output to the column signal generation circuit 102 and the row signal generation circuit 104.
  • the column signal generation circuit 102 and the row signal generation circuit 104 change the state of each signal at the timing when the count value output from the counter matches the control value output from the register.
  • the other configuration of the first substrate 10b is the same as that of the imaging apparatus shown in FIG.
  • the second substrate 20b includes a signal transfer unit 200, a buffer and driver 201, an AD conversion circuit 202, a function circuit 203, a control circuit 205, a register and counter 207, connection nodes 300, 302, 303, 304 is arranged.
  • the register and counter 207 includes a register necessary for the control circuit 205 to generate a control signal and a counter.
  • the register stores a control value that controls the timing at which the state (High, Low) of the control signal changes.
  • the counter counts in synchronization with a predetermined clock and outputs a count value.
  • the control value and the count value are output to the control circuit 205.
  • the control circuit 205 changes the state of the control signal at a timing when the count value output from the counter matches the control value output from the register.
  • the other configuration of the second substrate 20b is the same as that of the imaging device shown in FIG.
  • the register / counter 105 and the register / counter 207 are connected via, for example, four connection nodes 304.
  • the control value stored in the register and counter 105 is input to the register and counter 207 from the outside, and transferred to the register and counter 105 via the connection node 304.
  • the connection node 304 can be configured as a serial peripheral interface (SPI), for example.
  • the row signal generation circuit 104 is disposed on the first substrate 10b.
  • the AD conversion circuit 202 is less affected by the pixel control signal generated by the row signal generation circuit 104. For this reason, compared with the first embodiment, the AD conversion circuit 202 is less susceptible to noise.
  • the AD conversion circuit 202 is less susceptible to noise.
  • connection node 301 since the row signal generation circuit 104 is arranged on the first substrate 10b, there is no connection node 301 in the first embodiment. Therefore, the number of connection nodes can be reduced as compared with the first embodiment.
  • connection node 301 forms a capacity in the transmission path of the pixel control signal and may become a load. For this reason, in this embodiment, the load concerning a pixel control signal can be reduced. As a result, the deterioration of the waveform of the pixel control signal can be reduced, and a highly accurate pixel control signal can be supplied to the pixel. Further, when the load is reduced, the drive voltage can be lowered, and the power consumption can be reduced.
  • the embodiments of the present invention have been described in detail with reference to the drawings.
  • the specific configuration is not limited to the above-described embodiments, and includes design changes and the like without departing from the gist of the present invention.
  • the configuration of the imaging device in which two substrates are connected by the connection unit is shown, but three or more substrates may be connected by the connection unit.
  • two substrates out of the three or more substrates correspond to the first substrate and the second substrate.
  • Each of the above embodiments has two substrates, the column signal generation circuit, the column scanning circuit, and the signal processing circuit are arranged on different substrates, and the signal processing circuit is less susceptible to the column scanning signal.
  • An imaging device can be provided in which the processing circuit is less susceptible to noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

 本撮像装置は、第1の基板と、第2の基板と、前記第1の基板および前記第2の基板を電気的に接続する接続部と、前記第1の基板に配置され、入射した光に応じた画素信号を出力する、行列状に配置された複数の画素を有する画素部と、前記第1の基板または前記第2の基板に配置され、前記画素信号を出力する前記画素が配置された行を順次選択する行選択信号を生成し、前記行選択信号による各行の選択が第1の周波数に基づく間隔で行われる行信号生成回路と、前記第1の基板に配置され、前記複数の画素の列を走査する列走査信号を生成し、前記列走査信号による各列の走査が、前記第1の周波数よりも高い第2の周波数に基づく間隔で行われる列信号生成回路と、前記第1の基板に配置され、前記列走査信号に従って列を走査することにより、前記画素から行毎に出力された前記画素信号を列毎に順次出力する列走査回路と、前記第2の基板に配置され、前記列走査回路から出力された前記画素信号を処理する信号処理回路と、を備える。

Description

撮像装置
 本発明は、2枚の基板を有する撮像装置に関する。本願は、2013年10月8日に、日本国に出願された日本国特許出願2013―211096号に基づき優先権を主張し、その内容をここに援用する。
 2枚の基板を有する撮像装置が知られている(例えば、特許文献1参照)。2枚の基板は、互いの表面が向かい合った状態で貼り合わされている。2枚の基板のうち一方の基板には、入射した光に応じた画素信号を出力する複数の画素が配置されている。2枚の基板のうち他方の基板には、複数の画素から出力された画素信号を他方の基板内で転送する信号転送部や、転送された画素信号を処理する信号処理回路が配置されている。
特開2011-159958号公報
 図5は、2枚の基板を有する撮像装置の構成の一例を示している。図5に示す撮像装置は、第1の基板40と、第2の基板50と、2枚の基板を接続する接続部とを有する。
 第1の基板40には、画素部400と、接続ノード600,601とが配置されている。画素部400は、入射した光に応じた画素信号を出力する、行列状に配置された複数の画素を有する。複数の画素は、複数の画素の配列の行毎に画素信号を出力する。つまり、同一の行の画素は同時に画素信号を出力し、異なる行の画素は異なるタイミングで画素信号を出力する。
 複数の画素の動作は、第2の基板50から供給される画素制御信号によって制御される。画素制御信号は行毎に共通の信号であって、同一の行の画素に供給される画素制御信号の状態は同一のタイミングで変化し、異なる行の画素に供給される画素制御信号の状態は異なるタイミングで変化する。画素制御信号は、画素信号を出力する画素が配置された行を順次選択する行選択信号を含む。行選択信号によって選択された同一の行の画素が同時に画素信号を出力する。
 画素部400には複数の接続ノード600が配置されている。それぞれの画素の位置に接続ノード600が1つずつ配置されている。つまり、複数の接続ノード600は行列状に配置されている。複数の接続ノード600の配列の行数と、複数の画素の配列の行数とは等しい。複数の接続ノード600の配列の列数と、複数の画素の配列の列数とは等しい。また、接続ノード600の数は画素数に等しい。複数の画素間で1つの接続ノード600が共有される場合もある。画素部400の外側には複数の接続ノード601が配置されている。複数の画素の配列の行毎に接続ノード601が1つずつ配置されている。つまり、接続ノード601の数は複数の画素の配列の行数に等しい。複数の画素の配列の複数行毎に接続ノード601が1つ配置される場合もある。接続ノード600,601は、第1の基板40と第2の基板50とを電気的に接続する接続部を構成する。
 第2の基板50には、信号転送部500と、バッファおよびドライバ501と、列走査回路502と、AD変換回路503と、機能回路504と、行信号生成回路505と、列信号生成回路506と、制御回路507と、レジスタおよびカウンタ508と、接続ノード600,601とが配置されている。信号転送部500には、複数の接続ノード600が配置されている。信号転送部500は、接続ノード600を介して第1の基板40から第2の基板50に転送された画素信号をバッファおよびドライバ501に転送する。バッファおよびドライバ501は、画素信号を受け取るためのカラムバッファおよびラインドライバを有する。列走査回路502は、複数の画素の列を走査する列走査信号に従って複数の画素の列を走査することにより、画素から行毎に出力された画素信号を列毎に順次出力する。AD変換回路503は、列走査回路502から出力されたアナログの画素信号をAD変換し、デジタルの画素信号を出力する。機能回路504は、AD変換回路503から出力された画素信号に対して、必要に応じて各種の画像処理を行う。
 行信号生成回路505は、行選択信号を含む画素制御信号を生成する。行信号生成回路505によって生成された画素制御信号は、接続ノード601を介して第2の基板50から第1の基板40に転送され、画素に供給される。列信号生成回路506は、列走査信号を生成する。制御回路507は、バッファおよびドライバ501と、AD変換回路503と、機能回路504とを制御する制御信号を生成する。
 レジスタおよびカウンタ508は、行信号生成回路505と、列信号生成回路506と、制御回路507とが各信号(画素制御信号、列走査信号、制御信号)を生成するのに必要なレジスタと、カウンタとを有する。レジスタは、各信号の状態(High,Low)が変化するタイミングを制御する制御値を記憶する。カウンタは、所定のクロックに同期してカウントを行い、カウント値を出力する。制御値およびカウント値は、行信号生成回路505と、列信号生成回路506と、制御回路507とに出力される。行信号生成回路505と、列信号生成回路506と、制御回路507とは、カウンタから出力されたカウント値が、レジスタから出力された制御値と一致したタイミングで各信号の状態を変化させる。
 図6は、2枚の基板の間で信号が転送される様子を示している。行信号生成回路505によって生成された画素制御信号S1は、図5の接続ノード601を介して、第2の基板50から、図6に示していない第1の基板40に転送され、さらに画素部400の各画素に供給される。また、画素部400の各画素から出力された画素信号S2は、図5の接続ノード600を介して、第1の基板40から第2の基板50に転送される。
 画素数が増大し、画素の高速な駆動が進んでいる状況では、行信号生成回路505が生成する行選択信号のパルスが、AD変換回路503でAD変換されるアナログの画素信号に対するノイズとなる場合がある。また、列信号生成回路506が生成して列走査回路502に供給される列走査信号のパルスが、AD変換回路503でAD変換されるアナログの画素信号に対するノイズとなる場合がある。このため、AD変換回路503のAD変換結果にエラーが生じる場合がある。
 異なる2つの行の画素信号が画素から出力される間に列走査回路502が列の走査を行うので、列走査信号は行選択信号よりも高速である。このため、列走査信号のパルスによるノイズは、AD変換回路503のAD変換結果に対して、より影響を与えやすい。
 本発明は、上述した課題に鑑みてなされたものであって、画素信号を処理する信号処理回路がノイズの影響を受けにくい撮像装置を提供することを目的とする。
 本発明の第一態様によれば、撮像装置は、第1の基板と、第2の基板と、前記第1の基板および前記第2の基板を電気的に接続する接続部と、前記第1の基板に配置され、入射した光に応じた画素信号を出力する、行列状に配置された複数の画素を有する画素部と、前記第1の基板または前記第2の基板に配置され、前記画素信号を出力する前記画素が配置された行を順次選択する行選択信号を生成し、前記行選択信号による各行の選択が第1の周波数に基づく間隔で行われる行信号生成回路と、前記第1の基板に配置され、前記複数の画素の列を走査する列走査信号を生成し、前記列走査信号による各列の走査が、前記第1の周波数よりも高い第2の周波数に基づく間隔で行われる列信号生成回路と、前記第1の基板に配置され、前記列走査信号に従って列を走査することにより、前記画素から行毎に出力された前記画素信号を列毎に順次出力する列走査回路と、前記第2の基板に配置され、前記列走査回路から出力された前記画素信号を処理する信号処理回路と、を備える。
 本発明の第二態様によれば、上記第一態様に係る撮像装置において、前記行信号生成回路が前記第1の基板に配置されていてもよい。
 本発明の第三態様によれば、上記第二態様に係る撮像装置において、前記接続部は、シリアル・ペリフェラル・インタフェースを有し、前記行選択信号の状態が変化するタイミングを制御する制御値が、前記シリアル・ペリフェラル・インタフェースを介して、前記第2の基板から前記第1の基板に転送されてもよい。
 上記撮像装置によれば、列信号生成回路および列走査回路と信号処理回路とが異なる基板に配置されているので、信号処理回路が列走査信号の影響を受けにくくなる。このため、信号処理回路がノイズの影響を受けにくい。
本発明の第1の実施形態に係る撮像装置の構成を示すブロック図である。 本発明の第1の実施形態における各行の行選択信号と、各行が選択されるタイミングとを示すタイミングチャートである。 本発明の第1の実施形態における接続関係を示すブロック図である。 本発明の第2の実施形態に係る撮像装置の構成を示すブロック図である。 2枚の基板を有する撮像装置の構成を示すブロック図である。 2枚の基板の間で信号が転送される様子を示す模式図である。
 以下、図面を参照し、本発明の実施形態を説明する。
 (第1の実施形態)
 まず、本発明の第1の実施形態を説明する。図1は、本実施形態による撮像装置の構成を示している。図1に示す撮像装置は、第1の基板10aと、第2の基板20aと、2枚の基板を接続する接続部とを有する。
 第1の基板10aには、画素部100と、列走査回路101と、列信号生成回路102と、レジスタおよびカウンタ103と、接続ノード300,301,302,303,304とが配置されている。画素部100は、入射した光に応じた画素信号を出力する、行列状に配置された複数の画素を有する。複数の画素は、複数の画素の配列の行毎に画素信号を出力する。つまり、同一の行の画素は同時に画素信号を出力し、異なる行の画素は異なるタイミングで画素信号を出力する。
 複数の画素の動作は、第2の基板20aから供給される画素制御信号によって制御される。画素制御信号は行毎に共通の信号である。同一の行の画素に供給される画素制御信号の状態は同一のタイミングで変化する。異なる行の画素に供給される画素制御信号の状態は異なるタイミングで変化する。画素制御信号は、画素信号を出力する画素が配置された行を順次選択する行選択信号を含む。行選択信号によって選択された同一の行の画素が同時に画素信号を出力する。
 各画素は、光電変換素子と、電荷蓄積部(容量または拡散領域)と、転送部(転送トランジスタ)と、信号生成部(増幅トランジスタ)と、出力部(出力トランジスタ)とを有する。光電変換素子は、入射した光を信号電荷に変換する。電荷蓄積部は、信号電荷を蓄積する。転送部は、光電変換素子から電荷蓄積部に信号電荷を転送する。信号生成部は、電荷蓄積部に蓄積された信号電荷に基づいて画素信号を生成する。出力部は、行選択信号に基づいて画素信号を出力する。
 列走査回路101は、複数の画素の列を走査する列走査信号に従って複数の画素の列を走査することにより、画素から行毎に出力された画素信号を列毎に順次出力する。列信号生成回路102は、列走査信号を生成する。レジスタおよびカウンタ103は、列信号生成回路102が列走査信号を生成するのに必要なレジスタと、カウンタとを有する。レジスタは、列走査信号の状態(High,Low)が変化するタイミングを制御する制御値を記憶する。カウンタは、所定のクロックに同期してカウントを行い、カウント値を出力する。制御値およびカウント値は、列走査回路101に出力される。列走査回路101は、カウンタから出力されたカウント値が、レジスタから出力された制御値と一致したタイミングで列走査信号の状態を変化させる。
 画素部100には複数の接続ノード300が配置されている。それぞれの画素の位置に接続ノード300が1つずつ配置されている。つまり、複数の接続ノード300は行列状に配置されている。複数の接続ノード300の配列の行数と、複数の画素の配列の行数とは等しい。複数の接続ノード300の配列の列数と、複数の画素の配列の列数とは等しい。また、接続ノード300の数は画素数に等しい。複数の画素間で1つの接続ノード300を共有してもよい。画素部100の外側には複数の接続ノード301が配置されている。複数の画素の配列の行毎に接続ノード301が1つずつ配置されている。つまり、接続ノード301の数は複数の画素の配列の行数に等しい。複数の画素の配列の複数行毎に接続ノード301を配置してもよい。
 また、列走査回路101の近傍に複数の接続ノード302,303が配置されている。
 複数の画素の配列の列毎に接続ノード302,303が1つずつ配置されている。つまり、接続ノード302,303の数は複数の画素の配列の列数に等しい。接続ノード300,301,302,303は、第1の基板10aと第2の基板20aとを電気的に接続する接続部を構成する。
 第2の基板20aには、信号転送部200と、バッファおよびドライバ201と、AD変換回路202と、機能回路203と、行信号生成回路204と、制御回路205と、レジスタおよびカウンタ206と、接続ノード300,301,302,303,304とが配置されている。信号転送部200には、複数の接続ノード300が配置されている。
 信号転送部200は、接続ノード300を介して第1の基板10aから第2の基板20aに転送された画素信号をバッファおよびドライバ201に転送する。
 バッファおよびドライバ201は、画素信号を受け取るためのカラムバッファおよびラインドライバを有する。バッファおよびドライバ201の近傍には接続ノード302が配置されている。バッファおよびドライバ201から出力された画素信号は、接続ノード302を介して、第2の基板20aから第1の基板10aに転送される。第1の基板10aに転送された画素信号は、列走査回路101を経由し、接続ノード303を介して、第1の基板10aから第2の基板20aに転送される。第2の基板20aに転送された画素信号はAD変換回路202に入力される。
 AD変換回路202は、アナログの画素信号をAD変換し、デジタルの画素信号を出力する。機能回路203は、AD変換回路202から出力された画素信号に対して、必要に応じて各種の画像処理を行う。行信号生成回路204は、行選択信号を含む画素制御信号を生成する。行信号生成回路204によって生成された画素制御信号は、接続ノード301を介して第2の基板20aから第1の基板10aに転送され、画素に供給される。制御回路205は、バッファおよびドライバ201と、AD変換回路202と、機能回路203とを制御する制御信号を生成する。
 レジスタおよびカウンタ206は、行信号生成回路204と、制御回路205とが各信号(画素制御信号および制御信号)を生成するのに必要なレジスタと、カウンタとを有する。レジスタは、各信号の状態(High,Low)が変化するタイミングを制御する制御値を記憶する。カウンタは、所定のクロックに同期してカウントを行い、カウント値を出力する。制御値およびカウント値は、行信号生成回路204と、制御回路205とに出力される。行信号生成回路204と、制御回路205とは、カウンタから出力されたカウント値が、レジスタから出力された制御値と一致したタイミングで各信号の状態を変化させる。
 レジスタおよびカウンタ103とレジスタおよびカウンタ206とは、例えば4つの接続ノード304を介して接続されている。レジスタおよびカウンタ103が記憶する制御値は、外部からレジスタおよびカウンタ206に入力され、接続ノード304を介してレジスタおよびカウンタ103に転送される。接続ノード304は、接続ノード300,301,302,303と共に、接続部を構成する。接続ノード304は、例えばシリアル・ペリフェラル・インタフェース(SPI)として構成可能である。
 図2は、行信号生成回路204が生成する各行の行選択信号と、各行が選択されるタイミングとの一例を示している。図2では4行分の行選択信号φSEL1,φSEL2,φSEL3,φSEL4が示されている。図2の横方向は時間を示している。図2の縦方向は、行選択信号の電圧を示している。例えば、行選択信号φSEL1がLowからHighに変化するタイミングで1行目が選択される。行選択信号φSEL2がLowからHighに変化するタイミングで2行目が選択される。行選択信号φSEL3がLowからHighに変化するタイミングで3行目が選択される。行選択信号φSEL4がLowからHighに変化するタイミングで4行目が選択される。
 各行が選択されるタイミングの間隔Tは、例えば行信号生成回路204がシフトレジスタで構成される場合に、シフトレジスタの出力が1段シフトするタイミングの間隔である。言い換えると、この間隔は、シフトレジスタの出力をシフトさせる制御信号(各行の行選択信号の状態を変化させる制御信号)の周波数(以下、第1の周波数とする)の逆数である。したがって、行選択信号による各行の選択は、第1の周波数に基づく間隔Tで行われる。
 図3は、バッファおよびドライバ201と列走査回路101との間の接続を示している。図3は、列走査回路101とAD変換回路202との間の接続を示している。図3に示す例では、2列毎に列走査回路101およびAD変換回路202が1つずつ配置されている。バッファおよびドライバ201から出力された画素信号は、接続ノード302を介して列走査回路101に転送される。1つの列走査回路101は2列を走査して2列分の画素信号を順次出力する。列走査回路101から出力された画素信号は、接続ノード303を介してAD変換回路202に転送される。1つのAD変換回路202には、2列分の画素信号が順次入力される。3列以上の列毎に列走査回路101およびAD変換回路202が1つずつ配置されていてもよい。
 1つの列走査回路101が走査する列の数をN(N≧2)に設定すると、行選択信号によって任意の行が選択されて1行分の画素から画素信号が同時に出力される。その後、行選択信号によって他の任意の行が選択されて1行分の画素から画素信号が同時に出力されるまでの間に、1つの列走査回路101はN列を走査する。したがって、列走査信号による各列の走査は、第1の周波数よりも高い第2の周波数に基づく間隔で行われる。図3に示す例では、第2の周波数は第1の周波数のN倍である。
 本実施形態によれば、第1の基板10aと、第2の基板20aと、第1の基板10aおよび第2の基板20aを電気的に接続する接続部(接続ノード300,301,302,303,304)と、第1の基板10aに配置され、入射した光に応じた画素信号を出力する、行列状に配置された複数の画素を有する画素部100と、第1の基板10aまたは第2の基板20aに配置され、画素信号を出力する画素が配置された行を順次選択する行選択信号を生成し、行選択信号による各行の選択が第1の周波数に基づく間隔で行われる行信号生成回路204と、第1の基板10aに配置され、複数の画素の列を走査する列走査信号を生成し、列走査信号による各列の走査が、第1の周波数よりも高い第2の周波数に基づく間隔で行われる列信号生成回路102と、第1の基板10aに配置され、列走査信号に従って列を走査することにより、画素から行毎に出力された画素信号を列毎に順次出力する列走査回路101と、第2の基板20aに配置され、列走査回路101から出力された画素信号を処理する信号処理回路(AD変換回路202)と、を備えた撮像装置が構成される。
 図5に示す撮像装置では、列信号生成回路506および列走査回路502とAD変換回路503とが同一の基板に配置されているが、図1に示す撮像装置では、列信号生成回路102および列走査回路101とAD変換回路202とが異なる基板に配置されている。これによって、AD変換回路202が列走査信号の影響を受けにくくなるため、AD変換回路202がノイズの影響を受けにくくなる。また、列走査信号を生成するためのカウンタも第1の基板10aに配置されているため、AD変換回路202がよりノイズの影響を受けにくくなる。高解像度のAD変換等のノイズの影響を受けやすい信号処理を行う回路を含む撮像装置に対して本実施形態を適用することで、より顕著な効果が得られる。
(第2の実施形態)
 次に、本発明の第2の実施形態を説明する。図4は、本実施形態に係る撮像装置の構成を示している。図4に示す撮像装置は、第1の基板10bと、第2の基板20bと、2枚の基板を接続する接続部とを有する。
 第1の基板10bには、画素部100と、列走査回路101と、列信号生成回路102と、行信号生成回路104と、レジスタおよびカウンタ105と、接続ノード300,302,303,304とが配置されている。行信号生成回路104は、行選択信号を含む画素制御信号を生成する。レジスタおよびカウンタ105は、列信号生成回路102と、行信号生成回路104とが各信号(列走査信号および画素制御信号)を生成するのに必要なレジスタと、カウンタとを有する。レジスタは、各信号の状態(High,Low)が変化するタイミングを制御する制御値を記憶する。カウンタは、所定のクロックに同期してカウントを行い、カウント値を出力する。制御値およびカウント値は、列信号生成回路102と、行信号生成回路104とに出力される。列信号生成回路102と、行信号生成回路104とは、カウンタから出力されたカウント値が、レジスタから出力された制御値と一致したタイミングで各信号の状態を変化させる。第1の基板10bの他の構成については、図1に示す撮像装置の構成と同一である。
 第2の基板20bには、信号転送部200と、バッファおよびドライバ201と、AD変換回路202と、機能回路203と、制御回路205と、レジスタおよびカウンタ207と、接続ノード300,302,303,304とが配置されている。レジスタおよびカウンタ207は、制御回路205が制御信号を生成するのに必要なレジスタと、カウンタとを有する。レジスタは、制御信号の状態(High,Low)が変化するタイミングを制御する制御値を記憶する。カウンタは、所定のクロックに同期してカウントを行い、カウント値を出力する。制御値およびカウント値は制御回路205に出力される。制御回路205は、カウンタから出力されたカウント値が、レジスタから出力された制御値と一致したタイミングで制御信号の状態を変化させる。第2の基板20bの他の構成については、図1に示す撮像装置の構成と同一である。
 レジスタおよびカウンタ105とレジスタおよびカウンタ207とは、例えば4つの接続ノード304を介して接続されている。レジスタおよびカウンタ105が記憶する制御値は、外部からレジスタおよびカウンタ207に入力され、接続ノード304を介してレジスタおよびカウンタ105に転送される。第1の実施形態と同様に、接続ノード304は、例えばシリアル・ペリフェラル・インタフェース(SPI)として構成可能である。
 本実施形態では、行信号生成回路104が第1の基板10bに配置されている。これによって、AD変換回路202が、行信号生成回路104によって生成される画素制御信号の影響を受けにくくなる。このため、第1の実施形態と比較して、AD変換回路202がよりノイズの影響を受けにくくなる。また、画素制御信号を生成するためのカウンタも第1の基板10bに配置されているため、AD変換回路202がよりノイズの影響を受けにくくなる。
 また、本実施形態では、行信号生成回路104が第1の基板10bに配置されているため、第1の実施形態における接続ノード301がない。したがって、第1の実施形態と比較して、接続ノードの数を減らすことができる。
 接続ノード301は、画素制御信号の伝送路において容量を形成し、負荷となる可能性がある。このため、本実施形態では、画素制御信号に係る負荷を低減することができる。これによって、画素制御信号の波形の劣化を低減し、高精度な画素制御信号を画素に供給することができる。また、負荷が低減することにより駆動電圧を下げることができ、消費電力を低減することができる。
 以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成は上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。上記各実施形態では、2枚の基板が接続部で接続されている撮像装置の構成を示したが、3枚以上の基板が接続部で接続されていてもよい。3枚以上の基板が接続部で接続される撮像装置の場合、3枚以上の基板のうち2枚の基板が第1の基板および第2の基板に相当する。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明に限定されることはなく、添付のクレームの範囲によってのみ限定される。
 上記各実施形態は、2枚の基板を有し、列信号生成回路および列走査回路と信号処理回路とが異なる基板に配置され、信号処理回路が列走査信号の影響を受けにくくなるため、信号処理回路がノイズの影響を受けにくくなる撮像装置を提供できる。
 10a,10b,40 第1の基板
20a,20b,50 第2の基板
100,400 画素部
101,502 列走査回路
102,506 列信号生成回路
103,105,206,207,508 レジスタおよびカウンタ
104,204,505 行信号生成回路
200,500 信号転送部
201,501 バッファおよびドライバ
202,503 AD変換回路
203,504 機能回路
205,507 制御回路
301,302,303,304,601,602 接続ノード

Claims (3)

  1.  第1の基板と、
     第2の基板と、
     前記第1の基板および前記第2の基板を電気的に接続する接続部と、
     前記第1の基板に配置され、入射した光に応じた画素信号を出力する、行列状に配置された複数の画素を有する画素部と、
     前記第1の基板または前記第2の基板に配置され、前記画素信号を出力する前記画素が配置された行を順次選択する行選択信号を生成し、前記行選択信号による各行の選択が第1の周波数に基づく間隔で行われる行信号生成回路と、
     前記第1の基板に配置され、前記複数の画素の列を走査する列走査信号を生成し、前記列走査信号による各列の走査が、前記第1の周波数よりも高い第2の周波数に基づく間隔で行われる列信号生成回路と、
     前記第1の基板に配置され、前記列走査信号に従って列を走査することにより、前記画素から行毎に出力された前記画素信号を列毎に順次出力する列走査回路と、
     前記第2の基板に配置され、前記列走査回路から出力された前記画素信号を処理する信号処理回路と、
     を備える撮像装置。
  2.  前記行信号生成回路が前記第1の基板に配置されている請求項1に係る撮像装置。
  3.  前記接続部は、シリアル・ペリフェラル・インタフェースを有し、
     前記行選択信号の状態が変化するタイミングを制御する制御値が、前記シリアル・ペリフェラル・インタフェースを介して、前記第2の基板から前記第1の基板に転送される請求項2に係る撮像装置。
PCT/JP2014/074394 2013-10-08 2014-09-16 撮像装置 WO2015053047A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/085,407 US9942491B2 (en) 2013-10-08 2016-03-30 Imaging device including two substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-211096 2013-10-08
JP2013211096A JP6346740B2 (ja) 2013-10-08 2013-10-08 撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/085,407 Continuation US9942491B2 (en) 2013-10-08 2016-03-30 Imaging device including two substrates

Publications (1)

Publication Number Publication Date
WO2015053047A1 true WO2015053047A1 (ja) 2015-04-16

Family

ID=52812867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074394 WO2015053047A1 (ja) 2013-10-08 2014-09-16 撮像装置

Country Status (3)

Country Link
US (1) US9942491B2 (ja)
JP (1) JP6346740B2 (ja)
WO (1) WO2015053047A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640108B2 (en) 2015-08-25 2017-05-02 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US9930277B2 (en) * 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
US9928771B2 (en) 2015-12-24 2018-03-27 X-Celeprint Limited Distributed pulse width modulation control
US10360846B2 (en) 2016-05-10 2019-07-23 X-Celeprint Limited Distributed pulse-width modulation system with multi-bit digital storage and output device
US10453826B2 (en) 2016-06-03 2019-10-22 X-Celeprint Limited Voltage-balanced serial iLED pixel and display
US10832609B2 (en) * 2017-01-10 2020-11-10 X Display Company Technology Limited Digital-drive pulse-width-modulated output system
TWI747052B (zh) * 2018-10-24 2021-11-21 大陸商廣州印芯半導體技術有限公司 具有加密功能的光學感測器及影像資料加密方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003860A (ja) * 2009-06-22 2011-01-06 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2011049503A (ja) * 2009-08-28 2011-03-10 Canon Inc 光電変換装置、撮像システム、及び光電変換装置の製造方法
JP2011159958A (ja) * 2010-01-08 2011-08-18 Sony Corp 半導体装置、固体撮像装置、およびカメラシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525586B2 (en) * 2003-05-12 2009-04-28 Altasens, Inc. Image sensor and method with multiple scanning modes
CN101010944B (zh) * 2004-09-02 2010-06-16 索尼株式会社 摄像装置及摄像结果的输出方法
KR101776955B1 (ko) 2009-02-10 2017-09-08 소니 주식회사 고체 촬상 장치와 그 제조 방법, 및 전자 기기
US9055241B2 (en) * 2011-12-01 2015-06-09 Olympus Corporation Solid-state image pickup device, image pickup device, and signal reading method including an averaging circuit for averaging accumulated signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003860A (ja) * 2009-06-22 2011-01-06 Sony Corp 固体撮像装置とその製造方法、及び電子機器
JP2011049503A (ja) * 2009-08-28 2011-03-10 Canon Inc 光電変換装置、撮像システム、及び光電変換装置の製造方法
JP2011159958A (ja) * 2010-01-08 2011-08-18 Sony Corp 半導体装置、固体撮像装置、およびカメラシステム

Also Published As

Publication number Publication date
US9942491B2 (en) 2018-04-10
JP6346740B2 (ja) 2018-06-20
US20160212361A1 (en) 2016-07-21
JP2015076702A (ja) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6346740B2 (ja) 撮像装置
US11076119B2 (en) Solid state imaging device, method of controlling solid state imaging device, and program for controlling solid state imaging device
US10051222B2 (en) Solid-state imaging device and camera system having lower power consumption
US8735796B2 (en) Solid-state imaging device comprising an analog to digital converter with column comparison circuits, column counter circuits, first and second inverters, and buffers
JP2011205512A5 (ja)
US8035712B2 (en) Solid-state imaging apparatus, imaging system, and method of driving solid-state imaging apparatus
US20130181116A1 (en) Image pickup apparatus and method of driving the same
JP5640509B2 (ja) 固体撮像素子およびカメラシステム
JP2006074367A (ja) 固体撮像素子
US20110194006A1 (en) Solid-state image pickup apparatus
JP2015139054A (ja) 固体撮像装置、撮像システム及び複写機
US8964059B2 (en) Scanning circuit, solid-state image sensor, and camera
WO2021199753A1 (ja) 半導体デバイス
KR20140110254A (ko) 이미지 센서의 구동 회로 및 구동 방법
JP2001203938A (ja) 固体撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851798

Country of ref document: EP

Kind code of ref document: A1