WO2015052885A1 - Resin composition containing polyimide precursor and method for manufacturing cured film using said resin composition - Google Patents
Resin composition containing polyimide precursor and method for manufacturing cured film using said resin composition Download PDFInfo
- Publication number
- WO2015052885A1 WO2015052885A1 PCT/JP2014/004881 JP2014004881W WO2015052885A1 WO 2015052885 A1 WO2015052885 A1 WO 2015052885A1 JP 2014004881 W JP2014004881 W JP 2014004881W WO 2015052885 A1 WO2015052885 A1 WO 2015052885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin composition
- cured film
- meth
- film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
- G03F7/031—Organic compounds not covered by group G03F7/029
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/037—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/168—Finishing the coated layer, e.g. drying, baking, soaking
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2051—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
- G03F7/2053—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
- G03F7/2055—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser for the production of printing plates; Exposure of liquid photohardening compositions
Definitions
- the present invention relates to a resin composition containing a polyimide precursor suitable as a material for a protective film such as a surface coat film of a semiconductor element, an interlayer insulating film of a thin-film multilayer wiring board, and an insulating film, and a method for producing a cured film using the same And electronic parts.
- a protective film (cured film) using such a polyimide resin is obtained by heating and curing a resin film formed by applying and drying a polyimide precursor or a resin composition containing a polyimide precursor on a substrate. It is obtained by.
- a pattern resin film (patterned resin film) can be easily formed.
- a pattern cured film (patterned cured film) can be easily formed.
- an aromatic tetracarboxylic dianhydride is reacted with an olefin unsaturated alcohol to synthesize an olefin aromatic tetracarboxylic acid diester, and this compound and a diamine are subjected to a dehydration condensation reaction using carbodiimides.
- a polyimide precursor that is polymerized by the above-described method and has a photosensitive group introduced by a covalent bond (see, for example, Patent Document 1).
- polyimide precursor in which an isocyanate compound having a photosensitive group is bonded to a polyamic acid obtained by reacting an aromatic tetracarboxylic dianhydride with an aromatic diamine (see, for example, Patent Document 2). .
- polyimide precursors are applied to a substrate in a varnish state dissolved in an organic solvent, dried, formed into a film, and then exposed to ultraviolet rays through a photomask to photo-cure the exposed portion of the negative photosensitive resin composition. It is used as.
- a relief pattern is obtained by developing and rinsing an unexposed portion other than the exposed portion using an organic solvent.
- the bifunctional di (meth) acrylate compound has been widely used as a crosslinking agent at the time of photocuring an exposure part conventionally (for example, patent) Reference 2-5).
- a cured film using a polyimide resin has a thick film and a high elastic modulus, which increases the stress after curing, and the warpage of the semiconductor wafer increases, which may cause problems during transportation and wafer fixation. There is a need to develop a cured film with low stress.
- Examples of a method for reducing the stress of the polyimide resin include a method using a polyamide obtained by copolycondensation of a phthalic acid compound having a specific functional group with a tetracarboxylic acid compound (for example, Patent Document 6).
- An object of the present invention is to provide a novel polyimide precursor-containing resin composition and a method for producing a cured film using the same.
- a resin composition containing the following components (a), (b) and (c).
- a polyimide precursor having a structural unit represented by the following general formula (1)
- R 5 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 6 is a monovalent organic group not containing a (meth) acryl group.
- 2. The resin composition according to 1, wherein the component (b) is contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the component (a).
- Formula (2) R 6 is (meth) acrylic group, a hydroxyl group, and 1 or 2 resin composition according to a monovalent organic group containing no amino group in. 4).
- 4. according to any one of 1 to 3, wherein the component (b) is a monofunctional photopolymerizable compound having a molecular weight of 300 or less. 5. 5.
- R 1 in the formula (1) is any one of tetravalent organic groups represented by the following general formulas (2a) to (2e).
- X and Y each independently represent a divalent group or a single bond that is not conjugated to the benzene ring to which each is bonded.
- Z represents an ether bond (—O—). Or a sulfide bond (—S—).
- R 2 in the formula (1) is a divalent organic group represented by the following general formula (5) or (6).
- R 10 to R 17 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group, and at least one of R 10 to R 17 is a halogen atom or a halogenated alkyl group.
- R 18 And R 19 each independently represents a halogen atom or a halogenated alkyl group.
- 8 8.
- a method for producing a cured film comprising a step of applying the resin composition according to any one of 10.1 to 8 on a substrate and drying to form a coating film, and a step of heat-treating the coating film.
- a cured pattern film formed from the resin composition according to any one of 11.1 to 8.
- a novel polyimide precursor-containing resin composition and a method for producing a cured film using the same can be provided.
- FIG. (A) is a gas chromatogram when the pyrolysis gas chromatograph mass spectrometry was performed about the cured film obtained in Example 10.
- FIG. (B) is a gas chromatogram when the pyrolysis gas chromatograph mass spectrometry was performed about the cured film obtained by the comparative example 2.
- FIG. (A) is the figure which measured the outgas from the cured film of the comparative example 2 using the heat generation gas mass spectrometry.
- (B) is the figure which measured the outgas from the cured film of Example 1 using the heat generation gas mass spectrometry.
- methacrylate and acrylate are collectively referred to as (meth) acrylate.
- methacrylic groups and acrylic groups are collectively referred to as (meth) acrylic groups.
- a methacryloxy group and an acryloxy group are also referred to as (meth) acryloxy groups.
- the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the resin composition of the present invention contains the following components (a), (b) and (c).
- (c) A compound that generates radicals upon irradiation with actinic rays (Wherein R 1 is a tetravalent organic group, R 2 is a divalent organic group, R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, or a carbon-carbon unsaturated double bond. A monovalent organic group.)
- R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 6 is a monovalent organic group not containing a (meth) acryl group.
- the component (b) of the resin composition of the present invention is a crosslinking agent.
- a crosslinking agent By setting it as the said structure in this invention, a pattern cured film is obtained, without using a polyfunctional (meth) acrylate compound. Thereby, outgas generated during the curing reaction can be suppressed.
- the heat-curing temperature is as low as 300 ° C. or lower
- outgas from the polyimide film increases in the vacuum process such as etching of the electrode part after the polyimide cured film formation process, and outgas is generated during the process Therefore, there is a problem that the chamber is contaminated.
- the component (b) is a monofunctional photopolymerizable compound represented by the formula (2) and having a molecular weight of 300 or less, even a cured film cured at a low temperature of 300 ° C. or less is exposed to a vacuum process. Can be suppressed, and a cured film with low stress can be obtained.
- the resin composition of the present invention comprises (a) a polyimide precursor having a structural unit represented by the following general formula (1). contains. (Wherein R 1 is a tetravalent organic group, R 2 is a divalent organic group, R 3 and R 4 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, or a carbon-carbon unsaturated double bond. A monovalent organic group.)
- the resin composition of the present invention can exhibit high i-line transmittance, specifically, the i-line transmittance is preferably 1% or more and preferably 10% or more at a film thickness of 20 ⁇ m. Is more preferable and 15% or more is even more preferable. If it is lower than 1%, the i-line does not reach the deep part, and radicals are not sufficiently generated. Therefore, there is a possibility that the photosensitive characteristics deteriorate, for example, the resin exudes from the substrate side of the film during development.
- the i-line transmittance can be measured by measuring a transmission UV spectrum using U-3310 spctrophotometer (manufactured by Hitachi, Ltd.).
- R 1 in the general formula (1) has a structure derived from, for example, tetracarboxylic dianhydride used as a raw material.
- the tetracarboxylic dianhydride used is not particularly limited, but pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used from the viewpoint of excellent heat resistance in electronic parts.
- the tetravalent organic group in R 1 is preferably any of the tetravalent organic groups represented by the following general formulas (2a) to (2e).
- X and Y each independently represent a divalent group or a single bond that is not conjugated to the benzene ring to which each is bonded.
- Z represents an ether bond (—O— Or a sulfide bond (—S—).
- the “divalent group not conjugated with the benzene ring to be bonded” of X and Y in the general formula (2d) is —O—, —S—, or a divalent group represented by the following formula.
- R 8 is a carbon atom or a silicon atom.
- R 9 is independently a hydrogen atom or a halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- n 3.
- R ⁇ 2 > in General formula (1) is a structure originating in the diamine used as a raw material, for example.
- the diamine used in the present invention is not particularly limited, and examples thereof include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfone, and 4,4′-diaminodiphenyl.
- the divalent organic group in R 2 is preferably a divalent organic group represented by the following general formula (5) or (6).
- R 10 to R 17 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group, and at least one of R 10 to R 17 is a halogen atom or a halogenated alkyl group.
- R 18 and R 19 are each independently a halogen atom or a halogenated alkyl group.
- Examples of the monovalent organic group represented by R 10 to R 17 include an alkyl group having 1 to 20 carbon atoms (such as a methyl group), a halogenated alkyl group having 1 to 20 carbon atoms (such as a trifluoromethyl group), and 1 to Examples thereof include an alkoxy group having 20 alkyl groups (such as a methoxy group).
- the halogen atom is preferably a fluorine atom.
- the halogenated alkyl group is preferably a perfluoroalkyl group.
- the alkyl group and the halogenated alkyl group preferably have 1 to 6 carbon atoms.
- a cycloalkyl group or hydrocarbon group having 3 to 20 carbon atoms (preferably 5 to 15 carbon atoms, more preferably 6 to 12 carbon atoms) is a (meta) having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms).
- a hydrocarbon group containing an acryloxy group is preferably a (meth) acryloxy group-containing alkyl group.
- Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, 2-propyl group, n-butyl group, n-hexyl group, n-heptyl group, n-decyl group, and n-dodecyl group.
- Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
- hydrocarbon group containing a (meth) acryloxy group having 1 to 10 carbon atoms in the hydrocarbon group examples include acryloxyethyl group, acryloxypropyl group, acryloxybutyl group, methacryloxyethyl group, methacryloxypropyl group, And a methacryloxybutyl group.
- At least one of R 3 and R 4 has a carbon-carbon unsaturated double bond such as a (meth) acryloxyalkyl group, and generates a radical upon irradiation with actinic rays.
- a carbon-carbon unsaturated double bond such as a (meth) acryloxyalkyl group
- the component (a) can be synthesized by addition polymerization of tetracarboxylic dianhydride and diamine. Moreover, after making the tetracarboxylic dianhydride represented by Formula (10) into a diester derivative, it converts into the acid chloride represented by Formula (11), and makes it react with the diamine represented by Formula (12). Can be synthesized. These synthesis methods can be selected from known methods. (Where R 1 to R 4 are the same as in formula (1).)
- the tetracarboxylic acid mono (di) ester dichloride represented by the general formula (11) includes a tetracarboxylic dianhydride represented by the general formula (10) and a compound represented by the following general formula (13).
- R 22 in the formula is an alkyl group, a cycloalkyl group, or a monovalent organic group having a carbon-carbon unsaturated double bond.
- the chlorinating agent is usually synthesized by reacting 2 mole equivalents with respect to 1 mol of tetracarboxylic acid mono (di) ester in the presence of twice as much basic compound as the chlorinating agent.
- the equivalent weight may be adjusted as appropriate.
- the equivalent amount of the chlorinating agent is preferably 1.5 to 2.5 molar equivalents, more preferably 1.6 to 2.4 molar equivalents, and even more preferably 1.7 to 2.3 molar equivalents. If the amount is less than 1.5 molar equivalents, the molecular weight of the polyimide precursor is low, so that low stress after curing may not be sufficiently exhibited.
- the polyimide precursor May remain in the polyimide precursor in a large amount, and the electrical insulation of the cured polyimide may be reduced.
- the basic compound for example, pyridine, 4-dimethylaminopyridine, triethylamine and the like can be used, and the amount is preferably 1.5 to 2.5 times the amount of the chlorinating agent, and 1.7 to 2. The amount is more preferably 4 times, and more preferably 1.8 to 2.3 times. If the amount is less than 1.5 times, the molecular weight of the polyimide precursor is low, and the stress after curing may not be sufficiently reduced. If the amount is more than 2.5 times, the polyimide precursor may be colored.
- the tetracarboxylic dianhydride and the compound of the general formula (13) may be reacted in the presence of a basic catalyst.
- the basic catalyst include 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene and the like.
- examples of the alcohol include alcohols in which R 22 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms.
- examples of the monovalent organic group having a carbon-carbon unsaturated double bond represented by R 22 include a (meth) acryloxyalkyl group having an alkyl group having 1 to 10 carbon atoms.
- the weight average molecular weight of the polyimide precursor is preferably 10,000 to 100,000, more preferably 15,000 to 100,000, and still more preferably 20,000 to 85,000. From the viewpoint of sufficiently reducing the stress after curing, the weight average molecular weight is preferably 10,000 or more. From the viewpoint of increasing the solubility in a solvent and preventing the viscosity of the solution from increasing and handling properties from decreasing, it is preferably 100,000 or less.
- a weight average molecular weight can be measured by the gel permeation chromatography method, and can be calculated
- the molar ratio of tetracarboxylic dianhydride and diamine in the synthesis of the polyimide precursor is usually 1.0, but in order to control the molecular weight and the terminal residue, the molar ratio is in the range of 0.7 to 1.3. Ratio may be used. When the molar ratio is 0.7 or less or 1.3 or more, the molecular weight of the obtained polyimide precursor becomes small, and the low stress property after curing may not be sufficiently exhibited.
- the addition polymerization and condensation reaction, and the synthesis of the diester derivative and acid chloride are preferably performed in an organic solvent.
- an organic solvent a polar solvent that completely dissolves the polyimide precursor to be synthesized is preferable.
- ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons and the like can also be used.
- the resin composition of the present invention is a compound represented by the following general formula (2) as component (b) from the viewpoint of negative pattern forming properties. Containing.
- the component (b) reacts with the unsaturated double bond of the components (b) or (a) by radicals generated by actinic ray irradiation.
- R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R 6 is a monovalent organic group not containing a (meth) acryl group.
- R 6 in the formula (2) is preferably a monovalent organic group not containing a (meth) acryl group, a hydroxyl group, or an amino group.
- the monovalent organic group not containing the (meth) acryl group of R 6 include a group having a piperidine skeleton, a substituted or unsubstituted aminoalkyl group, a group having a polycyclic hydrocarbon group, and an aromatic hydrocarbon group. And a group having a nitrogen-containing heterocyclic group, a linear or branched alkyl polyethylene glycol residue, a cyclic alkyl polyethylene glycol residue, a substituted or unsubstituted phenyl polyethylene glycol residue, and the like.
- the compound represented by the general formula (2) can be used without particular limitation.
- Polycyclic hydrocarbon group-containing (meth) acrylates such as ethyl (meth) acrylate and tricyclodecane dimethylol (meth) acrylate;
- Aromatic hydrocarbon group-containing (meth) acrylates such as benzyl (meth) acrylate;
- Nitrogen-containing heterocyclic group-containing (meth) acrylates such as 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate; 2-ethylhexyl polyethylene
- the component (b) can also be used in combination with one having a vinyl group such as vinyl norbornene or vinyl norbornane.
- a compound having a molecular weight of 300 or less is preferable to use. More specifically, it is preferably in the range of 100 to 300, more preferably in the range of 110 to 300, still more preferably in the range of 120 to 280, and particularly preferably in the range of 130 to 260. A range of 150 to 255 is extremely preferable.
- a linear or branched alkyl polyethylene glycol mono (meth) acrylate having a molecular weight of 300 or less an aromatic hydrocarbon group-containing (meth) acrylate, a polycyclic hydrocarbon group-containing (meth) acrylate,
- the nitrogen-containing heterocyclic group-containing (meth) acrylates and substituted or unsubstituted phenyl polyethylene glycol mono (meth) acrylates those having a molecular weight of 300 or less are preferred, and among the nonylphenoxypolyethylene glycol (meth) acrylates, the molecular weight is 300.
- dicyclopentenyloxyethyl (meth) acrylate dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate or 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate are photocured Excellent In, more preferable.
- dicyclopentenyloxyethyl (meth) acrylate dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate) or 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate 2- (1,2-cyclohexacarboximido) ethyl acrylate is more preferable.
- the component (b) is preferably contained in an amount of 1 to 100 parts by weight, more preferably 3 to 80 parts by weight, and further preferably 5 to 50 parts by weight with respect to 100 parts by weight of the component (a).
- the content is preferably 5 to 25 parts by mass, particularly preferably 5 to 15 parts by mass.
- the blending amount is preferably 1 to 100 parts by weight, more preferably 2 to 75 parts by weight, with respect to 100 parts by weight of component (a).
- the amount is more preferably 5 parts by mass, and particularly preferably 5 to 30 parts by mass. If the amount is 1 part by mass or more, good photosensitive properties can be imparted.
- Component Compound that generates radicals by actinic rays
- At least a part of R 3 and / or R 4 in the polyimide precursor of component is a monovalent organic group having a carbon-carbon unsaturated double bond.
- a photosensitive resin composition can be obtained by dissolving it in a solvent in combination with a compound that generates radicals when irradiated with actinic rays.
- component (c) examples include N, N′-tetraalkyl-4,4′-, such as an oxime ester compound, benzophenone, and N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone) described later.
- Fragrances such as diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1
- aromatic rings such as aromatic ketones and alkylanthraquinones
- benzoin ether compounds such as benzoin alkyl ether
- benzoin compounds such as benzoin and alkylbenzoin
- benzyl derivatives such as benzyldimethyl ketal.
- an oxime ester compound is preferable because it is excellent in sensitivity and gives a good pattern.
- the oxime ester compound is represented by the compound represented by the following formula (7), the compound represented by the following formula (8), or the following general formula (9) from the viewpoint of obtaining good sensitivity and a remaining film ratio.
- a compound is preferred.
- R and R 1 each represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a phenyl group, or a tolyl group, and an alkyl group having 1 to 8 carbon atoms, carbon It is preferably a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group, more preferably an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group.
- R 2 represents a hydrogen atom, —OH, —COOH, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH, hydrogen It is preferably an atom, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH, a hydrogen atom, —O (CH 2 ) More preferably, it is 2 OH or —COO (CH 2 ) 2 OH.
- the aromatic ring may have a substituent group other than R 2.
- each R 3 independently represents an alkyl group having 1 to 6 carbon atoms, and is preferably a propyl group.
- R 4 represents —NO 2 or —C ( ⁇ O) Ar (wherein Ar represents an aryl group), and Ar is preferably a tolyl group.
- R 5 and R 6 each represent an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, and preferably a methyl group, a phenyl group or a tolyl group.
- the aromatic ring may have a substituent other than R 4 .
- R 7 represents an alkyl group having 1 to 6 carbon atoms, and is preferably an ethyl group.
- R 8 is an organic group having an acetal bond, and is preferably a substituent corresponding to R 8 included in the compound represented by the following formula (9-1).
- R 9 and R 10 each represent an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, preferably a methyl group, a phenyl group or a tolyl group, and more preferably a methyl group.
- the aromatic ring may have a substituent other than R 8 .
- Examples of the compound represented by the above formula (7) include a compound represented by the following formula (7-1) and a compound represented by the following formula (7-2).
- the compound represented by the following formula (7-1) is available as IRGACURE OXE-01 (trade name, manufactured by BASF Corporation).
- Examples of the compound represented by the above formula (8) include a compound represented by the following formula (8-1). This compound is available as DFI-091 (trade name, manufactured by Daitokemix Co., Ltd.).
- Examples of the compound represented by the above formula (9) include a compound represented by the following formula (9-1). It is available as Adekaoptomer N-1919 (trade name, manufactured by ADEKA Corporation).
- oxime ester compounds the following compounds are preferably used.
- the content of the component (c) is preferably 0.01 to 30 parts by mass, more preferably 0.03 to 20 parts by mass with respect to 100 parts by mass of the component (a).
- the amount is more preferably from 05 to 15 parts by mass, and particularly preferably from 0.5 to 10 parts by mass.
- the blending amount is 0.01 parts by mass or more, the exposed part is sufficiently cross-linked, and the photosensitive characteristics are further improved, and when it is 30 parts by mass or less, the heat resistance of the cured film tends to be improved.
- the resin composition of the present invention contains an organosilane compound as the component (d) in order to improve adhesion to a cured silicon substrate or the like. Also good.
- Organic silane compounds include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxypropyltrimethoxy.
- (E) Component Solvent A solvent can be used as the component (e) in the resin composition of the present invention, if necessary.
- the component (e) is preferably a polar solvent that completely dissolves the polyimide precursor, such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexa
- polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexa
- Examples include methylphosphoric triamide, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, propylene carbonate, ethyl lactate, 1,3-di
- the content of the component (e) is not particularly limited, but is usually preferably 50 to 1000 parts by mass, more preferably 100 to 500 parts by mass with respect to 100 parts by mass of the component (a).
- the resin composition of the present invention may contain a radical polymerization inhibitor or a radical polymerization inhibitor in order to ensure good storage stability.
- radical polymerization inhibitors or radical polymerization inhibitors include p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, Examples thereof include N-phenyl-2-naphthylamine, cuperone, 2,5-toluquinone, tannic acid, parabenzylaminophenol, nitrosamines and the like. These may be used alone or in combination of two or more.
- the blending amount when containing a radical polymerization inhibitor or radical polymerization inhibitor is preferably 0.01 to 30 parts by mass, and 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyimide precursor. More preferred is 0.05 to 5 parts by mass. If the blending amount is 0.01 parts by mass or more, the storage stability becomes better, and if it is 30 parts by mass or less, the heat resistance of the cured film can be further improved.
- the resin composition of the present invention may contain a bifunctional or higher photopolymerizable compound as long as the effects of the present invention are not impaired.
- the bifunctional or higher functional photopolymerizable compound include tetraethylene glycol dimethacrylate.
- the amount of the bifunctional or higher photopolymerizable compound is preferably 1 to 10 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the polyimide precursor. More preferably, it is 1 to 5 parts by mass.
- the resin composition of the present invention is substantially composed of the components (a) to (c) and optionally at least one of the components (d), (e), a radical polymerization inhibitor and a radical polymerization inhibitor. It may be composed of only these components. “Substantially” means that the above components are 95% by mass or more, or 98% by mass or more with respect to the entire composition.
- the cured film of the present invention is formed from the above resin composition.
- the pattern cured film of this invention is a pattern cured film formed with the above-mentioned resin composition.
- the method for producing a cured pattern film of the present invention includes a step of applying the above resin composition on a substrate and drying to form a coating film, and developing the coating film after irradiating the coating film formed in the above step with actinic rays. It includes a step of obtaining a pattern resin film and a step of heat-treating the pattern resin film.
- the manufacturing method of the pattern cured film of this invention includes the process of apply
- the method for applying the resin composition on the substrate include an immersion method, a spray method, a screen printing method, and a spin coating method.
- the base material include a silicon wafer, a metal substrate, and a ceramic substrate.
- a non-adhesive coating film can be formed by removing the solvent by heating.
- an apparatus such as DATAPLATE (Digital Hotplate) manufactured by PMC Co., Ltd. can be used.
- the drying temperature is preferably 90 to 130 ° C., and the drying time is preferably 100 to 400 seconds.
- the manufacturing method of the pattern cured film of this invention includes the process of developing after irradiating the actinic ray to the coating film formed at the said process, and obtaining a pattern resin film. Thereby, a resin film on which a desired pattern is formed can be obtained.
- the resin composition of the present invention is suitable for i-line exposure, ultraviolet rays, far ultraviolet rays, visible rays, electron beams, X-rays, and the like can be used as the active rays to be irradiated.
- the developer is not particularly limited, but is a flame retardant solvent such as 1,1,1-trichloroethane, an aqueous alkali solution such as an aqueous solution of sodium carbonate and an aqueous solution of tetramethylammonium hydroxide, N, N-dimethylformamide, dimethyl sulfoxide, Good solvents such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, cyclopentanone, ⁇ -butyrolactone, and acetic acid esters, and these good solvents and poor solvents such as lower alcohols, water, and aromatic hydrocarbons A mixed solvent or the like is used. After development, rinsing with a poor solvent is performed as necessary.
- a flame retardant solvent such as 1,1,1-trichloroethane
- an aqueous alkali solution such as an aqueous solution of sodium carbonate and an aqueous solution of tetramethylammonium hydroxide
- the manufacturing method of the pattern cured film of this invention includes the process of heat-processing a pattern resin film.
- This heat treatment can be performed using an apparatus such as a vertical diffusion furnace manufactured by Koyo Lindberg, and is preferably performed at a heating temperature of 80 to 400 ° C., and the heating time is preferably 5 to 300 minutes.
- imidation of the polyimide precursor in the resin composition can be advanced to obtain a patterned cured film containing a polyimide resin.
- the heating temperature is more preferably 250 to 300 ° C, further preferably 260 to 290 ° C.
- the heating time is more preferably 120 to 280 minutes, and further preferably 180 to 270 minutes.
- the method for producing a cured film of the present invention includes a step of applying a resin composition on a substrate and drying to form a coating film, and a step of heat-treating the coating film.
- the process of forming a coating film and the process of heat-treating can be carried out in the same manner as in the method for producing a patterned cured film.
- the cured film of the present invention may be a cured film that is not patterned.
- FIG. 1 is a schematic cross-sectional view of a semiconductor device having a rewiring structure according to an embodiment of the present invention.
- the semiconductor device of this embodiment has a multilayer wiring structure.
- An Al wiring layer 2 is formed on the interlayer insulating layer (interlayer insulating film) 1, an insulating layer (insulating film) 3 (for example, a P-SiN layer) is further formed on the Al wiring layer 2, and a surface protective layer of the device A (surface protective film) 4 is formed.
- a rewiring layer 6 is formed from the pad portion 5 of the wiring layer 2 and extends to an upper portion of the core 8 which is a connection portion with a conductive ball 7 formed of solder, gold or the like as an external connection terminal. Further, a cover coat layer 9 is formed on the surface protective layer 4. The rewiring layer 6 is connected to the conductive ball 7 through the barrier metal 10, and a collar 11 is provided to hold the conductive ball 7. When a package having such a structure is mounted, an underfill 12 may be interposed in order to further relieve stress.
- the cured film or pattern cured film of the present invention can be used for so-called package applications such as the cover coat layer 9, the rewiring core 8, the ball collar 11 such as solder, the underfill 12, and the like.
- the cured film or pattern cured film of the present invention has the cured film or pattern cured film of the present invention because it has excellent adhesion to a metal layer, a sealant, and the like, as well as excellent copper migration resistance and a high stress relaxation effect.
- the semiconductor element is excellent in reliability.
- the electronic component of the present invention is particularly limited except that it has a cover coat using the cured film or pattern cured film of the present invention, a core for rewiring, a ball collar such as solder, an underfill used in flip chips, etc. Instead, it can take various structures.
- Synthesis Example 3 Synthesis of 4,4′-oxydiphthalic acid diester
- 49.634 g (160 mmol) of 4,4′-oxydiphthalic acid, 44.976 g (328 mmol) of 2-hydroxyethyl methacrylate and hydroquinone 0 were dried in a dryer at 160 ° C. for 24 hours.
- 176 g was dissolved in 378 g of N-methylpyrrolidone, and after adding a catalytic amount of 1,8-diazabicycloundecene, the mixture was stirred at room temperature (25 ° C.) for 48 hours to perform esterification, and 4,4′- An oxydiphthalic acid-hydroxyethyl methacrylate diester (ODPA (HEMA)) solution was obtained.
- ODPA 4,4′- An oxydiphthalic acid-hydroxyethyl methacrylate diester
- Synthesis Example 4 (Synthesis of Polymer 1) In a 0.5 liter flask equipped with a stirrer and a thermometer, 195.564 g of the PMDA (HEMA) solution obtained in Synthesis Example 1 and 58.652 g of the ODPA (HEMA) solution obtained in Synthesis Example 3 were placed. Under ice cooling, 25.9 g (217.8 mmol) of thionyl chloride was added dropwise using a dropping funnel so that the reaction solution temperature was kept at 10 ° C. or lower. After the addition of thionyl chloride was completed, the reaction was carried out for 2 hours under ice cooling to obtain a solution of PMDA (HEMA) and ODPA (HEMA) acid chloride.
- polymer 1 (pyromellitic acid-hydroxyethyl methacrylate diester / 4,4′-oxydiphthalic acid-hydroxyethyl methacrylate diester / 2,2′-bis (trifluoromethyl) benzidine condensation polymer (PMDA / ODPA / TFMB)). And 1 g of polymer 1 is dissolved in 1.5 g of N-methylpyrrolidone, applied onto a glass substrate by spin coating, and heated on a hot plate at 100 ° C. for 180 seconds to evaporate the solvent to form a 20 ⁇ m thick coating film. did. At this time, the i-line transmittance of the obtained coating film was 30%.
- Synthesis Example 5 (Synthesis of polymer 2) 282.125 g of the s-BPDA (HEMA) solution obtained in Synthesis Example 2 was placed in a 0.5 liter flask equipped with a stirrer and a thermometer, and then 25.9 g (217.8 mmol) of thionyl chloride under ice-cooling. ) was dropped using a dropping funnel so that the reaction solution temperature was kept at 10 ° C. or lower. After completion of the dropwise addition of thionyl chloride, the mixture was stirred for 1 hour under ice-cooling to obtain a solution of s-BPDA (HEMA) chloride.
- HEMA s-BPDA
- polymer 2 (3,3′-4,4′-biphenyltetracarboxylic acid-hydroxyethyl methacrylate diester / 2,2′-bis (trifluoromethyl) benzidine condensation polymer (BPDA / TFMB)).
- 1 g of polymer 2 is dissolved in 1.5 g of N-methylpyrrolidone, applied onto a glass substrate by spin coating, and heated on a hot plate at 100 ° C. for 180 seconds to evaporate the solvent to form a 20 ⁇ m thick coating film. did. At this time, the i-line transmittance of the obtained coating film was 60%.
- Synthesis Example 6 (Synthesis of Polymer 3)
- 244.455 g of the PMDA (HEMA) solution obtained in Synthesis Example 1 was placed, and then 25.9 g (217.8 mmol) of thionyl chloride was added under ice cooling.
- the reaction solution was dropped using a dropping funnel so that the temperature of the reaction solution was kept at 10 ° C. or lower.
- stirring was performed for 1 hour under ice cooling to obtain a solution of PMDA (HEMA) chloride.
- Polymer 3 pyromellitic acid-hydroxyethyl methacrylate diester / 2,2'-bis (trifluoromethyl) benzidine condensation polymer (PMDA / TFMB)
- PMDA / TFMB 2,2'-bis (trifluoromethyl) benzidine condensation polymer
- Synthesis Example 7 (Synthesis of polymer 4) In a 0.5 liter flask equipped with a stirrer and a thermometer, 169.275 g of the s-BPDA (HEMA) solution obtained in Synthesis Example 2 and 72.7776 g of the ODPA (HEMA) solution obtained in Synthesis Example 3 were placed. Thereafter, 25.9 g (217.8 mmol) of thionyl chloride was added dropwise using a dropping funnel while maintaining the reaction solution temperature at 10 ° C. or lower under ice cooling. After completion of the dropwise addition of thionyl chloride, the mixture was stirred for 1 hour under ice cooling to obtain a chloride solution of s-BPDA (HEMA) and ODPA (HEMA).
- HEMA s-BPDA
- HEMA ODPA
- the polymer 4 (3,3′-4,4′-biphenyltetracarboxylic acid-hydroxyethyl methacrylate diester / 4,4′-oxydiphthalic acid-hydroxyethyl methacrylate diester / 2,2′-dimethylbenzidine condensation polymer (BPDA / ODPA / DMB)).
- 1 g of polymer 4 is dissolved in 1.5 g of N-methylpyrrolidone, applied onto a glass substrate by spin coating, and heated on a hot plate at 100 ° C. for 180 seconds to evaporate the solvent to form a 20 ⁇ m thick coating film. did. At this time, the i-line transmittance of the obtained coating film was 8%.
- Synthesis Example 8 (Synthesis of polymer 5) In a 0.5 liter flask equipped with a stirrer and a thermometer, 181.944 g of the ODPA (HEMA) solution obtained in Synthesis Example 3 was placed, and then 25.9 g (217.8 mmol) of thionyl chloride was added under ice cooling. The reaction solution was dropped using a dropping funnel so that the temperature of the reaction solution was kept at 10 ° C. or lower. After completion of the dropwise addition of thionyl chloride, the mixture was stirred for 1 hour under ice cooling to obtain a solution of ODPA (HEMA) chloride.
- HEMA ODPA
- Polymer 5 (4,4′-oxydiphthalic acid-hydroxyethyl methacrylate diester / 2,2′-dimethylbenzidine condensation polymer (ODPA / DMB)). 1 g of polymer 5 is dissolved in 1.5 g of N-methylpyrrolidone, applied onto a glass substrate by spin coating, and heated on a hot plate at 100 ° C. for 180 seconds to evaporate the solvent to form a 20 ⁇ m thick coating film. did. At this time, the i-ray transmittance of the obtained coating film was 40%.
- Comparative Example 1 Components (a) to (c) and an adhesion aid were dissolved in N-methylpyrrolidone with the formulation shown in Table 1 to prepare a resin composition.
- Table 1 the numbers in parentheses in each column of the component (b), the component (c), and the adhesion assistant indicate the amount added (parts by mass) relative to 100 parts by mass of the component (a).
- N-methylpyrrolidone was used as a solvent, and the amount used was 1.5 times (150 parts by mass) with respect to 100 parts by mass of component (a).
- component (c) the following 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] (IRGACURE OXE-01 manufactured by BASF Corp.) ) was used.
- bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane manufactured by Gelest Co., Ltd., SIB-1140 was used as an adhesion assistant.
- Table 1 shows the results of measuring the photosensitive properties (residual film ratio, resolution) during film formation for the resin compositions prepared in Examples and Comparative Examples.
- the evaluation method is as follows.
- the resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes to volatilize the solvent, and a coating film having a thickness of 10 ⁇ m was obtained.
- the coating film obtained by the same method was exposed to 200 mJ / cm 2 in terms of i-line using an i-line stepper FPA-3000iW manufactured by Canon Inc. through a photomask.
- the remaining film ratio was calculated by the method of the following formula (1).
- the minimum value of the mask size of the line and space pattern formed when the obtained coating film was exposed to 400 mJ / cm 2 in terms of i-line through a photomask was evaluated as the resolution.
- the component (a) is the following compound.
- P1 Polymer 1 synthesized in Synthesis Example 4 (PMDA / ODPA / TFMB)
- P2 Polymer 2 synthesized in Synthesis Example 5
- P3 Polymer 3 synthesized in Synthesis Example 6
- P4 Polymer 4 synthesized in Synthesis Example 7
- BPDA / ODPA / DMB Polymer 5 synthesized in Synthesis Example 8
- the component (b) is a compound represented by the following structural formula.
- b2 Dicyclopentenyloxyethyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., FA-512M)
- b3 Dicyclopentanyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., FA-513M)
- b4 benzyl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., BzMA)
- b5 2- (1,2-cyclohexacarboximido) ethyl acrylate (manufactured by Toagosei Co., Ltd., M-140)
- b ′ Tetraethylene glycol dimethacrylate (manufactured by Sartomer
- the resin compositions of Examples 1 to 9 use the bifunctional tetraethylene glycol dimethacrylate of Comparative Example 1, even if monofunctional (meth) acrylate is used as component (b). It has pattern characteristics comparable to those of conventional resin compositions.
- the present inventors faced the problem that when the heat curing temperature is as low as 300 ° C. or lower, outgas from the polyimide film increases in a vacuum process such as etching of the electrode portion after the polyimide cured film formation process. If outgas is generated during the process, the chamber is contaminated, which is a problem. From the viewpoint of outgas generation, the embodiments shown in Examples 10 to 12 below are preferable.
- Example 10 (A) 100 parts by mass of polymer 1, (b) 10 parts by mass of 2- (1,2-cyclohexacarboximide) ethyl acrylate (manufactured by Toa Gosei Co., Ltd., M-140, molecular weight 251), (c) 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] (IRGACURE OXE-01 manufactured by BASF Corp.), 2 parts by mass, bis (2-hydroxyethyl) ) -3-aminopropyltriethoxysilane (manufactured by Gelest Co., Ltd., SIB-1140) (3 parts by mass) was dissolved in N-methylpyrrolidone (solvent 150 parts by mass) to prepare a resin composition. About the prepared resin composition, the photosensitive characteristic (residual film rate, resolution) at the time of film-forming, the stress after hardening, and the out
- the resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes to volatilize the solvent, and a coating film having a thickness of 10 ⁇ m was obtained.
- the coating film obtained by the same method was exposed to 200 mJ / cm 2 in terms of i-line using an i-line stepper FPA-3000iW manufactured by Canon Inc. through a photomask.
- the obtained resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes, and the solvent was evaporated to obtain a coating film having a thickness of 10 ⁇ m after curing. .
- the residual stress of the cured polyimide film was 22 MPa when measured at room temperature using a thin film stress measuring apparatus FLX-2320 manufactured by KLA Tencor Corporation.
- FIG. 2 (a) shows the measurement results.
- the sum of the peak area values was taken as the total amount of outgas.
- the sum of the peak area values was 38,375,993, and when the sum of the peak area values of Comparative Example 2 described later was 1, it was about 0.26, and the outgas was sufficiently reduced.
- Example 11 The resin composition was the same as in Example 10 except that 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] in (c) was changed to the following compound: Articles were prepared and evaluated.
- Example 11 the residual film rate was 95%, the resolution was 7 ⁇ m, and the residual stress was 22 MPa.
- the sum of peak area values in pyrolysis gas chromatograph mass spectrometry is 58,315,432, and when the sum of peak area values in Comparative Example 2 described later is 1, it is about 0.39, Outgas was sufficiently reduced.
- Example 12 Furthermore, a resin composition was prepared and evaluated in the same manner as in Example 10 except that 5 parts by mass of tetraethylene glycol dimethacrylate (manufactured by Sartomer Co., Ltd., TEGDMA) was added.
- the residual film ratio was 95%, the resolution was 7 ⁇ m, and the residual stress was 22 MPa.
- the sum of peak area values in pyrolysis gas chromatograph mass spectrometry is 67,924,419. When the sum of peak area values in Comparative Example 2 described later is 1, the value is about 0.45 and the outgas is sufficient. It was reduced.
- Comparative Example 2 A resin composition was prepared and evaluated in the same manner as in Example 10 except that 2- (1,2-cyclohexacarboximido) ethyl acrylate in (b) was changed to tetraethylene glycol dimethacrylate (molecular weight 306). .
- the residual film ratio was 92%, the resolution was 8 ⁇ m, and the residual stress was 22 MPa.
- the measurement result of pyrolysis gas chromatograph mass spectrometry is shown in FIG. The sum of the peak area values was 149,526,749.
- Examples 10 to 12 were excellent in pattern properties, and in addition, the amount of outgas generated was small.
- Example 10 In order to investigate the cause of contamination of the chamber when the cured film after low-temperature curing was used in a vacuum process such as etching of the electrode portion, an experiment was conducted to measure the outgas emitted from the polyimide film.
- Example 10 and Comparative Example 2 a polyimide film was prepared in the same manner as the measurement of residual stress, and a cured film was used for 1 minute using a thermal decomposition apparatus (Frontier LAB PY2020D, manufactured by Frontier Laboratories Co., Ltd.). After the temperature was raised to 375 ° C.
- the generated gas was GC / MS (manufactured by Agilent Technologies, Inc., model number: GC / MS 5973 MSD, carrier gas: helium, 0.9 mL / min, column : UADTM-2.5N, Oven: 350 ° C.) for analysis.
- the measurement result of the comparative example 2 is shown to Fig.3 (a).
- the broken line indicates polymer 1 and the solid line indicates TEGDMA.
- the measurement result of Example 10 is shown in FIG.3 (b).
- the broken line indicates polymer 1 and the solid line indicates M-140.
- TEGDMA in the cured film of Comparative Example 2 was gasified at around 300 ° C., but M-140 in the cured film of Example 10 was hardly gasified at 300 ° C. or higher.
- a conventional curing temperature of about 370 ° C. since the curing temperature is higher than the glass transition temperature of the cured film, the cured film once becomes a rubber-like region and releases a cross-linking agent as an outgas.
- the curing temperature is lower than the glass transition temperature of the cured film, the cured film remains in a glass state, and the cured film contains an outgas component. When this film is exposed to a high vacuum, the contained crosslinking agent. Is assumed to be generated as an outgas component.
- Example 1 In order to investigate the cause of contamination of the chamber when the cured film after low-temperature curing was used in a vacuum process such as etching of the electrode portion, an experiment was conducted to measure the outgas emitted from the polyimide film.
- Example 1 and Comparative Example 2 a polyimide film was prepared in the same manner as the residual stress measurement, and a cured film was used at a temperature of 15 ° C. per minute using a thermal decomposition apparatus (Frontier LAB PY2020D, manufactured by Frontier Laboratories). After the temperature was raised to 375 ° C.
- the generated gas was GC / MS (manufactured by Agilent Technologies, model number: GC / MS 5973 MSD, carrier gas: helium, 0.9 mL / min, column: UADTM-2.5N , Oven: 350 ° C.) for analysis.
- the measurement result of the comparative example 2 is shown to Fig.3 (a).
- the broken line indicates polymer 1 and the solid line indicates TEGDMA.
- the measurement result of Example 1 is shown in FIG.3 (b).
- the broken line indicates polymer 1 and the solid line indicates M-140.
- TEGDMA in the cured film of Comparative Example 2 was gasified at around 300 ° C., but M-140 in the cured film of Example 1 was hardly gasified at 300 ° C. or higher.
- a conventional curing temperature of about 370 ° C. since the curing temperature is higher than the glass transition temperature of the cured film, the cured film once becomes a rubber-like region and releases a cross-linking agent as an outgas.
- the curing temperature is lower than the glass transition temperature of the cured film, the cured film remains in a glass state, and the cured film contains an outgas component. When this film is exposed to a high vacuum, the contained crosslinking agent. Is assumed to be generated as an outgas component.
- the resin composition of the present invention can be used for so-called package applications such as cover coat materials, rewiring core materials, ball color materials such as solder, underfill materials, etc., which form electronic components such as semiconductor devices. .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Materials For Photolithography (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
また、芳香族テトラカルボン酸二無水物を芳香族ジアミンと反応させて得られるポリアミド酸に、感光基を有するイソシアネート化合物を結合させたポリイミド前駆体も知られている(例えば、特許文献2参照)。 Conventionally, as a polyimide precursor, an aromatic tetracarboxylic dianhydride is reacted with an olefin unsaturated alcohol to synthesize an olefin aromatic tetracarboxylic acid diester, and this compound and a diamine are subjected to a dehydration condensation reaction using carbodiimides. There is known a polyimide precursor that is polymerized by the above-described method and has a photosensitive group introduced by a covalent bond (see, for example, Patent Document 1).
Also known is a polyimide precursor in which an isocyanate compound having a photosensitive group is bonded to a polyamic acid obtained by reacting an aromatic tetracarboxylic dianhydride with an aromatic diamine (see, for example, Patent Document 2). .
ところが本発明者らの検討の結果、単官能(メタ)アクリレート化合物を用いた場合も、二官能以上の(メタ)アクリレート化合物を使用した場合と同等の感光特性を有する感光性樹脂組成物と硬化膜が得られることを見出した。 In this technical field, it has been thought that a crosslinking reaction between polymer chains does not proceed unless it is a bifunctional or higher functional (meth) acrylate compound, and it does not become insoluble in an organic solvent used as a developer. .
However, as a result of the study by the present inventors, even when a monofunctional (meth) acrylate compound is used, a photosensitive resin composition having a photosensitive property equivalent to that when a bifunctional or higher (meth) acrylate compound is used and curing It was found that a film was obtained.
1.下記(a)、(b)及び(c)成分を含有する樹脂組成物。
(a)下記一般式(1)で表される構造単位を有するポリイミド前駆体
(b)下記一般式(2)で表される化合物
(c)活性光線照射によりラジカルを発生する化合物
2.前記(b)成分が、(a)成分100質量部に対して、1~100質量部含有する1に記載の樹脂組成物。
3.前記式(2)中のR6は(メタ)アクリル基、ヒドロキシル基、及びアミノ基を含まない一価の有機基である1又は2に記載の樹脂組成物。
4.前記(b)成分が、分子量が300以下の単官能光重合性化合物である1~3のいずれかに記載の樹脂組成物。
5.前記式(1)中のR3及びR4の少なくとも一方が、炭素炭素不飽和二重結合を有する一価の有機基である、1~4のいずれかに記載の樹脂組成物。
6.前記式(1)中のR1が、下記一般式(2a)~(2e)で表される4価の有機基のいずれかである1~5のいずれかに記載の樹脂組成物。
7.前記式(1)中のR2が、下記一般式(5)又は(6)で表わされる2価の有機基である1~6のいずれかに記載の樹脂組成物。
8.前記(c)成分が、オキシムエステル化合物である1~7のいずれかに記載の樹脂組成物。
9.1~8のいずれかに記載の樹脂組成物から形成される硬化膜。
10.1~8のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、塗膜を加熱処理する工程とを含む、硬化膜の製造方法。
11.1~8のいずれかに記載の樹脂組成物から形成されるパターン硬化膜。
12.1~8のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記塗膜に活性光線を照射後、現像してパターン樹脂膜を得る工程と、前記パターン樹脂膜を加熱処理する工程とを含む、パターン硬化膜の製造方法。
13.9に記載の硬化膜又は11に記載のパターン硬化膜を有する電子部品。 According to the present invention, the following resin composition, a method for producing a cured film using the same, and the like are provided.
1. A resin composition containing the following components (a), (b) and (c).
(A) A polyimide precursor having a structural unit represented by the following general formula (1) (b) A compound represented by the following general formula (2) (c) A compound that generates radicals upon irradiation with actinic rays
2. 2. The resin composition according to 1, wherein the component (b) is contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the component (a).
3. Formula (2) R 6 is (meth) acrylic group, a hydroxyl group, and 1 or 2 resin composition according to a monovalent organic group containing no amino group in.
4). 4. The resin composition according to any one of 1 to 3, wherein the component (b) is a monofunctional photopolymerizable compound having a molecular weight of 300 or less.
5. 5. The resin composition according to any one of 1 to 4, wherein at least one of R 3 and R 4 in the formula (1) is a monovalent organic group having a carbon-carbon unsaturated double bond.
6). 6. The resin composition according to any one of 1 to 5, wherein R 1 in the formula (1) is any one of tetravalent organic groups represented by the following general formulas (2a) to (2e).
7. 7. The resin composition according to any one of 1 to 6, wherein R 2 in the formula (1) is a divalent organic group represented by the following general formula (5) or (6).
8). 8. The resin composition according to any one of 1 to 7, wherein the component (c) is an oxime ester compound.
A cured film formed from the resin composition according to any one of 9.1 to 8.
10. A method for producing a cured film, comprising a step of applying the resin composition according to any one of 10.1 to 8 on a substrate and drying to form a coating film, and a step of heat-treating the coating film.
11. A cured pattern film formed from the resin composition according to any one of 11.1 to 8.
A step of applying the resin composition according to any one of 12.1 to 8 on a substrate and drying to form a coating film; and a step of irradiating the coating film with actinic rays and developing to obtain a patterned resin film And a step of heat-treating the patterned resin film.
An electronic component having the cured film according to 13.9 or the patterned cured film according to 11.
本発明の樹脂組成物は下記(a)、(b)及び(c)成分を含有する。
(a)下記一般式(1)で表される構造単位を有するポリイミド前駆体
(b)下記一般式(2)で表される化合物
(c)活性光線照射によりラジカルを発生する化合物
The resin composition of the present invention contains the following components (a), (b) and (c).
(A) A polyimide precursor having a structural unit represented by the following general formula (1) (b) A compound represented by the following general formula (2) (c) A compound that generates radicals upon irradiation with actinic rays
本発明の樹脂組成物は、(a)下記一般式(1)で表される構造単位を有するポリイミド前駆体を含有する。
n=3である。) The “divalent group not conjugated with the benzene ring to be bonded” of X and Y in the general formula (2d) is —O—, —S—, or a divalent group represented by the following formula.
n = 3. )
本発明で使用されるジアミンとしては、特に限定はないが、例えば、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン等の芳香環を有するジアミン、1,3-ジアミノ-4-ヒドロキシベンゼン、1,3-ジアミノ-5-ヒドロキシベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン等のヒドロキシル基と芳香環を有するジアミン、2,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2,5-ジアミノテレフタル酸、ビス(4-アミノ-3-カルボキシフェニル)メチレン、ビス(4-アミノ-3-カルボキシフェニル)エーテル、4,4’-ジアミノ-3,3’-ジカルボキシビフェニル、4,4’-ジアミノ-5,5’-ジカルボキシ-2,2’-ジメチルビフェニル等のカルボキシル基と芳香環を有するジアミン等が挙げられ、これらを単独で又は2種以上を組み合わせて使用してもよい。 Moreover, R < 2 > in General formula (1) is a structure originating in the diamine used as a raw material, for example.
The diamine used in the present invention is not particularly limited, and examples thereof include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfone, and 4,4′-diaminodiphenyl. Sulfide, benzidine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis (4-aminophenoxyphenyl) sulfone, bis (3-aminophenoxyphenyl) sulfone, bis ( Diamines having aromatic rings such as 4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-diamino-4-hydroxy Benzene, 1,3-diamino-5-hydroxybenzene, 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis (3-amino-4-hydroxyphenyl) propane, bis (4-amino-3 -Hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (4 -Amino-3-hydroxyphenyl) diamine having a hydroxyl group and an aromatic ring such as hexafluoropropane, 2,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2,5- Diaminoterephthalic acid, bis (4-amino-3-carboxyphenyl) methylene, bis (4-amino-3- Carboxyl groups and aromatic rings such as carboxyphenyl) ether, 4,4′-diamino-3,3′-dicarboxybiphenyl, 4,4′-diamino-5,5′-dicarboxy-2,2′-dimethylbiphenyl The diamine etc. which have these are mentioned, You may use these individually or in combination of 2 or more types.
R10~R17の1価の有機基としては、炭素数1~20のアルキル基(メチル基等)、炭素数1~20のハロゲン化アルキル基(トリフルオロメチル基等)、炭素数1~20のアルキル基を有するアルコキシ基(メトキシ基等)が挙げられる。
ハロゲン原子はフッ素原子であることが好ましい。
ハロゲン化アルキル基は、パーフルオロアルキル基であることが好ましい。
アルキル基及びハロゲン化アルキル基の炭素数は、1~6であることが好ましい。 In the formula, R 10 to R 17 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group, and at least one of R 10 to R 17 is a halogen atom or a halogenated alkyl group. R 18 and R 19 are each independently a halogen atom or a halogenated alkyl group.
Examples of the monovalent organic group represented by R 10 to R 17 include an alkyl group having 1 to 20 carbon atoms (such as a methyl group), a halogenated alkyl group having 1 to 20 carbon atoms (such as a trifluoromethyl group), and 1 to Examples thereof include an alkoxy group having 20 alkyl groups (such as a methoxy group).
The halogen atom is preferably a fluorine atom.
The halogenated alkyl group is preferably a perfluoroalkyl group.
The alkyl group and the halogenated alkyl group preferably have 1 to 6 carbon atoms.
炭化水素基の炭素数が1~10の(メタ)アクリロキシ基を含有する炭化水素基としては、アクリロキシエチル基、アクリロキシプロピル基、アクリロキシブチル基、メタクリロキシエチル基、メタクリロキシプロピル基、メタクリロキシブチル基等が挙げられる。 Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, 2-propyl group, n-butyl group, n-hexyl group, n-heptyl group, n-decyl group, and n-dodecyl group. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
Examples of the hydrocarbon group containing a (meth) acryloxy group having 1 to 10 carbon atoms in the hydrocarbon group include acryloxyethyl group, acryloxypropyl group, acryloxybutyl group, methacryloxyethyl group, methacryloxypropyl group, And a methacryloxybutyl group.
塩基性化合物としては、例えばピリジン、4-ジメチルアミノピリジン、トリエチルアミン等を用いることができ、塩素化剤に対して、1.5~2.5倍量用いることが好ましく、1.7~2.4倍量であることがより好ましく、1.8~2.3倍量であることがさらに好ましい。1.5倍量より少ないと、ポリイミド前駆体の分子量が低くなって、硬化後の応力が充分低下しない恐れがあり、2.5倍量より多いと、ポリイミド前駆体が着色する恐れがある。 The chlorinating agent is usually synthesized by reacting 2 mole equivalents with respect to 1 mol of tetracarboxylic acid mono (di) ester in the presence of twice as much basic compound as the chlorinating agent. In order to control the molecular weight of the polyimide precursor, the equivalent weight may be adjusted as appropriate. The equivalent amount of the chlorinating agent is preferably 1.5 to 2.5 molar equivalents, more preferably 1.6 to 2.4 molar equivalents, and even more preferably 1.7 to 2.3 molar equivalents. If the amount is less than 1.5 molar equivalents, the molecular weight of the polyimide precursor is low, so that low stress after curing may not be sufficiently exhibited. May remain in the polyimide precursor in a large amount, and the electrical insulation of the cured polyimide may be reduced.
As the basic compound, for example, pyridine, 4-dimethylaminopyridine, triethylamine and the like can be used, and the amount is preferably 1.5 to 2.5 times the amount of the chlorinating agent, and 1.7 to 2. The amount is more preferably 4 times, and more preferably 1.8 to 2.3 times. If the amount is less than 1.5 times, the molecular weight of the polyimide precursor is low, and the stress after curing may not be sufficiently reduced. If the amount is more than 2.5 times, the polyimide precursor may be colored.
R22が示す炭素炭素不飽和二重結合を有する一価の有機基としては、アルキル基の炭素数が1~10の(メタ)アクリロキシアルキル基が挙げられる。
具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、t-ブタノール、ヘキサノール、シクロヘキサノール、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート等が挙げられる。これらは、単独で用いてもよいし、2種類以上を混合して用いてもよい。 Among the compounds represented by the general formula (13), examples of the alcohol include alcohols in which R 22 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms.
Examples of the monovalent organic group having a carbon-carbon unsaturated double bond represented by R 22 include a (meth) acryloxyalkyl group having an alkyl group having 1 to 10 carbon atoms.
Specifically, methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, t-butanol, hexanol, cyclohexanol, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, Examples include 2-hydroxypropyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, and 4-hydroxybutyl methacrylate. These may be used singly or in combination of two or more.
本発明の樹脂組成物は、ネガ型のパターン形成性の観点から、(b)成分として、下記一般式(2)で表される化合物を含有する。(b)成分は活性光線照射により発生したラジカルによって、(b)成分同士又は(a)成分が有する不飽和二重結合と反応する。
R6の(メタ)アクリル基を含まない一価の有機基としては、ピペリジン骨格を有する基、置換又は無置換のアミノアルキル基、多環式炭化水素基を有する基、芳香族炭化水素基を有する基、含窒素複素環式基を有する基、直鎖又は分岐鎖状アルキルポリエチレングリコール残基、環状アルキルポリエチレングリコール残基、置換又は無置換のフェニルポリエチレングリコール残基等が挙げられる。 R 6 in the formula (2) is preferably a monovalent organic group not containing a (meth) acryl group, a hydroxyl group, or an amino group.
Examples of the monovalent organic group not containing the (meth) acryl group of R 6 include a group having a piperidine skeleton, a substituted or unsubstituted aminoalkyl group, a group having a polycyclic hydrocarbon group, and an aromatic hydrocarbon group. And a group having a nitrogen-containing heterocyclic group, a linear or branched alkyl polyethylene glycol residue, a cyclic alkyl polyethylene glycol residue, a substituted or unsubstituted phenyl polyethylene glycol residue, and the like.
アミノエチル(メタ)アクリレート、N-メチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N-エチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、アミノプロピル(メタ)アクリレート、N-メチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N-エチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート等の置換又は無置換のアミノアルキル(メタ)アクリレート;
ノルボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルナニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、トリシクロデカンジメチロール(メタ)アクリレート等の多環式炭化水素基含有(メタ)アクリレート;
ベンジル(メタ)アクリレート等の芳香族炭化水素基含有(メタ)アクリレート;
2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート等の含窒素複素環式基含有(メタ)アクリレート;
2-エチルヘキシルポリエチレングリコールモノ(メタ)アクリレート、ペンチルポリエチレングリコールモノ(メタ)アクリレート、イソペンチルポリエチレングリコールモノ(メタ)アクリレート、ネオペンチルポリエチレングリコールモノ(メタ)アクリレート、ヘキシルポリエチレングリコールモノ(メタ)アクリレート、ヘプチルポリエチレングリコールモノ(メタ)アクリレート、オクチルポリエチレングリコールモノ(メタ)アクリレート、ノニルポリエチレングリコールモノ(メタ)アクリレート、デシルポリエチレングリコールモノ(メタ)アクリレート、ウンデシルポリエチレングリコールモノ(メタ)アクリレート、ドデシルポリエチレングリコールモノ(メタ)アクリレート、トリデシルポリエチレングリコールモノ(メタ)アクリレート、テトラデシルポリエチレングリコールモノ(メタ)アクリレート、ペンタデシルポリエチレングリコールモノ(メタ)アクリレート、ヘキサデシルポリエチレングリコールモノ(メタ)アクリレート、ヘプタデシルポリエチレングリコールモノ(メタ)アクリレート、オクタデシルポリエチレングリコールモノ(メタ)アクリレート、ノナデシルポリエチレングリコールモノ(メタ)アクリレート、イコシルポリエチレングリコールモノ(メタ)アクリレート等の直鎖又は分岐鎖状アルキルポリエチレングリコールモノ(メタ)アクリレート;
シクロプロピルポリエチレングリコールモノ(メタ)アクリレート、シクロブチルポリエチレングリコールモノ(メタ)アクリレート、シクロペンチルポリエチレングリコールモノ(メタ)アクリレート、シクロヘキシルポリエチレングリコールモノ(メタ)アクリレート、シクロヘプチルポリエチレングリコールモノ(メタ)アクリレート、シクロオクチルポリエチレングリコールモノ(メタ)アクリレート、シクロノニルポリエチレングリコールモノ(メタ)アクリレート、シクロデシルポリエチレングリコールモノ(メタ)アクリレート等の環状アルキルポリエチレングリコールモノ(メタ)アクリレート;及び
ノニルフェノキシポリエチレングリコールアクリレート等の置換又は無置換のフェニルポリエチレングリコールモノ(メタ)アクリレートが挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。 The compound represented by the general formula (2) can be used without particular limitation. For example, piperidin-4-yl (meth) acrylate, 1-methylpiperidin-4-yl (meth) acrylate, 2,2,6 , 6-tetramethylpiperidin-4-yl (meth) acrylate, 1,2,2,6,6-pentamethylpiperidin-4-yl (meth) acrylate, (piperidin-4-yl) methyl (meth) acrylate, Piperidine skeleton-containing (meth) acrylates such as 2- (piperidin-4-yl) ethyl (meth) acrylate;
Aminoethyl (meth) acrylate, N-methylaminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N-ethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, Aminopropyl (meth) acrylate, N-methylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N-ethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, etc. Substituted or unsubstituted aminoalkyl (meth) acrylates of
Norbornyl (meth) acrylate, isobornyl (meth) acrylate, norbornanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxy Polycyclic hydrocarbon group-containing (meth) acrylates such as ethyl (meth) acrylate and tricyclodecane dimethylol (meth) acrylate;
Aromatic hydrocarbon group-containing (meth) acrylates such as benzyl (meth) acrylate;
Nitrogen-containing heterocyclic group-containing (meth) acrylates such as 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate;
2-ethylhexyl polyethylene glycol mono (meth) acrylate, pentyl polyethylene glycol mono (meth) acrylate, isopentyl polyethylene glycol mono (meth) acrylate, neopentyl polyethylene glycol mono (meth) acrylate, hexyl polyethylene glycol mono (meth) acrylate, heptyl Polyethylene glycol mono (meth) acrylate, octyl polyethylene glycol mono (meth) acrylate, nonyl polyethylene glycol mono (meth) acrylate, decyl polyethylene glycol mono (meth) acrylate, undecyl polyethylene glycol mono (meth) acrylate, dodecyl polyethylene glycol mono ( (Meth) acrylate, tridecyl polyethylene glycol (Meth) acrylate, tetradecyl polyethylene glycol mono (meth) acrylate, pentadecyl polyethylene glycol mono (meth) acrylate, hexadecyl polyethylene glycol mono (meth) acrylate, heptadecyl polyethylene glycol mono (meth) acrylate, octadecyl polyethylene glycol mono ( Linear or branched alkyl polyethylene glycol mono (meth) acrylates such as (meth) acrylate, nonadecyl polyethylene glycol mono (meth) acrylate, icosyl polyethylene glycol mono (meth) acrylate;
Cyclopropyl polyethylene glycol mono (meth) acrylate, cyclobutyl polyethylene glycol mono (meth) acrylate, cyclopentyl polyethylene glycol mono (meth) acrylate, cyclohexyl polyethylene glycol mono (meth) acrylate, cycloheptyl polyethylene glycol mono (meth) acrylate, cyclooctyl Cyclic alkyl polyethylene glycol mono (meth) acrylates such as polyethylene glycol mono (meth) acrylate, cyclononyl polyethylene glycol mono (meth) acrylate, cyclodecyl polyethylene glycol mono (meth) acrylate; and non-substituted or non-substituted such as nonylphenoxy polyethylene glycol acrylate Substituted phenyl polyethylene glycol mono (meta ) Acrylates. These may be used alone or in combination of two or more.
(a)成分のポリイミド前駆体中のR3及び又はR4の少なくとも一部が炭素炭素不飽和二重結合を有する1価の有機基である場合、活性光線を照射するとラジカルを発生する化合物と併用して、溶剤に溶解することによって感光性樹脂組成物とすることができる。 (C) Component: Compound that generates radicals by actinic rays (a) At least a part of R 3 and / or R 4 in the polyimide precursor of component is a monovalent organic group having a carbon-carbon unsaturated double bond. In this case, a photosensitive resin composition can be obtained by dissolving it in a solvent in combination with a compound that generates radicals when irradiated with actinic rays.
これらの中でも、感度に優れ、良好なパターンを与えるため、オキシムエステル化合物が好ましい。 Examples of the component (c) include N, N′-tetraalkyl-4,4′-, such as an oxime ester compound, benzophenone, and N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone) described later. Fragrances such as diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1 Quinones fused with aromatic rings such as aromatic ketones and alkylanthraquinones, benzoin ether compounds such as benzoin alkyl ether, benzoin compounds such as benzoin and alkylbenzoin, and benzyl derivatives such as benzyldimethyl ketal.
Among these, an oxime ester compound is preferable because it is excellent in sensitivity and gives a good pattern.
R2は、水素原子、-OH、-COOH、-O(CH2)OH、-O(CH2)2OH、-COO(CH2)OH又は-COO(CH2)2OHを示し、水素原子、-O(CH2)OH、-O(CH2)2OH、-COO(CH2)OH又は-COO(CH2)2OHであることが好ましく、水素原子、-O(CH2)2OH又は-COO(CH2)2OHであることがより好ましい。尚、芳香環には、R2以外の置換基を有してもよい。
R 2 represents a hydrogen atom, —OH, —COOH, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH, hydrogen It is preferably an atom, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH, a hydrogen atom, —O (CH 2 ) More preferably, it is 2 OH or —COO (CH 2 ) 2 OH. Incidentally, the aromatic ring may have a substituent group other than R 2.
R4は、-NO2又は-C(=O)Ar(ここで、Arはアリール基を示す。)を示し、Arとしては、トリル基が好ましい。
R5及びR6は、それぞれ炭素数1~12のアルキル基、フェニル基又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましい。
尚、芳香環には、R4以外の置換基を有してもよい。
R 4 represents —NO 2 or —C (═O) Ar (wherein Ar represents an aryl group), and Ar is preferably a tolyl group.
R 5 and R 6 each represent an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, and preferably a methyl group, a phenyl group or a tolyl group.
The aromatic ring may have a substituent other than R 4 .
R8はアセタール結合を有する有機基であり、下記式(9-1)に示す化合物が有するR8に対応する置換基であることが好ましい。
R9及びR10は、それぞれ炭素数1~12のアルキル基、フェニル基又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましく、メチル基であることがより好ましい。
尚、芳香環には、R8以外の置換基を有してもよい。
R 8 is an organic group having an acetal bond, and is preferably a substituent corresponding to R 8 included in the compound represented by the following formula (9-1).
R 9 and R 10 each represent an alkyl group having 1 to 12 carbon atoms, a phenyl group or a tolyl group, preferably a methyl group, a phenyl group or a tolyl group, and more preferably a methyl group.
The aromatic ring may have a substituent other than R 8 .
本発明の樹脂組成物には、硬化後のシリコン基板等への密着性を向上させるために、(d)成分として有機シラン化合物を含んでいてもよい。有機シラン化合物としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、トリエトキシシリルプロピルエチルカルバメート、3-(トリエトキシシリル)プロピルコハク酸無水物、フェニルトリエトキシシラン、フェニルトリメトキシシラン、N―フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン1-イソシアナートメチルトリメチルシラン、1-イソシアナートメチルトリエチルシラン、1-イソシアナートメチルトリプロピルシラン、1-イソシアナートメチルトリブチルシラン、1-イソシアナートメチルトリメトキシシラン、1-イソシアナートメチルジメトキシメチルシラン、1-イソシアナートメチルメトキシジメチルシラン、1-イソシアナートメチルトリエトキシシラン、1-イソシアナートメチルトリプロポキシシラン、1-イソシアナートメチルトリブトキシシラン、1-イソシアナートメチルジエトキシエチルシラン、3-イソシアナートプロピルトリメチルシラン、3-イソシアナートプロピルトリエチルシラン、3-イソシアナートプロピルトリメトキシシラン、3-イソシアナートプロピルジメトキシメチルシラン、3-イソシアナートプロピルメトキシジメチルシラン、3-イソシアナートプロピルトリエトキシシラン、3-イソシアナートプロピルジエトキシエチルシラン、3-イソシアナートプロピルエトキシジエチルシラン、6-イソシアナートヘキシルトリメトキシシラン、6-イソシアナートヘキシルジメトキシメチルシラン、6-イソシアナートヘキシルメトキシジメチルシラン、6-イソシアナートヘキシルトリエトキシシラン、6-イソシアナートヘキシルジエトキシエチルシラン、6-イソシアナートヘキシルエトキシジエチルシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、N,N-ビス(2-ヒドロキシエチル)-N,N-ビス(トリメトキシシリルプロピル)エチレンジアミン、N-(ヒドロキシメチル)-N-メチルアミノプロピルトリメトキシシラン、7-トリエトキシシリルプロポキシ-5-ヒドロキシフラボン、N-(3-トリエトキシシリルプロピル)-4-ヒドロキシブチラミド、2-ヒドロキシ-4-(3メチルジエトキシシリルプロポキシ)ジフェニルケトン、1,3-ビス(4-ヒドロキシブチル)テトラメチルジシロキサン、3-(N-アセチル-4-ヒドロキシプロピルオキシ)プロピルトリエトキシシラン、ヒドロキシメチルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、トリエトキシシリルプロピルエチルカルバメート、N-(3-トリエトキシシリルプロピル)O-t-ブチルカルバメート等が挙げられる。配合量は、所望の効果が得られるように適宜調整される。
これらの中でも、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシランを用いることが好ましい。 (D) Component (Adhesion Auxiliary Agent): Organosilane Compound The resin composition of the present invention contains an organosilane compound as the component (d) in order to improve adhesion to a cured silicon substrate or the like. Also good. Organic silane compounds include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and γ-glycidoxypropyltrimethoxy. Silane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, triethoxysilylpropylethylcarbamate, 3- (triethoxysilyl) Propyl succinic anhydride, phenyltriethoxysilane, phenyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutyryl ) Propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 1-isocyanatomethyltrimethylsilane, 1-isocyanatomethyltriethylsilane, 1-isocyanatomethyltripropylsilane, 1-isocyanatomethyltributyl Silane, 1-isocyanatomethyltrimethoxysilane, 1-isocyanatomethyldimethoxymethylsilane, 1-isocyanatomethylmethoxydimethylsilane, 1-isocyanatomethyltriethoxysilane, 1-isocyanatomethyltripropoxysilane, 1-isocyanate Natomethyltributoxysilane, 1-isocyanatomethyldiethoxyethylsilane, 3-isocyanatopropyltrimethylsilane, 3-isocyanatopropyltriethylsilane, 3 Isocyanatopropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropylmethoxydimethylsilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropyldiethoxyethylsilane, 3-isocyanatopropylethoxy Diethylsilane, 6-isocyanatohexyltrimethoxysilane, 6-isocyanatohexyldimethoxymethylsilane, 6-isocyanatohexylmethoxydimethylsilane, 6-isocyanatohexyltriethoxysilane, 6-isocyanatohexyldiethoxyethylsilane, 6 -Isocyanatohexylethoxydiethylsilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, N, N-bis (2- Hydroxyethyl) -N, N-bis (trimethoxysilylpropyl) ethylenediamine, N- (hydroxymethyl) -N-methylaminopropyltrimethoxysilane, 7-triethoxysilylpropoxy-5-hydroxyflavone, N- (3- Triethoxysilylpropyl) -4-hydroxybutyramide, 2-hydroxy-4- (3methyldiethoxysilylpropoxy) diphenylketone, 1,3-bis (4-hydroxybutyl) tetramethyldisiloxane, 3- (N- Acetyl-4-hydroxypropyloxy) propyltriethoxysilane, hydroxymethyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-glycidoxy Propyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, triethoxysilylpropylethylcarbamate, N- (3-triethoxysilylpropyl) Ot -Butyl carbamate and the like. The blending amount is appropriately adjusted so as to obtain a desired effect.
Of these, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane is preferably used.
本発明の樹脂組成物には、必要に応じて(e)成分として溶剤を用いることができる。
(e)成分としてはポリイミド前駆体を完全に溶解する極性溶剤が好ましく、例えばN-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、シクロヘキサノン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート、プロピレンカーボネート、乳酸エチル、1,3-ジメチル-2-イミダゾリジノンが挙げられる。これらは単独で用いてもよいし、二つ以上を組み合わせて用いてもよい。 (E) Component: Solvent A solvent can be used as the component (e) in the resin composition of the present invention, if necessary.
The component (e) is preferably a polar solvent that completely dissolves the polyimide precursor, such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, hexa Examples include methylphosphoric triamide, γ-butyrolactone, δ-valerolactone, γ-valerolactone, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, propylene carbonate, ethyl lactate, 1,3-dimethyl-2-imidazolidinone. It is done. These may be used alone or in combination of two or more.
二官能以上の光重合性化合物を含有する場合の配合量としては、ポリイミド前駆体100質量部に対して、1~10質量部であることが好ましく、1~8質量部であることがより好ましく、1~5質量部であることがさらに好ましい。 The resin composition of the present invention may contain a bifunctional or higher photopolymerizable compound as long as the effects of the present invention are not impaired. Examples of the bifunctional or higher functional photopolymerizable compound include tetraethylene glycol dimethacrylate.
The amount of the bifunctional or higher photopolymerizable compound is preferably 1 to 10 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the polyimide precursor. More preferably, it is 1 to 5 parts by mass.
本発明の硬化膜は、上述の樹脂組成物から形成される。
また、本発明のパターン硬化膜は、上述の樹脂組成物により形成されるパターン硬化膜である。 <Method for producing cured film and patterned cured film>
The cured film of the present invention is formed from the above resin composition.
Moreover, the pattern cured film of this invention is a pattern cured film formed with the above-mentioned resin composition.
本発明のパターン硬化膜の製造方法は、上述の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程を含む。樹脂組成物を基材上に塗布する方法としては、例えば、浸漬法、スプレー法、スクリーン印刷法、スピンコート法が挙げられる。基材としては、例えばシリコンウエハ、金属基板、セラミック基板等が挙げられる。 Hereinafter, each process of the manufacturing method of a pattern cured film is demonstrated first.
The manufacturing method of the pattern cured film of this invention includes the process of apply | coating the above-mentioned resin composition on a board | substrate, and drying and forming a coating film. Examples of the method for applying the resin composition on the substrate include an immersion method, a spray method, a screen printing method, and a spin coating method. Examples of the base material include a silicon wafer, a metal substrate, and a ceramic substrate.
本発明の樹脂組成物はi線露光用に好適であるが、照射する活性光線としては、紫外線、遠紫外線、可視光線、電子線、X線等を用いることができる。 The manufacturing method of the pattern cured film of this invention includes the process of developing after irradiating the actinic ray to the coating film formed at the said process, and obtaining a pattern resin film. Thereby, a resin film on which a desired pattern is formed can be obtained.
Although the resin composition of the present invention is suitable for i-line exposure, ultraviolet rays, far ultraviolet rays, visible rays, electron beams, X-rays, and the like can be used as the active rays to be irradiated.
この加熱処理は光洋リンドバーク製縦型拡散炉等の装置を用いることができ、加熱温度80~400℃で行なうことが好ましく、加熱時間は5~300分間であることが好ましい。この工程によって、樹脂組成物中のポリイミド前駆体のイミド化を進行させてポリイミド樹脂を含有するパターン硬化膜を得ることができる。
尚、加熱温度は、250~300℃がより好ましく、260~290℃がさらに好ましい。また、加熱時間は、120~280分間がより好ましく、180~270分間がさらに好ましい。 The manufacturing method of the pattern cured film of this invention includes the process of heat-processing a pattern resin film.
This heat treatment can be performed using an apparatus such as a vertical diffusion furnace manufactured by Koyo Lindberg, and is preferably performed at a heating temperature of 80 to 400 ° C., and the heating time is preferably 5 to 300 minutes. By this step, imidation of the polyimide precursor in the resin composition can be advanced to obtain a patterned cured film containing a polyimide resin.
The heating temperature is more preferably 250 to 300 ° C, further preferably 260 to 290 ° C. The heating time is more preferably 120 to 280 minutes, and further preferably 180 to 270 minutes.
図1は本発明の一実施形態である再配線構造を有する半導体装置の概略断面図である。
本実施形態の半導体装置は多層配線構造を有している。層間絶縁層(層間絶縁膜)1の上にはAl配線層2が形成され、その上部にはさらに絶縁層(絶縁膜)3(例えばP-SiN層)が形成され、さらに素子の表面保護層(表面保護膜)4が形成されている。配線層2のパット部5からは再配線層6が形成され、外部接続端子であるハンダ、金等で形成された導電性ボール7との接続部分である、コア8の上部まで伸びている。さらに表面保護層4の上には、カバーコート層9が形成されている。再配線層6は、バリアメタル10を介して導電性ボール7に接続されているが、この導電性ボール7を保持するために、カラー11が設けられている。このような構造のパッケージを実装する際には、さらに応力を緩和するために、アンダーフィル12を介することもある。 The cured film or patterned cured film of the present invention thus obtained can be used as a surface protective layer, an interlayer insulating layer, a rewiring layer or the like of a semiconductor device.
FIG. 1 is a schematic cross-sectional view of a semiconductor device having a rewiring structure according to an embodiment of the present invention.
The semiconductor device of this embodiment has a multilayer wiring structure. An
0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させたピロメリット酸二無水物43.624g(200mmol)とメタクリル酸2-ヒドロキシエチル54.919g(401mmol)とハイドロキノン0.220gをN-メチルピロリドン394gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、ピロメリット酸-ヒドロキシエチルメタクリレートジエステル(PMDA(HEMA))溶液を得た。 Synthesis Example 1 (Synthesis of pyromellitic acid-hydroxyethyl methacrylate diester)
In a 0.5 liter plastic bottle, pyromellitic dianhydride 43.624 g (200 mmol), 2-hydroxyethyl methacrylate 54.919 g (401 mmol),
0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた3,3’-4,4’-ビフェニルテトラカルボン酸二無水物30.893g(105mmol)とメタクリル酸2-ヒドロキシエチル28.833g(210mmol)とハイドロキノン0.110gをN-メチルピロリドン239gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、3,3’-4,4’-ビフェニルテトラカルボン酸-ヒドロキシエチルメタクリレートジエステル(s-BPDA(HEMA))溶液を得た。 Synthesis Example 2 (Synthesis of 3,3′-4,4′-biphenyltetracarboxylic acid diester)
30.893 g (105 mmol) of 3,3′-4,4′-biphenyltetracarboxylic dianhydride and 2-hydroxy methacrylate were dried in a 0.5-liter plastic bottle for 24 hours in a dryer at 160 ° C. 28.833 g (210 mmol) of ethyl and 0.110 g of hydroquinone were dissolved in 239 g of N-methylpyrrolidone, and after adding a catalytic amount of 1,8-diazabicycloundecene, the mixture was stirred at room temperature (25 ° C.) for 24 hours. Esterification was performed to obtain a 3,3′-4,4′-biphenyltetracarboxylic acid-hydroxyethyl methacrylate diester (s-BPDA (HEMA)) solution.
0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた4,4’-オキシジフタル酸49.634g(160mmol)とメタクリル酸2-ヒドロキシエチル44.976g(328mmol)とハイドロキノン0.176gをN-メチルピロリドン378gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で48時間撹拌し、エステル化を行い、4,4’-オキシジフタル酸-ヒドロキシエチルメタクリレートジエステル(ODPA(HEMA))溶液を得た。 Synthesis Example 3 (Synthesis of 4,4′-oxydiphthalic acid diester)
In a 0.5 liter plastic bottle, 49.634 g (160 mmol) of 4,4′-oxydiphthalic acid, 44.976 g (328 mmol) of 2-hydroxyethyl methacrylate and
攪拌機、温度計を備えた0.5リットルのフラスコ中に合成例1で得られたPMDA(HEMA)溶液195.564gと合成例3で得られたODPA(HEMA)溶液58.652gを入れ、その後、氷冷下で塩化チオニル25.9g(217.8mmol)を反応溶液温度が10℃以下を保つように滴下ロウトを用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間反応を行いPMDA(HEMA)とODPA(HEMA)の酸クロリドの溶液を得た。次いで、滴下ロウトを用いて、2,2’-ビス(トリフルオロメチル)ベンジジン31.696g(99.0mmol)、ピリジン34.457g(435.6mmol)、ハイドロキノン0.076g(0.693mmol)のN-メチルピロリドン90.211g溶液を氷冷化で反応溶液の温度が10℃を超えないように注意しながら滴下した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミド酸エステルを得た。標準ポリスチレン換算により求めた重量平均分子量は34,000であった。これをポリマ1(ピロメリット酸-ヒドロキシエチルメタクリレートジエステル/4,4’-オキシジフタル酸-ヒドロキシエチルメタクリレートジエステル/2,2’-ビス(トリフルオロメチル)ベンジジン縮重合体(PMDA/ODPA/TFMB))とする。1gのポリマ1をN-メチルピロリドン1.5gに溶解させ、ガラス基板上にスピンコートで塗布し、100℃のホットプレート上で180秒加熱し溶剤を揮発させて厚さ20μmの塗膜を形成した。この時、得られた塗膜のi-線透過率は30%であった。 Synthesis Example 4 (Synthesis of Polymer 1)
In a 0.5 liter flask equipped with a stirrer and a thermometer, 195.564 g of the PMDA (HEMA) solution obtained in Synthesis Example 1 and 58.652 g of the ODPA (HEMA) solution obtained in Synthesis Example 3 were placed. Under ice cooling, 25.9 g (217.8 mmol) of thionyl chloride was added dropwise using a dropping funnel so that the reaction solution temperature was kept at 10 ° C. or lower. After the addition of thionyl chloride was completed, the reaction was carried out for 2 hours under ice cooling to obtain a solution of PMDA (HEMA) and ODPA (HEMA) acid chloride. Next, using a dropping funnel, 31.696 g (99.0 mmol) of 2,2′-bis (trifluoromethyl) benzidine, 34.457 g (435.6 mmol) of pyridine, 0.076 g (0.693 mmol) of hydroquinone -A solution of 90.211 g of methylpyrrolidone was added dropwise while cooling with ice so that the temperature of the reaction solution did not exceed 10 ° C. The reaction solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain a polyamic acid ester. The weight average molecular weight determined by standard polystyrene conversion was 34,000. This was polymer 1 (pyromellitic acid-hydroxyethyl methacrylate diester / 4,4′-oxydiphthalic acid-hydroxyethyl methacrylate diester / 2,2′-bis (trifluoromethyl) benzidine condensation polymer (PMDA / ODPA / TFMB)). And 1 g of polymer 1 is dissolved in 1.5 g of N-methylpyrrolidone, applied onto a glass substrate by spin coating, and heated on a hot plate at 100 ° C. for 180 seconds to evaporate the solvent to form a 20 μm thick coating film. did. At this time, the i-line transmittance of the obtained coating film was 30%.
攪拌機、温度計を備えた0.5リットルのフラスコ中に合成例2で得られたs-BPDA(HEMA)溶液282.125gを入れ、その後、氷冷下で塩化チオニル25.9g(217.8mmol)を反応溶液温度が10℃以下を保つように滴下ロウトを用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で1時間攪拌を行いs-BPDA(HEMA)クロリドの溶液を得た。次いで、滴下ロウトを用いて、2,2’-ビス(トリフルオロメチル)ベンジジン31.696g(99.0mmol)、ピリジン34.457g(435.6mmol)、ハイドロキノン0.076g(0.693mmol)のN-メチルピロリドン90.211g溶液を氷冷化で反応溶液の温度が10℃を超えないように注意しながら滴下した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミド酸エステルを得た。標準ポリスチレン換算により求めた重量平均分子量は85,000であった。これをポリマ2(3,3’-4,4’-ビフェニルテトラカルボン酸-ヒドロキシエチルメタクリレートジエステル/2,2’-ビス(トリフルオロメチル)ベンジジン縮重合体(BPDA/TFMB))とする。1gのポリマ2をN-メチルピロリドン1.5gに溶解させ、ガラス基板上にスピンコートで塗布し、100℃のホットプレート上で180秒加熱し溶剤を揮発させて厚さ20μmの塗膜を形成した。この時、得られた塗膜のi-線透過率は60%であった。 Synthesis Example 5 (Synthesis of polymer 2)
282.125 g of the s-BPDA (HEMA) solution obtained in Synthesis Example 2 was placed in a 0.5 liter flask equipped with a stirrer and a thermometer, and then 25.9 g (217.8 mmol) of thionyl chloride under ice-cooling. ) Was dropped using a dropping funnel so that the reaction solution temperature was kept at 10 ° C. or lower. After completion of the dropwise addition of thionyl chloride, the mixture was stirred for 1 hour under ice-cooling to obtain a solution of s-BPDA (HEMA) chloride. Next, using a dropping funnel, 31.696 g (99.0 mmol) of 2,2′-bis (trifluoromethyl) benzidine, 34.457 g (435.6 mmol) of pyridine, 0.076 g (0.693 mmol) of hydroquinone -A solution of 90.211 g of methylpyrrolidone was added dropwise while cooling with ice so that the temperature of the reaction solution did not exceed 10 ° C. The reaction solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain a polyamic acid ester. The weight average molecular weight determined by standard polystyrene conversion was 85,000. This is polymer 2 (3,3′-4,4′-biphenyltetracarboxylic acid-hydroxyethyl methacrylate diester / 2,2′-bis (trifluoromethyl) benzidine condensation polymer (BPDA / TFMB)). 1 g of
攪拌機、温度計を備えた0.5リットルのフラスコ中に合成例1で得られたPMDA(HEMA)溶液244.455gを入れ、その後、氷冷下で塩化チオニル25.9g(217.8mmol)を反応溶液温度が10℃以下を保つように滴下ロウトを用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で1時間攪拌を行いPMDA(HEMA)クロリドの溶液を得た。次いで、滴下ロウトを用いて、2,2’-ビス(トリフルオロメチル)ベンジジン31.696g(99.0mmol)、ピリジン34.457g(435.6mmol)、ハイドロキノン0.076g(0.693mmol)のN-メチルピロリドン90.211g溶液を氷冷化で反応溶液の温度が10℃を超えないように注意しながら滴下した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミド酸エステルを得た。標準ポリスチレン換算により求めた重量平均分子量は32,000であった。これをポリマ3(ピロメリット酸-ヒドロキシエチルメタクリレートジエステル/2,2’-ビス(トリフルオロメチル)ベンジジン縮重合体(PMDA/TFMB))とする。1gのポリマ3をN-メチルピロリドン1.5gに溶解させ、ガラス基板上にスピンコートで塗布し、100℃のホットプレート上で180秒加熱し溶剤を揮発させて厚さ20μmの塗膜を形成した。この時、得られた塗膜のi-線透過率は17%であった。 Synthesis Example 6 (Synthesis of Polymer 3)
In a 0.5 liter flask equipped with a stirrer and a thermometer, 244.455 g of the PMDA (HEMA) solution obtained in Synthesis Example 1 was placed, and then 25.9 g (217.8 mmol) of thionyl chloride was added under ice cooling. The reaction solution was dropped using a dropping funnel so that the temperature of the reaction solution was kept at 10 ° C. or lower. After the dropwise addition of thionyl chloride was completed, stirring was performed for 1 hour under ice cooling to obtain a solution of PMDA (HEMA) chloride. Next, using a dropping funnel, 31.696 g (99.0 mmol) of 2,2′-bis (trifluoromethyl) benzidine, 34.457 g (435.6 mmol) of pyridine, 0.076 g (0.693 mmol) of hydroquinone -A solution of 90.211 g of methylpyrrolidone was added dropwise while cooling with ice so that the temperature of the reaction solution did not exceed 10 ° C. The reaction solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain a polyamic acid ester. The weight average molecular weight calculated | required by standard polystyrene conversion was 32,000. This is designated as Polymer 3 (pyromellitic acid-hydroxyethyl methacrylate diester / 2,2'-bis (trifluoromethyl) benzidine condensation polymer (PMDA / TFMB)). 1 g of
攪拌機、温度計を備えた0.5リットルのフラスコ中に合成例2で得られたs-BPDA(HEMA)溶液169.275gと合成例3で得られたODPA(HEMA)72.7776g溶液を入れ、その後、氷冷下で塩化チオニル25.9g(217.8mmol)を反応溶液温度が10℃以下を保つように滴下ロウトを用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で1時間攪拌を行いs-BPDA(HEMA)とODPA(HEMA)のクロリドの溶液を得た。次いで、滴下ロウトを用いて、次いで、滴下ロウトを用いて、2,2’-ジメチルベンジジン21.017g(99.0mmol)、ピリジン34.457g(435.6mmol)、ハイドロキノン0.076g(0.693mmol)のN-メチルピロリドン59.817g溶液を氷冷化で反応溶液の温度が10℃を超えないように注意しながら滴下した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミド酸エステルを得た。標準ポリスチレン換算により求めた重量平均分子量は35,000であった。これをポリマ4(3,3’-4,4’-ビフェニルテトラカルボン酸-ヒドロキシエチルメタクリレートジエステル/4,4’-オキシジフタル酸-ヒドロキシエチルメタクリレートジエステル/2,2’-ジメチルベンジジン縮重合体(BPDA/ODPA/DMB))とする。1gのポリマ4をN-メチルピロリドン1.5gに溶解させ、ガラス基板上にスピンコートで塗布し、100℃のホットプレート上で180秒加熱し溶剤を揮発させて厚さ20μmの塗膜を形成した。この時、得られた塗膜のi-線透過率は8%であった。 Synthesis Example 7 (Synthesis of polymer 4)
In a 0.5 liter flask equipped with a stirrer and a thermometer, 169.275 g of the s-BPDA (HEMA) solution obtained in Synthesis Example 2 and 72.7776 g of the ODPA (HEMA) solution obtained in Synthesis Example 3 were placed. Thereafter, 25.9 g (217.8 mmol) of thionyl chloride was added dropwise using a dropping funnel while maintaining the reaction solution temperature at 10 ° C. or lower under ice cooling. After completion of the dropwise addition of thionyl chloride, the mixture was stirred for 1 hour under ice cooling to obtain a chloride solution of s-BPDA (HEMA) and ODPA (HEMA). Then, using a dropping funnel, and then using a dropping funnel, 21.017 g (99.0 mmol) of 2,2′-dimethylbenzidine, 34.457 g (435.6 mmol) of pyridine, 0.076 g (0.693 mmol) of hydroquinone N-methylpyrrolidone (59.817 g) was added dropwise while cooling with ice so that the temperature of the reaction solution did not exceed 10 ° C. The reaction solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain a polyamic acid ester. The weight average molecular weight determined by standard polystyrene conversion was 35,000. The polymer 4 (3,3′-4,4′-biphenyltetracarboxylic acid-hydroxyethyl methacrylate diester / 4,4′-oxydiphthalic acid-hydroxyethyl methacrylate diester / 2,2′-dimethylbenzidine condensation polymer (BPDA / ODPA / DMB)). 1 g of
攪拌機、温度計を備えた0.5リットルのフラスコ中に合成例3で得られたODPA(HEMA)溶液181.944gを入れ、その後、氷冷下で塩化チオニル25.9g(217.8mmol)を反応溶液温度が10℃以下を保つように滴下ロウトを用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で1時間攪拌を行いODPA(HEMA)クロリドの溶液を得た。次いで、滴下ロウトを用いて、2,2’-ジメチルベンジジン21.017g(99.0mmol)、ピリジン34.457g(435.6mmol)、ハイドロキノン0.076g(0.693mmol)のN-メチルピロリドン59.817g溶液を氷冷化で反応溶液の温度が10℃を超えないように注意しながら滴下した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミド酸エステルを得た。標準ポリスチレン換算により求めた重量平均分子量は35,000であった。これをポリマ5(4,4’-オキシジフタル酸-ヒドロキシエチルメタクリレートジエステル/2,2’-ジメチルベンジジン縮重合体(ODPA/DMB))とする。1gのポリマ5をN-メチルピロリドン1.5gに溶解させ、ガラス基板上にスピンコートで塗布し、100℃のホットプレート上で180秒加熱し溶剤を揮発させて厚さ20μmの塗膜を形成した。この時、得られた塗膜のi-線透過率は40%であった。 Synthesis Example 8 (Synthesis of polymer 5)
In a 0.5 liter flask equipped with a stirrer and a thermometer, 181.944 g of the ODPA (HEMA) solution obtained in Synthesis Example 3 was placed, and then 25.9 g (217.8 mmol) of thionyl chloride was added under ice cooling. The reaction solution was dropped using a dropping funnel so that the temperature of the reaction solution was kept at 10 ° C. or lower. After completion of the dropwise addition of thionyl chloride, the mixture was stirred for 1 hour under ice cooling to obtain a solution of ODPA (HEMA) chloride. Then, using a dropping funnel, 21.017 g (99.0 mmol) of 2,2′-dimethylbenzidine, 34.457 g (435.6 mmol) of pyridine, 0.076 g (0.693 mmol) of hydroquinone and 59. The 817 g solution was added dropwise while cooling with ice so that the temperature of the reaction solution did not exceed 10 ° C. The reaction solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain a polyamic acid ester. The weight average molecular weight determined by standard polystyrene conversion was 35,000. This is referred to as Polymer 5 (4,4′-oxydiphthalic acid-hydroxyethyl methacrylate diester / 2,2′-dimethylbenzidine condensation polymer (ODPA / DMB)). 1 g of
ポンプ :(株)日立製作所製L6000
(株)島津製作所製C-R4A Chromatopac
測定条件:カラム Gelpack GL-S300MDT-5x2本
溶離液 :THF/DMF=1/1(容積比)
LiBr(0.03mol/L)、H3PO4(0.06mol/L)
流速 :1.0mL/min、検出器:UV270nm
ポリマ1~5のi線透過率はU-3310Spectrophotometer((株)日立製作所製)を用いて測定した。 Measuring device: Detector L4000UV manufactured by Hitachi, Ltd.
Pump: L6000 manufactured by Hitachi, Ltd.
C-R4A Chromatopac manufactured by Shimadzu Corporation
Measurement conditions: Column Gelpack GL-S300MDT-5x2 Eluent: THF / DMF = 1/1 (volume ratio)
LiBr (0.03 mol / L), H 3 PO 4 (0.06 mol / L)
Flow rate: 1.0 mL / min, detector: UV 270 nm
The i-line transmittance of polymers 1 to 5 was measured using U-3310 Spectrophotometer (manufactured by Hitachi, Ltd.).
(a)成分~(c)成分と密着助剤を、表1に示す配合でN-メチルピロリドンに溶解して、樹脂組成物を調製した。
表1において、(b)成分、(c)成分及び密着助剤の各欄における括弧内の数字は、(a)成分100質量部に対する添加量(質量部)を示す。また、溶剤としてN-メチルピロリドンを用い、使用量は、いずれも(a)成分100質量部に対して1.5倍(150質量部)で用いた。
尚、実施例において(c)成分として、下記の1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)](BASF(株)製IRGACURE OXE-01)を用いた。 <Examples 1 to 9, Comparative Example 1>
Components (a) to (c) and an adhesion aid were dissolved in N-methylpyrrolidone with the formulation shown in Table 1 to prepare a resin composition.
In Table 1, the numbers in parentheses in each column of the component (b), the component (c), and the adhesion assistant indicate the amount added (parts by mass) relative to 100 parts by mass of the component (a). Further, N-methylpyrrolidone was used as a solvent, and the amount used was 1.5 times (150 parts by mass) with respect to 100 parts by mass of component (a).
In the examples, as component (c), the following 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] (IRGACURE OXE-01 manufactured by BASF Corp.) ) Was used.
上記樹脂組成物を、6インチシリコンウエハ上にスピンコート法によって塗布し、100℃のホットプレート上で3分間加熱し、溶剤を揮発させ、膜厚10μmの塗膜を得た。この塗膜をγ‐ブチロラクトン:酢酸ブチル=7:3の混合溶媒に浸漬して完全に溶解するまでの時間の2倍を現像時間として設定した。同様の方法で得られた塗膜にフォトマスクを介して、キヤノン(株)製i線ステッパーFPA-3000iWを用いて、i線換算で200mJ/cm2露光を行った。ウエハをγ‐ブチロラクトン:酢酸ブチル=7:3に浸漬して、上記の現像時間で、パドル現像した後、シクロペンタノンでリンス洗浄を行った。この時の露後部の残膜率を評価した。ここで残膜率は下記式(1)の方法で算出した。 (Evaluation of photosensitive properties (residual film rate, resolution))
The resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes to volatilize the solvent, and a coating film having a thickness of 10 μm was obtained. The development time was set twice as long as the coating film was immersed in a mixed solvent of γ-butyrolactone: butyl acetate = 7: 3 and completely dissolved. The coating film obtained by the same method was exposed to 200 mJ / cm 2 in terms of i-line using an i-line stepper FPA-3000iW manufactured by Canon Inc. through a photomask. The wafer was immersed in γ-butyrolactone: butyl acetate = 7: 3 and subjected to paddle development for the above development time, and then rinsed with cyclopentanone. At this time, the film remaining ratio at the rear part of the dew was evaluated. Here, the remaining film ratio was calculated by the method of the following formula (1).
P1:合成例4で合成したポリマ1(PMDA/ODPA/TFMB)
P2:合成例5で合成したポリマ2(BPDA/TFMB)
P3:合成例6で合成したポリマ3(PMDA/TFMB)
P4:合成例7で合成したポリマ4(BPDA/ODPA/DMB)
P5:合成例8で合成したポリマ5(ODPA/DMB) In Table 1, the component (a) is the following compound.
P1: Polymer 1 synthesized in Synthesis Example 4 (PMDA / ODPA / TFMB)
P2:
P3:
P4:
P5:
b2:ジシクロペンテニルオキシエチルメタクリレート(日立化成(株)製、FA-512M)
b3:ジシクロペンタニルメタクリレート(日立化成(株)製、FA-513M)
b4:ベンジルメタクリレート(新中村化学(株)製、BzMA)
b5:2-(1,2-シクロヘキサカルボキシイミド)エチルアクリレート(東亜合成(株)製、M-140)
b’:テトラエチレングリコールジメタクリレート(サートマー(株)製、TEGDMA) In Table 1, the component (b) is a compound represented by the following structural formula.
b2: Dicyclopentenyloxyethyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., FA-512M)
b3: Dicyclopentanyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., FA-513M)
b4: benzyl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., BzMA)
b5: 2- (1,2-cyclohexacarboximido) ethyl acrylate (manufactured by Toagosei Co., Ltd., M-140)
b ′: Tetraethylene glycol dimethacrylate (manufactured by Sartomer, TEGDMA)
ところで、ポリイミド樹脂を用いた硬化膜は、厚膜化及び高弾性率化することによって、硬化後の応力が増大し、半導体ウエハの反りが大きくなって、搬送やウエハ固定の際に不具合が生じる場合がある。 <Examples 10 to 13, Comparative Example 2>
By the way, when the cured film using polyimide resin is made thicker and has a higher elastic modulus, the stress after curing is increased, the warpage of the semiconductor wafer is increased, and problems occur during transportation and wafer fixing. There is a case.
(a)ポリマ1を100質量部、(b)2-(1,2-シクロヘキサカルボキシイミド)エチルアクリレート(東亜合成(株)製、M-140、分子量251)を10質量部、(c)の1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)](BASF(株)製IRGACURE OXE-01)を2質量部、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン(Gelest(株)製、SIB-1140)3質量部を、N-メチルピロリドン(溶剤150質量部)に溶解して、樹脂組成物を調製した。
調製した樹脂組成物について、成膜時の感光特性(残膜率、解像度)と硬化後の応力及びアウトガス発生量を下記評価方法に従い測定した。 Example 10
(A) 100 parts by mass of polymer 1, (b) 10 parts by mass of 2- (1,2-cyclohexacarboximide) ethyl acrylate (manufactured by Toa Gosei Co., Ltd., M-140, molecular weight 251), (c) 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] (IRGACURE OXE-01 manufactured by BASF Corp.), 2 parts by mass, bis (2-hydroxyethyl) ) -3-aminopropyltriethoxysilane (manufactured by Gelest Co., Ltd., SIB-1140) (3 parts by mass) was dissolved in N-methylpyrrolidone (solvent 150 parts by mass) to prepare a resin composition.
About the prepared resin composition, the photosensitive characteristic (residual film rate, resolution) at the time of film-forming, the stress after hardening, and the outgas generation amount were measured in accordance with the following evaluation method.
上記樹脂組成物を、6インチシリコンウエハ上にスピンコート法によって塗布し、100℃のホットプレート上で3分間加熱し、溶剤を揮発させ、膜厚10μmの塗膜を得た。この塗膜をγ‐ブチロラクトン:酢酸ブチル=7:3の混合溶媒に浸漬して完全に溶解するまでの時間の2倍を現像時間として設定した。同様の方法で得られた塗膜にフォトマスクを介して、キヤノン株式会社製i線ステッパーFPA-3000iWを用いて、i線換算で200mJ/cm2露光を行った。ウエハをγ‐ブチロラクトン:酢酸ブチル=7:3に浸漬して、上記の現像時間で、パドル現像した後、シクロペンタノンでリンス洗浄を行った。この時の露光部の残膜率を評価したところ、92%であった。尚、残膜率は現像前膜厚に対する現像後膜厚で算出した。 (Evaluation of photosensitive properties (residual film rate, resolution))
The resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes to volatilize the solvent, and a coating film having a thickness of 10 μm was obtained. The development time was set twice as long as the coating film was immersed in a mixed solvent of γ-butyrolactone: butyl acetate = 7: 3 and completely dissolved. The coating film obtained by the same method was exposed to 200 mJ / cm 2 in terms of i-line using an i-line stepper FPA-3000iW manufactured by Canon Inc. through a photomask. The wafer was immersed in γ-butyrolactone: butyl acetate = 7: 3 and subjected to paddle development for the above development time, and then rinsed with cyclopentanone. When the remaining film ratio of the exposed portion at this time was evaluated, it was 92%. The residual film ratio was calculated as the film thickness after development with respect to the film thickness before development.
得られた樹脂組成物を、6インチシリコンウエハ上にスピンコート法によって塗布し、100℃のホットプレート上で3分間加熱し、溶剤を揮発させ硬化後膜厚が10μmとなる塗膜を得た。これを、光洋リンドバーク製縦型拡散炉を用いて、窒素雰囲気下、270℃で4時間加熱硬化して、ポリイミド膜(硬化膜)を得た。硬化後のポリイミド膜の残留応力はKLATencor(株)製薄膜ストレス測定装置FLX-2320を用いて、室温で測定したところ、22MPaであった。 (Measurement of residual stress)
The obtained resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes, and the solvent was evaporated to obtain a coating film having a thickness of 10 μm after curing. . This was cured by heating at 270 ° C. for 4 hours in a nitrogen atmosphere using a vertical diffusion furnace manufactured by Koyo Lindberg to obtain a polyimide film (cured film). The residual stress of the cured polyimide film was 22 MPa when measured at room temperature using a thin film stress measuring apparatus FLX-2320 manufactured by KLA Tencor Corporation.
上記残留応力の測定と同様にポリイミド膜を作成し、熱分解ガスクロマトグラフ質量分析用のサンプルを得た。サンプルをTekmar 7000HTヘッドスペースサンプラを使用し、270℃/30minで加熱後、発生ガスをGC/MS(島津製作所製、型番:GC/MS QP-2010、キャリアーガス:ヘリウム、1.0mL/min、カラム:HP-5MS、Oven:40℃で5分間加熱後、15℃/minの割合で280℃まで昇温、インターフェイス温度:280℃、イオンソース温度:250℃、サンプル注入量:0.1mL)に導入し分析をした。図2(a)に測定結果を示す。各ピーク面積値の和をアウトガスの総量とした。ピーク面積値の総和は38,375,993であり、後述の比較例2のピーク面積値の総和の値を1としたときに、0.26程度となり、充分にアウトガスが低減されていた。 (Pyrolysis gas chromatograph mass spectrometry)
A polyimide film was prepared in the same manner as the measurement of the residual stress, and a sample for pyrolysis gas chromatography mass spectrometry was obtained. After the sample was heated at 270 ° C./30 min using a Tekmar 7000HT headspace sampler, the generated gas was GC / MS (manufactured by Shimadzu Corporation, model number: GC / MS QP-2010, carrier gas: helium, 1.0 mL / min, Column: HP-5MS, Oven: heated at 40 ° C. for 5 minutes, then heated to 280 ° C. at a rate of 15 ° C./min, interface temperature: 280 ° C., ion source temperature: 250 ° C., sample injection amount: 0.1 mL) Introduced and analyzed. FIG. 2 (a) shows the measurement results. The sum of the peak area values was taken as the total amount of outgas. The sum of the peak area values was 38,375,993, and when the sum of the peak area values of Comparative Example 2 described later was 1, it was about 0.26, and the outgas was sufficiently reduced.
(c)の1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(O-ベンゾイルオキシム)]を、下記化合物に変えたこと以外は実施例10と同様に、樹脂組成物を調製し、評価した。 Example 11
The resin composition was the same as in Example 10 except that 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (O-benzoyloxime)] in (c) was changed to the following compound: Articles were prepared and evaluated.
さらにテトラエチレングリコールジメタクリレート(サートマー(株)製、TEGDMA)を5質量部加えた以外は実施例10と同様に、樹脂組成物を調製し、評価した。
残膜率は95%、解像度は7μm、残留応力は22MPaであった。熱分解ガスクロマトグラフ質量分析におけるピーク面積値の総和は67,924,419であり、後述の比較例2のピーク面積値の総和の値を1としたときに、0.45程度となり充分にアウトガスが低減されていた。 Example 12
Furthermore, a resin composition was prepared and evaluated in the same manner as in Example 10 except that 5 parts by mass of tetraethylene glycol dimethacrylate (manufactured by Sartomer Co., Ltd., TEGDMA) was added.
The residual film ratio was 95%, the resolution was 7 μm, and the residual stress was 22 MPa. The sum of peak area values in pyrolysis gas chromatograph mass spectrometry is 67,924,419. When the sum of peak area values in Comparative Example 2 described later is 1, the value is about 0.45 and the outgas is sufficient. It was reduced.
(b)の2-(1,2-シクロヘキサカルボキシイミド)エチルアクリレートをノニルフェノキシポリエチレングリコールアクリレート(日立化成(株)製、FA-318A、n(平均値)=8、分子量625)に変えたこと以外は実施例10と同様に、樹脂組成物を調製し、評価した。
残膜率は89%、解像度は8μm、残留応力は24MPaであった。熱分解ガスクロマトグラフ質量分析におけるピーク面積値の総和は、424,225,722であり、後述の比較例2のピーク面積値の総和の値を1としたときに、2.84倍程度に増えており、アウトガスが増大した。 Example 13
The 2- (1,2-cyclohexacarboximido) ethyl acrylate in (b) was changed to nonylphenoxy polyethylene glycol acrylate (manufactured by Hitachi Chemical Co., Ltd., FA-318A, n (average value) = 8, molecular weight 625). Except for this, a resin composition was prepared and evaluated in the same manner as in Example 10.
The residual film ratio was 89%, the resolution was 8 μm, and the residual stress was 24 MPa. The sum of peak area values in pyrolysis gas chromatograph mass spectrometry is 424, 225, 722. When the sum of peak area values in Comparative Example 2 described later is 1, it increases to about 2.84 times. Outgas increased.
(b)の2-(1,2-シクロヘキサカルボキシイミド)エチルアクリレートをテトラエチレングリコールジメタクリレート(分子量306)に変えたこと以外は実施例10と同様に、樹脂組成物を調製し、評価した。
残膜率は92%、解像度は8μm、残留応力は22MPaであった。熱分解ガスクロマトグラフ質量分析の測定結果を図2(b)に示す。ピーク面積値の総和は149,526,749であった。 Comparative Example 2
A resin composition was prepared and evaluated in the same manner as in Example 10 except that 2- (1,2-cyclohexacarboximido) ethyl acrylate in (b) was changed to tetraethylene glycol dimethacrylate (molecular weight 306). .
The residual film ratio was 92%, the resolution was 8 μm, and the residual stress was 22 MPa. The measurement result of pyrolysis gas chromatograph mass spectrometry is shown in FIG. The sum of the peak area values was 149,526,749.
低温硬化後の硬化膜を、電極部のエッチング等の真空プロセスに用いた場合のチャンバーの汚染原因を調べるため、ポリイミド膜から出るアウトガスを測定する実験を行った。
実施例10と比較例2において、残留応力の測定と同様にポリイミド膜を作成し、硬化膜を熱分解装置(FRONTIER LAB PY2020D、フロンティア・ラボ株式会(株)製)を使用し、1分間に15℃の割合で375℃まで昇温後、発生ガスをGC/MS(アジレント・テクノロジ-株式会(株)製、型番:GC/MS 5973 MSD、キャリアーガス:ヘリウム、0.9mL/min、カラム:UADTM-2.5N、Oven:350℃)に導入し、分析をした。
図3(a)に比較例2の測定結果を示す。破線はポリマ1を示し、実線はTEGDMAを示す。
図3(b)に実施例10の測定結果を示す。破線はポリマ1を示し、実線はM-140を示す。
比較例2の硬化膜中のTEGDMAは300℃付近でガス化したが、実施例10の硬化膜中のM-140は300℃以上では、ほとんどガス化しなかった。
従来の370℃程度の硬化温度では、硬化温度が硬化膜のガラス転移温度よりも高いため、硬化膜は一旦、ゴム状領域になりアウトガスとして架橋剤を放出し、すべてガス化して問題とならないが、硬化温度が硬化膜のガラス転移温度より低いときには、硬化膜はガラス状態のままとなり、硬化膜にアウトガス成分を内包してしまい、この膜を高真空下に曝すと、内包されていた架橋剤がアウトガス成分として発生してしまうと推察される。 Experimental Example In order to investigate the cause of contamination of the chamber when the cured film after low-temperature curing was used in a vacuum process such as etching of the electrode portion, an experiment was conducted to measure the outgas emitted from the polyimide film.
In Example 10 and Comparative Example 2, a polyimide film was prepared in the same manner as the measurement of residual stress, and a cured film was used for 1 minute using a thermal decomposition apparatus (Frontier LAB PY2020D, manufactured by Frontier Laboratories Co., Ltd.). After the temperature was raised to 375 ° C. at a rate of 15 ° C., the generated gas was GC / MS (manufactured by Agilent Technologies, Inc., model number: GC / MS 5973 MSD, carrier gas: helium, 0.9 mL / min, column : UADTM-2.5N, Oven: 350 ° C.) for analysis.
The measurement result of the comparative example 2 is shown to Fig.3 (a). The broken line indicates polymer 1 and the solid line indicates TEGDMA.
The measurement result of Example 10 is shown in FIG.3 (b). The broken line indicates polymer 1 and the solid line indicates M-140.
TEGDMA in the cured film of Comparative Example 2 was gasified at around 300 ° C., but M-140 in the cured film of Example 10 was hardly gasified at 300 ° C. or higher.
At a conventional curing temperature of about 370 ° C., since the curing temperature is higher than the glass transition temperature of the cured film, the cured film once becomes a rubber-like region and releases a cross-linking agent as an outgas. When the curing temperature is lower than the glass transition temperature of the cured film, the cured film remains in a glass state, and the cured film contains an outgas component. When this film is exposed to a high vacuum, the contained crosslinking agent. Is assumed to be generated as an outgas component.
低温硬化後の硬化膜を、電極部のエッチング等の真空プロセスに用いた場合のチャンバーの汚染原因を調べるため、ポリイミド膜から出るアウトガスを測定する実験を行った。
実施例1と比較例2において、残留応力の測定と同様にポリイミド膜を作成し、硬化膜を熱分解装置(FRONTIER LAB PY2020D、フロンティア・ラボ株式会社製)を使用し、1分間に15℃の割合で375℃まで昇温後、発生ガスをGC/MS(アジレント・テクノロジ-株式会社製、型番:GC/MS 5973 MSD、キャリアーガス:ヘリウム、0.9mL/min、カラム:UADTM-2.5N、Oven:350℃)に導入し、分析をした。
図3(a)に比較例2の測定結果を示す。破線はポリマ1を示し、実線はTEGDMAを示す。
図3(b)に実施例1の測定結果を示す。破線はポリマ1を示し、実線はM-140を示す。
比較例2の硬化膜中のTEGDMAは300℃付近でガス化したが、実施例1の硬化膜中のM-140は300℃以上では、ほとんどガス化しなかった。
従来の370℃程度の硬化温度では、硬化温度が硬化膜のガラス転移温度よりも高いため、硬化膜は一旦、ゴム状領域になりアウトガスとして架橋剤を放出し、すべてガス化して問題とならないが、硬化温度が硬化膜のガラス転移温度より低いときには、硬化膜はガラス状態のままとなり、硬化膜にアウトガス成分を内包してしまい、この膜を高真空下に曝すと、内包されていた架橋剤がアウトガス成分として発生してしまうと推察される。 Experimental Example In order to investigate the cause of contamination of the chamber when the cured film after low-temperature curing was used in a vacuum process such as etching of the electrode portion, an experiment was conducted to measure the outgas emitted from the polyimide film.
In Example 1 and Comparative Example 2, a polyimide film was prepared in the same manner as the residual stress measurement, and a cured film was used at a temperature of 15 ° C. per minute using a thermal decomposition apparatus (Frontier LAB PY2020D, manufactured by Frontier Laboratories). After the temperature was raised to 375 ° C. at a rate, the generated gas was GC / MS (manufactured by Agilent Technologies, model number: GC / MS 5973 MSD, carrier gas: helium, 0.9 mL / min, column: UADTM-2.5N , Oven: 350 ° C.) for analysis.
The measurement result of the comparative example 2 is shown to Fig.3 (a). The broken line indicates polymer 1 and the solid line indicates TEGDMA.
The measurement result of Example 1 is shown in FIG.3 (b). The broken line indicates polymer 1 and the solid line indicates M-140.
TEGDMA in the cured film of Comparative Example 2 was gasified at around 300 ° C., but M-140 in the cured film of Example 1 was hardly gasified at 300 ° C. or higher.
At a conventional curing temperature of about 370 ° C., since the curing temperature is higher than the glass transition temperature of the cured film, the cured film once becomes a rubber-like region and releases a cross-linking agent as an outgas. When the curing temperature is lower than the glass transition temperature of the cured film, the cured film remains in a glass state, and the cured film contains an outgas component. When this film is exposed to a high vacuum, the contained crosslinking agent. Is assumed to be generated as an outgas component.
本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。 Although several embodiments and / or examples of the invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.
Claims (13)
- 下記(a)、(b)及び(c)成分を含有する樹脂組成物。
(a)下記一般式(1)で表される構造単位を有するポリイミド前駆体
(b)下記一般式(2)で表される化合物
(c)活性光線照射によりラジカルを発生する化合物
(A) A polyimide precursor having a structural unit represented by the following general formula (1) (b) A compound represented by the following general formula (2) (c) A compound that generates radicals upon irradiation with actinic rays
- 前記(b)成分が、(a)成分100質量部に対して、1~100質量部含有する請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the component (b) is contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the component (a).
- 前記式(2)中のR6は(メタ)アクリル基、ヒドロキシル基、及びアミノ基を含まない一価の有機基である請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein R 6 in the formula (2) is a monovalent organic group not containing a (meth) acryl group, a hydroxyl group, and an amino group.
- 前記(b)成分が、分子量が300以下の単官能光重合性化合物である請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the component (b) is a monofunctional photopolymerizable compound having a molecular weight of 300 or less.
- 前記式(1)中のR3及びR4の少なくとも一方が、炭素炭素不飽和二重結合を有する一価の有機基である、請求項1~4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein at least one of R 3 and R 4 in the formula (1) is a monovalent organic group having a carbon-carbon unsaturated double bond. .
- 前記式(1)中のR1が、下記一般式(2a)~(2e)で表される4価の有機基のいずれかである請求項1~5のいずれか一項に記載の樹脂組成物。
- 前記式(1)中のR2が、下記一般式(5)又は(6)で表わされる2価の有機基である請求項1~6のいずれか一項に記載の樹脂組成物。
- 前記(c)成分が、オキシムエステル化合物である請求項1~7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the component (c) is an oxime ester compound.
- 請求項1~8のいずれか一項に記載の樹脂組成物から形成される硬化膜。 A cured film formed from the resin composition according to any one of claims 1 to 8.
- 請求項1~8のいずれか一項に記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、塗膜を加熱処理する工程とを含む、硬化膜の製造方法。 A method for producing a cured film, comprising: a step of applying the resin composition according to any one of claims 1 to 8 onto a substrate and drying to form a coating film; and a step of heat-treating the coating film.
- 請求項1~8のいずれか一項に記載の樹脂組成物から形成されるパターン硬化膜。 A cured pattern film formed from the resin composition according to any one of claims 1 to 8.
- 請求項1~8のいずれか一項に記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記塗膜に活性光線を照射後、現像してパターン樹脂膜を得る工程と、前記パターン樹脂膜を加熱処理する工程とを含む、パターン硬化膜の製造方法。 A step of coating the resin composition according to any one of claims 1 to 8 on a substrate and drying to form a coating film, and irradiating the coating film with an actinic ray, followed by development to form a pattern resin film The manufacturing method of a pattern cured film including the process of obtaining, and the process of heat-processing the said pattern resin film.
- 請求項9に記載の硬化膜又は請求項11に記載のパターン硬化膜を有する電子部品。
The electronic component which has the cured film of Claim 9, or the pattern cured film of Claim 11.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015541429A JP6572770B2 (en) | 2013-10-09 | 2014-09-24 | Resin composition containing polyimide precursor and method for producing cured film using the same |
CN201480055550.1A CN105829968B (en) | 2013-10-09 | 2014-09-24 | Resin composition containing polyimide precursor and method for producing cured film using same |
KR1020167009206A KR102276251B1 (en) | 2013-10-09 | 2014-09-24 | Resin composition containing polyimide precursor and method for manufacturing cured film using said resin composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013212123 | 2013-10-09 | ||
JP2013-212123 | 2013-10-09 | ||
JP2014041886 | 2014-03-04 | ||
JP2014-041886 | 2014-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015052885A1 true WO2015052885A1 (en) | 2015-04-16 |
Family
ID=52812721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004881 WO2015052885A1 (en) | 2013-10-09 | 2014-09-24 | Resin composition containing polyimide precursor and method for manufacturing cured film using said resin composition |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6572770B2 (en) |
KR (1) | KR102276251B1 (en) |
CN (1) | CN105829968B (en) |
TW (1) | TWI655500B (en) |
WO (1) | WO2015052885A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018101138A (en) * | 2016-03-31 | 2018-06-28 | 旭化成株式会社 | Photosensitive resin composition, method for manufacturing cured relief pattern and semiconductor device |
WO2018155639A1 (en) * | 2017-02-23 | 2018-08-30 | 日立化成デュポンマイクロシステムズ株式会社 | Resin composition, cured product, pattern cured product, cured product production method, interlayer insulating film, surface protection film and electronic component |
WO2018179382A1 (en) * | 2017-03-31 | 2018-10-04 | 日立化成デュポンマイクロシステムズ株式会社 | Photosensitive resin composition, method for producing pattern cured product, cured product, interlayer insulating film, cover-coat layer, surface protective film, and electronic component |
WO2018179330A1 (en) * | 2017-03-31 | 2018-10-04 | 日立化成デュポンマイクロシステムズ株式会社 | Photosensitive resin composition, method for manufacturing pattern cured film, cured product, interlayer insulation film, cover coating layer, surface protective film, and electronic component |
JPWO2022065338A1 (en) * | 2020-09-25 | 2022-03-31 | ||
EP4182379A4 (en) * | 2020-07-15 | 2024-02-14 | FUJIFILM Electronic Materials U.S.A, Inc. | Dielectric film forming compositions |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170133486A (en) * | 2015-08-21 | 2017-12-05 | 아사히 가세이 가부시키가이샤 | Photosensitive resin composition, polyimide production method, and semiconductor device |
KR102680126B1 (en) * | 2016-11-29 | 2024-07-03 | (주)덕산테코피아 | Negative photosensitive resin composition, film and electronic device |
KR102417834B1 (en) * | 2017-11-28 | 2022-07-07 | (주)덕산테코피아 | Egative photosensitive resin composition and electronic device having organic insulating film using same |
JPWO2020070924A1 (en) * | 2018-10-03 | 2021-09-24 | Hdマイクロシステムズ株式会社 | Photosensitive resin composition, manufacturing method of pattern cured product, cured product, interlayer insulating film, cover coat layer, surface protective film and electronic components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06332178A (en) * | 1993-05-19 | 1994-12-02 | Toray Ind Inc | Photosensitive polyimide precursor composition |
JP2001281859A (en) * | 2000-03-31 | 2001-10-10 | Hitachi Chemical Dupont Microsystems Ltd | Alkali negative development type photosensitive resin composition, method for producing pattern and electronic parts |
JP2001330950A (en) * | 2000-05-18 | 2001-11-30 | Toray Ind Inc | Photosensitive polymer composition |
JP2006169409A (en) * | 2004-12-16 | 2006-06-29 | Kaneka Corp | Polyimide precursor and photosensitive resin composition using it |
JP2007133377A (en) * | 2005-10-12 | 2007-05-31 | Toray Ind Inc | Photosensitive resin composition |
JP2012185211A (en) * | 2011-03-03 | 2012-09-27 | Nippon Kayaku Co Ltd | Negative photosensitive resin composition and use thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3411697A1 (en) | 1984-03-29 | 1985-10-10 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR PRODUCING POLYIMIDE AND POLYISOINDOLOCHINAZOLINDION RELIEF STRUCTURES |
JP2826940B2 (en) | 1992-07-22 | 1998-11-18 | 旭化成工業株式会社 | Photosensitive composition for i-line exposure |
JP3170174B2 (en) | 1995-04-18 | 2001-05-28 | 日本ゼオン株式会社 | Polyimide resin composition |
JPH09188762A (en) | 1996-01-10 | 1997-07-22 | Hitachi Ltd | Production of photosensitive polyimide precursor, amidation of polymer and amidation catalyst of polymer |
JP3321548B2 (en) | 1996-06-17 | 2002-09-03 | 株式会社日立製作所 | Photosensitive polyimide precursor composition and pattern forming method using the same |
CN1522387A (en) * | 2001-05-30 | 2004-08-18 | 钟渊化学工业株式会社 | Photosensitive resin composition and photosensitive dry film resist and photosensitive cover ray film using the same |
JP2003345012A (en) * | 2002-05-28 | 2003-12-03 | Hitachi Chemical Dupont Microsystems Ltd | Photosensitive composition and electronic parts using the same |
JP4337481B2 (en) * | 2002-09-17 | 2009-09-30 | 東レ株式会社 | Negative photosensitive resin precursor composition, electronic component using the same, and display device |
CN1980984B (en) | 2004-07-16 | 2010-06-09 | 旭化成电子材料株式会社 | Polyamide |
TWI369583B (en) * | 2007-04-04 | 2012-08-01 | Asahi Kasei Emd Corp | Photosensitive polyamic ester composition |
ITTO20070783A1 (en) | 2007-11-06 | 2009-05-07 | Massimo Franzosi | ANALOGUE CLOCK, IN PARTICULAR WRISTWATCH, WITH AUTOMATIC LIGHTING OF THE DIAL WITH ELETTROLUMINESCENCE |
JP2009251451A (en) * | 2008-04-09 | 2009-10-29 | Hitachi Chem Co Ltd | Photosensitive resin composition and photosensitive element |
KR101010036B1 (en) * | 2009-08-28 | 2011-01-21 | 주식회사 엘지화학 | New polyamic acid, polyimide, photosensitive resin composition comprising the same and dry film manufactured by the same |
-
2014
- 2014-09-24 WO PCT/JP2014/004881 patent/WO2015052885A1/en active Application Filing
- 2014-09-24 KR KR1020167009206A patent/KR102276251B1/en active IP Right Grant
- 2014-09-24 JP JP2015541429A patent/JP6572770B2/en active Active
- 2014-09-24 CN CN201480055550.1A patent/CN105829968B/en active Active
- 2014-10-07 TW TW103134824A patent/TWI655500B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06332178A (en) * | 1993-05-19 | 1994-12-02 | Toray Ind Inc | Photosensitive polyimide precursor composition |
JP2001281859A (en) * | 2000-03-31 | 2001-10-10 | Hitachi Chemical Dupont Microsystems Ltd | Alkali negative development type photosensitive resin composition, method for producing pattern and electronic parts |
JP2001330950A (en) * | 2000-05-18 | 2001-11-30 | Toray Ind Inc | Photosensitive polymer composition |
JP2006169409A (en) * | 2004-12-16 | 2006-06-29 | Kaneka Corp | Polyimide precursor and photosensitive resin composition using it |
JP2007133377A (en) * | 2005-10-12 | 2007-05-31 | Toray Ind Inc | Photosensitive resin composition |
JP2012185211A (en) * | 2011-03-03 | 2012-09-27 | Nippon Kayaku Co Ltd | Negative photosensitive resin composition and use thereof |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10831101B2 (en) | 2016-03-31 | 2020-11-10 | Asahi Kasei Kabushiki Kaisha | Photosensitive resin composition, method for manufacturing cured relief pattern, and semiconductor apparatus |
JP2018101138A (en) * | 2016-03-31 | 2018-06-28 | 旭化成株式会社 | Photosensitive resin composition, method for manufacturing cured relief pattern and semiconductor device |
KR20190117503A (en) | 2017-02-23 | 2019-10-16 | 히다치 가세이듀퐁 마이쿠로시스데무즈 가부시키가이샤 | Resin composition, hardened | cured material, pattern hardened | cured material, manufacturing method of hardened | cured material, interlayer insulation film, surface protection film, and electronic components |
WO2018155639A1 (en) * | 2017-02-23 | 2018-08-30 | 日立化成デュポンマイクロシステムズ株式会社 | Resin composition, cured product, pattern cured product, cured product production method, interlayer insulating film, surface protection film and electronic component |
WO2018154688A1 (en) * | 2017-02-23 | 2018-08-30 | 日立化成デュポンマイクロシステムズ株式会社 | Resin composition, cured product, pattern cured product, method for producing cured product, interlayer insulating film, surface protective film and electronic component |
JPWO2018181893A1 (en) * | 2017-03-31 | 2020-05-28 | 日立化成デュポンマイクロシステムズ株式会社 | Photosensitive resin composition, method for producing cured pattern, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic component |
WO2018181893A1 (en) * | 2017-03-31 | 2018-10-04 | 日立化成デュポンマイクロシステムズ株式会社 | Photosensitive resin composition, method for producing pattern cured product, cured product, interlayer insulating film, cover-coat layer, surface protective film, and electronic component |
JPWO2018179330A1 (en) * | 2017-03-31 | 2020-02-06 | 日立化成デュポンマイクロシステムズ株式会社 | Photosensitive resin composition, method for producing pattern cured film, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic component |
WO2018179330A1 (en) * | 2017-03-31 | 2018-10-04 | 日立化成デュポンマイクロシステムズ株式会社 | Photosensitive resin composition, method for manufacturing pattern cured film, cured product, interlayer insulation film, cover coating layer, surface protective film, and electronic component |
WO2018179382A1 (en) * | 2017-03-31 | 2018-10-04 | 日立化成デュポンマイクロシステムズ株式会社 | Photosensitive resin composition, method for producing pattern cured product, cured product, interlayer insulating film, cover-coat layer, surface protective film, and electronic component |
JP7147749B2 (en) | 2017-03-31 | 2022-10-05 | Hdマイクロシステムズ株式会社 | PHOTOSENSITIVE RESIN COMPOSITION, METHOD FOR MANUFACTURING PATTERN CURED PRODUCT, CURED PRODUCT, INTERLAYER INSULATING FILM, COVER COAT LAYER, SURFACE PROTECTIVE FILM AND ELECTRONIC COMPONENTS |
US11487201B2 (en) | 2017-03-31 | 2022-11-01 | Hd Microsystems, Ltd. | Photosensitive resin composition, method of manufacturing pattern cured product, cured product, interlayer insulating film, cover-coat layer, surface protective film, and electronic component |
JP2022179529A (en) * | 2017-03-31 | 2022-12-02 | Hdマイクロシステムズ株式会社 | Photosensitive resin composition, method for producing pattern cured product, cured product, interlayer insulating film, cover coat layer, surface protective layer and electric component |
JP7444215B2 (en) | 2017-03-31 | 2024-03-06 | Hdマイクロシステムズ株式会社 | Photosensitive resin composition, method for producing patterned cured product, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic components |
EP4182379A4 (en) * | 2020-07-15 | 2024-02-14 | FUJIFILM Electronic Materials U.S.A, Inc. | Dielectric film forming compositions |
JPWO2022065338A1 (en) * | 2020-09-25 | 2022-03-31 | ||
WO2022065338A1 (en) * | 2020-09-25 | 2022-03-31 | 富士フイルム株式会社 | Resin composition, cured product, laminate, cured product production method, and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TW201527875A (en) | 2015-07-16 |
JPWO2015052885A1 (en) | 2017-03-09 |
CN105829968A (en) | 2016-08-03 |
TWI655500B (en) | 2019-04-01 |
KR102276251B1 (en) | 2021-07-12 |
CN105829968B (en) | 2020-03-27 |
JP6572770B2 (en) | 2019-09-11 |
KR20160086324A (en) | 2016-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6572770B2 (en) | Resin composition containing polyimide precursor and method for producing cured film using the same | |
JP6610643B2 (en) | Polyimide precursor resin composition | |
JP6879328B2 (en) | Polyimide precursor, photosensitive resin composition containing the polyimide precursor, method for producing a pattern cured film using the polyimide precursor, and a semiconductor device. | |
JP2015151405A (en) | Resin composition containing polyimide precursor, manufacturing method of cured membrane and electronic component | |
JP6414060B2 (en) | Resin composition, pattern forming method using the same, and electronic component | |
JP6146005B2 (en) | Polyimide precursor composition and cured film using the composition | |
JP6390165B2 (en) | Polyimide precursor, photosensitive resin composition containing the polyimide precursor, pattern cured film manufacturing method using the same, and semiconductor device | |
JP2020037699A (en) | Resin composition containing polyimide precursor, method for manufacturing cured film, and electronic component | |
JP6244871B2 (en) | Polyimide precursor resin composition | |
WO2014097595A1 (en) | Photosensitive resin composition, and cured-pattern-film manufacturing method and semiconductor device using said photosensitive resin composition | |
US11226560B2 (en) | Photosensitive resin composition, cured pattern production method, cured product, interlayer insulating film, cover coat layer, surface protective layer, and electronic component | |
WO2018179330A1 (en) | Photosensitive resin composition, method for manufacturing pattern cured film, cured product, interlayer insulation film, cover coating layer, surface protective film, and electronic component | |
JP6044324B2 (en) | Polyimide precursor resin composition | |
JP2015224261A (en) | Resin composition comprising polyimide precursor, cured film, and production method thereof | |
JP6390109B2 (en) | Resin composition containing polyimide precursor, cured film and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14853022 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015541429 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167009206 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14853022 Country of ref document: EP Kind code of ref document: A1 |