WO2015052141A1 - Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication - Google Patents

Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication Download PDF

Info

Publication number
WO2015052141A1
WO2015052141A1 PCT/EP2014/071360 EP2014071360W WO2015052141A1 WO 2015052141 A1 WO2015052141 A1 WO 2015052141A1 EP 2014071360 W EP2014071360 W EP 2014071360W WO 2015052141 A1 WO2015052141 A1 WO 2015052141A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
wall
control device
elements
thermal control
Prior art date
Application number
PCT/EP2014/071360
Other languages
English (en)
Inventor
Gilles Elliot
Vincent Feuillard
Philippe Doucet
Alain Pourmarin
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to US15/028,171 priority Critical patent/US20160268654A1/en
Priority to EP14786636.2A priority patent/EP3055900A1/fr
Priority to JP2016521653A priority patent/JP2016539454A/ja
Priority to CN201480067689.8A priority patent/CN106030897A/zh
Priority to KR1020167011998A priority patent/KR20160068866A/ko
Publication of WO2015052141A1 publication Critical patent/WO2015052141A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a thermal control device for a motor vehicle battery module, for cooling or heating the battery or batteries of a motor vehicle including electric, hybrid or all-electric type.
  • the invention also relates to a method for manufacturing said control device.
  • the temperature of the batteries must be maintained within the range of 15 ° C to 35 ° C and more specifically between 20 and 30 ° C.
  • the heat pipes generally comprise a heat exchanger and a bundle of heat pipes arranged substantially in parallel.
  • the heat pipes have first ends whose surface is intended to be in thermal contact with a battery of the motor vehicle and second ends whose one surface is in thermal contact with the heat exchanger.
  • They comprise respectively a filler cap, a closure cap and a central trunk delimiting a plurality of bypass channels, in which is enclosed a phase change fluid.
  • the heat exchanger meanwhile, has a fluid inlet, a fluid outlet and at least two tubes defining two bypass guide circuits between the inlet of a coolant and its outlet.
  • the axis of each tube is oriented substantially perpendicular to the longitudinal direction of the heat pipes and the second ends of the heat pipes each have a surface in thermal contact with one of the tubes.
  • the tubes of the heat exchanger are made by processes, such as electro-welding, limiting the possibilities of realization at reduced cost of the exchanger.
  • the objective of the present invention is therefore to provide an improved thermal control device for a motor vehicle battery module, functionally similar to that described above, but which is simpler and less expensive to manufacture.
  • the subject of the invention is a thermal control device for a motor vehicle battery module, comprising a heat exchanger and a heat pipe bundle having at least one surface intended to be in thermal contact, on the one hand with a battery of the motor vehicle and, secondly, with the heat exchanger, said heat exchanger comprising at least one inner wall in contact with said surface of the heat pipes and at least one outer wall delimiting with said inner wall a circulation space for a fluid.
  • said inner and outer walls each comprise a plate.
  • said inner wall is covered on both sides with a filler metal and said outer wall is covered with said filler metal on one of its faces, located opposite said circulation space. . In this way it will be possible to avoid brazing the exchanger on its brazing support during the manufacture of the exchanger.
  • said plates are, for example, made from a metal sheet, in particular aluminum or an aluminum alloy, by a cold forming operation.
  • a metal sheet in particular aluminum or an aluminum alloy
  • Said plates preassembled to one another by crimping so as to form said circulation space.
  • Said fluid circulating in the exchanger is, for example, a heat transfer fluid. It may also be, in particular, a refrigerant.
  • Said heat exchanger may further comprise at least one inlet nozzle and at least one outlet nozzle for the circulation of said fluid.
  • said heat exchanger may comprise two elements each having an inner wall and an outer wall and intended to be in thermal contact with two faces of said heat pipes, said elements being geometrically identical. This results in a greater reduction in costs by reducing the number of elementary parts to be produced, and doubling the length of the series for the manufacture of these elements.
  • the two elements are in contact with each other at at least a portion of their inner walls and positioned relative to each other following a 180 ° rotation. .
  • the circulation spaces of the two elements are placed in communication with each other, the heat exchanger having only one inlet nozzle and a single outlet nozzle.
  • This configuration further reduces costs, with the elimination of the manufacture of one nozzle out of two.
  • Long ends of said plates may comprise stampings at which the contact between the two elements is made.
  • the stampings of the plate forming the inner wall of said elements advantageously have an opposite orientation on either side of the corresponding plate so as to create a clearance to accommodate one longitudinal end of the other element.
  • Said longitudinal ends of the elements which engage in said recesses comprise openings for introducing therein said inlet and / or outlet nozzles.
  • the heat pipes are closed at their end located on the heat exchanger side by a filler plug.
  • Said plug is preferably made from a metal sheet, in particular aluminum or an aluminum alloy, by a cold forming operation. The same reduction in cost is thus applied to the filler plug obtained with the elements of the heat exchanger.
  • At least one wall of the filler plug is made integrally with at least one of the walls of said heat exchanger.
  • the filler cap is formed by wall extensions of the two elements of said heat exchanger, assembled with each other. This method of production further reduces the number of elementary pieces to be produced.
  • a junction line of said extensions comprises along its length openings capable of forming access to the inner cavities of the heat pipes for their filling fluid.
  • the invention also relates to a motor vehicle battery module comprising at least one battery, characterized in that it comprises at least one thermal control device as described above.
  • said battery module is characterized in that it comprises at least two batteries stacked on each other with a thermal control device interposed between two successive batteries.
  • the invention also relates to a method for manufacturing a thermal control device for a motor vehicle battery module as described above, characterized in that:
  • the heat pipes and the inner and outer walls of the element or elements intended to form the heat exchanger are manufactured separately, said walls being made by cold forming,
  • the one or more elements are closed by positioning, if necessary, inside the heat exchanger, one or more disrupters, so as to form a circulation space for a coolant,
  • the heat pipes, the filling and exhaust plugs of said heat pipes, the inner and outer walls are manufactured separately in a first step.
  • the element or elements intended to form the heat exchanger said walls being made by cold forming, the inlet and outlet nozzles of said exchanger, and optionally one or more disrupters,
  • the inner walls of the elements of the heat exchanger are covered on their two faces, the outer walls of the said exchanger on one side, as well as the internal walls of the said plugs, solder metal layer,
  • the ends of the at least one non-brazed element are closed by crimping, by positioning, if necessary, inside the heat exchanger, the at least one interfering element, so as to form a circulation space for a coolant,
  • the filler plug is formed by two walls made by a cold forming operation, said walls joining at a junction line in the holding tool and being covered with filler metal at the level of a joining line. of said junction line for soldering along that line during the final assembly step.
  • said walls of the filler plug are made in continuity with the inner or outer walls of the elements of said heat exchanger, during the same cold forming operation.
  • the operation of forming said walls of the filler cap is effected by providing indentations on one of the edges of said walls, so as to generate openings along the junction line of the two walls.
  • the tubes are positioned in the holding tool at said junction line, said tubes being brazed to the filler cap during the simultaneous brazing of the other elements.
  • FIG. 1 is a representation according to a front view of a control device thermal device for a motor vehicle battery module according to the prior art
  • FIG. 2 is a diagrammatic and perspective view, in a side view, of a heat pipe of the device of FIG.
  • FIG. 3 is a diagrammatic and perspective representation of an example of a battery module comprising two batteries and the thermal control device of FIG. 1,
  • FIG. 4 is a representation according to a front view and in partial section of an embodiment of a thermal control device according to the invention
  • FIG. 5 is a representation in a plan view of an embodiment of the device of FIG. 4, and
  • FIG. 1 represents a thermal control device 1, according to the prior art, for a motor vehicle battery module, particularly an electric vehicle, of the hybrid or all-electric type.
  • the thermal control device 1 conventionally comprises a heat exchanger 3 and a bundle of heat pipes.
  • the device 1 illustrated in FIG. 1 thus comprises a bundle 4 comprising eight heat pipes 5.
  • a heat pipe 5 (or "heat pipe” in English) is in the form of a hermetic enclosure which encloses a fluid in equilibrium with its gaseous phase and its liquid phase, in the absence of any other gas. It is therefore a two-phase fluid.
  • an organic fluid can be mentioned, that is to say comprising molecules of carbon, hydrogen, and oxygen.
  • the heat pipe 5 has a generally elongate shape along a longitudinal axis L ( Figures 1 and 2).
  • the latter comprises a filler cap 6, a closure cap 7 and a central trunk 8 delimiting a plurality of channels 9 (only one of which is shown in FIG. bypassing between the filler cap 6 and the closure cap 7.
  • the channels 9 are for example identical and parallel to each other within the central trunk 8. Their inner walls have profiles configured to guide the liquid by capillarity from one end to the other of the heat pipe 5.
  • each heat pipe 5 may further comprise a pipe 15 which makes it possible to communicate with the interior of the hermetic enclosure of the heat pipe, in order to fill it or to empty it of its fluid. biphasic.
  • the outlet 15 is then inserted and sealed to the filler cap 6.
  • the heat pipes 5 may have a closable hole in the filler cap 6, which communicates directly with the interior of the hermetic enclosure for the filling of the heat pipe 5. Access to the internal cavity to the heat pipe is then carried out, without the jet, by the introduction of a syringe, or any other similar device, into this closable hole.
  • the channels 9 are closed at one end by the filling plug 6 and at a second end by the sealing plug 7.
  • the filling plug 6 comprises at the first end of the central trunk 8, a groove transverse to the longitudinal direction L of the heat pipes, which allows the channels 9 of a same heat pipe to communicate fluidly with each other.
  • the closure cap 7 comprises, at the second end of the central trunk 8, a second means of communication of the channels 9 between them.
  • the filling plugs and the shutter 6, 7 thus have the function of allowing the channels 9 of the heat pipe 5 to communicate with each other, the closing of the channels 9 with respect to the outside and the eventual mounting of the tubes 15 for the emptying / filling of the heat pipe 5 .
  • the heat pipes 5 (central trunks 8, filling plugs 6, plugs 7 and possible tubes 15) are, in known manner, made of a metallic material, and for example entirely of aluminum which has excellent thermal conductivity.
  • the multichannel central trunks 8 are made, for example, by extrusion and then cut to the desired length.
  • the tubes 15 are, for their part, soldered to the filler cap 6, which ensures the tightness of the assembly.
  • the heat exchanger 3 it conventionally comprises two tubes
  • the tubes 22, 23 defining two guiding circuits for the circulation of a fluid, such as water or brine, in connection between the fluid inlet 20 and the fluid outlet 21 (see arrows on the Figures 1 or 6).
  • the axes of the tubes 22, 23 are oriented substantially perpendicular to the longitudinal direction L of the heat pipes 5.
  • the second ends 5b of the heat pipes 5 of the beam 4 are interposed between the two tubes 22, 23, which sandwich them, each of the second ends. 5b thus having a surface in thermal contact with one of the tubes 22 or 23.
  • a "cold" fluid entering through the fluid inlet 20, flows through the guiding circuits of the tubes 22, 23, and exits through the fluid outlet 21. As it traverses the tubes 22, 23, the fluid recovers the energy of the heat pipes 5 and discharges it into a network of fluid connected to the fluid outlet 21.
  • the fluid network discharges excess heat, for example by an external radiator on the front of the vehicle.
  • the cold fluid is cooled by a refrigerant of an air conditioning loop of the vehicle.
  • the tubes 22, 23 thus make it possible to dissipate the heat accumulated by the second ends 5b of the heat pipes 5.
  • it is a "hot” fluid that flows through the guiding circuits of the tubes 22. 23, which transfers energy to the heat pipes 5.
  • the circulation of the fluid in the tubes 22, 23 is thus used to supply or dissipate heat to the heat pipes 5, without increasing the bulk of the battery module 10.
  • the tubes 22, 23 comprise a turbulator 24, housed in the guiding circuit (visible in FIG. 6).
  • the turbulator 24 extends along the guiding circuit and has for example a substantially corrugated shape in the transverse direction of the tubes 22,
  • the corrugations of the turbulator 24 thus form heat exchange fins which promotes heat exchange between the fluid flowing through the tubes 22, 23 and the tubes 22, 23.
  • the fins of the turbulators 24 are for example metallic, such as aluminum material and are brazed on the inner walls of the tubes 22, 23 in the guide circuits of the heat exchanger 3, for example at the vertices of their corrugations.
  • the control device 1 is integrated in a motor vehicle battery module 10 further comprising at least one battery 11.
  • FIG. 3 illustrates an example of a battery module 10, comprising two batteries 11 and a control device 1.
  • the batteries 11 are for example electrochemical, in particular of the Lithium-Ion type. Such batteries have the advantage of having a good weight / power ratio: that is to say, they are powerful in relation to their compactness.
  • the battery 11 has a substantially parallelepiped shape with two large flat parallel faces.
  • the surface of large flat surfaces is of the order of an A4 (300 * 216 mm).
  • the thermal control device 1 is assembled to the batteries so that the first ends 5a of the heat pipes 5 are in thermal contact with the battery or batteries 11 and the second ends 5b of the heat pipes 5 are in thermal contact with the heat exchanger 3 (FIGS. 1 and 3).
  • thermal contact is meant that the surfaces 12, 13 of the first ends 5a of the heat pipes 5 are plated and fixed against the battery 11 in direct contact, without intermediate, or that these surfaces are plated and fixed against the battery 11 with interposition of a thermally conductive interface promoting the thermal exchange between the battery 11 and the heat pipe 5.
  • the battery module 10 may thus comprise several batteries 11 and several thermal control devices 1, the batteries 11 being stacked one on the other, large face against large face, a thermal control device 1 being interposed between two successive batteries 11 as shown in Figure 3.
  • the heat pipes 5 are arranged in parallel, that is to say that they are parallel to each other and parallel to the longitudinal axis L, and that the surfaces 12, 13 of the first ends 5a of the heat pipes 5 completely cover the surface of the large face of the battery 11.
  • the thermal control device 1 thus makes it possible to control the temperature of the batteries 11 closest to them, with a large exchange surface, almost the entire surface of the battery 11, being intimately interposed in the middle of them, in a simple manner and with a small footprint.
  • the invention proposes to make the tubes 22 and 23 in the form of two plates or two half-shells which are obtained, each from two sheets of aluminum folded and cold formed, for example by stamping, then assembled to one another by crimping to define a circulation space of the fluid passing through the exchanger.
  • One of the plates forms an inner wall in contact with the heat pipes and a second one of the plates forms an opposite outer wall.
  • inlet nozzles 20 and 21 of the cooling fluid which are positioned to be in communication with the circulation space of said fluid.
  • Each of the tubes 22 or 23 thus has a substantially parallelepipedal shape extending transversely to the longitudinal direction L, the two aluminum plates that compose them being parallel and spaced from each other by a constant length over the entire length. the face which is parallel to the bundle 4 of heat pipes 5. They nevertheless have at one of their transverse ends a bulge 26 of greater thickness, so as to be able to fix on it, the inlet nozzle 20 or outlet 21 corresponding and adapt its diameter to the flow of fluid coming in or out through this nozzle. Said bulges are made, for example, in the form of stamped portions of said plates.
  • the two aluminum sheets meet at their transverse ends where they are fixed to one another by a crimping 27 which ensures the hydraulic sealing of the inside of the tube.
  • the invention proposes, rather than giving the two tubes 22 and 23 forms that would be symmetrical to each other with respect to the central plane of the device, to give them a shape. identical, then to position them head to tail with respect to each other, that is to say according to positions which are symmetrical to one another with respect to a central axis oriented in the longitudinal direction L.
  • the transverse end 28 of the tubes 22 and 23, which is opposed to that of the bulge 26, deviates from the central plane of the device so as to leave space to accommodate a portion of the bulge-related outgrowth 26 of the other tube and thus give the assembly formed by the two tubes an outer shape which is substantially symmetrical with respect to this central plane.
  • the embossed plate forming the inner wall of said elements advantageously has an opposite orientation to each longitudinal end of the corresponding plate so as to create a recess for receiving a longitudinal end of the other element.
  • the circulation of the cooling fluid inside the heat exchanger 3 is preferably carried out by a single inlet nozzle 20 and a single outlet nozzle 21, the flow being divided at the inlet nozzle for spread between the two tubes and then joining at the exit nozzle.
  • the walls of each of the tubes are pierced, at the contact between the bulge 26 of a tube and the transverse end 28 of the other tube, by holes 29 (visible in Figure 4) which connect the two entities and which form a passage for the fluid, a part of which can thus pass from the tube 22, carrying the inlet nozzle 20, in the tube 23, carrying the outlet nozzle 21.
  • an identical passage 29 allows the portion of the fluid that has passed through the tube 22 to pass into the tube 23, and then into the outlet nozzle.
  • FIGS. 4 and 5 there are two embodiments of the thermal control device 1, with regard to the means for filling the heat pipes 5.
  • FIG. 4 shows an exchanger 3 which is produced in a manner independent of the filling plug 6.
  • the latter is here produced in one piece which is intended to trap one end of the heat pipes 5 and which is pierced with several holes in which pass busses 15 for the loading of these heat pipes in two-phase fluid.
  • This piece is conventionally made by stamping or cold stamping of a blank, in order to obtain thin plugs.
  • the filling plug is, on the other hand, made by joining two aluminum sheets, or an aluminum alloy, which are cold-stamped and soldered to one another at their top, along the central plane of the device.
  • These openings are positioned longitudinally on the junction line so as to be in front of the internal cavities of the heat pipes 5 and can be used for the filling thereof. cooling fluid. They thus ensure, by means of syringes placed therein for this purpose, the access function inside the heat pipes, which was previously exerted by the tubes 15. After filling the heat pipes, the openings 31 are closed again. by crimping and their brazed junction to ensure the sealing of the inner part of the heat pipes vis-à-vis the outside.
  • each aluminum foil which forms a face of the filling plug 6 is constituted by the extension of one of the aluminum foils which forms a face of a tube 22 or 23; preferably it is formed by the extension of the inner wall or sheet of the tube, that is to say that which is intended to come into contact with the surfaces 12 or 13 of the heat pipes 5.
  • Each half of the filler cap 6 is then formed during cold stamping which serves to stamp the inner face of one of the tubes constituting the heat exchanger.
  • thermal control device 1 All the components of the thermal control device 1 are a priori made of aluminum material or a low-melting aluminum alloy.
  • the thermal control device 1 For brazing in a single pass of all the components together, including the heat pipe bundle 4, the filling plugs 6 and exhaust 7, the heat exchanger 3 and its turbulators 24, the inlet nozzles 20 and 21, it is anticipated that some components whose core is made of aluminum foil, such as aluminum 3300, be covered with a thin layer of material, such as aluminum 4040, 4045 or 4343 having a point less melting than the aluminum material of the heart.
  • the constitution of this layer of filler metal and its attachment to the aluminum foils is defined so that it remains attached to said sheet during cold stamping operations.
  • this thin layer of aluminum material (or “clad” in English, for “plating” in French), which has a thickness of only a few tenths of a millimeter, then makes it possible to secure the components between they, by melting and migration, in a brazing furnace (at a temperature of the order of 600 ° C).
  • the parts concerned by this layer of filler metal are: the internal faces of the plugs 6 and 7, against which the ends of the external surfaces 12 or 13 of the heat pipes 5 are fixed,
  • the filler metal is also present at the upper ends of the bulges 26 of the tubes 22 and 23, at the place where the inlet and outlet nozzles 21 of the heat exchanger 3 are fixed. case illustrated in Figure 5 where the heat exchanger 3 and the filler cap 6 are joined in one piece, the filler metal located on the inner face of the inner sheet is extended on the inner face of the half-cap 6 so that it can stick to the inner face of the other half cap to ensure the closure, at the openings 31 near the cap at its upper end.
  • the turbulators 24 are inserted into the guide circuits of the respective tubes 22, 23 of the heat exchanger 3.
  • the upper ends of the central trunks 8 of the heat pipes 5 are arranged in the filler and closure plugs 6 , 7 and, in the particular case of the embodiment illustrated in FIG. 4, the tubes 15 are assembled to the filling plugs 6 of the heat pipes 5.
  • the heat pipes 5 and the tubes 22, 23 of the heat exchanger 3 are installed together in a tooling for temporarily holding all the components of the control device 1 between them, with a slight clearance of the order of the order of 1 10 mm between each component, in order to allow a good migration of the filler metal. Also positioned inlet nozzles 20 and outlet 21 opposite the inlet and outlet ports of the coolant on the bulges 26 of the two tubes.
  • the assembly obtained is bonded to secure the multichannel central trunks 8 with the filler plugs 6 and plugs 7 of the heat pipes 5, the turbulators 24 to the inner walls of the tubes 22, 23 of the heat exchanger 3, the tubes 22, 23 at the first ends 5a of the heat pipes 5 of the bundle 4 and the heat pipes 5 of the bundle 4 between them, as well as the inlet and outlet nozzles with the tubes of the heat exchanger 3.
  • the tubes 15 are made integral with the filler cap 6.
  • All pre-assembled components on the tooling are brazed in one operation, with ideal aluminum / aluminum contact between the components, ie without risk of reducing the thermal conductivity, and in a completely leakproof way. .
  • the control device 1 thus obtained is simple to manufacture, it requires the implementation of only small components and inexpensive. It allows a precise and effective maintenance of the temperature, typically between 15 ° C and 35 ° C and more particularly between 20 ° C and 30 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Dispositif de contrôle thermique pour module de batterie de véhicule automobile, comportant un échangeur thermique (3) et un faisceau de caloducs (5) présentant au moins une surface destinée à être en contact thermique, d'une part avec une batterie du véhicule automobile et, d'autre part, avec l'échangeur thermique (3), ledit échangeur thermique comportant au moins une paroi intérieure en contact avec ladite surface des caloducs et au moins une paroi extérieure délimitant avec ladite paroi interne un espace de circulation pour un fluide caloporteur, ledit échangeur thermique comportant en outre au moins une buse d'entrée (20) et au moins une buse de sortie (21) pour la circulation dudit fluide, caractérisé en ce que lesdites parois intérieure et extérieure sont réalisées, à partir d'une feuille en aluminium ou en un alliage d'aluminium, par une opération de formage à froid et sont assemblées l'une à l'autre par sertissage de façon à former ledit espace de circulation.

Description

Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication
L'invention concerne un dispositif de contrôle thermique pour module de batterie de véhicule automobile, permettant de refroidir ou de réchauffer la ou les batteries d'un véhicule automobile notamment électrique, du type hybride ou tout électrique. L'invention concerne également un procédé pour une fabrication dudit dispositif de contrôle.
Pour assurer un fonctionnement et une durée d'utilisation optimaux des batteries de véhicule à moteur électrique, notamment des batteries du type Lithium-Ion, la température des batteries doit être maintenue dans une gamme de l'ordre de 15°C à 35°C et plus spécifiquement entre 20 et 30°C.
Ce maintien de la température doit être assuré lorsque le véhicule roule, ainsi qu'à son arrêt, et plus particulièrement au cours de la charge des batteries. Une charge très rapide de la batterie peut occasionner une génération de chaleur très importante dans la batterie. Il est alors nécessaire de refroidir la batterie afin de préserver sa durée de vie. De même, selon les conditions climatiques, notamment en hiver ou dans les pays froids, il peut être nécessaire de réchauffer la batterie pour rester dans la gamme de température de fonctionnement optimal.
Du fait du coût particulièrement élevé des batteries par rapport au coût total du véhicule, il est indispensable d'assurer des moyens de contrôle de la température des batteries qui soient efficaces. On cherche aujourd'hui de plus, à obtenir des moyens de contrôle de la température des batteries qui présentent un encombrement et un poids relativement faibles, qui soient simples et avec un bon rapport performance/ prix.
A cette fin des dispositifs ont été proposés, qui sont illustrés et qui seront décrits plus en détail en référence à la figure 1. Ils comportent généralement un échangeur thermique et un faisceau de caloducs agencés sensiblement parallèlement. Les caloducs présentent des premières extrémités dont une surface est destinée à être en contact thermique avec une batterie du véhicule automobile et des deuxièmes extrémités dont une surface est en contact thermique avec l'échangeur thermique. Ils comportent respectivement un bouchon de remplissage, un bouchon d'obturation et un tronc central délimitant une pluralité de canaux en dérivation, dans lequel est enfermé un fluide à changement de phase. L'échangeur thermique, quant à lui, comporte une entrée de fluide, une sortie de fluide et au moins deux tubes définissant deux circuits de guidage en dérivation entre l'entrée d'un fluide caloporteur et sa sortie. L'axe de chaque tube est orienté sensiblement perpendiculairement à la direction longitudinale des caloducs et les deuxièmes extrémités des caloducs présentent ainsi, chacune, une surface en contact thermique avec un des tubes.
Dans l'art antérieur, les tubes de l'échangeur thermique sont réalisés par des procédés, comme par exemple l'électro-soudage, limitant les possibilités de réalisation à coût réduit de l'échangeur.
L'objectif de la présente invention est donc de proposer un dispositif amélioré de contrôle thermique pour module de batterie de véhicule automobile, analogue fonctionnellement à celui décrit ci-dessus, mais qui soit plus simple et moins coûteux à fabriquer.
A cet effet, l'invention a pour objet un dispositif de contrôle thermique pour module de batterie de véhicule automobile, comportant un échangeur thermique et un faisceau de caloducs présentant au moins une surface destinée à être en contact thermique, d'une part avec une batterie du véhicule automobile et, d'autre part, avec l'échangeur thermique, ledit échangeur thermique comportant au moins une paroi intérieure en contact avec ladite surface des caloducs et au moins une paroi extérieure délimitant avec ladite paroi intérieure un espace de circulation pour un fluide.
Selon l'invention, lesdites parois intérieure et extérieure comprennent chacune une plaque. L'utilisation de plaques distinctes pour la réalisation de la paroi intérieure et de la paroi extérieure offre de nombreuses possibilités d'amélioration de l'échangeur.
Selon un premier exemple, ladite paroi intérieure est recouverte sur ses deux faces d'un métal d'apport et ladite paroi extérieure est recouverte dudit métal d'apport sur une seule de ses faces, située en vis-à-vis dudit espace de circulation. On pourra de la sorte éviter un brasage de l'échangeur sur son support de brasage lors de la fabrication de l'échangeur.
Selon un autre exemple, lesdites plaques sont, par exemple, réalisées, à partir d'une feuille métallique, notamment en aluminium ou en un alliage d'aluminium, par une opération de formage à froid. Une telle méthode est extrêmement simple et permet de réaliser des dispositifs de contrôle thermique à moindre coût. Lesdites plaques pourront être préassemblées l'une à l'autre par sertissage de façon à former ledit espace de circulation.
Ledit fluide circulant dans l'échangeur est, par exemple, un fluide caloporteur. Il pourra également s'agir, notamment, d'un fluide frigorigène.
Ledit échangeur thermique pourra comporter en outre au moins une buse d'entrée et au moins une buse de sortie pour la circulation dudit fluide.
Avantageusement, ledit échangeur thermique peut comporter deux éléments comportant chacun une paroi intérieure et une paroi extérieure et destinés à être en contact thermique avec deux faces desdits caloducs, lesdits éléments étant géométriquement identiques. On obtient ainsi une plus grande réduction des coûts en réduisant le nombre de pièces élémentaires à produire, et en doublant la longueur de la série pour la fabrication de ces éléments.
Dans un mode particulier de réalisation, les deux éléments sont en contact l'un avec l'autre au niveau d'au moins une partie de leurs parois intérieures et positionnés l'un par rapport à l'autre suite à une rotation de 180°.
Préférentiellement les espaces de circulation des deux éléments sont mis en communication l'un avec l'autre, l'échangeur thermique ne comportant qu'une seule buse d'entrée et qu'une seule buse de sortie. Cette configuration permet encore une réduction des coûts, avec la suppression de la fabrication d'une buse sur deux.
Des extrémités longitudinales desdites plaques pourront comprendre des emboutis au niveau desquels le contact entre les deux éléments est réalisé. Les emboutis de la plaque formant la paroi intérieure desdits éléments présentent avantageusement une orientation opposée de part et d'autre de la plaque correspondante de façon à créer un dégagement pour accueillir une extrémité longitudinale de l'autre élément.
Lesdites extrémités longitudinales des éléments qui s'engagent dans lesdits dégagements comprennent des ouvertures permettant d'y introduire lesdites buses d'entrée et/ ou sortie.
De façon préférentielle, les caloducs sont fermés à leur extrémité située du côté de l'échangeur thermique par un bouchon de remplissage. Ledit bouchon est préférentiellement réalisé à partir d'une feuille métallique, notamment en aluminium ou en un alliage d'aluminium, par une opération de formage à froid. On applique ainsi la même réduction de coût au bouchon de remplissage que l'on obtient avec les éléments de l'échangeur thermique.
De façon plus préférentielle, au moins une paroi du bouchon de remplissage est réalisée de façon monobloc avec au moins une des parois dudit échangeur thermique.
Avantageusement, le bouchon de remplissage est formé par des extensions de parois des deux éléments dudit échangeur thermique, assemblées l'une avec l'autre. Cette méthode de production réduit encore le nombre de pièces élémentaires à produire.
Préférentiellement une ligne de jonction desdites extensions comporte sur sa longueur des ouvertures aptes à former des accès aux cavités internes des caloducs pour leur remplissage en fluide. Cette méthode permet d'éviter d'avoir à produire des queusots, qu'il faudrait alors assembler sur les autres éléments du dispositif.
L'invention porte également sur un module de batterie de véhicule automobile comportant au moins une batterie, caractérisé en ce qu'il comporte au moins un dispositif de contrôle thermique tel que décrit ci-dessus.
Préférentiellement ledit module de batterie est caractérisé en ce qu'il comporte au moins deux batteries empilées les unes sur les autres avec un dispositif de contrôle thermique interposé entre deux batteries successives.
L'invention a encore pour objet un procédé de fabrication d'un dispositif de contrôle thermique pour module de batterie de véhicule automobile tel que décrit précédemment, caractérisé en ce que :
— les caloducs et les parois intérieures et extérieures du ou des éléments destinés à former l'échangeur thermique sont fabriqués séparément, lesdites parois étant réalisées par un formage à froid,
— le ou lesdits éléments sont fermés en positionnant préalablement, le cas échéant, à l'intérieur de l'échangeur thermique, un ou des perturbateurs, de façon à former un espace de circulation pour un fluide caloporteur,
— l'ensemble est brasé simultanément.
Plus précisément, le procédé conforme à l'invention pourra être mis en œuvre de la façon suivante :
— on fabrique séparément, dans une première étape, les caloducs, les bouchons de remplissage et d'évacuation desdits caloducs, les parois intérieures et extérieures du ou des éléments destinés à former l'échangeur thermique, lesdites parois étant réalisées par un formage à froid, les buses d'entrée et de sortie dudit échangeur, et éventuellement un ou plusieurs perturbateurs,
— on recouvre, avant ou après la réalisation dudit formage à froid, les parois intérieures des éléments de l'échangeur thermique sur leurs deux faces, les parois extérieures dudit échangeur sur une seule face, ainsi que les parois internes desdits bouchons, d'une couche de métal d'apport pour brasage,
— on ferme par sertissage les extrémités du ou desdits éléments non destinées à être brasées, en positionnant préalablement, le cas échéant, à l'intérieur de l'échangeur thermique, le ou lesdits perturbateurs, de façon à former un espace de circulation pour un fluide caloporteur,
— on assemble ensuite les éléments ci-dessus dans un outillage de maintien, et
— on brase l'ensemble simultanément, dans un four, par fusion du métal d'apport. De façon préférentielle, le bouchon de remplissage est formé par deux parois réalisées par une opération de formage à froid, lesdites parois se rejoignant au niveau d'une ligne de jonction dans l'outillage de maintien et étant recouverte de métal d'apport au niveau de ladite ligne de jonction pour un brasage le long de cette ligne lors de l'étape d'assemblage final.
Avantageusement, lesdites parois du bouchon de remplissage sont réalisées en continuité des parois intérieures ou extérieures des éléments dudit échangeur thermique, au cours de la même opération de formage à froid.
Préférentiellement, l'opération de formage desdites parois du bouchon de remplissage s'effectue en ménageant des échancrures sur un des bords desdites parois, de manière à générer des ouvertures le long de la ligne de jonction des deux parois.
Dans un mode particulier de réalisation, on positionne des queusots dans l'outillage de maintien au niveau de ladite ligne de jonction, lesdits queusots étant brasés au bouchon de remplissage lors du brasage simultané des autres éléments.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
la figure 1 est une représentation selon une vue de face d'un dispositif de contrôle thermique pour module de batterie de véhicule automobile selon l'art antérieur, la figure 2 est une représentation schématique et en perspective, selon une vue de côté, d'un caloduc du dispositif de la figure 1,
la figure 3 est une représentation schématique et en perspective d'un exemple de module de batterie comportant deux batteries et le dispositif de contrôle thermique de la figure 1,
la figure 4 est une représentation selon une vue de face et selon une coupe partielle, d'un mode de réalisation d'un dispositif de contrôle thermique conformément à l'invention,
- la figure 5 est une représentation selon une vue de dessus d'un mode de réalisation du dispositif de la figure 4, et
la figure 6 est une représentation selon une vue de dessus, et selon une vue en coupe, du même dispositif de contrôle thermique. La figure 1 représente un dispositif de contrôle thermique 1, selon l'art antérieur, pour module de batterie de véhicule automobile, notamment de véhicule électrique, du type hybride ou tout électrique.
Le dispositif de contrôle thermique 1 comporte classiquement un échangeur thermique 3 et un faisceau de caloducs. Le dispositif 1 illustré sur la figure 1 comporte ainsi un faisceau 4 comprenant huit caloducs 5.
De façon connue en soi, un caloduc 5 (ou « heat pipe » en anglais) se présente sous la forme d'une enceinte hermétique qui renferme un fluide en équilibre avec sa phase gazeuse et sa phase liquide, en absence de tout autre gaz. Il s'agit donc d'un fluide diphasique. On peut citer comme exemple non limitatif un fluide organique, c'est-à-dire comportant des molécules de carbone, hydrogène, et oxygène.
Le caloduc 5 présente une forme générale allongée selon un axe longitudinal L (figures 1 et 2). Selon l'exemple schématisé en figure 2, celui-ci comporte un bouchon de remplissage 6, un bouchon d'obturation 7 et un tronc central 8 délimitant une pluralité de canaux 9 (dont un seul est représenté sur la figure 2) s'étendant en dérivation entre le bouchon de remplissage 6 et le bouchon d'obturation 7.
Les canaux 9 sont par exemple identiques et parallèles entre eux à l'intérieur du tronc central 8. Leurs parois internes présentent des profils configurés pour guider le liquide par capillarité d'une extrémité à l'autre du caloduc 5.
Selon une forme particulière, illustrée sur les figures 1 à 4, chaque caloduc 5 peut comporter en outre un queusot 15 qui permet de communiquer avec l'intérieur de l'enceinte hermétique du caloduc, afin de la remplir ou de la vider de son fluide diphasique. Le queusot 15 est alors inséré et fixé de manière étanche au bouchon de remplissage 6. En variante, les caloducs 5 peuvent présenter un trou obturable, pratiqué dans le bouchon de remplissage 6, qui communique directement avec l'intérieur de l'enceinte hermétique pour le remplissage du caloduc 5. L'accès à la cavité interne au caloduc s'effectue alors, sans queusot, par l'introduction d'une seringue, ou de tout autre dispositif analogue, dans ce trou obturable.
Autrement dit, ici, les canaux 9 sont fermés à une première extrémité par le bouchon de remplissage 6 et à une deuxième extrémité par le bouchon d'obturation 7. Le bouchon de remplissage 6 comporte au niveau de la première extrémité du tronc central 8, une rainure transverse à la direction longitudinale L des caloducs, qui permet aux canaux 9 d'un même caloduc de communiquer fluidiquement entre eux. De la même façon, le bouchon d'obturation 7 comporte, au niveau de la deuxième extrémité du tronc central 8, un deuxième moyen de communication des canaux 9 entre eux. Ces moyens de communication permettent d'équilibrer la pression entre tous les différents canaux 9 du caloduc 5 de manière à répartir équitablement le fluide diphasique dans l'enceinte hermétique définie par les rainures de communication et les canaux 9. Les bouchons de remplissage et d'obturation 6, 7 ont ainsi pour fonctions de permettre la communication des canaux 9 du caloduc 5 entre eux, la fermeture des canaux 9 vis-à-vis de l'extérieur et le montage éventuel des queusots 15 pour le vidage/remplissage du caloduc 5.
En ce qui concerne leur réalisation technologique, les caloducs 5 (troncs centraux 8, bouchons de remplissage 6, bouchons d'obturation 7 et éventuels queusots 15) sont, de façon connue, réalisés en un matériau métallique, et par exemple entièrement en aluminium qui présente une excellente conductivité thermique. Les troncs centraux 8 multicanaux sont réalisés, par exemple, par extrusion puis découpés à la longueur souhaitée. Les queusots 15 sont, quant à eux, brasés sur le bouchon de remplissage 6, ce qui garantit l'étanchéité de l'assemblage. En ce qui concerne l'échangeur thermique 3, il comporte classiquement deux tubes
22, 23, définissant deux circuits de guidage pour la circulation d'un fluide, tel que de l'eau ou de l'eau glycolée, en dérivation entre l'entrée de fluide 20 et la sortie de fluide 21 (voir flèches sur les figures 1 ou 6). Les axes des tubes 22, 23 sont orientés sensiblement perpendiculairement à la direction longitudinale L des caloducs 5. Les deuxièmes extrémités 5b des caloducs 5 du faisceau 4 sont interposées entre les deux tubes 22, 23, qui les prennent en sandwich, chacune des deuxièmes extrémités 5b présentant ainsi une surface en contact thermique avec un des tubes 22 ou 23.
En fonctionnement de « refroidissement », un fluide « froid », entre par l'entrée de fluide 20, parcourt les circuits de guidage des tubes 22, 23, et sort par la sortie de fluide 21. En parcourant les tubes 22, 23, le fluide récupère l'énergie des caloducs 5 et l'évacué dans un réseau de fluide connecté à la sortie de fluide 21. Le réseau de fluide évacue le surplus de chaleur, par exemple par un radiateur extérieur en face avant du véhicule. En variante le fluide froid est refroidi par un fluide frigorigène d'une boucle de climatisation du véhicule. Les tubes 22, 23 permettent ainsi de dissiper la chaleur accumulée par les deuxièmes extrémités 5b des caloducs 5. A l'inverse en fonctionnement de « réchauffement », c'est un fluide « chaud », qui parcourt les circuits de guidage des tubes 22, 23 et qui transfère de l'énergie aux caloducs 5. La circulation du fluide dans les tubes 22, 23 est ainsi utilisée pour fournir ou dissiper de la chaleur aux caloducs 5, sans augmentation de l'encombrement du module de batterie 10.
Pour améliorer le transfert thermique vers le fluide parcourant les tubes 22, 23, on prévoit que les tubes 22, 23 comportent un turbulateur 24, logé dans le circuit de guidage (visible sur la figure 6). Le turbulateur 24 s'étend le long du circuit de guidage et présente par exemple une forme sensiblement ondulée dans la direction transversale des tubes 22,
23. Les ondulations du turbulateur 24 forment ainsi des ailettes d'échange de chaleur qui , favorise l'échange thermique entre le fluide parcourant les tubes 22, 23 et les tubes 22, 23.
Les ailettes des turbulateurs 24 sont par exemple métalliques, tel qu'en matériau aluminium et sont brasées sur les parois internes des tubes 22, 23 dans les circuits de guidage de l'échangeur thermique 3, par exemple au niveau des sommets de leurs ondulations. Le dispositif de contrôle 1 est intégré dans un module de batterie de véhicule automobile 10 comportant en outre au moins une batterie 11. La figure 3 illustre un exemple de module de batterie 10, comportant deux batteries 11 et un dispositif de contrôle 1. Les batteries 11 sont par exemple électrochimiques, notamment du type Lithium-Ion. De telles batteries présentent l'avantage de présenter un bon rapport poids/puissance : c'est-à-dire qu'elles sont puissantes par rapport à leur compacité.
Dans l'exemple illustré, la batterie 11 présente une forme sensiblement parallélépipédique avec deux grandes faces parallèles planes. A titre d'exemple, la surface des grandes surfaces planes est de l'ordre d'un format A4 (300*216 mm).
Le dispositif de contrôle thermique 1 est assemblé aux batteries de sorte que les premières extrémités 5a des caloducs 5 soient en contact thermique avec la ou les batteries 11 et les deuxièmes extrémités 5b des caloducs 5 soient en contact thermique avec l'échangeur thermique 3 (figures 1 et 3). On entend par « contact thermique », soit que les surfaces 12, 13 des premières extrémités 5a des caloducs 5 sont plaquées et fixées contre la batterie 11 en contact direct, sans intermédiaire, soit que ces surfaces sont plaquées et fixées contre la batterie 11 avec interposition d'une interface thermiquement conductrice favorisant l'échange thermique entre la batterie 11 et le caloduc 5.
Le module de batterie 10 peut ainsi comporter plusieurs batteries 11 et plusieurs dispositifs de contrôle thermique 1, les batteries 11 étant empilées les unes sur les autres, grande face contre grande face, un dispositif de contrôle thermique 1 étant interposé entre deux batteries 11 successives comme représenté sur la figure 3.
Afin de maximiser la surface d'échange entre les caloducs 5 et les batteries 11, on prévoit que, dans un même faisceau 4, les caloducs 5 soient disposés en parallèle, c'est-à- dire qu'ils sont parallèles entre eux et parallèles à l'axe longitudinal L, et que les surfaces 12, 13 des premières extrémités 5a des caloducs 5 recouvrent entièrement la surface de la grande face de la batterie 11. Le dispositif de contrôle thermique 1 permet ainsi de contrôler la température des batteries 11 au plus près de celles-ci, avec une surface d'échange importante, quasiment la surface totale de la batterie 11, en étant intimement intercalé au milieu d'entre elles, de manière simple et avec un encombrement réduit.
En se référant maintenant aux figures 4 à 6 on va décrire un dispositif de contrôle thermique selon l'invention. Alors que dans l'art antérieur l'échangeur thermique 3 était réalisé à partir d'une bande métallique rectangulaire, en aluminium ou en alliage d'aluminium, qui était pliée puis brasée ou électro-soudée, l'invention propose de réaliser les tubes 22 et 23 sous la forme de deux plaques ou deux demi-coquilles qui sont obtenues, chacune, à partir de deux feuilles d'aluminium pliées et formées à froid, par exemple par emboutissage, puis assemblées l'une à l'autre par sertissage pour définir un espace de circulation du fluide traversant l'échangeur. Une première des plaques forme une paroi intérieure en contact avec les caloducs et une seconde des plaques forme un paroi extérieure opposée. A chacune des extrémités de l'échangeur sont fixées, préférentiellement par brasage, des buses d'entrée 20 et de sortie 21 du fluide de refroidissement qui sont positionnées de façon à être en communication avec l'espace de circulation dudit fluide.
Chacun des tubes 22 ou 23 a ainsi une forme sensiblement parallélépipédique s'étendant transversalement à la direction longitudinale L, les deux plaques d'aluminium qui les composent étant parallèles et distantes l'une de l'autre d'une longueur constante sur toute la face qui est parallèle au faisceau 4 de caloducs 5. Ils présentent néanmoins à une de leurs extrémités transversales un renflement 26 de plus grande épaisseur, de façon à pouvoir fixer sur lui, la buse d'entrée 20 ou de sortie 21 correspondante et à adapter son diamètre au flux de fluide venant ou sortant par cette buse. Lesdits renflements sont réalisés, par exemple, sous la forme de portion embouties desdites plaques. Les deux feuilles d'aluminium se rejoignent à leurs extrémités transversales où elles sont fixées l'une à l'autre par un sertissage 27 qui assure l'étanchéité hydraulique de l'intérieur du tube.
Pour obtenir une plus grande réduction des coûts de fabrication l'invention propose, plutôt que de donner aux deux tubes 22 et 23 des formes qui seraient symétriques l'une de l'autre par rapport au plan central du dispositif, de leur donner une forme identique, puis de les positionner tête-bêche l'un par rapport à l'autre, c'est à dire selon des positions qui sont symétriques l'une de l'autre par rapport à un axe central orienté selon la direction longitudinale L. Pour cela l'extrémité transversale 28 des tubes 22 et 23, qui est opposée à celle du renflement 26, s'écarte du plan central du dispositif de façon à laisser de l'espace pour y loger une partie de l'excroissance liée au renflement 26 de l'autre tube et ainsi donner à l'ensemble formé par les deux tubes une forme extérieure qui soit sensiblement symétrique par rapport à ce plan central. Autrement dit, les emboutis de la plaque formant la paroi intérieure desdits éléments présente avantageusement une orientation opposée à chaque extrémité longitudinale de la plaque correspondante de façon à créer un dégagement pour accueillir une extrémité longitudinale de l'autre élément.
La circulation du fluide de refroidissement à l'intérieur de l'échangeur thermique 3 est de façon préférentielle réalisée par une seule buse d'entrée 20 et une seule buse de sortie 21, le flux se divisant au niveau de la buse d'entrée pour se répartir entre les deux tubes puis se rejoignant au niveau de la buse de sortie. Pour cela les parois de chacun des tubes sont percées, au niveau du contact entre le renflement 26 d'un tube et l'extrémité transversale 28 de l'autre tube, par des perçages 29 (visibles sur la figure 4) qui mettent en communication les deux entités et qui forment un passage pour le fluide, dont une partie peut ainsi passer du tube 22, porteur de la buse d'entrée 20, dans le tube 23, porteur de la buse de sortie 21. A l'autre extrémité transversale de l'échangeur thermique 3, un passage identique 29 permet à la partie du fluide qui a cheminé au travers du tube 22 de passer dans le tube 23, puis dans la buse de sortie.
En se référant maintenant plus particulièrement aux figures 4 et 5 on voit deux modes de réalisation du dispositif de contrôle thermique 1, en ce qui concerne le moyen de remplissage des caloducs 5.
Sur la figure 4 est représenté un échangeur 3 qui est réalisé d'une façon indépendante du bouchon de remplissage 6. Ce dernier est, ici, réalisé en une seule pièce qui est destinée à emprisonner une des extrémités des caloducs 5 et qui est percée de plusieurs trous dans lesquels passent des queusots 15 pour le chargement de ces caloducs en fluide diphasique. Cette pièce est classiquement réalisée par matriçage ou emboutissage à froid d'une pièce brute, afin d'obtenir des bouchons de faible épaisseur.
Sur la figure 5 le bouchon de remplissage est, en revanche, réalisé par la jonction de deux feuilles d'aluminium, ou en un alliage d'aluminium, qui sont embouties à froid et brasées l'une à l'autre à leur sommet, le long du plan central du dispositif. L'emboutissage des feuilles laisse des échancrures, régulièrement disposées le long du bord de la feuille qui est destiné à être joint à un bord de l'autre feuille, de sorte qu'après assemblage, des ouvertures 31 subsistent le long de la ligne de jonction 30 des deux feuilles. Ces ouvertures sont positionnées longitudinalement sur la ligne de jonction de façon à se retrouver en face des cavités internes des caloducs 5 et pouvoir servir pour le remplissage de ceux-ci en fluide de refroidissement. Elles assurent ainsi, par l'intermédiaire de seringues qui y sont placées à cet effet, la fonction d'accès à l'intérieur des caloducs, qui était précédemment exercée par les queusots 15. Après le remplissage des caloducs, les ouvertures 31 sont refermées par sertissage puis leur jonction brasée pour garantir l'étanchéité de la partie interne des caloducs vis-à-vis de l'extérieur.
Dans un mode particulier de l'invention l'échangeur thermique 3 et le bouchon de remplissage 6 sont réalisés sous la forme d'une seule et même pièce, dans le but de réduire la quantité de pièces mises en œuvre et de faciliter les opérations de fabrication de ces pièces. Pour cela chaque feuille d'aluminium qui forme une face du bouchon de remplissage 6 est constituée par le prolongement d'une des feuilles d'aluminium qui forme une face d'un tube 22 ou 23 ; de préférence elle est formée par le prolongement de la paroi ou feuille intérieure du tube, c'est-à-dire celle qui est destinée à venir au contact des surfaces 12 ou 13 des caloducs 5. Chaque moitié du bouchon de remplissage 6 est alors formée au cours de l'emboutissage à froid qui sert à emboutir la face interne d'un des tubes constitutifs de l'échangeur thermique.
On va maintenant décrire la fabrication d'un dispositif de contrôle thermique selon l'invention. Tous les composants du dispositif de contrôle thermique 1 sont a priori en matériau aluminium ou en un alliage d'aluminium à bas point de fusion. Pour assurer le brasage en une seule passe de tous les composants entre eux, notamment le faisceau de caloducs 4, les bouchons de remplissage 6 et d'évacuation 7, l'échangeur thermique 3 et ses turbulateurs 24, les buses d'entrée 20 et de sortie 21, on prévoit que certains composants dont le cœur est réalisé par une feuille en aluminium, tel que l'aluminium 3300, soient recouvert d'une fine couche de matériau, tel que l'aluminium 4040, 4045 ou 4343 présentant un point de fusion inférieur à celui du matériau aluminium du cœur. La constitution de cette couche de métal d'apport et sa fixation sur les feuilles d'aluminium est définie de telle sorte qu'elle reste attachée à ladite feuille lors des opérations d'emboutissage à froid. En jouant le rôle de métal d'apport, cette fine couche de matériau aluminium (ou "clad" en anglais, pour « plaquage » en français), qui présente une épaisseur de seulement quelques dixièmes de millimètres, permet alors de solidariser les composants entre eux, par fusion et migration, dans un four de brasage (à une température de l'ordre de 600°C).
Les pièces concernées par cette couche de métal d'apport sont : - les faces internes des bouchons 6 et 7, contre lesquelles viennent se fixer les extrémités des surfaces externes 12 ou 13 des caloducs 5,
- les deux faces des parois ou feuilles intérieures des tubes 22 et 23 de l'échangeur thermique 3, c'est-à-dire, d'une part, celles destinées à venir au contact des caloducs 5, et de l'autre une première série de sommets des ondulations des turbulateurs 24,
- et enfin la face interne des parois ou feuilles extérieures de ces mêmes tubes, contre laquelle viennent se fixer la seconde série de sommets des ondulations des perturbateurs 24. La face externe de ces mêmes feuilles extérieures n'est pas recouverte de métal d'apport lors de sa constitution, pour éviter qu'elle ne se colle sur l'outillage de maintien de tout l'ensemble, lors du brasage.
Le métal d'apport est, également, présent aux extrémités supérieures des renflements 26 des tubes 22 et 23, à l'endroit où se fixent les buses d'entrée 20 et de sortie 21 de l'échangeur thermique 3. Enfin, dans le cas illustré sur la figure 5 où l'échangeur thermique 3 et le bouchon de remplissage 6 sont réunis en une seule pièce, le métal d'apport situé sur la face interne de la feuille intérieure se prolonge sur la face interne du demi-bouchon 6 de façon à ce que celle-ci puisse se coller à la face interne de l'autre demi- bouchon pour assurer la fermeture, aux ouvertures 31 près, du bouchon à son extrémité supérieure.
L'assemblage des pièces constitutives du dispositif de contrôle thermique 1, préformées, se déroule alors de la façon suivante.
Dans une première étape, on insère les turbulateurs 24 dans les circuits de guidage des tubes respectifs 22, 23 de l'échangeur thermique 3. On agence les extrémités supérieures des troncs centraux 8 des caloducs 5 dans les bouchons de remplissage et d'obturation 6, 7 et, dans le cas particulier du mode de réalisation illustré sur la figure 4, on assemble les queusots 15 aux bouchons de remplissage 6 des caloducs 5.
On installe les caloducs 5 et les tubes 22, 23 de l'échangeur thermique 3 ensemble dans un outillage permettant de maintenir provisoirement tous les composants du dispositif de contrôle 1 entre eux, avec un léger jeu de l'ordre de l'ordre de 1/10 de mm entre chaque composant, dans le but de permettre une bonne migration du métal d'apport. On positionne également des buses d'entrée 20 et de sortie 21 en vis à vis des orifices d'entrée et de sortie du fluide caloporteur sur les renflements 26 des deux tubes. Puis, dans une deuxième étape, on brase l'ensemble obtenu pour solidariser les troncs centraux multicanaux 8 avec les bouchons de remplissage 6 et d'obturation 7 des caloducs 5, les turbulateurs 24 aux parois internes des tubes 22, 23 de l'échangeur thermique 3, les tubes 22, 23 aux premières extrémités 5a des caloducs 5 du faisceau 4 et les caloducs 5 du faisceau 4 entre eux, ainsi que les buses d'entrée et de sortie avec les tubes de l'échangeur thermique 3. Le cas échéant les queusots 15 sont rendus solidaires du bouchon de remplissage 6.
Ainsi, tous les composants préassemblés sur l'outillage sont brasés en une seule opération, avec un contact idéal aluminium/aluminium entre les composants, c'est-à-dire sans risque de réduire la conductibilité thermique, et ce, de manière totalement étanche.
Le dispositif de contrôle 1 ainsi obtenu est donc simple à fabriquer, il ne nécessite la mise en œuvre que de composants peu encombrants et peu coûteux. Il permet un maintien précis et efficace de la température, typiquement entre 15°C et 35°C et plus particulièrement entre 20°C et 30°C.

Claims

REVENDICATIONS
1. Dispositif de contrôle thermique pour module de batterie de véhicule automobile, comportant un échangeur thermique (3) et un faisceau (4) de caloducs (5) présentant au moins une surface (12, 13) destinée à être en contact thermique, d'une part avec une batterie (11) du véhicule automobile et, d'autre part, avec l'échangeur thermique (3), ledit échangeur thermique comportant au moins une paroi intérieure en contact avec ladite surface des caloducs et au moins une paroi extérieure délimitant avec ladite paroi intérieure un espace de circulation pour un fluide, caractérisé en ce que lesdites parois intérieure et extérieure comprennent chacune une plaque.
2. Dispositif selon la revendication 1 dans lequel lesdites plaques sont réalisées, à partir d'une feuille métallique, par une opération de formage à froid et/ ou préassemblées l'une à l'autre par sertissage de façon à former ledit espace de circulation.
3. Dispositif selon l'une quelconque des revendications 1 ou 2 dans lequel ladite paroi intérieure est recouverte sur ses deux faces d'un métal d'apport et ladite paroi extérieure est recouverte dudit métal d'apport sur une seule de ses faces, située en vis-à-vis dudit espace de circulation.
4. Dispositif de contrôle thermique selon l'une quelconque des revendications précédentes, dans lequel ledit échangeur thermique comporte deux éléments (22, 23) comportant chacun une paroi intérieure et une paroi extérieure et destinés à être en contact thermique avec deux faces (12, 13) desdits caloducs.
5. Dispositif de contrôle thermique selon la revendication 4, dans lequel les deux éléments sont en contact l'un avec l'autre par au moins une partie de leurs parois intérieures et positionnés l'un par rapport à l'autre suite à une rotation de 180°.
6. Dispositif de contrôle thermique selon la revendication 5, dans lequel les espaces de circulation des deux éléments (22, 23) sont mis en communication l'un avec l'autre, l'échangeur thermique comportant une seule buse d'entrée (20) et une seule buse de sortie (21).
7. Dispositif selon l'une des revendications 4 à 6 dans lequel des extrémités longitudinales desdites plaques comprennent des emboutis au niveau desquels le contact entre les deux éléments (22, 23) est réalisé, les emboutis de la plaque formant la paroi intérieure desdits éléments (22, 23) présentant une orientation opposée de part et d'autre de la plaque correspondante de façon à créer un dégagement pour accueillir une extrémité longitudinale de l'autre élément (22, 23).
8. Dispositif selon la revendication 7 dans lequel lesdites extrémités longitudinales des éléments qui s'engagent dans lesdits dégagements comprennent des ouvertures permettant d'y introduire lesdites buses d'entrée et/ ou sortie.
9. Dispositif de contrôle thermique selon l'une des revendications 1 à 8, dans lequel les caloducs sont fermés à leur extrémité située du côté de l'échangeur thermique (3) par un bouchon de remplissage (6).
10. Dispositif de contrôle thermique selon la revendication 9, dans lequel au moins une paroi du bouchon de remplissage est réalisée de façon monobloc avec au moins une des parois dudit échangeur thermique.
11. Dispositif selon l'une des revendications 4 à 8 dans lequel les caloducs sont fermés à leur extrémité située du côté de l'échangeur thermique (3) par un bouchon de remplissage (6), le bouchon de remplissage (6) étant formé par des extensions de parois des deux éléments (22, 23) dudit échangeur thermique, assemblées l'une avec l'autre.
12. Dispositif selon la revendication 11 dans lequel une ligne de jonction desdites extensions comporte sur sa longueur des ouvertures (31) aptes à former des accès aux cavités internes des caloducs pour leur remplissage en fluide.
13. Module de batterie de véhicule automobile comportant au moins une batterie, caractérisé en ce qu'il comporte au moins un dispositif de contrôle thermique (1) selon l'une des revendications 1 à 12.
14. Module de batterie selon la revendication 13, caractérisé en ce qu'il comporte au moins deux batteries (11) empilées les unes sur les autres avec un dispositif de contrôle thermique (1) interposé entre deux batteries successives (H).
15. Procédé de fabrication d'un dispositif de contrôle thermique pour module de batterie de véhicule automobile selon l'une des revendications 13 ou 14, caractérisé en ce que :
— les caloducs (5) et les parois intérieures et extérieures du ou des éléments (22, 23) destinés à former l'échangeur thermique (3) sont fabriqués séparément,
— le ou lesdits éléments (22, 23) sont fermés en positionnant préalablement, le cas échéant, à l'intérieur de l'échangeur thermique, un ou des perturbateurs (24), de façon à former un espace de circulation pour un fluide caloporteur, — l'ensemble est brasé simultanément.
PCT/EP2014/071360 2013-10-10 2014-10-06 Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication WO2015052141A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/028,171 US20160268654A1 (en) 2013-10-10 2014-10-06 Cost-efficient device for controlling the temperature of a motor vehicle battery module, and manufacturing method
EP14786636.2A EP3055900A1 (fr) 2013-10-10 2014-10-06 Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication
JP2016521653A JP2016539454A (ja) 2013-10-10 2014-10-06 自動車両バッテリモジュールの温度を制御するための費用効率が高い装置及び製造方法
CN201480067689.8A CN106030897A (zh) 2013-10-10 2014-10-06 用于控制机动车辆电池模块的温度的成本高效装置,以及制造方法
KR1020167011998A KR20160068866A (ko) 2013-10-10 2014-10-06 자동차 배터리 모듈의 온도를 제어하기 위한 비용효율적인 장치 및 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1359826A FR3011986A1 (fr) 2013-10-10 2013-10-10 Dispositif de controle thermique pour module de batterie de vehicule automobile, a cout maitrise, et procede de fabrication
FR1359826 2013-10-10

Publications (1)

Publication Number Publication Date
WO2015052141A1 true WO2015052141A1 (fr) 2015-04-16

Family

ID=49998416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/071360 WO2015052141A1 (fr) 2013-10-10 2014-10-06 Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication

Country Status (7)

Country Link
US (1) US20160268654A1 (fr)
EP (1) EP3055900A1 (fr)
JP (1) JP2016539454A (fr)
KR (1) KR20160068866A (fr)
CN (1) CN106030897A (fr)
FR (1) FR3011986A1 (fr)
WO (1) WO2015052141A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180123201A1 (en) * 2016-10-28 2018-05-03 Inevit, Llc Battery module cooling tube including an integrated turbulator component and method thereof
JP2019095103A (ja) * 2017-11-20 2019-06-20 株式会社デンソー 機器温調装置
HUE054091T2 (hu) * 2018-01-31 2021-08-30 Samsung Sdi Co Ltd Folyadék összekapcsoló egy jármû akkumulátorcsomagjához, és akkumulátorcsomag egy jármûhöz

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2054830A (en) * 1979-07-30 1981-02-18 Atomic Energy Authority Uk Improvements in or relating to heat pipes and thermal siphons
DE19724020A1 (de) * 1996-06-06 1998-01-02 Furukawa Electric Co Ltd Wärmestrahlungsgerät mit Wärmerohr für Energiespeicherbatteriegeräte
US20040180257A1 (en) * 2003-03-11 2004-09-16 Panasonic Ev Energy Co., Ltd. Cooling device for battery pack
JP2009147187A (ja) * 2007-12-17 2009-07-02 Calsonic Kansei Corp 発熱体の冷却装置
US20090208829A1 (en) * 2008-02-15 2009-08-20 Keith Howard Method of cooling a battery pack using flat heat pipes
CN101958440A (zh) * 2010-09-16 2011-01-26 赛恩斯能源科技有限公司 具有温度调节装置的电池组
FR2988824A3 (fr) * 2012-03-27 2013-10-04 Renault Sa Caloduc offrant un mode de refroidissement estival et un mode de refroidissement hivernal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326264A (ja) * 1996-06-06 1997-12-16 Furukawa Electric Co Ltd:The 電力貯蔵用電池の放熱装置
JP2000046489A (ja) * 1998-07-30 2000-02-18 Denso Corp 積層型熱交換器
JP2009252646A (ja) * 2008-04-09 2009-10-29 Calsonic Kansei Corp 発熱体の冷却装置
FR2969018B1 (fr) * 2010-12-20 2012-12-21 Valeo Systemes Thermiques Procede de brasage pour echangeur thermique, tube et echangeur thermique correspondants
JP5757502B2 (ja) * 2011-09-27 2015-07-29 古河電気工業株式会社 バッテリ温度調節ユニット及びバッテリ温度調節装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2054830A (en) * 1979-07-30 1981-02-18 Atomic Energy Authority Uk Improvements in or relating to heat pipes and thermal siphons
DE19724020A1 (de) * 1996-06-06 1998-01-02 Furukawa Electric Co Ltd Wärmestrahlungsgerät mit Wärmerohr für Energiespeicherbatteriegeräte
US20040180257A1 (en) * 2003-03-11 2004-09-16 Panasonic Ev Energy Co., Ltd. Cooling device for battery pack
JP2009147187A (ja) * 2007-12-17 2009-07-02 Calsonic Kansei Corp 発熱体の冷却装置
US20090208829A1 (en) * 2008-02-15 2009-08-20 Keith Howard Method of cooling a battery pack using flat heat pipes
CN101958440A (zh) * 2010-09-16 2011-01-26 赛恩斯能源科技有限公司 具有温度调节装置的电池组
FR2988824A3 (fr) * 2012-03-27 2013-10-04 Renault Sa Caloduc offrant un mode de refroidissement estival et un mode de refroidissement hivernal

Also Published As

Publication number Publication date
KR20160068866A (ko) 2016-06-15
US20160268654A1 (en) 2016-09-15
EP3055900A1 (fr) 2016-08-17
FR3011986A1 (fr) 2015-04-17
JP2016539454A (ja) 2016-12-15
CN106030897A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2018206895A1 (fr) Echangeur thermique, notamment pour la régulation thermique de batteries, et procédé de fabrication correspondant
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP4078066A1 (fr) Dispositif de régulation thermique et procédé d'assemblage correspondant
WO2015052141A1 (fr) Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication
EP4121711B1 (fr) Dispositif de régulation thermique d'au moins un composant électronique
FR3068773B1 (fr) Dispositif de regulation thermique de modules de batterie
EP3520166B1 (fr) Dispositif de regulation thermique
WO2018127640A1 (fr) Dispositif d'échange thermique, notamment pour la régulation thermique d'une batterie d'un véhicule automobile
WO2018020139A1 (fr) Echangeur de chaleur, notamment pour la regulation thermique d'une unite de reserve d'energie, et ensemble forme dudit echangeur et de ladite unite
EP3394553B1 (fr) Échangeur thermique, notamment pour vehicule automobile
FR2996066A1 (fr) Dispositif de controle thermique pour module de batterie de vehicule automobile, procede de fabrication dudit dispositif de controle et module de batterie
WO2016156365A1 (fr) Module de batterie, notamment pour véhicule automobile, et échangeur thermique pour module de batterie correspondant
FR3043187B1 (fr) Batterie thermique a chaleur latente pour automobile
WO2014016192A1 (fr) Echangeur de chaleur pour vehicule automobile comportant une bride de fixation
FR3111974A1 (fr) Dispositif de régulation thermique pour le refroidissement d’organes de stockage d’énergie électrique.
FR3015655A1 (fr) Procede de remplissage en fluide diphasique d'un dispositif de controle thermique pour module de batterie de vehicule automobile
WO2018127641A1 (fr) Echangeur thermique à deux rangées de tubes pour la régulation thermique d'une batterie d'un véhicule automobile
FR3073609A1 (fr) Canal pour echangeur thermique d'un vehicule automobile
FR3056828A1 (fr) Dispositif de regulation thermique
WO2017109345A1 (fr) Échangeur thermique, notamment pour véhicule automobile
WO2021048499A1 (fr) Dispositif de gestion thermique pour composant électrique et système comprenant un tel dispositif
WO2021053277A1 (fr) Plaque d'echange thermique d'une batterie
EP1623177A2 (fr) Echangeur de chaleur, notamment, pour automobile
FR3027736A1 (fr) Module thermoelectrique a realisation simplifiee et procede de realisation d'un tel module thermoelectrique
WO2013037469A1 (fr) Echangeur thermique et procede de realisation d'un tel echangeur thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521653

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15028171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014786636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014786636

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167011998

Country of ref document: KR

Kind code of ref document: A